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ABSTRACT 

AN eural network - based material modeling methodology for engineering mate

rials is developed in this study. With this approach, the complex stress - strain behavior 

of an engineering material can be captured within the weight structure of a multilayer 

feedforward neural network trained directly on the stress- strain data obtained from 

,experiments. The feasibility of this approach is verified through constructing neural 

network- based constitutive models of plain concrete in biaxial stress states and in 

uniaxial cyclic compression. A composite material model simulating the stress-strain 

behavior of reinforced concrete as a generic composite material in a biaxial stress state 

is built with experimental data from Vecchio and Collins' tests on reinforced conGrete 

panels in both pure shear and combined shear with nonnal stresses. 

An adaptive neural network simulator is developed by implementing a dynamic 

node creation scheme and a higher order learning algorithm. Representation schemes, 

network architectures. training and testing methods, stress- and strain -based ap

proaches for rna Ie rial modeling are investigated. An elastic unloading IllechanisIll is 

studied with a concrete material model in biaxial compression. Main issues concerning 

the implementation of neural network material models in finite element solution 

procedures arc dlscus\ed. The results on the stress-strain relations of a material 

predicted by a neural network-based model are compared with experimental data. All 

neural network matcna: modeis developed in this study match well with experimental 

results and the network testing results are reasonable. The developed approach shows 

promise in the constitutive modeling of composite materials. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Modem research in material modeling, which addresses complex behaviors such 

as ductile yielding, micro-cracking, brittle fracture, localization and softening, aims to 

construct mathematical models to describe the relationship between stresses and strains 

and possibly include some non-local effects. These models consist of mathematical 

rules and expressions that capture these varied and complex behaviors. From the time 

of Hooke to the present, these material models for various behaviors have been devel

oped more or less in the same way: 1) a material is tested and its behavior observed; 2) a 

mathematical model is postulated to explain the observed behavior and material pa

rameters are detennined; 3) the mathematical model is used to predict yet untested 

stress paths and checked against results from additional existing or new experiments; 

and 4) the mathematical model is then modified to account for behaviors observed but 

unexplained by the model. 

The idealization or the mathematical fonnulation of conceptual material models 

plays an essential role in the material modeling process. Depending on the nature of 

the problem and the availability of computing power, mathematical models of materi

als with various levels of sophistication can be contemplated. As the requirement for 

accuracy in predicting the behaviors of materials becomes more stringent, the material 

model needs to be more sophisticated. This need for more accuracy almost always 

causes increased complexity in material parameter detennination and computations. 
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This phenomenon is well demonstrated in the material modeling process of compos

ites, such as reinforced concrete. In the current plasticity-based or plasticity-fracture 

mechanics-based reinforced concrete models, more complex behaviors such as work

ing hardening, strain softening, etc., are being accounted for. However, more material 

parameters need to be determined and the computation process becomes very expen

sive. In addition to increased expense of computation, the complexity in some material 

models not only makes them difficult to implement but also vulnerable to the violation 

of fundamental mechanics principles. For example, a valid material model should 

satisfy the principles of thermodynamics, the requirements for symmetry and frame 

indifference. 

The modeling of material behavior is of vital importance in structural analysis 

and design. With advancing development in computing technology and in computer

based numerical methods such as the finite element, finite difference, and boundary 

element methods, it is possible to carry out detailed stress analysis of very large and 

complex structures, such as offshore platforms and cooling towers. Nevertheless, it has 

been realized that the validity and reliability of structural behaviors predicted from 

computer-based numerical analyses are mainly determined by the appropriateness of 

material models utilized within those numerical procedures. As a consequence, struc

tural behavior predicted using an inappropriate material model can be of limited 

validity or usage. 

In this century, reinforced concrete, as a composite material, has become one of 

the most important building materials in civil and structural engineering, and extensive 

research has been conducted on the modeling of its behaviors accordingly. However, 

even at present, it is highly difficult to develop analytical models that capture the full 

spectrum of its complex behavior, due to the highly nonlinear behavior of the constitu-
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ent materials, concrete and reinforcing steel, and their interaction. 

Research interest in neural networks, as a paradigm of computational knowledge 

representation, has experienced considerable increase in recent years. This new inter

est is supported by the realization that neural computing is inherently parallel and 

functionally more close to the operation of the brain; that is, it has the capability of 

self- organization or learning. With the advance and sophistication in some branches 

of neural networks, the technology has been successfully tailored for a wide range of 

applications, such as the modeling of some cognitive processes, vision, image process

ing, pattern recognition, and some engineering fields, as illustrated by the large range 

of subjects covered in papers appearing in conferences on neural networks (IEEE: 

Proceedings 1987 and 1988; IJCNN: Proceedings 1989, 1990a and 1990b; NIPS: Pro

ceedings 1988 and 1989). It is obvious that with the continuous development on the 

computational theory and hardware implementation of neural networks, this technolo

gy will potentially provide an efficient and viable tool for solving certain engineering 

problems that are difficult for mere conventional approaches. 

Research in the application of neural networks to problems in computational 

mechanics is very recent (Ghaboussi, et al., 1990, 1991). For material modeling, which 

is essentially a mapping problem with nonlinear functions, the computational charac

teristics of neural networks has facilitated the development of a decidedly different 

approach to the derivation and representation of material behavior. With their intrin

sic property of self-organization and learning, and their utilization of numerical solu

tion methods, neural networks, as a computational tool, are of potential for building 

constitutive models of engineering materials in computational mechanics. 
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1.2 Objectives and Scope 

The aim of this study was to develop a neural network-based material modeling 

methodology for engineering materials, and to verify the approach through modeling 

constitutive stress-strain relations of plain concrete and reinforced concrete in differ-

ent stress states. With available experimental data, neural network-based material 

models were developed specifically for modeling the stress-strain behavior of concrete 

in biaxial stress states and in uniaxial cyclic compressive stress state, and that of rein

forced concrete in biaxial stress states. 

The detailed objectives and scope of this research were as follows: 

o Develop an efficient and flexible modeling environment for multilayer feed

forward neural networks by incorporating a variant of the adaptive hidden 

node generation scheme (Ash, 1989) and higher order learning algorithms, 

such as Quickprop (Falman, 1989), within the framework of an error backpro

pagating neural network. 

o Introduce a neural network-based material modeling methodology in compu

tational mechanics for engineering materials such as concrete and reinforced 

concrete. Investigate technical aspects involved in the development of neural 

network-based material models, specifically representation schemes, network 

architectures, training and testing, using stress- vs. strain-based modeling ap-

proaches, training data selection, and error determination. 

o Develop neural network-based material models representing the stress-strain 

1... 1.. .,. • 1.... • 1 .-l • •• 1 l' • ueuaVlors Oi concrete ill uifuual stress states anu ill Ulliaxlal C)7CllC compreSSIve 

stress state to show that the proposed concepts and approach are feasible and 

efficient for material modeling, and investigate the incorporation of unloading 
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mechanisms with a neural network-based concrete model in biaxial compres

sion. 

o Develop neural network-based material models for reinforced concrete by 

modeling it as a generic composite material in biaxial stress states, using test

ing data on reinforced concrete panels (Vecchio and Collins, 1982). The objec

tive is to investigate the applicability of the proposed approach for the model

ing of composite materials. The emphasis of this work is placed on the deter

mination of a quasi-minimal training data set, generalization assessment, and 

perfonnance study of different representation schemes. 

o Discuss the framework and issues associated with the integration of neural net

work-based material models within Finite Element Methods. 

1.3 Organization 

In chapter 2. neural networks in general, multilayer feedforward neural networks 

in particular. and thctr salient computational properties are briefly discussed. The 

architecture adaptation process and some higher order learning algorithms are de

scribed in detail Thcr.. an adaptive modeling environment for multilayer feedforward 

neural net\\'orks lS presentcd. 

Chapter 3 g!ve'S a brief overview of the mathematical approach to material mod-

eling, illustrated for the modeling of concrete, and introduces the concept of a neural 

network-based matcnal modeling methodology for engineering materials. 

Based on the material modeling methodology described in Chapter 3, neural 

net'Nork-based stress- and strain-controlled models of plain concrete in biaxial stress 

states and in uniaxial cyclic compressive stress state are constructed in Chapter 4. The 
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incorporation of an unloading mechanism for a stress-controlled concrete model in 

biaxial compression is also investigated. The validity of a neural network-based model 

is verified through studying the generalization capability of a trained network by com

paring its predictions on the stress-strain relation of concrete under certain stress 

combinations with results from experiments conducted by other researchers. 

In chapter 5, the proposed approach is explored for modeling the stress-strain 

behavior of composite materials, by considering reinforced concrete as a generic com

posite material, and then modeling the behavior of reinforced concrete panels in 

biaxial stress states. Experimental data are drawn from Vecchio and Collins, of rein

forced concrete panels subjected to both in -plane shear and combined shear with 

normal stresses (1982). Both stress-controlled and strain-controlled models are devel

oped in this study. 

Neural network-based material models are of a network form, differing from 

analytical models explicitly expressed as mathematical formulae for use within a finite 

element procedure. Consequently, issues specially associated with the implementation 

of neural network-based material models in the finite element analysis are briefly 

addressed in Chapter 6. 

Finally, a summary and major conclusions from this investigation, as well as 

recommendations for future research following this study are presented in Chapter 7. 
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1.4 Summary of Notations 

activation value of a node or a neuron; 

the strain - displacement transformation matrix; 

material flexibility matrix in {dE} ::::: [Cd {do}; 

the constitutive or stress - strain matrix of the material; 

vector of incremental strain; 

vector of incremental stress; 

a binary threshold function for a McCulloch-Pitts neuton; 

cylinder uniaxial compressive strength of concrete; 

tensile cracking stress of concrete; 

normal stress in the longitudinal direction; 

maximum stress ratio in a given stress cycle; 

minimum stress ratio in a given stress cycle; 

biaxial normal stresses; 

normal stress in the transverse direction; 

yield stress of longitudinal steel; 

yield stress of transverse steel; 

activation function and its derivative, respectively; 

tangential element stiffness matrix; 

tangential stiffness matrix of the structure; 

mass matrix of the structure; 

the total number of training cases; 

net input to a unit in a neural network; 

output from a unit in a neural network; 

vector of externally applied nodal loads; 
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outgoing signal from a McCulloch-Pitts neuron; 

expected output in the output layer; 

vectors of nodal displacements and their increments, respectively; 

vector of nodal accelerations; 

volume of the element; 

shear stress and increment, respectively; 

strength of connection between unit i and j and its increment; 

activity of a McCulloch-Pitts neuron; 

gradient of the total error with respect to the net input at unit j; 

strain and strain increment, respectively; 

concrete cylinder strain corresponding to fe'; 

major principal strain and minor principal strain, respectively; 

shear strain and shear strain increment, respectively; 

a learning constant called the "learning rate"; 

a threshold value in the McCulloch-Pitts neuron; 

reinforcement ratio for longitudinal steel; 

reinforcement ratio for transverse steel; 

stress and stress increment, respectively; 

major principal stress and minor principal stress, respectively. 
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CHAPTER 2 

NEURAL NE1WORKS 

2.1 Introduction 

Neural networks, also referred to as Connectionist models, and Parallel Distrib

uted Processing (PDP), are computational models inspired by our understanding on 

the biological structure of neurons and the internal operation of the human brain. 

Research in neural networks was started in the 1940's when an endeavor in the search 

for means of constructing a brain -like computing machine was undertaken, and the 

mathematical foundation for this learning paradigm was essentially laid during that 

period. Since then, the advancement of this field has been dramatized by the landmark 

conceptualization of computational models of neurons, the maturation of concepts of 

associative memory and connectionism, and the breakthrough in the development of 

learning algorithms. 

The first computational model of a neuron or a processing unit in a neural 

network, which is capable of threshold logical operation, was proposed by McCulloch 

and Pitts in the early 1940's (McCulloch and Pitts, 1943). In spite of the simplicity of this 

idealized learning model and the ignorance about the behavior of real neurons, these 

models were proved to be able to construct a general computing machine (Minsky, 

1967). Though studies in psychology and cognitive science fostered the concept of 

associative memory, it was Hebb who conceptualized the first learning rule, called the 
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'Hebb synapse' (Hebb, 1949), in which synaptic connections are modified according to 

the correlation between pre- and post-synaptic neuronal activities. The first computer 

simulation with Hebbian learning was performed by Parley and Clark (1954), without 

much success. Later, it was realized that the mechanism of inhibition should be an 

integral part in Hebbian learning (Rochester, et al., 1956). Using the McColluch-Pitts 

model of neurons, Rosenblatt built his two-layer learning system - Perceptrons, and 

developed the perceptron convergence procedure (1962) which was similar to the so 

called delta-rule or LMS (lest mean squared) procedure proposed by Windrow and 

Hoff for their Adaline model (1960) to systematically impart knowledge to the network. 

Research on neural networks attracted tremendous interests and showed promise in 

solving certain simple functional mapping problems during that era. However, due to 

architectural limitation and the lack of powerful learning scheme for general feedfor

ward multi-layer system, Minsky and Papert (1969) pointed out, after rigorous mathe

matical analysis, that the perceptron was not able to solve some nonlinear separable 

problems such as the computation of parity function typified by the XO R function. This 

critical analysis alone almost halted research in neural networks in the 1970's. It was 

Hopfield's energy approach with associative memory (1982) that partially revived 

research activity in this field. Afterwards, the modern era of multilayer neural networks 

was ushered in by the introduction of back propagation neural networks with the use of a 

sigmoidal activation function and the development of the generalized delta rule (Rumel

hart, et al., 1986). With this new learning algorithm, the multilayer feedforward neural 

network has emerged as a powerful tool for solving a large range of problems in 

knowledge representation and functional modeling (Rumelhart, et aI., 1986). 

Presently, the computational capability of neural networks and their intrinsically 

parallel structure and operation have been well recognized. With new development in 
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learning algorithms, the perspective on this computational model which is capable of 

Tlearning to discover hidden relationships in data appears bright and encouraging. In 

addition to the recognition of the capability of neural networks and the development of 

computing technology, other factors have contributed to the recen t explosion of inter

est in this area: 1) it is a universal approximator; an appropriate neural network with an 

appropriate training rule has the capability of solving virtually any computational task; 

2) :! takes a middle ground between traditional mathematical approach and symbolic 

artificial intelligence (AI) approach by using numerical methods for learning and 

expansive representation schemes, as well as adopting a functional use of experimental 

knowledge; 3) it provides an alternative with efficient performance in solving currently 

difficult problems with conventional approach such as speech and natural language 

processing, vision and image analysis, and pattern recognition with the recent insights 

into algorithms that improve the learning ability of a neural network; 4) it may provide 

some insight into the understanding of the computational characteristics of the brain; 

and 5) neural networks are compatible with massively parallel hardwares (Aleksander, 

1989; Barto, 1989; Cybenko, 1989; and Hornik, et aI., 1989). 

2.1.2 General 

A neural network is a nonlinear dynamic system consisting of a large number of 

highly inter-connected processing units, or processors. Each processing unit in the 

network maintains only one piece of dynamic information (its current level of activa

tion) and is capable of only a few simple computations (adding inputs, computing a new 

activation level, or performing threshold logical calculation). A neural network per

forms "computations" by propagating changes in activation between the processors; it 

stores the knowledge it has "learned" as strengths of the connections between its 

processors. The large number of these processing units, and even larger number of 
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inter-connections, similar to the neuronal structure of human brain, give the neural 

networks their capability of knowledge representation. In addition, it is through self

organization or "learning" that a neural network approaches some representation of a 

particular knowledge or discovers the hidden relationships in data. 

Self-organization or "learning" is a key characteristic of neural networks. Unlike 

traditional sequential programming techniques, neural networks are trained with ex

amples of the concepts to capture. The network then internally organizes itself to be 

able to reconstruct the presented examples. Several other interesting and valuable 

characteristics are: 1) their ability to produce correct, or nearly correct, responses when 

presented with partially incorrect or incomplete stimuli; and 2) their ability to general

ize rules from the cases on which they are trained and apply these rules to new stimuli. 

Both of these latter characteristics stem from the fact that a neural network, through 

self- organization or learning, develops an internal set of features that it uses to classify 

the stimuli presented to it and returns the expected response. 

The operation of a processor in a neural network computation is very simple. The 

ou tpu t of a processor, which is computed from its activation level and many times is the 

same as the activation level, is sent to other "receiving" processors via the processor's 

outgoing connections. Each connection from one processor to another processor 

possesses a numeric weight representing the strength or weight of the connection. The 

strength of connection is a filter (in the form of a multiplicative coefficient) of the 

output sent from one processor to another processor, and may serve to increase, or 

decrease, the activation of the receiving processor. Each processor computes its activa-

tion level based on the sum of the products of connection strengths and outputs coming 

into the processor over its incoming connections, computes its output based on this net 

input, and then sends its output to other processors to which it has outgoing connec-
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tions. 

The propagation of activation in a neural network can be feedforward, feedback, 

or both. In a feedforward network, a type of signal can be propagated only in a 

designated direction, whereas in a network with feedback mechanism this type of signal 

can flow in either direction or recursively. For example, in a strictly feedforward 

multilayer network, only inter-layer connections between adjacent layers are allowed, 

and the intra-layer connections or lateral connections among nodes in the same layer 

are suppressed. 

In a multilayer feedforward networks with certain type of learning rules, the 

amount of error defined as a measure of the difference between the computed output 

pattern and the expected output pattern is very much dependent on the weights of the 

connections between the processors. Hence, the "program", or definition of the com

putation, is embodied within the connection strengths of a neural network. However, 

the programming of a neural network does not involve manually setting the numeric 

values of the connection strengths, but rather, involves training the network with many 

examples of corresponding patterns of input and output and having it automatically 

modify the connections through the utilization of learning rules. 

It is this ability to modify its own weights, i.e., to self-organize, that makes neural 

computing feasible, for it would be impossible to set the connection strengths manually 

for all but the simplest of neural networks with the simplest problems. In addition, 

self- organization leads to the observed neural network characteristics of robustness 

and the ability to generalize. By modifying the connection strengths between proces

sors, neural networks can create internal features that: 1) might not be apparent from 

the data and thus would have defied the manual setting of connection strengths; and 2) 

can be used to produce correct, or nearly correct, patterns of output for patterns of 
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input not encountered before, but having similar internal features to those input pat

terns previously encountered. 

Rumelhart, et aL (1986), provided a description of the basic anatomy of neural 

networks, consisting of seven basic aspects: 1) a set of processing units, 2) the state of 

activation of a processing unit, 3) the function used to compute output of a processing 

unit, 4) the pattern of connectivity among the processing units, 5) the rule of activation 

propagation, 6) the activation function, and 7) the rule of learning employed. The 

network topology, and the form of the rules and functions are all learning variables in a 

neural network learning system and lead to a wide variety of network types. Some of the 

well known types of neural networks are: the Competitive Learning (Grossberg, 1976; 

Rumelhart and Zipser, 1985), the Boltzmann Machine (Hinton, et al., 1984), the 

Hopfield Network (Hopfield, 1982), the Kohonen network (Kohonen, 1984), the 

Adaptive Resonance Theory (ART) (Carpenter and Grossberg, 1987), and the back

propagation neural networks (Rumelhart, et al., 1986). The backpropagation neural 

network is Qiven its name due to the wav that it learns - bv backnronagatinf! the errors ----------c;r ----------- - --- -- J --- J.l. .L ~ ...... 

seen at the output nodes. Backpropagation networks and their variants, as a subset of 

multilayer feedforward networks, are currently the most widely used networks in appli-

cations. The following paragraphs describe the salient features of multilayer feedfor

ward neural networks, with emphasis on backpropagation learning. 

2.2 Multilayer Feedforward Neural Networks 

2.2.1 The McCulloch-Pitts Model of Neuron 

Though it was developed in 1943, the McCulloch-Pitts neuron still remains at the 

heart of most present day neural networks (Anderson and Rosenfeld, 1989). With 
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simplification and idealization on the physiological structure and the computational 

characteristics of a biological neuron, McCulloch and Pitts put forth a simple computa

tional model of a neuron as a binary threshold unit, as shown in Fig. 2.1. 

In the McCulloch - Pitts model, the effect of incoming synapses that transmit 

incoming signal Si to the neuron, is computed as a weighted sum of input activity from 

these neurons, where the weight Wij represents the strength of the synapse connecting 

two neurons; and the outgoing signal or activation of the neuron, Sj' is calculated from a 

unit step function, f(xj), according to the value of the difference between the sum and a 

threshold value 8j- If the difference, Xj, is larger than zero, then the activation value is 1; 

otherwise, the activation value is O. The formulas for calculating the weighted sum and 

the threshold step function are shown in Fig. 2.1. 

w·· - 8· lJ J 

{
I, if Xj ~ 0; 

f(xj) = 0, otherwise. 

Fig. 2.1 - The McCulloch-Pitts Model of a Neuron 

2.2.2 Backpropagation Neural Networks 

Multilayer feedforward neural networks, developed from Perceptron which is 

composed of only two layers (Rosenblatt, 1958), are also referred to as multilayer 

perceptrons. The maj or distinction among feedforward neural networks is manifested 

by the learning rule utilized. The backpropagation network is a multilayer feedforward 



16 

neural network with the generalized delta rule as its learning rule. 

The processing units in a backpropagation neural network, which are similar to 

McCulloch-Pitts neurons with the exception that the activation function is a continuous 

sigmoidal instead of a threshold step function, are arranged in layers. Each neural 

network has an input layer, an output layer, and a number of hidden layers. Propaga

tion takes place in a feed forward manner, from input layer to the output layer. The 

pattern of connectivity and the number of processing units in each layer may vary with 

some constraints. No communication is permitted between the processing units within 

a layer. The processing units in each layer may send their output to the processing units 

in higher layers. 

Associated with each connection is a numerical value which is the strength or the 

weight of that connection: Wij = strength of connection between units i and j. The 

connection strengths are modified during the training of the neural network. At the 

beginning of a training process, the connection strengths are assigned random values. 

As examples are presented during the training, through application of the "rule of 

learning", the connection strengths are modified in an iterative process. At the succes

sful completion of the training, when the iterative process has converged, the collection 

of connection strengths of the whole network has captured and stored the knowledge 

and the information presented in the examples used in its training. Such a trained 

neural network is ready to be used. When presented with an input pattern, a feed 

forward network computation results in an output pattern which is the result of the 

generalization and synthesis of what it has learned and stored in its connection 

strengths. 

Therefore, in a backpropagation network, two computational procedures are 

performed in a learning cycle: the feedforward computation of activations and the 
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backward propagation of error signals for the modification of connection weights via 

the generalized delta rule. A feedforward computation proceeds as follows: 

1) The units in the input layer receive their activations in the form of an input 

pattern and this initiates the feed forward process; 

2) The processing units in each layer receive outputs frc:n other units and 

perform the following computations: 

a) Compute their net input Nj, 

M 

N j = L W jk ok 

k=l 

(2.1) 

where Ok = output from units impinging on unitj, and M = number of units impinging 

on unit j. 

b) Compute their activation values from their net input values, 

(2.2) 

where Fj is usuaHy a slgrDoid function and its exact form is determined by the specified 

range of activation vaiues. For example, if the activation values are taken in the range 

of (-1.0, 1.0). then F{~) ::: 2.0 (1 / (1 + e-(N-8)) - 0.5), where e is the bias value at 

that processing u nlt 

c) Compute tht=a outputs from their activation values. Usually, the output is 

taken the same a5 the actIvation value. 

(2.3) 

3) The output values are sent to other processing units along the outgoing 

connections. 
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Fig. 2.2 - A Sample Backpropagation N eural Network 

4) This process continues until the processing units in the output layer compute 

their activation values. These activation values are the output of the neural computa-

tions. 

Several mechanisms for imparting self-organization or learning to these multi

layer feedforward networks have been developed (Rumelhart, et al., 1986). In general, 

there are three classes of neural network learning procedures: supervised learning, 

reinforcement learning, and unsupervised learning (Hinton, 1989). Supervised learn

ing means that the expected output is included in what the network is to learn; rein

forcement learning only requires a single scalar evaluation of the output vector, giving 

information on whether each output is correct or incorrect; and the unsupervised 

learning means that the network is not told what it is to learn about the input with which 

it is presented and must, on its own, discover regularities and similarities among the 

input patterns. One form of supervised learning, developed by Rumelhart, et al. 

(1986), is called the generalized delta rule and is the learning mechanism used in back

propagation neural networks. Similar rules were also developed by some other re

searchers but they were less known to the public (Warbos, 1974; and Parker, 1982). All 
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backpropagation neural networks, which use the generalized delta rule for self- orga

nization and derive their name from the need to backpropagate error, have the same 

general architecture shown in Fig. 2.2. 

The modification of the strengths of the connections in the generalized delta rule, 

described in (Rumelhart, et aI., 1986), is accomplished through performing the gradi-

ent descent on the total error space in a given training case. 

~w·· = 'YI VE(w .. ) = 'Yl O· o· 1J • I lJ • I J 1 (2.4) 

In this equation, 11 = a learning constant called the "learning rate", VE(Wij) = 

gradient of the total error with respect to the weight between units i and j, and OJ = 

gradient of the total error with respect to the net input at unit j. At the output units OJ is 

determined from the difference between the expected activations tj and the computed 

activations ar 

(2.5) 

where P' is the derivative of the activation function. 

At the hidden units the expected activations are not known a priori. The following 

equation calculates OJ for the hidden units: 

M 

OJ = (L Ok wjk) P'(Nj ) 

k=l 

(2.6) 

In this equation, the error attributed to a hidden unit depends on the error of the 

units it influences. The amount of error from these units attributed to the hidden unit 

depends on the strength of connection from the hidden unit to those units; a hidden unit 

with a strong excitatory connection to a unit exhibiting error will be "blamed" for this 

error, causing this connection strength to be reduced. 
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2.2.3 Higher Order Learning and Adaptive Architecture Determination 

As has been stated in the previous section, the generalized delta rule (Rumelhart, 

et a!., 1986) is basically a steepest descent scheme with constant step length in a network 

setting, performing a gradient descent on the error function with respect to the weight 

space. For multilayer feedforward neural networks, the error function is usually a 

highly nonlinear function defined as: 

E(w) -
N 

lim N1 ~ Ek 
N-oo L 

k=l 

(2.7) 

where Ek = I t(Xk) - O(Xb w) 12; t(Xk) is the expected output; O(Xb w) is the network 

prediction which i~ a function of the input vector x and network weight vector w; and N 

is the number of training cases. This error surface is dominated with flat areas and 

troughs, which render the learning with the generalized delta rule in a backpropagation 

network vel')' slow (Hecht-Nielsen, 1989). Another drawback of a standard back

propagation ne~'ork is the need for pre-determination of network architecture and 

the inability to mcorporate a priori possessed knowledge. 

The mode l1ng capability and performance of a backpropagation network is main

ly determined ~. the ne~'ork architecture and its rule of learning. Recently, several 

approaches have tY.:CD proposed to improve the performance ofbackpropagation neu

ral nem'orks. In gc ncral. there are five ways to approach a solution to this problem: 1) 

using a better data representation scheme for input and output, 2) employing higher 

order learning algon thms or heuristic algorithms that more quickly find the minimum 

of the error surface (Becker ~nd Ie Cun, 1988; Fahlman, 1988; Jacobs, 1987; and 

Moody, 1989), 3) preprocessing the input pattern, introducing independence into the 

input vector space (Orfanidis, 1990), thus facilitating the determination of the decision 
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space,4) designing innovative training schemes so that certain knowledge is pre-ori

ented in the network before the final training session (Fahlman and Lebiere, 1990; 

Tenorio and Lee, 1989), and 5) incorporating network geometry adaptation with effi

cient learning algorithms. 

From the derivation of the generalized delta rule, it is tempting to postulate that 

all the minimization schemes are applicable as learning rules for multilayer feedfor

ward networks. Furthermore, numerical analysis tells us that higher order schemes 

such as Newton's method, quasi-Newton methods, and Conjugate Gradient methods 

have better numerical properties than the steepest descent method with respect to the 

rate of convergence and numerical stability (Hageman and Young, 1981; Golub and 

VanLoan, 1983). Nevertheless, for neural network learning algorithms which are 

eventually to be employed in massively parallel hardware implementation of these 

networks, it is desirable that they not only be computationally efficient, but also suitable 

for implementation via local update only, thus conserving the parallelism of network 

operations. With the generalized delta rule, the formula for weight update with a 

momentum term is: 

~w(t) = - 11 aEjaw(t) + a ~w(t - 1) (2.8) 

where 11 is the learning rate and a the momentum factor, and both of them are assumed 

constants. The update of weights can be proceeded either in batch mode or in on -line 

mode. The former refers to updating weights after all the training sets have been pres

ented, and the later after each training set. For second and higher order algorithms with 

adaptive determination ofll or U, the update of weights is usually implemented in batch 

mode. To date, numerous new learning schemes have been proposed, such as the 

Quickprop algorithm (Falhman, 1988), the Delta-Bar-Delta algorithm (Jacobs, 1988), 

the Pseudo-Newton algorithm (Becker and Ie Cun, 1988), and quasi-Newton style 
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methods (Watrous, 1987), etc., using either heuristic rules or higher order information 

to compute the learning parameters. Experience shows that heuristic rules are simple, 

robust, and computationally efficient, while the acquisition of higher order information 

is usually computationally expensive. 

Except for some trivial problems, the network architecture on the hidden layers 

cannot be determined in advance. The common approach to architecture determina

tion uses trial and error, for simple problems. For real world engineering problems 

such as material modeling, it is imperative to have adaptive or dynamic mechanisms to 

determine the network architecture. Since the input and output of a network are 

determined by the nature of the problem and the representation scheme selected, 

adaptive schemes for architecture determination have adopted mechanisms of either 

"growing" or "pruning" the number of processing units in hidden layers. A "growing" 

process starts with a basic or small network (usually one or a small number of hidden 

units), and then adds or grows additional processing units or a set of units including 

layer( s) to the network as the training process progresses until the convergence of 

training is reached. A "pruning" process usually starts with a larger network than 

needed, and then deletes redundant processing units or links during or after a training 

session with the hope that the generalization capability of the trained network would be 

improved. Sometimes, "pruning" is also performed on nodes in the input and output 

layers in order to determine the most important set of variables in the representation 

scheme. The fonner approach is represented in the Dynamic Node Creation scheme 

(Ash, 1989), the Cascade Correlation Learning Architecture (Fahlman and Lebiere, 

1990), and the Self-Organizing Neural Network (Tenorio and Lee, 1989), and the latter 

in Skeletonization (Mozer and Smolensky, 1989), and Kamin's pruning scheme (1990). 

In general, the "growing" approach is more efficient and robust than the "prun-
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ing" scheme for the determination of network architecture. For certain classification 

problems, pruning can be incorporated to improve network generalization. However, 

for real value functional mapping problems in which accuracy on predictions becomes 

more demanding, pruning might have an adverse effect. 

On functional mapping, theoretical studies have proven that a multilayer feedfor

ward network with one hidden layer and enough hidden nodes is a universal approxima

tor, i.e., any function can be embedded in a three layer network (Cybenko, 1989; and 

Hornik, et aI., 1989). This conclusion is valid in the limit sense of statistical measure

ment. However, for efficiency in learning, two or more hidden layers are usually used in 

applications (Lippmann, 1987). 

In the following paragraphs, the Quickprop learning algorithm (Fahlman, 1988), 

the Delta-Bar-Delta algorithm (Jacobs, 1988), and the Dynamic Node Creation 

Scheme (1989) are described. 

2.2.3.1 The Quickprop Learning Algorithm 

The Quickprop algorithm was proposed by Falhman (1988), to improve the rate 

of convergence of learning in the backpropagation neural network through adaptive 

calculation of the momentum factor a in Eq. (2.8). It is a second order method in a 

sense, based loosely on Newton's method, but it is more heuristic than formal. The 

information required is the gradient of the error surface at the previous training epoch 

and that at the current epoch, along with the gradient difference between that of the 

previous and current epoches. The algorithm is derived based on the following assump

tions: 1) the error vs. weight curve for each weight can be approximated by a parabola; 

2) the change in the slope of the error curve, as seen by each weight, is independent of 

the other weigh ts that are changing at the same time; and 3) the momentum factor plays 
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a more important role than the learning rate. Therefore, the fonnula for the update of 

weights is: 

aEjaw(t) ~ 1 
Llw(t) = - 11 aEjaw(t) + aEjaw(t _ 1) _ aEjaw(t) wet - ) (2.9) 

Numerical experiments have shown that the algorithm has good learning conver

gence property and seems to scale up well for large training problems. 

2.2.3.2 The Delta-Bar-Delta Algorithm 

The Delta-Bar-Delta algorithm proposed by Jocobs (1987) for the adaptation of 

learning rate 11 in Eq. (2.8), is inspired by: 1) Kesten's observation (1958) on the 

perfonnance of the steepest descent method that a weight value is oscillating if consec

utive changes of the weight possess opposite signs, and 2) by Saridis' (1970) approach 

for learning rate adaptation - the learning rate is increased if consecutive derivatives 

of a weigh t possess the same sign, and decreased otherwise. Hence, the Delta-Bar-Del

ta algorithm consists of the following rules (Jacobs, 1987): 1) each weight has its own 

learning rate; 2) every learning rate can vary over time; 3) the learning rate is increased 

if the corresponding gradient has the same sign for several consecutive time steps; and 

4) the learning rate is decreased if the corresponding gradient flips signs for several 

consecutive time steps. The algorithm can be expressed mathematically as follows: 

{ 

11 if gi/t - 1) gi/t) > 0 

Lllli/t) = - <P lli/t) if gij(t - 1) gij(t) < 0 
(2.10) 

o otherwise 

where gij (t) = VE(Wij{t» and get) = (1-8) get) + 8g(t-1). The parameters of 11, <p 

and 8 are specified before use. Subsequently, the fonnula for weight update is: 
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{~Wi/t) = - llij(t) aEjawij(t) + a ~Wi/t - 1) 

lli/t + 1) = llij(t) + ~l1i/t) 
(2.11) 

With the additional three learning parameters in the algorithm, numerical ex

periments have shown that performance of this algorithm depends heavily on the fine 

tuning of those parameters. On the other hand, the momentum factor a is not adaptive-

ly determined. Recently, a modification was proposed by Minai and Williams (1990) by 

introducing a mechanism for momentum factor adaptation and setting constraints on 

the learning parameters. However, the limited improvement on the robustness of the 

learning algorithm is overshadowed by the added complexity of additional five learning 

parameters. 
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202.3.3 The Dynamic Node Creation Scheme 

Based on the theoretical conclusion that a three layer feedforward neural net

work is a universal approximator (Hornik, et al., 1989), Ash developed the Dynamic 

Node Creation scheme (1989) within backpropagation networks. This algorithm starts 

by fixing the network architecture to three layers with one hidden layer, starting train

ing with one hidden node, and continually adding one hidden node at a time during a 

training period until the convergence of learning is realized. When a hidden node is 

added to the hidden layer, connections of this node to all the other input and output 

nodes are created, and the connection weights initialized. The decision to add a new 

hidden node is governed by whether the currently estimated average error slope over a 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 

(a) The initial Architecture of a Neural Network 

Input 
Layer 

Hidden 
Layer 

new connections 

Output 
Layer 

Fig. 2.3 - The Dynamic Node Creation Process 
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certain number of epoches is less than a pre-defined gradient tolerance, called "the 

trigger slope." Though this scheme appears to be robust and slightly faster than 

standard backpropagation algorithm on training some simple benchmark problems, 

the proper selection of the trigger slope tends to be problem dependent. However, this 

scheme is simple to use and usually results in an quasi-optimal architecture. The word 

"quasi" is used here because the convergence of learning depends on many factors such 

as the condition of the randomly generated initial weight matrix, and thus an optimal 

architecture may not be obtained through only a few learning sessions. However, 

because the network architecture grows from a small one, it would be reasonable to 

consider the resulted final network to fall into the neighborhood of the optimal archi

tecture. The dynamic hidden node creation process is schematically shown in Fig. 2.3. 

In the following section, the learning algorithm, architecture determination 

scheme, data structure, the framework of implementation, and a performance evalua

tion study of the simulator developed for use in studying the neural network - based 

material models are described. 

2.3 Development of A Dynamic Neural Network Simulator 

2.3.1 Learning Procedures of the Model 

Analysis of the two most important aspects in neural network modeling, namely, 

architecture and learning process determination, indicates that an efficient modeling 

environment would be one consisting of both a dynamic architecture generation 

scheme and a higher order, or heuristic-based, fast learning algorithm that adapts its 

learning parameters. In the material modeling domain, the amount of information or 

the number of stress- strain relations corresponding to a certain number of stress paths 
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that need to be trained is not known a priori, rather that it has to be determined during 

the training and testing session. This factor alone makes the ability to dynamically 

adjust the network architecture extremely important, for the previously trained net

work may have to be augmented in order to accommodate for additional training data. 

On the other hand, the highly nonlinear behavior of materials represented in the 

stress-strain relations and the large amount of experimental data used for training 

require a robust and efficient learning algorithm. 

The simulator developed for building neural network-based material models 

utilizes a modified Dynamic Node Creation scheme (Ash, 1989) for architecture adap

tation and a variation of the Quickprop algorithm (Fahlman, 1988) with heuristic rules 

from the Delta-Bar-Delta (DBD) algorithm (Jacobs, 1987) as the learning rule. The 

learning procedures can be briefly described as follows: 

o Select an initial learning rate and momentum factor; do a standard back

propagation step; and store the gradient information and weight increments at 

the current step; 

o If the sign of the weight increment is the same as the sign of consecutive gradi

ent values, then perform weight update with the generalized delta rule using 

the maximum learning rate prescribed; otherwise, update weight using Quick

prop learning rule to calculate the momentum factor; 

o The learning rate adaptation is optional. In implementation, the learning rate 

can be either fixed as a small constant value or updated with the DBD scheme 

by using an exponential function for the estimation of its increment. A limit on 

the maximum learning rate allowed is also defined. The learning rate adapta

tion is usually activated when the network has already settled down in a neigh-
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borhood of the solution set or when about 90% of the patterns have been 

learned, and when additional accuracy is demanded. 

The mathematical formulae used in this algorithm for the adaptation of learning 

parameters are as follows: 

aEjawij(t) 
~Wij(t) = - 11i/t) aEjawij(t) + aEjawi/t _ 1) _ aEjawii t) ~wiit - 1) 

llij(t + 1) = llij(t) + ~llij(t) 
(2.12) 

Creation Scheme (Ash, 1989) with minor modifications. By using a flexible data 

number of hidden layers can be used. It was found through training networks on the 

experimental data of plain concrete that the use of a "trigger slope" as a generally 

applicable rule for guiding the creation of new hidden nodes was not reliable because 

the "trigger slope'- tended to be case dependent and varied with different problems. In 

addition, once a new training case is added to the training data, the previously pre

scribed trigger slope has to be re -adjusted, and there is no reliable rule for this process. 

Therefore, from a prJpnatic point of view, a fully automatic network architecture 

adaptation scheme ~ no! practically realizable if only the "trigger slope" is used as the 

control signal for hldJcr. nodes generation. Based on this observation, a heuristic for 

adding nodes to hiddc n layers is implemented in the simulator for the preliminary stage 

of training, in v.'hich a trigger paranleter defined as the percentage of total correct 

predictions over the training sets is used. When the network has roughly settled in the 

solution space, say 80% of the training cases have been successfully learned, the archi

tecture adaptation is then manually controlled. The training process converges when 
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both the maximum absolute error and the total error are below their tolerances, respec-

tively. 

2.3.2 Data Structure and Implementation 

To construct a general multilayer feedforward neural network, there needs to be 

defined at least three basic structures, namely, a network structure, a layer structure, 

and a weight structure for any two connected layers. On the network level, the number 

of linked lists needed to define a connected network depends on the allowable flexibil

ity of connection schemes. If the network only allows connections between adjacent 

layers, then one linked list - a doubly linked layer list, is required for linking all the 

layers together to form a network. If connections from one layer to more than one layer 

are allowed, another singly linked weight list is needed to facilitate the computations 

involved. 

The network structure serves the purpose of overall control of the program. Its 

elements include pointers to layer structures of the input and output layers, and head 

and tail pointers to the doubly linked layer list to facilitate access to any layer in the 

network. In the layer structure, the geometrical composition of each layer, the informa

tion that needs to be stored at each node such as the activation value and the error 

value, and pointers to the weight structure existed in front and at back of the layer, are 

specified. The weight structure is defined between two connecting layers, in which 

pointers to the front and back layer structures, data arrays storing values of the current 

weif!ht matrix and the increments ofweirnts at orevious eooch_ as well as the 2:radients o '-".J.. .I. ~ '-"' 

of the error function at previous and current epoches are specified. Full connection is 

enforced to simplify the data structure of weights. 

To facilitate a flexible construction of connection schemes, two linked lists are 
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implemen ted in the simulator: 1) a doubly linked layer list, in which its elements consist 

of a pointer to current layer structure, a forward pointer to next layer, and a backward 

pointer to previous layer structure in the list; and 2) a singly linked weight list, in which a 

pointer to current weight structure and a forward pointer to next weight structure in the 

list are defined. This weight list is activated when the connection scheme from one layer 

to many layers is prescribed in the architectural design of the network. 

The framework of implementation of the simulator can be schematically de

scribed in the following pseudocode: 

o If (in the training mode) then 

While (in the adding node mode) do 

If (at the first training epoch) 

setup data structures for the network; initialize learning parameters 

and weight matrix; read in the training data; 

Else 

modify the network architecture; reset data structures; and initialize 

weights on the new connections; 

End If 

Teach the network with Quickprop learning algorithm; 

If (the training is convergent) 

save the current weights; 

Else 

switch the training mode to the adding node mode; 

End If 

End While 

End If 
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o If (in the testing mode) then 

setup the network architecture and data structure; reload in the previously 

trained weights; 

test the network with testing data. 

End If 

The C programing language was used to implement the proposed simulator 

because of the inherent advantage provided by the language itself in data structure 

manipulation and dynamic memory allocation. This simulator was written in ANSI - C 

and ran on an Apollo DN3500 workstation under either the Domain SR 10.2 or the 

Unix operating system. 

2.3.3 Performance Evaluation 

The perfonnance of the simulator implementing a variation of the Quickprop 

learning algorithm and a dynamic node generation mechanism (DQP), was studied by 

training some we 11 defined benchmark problems, such as the encoding problem, parity, 

symmetry_ and some nonlinear time series functions such as the Mackey-Glass func

tion (Rumelhart. et al.. 1986; Lapedes and Farber, 1987). It turned out that the learning 

rate of the slmulator in terms of training epoches was in general agreement with that 

reported by other researchers (Fahlman, 1988; Jacobs, 1987). With an identical net

work architecture. the current scheme takes about an order less training epoches to 

reach cODvergence WIthin a designated error tolerance than the standard backpropaga

tiOD with the gcnerahzed delta rule. Moreover, with the use of the dynamic node 

generatioD scheme. the size of hidden layers is determined in the run time, and the final 

size is in the neighborhood of the minimal value determined by others (Rumelhart, et 

aI., 1986). Tables 2.1 - 2.2 show the computational expenses in terms of training 
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Table 2.1 - The Computational Expense (Training Epoches) and Network 
Architecture Evolution for Training the N - bit Encoding Problem 

N Nodes DQP (epoches) DBP (epoches) 

2 50 100 80 70 100 200 500 50 

3 90 164 84 77 1000 1000 1000 1415 
16 

4 196 234 186 

Mean 178 1471 

2 50 100 30 50 50 100 100 500 

3 50 50 50 100 50 100 500 500 

32 4 99 96 99 76 1100 1906 1088 1246 

5 327 

Mean 213 1892 

N: size of the input pattern; Nodes: size of the hidden layer; 
DQP: dynamic node generation with quickprop; 
D BP: dynamic node generation with backpropagation; 

QP 

N.C. 

131 

66 

N.C. 

N.C. 

124 

77 

QP: quickprop learning algorithm; BP: backpropagation learning algorithm; 
N.C.: not converged after training for 5000 epoches. 

BP 

N.C. 

N.C. 

487 

N.C. 

N.C. 

1590 

655 

epoches and the evolution of network architecture on the hidden layer for training the 

encoding and parity problems with different learning schemes including the standard 

backpropagation (BP), the dynamic node generation with backpropagation (DBP), 

and the standard quickprop algorithm (QP). 

There are many factors that affect the convergence rate of a learning algorithm, 

such as the condition of the initial weight matrix, types of the activation function, 
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Table 2.2 - The Computational Expense (Training Epoches) and Network 
Architecture Evolution for Training the N - bit Parity Problem 

N Nodes DQP (epoches) DBP (epoches) 

2 50 50 200 50 100 100 200 200 

3 50 300 300 400 500 1000 500 500 

4 423 340 170 172 1000 1000 2000 893 
4 

5 3205 2847 144 

7 

Mean 626 3547 

4 100 150 300 400 500 1000 2000 2000 

5 300 197 248 427 1000 1000 2500 2500 

5 6 300 1000 1000 1500 3000 

7 281 N.C. N.C. N.C. N.C. 

Mean 676 

N: size of the input pattern; Nodes: size of the hidden layer; 
DQP: dynamic node generation with quickprop; 
DBP: dynamic node generation with backpropagation; 

QP 

N.C. 

N.C. 

N.C. 

235 

183 

N.C. 

510 

599 

309 

QP: quickprop learning algorithm; BP: backpropagation learning algorithm; 
N.C.: not converged after training for 5000 epoches. 

BP 

N.C. 

N.C. 

N.C. 

N.C. 

738 

N.C. 

N.C. 

N.C. 

N.C. 

connection schemes, and the values of learning parameters. In order to compare the 

performance of different learning algorithms, it is important to use a fixed set of values 

for learninp" narameters_ such as the learninp" rate and the momentum factor_ On the --- -----0 r----------7 ---- -- --- -----0 ---- --- --- ------------ ------- -- ---

other hand, however, the optimal value of a learning parameter varies from one scheme 

to another. Therefore, it is extremely difficult to run a bias free comparative study on 
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different learning algorithms. Nevertheless, with the use of a fixed set of learning 

parameters and some well defined benchmark problems, the study can always shed 

light upon the general performance of each individual learning scheme. For training 

those benchmark problems, it is generally agreed on that a small learning rate and an 

intermediate momentum factor should be used (Rumelhart, et aI., 1986). Hence, a 

learning rate of 0.25 and a momentum factor of 0.80 were used, and all weights were 

initialized to random values in the range of (0.0, 1.0) in this study. Of course, the 

momentum factor was adaptively determined in schemes that use the Quickprop learn

ing algorithm. 

From the results shown in Tables 2.1 - 2.2, it can be seen that the DQP scheme is 

very effective and efficient in solving all the testing problems, especially when the size 

of training data set becomes large. Moreover, the final hidden size determined is 

always within the neighborhood of the minimal value. For example, the DQP solves the 

16-bit Encoding with 3 hidden nodes, 32-bit Encoding with 4, 4-bit parity with 4, and 

5 - bi t parity with 5 hidden nodes, which are actually the minimal values obtained from 

theoretical analysis (Rumelhart, et aI., 1986). For larger problems such as the 7 - bit 

parity, even though the testing results are not shown here, the DQP scheme always 

converges, whereas the BP and the DBP schemes have difficult to reach convergence 

even after training for over 5000 epoches. Though the QP scheme can also solve these 

benchmark problems very efficiently, it requires the network architecture be deter

mined in advance. 

Several interesting observations were made on the learning performance of the 

quickprop learning algorithm and the dynamic node generation scheme. The quick

prop algorithm is very effective and fast in bring the internal representation of the 

problem within a network to a neighborhood of the ultimate solution set. This is 
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expectable as the magnitude of the gradient value is not of a higher order than the 

momentum value in the early stage of training. For large problems, once the network 

gets in to the vicinity of the solution set, or when 90% of the training patterns have been 

learned, the adaptive adjusting of learning rate becomes more effective. In the training 

of these benchmark problems with binary values in the input and output, especially 

parity, sometimes it is easy for the network to get trapped at a local minimum before the 

hidden size reaches the minimal theoretical value. The dynamic node generation 

mechanism usually provides a very effective relaxation agent for the network to escape 

from the local minimum, and the final network always converges to a quasi-optimal 

archi tecture. 
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CHAPTER 3 

NEURAL NE1WORK-BASED MATERIAL MODEUNG METHODOLOGY 

3.1 Introduction 

A constitutive law or a material model is conventionally described as a mathemat

ical model represented as stress-strain relations that convey human perception of the 

behavior of a material. In engineering mechanics, material modeling constitutes an 

integral part in the study of the structural behavior under external excitation. With the 

availability of powerful computing machines and sophisticated computational meth

ods, such as the finite element method, and the advances in experimental instrumenta

tion and testing methods, the importance of the role that material modeling plays in 

computational mechanics is greatly enhanced. On the other hand, with the introduc

tion of modern composite materials, the constitutive modeling of their complex behav

iors becomes increasingly more involved. 

Recent advances in neural networks, especially the new insights in developed 

learning algorithms, has facilitated the development of a fundamentally different ap

proach to material modeling using neural networks. Within the framework of informa

tion science, the constitutive modeling of a material is a knowledge acquisition and 

representation process, in which the knowledge to be acquired and represented is the 

complex behavior of a material. Clearly, the learning or self-organizing capability of 

neural networks can thus be utilized to build a model of the behavior of a material, 

given an appropriate amount of data on that material's response to external stimuli. 

This realization, along with developments in hardware-based programmable neural 
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networks and neural computing theory, have drawn a potentially new horizon for 

research in material modeling. 

This chapter presents: 1) a brief review of the analytical approach to material 

modeling, specifically of concrete, 2) a summary on the neural network modeling 

procedures, 3) a description of the concept and principles of the neural network-based 

material modeling methodology, and 4) a comparison between the neural network

based and analytical approaches to material modeling. 

3.2 Analytical Approaches to the Material Modeling of Concrete 

The analytical approach to material modeling mainly consists of two aspects: the 

mathematical formulation of constitutive equations and the determination of material 

parameters (Desai and Siriwardane, 1984). The former involves the use of principles of 

mathematics and continuum mechanics, and the latter usually relies heavily on the 

rational identification and determination of material parameters through analysis of 

experiments performed on the material. To illustrate the major aspects involved in the 

analytical approach to material modeling, the constitutive modeling of concrete is 

briefly described in the following paragraphs. 

To describe the behavior of concrete, the constitutive, or stress - strain, relation 

and the failure criteria need to be defined. There are several approaches to model the 

stress-strain behavior of concrete under various stress states. As summarized in the 

ASCE report (ASCE, 1982), analytical material models for concrete are generally 

developed based on the theory of elasticity and its generalization, the perfect and 

work-hardening plasticity theory, the plastic-fracture theory, and the endochronic 

theory of plasticity. For biaxial behavior of concrete, an equivalent uniaxial stress

strain relation is usually used, and stress-strain relations are established by curve fitting 
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the test data. In the case of multi-dimensional analysis, the behavior of concrete is 

assumed to be incrementally elastic with variable moduli (Chen, 1982). 

Failure theory of a material represents stress and strain states at which the materi

al can no longer maintain its load carrying capacity. Some well known early failure 

theories for engineering materials include Rankine's maximum stress theory, the maxi

mum strain theory, Coulomb's internal friction theory, Mohr's theory, and von Mises' 

octahedral shear stress theory. For concrete, because of its anisotropic behavior, those 

theories cannot adequately characterize its failure behavior. Recently, based on exten

sive testing on the stress-strain behavior of concrete, many new theories have been 

introduced specifically for concrete material, such as the biaxial maximum stress enve

lope developed by Kupfer and Gerstle (1973), triaxial maximum stress surface (William 

and Warnke, 1974), crack friction theory (Bazant and Tsubaki, 1980), and criteria based 

on the fracture mechanics theory. 

Because of the limited availability of computing power, early constitutive models 

of concrete are primarily based on the theory of elasticity. The maj ority of these models 

are of the nonlinear elastic type and are used primarily to represent concrete behavior 

under monotonic or proportional loading (Kupfer, et aI., 1969; and Liu, et aI., 1972). In 

the uniaxial cyclic stress state, various models are developed to match behavior of 

structural elements (Karsan and Jirsa, 1969; and Sinha, et aI., 1964). For concrete in 

biaxial stress states, incremental isotropic models (Gerstle, 1981), incremental aniso

tropic models (Darwin and Pecknold, 1977; and Liu, et al., 1972), and isotropic total 

stress-strain models (Kupfer and Gerstle, 1973) have been developed. The advantage 

of elasticity-based models is their conceptual simplicity and ease of use, as well as a 

reasonable representation of the overall behavior of concrete. However, the behavior 

of concrete at ultimate stress states is usually not well represented in these models. 
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Plasticity-based material models for concrete are developed based on the realiza

tion that the behavior of concrete is intrinsically inelastic, which is well manifested in 

the cyclic testing of concrete (Sinha, et aI., 1964), and with the recent advances in 

computing technology so that complex numerical computations can be efficiently car

ried out. In this case, the stress-strain behavior is divided into the recoverable portion 

before yielding and irrecoverable portion after yielding. As such, elasticity theory is 

used to treat the recoverable, or elastic, behavior, while plasticity theory is applied to 

handle the irrecoverable, or plastic, behavior. In general, models based on the theory 

of plasticity describe concrete as an elastic-perfectly plastic material (Mikkola and 

Schnobrich, 1970; Nayak and Zienkiewicz, 1972; Salem and Mohraz, 1974) or as an 

elastic strain hardening plastic material (Chen and Chen, 1975; Buyukozturk, 1977). 

For an elastic-perfectly plastic model of concrete, stress-strain relations have to 

be defined for concrete to characterize its behavior in pre-yielding, during plastic flow, 

and post failure stages. Before yielding, concrete is assumed to be elastic; during plastic 

flow. it is described bv the olastic stress-strain relation: and the oost failure behavior is 
" ".J". "'.L 

governed by the constitutive relation of fractured concrete. In the determination of the 

plastic stress-strain relation during plastic flow, the yield criterion or yield function and 

failure criterion need to be defined. After defining the yield function, the incremental 

plastic stress-strain relation can be derived from the flow rule. Models based on this 

approach are mainly used for limit analysis. 

In order to simulate the softening behavior, the elastic strain hardening plastic 

material models of concrete have been developed. Because of the introduction of a 

hardening mechanism, the material model becomes more complex, and consequently 

more rules need to be defined. In these models, there are hardening rules describing 

the motion of the subsequent yielding surface, the yield function that defines the initial 
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and subsequent yield surfaces, the flow rule for determining the incremental plastic 

stress-strain relation, the criterion for loading and unloading during plastic deforma

tion, and very often, the equivalent uniaxial stress-strain curve to calculate the plastic 

hardening modulus (Chen, 1982). The predictions based on this kind of model have 

traditionally exhibited good agreement with experimental observations, but these 

models are more complex and computationally more expensive than the elasticity

based models. 

Of course, there are many other models such as the plastic fracturing model 

(Bazant and Kim, 1979), endochronic models (Bazant, 1976), etc. The common trend 

seen in the construction of mathematical material models is that as more complex 

material behaviors :lre captured in a model, more rules, parameters, and criteria need 

to be introduced and detennined. Consequently, analytical material models built along 

this direction become more and more complex. 

The advances in information science and computing technology have facilitated 

the introduction of ncw approaches to material modeling. In the following section, a 

fundamentally different material modeling approach based on the neural network 

modeling procedure is tntroduced. 

3..3 'eural Network Modeling Procedure 

In applying nc-ural neN'orks as a computational and knowledge representation 

tool to solve any non - tn\lal problem, the modeling process usually involves the follow

ing aspects: 1) problem representation, 2) architecture detennination, 3) learning 

process detennination~ 4) training of the neural network with training data, and 5) 

testing of the trained network with testing data for generalization evaluation. These 

five aspects also constitute the framework of the neural network-based material model-
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ing process to be described later. 

In general, the problem representation process consists of evaluating the applica

bility of the neural network paradigm, the selection of the type of neural networks, data 

acquisition, data processing, and the design of representation schemes for input to and 

output from the network. The representation schemes are determined not only by the 

nature of the problem, but also by the way that models are to be used. There are 

basically two kinds of representation schemes: distributed representations and local 

representations. For function mapping problems such as material modeling, local 

representation SCbelUe is usually adopted. 

Architecture determination usually involves the selection of the number of layers 

and nodes in each layer, as well as the inter-connection scheme. Obviously the size of 

the input and output layer is solely determined by the representation scheme devised. 

However, the size of each hidden layer and the number of hidden layers are strongly 

influenced by the complexity of the problem, features or regularities embedded in the 

training data, and the efficiency of learning algorithms. In another aspect, the way that 

nodes in different layers are connected is also very important because it controls the 

pathway for information flow or propagation in a network. Though the connection 

between layers can be forward, backward, and recurrent; or be established between 

subsets of processing units in different layers, for simplicity, complete connection 

between adjacent layers is usually enforced in multilayer feedforward neural networks, 

especially when dealing with function mapping problems. 

After the data representation scheme and initial network architecture are de

fined, the determination of a generic learning process involves making decision on the 

type of processing units such as the 2: unit and the 2:IT unit, the selection of activation 

function, and the design of learning algorithms. Once the whole learning system is 
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constructed, the training and testing process can be performed. 

Training means that the defined network is presented with processed training 

data and learns or discovers the relationships embedded in the data using learning 

algorithms. Convergence of learning is reached if the error associated with the network 

prediction falls within a specified error tolerance. If a presentation of the whole 

training data to the network is defined as a learning cycle or an epoch, the iterative 

training process usually requires many hundreds or thousands epoches to reach conver

gence. After the network is properly trained, its generalization capability is evaluated 

similar cases, the resulting neural network can then be qualified as a legitimate model 

for use in the problem domain. 

For real world engineering problems, this whole modeling process is likely to be 

an iterative process, and the generalization evaluation on the trained network from the 

testing phase functions more like a feedback signal. Since a neural network learning 

system is an integration of different mutually interacting learning components, one or 

sometimes even all of the previous processes may need to be examined and adjusted if 

the generalization capability of the trained network is unsatisfactory. The discrepancy 

between the expected output and network prediction may be result from any of the 

following sources: 1) an inappropriate representation scheme of the problem; the 

training data is not comprehensive enough to represent the essence of the problem; or 

the domain is not suitable to neural networks; 2) the current architecture of the network 

is insufficient to accommodate the knowledge to be captured; 3) the learning algorithm 

is not efficient and robust enough to handle the complexity of the problem; and 4) the 

training is pre-maturely terminated. Some aspects of these arguments will be illus

trated in the determination of minimal training data sets for the construction of materi-
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al models of concrete and reinforced concrete. 

3.4 Neural Network-Based Material Modeling Methodology 

The basic strategy for developing a neural network-based model of material 

behavior is to train a multilayer feedforward neural network on the stress-strain results 

( data) from a series of experiments on a material. If the experimental data about the 

material behavior are fairly comprehensive, the trained neural network would contain 

sufficient infonnation about the material behavior to qualify as a material model. Such 

a trained neural network not only would be able to reproduce the experimental results 

it was trained on, but through its generalization capability it should be able to approxi

mate the results of other experiments on the same material. For example, as will be 

illustrated in Chapters 4 and 5, neural networks are trained on the results of several 

proportional stress paths of concrete and reinforced concrete. These trained networks 

can simulate the test results for other proportional and even non-proportional stress 

paths that fall v,'ithin those on which it was trained. The degree of accuracy in this 

generalization depends on both how comprehensive and representative the training set 

is and how well the net\\'ork is trained. 

Clearly. the procedures used in the construction of a neural network-based con

stitutive model of a material would fall into the general framework of the neural 

network modehng process described in the previous section. Because of the nature of a 

material mode I and Its intended use within the finite element method, the modeling 

procedure has Its 0\\1) characteristics and requires special considerations. 

As has been mentioned before, the first step in constructing a neural network

based material model is the determination of representation scheme for material 

behavior in the input and output. The composition of the input and output layers 
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depends primarily on the intended use of the neural networks. Although neural net

works offer considerable flexibility in this regard, it is natural that the first attempt in 

the development of neural network-based material models should follow the tradition

al mathematical models for use with finite element methods. As such, the processing 

units in the input and output layers all represent stresses, strains, their increments, and 

in some cases a portion of the stress-strain history. Since the material behavior is highly 

path dependent, the input must have sufficient information for the neural network to 

characterize the stress-strain state of the material and contain certain information on 

the previous history. Therefore, two representation schemes - the so called one

point and three-point schemes, are introduced to characterize the behavior of a materi

al in different stress states. These representation schemes can be either stress-con

trolled which means that the network is to predict strain increments corresponding 

stress increments, or strain-controlled on the contrary. 

For instance, in a stress-controlled one-point representation scheme, the 

stress - strain state of a material at one point in the stress space and strain space and the 

next stress increments at that point are included in the input, and the corresponding 

strain increments are in the output. For a strain-controlled one-point representation 

scheme, however, the strain increments are in the input and stress increments are in the 

output. The three-point representation scheme is an expansion of the one-point 

scheme, with an expanded input including two additional stress-strain states in the 

stress - strain history. 

Decisions regarding the neural network architecture are of primary importance 

in the successful construction of neural network-based material models. The capacity 

of a neural network is a function of the number of hidden layers and the number of 

processing units in each layer (Hornik, et aI., 1989). The pattern of connectivity 



46 

between the layers is also part of this equation. However, in this study a simple pattern 

of connectivity is used: each processing unit has outgoing connections to all the process

ing units in the next layer. The capacity of the neural network is also somehow related 

to the amount of the information in the training data and the complexity of the knowl

edge contained in that data. Currently there are no quantitative theories or good 

qualitative rules for determining the capacity of a multilayer feedforward neural net

work, as this aspect is not yet well understood. Though theoretical studies have con

cluded that one hidden layer with enough hidden nodes can accomplish the modeling of 

any functions (Hornik, et aI., 1989; Cybenko, 1989), in practice, especially with model

ing of continuous functions, it has been observed that the use of two hidden layers would 

yield a more efficient training. Therefore, two hidden layers are used with all the 

networks in this study. 

For material modeling problems, with the use of two hidden layers, the size of 

each bidden layer is determined by the modified dynamic node creation scheme de

scribed in the previous chapter. Consequently, the final size of each hidden layer thus 

detennined corresponds to the network architecture when a minimal or optimal train

ing data set is successfully trained. This minimal or optimal training data set is defined 

as a set of data that contains sufficient information to characterize the behavior of a 

material. 

To facilitate the representation of tensile and compressive data, a sigmoidal 

activation function defined in the range of (-1, 1) is used. A learning algorithm based 

on Quickprop (Fahlman, 1988) has been developed for handling the large amount of 

training data with diverse characteristics resulting from the anisotropic behavior of 

materials. Before the training process starts, one immediate question is how large a 

training data set should be such that the material behavior is essentially characterized. 
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As there is no theoretical guidance on this question, an engineering approach is devel

oped in this study to estimate the comprehensiveness of the training data set iteratively. 

This approach is designated as "incremental training with generalization control." 

Whether or not a neural network has been trained with the minimal training data 

set is indicated by how well the trained network generalizes on the testing cases. 

Ideally, if the network is trained with a quasi-optimal or quasi-minimal training set, 

reasonable generalization should be observed on the testing results. Otherwise, if the 

training set is too small, poor testing performance would be expected, as the trained 

network has not been presented with all examples of the relevant information so as to 

generalize properly. On the other hand, if the training data set is too large, no substan

tial improvements would result from further training, after the network has been 

trained with the minimal training data set. 

In the incremental training scheme proposed, training and testing proceed in the 

following way: 1) start with a small network and a small training set, and train the 

network until convergence; 2) add additional data to the training set, and restart 

training on the augmented data with the previously converged network; add nodes to 

hidden layers as needed; 3) when a training set containing a reasonable number of 

stress-strain data has been successfully trained, perform the generalization tests on 

untrained stress - strain cases; and 4) if all the testing results appear in good agreement 

with expected beha\10r. stop training; otherwise repeat the data set addition and gener

alization testing processes. 

There are some benefits to using incremental training with tests for generaliza

tion evaluation. First, with the use of the dynamic node generation scheme and incre

mental presentation of the entire training data set, the network is not overwhelmed by 

the large amount of information at the initial stage of training so that the learning 
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process converges faster than when guessing a network architecture and presenting the 

network with the whole training set at once. Secondly, starting with a small amount of 

data and monitoring the generalization performance of the neural network at certain 

stages of training, a quasi-minimal training set can usually be obtained. However, the 

true minimal training set is not theoretically defined at this time, but it is known to 

depend on both the comprehensiveness of the available experimental data on a materi

al and the characteristics of the problem. 

3.5 Comparison of Neural Network-Based Approach with Analytical 
Approach to Material Modeling 

The neural network-based material models differ in some fundamental ways 

from the traditional mathematical models of material behavior such as the plasticity 

models. In order to compare these two radically different methods of material model

ing, we reiterate the steps involved in the development of traditional material models. 

Three basic steps can be identified in the development of mathematical models: 1) the 

identification of the main features of material behavior from the experimental data, 

which includes features suen as: elastic behavior, yielding, strain hardening, strain 

softening, brittle failure, micro-cracking, and localization; 2) development of a set of 

mathematical rules and expressions such as: yielding function, loading criteria, flow 

rule, hardening rule, and failure criteria; and 3) determination of the material parame

ters from the experimental results. 

These mathematical rules and expressions are constrained to satisfy the funda

menta11aws of mechanics such as the energy conservation laws, namely the first and 

second laws of thermodynamics, conservation of mass, balance of linear momentum, 

balance of angular momentum, hence symmetry requirements, principle of invariance, 

and frame indifference. That is, the constitutive equation must be consistent with the 
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physical laws. 

By contrast, in the proposed method of material modeling, neural networks are 

used as computational tools capable of both capturing the "knowledge of the material 

behavior" directly from the experimental data and storing this knowledge within the 

connection strength of the network. 

Unlike traditional mathematical models, neural network-based material models 

do not explicitly represent the features of material behavior; thus the trained neural 

network is used like a "black box". Nor can the neural network-based material models 

be rigorously proven to obey the energy conservation laws and symmetry and invarian

ce requirements. However, if the neural network is trained on a comprehensive set of 

experimental data, it is reasonable to assume that the resulting material model will 

approximate all the laws of mechanics which the material actual obeys. This belief is 

the consequence of the recent proof (Hornik et al. 1989; Cybenko, 1989) that the 

feedforward multilayer neural networks are universal approximators of any function if 

the networks have sufficient processing units in their hidden layers, and have been 

presented with a sufficient number of examples of this function. Note, no definition of 

sufficiency is given in this theorem. Of course, such a comprehensive set of material 

data may not be available for most materials at the present. 

In the next chapter, the neural network-based material modeling methodology 

introduced in this chapter is applied to represent the behaviors of plain concrete under 

biaxial stress states and under uniaxial cyclic compression so that the applicability of 

this approach is verified. The extension of this approach to constitutive modeling of 

composites, specifically reinforced concrete material, is presented in chapter 5. 
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CHAPTER 4 

NEURAL NETWORK MATERIAL MODELS OF PLAIN CONCRETE 

4.1 Introduction 

In this chapter, the neural network-based material modeling methodology is 

applied to the constitutive modeling of plain concrete under short-term monotonic 

biaxia1loading and under uniaxial cyclic compressive loading. Both stress-controlled 

and strain-controlled models for concrete in biaxial stress states are studied. A simple 

elastic unloading mechanism is investigated in the stress state of biaxial compression. 

The behavior of concrete has been well understood through numerous experi

ments and extensive theoretical research in the past several decades. It is generally 

agreed upon that the mechanical behavior of concrete is decisively determined by the 

formation, distribution, and propagation of microcracks in concrete before and during 

loading. As an inhomogeneous material that is composed of coarse aggregates and 

mortar, concrete experiences a highly nonlinear behavior in its stress-strain relation 

even in the simple uniaxial stress state. It is :1US clear that a valid constitutive model of 

concrete should be able to represent various facets of its complex nonlinear behavior. 

To facilitate the discussion of neural network constitutive modeling, a brief summary of 

some of those experimental observations on the behavior of concrete is presented in the 

following section. 

4.2 Material Characteristics of Plain Concrete 

In general, experimental observations indicate that concrete behaves as a linear 
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elastic material when it is subjected to low level of stresses; it exhibit highly nonlinear 

behavior under higher levels of stresses. The strength and stiffness of concrete under 

uniaxial compression are different from those under multiaxialloading. In addition, 

the duration of loading has a significant effect on the stress-strain response of con

crete, as ill ustrated in its behavior under long-term sustained loading and under dynam

ic loading such as impact. 

When subjected to monotonic uniaxial compression, according to Winter and 

Nilson (1979), concrete behaves elastically for stress level up to 30 percent of its 

maximum compressive strength ff c as the microcracks are stable at low stresses. For 

stresses above this early threshold, concrete starts to soften until it reaches its maximum 

strength at a strain level between 0.002-0.003. During this period, microcracks start 

forming at the mortar-aggregate interfaces, and propagates to form more complex 

cracking systems upon further loading. After reaching maximum strength, if subjected 

to increasing compressive strain, the concrete exhibits the descending portion of its 

stress-strain relation. 

Under uniaxial tension, the shape of the stress-strain curve of concrete is similar 

to that under uniaxial compression, but its tensile strength is only about 5 -10 percent 

of its compressive strength (Hughes and Chapman, 1966). This behavior is mainly 

caused by the rather low tensile strength at the mortar-aggregate interface of this 

composite material. Due to difficulties associated with the control of a tension test, the 

softening behavior of concrete after reaching its tensile strength is not easy to obtain, 

and concrete behaves more like a linear elastic brittle material in tension. 

The behavior of concrete observed from uniaxial cyclic compression tests (Kar

san and Jirsa, 1969; and Sinha, et aI., 1964) shows clear degradation in both stiffness and 

strength of concrete with increasing number of applied cycles for a stress level above 
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0.60f' c. The inelastic behavior is illustrated in the hysteresis loop formed during each 

cycle of loading and unloading. The stress-strain curve under monotonic compre.:::sion 

can serve as a reasonable envelop curve for the peak values of stress under cyclic 

loading (Sinha, et aI., 1964). 

The behavior of concrete under biaxial states of stress is somewhat different from 

that under a uniaxial state of stress. Because of the presence of the second stress 

component, the behavior of concrete is represented specifically in the three regions: 

compression-compression, compression-tension, and tension-tension. Experimental 

results (Kupfer, Hilsdorf and Rusch, 1969; Nelissen, 1972) show that the loading stress 

ratio has a significant effect on the strength of concrete in both biaxial compression, and 

compression-tension. The compressive strength of concrete increases by almost 25 

percent with a stress ratio of 01/02 = 0.5, and is reduced by about 16 percent at 01/02 = 

1.0. In the region of compression-tension, the compressive strength of concrete is 

drastically reduced with the increase of tension stress. However, in biaxial tension, the 

behavior of concrete is similar to that in uniaxial tension with an unchanged or slightly 

increased tensile strength. 

4.3 Neural N etwork-Based Material Models of Concrete in 
Biaxial Stress States 

In structural analysis, many important classes of structures, such as beams, pan-

state. As a first application of the neural network-based material modeling methodolo

gy, the objective is thus to construct a neural network constitutive model to represent 

the biaxial behavior of plain concrete. The experimental results reported in (Kupfer, et 

aI., 1969) cover a wide range of loading stress paths in the state of biaxial stresses and 

are judged to be comprehensive enough for the purpose of training a multilayer feed-
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forward neural network. The experimental results in terms of stress-strain relations 

are stress controlled tests of plain concrete undergoing monotonic proportional load

ing. Consequently, the trained network can be expected to have sufficient information 

on the proportional or nearly proportional loading stress paths. Obviously, on the basis 

of this information alone, the neural network can not gain infonnation on stress rever

sals and higbly non-proportional stress paths. In the second application, we perfonn 

some experiments on training a different neural network on uniaxial compressive cyclic 

tests on plain concrete. 

4.3.1 The Representation Schemes and Architecture Determination 

The requirements on the design of representation schemes for this problem are 

that both the characteristics of behaviors of the material should be represented, and it 

should support the possible use of these material models within a numerical solution 

scheme. For tbis material modeling problem, the obvious inputs and outputs are 

stresses and strains. However, material behavior is path dependent. In order to 

capture the path-dependence of material behavior, the network was structured so as to 

predict strain increments given the current state of stress and strain and a stress incre

ment. Because the strain increments predicted by the network are path dependent, one 

must use the network iteratively to predict a strain state for a given stress state. This is 

done by starting at a known stress-strain state (usually a stress-strain free state), incre

menting the stresses by small amounts, and using the neural network to predict the 

strain increments. These strain increments can then be added to determine the new 

state of strain which can be used to predict the strain increments for another stress 

increments. The model would thus be stress-controlled, i.e., increments of stress as 

input and increments of strain as output. However, a strain-controlled model (i.e., 

increments of strain as input and increments of stress as output) would be more directly 
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usable within the Finite Element Method. Since the experimental data are obtained 

from stress-controlled tests, it is more natural to develop stress-controlled material 

models to simulate the behavior of the material. For completeness of this investigation, 

both stress-controlled and strain-controlled models were developed, and the strain

controlled training data are directly converted from stress-controlled training data by 

switching the positions of stress components with strain components. 

As has been described before, this representation scheme is designated as a 

one-point scheme, as it only uses information at one point on the stress-strain curve to 

predict the strain increments. For monotonic proportional loading cases, the one-point 

scheme can adequately capture the characteristics of the material behavior. To accom

modate the conditions of cyclic loading or with reloading-unloading, a three-point 

scheme is needed in which stress-strain relations at previous two points and current on 

the stress-strain history along with stress increments at the current point are used as 

input to predict the new strain increments as output. The three-point scheme is re

ouired for a uniaue distinction between the case of reloading and unloading. -l - - ~ - - - - ~ "-' "-' 

After the representation scheme is defined, the preprocessing (or most often the 

scaling) on the original experimental data is usually performed because the use of 

sigmoidal activation functions restricts the range of data value accepted by the network. 

In this study, linear scaling is used throughout all the data types including stresses, 

strains, and their increments, and all the data are linearly transformed to the interval of 

(-1.0, 1.0). The data transformation process proceeds as follows: 1) to find the maxi-

mum and minimum values of each stress and strain data (max_aI, max_0"2, max_£l, 

max _£2, min_aI, min _ a2, min _ £1, min _ £2), and linearly transform each set of data from 

the range of either (-max, -min) to (-1.0,0.0) or from (min, max) to (0.0, 1.0); and 2) 

to calculate the stress and strain increments, and linearly transform the increments in 
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the same way as with stress and strain data. After all the stress-strain data correspond

ing to different stress paths have been pre-processed, a part of this data is designated as 

the training data set and the remaining as the testing data set. The optimal size of the 

training data set is usually not readily determinable at the beginning of the training, but 

an estimation based on the modeler's understanding of the problem would be a good 

starting point. In this study, the problem is solved via "incremental training with 

generalization control." 

The first neural network model developed for concrete in biaxial stress states uses 

one-point representation scheme and has six units in the input layer and two units in the 

output layer. The size of the two hidden layers is dynamically determined during 

training. For the stress controlled model, the six input units are two stresses, two strains 

and two stress increments (01,02, £1, £2, ~Oh ~02), while the output units are two strain 

increments (L1£1, L1£2), as shown in Fig. 4.1. In the strain controlled model the last two 

units of the input layer represent the strain increments and the output units represent 

the stress increments. 

4.3.2 Training and Testing of Neural Network-Based Concrete Models 

Training a neural network material model involves presenting the network with 

the experimental data and have it self-organize, or modify its weights, such that it 

correctly reproduces the strain increments when presented with the current states of 

stress and strain and the stress increments (for a stress-controlled model). The 

training process is iterative and its convergence is reached only when certain specified 

convergence criteria, such as some error tolerances, are satisfied. For a strain -con

trolled model, the same data were used, but the strain increments were presented to the 

network as input and the stress increments as output. !twas discovered that an effective 

way to train the neural network was to present the data to the network incrementally. 
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Fig. 4.1 - Architecture of the Stress-controlled Neural Network Material 
Model of Concrete in Biaxial Stress State 

For this problem. there were totally 18 stress/strain relations available from experi

ments (Kupfer. et al., 1969; and Nellissen, 1971). With one-point stress-controlled 

representation. initially 9 stress paths with 3 in each of the stress regions were selected 

as training cases. and the remaining 9 stress paths as testing cases. \Vith incremental 

training, the stress-st:ain data were then presented to the nerNorkwith an increment of 

3 stress paths at d time, Those data were trained until the maximum error was reduced 

to less than 0.04 

After the nCt\\'ork is successfully trained with the training data set, testing is 

perfonned to determIne the generalization capability of the network on testing cases. 

With a stress-contrulled neural network material model, the untrained stress paths are 

presented to the net\\'ork to predict their corresponding strain paths. This testing 

aspect is vital to the determination of the validity of a neural network material model. If 

the predictions on stress - strain relations of some testing cases from the network 

trained so far does not match well with the experiment data, then those testing stress/ 
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strain data need to be included in the training data set so that the associated features 

that are currently lacking will be captured through further training. 

With an architecture adaptation capability of the simulator, the initial architec

ture of the neural network consists of a small number of nodes in each of the two hidden 

layers. During training, as the information - the content of the data sets presented to 

the network increases, more nodes are added to each hidden layer. This process 

continues until the learning process converges for the training data. For instance, with 

the stress-controlled one-point scheme, the network starts with 10 nodes in each of the 

two hidden layers, and 4 more nodes are added in increments of2 during training so that 

the final architecture has 14 nodes in each hidden layer, as shown in Fig. 4.1. 

The determination of composition of training data is also an iterative process. 

For example, after training the stress-controlled material model with one-point 

scheme on stress-strain relations corresponding to 9 stress paths, a testing was per

formed on the 9 training and the remaining 9 untrained cases. Though these training 

and testing results were not presented here, it was observed that the learning error was 

very small « 0.09) on all the training cases, and testing results on strain paths from 8 

out of 9 testing stress paths were reasonable with good accuracy (maximum testing 

error < 0.10) except that of one stress path (01/02 = -1.0/-0.20). On testing that stress 

path, large discrepancies were seen on the stress-strain relation predicted by the 

network in the minor stress direction (02 - £2), even though the network prediction in 

the major stress direction (01- £1) was reasonable. Therefore, the stress-strain relation 

corresponding to that stress path was added to the training data, and the previously 

converged network was given additional training cycles with these 10 stress/strain paths 

until the same error tolerance was satisfied. Afterwards, when other stress paths from 

the testing data set were added to the training data set, there were no substantial 
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improvements on the testing results. This indicates that for this problem, 10 stress/ 

strain relations constitute a quasi-minimal training data set. With those architecture 

adaptation and modified new learning algorithm described in Chapter 2, the whole 

training process took about several thousand of epoches of training to reach conver

gence and the subsequent retraining was very fast. 

In the following paragraphs, the training and testing results of both stress-con

trolled and strain-controlled models with one-point scheme are described in detail. 

4.3.2.1 A Stress-controlled Material Model with One-point Scheme 

For the stress-controlled model with one-point scheme, the results after training 

the network on the 10 stress/strain paths shown in Fig. 4.2, are shown in Fig. 4.3. The 

graph in Fig. 4.3 shows the strain paths (i.e., strain increments) predicted by the neural 

network (shown as dashed lines) against those expected and used as training cases 

(shown in solid line). The labelling of paths is defined in Fig. 4.2. Another way to look 

at these results is to plot stress-strain relations corresponding to each training case. 

The graphs in Figs. 4.4 - 4.6 show the expected stress/strain curves (experimental 

results) against those predicted by the neural network. The results shown in Figs. 4.3 

and 4.4 - 4.6 illustrate that neural networks can be used to capture the material behavior 

information on which they are trained with reasonably good accuracy (maximum error 

< 0.10). 

The next question is how well does this trained network generalize what it has 

training and testing processes are two separate processes and one is performed after the 

other. Nevertheless, as have been described before, in the neural network material 

modeling, the training and testing processes become two mutually interactive and 



59 

O2 0.1 tt4 
f' c 

ttl .,.-
/ 

/ 
I 
I 
\ 
\ °1 , 

f' 

" c 

~ 
...... -

0.0 0.1 

°1 
cc2 f'c 

- 1.4 - 0.6 

-- paths trained, 
--- paths tested, 

Values of 01 / 0:;: 

eel: -1.0/-0.52. cc2: -1.010.0, cc3: -1.0/-1.0, cc4: -1.0/-0.20, ee5: -1.0/-0.5, cc6: -1.0/-0.7 

etl: -1.010.052, ct2: -1.0/0.103. ct3: -1.0/0.204, et4: -1.0/0.02, et5: -1.0/0.04, ct6: -1.0/0.10 

I ttl: 1.0/1.0, tt2: 0.0/1.0, tt3: 0.55/1.0, tt4: 0.25/1.0, tt5: 0.50/1.0, tt6: 0.75/1.0 

Fig. 4.2 - Behavior of Plain Concrete Under Biaxial Loading - Stress Paths 
and Strength Envelope (Kupfer, et aI., 1969) 
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integrated parts of the whole process, for the quasi - minimal training data set is deter

mined through testing for generalization using the testing data. Therefore, once a 

material model is properly trained via the approach described in Section 3.4, its gener

alization capability has also been nominally checked. 

Testing of the neural network material model involves presenting the network 

with stress paths that are not part of the training set and seeing what strain paths are 

predicted. With the incremental testing scheme, the resulting strain paths correspond

ing to the test stress paths are generated as follows: 1) the stress path is started at the 

origin free of any stress and strain, where the initial stress-strain state with the first set of 

stress increments is presented to the network to generate the strain increments; and 2) 

the strain increments that produced by the network are added to the previous state of 

strain to get the new current state of strain; and with a new stress increments, the 

process continues recursively until the final stress state is reached. 

The stress paths on which the trained neural network was tested are shown in 

dashed lines in Fig. 4.2 and the corresponding strain paths are shown in Fig. 4.7. The 

testing results in terms of stress-strain relations on the testing stress paths (total 8) are 

shown inFigs. 4.8 - 4.10. In Figs. 4.8 - 4.10, the stress-strain relationships predicted by 

the trained neural network are compared with the experimental results reported in 

another experiment (Nelissen, 1972). Although the neural network was not trained for 

these stress paths, it is obvious from these figures that the network predictions are quite 

reasonable with acceptable accuracy (maximum error < 0.09 for testing cases in biaxial 

tension, < 0.10 in biaxial compression, and < 0.15 in tension-compression). The larger 

error seen at the higher stress region in the major stress-strain direction (01 - c1) for 

testing cases in tension-compression was caused by the error accumulated during the 

initial stage of the incremental testing. In spite of this error accumulation phenome-
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non, the predictions of the network on testing stress paths matched reasonably with 

experimental results, which indicates that the trained neural network is capable of 

generalization and synthesis from the stress paths on which it was trained. 

One of the attractions of using a neural network to model material behavior is 

that a strain-controlled model can be developed with no more effort than is required for 

the development of a stress-controlled model. Such a strain-controlled model is, of 

course, more suitable for usage in Finite Element analysis. Since the experimental data 

(Kupfer, et aI., 1969) were obtained with only stress-controlled tests, no strain-con

trolled data are directly available. Therefore, it is reasonable to directly transform the 

stress-controlled data in a strain-controlled format, which is accomplished by simply 

exchanging the positions of stresses and stress increments with their strain counter

parts. In this way, the strain-controlled training data set is derived from the stress-con

trolled training data set. In the next section, training and testing results of a strain-con

trolled material model of concrete with one-point scheme are described. 
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4.3.2.2 A Strain-controlled Material Model with One-point Scheme 

For the strain controlled model with one-point representation scheme, the archi

tecture of the network consists of six input units representing two stresses, two strains 

and two strain increments (Jl, (J2, c1, c2, ~c1, ~c2), while the output units are two stress 

increments (~(Jl, ~(J2), as shown in Fig. 4.11. The hidden nodes are determined 

through adaptive node generation to be 30 nodes in each hidden layer when the maxi

mum training error on the stress-strain relations corresponding to the 10 strain paths is 

reduced below 0.09. 

It is interesting to note that the architecture for the strain-controlled model takes 

more hidden nodes than those needed in the stress-controlled model in order to cap

ture the biaxial behavior of concrete to a comparable accuracy. This is basically caused 

by the simple vlay the training data are prepared, as the proportionality of loading is not 

apparent in the strain-controlled data, as it was for the stress-controlled data sets. The 
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Fig. 4.11 - Architecture of the Strain-controlled Neural Network Material 
Model of Concrete in Biaxial Stress State 
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network has to use additional resources and more efforts to discover the proportional

ity by itself. This phenomenon suggests that a more elaborate way of preparing the 

training data would make the network smaller and the subsequent training more effi

cient. 

The results after training the 10 stress-strain relations are illustrated in Fig. 4.12, 

in which the stress paths predicted by the neural network are shown as dashed lines, and 

those expected and used as training cases are shown in solid lines. The labelling of paths 

is the same as defined in Fig. 4.2. The graphs in Figs. 4.13 - 4.15 show the expected 

stress/strain curves (experimental results) against those predicted by the neural net

work. Note that with the neural network architecture described for the strain-con

trolled model, the network has been able to "learn" the biaxial behavior of concrete 

equally as well as for the stress-controlled model. With a strain-controlled model, 

because the error in the network prediction is shown in the stress part and the scaling 

schemes for stresses and strains are different, the error manifested in the overall 

stress-strain relation appears to be smaller than with a stress-controlled model. 

The testing of the network proceeds in the same way as with a stress-controlled 

model, except the outputs predicted are stress increments instead of strain increments. 

The testing results in tenns of stress-strain relations are shown in Figs. 4.17 - 4.19. 

From these three figures, it clearly shows that the stress-strain relations predicted by 

the network on the testing cases are reasonable and have good accuracy (maximum 

error < 0.10). In addition, the stress paths predicted on the testing cases, are shown in 

Fig. 4.16. Though the testing result on stress paths is not as accurate as that on strain 

paths with a stress-controlled model, the close agreement shown in the stress-strain 

relations predicted on all the testing cases indicates that the construction of a strain

controlled model is feasible by even using training data that were crudely prepared. Of 
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course, if experimental data from strain-controlled tests are available, it can be ex

pected that a neural network model trained with those data would be more natural to 

simulate the experimental results. 

From the training and testing results of both the stress-controlled and the strain

controlled concrete model with one-point representation scheme, it is interesting to 

note that the representation scheme and the way the training data are prepared play 

important roles in determining the amount of work and efforts that are needed for the 

successful construction of the material model. In modeling the behavior of concrete in 

biaxial stress states, theoretically speaking, the information content embedded in the 

10 stress/strain relations should be perceived as the same for both stress- and strain

controlled models. However, the larger number of nodes in hidden layers required for 

the strain-controlled model clearly indicate that a neural network "sees" the informa

tion in data differently with different representation schemes. Therefore, a good 

representation scheme with an appropriately processed training data set would consid

erably speed up the material model construction process. 

In the next section, the training and testing results of neural network-based 

models of plain concrete in biaxial stress states, using three-point representation 

schemes, are presented. 
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4.3.2.3 A Strain-controlled Material Model with Three-point Scheme 

To determine the effect of different representation schemes on the behavior of 

neural network material models, both a stress-controlled and a strain-controlled three

point scheme are also used to model the biaxial behavior of plain concrete with the 

expectation that the network may learn the stress-strain behavior of concrete better if 

more information is provided. However, after the training and testing were completed, 

the performance of these models with three-point scheme was almost the same as that 

with one-point scheme and no substantial improvement was observed. This phenome

non indicates that one-point representation scheme has enough information capacity 

within the network to characterize the biaxial behavior of concrete under monotonic 

proportional loading, and the information presented on the two previous stress-strain 

states with the three-point scheme appears to be redundant. To illustrate the behavior 

of neural network constitutive models of concrete built with three-point scheme, the 

training and testing results of a strain-controlled model is described in the following 

paragraphs. 

For a strain-controlled model with three-point representation scheme, the input 

of the network is increased to 14 units (01(i-2), 02(i-2), £1(i-2), £2(i-2), 01(i-1), 

02(i -1), El(i -1), £2(i -1), 0l(i), 02(i), £l(i), £2(i), ~£1, ~£2), and the output has 2 units 

(~01, ~02)' The training data were then constructed according to this representation 

scheme. After training the stress-strain data corresponding to the 10 stress-strain 

paths used for one-point scheme, with the maximum training error being reduced to 

below 0.09, the hidden units in each of the two hidden layers were dynamically deter

mined to be 24 nodes. The training results in terms of stress paths are shown in Fig. 

4.20, in which the network prediction (in dashed lines) is plotted against the expected 

value (in solid lines). The training results are also presented in the stress-strain rela-
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tions, as shown in Figs. 4.21 - 4.23. From these figures, it is clear that the the network 

has learned the biaxial behavi'or of concrete presented in the training data with a 

slightly improved accuracy over that with one-point scheme. 

Testing of the network with a three-point scheme proceeds in the same way as with 

one-point scheme. The testing resu1+s on the untrained cases were illustrated in Fig. 

4.24, in which the predicted and expected stress paths were plotted. Besides, the 

stress-strain relations on the testing stress paths were shown in Figs. 4.25 - 4.27. The 

predictions of the current network on testing cases improved to certain degree over 

those of the strain-controlled model with one-point scheme, but the improvement was 

not substantial. For a stress-controlled model with three-point representation scheme, 

the training and testing results are essentially the same as those with strain-controlled 

model. That is, the stress-strain behavior captured in the neural network material 

model with both three-point schemes is essentially the same as that with one-point 

scheme. To avoid redundant presentation, the training and testing results of the stress

controlled model is not included here. 

4.3.3 Plain Concrete in Biaxial Compression with Unloading 

In the implementation of a material model within a finite element procedure, it is 

important for the material model to be able to handle all phases of stress states includ

ing loading and unloading. For an analytical material model, the material behavior 

during unloading can be assumed to be elastic with certain material parameters fixed at 

some values. For instance, in Ottosen's isotropic nonlinear elastic model, the unload

ing and reloading path takes secant values of Young's modulus and Poisson's ratio at the 

starting unloading point (Ottosen, 1979). However, in a neural network material 

model, the unloading mechanism can only be included in the model through an appro

priate representation scheme and training on certain experimental data that have 
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experienced unloading during testing. For concrete in a biaxial state of stresses, unfor

tunately, experimental data with unloading were not readily available for use in this 

study. 

To illustrate the approach for the incorporation of unloading mechanism in the 

neural network-based material model, a set of pseudo-unloading data was generated by 

assuming elastic unloading with initial modulus of the loading path. Those data were 

generated only for biaxial compression cases. In the following sections, the representa

tion scheme and the training and testing of the material model with elastic unloading in 

biaxial compression are described. 

4.3.3.1 Representation Scheme and Architecture Determination 

To capture the onset and continuation of unloading, it is important to include a 

portion of the loading history into the representation scheme. Therefore, a stress-con

trolled three-point scheme was selected for this problem. In the whole biaxial compres

sion region~ totally SlX stress - strain paths were chosen as training and testing cases, 

which included two uniaxial compression cases ((J1/(J2: -1.0/0.0 and 0.0/-1.0) and 4 

biaxial compression cases (0}/02: -1.0/-0.52, -1.0/-1.0, -1.0/-0.50, -1.0/-0.70). 

For each stress path_ It was detennined that the training data be prepared with stress

strain data correspondIng to ~'o unloading cases where one starts unloading at a lower 

stress level (0.60 0: fc) and another at the highest stress level, and the testing case 

would be the one tha! starts unloading at an intermediate stress level (0.80 (J1/f' c) on the 

stress path. \Vitb thLS deslgn on the training and testing of unloading, the neural 

network approach thus becomes: if, after proper training, the network can capture the 

characteristics associated with the simple unloading mechanism, it should be able to 

give a reasonable prediction on the intermediate unloading cases. Subsequently, the 

final training data compiled consisted of 12 training cases with 2 stress-strain relations 
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Fig. 4.28 - Stress Paths and Architecture of the Stress-controlled Network 
Model of Concrete with Unloading in Biaxial Compression 

for each stress path and 6 testing cases. 

Similar to the strain-controlled model described in the previous section, in this 

stress-controlled model with unloading mechanism, the architecture of the network has 

14 input units «(Jl(i-2), (J2(i-2), £1(i-2), £2(i-2), (Jl(i-1), 02(i-l), £l(i-l), £2(i-1), 

(Jl(i), (J2(i), £1(i), c2(i), ~(Jl, ~(J2), and the 2 output units (~ch ~c2) representing the 

strain increments corresponding to current stress increments. Two hidden layers are 

also used, and the final hidden units were determined to be 18 nodes, when the training 

on the 12 training cases converged and the maximum error reduced to below 0.085. The 

stress paths used for training and testing as well as the final network architecture 

determined are shown in Fig. 4.28. 
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4.3.3.2 Training and Testing of the Network with Simple Unloading 

Training on the 12 sets of stress-strain data with unloading proceeds incremental

ly as with all the other models built so far, and the convergence of learning is reached 

when the maximum training error is below 0.085. At the onset of training, the initial 

network starts with 10 hidden nodes in each of the two hidden layers. During the whole 

training process, the node generation scheme was activated for 4 times with an incre

ment of 2 hidden nodes at each time. Thus the final architecture consists of 18 hidden 

nodes in each hidden layer. The training and testing results represented as stress-strain 

relations for each stress path are shown in Figs. 4.29 - 4.34, in which the network 

prediction is plotted as dashed lines and the training data as solid lines. Note that in 

each figure, the training results of the two unloading cases are shown in the top and 

bottom graphs (graphs ( a) and ( c)), and the testing result of the intermediate unloading 

case is shown in the middle graph (graph (b)). For example, Figs. 4.29 (a) and (c) 

represent the training results for the two training cases on the stress path cc1 «(51/(52 = 

-1.0/0.0), and Fig. 4.29 (b) shows the testing result. 

It is obvious from these training results that the network has captured the unload

ing mechanism presented in the training data, that is, the unloading stress-strain paths 

predicted by the network are almost identical to or at least parallel with the training 

unloading paths. This is very encouraging because it indicates that a neural network is 

able to learn certain mechanical mechanisms so long as they can be appropriately 

represented in the training data. The testing results on the untrained intermediate 

unloading case for all the six stress paths are shown in Figs. 4.29 (b) - 4.34 (b). The 

stress-strain relations predicted by the network on the testing unloading cases show 

remarkably good agreement with those expected from the designated unloading mech

anism. 
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During the course of this study, numerical experiments were also conducted with 

another scheme in preparing the training data with unloading, using only the stress

strain data corresponding to the unloading case where one started unloading at the 

highest stress level. Thus the training data set consisted of 6 sets of stress-strain data, 

and the size of the testing data set became 12. After the network was successfully 

trained, tests on the remaining 12 unloading cases were performed. Even though those 

training and testing results were not shown here, it was observed that the testing results 

on the 6 untrained intermediate unloading cases were reasonable, but the results with 

those cases where unloading started at a lower stress level showed larger discrepancies. 

This experiment also indicated the importance of incremental training with testing on 

generalization in the determination of a quasi-minimal training data set. 

From the training and testing of this unloading mechanism, it can be expected that 

if a set of experiment data on the unloading behavior of concrete in biaxial stress states 

is available. the neural network should be able to learn the behavior through training on 

this set of data. Similarly, the same elastic unloading mechanism can also be trained for 

concrete in the stress states of biaxial tension and tension-compression. 
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4.4 Neural N etwork-Based Material Model of Concrete in 
Uniaxial Cyclic Compression 

4.4.1 Introduction 

The constitutive models of concrete in biaxial stress states constructed so far all 

simulate the behavior of concrete under monotonic proportional loadings. As most 

loadings to which r~ _~1forced concrete structures may be subjected during their service 

life are of dynamic nature, it is important to model the behavior of concrete under cyclic 

or repeated loading. Since 1960's, many experimental tests have been conducted to 

study this aspect of the behavior of plain concrete, and most of those tests were per

fonned on concrete under cyclic compressive loading (Sinha, et aI., 1964; Karsan and 

Jirsa, 1969). The salient feature observed is the degradation in both stiffness and 

strength of concrete with increasing number of cycles at a higher enough stress level. 

That is, loading history plays a more decisive role in determining the behavior of 

concrete under cyclic loading. With the difficulty involved in the identification and 

detennination of material parameters, though some empirical models have been pro-

posed (Danvin and Pecknold, 1977; Fafitis and Shah, 1986; Fardis, et aI., 1981; Yanke

levsky and Reinhardt, 1987), the analytical constitutive modeling of concrete under 

cyclic loading is still very difficult (ASCE, 1982). 

In the following paragraphs, the neural network-based material modeling meth

odology is applied to model the behavior of concrete in uniaxial compressive cyclic 

loading. 

4.4.2 Problem Representation and Architecture Determination 

To model the stress-strain behavior of plain concrete under cyclic loading, not 

only does it need to model the unloading and reloading curves, but it also ought to 
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define the uniqueness of stress-strain relation by distinguishing different loading histo

ries. Obviously, a one-point scheme is inadequate to handle the uniqueness of stress

strain relation associated with reloading and unloading. Therefore, a three-point 

scheme with some information on the previous loading history is designed to represent 

the cyclic behavior of concrete under uniaxial compression, in which the path depen

dency can be adequately captured by inputting the current point and two previous 

points on the stress-strain curve. Consequently, in a stress-controlled model, the seven 

processing units in the input layer represent the stresses and strains of three points on 

the curve, plus a stress increment. The corresponding strain increment is represented 

by the only processing unit in the output layer. The network architecture and the 

representation scheme are shown in Fig. 4.35. As usual, two hidden layers are used in 

the network. 

In this problem, the number of hidden nodes in the two hidden layers is deter-

a Output Layer 

a i 
-- -f- ll.a- - - - - - - - - - I 

------------ Ii 

I ~c: 
'-' '-' '-' '-' '-' '-../ '-../ 

ai-2ci-2ai-lci-l ai ci ~al 

Figure 4.35 - Architecture of the Neural Network for Stress-Controlled 
Material Model Under Uniaxial Compressive Cyclic Loading 

Input 
Layer 
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mined by the size of the training data or the number of reloading-unloading cycles 

included in the training data. For training 4 cycles of stress-strain relation from Karsan 

and Jirsa's experiment (1969), with the maximum learning error reduced to below 0.10, 

totally 26 hidden nodes are determined by the dynamic nodes creation scheme, as 

shown in Fig. 4.35. However, it needs 32 hidden units in each hidden layer to successful

ly train 6 cycles of stress-strain data. 

4.4.3 Training and Testing of the Neural Network-Based Concrete Model 

The experimental data used in training the neural network are the normalized 

stress-strain curves in series AC2-9, reported in the reference (Karsan and Jirsa, 

1969). Those data are then re-scaled to stress-strain values in the range of (-1.0,1.0) to 

generate the training data set. The results of training the neural network on the first 

four cycles are ShO\\l1 in Fig. 4.36, in which the neural network prediction is plotted as a 
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Fig. 4.36 - The Stress-strain Relation Predicted by the Neural Network -
Training Results (after Training the First 4 Cycles) 
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dotted line and the experimental data as a solid line. The neural network seems to be 

capable of learning the presented data reasonably well. Next, we present the results of 

some tests to explore the generalization capability of the trained network. 

First, the trained network was tested with the first four cycles of a completely 

different cyclic test, reported in the reference (Sinha, et aI., 1964). The neural network 

results are compared with the experiments in Figure 4.37, and appear reasonable. 

Secondly, a number of experiments were performed to test howwel1 a trained network 

applies the knowledge learned about the material behavior in few cycles to predict 

additional cycles. The neural nerlVork was first trained on the first stress-strain cycle 

and tested on the second cycle, the results of which are shown in Figure 4.38. Next, the 

neural network was trained on the first three cycles and tested on the fourth cycle, the 

results of which are shown in Figure 4.39. Finally, the network was trained on the first 

five cycles of stress-strain relation and tested on the sixth cycle, and the results are 
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Fig. 4.37 - The Stress-strain Relation Predicted by the Neural Network -
Testing Results on Different Data (Sinha, et aI., 1969) 
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Fig. 4.38 - The Stress-strain Relation Predicted by the Neural Network 
on the Second Cycle after Training the First Cycle 

shown in Fig. 4.40. The performance of the neurai network on the testing cycie appears 

to be incrementally improving as more cycles of stress-strain data are added to the 

training data set. This is interesting as it indicates that it needs to train more than four 

cycles of stress-strain data for the network to learn the degradation in stiffness and 

strength. Though these testing results appear to be satisfactory and much better than 

initial expectations, there is room for improvement. 

The neural network originally trained on the first four cycles (Fig. 4.36) cannot be 

reasonably expected to give rational results when subjected to smaller stress cycles 

inside the Smith and Young (1955) envelope, since it was not provided with any infor

mation on these cycles. The results of such tests are shown in Figs. 4.41a - 4.41.b. The 

fact that these results look somewhat reasonable attests to the generalization capabili

ties of these neural networks. 
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CHAPTER 5 

NEURAL NETWORK MATERIAL MODELS OF REINFORCED CONCRETE 

5.1 Introduction 

The neural network-based material modeling methodology developed in this 

study is particularly applicable to composite materials, such as reinforced concrete and' 

modeling of these materials simulates the behavior of constituent materials and then 

separately accounts for the interaction between them using numerical procedures. The 

main difficulty associated with conventional approaches to modeling of composites 

may have resulted from the complexity in material parameter identification and the 

difficulty of including non-mechanics parameters in the analytical constitutive model. 

With neural networks, it is possible to treat the whole composite as a material 

because, as Rumelhart stated, these networks are ideally suited to treat a multitude of 

different kinds of constraints simultaneously (Rumelhart, 1986). The basic approach 

would be to include the essential features of the composite as input material parame

ters in training a neural network. For example, for reinforced concrete (Re), part of the 

input to the neural network would be information about the concrete and rebars, such 

as the reinforcement ratio, placement or direction of rebars, etc., in addition to infor

mation on stresses and strains. In fiber-epoxy composites, the input to the neural 

network would inch~de the number of layers and their thickness, type and directions of 

the fibers in various layers, and any other information needed to characterize the 

composite. With the use of neural networks, the material parameters can be of various 
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types, each having different characteristics. 

In general, the training of such a neural network would require the results of a 

comprehensive set of experiments. These experiments should not only measure the 

response of the material to various stress paths, but also test the material for all the 

possible data ranges of the input parameters characterizing the material. Though such 

experimental results are not readily available at the moment, this research explores the 

neural network approach for simulating the behavior of a composite material based on 

some fairly well conducted experiments. 

In this chapter, neural network material models for reinforced concrete in biaxial 

states of stress are constructed using the experimental results reported by Vecchio and 

Collins (1982) on the behavior of reinforced concrete panels subjected to in-plane 

shear and combination of in-plane shear with normal stresses. 

5.2 Review of Vecchio and Collins' Experiments 

The response of reinforced concrete panels subjected to in-plane shear and 

normal stresses under various stress paths has been extensively investigated by Vecchio 

and Collins (1982) th rough a series of tests on 30 specimens. These panels were loaded 

by forces applied to the "shear keys", which were anchored into the perimeter edges of 

the specimens as shO\\l1 in Fig. 7.1. Each shear key was attached by two links oriented at 

45 degrees to the side of the specimen. The links were connected to a series of hydraulic 

jacks. Three of the links were rigid so as to stabilize the panel within the test rig. 

Different combinations of shear force and normal tension and compression were gen

erated by changing the magnitude and directions of forces in the links. The details 

involved in the design and construction of the test rig are described in the report by 

Vecchio and Collins (1982). 



110 

I"'""~I"'""-r-- -- ---

Shear Key 
~ -./ 

I I 
"l1li 

I I 

I , 
I 

~ 
I I 
I 

,/ "l1li 

Specimen 
I 

I I 

I 
..... 

I 

: 
Links 

Rigid links ,---
Jack 

Fig. 7.1 - Test Set-Up for Vecchio-Collins Panels 

The testing specimens were constructed as concrete panels with a size of 890 mm 

sq uare by 70 rom thick, reinforced with two layers of welded wire mesh. The wires of the 

mesh were placed parallel with the sides of the panel, with the two directions of the 

wires being identified as "longitudinal" and "transverse." The reinforcing mesh was 

constructed of smooth wires welded into an orthogonal grid, typically at 50 rom centers. 

The percentages of transverse and longitudinal reinforcements are varied, covering 

both isotropic and anisotropic reinforcements in both directions. The plan view of the 

reinforcement and loading directions are shown in Fig. 7.2. 

For each panel, the material properties such as the concrete cylinder strength, f' c, 

the concrete cylinder strain at peak compressive stress, co, the cracking strength of 
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Fig. 7.2 - Plan View of Reinforcement and Loading Directions for Vec
chio-Collins Specimens 

concrete, f' cr, and the yielding stress in the longitudinal steel, fyI, and in the transverse 

steel, fyt, were determined at the time when the panel was tested. During the test, load 

was monotonically increased from zero to a level until failure occurred. A test typically 

consisted of 7 to 12 load stages until the specimen reached its failure state. Totally six 

loading patterns were employed for the testing of the 30 panels, in which 22 panels were 

tested in pure shear, 3 panels in combined shear with compressive normal stresses, 1 

panel in combined shear with normal tension stresses, 1 panel in pure shear with 

changing loading condition, 2 panels in uniaxial compression, and 1 panel in reversed 

cyclic shear. The material properties, reinforcements, and loading condition of each 

panel are summarized in Table 5.1. 

For the 22 panels tested in pure shear, 10 panels (PV2-PV9, PV14 and PV16) 

were reinforced isotropically, but the percentage of reinforcement was varied from 

0.183% to 2.616%; another 12 panels (PVl, PVI0-PV13, PV18-PV22, PV26, and 
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Table 5.1 - Material Properties and Loading Conditions for Vecchio-Collins 
Specimen 

Speci- Load-
Longitudinal Steel Transverse Steel Concrete 

men ing EO f' c f'er 
QI (%) fyl (MPa) QI(%) fyl (MPa) (10-3) (MPa) (MPa) 

PV1 PS 1.785 483 1.680 483 2.00 34.5 2.21 

PV2 PS 0.183 428 0.183 428 2.25 23.5 1.10 

PV3 PS 0.483 662 0.483 662 2.30 26.6 1.66 

PV4 PS 1.056 242 1.056 242 2.50 26.6 1.79 

PV5 PS 0.742 621 0.742 621 2.50 28.3 1.73 

PV6 PS 1.785 266 1.785 266 2.50 29.8 2.00 

PV7 PS 1.785 453 1.785 453 2.50 31.0 1.93 

PV8 PS 2.616 462 2.616 462 2.50 29.8 1.73 

PV9 PS 1.785 455 1.785 455 2.80 11.6 1.38 

PV10 PS 1.785 276 0.999 276 2.70 14.5 1.86 

PV11 PS 1.785 235 1.306 235 2.60 15.6 1.66 

PV12 PS 1.785 469 0.446 269 2.50 16.0 1.73 

PV13 PS 1.785 248 - - 2.70 18.2 1.73 

PV14 PS 1.785 455 1.785 455 2.23 20.4 1.93 

PV15 UC 0.740 255 0.740 255 2.00 21.7 -
PV16 PS 0.740 255 0.740 255 2.00 21.7 2.07 

PV17 UC 0.740 255 0.740 255 2.00 18.6 -
PV18 PS 1.785 431 0.315 412 2.20 19.5 2.00 

PV19 PS 1.785 458 0.713 299 2.15 19.0 2.07 

PV20 PS 1.785 460 0.885 297 1.80 19.6 2.21 

PV21 PS 1.785 458 1.296 302 1.80 19.5 2.35 

PV22 PS 1.785 458 1.524 420 2.00 19.6 2.42 

PV23 SBC 1.785 518 1.785 518 2.00 20.5 2.28 

PV24 SBC 1.785 492 1.785 492 1.90 23.8 0.83 

PV25 SBC 1.785 466 1.785 466 1.80 19.2 1.31 

PV26 PS 1.785 456 1.009 463 1.85 21.3 2.00 

PV27 PS 1.785 442 1.785 442 1.90 20.5 2.04 

PV28 SBT 1.785 483 1.785 483 1.85 19.0 2.21 

PV29 CLR 1.785 441 0.885 324 1.80 21.7 2.21 

PV30 RCS 1.785 437 1.009 472 1.90 19.1 1.55 

PS: Pure Shear; UC: Uniaxial Compression; SBT: Combined Shear and Biaxial Tension; 

RCS: Reversed Cyclic Shear; CLR: Changing Load Ratio; SBC: Combined Shear and Biaxial 

Compression. 
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Table 5.2 - Loading Ratio of Biaxial Stress (fn) to Shear Stress (v) 

Specimen PV23 PV24 PV25 PV28 

fn Iv -0.39 -0.83 -0.69 0.32 

PV27) were reinforced anisotropically with the amount of longitudinal reinforcement 

being held constant while the transverse reinforcement varied. A wide range of 

strength values of concrete and the yield stresses of reinforcement in both directions 

were obtained during the course of testing. 

Four panels (PV23 - PV25 , PV28) were tested under combined in-plane shear 

and biaxial nonnal stresses. Specimens PV23 - PV25 were subjected to varying degree 

of biaxial compression and shear, while specimen PV28 in biaxial tension and shear. 

The ratio of biaxial nonnal stress (fn) to shear stress (v) as given in the report is shown in 

Table 5.2, in which tensile stresses are shown as positive and compressive stresses as 

negative. All the four panels were isotropically reinforced, with a constant percentage 

of reinforcement of 1.785%. 

Specimen PV29, which was anisotropically reinforced, was tested under changing 

loading conditions. It was loaded in pure shear up to 80% of the predicted ultimate 

shear strength; and then, the loading was changed to combined shear and biaxial 

compression. In the remaining three panels, PV30 was tested in reversed cyclic shear; 

PV15 and PV17 were tested in uniaxial compression. 

The results of these tests on the stress-strain behavior, specifically, relationships 

between the shear stress and shear strain, the normalized principal stresses and corre

sponding principal strains, of the concrete of each panel were computed and described 
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in the report (Vecchio and Collins, 1982). Those stress-strain data along with informa

tion on the composition of each specimen and properties of constituents materials are 

to be used as material parameters in the construction of a neural network-based mate

rial model of reinforced concrete. 

5.3 Neural Network-Based Modeling Techniques for Reinforced Concrete 

The concepts and procedures involved in the neural network-based material 

modeling of reinforced concrete are similar to those with the modeling of plain con

crete. That is, a neural network-based material model of reinforced concrete material 

can be constructed through training a multilayer feedforward neural network on a 

comprehensive set of experimental results characterizing the behavior of the materiaL 

Though the experimental data from Vecchio and Collins' tests may not be qualified as 

"comprehensive", it is of importance to verify the proposed approach for simulating the 

nonlinear stress-strain behavior of reinforced concrete panels under diverse loading 

conditions. 

After studying the experimental results reported by Vecchio and Collins (1982) 

on 30 reinforced concrete panels under different loading combinations, it was deter

mined that the stress-strain relations corresponding to part of the 22 panels tested 

under pure shear would be used as training data, and the trained network would then be 

bined shear and normal stresses. 

Before the representation scheme is determined, the material parameters or 

variables that characterize the behavior of these panels need to be identified. Obvious

ly, there are three kinds of material variables for the neural network model: 1) the 

stress - strain variables including shear stress and shear strain, the compressive and 
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tensile principal stresses and the corresponding principal strains; 2) material properties 

of the constituent materials including yield stresses of reinforcement in both longitudi

nal and transverse directions, the cylinder strength of concrete and the corresponding 

strain, and the cracking strength of concrete; and 3) the composition of the specimen: 

the reinforcement ratios and directions of reinforcement. The material properties of 

the concrete in each specimen are implicitly incorporated in the stress-strain material 

variables through normalization on the principal compressive and tensile stresses, and 

principal compressive strains, when preparing the training data. Specifically, the prin

cipal compressive and tensile stresses are normalized with respect to the cylinder 

strength (f' c) and cracking strength of concrete (f' cr), respectively; whereas the princi

pal compressive strains are normalized with respect to the concrete cylinder strain at 

peak compressive stress, cO. 

To characterize the strain softening behavior of concrete in tension, it is impor

tant to include a portion of the loading history in the representation scheme. There

fore, a three-point representation scheme is devised for both stress-controlled and 

strain-controlled schemes. Before training the network with stress-strain data pre

pared according to the representation scheme, the experimental results including all 

the material variables are linearly transformed into the range of (-1.0, 1.0). The 

schemes derived for the transformation of stresses, strains, and their increments were 

determined in the same way as that with plain concrete in biaxial stress states described 

in Chapter 4. 

5.4 Representation Schemes and Architecture Detennination 

For a stress-controlled model, the network will need 25 input nodes representing 

information on the two previous stress/strain states and that of the current state 
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(ol(i -2), 02(i-2), v(i -2), c1(i-2), c2(i-2), y(i -2), ol(i -1), 02(i -1), v(i -1), c1(i -1), 

c2(i -1), y(i -1),01 (i), 02(i), v(i), cl(i), c2(i), y(i)), plus the reinforcement ratios (QJ, ~?t) 

and yield stresses of reinforcement in both longituainal and transverse directions (fy!, 

fyt), as well as the stress increments (~01, ~02, ~v). The three output units represent 

the strain increments (~cl, ~c2, ~y) corresponding to the current stress increments. 

For a strain -can trolled model, only the positions of stress components are switched with 

those of strain components in a stress-controlled model. As usual, two hidden layers 

are used in the network, and full connections between layers are enforced. 

Before the stress-controlled neural network model was trained with any stress

strain data, it was decided that an optimal training data set would be determined in this 

investigation. The approach still follows the scheme of incremental training with tests 

for generalization evaluation. It starts with an initial training set consisting of stress

strain data of 10 panels tested in pure shear, which include panels PVl, PV 4, PV5, PV6, 

PV9, PV10, PV11, PV13, PV18, and PV19. After reducing the training error to below 

0.06, the network was tested with stress-strain data of the untrained panels. At that 

stage, each hidden layer registered 20 hidden units, which is shown in Fig. 7.3. By 

analyzing the training and testing results at that stage, it was observed that the network 

predictions on some testing panels had substantial discrepancy with the experiment 

results. Then, the stress-strain data corresponding to 4 more panels (PV22, PV14, 

PV16, and PV2), on which the largest discrepancy occurred, were added to the original 

training set, making the size of the training data to 14 panels. After reducing the 

training error on this augmented training set to below 0.060, it \-vas discovered that 

further training was not needed even with some new panels added to the training set. 

That is, the presentation of a new training set does not increase the training error at all. 

This latter discovery clearly indicates that the network can essentially characterize the 
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stress - strain behavior of these reinforced panels under pure shear after being trained 

on the behavior of 14 panels. The final architecture consists of 22 hidden nodes in each 

hidden layer. To fully illustrate this approach, the training and testing results of the 

stress-controlled model at the intermediate stage after training experimental results of 

10 panels and at the final stage when 14 panels were trained, are described in the 

following paragraphs. 

5.5 Training and Testing of Neural Network-Based RC Models 

5.5.1 A Stress-controlled Model 

With incremental training on the stress-controlled model, the initial network 

Stre~s-str&1r.~ on 
Pre\lOU~ Three 
Points 

Strain Increments 

Reinforce
ment 
Ratios 

Yield Stress 
of Rebars 

Output layer: 
3 Nodes 

Hidden Layer II: 
20 Nodes 

Hidden Layer I: 
20 Nodes 

Input Layer: 
25 Nodes 

Stress In
crements 

Fig. 7.3 - The Architecture of the Stress-controlled Neural Network 
Material Model of Reinforced Concrete in Biaxial Stress State 
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starts with 10 hidden nodes in each hidden layer. After the stress-strain data of 10 

panels were successfully trained, the hidden nodes had been increased to 20, as shown 

in Fig. 7.3. The training results on the prediction of stress-strain relations were shown 

in Figs. 7.4 - 7.13, in which the network predictions shown as thick dotted lines were 

plotted against the experimental values represented as solid lines. In each figure, the 

top graph represents the normalized principal compressive stress-strain relation, the 

middle one the normalized principal tensile stress-strain relation, and the bottom one 

the shear stress-strain relation. From analyzing those figures, it is obvious that the 

neural network has generally learned the behavior of reinforced concrete panels in 

biaxial stresses with reasonable accuracy. Testing was also performed incrementally. 

The testing results on untrained panels including those tested under pure shear, u.nder 

combined shear and normal stresses, and under pure shear with changing loading 

conditions, were shown in Fig. 7.14 - 7.30. It was observed that the majority of the 

testing results were reasonable, even on those panels tested in combined shear and 

normal stresses, but the degree of accuracy varied with each testing panel and there was 

room for improvement. For those panels that were tested in pure shear, it appeared 

that the network predictions on 4 panels (PV2, PV14, PV16, and PV22) displayed the 

largest discrepancy in their stress-strain relations. To incorporate material behavior 

exhibited by these 4 panels into the network (which so far was not adequately learned), 

the stress-strain relation corresponding to the 4 panels were added to the training data 

set. Subsequently, further training was performed on the network with this augmented 

training data set until the same convergence criterion was satisfied. As has been stated 

before, those 14 sets of data constitute a quasi -optimal training set for this problem. 

The training and testing results after training stress-strain data from 14 panels, 

represented as thin dotted lines, are plotted against those after training data from 10 
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panels, and also shown in Figs. 7.4 - 7.30. The improvement on the prediction of 

stress - strain relations with this additional training can be easily seen in all the testing 

results shown in Figs. 7.14 - 7.30. However, both networks have shown essentially the 

same performance on all the training cases because the learning convergence criteria 

were specified as the same. From those figures, one can easily observe that not only the 

the latest testing results on the panels tested in pure shear are reasonable, but the 

network predictions on other loading cases are equally well. The remarkably reason

able predictions on all the panels tested under combined shear and normal stresses, and 

even the panel tested under pure shear with changing loading conditions clearly dem

onstrate the robustness of a neural network-based material model with novel but 

similar cases in the same problem domain, after the network has been appropriately 

trained on a quasi-optimal set of data. 

After analyzing the training and testing results of the neural network, it is clear 

that the learning was not performed uniformly on the three stress-strain relations of 

each panel. In most of the testing cases, the network predictions match the experimen

tal results better with the principal compressive stress-strain and the shear stress

strain than with the principal tensile stress- strain relation. This learning behavior may 

be caused by the apparently more noises in the experimental data of the principal 

tensile stress -strain relation. On the other hand, the highly nonlinear strain softening 

behavior with the principal tensile stress-strain relation may have introduced extra 

difficul ty in I earning. 

To determine whether different training approaches may have some effects on 

the generalization performance of the trained neural network, the initial tr~il1ing data 

set(10 panels) as a whole was also trained by a network using the architecture predeter

mined from the incremental training. After the network was successfully trained with 
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the same convergence criteria, the training and testing results from the latest model 

were compared with those from incremental training. As expected, the performance of 

both models was essentially the same. However, the incremental training took less time 

to train the whole data set. 

One interesting observation made during the initial preparation of testing data 

for the material model was that the original experimental data were rather noisy and 

the stress increments were mostly irregular. Initially, it was anticipated that the learn

ingwould be more difficult than with smooth data. However, on the contrary, the actual 

learning was far more easier than with training the plain concrete model described in 

the previous chapter, and the model was also remarkably robust which was manifested 

by the reasonable predictions on thos,e testing panels subjected to combined shear and 

normal stresses. This learning behavior indicates that a neural network model can be 

readily built with raw or preliminary processed data because of the statistica1learning 

and fuzzy information processing capability of the neural network. 

The construction of a strain-controlled neural network model and a comparison 

of its predictions on training and testing results with the stress-controlled model are 

presented in the next section. 
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Fig. 7.25 - The Stress-Strain Relations Predicted by the Network - Testing 
Results of Stress-controlled Models 
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Fig. 7.28 - The Stress-Strain Relations Predicted by the Network - Testing 
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5.4.3 A Strain-controlled Model 

A strain-controlled constitutive model of reinforced concrete in biaxial stress 

states was also developed in this study. In a strain-controlled model, the neural network 

is to predict stress increments when presented with strain increments. The three-point 

representation scheme of the strain-controlled model was obtained directly from that 

of the stress-controlled model by switching the stress increments to the output and the 

strain increments to the input. The training data set of the strain-controlled model was 

also constructed accordingly. 

Following the same approach with the stress-controlled model, a neural network 

architecture with two hidden layers was used for the strain-controlled model. At the 

onset of training, there were 10 hidden nodes in each hidden layer. After the stress

strain data of 14 panels tested in pure shear were successfully trained, the final number 

of hidden nodes in each of the hidden layer was determined to be 25. As with strain

controlled model of plain concrete, training of the strain-controlled reinforced con

crete model required more efforts than with stress-controlled model. Furthermore, it 

was harder to push the accuracy of training or to reduce the maximum training error. 

Therefore, the convergence criterion of training was relaxed in order to facilitate the 

learning convergence. The learning process was stopped when the maximum training 

error bad been reduced to below 0.10. Testing of the network also proceeded incremen

tally as before. 

After training, the network was tested on the trained and untrained panels to 

evaluate its performance on learning and generalization. The training and testing 

results represented as stress-strain relations are presented in Figs. 4.33 - 4.59, in 

which the predictions from the stress-controlled model are also included for compari

son. In those figures, the stress-strain relations predicted by the strain-controlled 
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model are plotted as thick dotted lines, the experimental data as solid lines, and those of 

the stress-controlled model as thin dotted lines. From studying training results shown in 

Figs. 4.33 - 4.46, it is apparent that both stress-controlled and strain-controlled models 

learned the training data equally well, though the later had a slightly larger learning 

error. For testing results shown in Figs 4.47 - 4.59, the strain-controlled model per

forms reasonable on almost all the testing cases. However, the overall predictions on 

all the testing cases from the stress-controlled model are more accurate than those from 

the strain-controlled model. This difference in performance was primarily caused by 

the slack learning accuracy with training of the strain-controlled model. 

As has been discussed before, the accuracy of network predictions for each panel 

is not evenly distributed among the three stress-strain relations, rather that it varies 

with the individual stress-strain case. The predictions on the principal compressive 

stress-strain relation and that of shear stress-strain relation for both models are better 

than those on the principal tensile stress-strain relation for all the cases that were tested 

both in pure shear and in combined shear and normal stresses. However, the stress

controlled model has better predictions on the principal tensile stress-strain relation 

than the strain-controlled model. Moreover, for panels PV8, PV23, and PV29, the 

tensile stress- strain behaviors during the later stage of loading, were not fully captured 

in the strain-controlled model. This indicates that further training with additional 

training data from these three panels needs to be conducted in order to capture the 

material behavior exhibited in these test results within the strain-controlled model. 

When the stress-strain predictions from both stress-controlled and strain -con

trolled models are plotted in the same figure, it should be noted that the error of 

prediction is accumulated and displayed in the strain components with a stress - con

trolled model, and in the stress components with a strain-controlled model, because of 
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the way that incremental testing is performed. Obviously, the performance of the 

strain-controlled model would be further improved with additional training on an 

updated training data set. 

In spite of the difference between the testing results from strain-controlled and 

stress-controlled models, the predictions from the strain-controlled model are general

ly reasonable and of acceptable accuracy in almost all of the cases tested in pure shear 

and in most of the cases tested in combined shear and normal stresses. Therefore, it can 

be concluded that the strain-controlled model is able to capture the material behavior 

from testing results obtained from stress-controlled experiments. With a dedicated 

scaling scheme in the preparation of training data for a strain-controlled model, further 

improvements on the accuracy of training and testing can be expected. 



151 

1.0 
0l/f ' c 

0.8 Specimen: PVl 
Pure Shear 

0.6 Experiment 
---------
NN (stress-controlled) 

0.4 ---------
NN (strain-controlled) 

0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 

cl/c O 

1.2 

f 
02/f ' cr 

1.0 Specimen: PVl 

0.8 Pure Shear 

Experiment 
0.6 ---------

NN (stress-controlled) 
0.4 ---------

NN (strain-controlled) 
0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 

c2 (x 10-2) 

1.0 L (x 10MPa) 

0.8 Specimen: PVl 
Pure Shear 

0.6 Experiment 
---------

0.4 NN (stress-controlled) 
---------
NN (strain-controlled) 

0.2 

0.0 
0.0 0.5 1.0 15 2.0 

Y (x 10-2) 

Fig. 4.33 - The Stress-Strain Relations Predicted by the Network - Training 
Results (after Training Data on 14 Panels) 



152 

1.0 al/f' c 

0.8 
Specimen: PV2 
Pure Shear 

0.6 Experiment 
---------
NN (stress-controlled) 

0.4 ------~-. 

NN (strain-controlled) 

0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 

cl/co 

1.2 a2/f' cr 

1.0 Specimen: PV2 
Pure Shear 

0.8 
'0 Experiment 

---------
0.6 NN (stress-controlled) 

---------
0.4 NN (strain-controlled) 

0.0 
0.0 0.5 1.0 1.5 2.0 

c2 (x 10-2) 

1.0 
1-1: (x 10MPa) 

0.8 ~ Specimen: PV2 
I- Pure Shear 

0.6 I-- Experiment 
I- ---------

0.4 ~ NN (stress-controlled) 
---------

l- NN (strain-controlled) 
0.2 -

------0 

0.0 
f.a.~~ 

I I 1. , I I , .1 1 

0.0 0.5 1.0 1.5 2.0 

Y (x 10-2) 

Fig. 4.34 - The Stress-Strain Relations Predicted by the Network - Training 
Results (after Training Data on 14 Panels) 
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Fig. 4.36 - The Stress-Strain Relations Predicted by the Network - Training 
Results (after Training Data on 14 Panels) 
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Fig. 4.38 - The Stress-Strain Relations Predicted by the Network - Training 
Results (after 1taining Data on 14 Panels) 
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Fig. 4.39 - The Stress-Strain Relations Predicted by the Network - Training 
Results (after Training Data on 14 Panels) 
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Fig_ 4_40 - The Stress-Strain Relations Predicted by the Network - Training 
Results (after Training Data on 14 Panels) 
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Fig. 4.42 - The Stress-Strain Relations Predicted by the Network - Training 
Results (after Training Data on 14 Panels) 
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Fig. 4.43 - The Stress-Strain Relations Predicted by the Network - Training 
Results (after Training Data on 14 Panels) 
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Fig. 4.56 - The Stress-Strain Relations Predicted by the Network - Testing 
Results (after naining Data on 14 Panels) 
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CHAPTER 6 

USE OF NEURAL NE1WORK·BASED MATERIAL MODELS IN 

FINITE ELEMENT ANALYSIS 

6.1 General 

The objective of constructing rational constitutive models of engineering materi

als is to use the material model in a numerical solution procedure such as the finite 

element method so that the corresponding structural behavior can be reliably pre

dicted. In general, the material model serves two purposes in the finite element 

modeling of structures. The first deals with the evaluation of the current material 

constitutive matrices, and hence the formulation of element stiffness matrices; and the 

second is the determination of the current state of stress corresponding to a given 

increment of strain from an initial stress-strain state. 

In finite element procedures, the tangential element stiffness matrix [kd is usually 

expressed as (Zienkiewicz, 1977) 

[kJ = J [B]T(DJ[B] dV (6.1) 

v 

where [B] is the strain - displacement transformation matrix, V the volume of the 

element, and [Dd the constitutive or stress-strain matrix of the material. Since most of 

the finite element procedures for nonlinear analysis of reinforced concrete structures 

utilize an incremental loading procedure to solve the nonlinear equation, naturally, the 

constitutive relation is expressed in an incremental form. In the incremental form, the 

stress - strain matrix is determined from 
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{d<r} = [DJ{d£} (6.2) 

where {do} and {de} are vectors of incremental stresses and strains. 

For an analytical material model represented in the form ofEq. (6.2), its incorpo

ration within a finite element procedure can be readily accomplished because the 

elements of the constitutive matrix [Dd are expressed as mathematical expressions and 

can be directly determined. On the other hand, for a neural network-based material 

model represented as the distributed weight structure embedded in a trained multilay

er feedforward neural network, the constitutive matrix [Dd is somewhat different 

because of the representation scheme used. Moreover, the elements in the neural 

network constitutive matrix [Dd is not explicitly determined and no mathematical 

formulae are observable, so that its use within a finite element procedure needs some 

special considerations. Nevertheless, even with this difference in the way the material 

behavior is represented~ as a computational entity, the neural network-based material 

model functions exactly the same as an analytical model does, and there is no technical 

barrier for its inCDrporation within some solution procedures. In the following para

graphs, consideratlons associated with the implementation of neural network-based 

material models arc generally discussed. 

6.2 Considerations on Implementing Neural Network-Based Material Models 

6.2.1 Direct Use or 'tural Setwork Models 

The implementation of constitutive models is greatly influenced by the solution 

procedure utilized for nonlinear finite element analysis of structures. For reinforced 

concrete structures, an incremental loading procedure together with equilibrium itera

tion is usually adopted in practice. As such, the governing equilibrium equations or 
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equations of motion of a structure in the incremental form for use in a modified Newton 

iteration are derived as follows: (Bathe, 1982) 

1) for static analysis: 

Kt~Uk = Pk - I J BTlJk _ 1 dV 

v 
2) for dynamic analysis with implicit time integration scheme: 

MiTk + Kt~Uk = Pk - I I BTlJk _ 1 dV 

v 
3) for dynamic analysis with explicit time integration scheme: 

.. ~ f T MUk = Pk - L B (Jk dV 

v 

(6.3) 

(6.4) 

(6.5) 

where M is the mass matrix of the structure, Kt the tangential incremental stiffness 

matrix, Pk the vector of externally applied nodal loads, ~Uk the vector of nodal dis

placement increments, and Uk denotes the vector of nodal accelerations. 

The constitutive model in a finite element program is generally utilized in three 

computation stages: the formation of element stiffness matrix, the computation of 

internal resistant forces in equilibrium iteration, a!1d the calculation of element stresses 

(ASCE, 1982). Apparently, if a Newton - Raphson scheme is used to solve the static 

and dynamic problems represented in Eqs. (6.3) - (6.5), an explicit form of the stress

stain matrix [Dd is needed for the first two kinds of problems except for the third one. 

Thus, without explicit formation of the material stiffness matrix, the neural network 

material model can only be directly used for dynamic analysis of structures with explicit 

time integration schemes such as the central difference method. 

However, for static analysis, it has been well known that the explicit formulation 
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of element stiffness matrices is unnecessary if some iterative schemes such as the 

conjugate gradient method (Hestenes and Stiefel, 1952) or precondition conjugate 

gradient methods with element-by-element implementation (Hughes, et al. 1986) are 

used as solution methods. In these cases, the explicitfonn of the stress-strain material 

matrix [Dd is not required, rather that a mechanism to evaluate the stress increments 

given a strain increment and the current stress-strain state, which corresponds to a 

feedforward presentation to a strain-controlled neural network-based material model, 

is needed. Clearly, a strain-controlled neural network-based material model can be 

directly used in finite element procedures for both static analysis with conjugate gradi

ent solution schemes and dynamic analysis with explicit integration methods, whereas it 

cannot be directly employed for solving nonlinear dynamic problems with implicit 

integration schemes. 

6.2.2 Indirect Use of Neural Network Models 

From the forgoing discussion, it has realized that the current form of neural 

network material model should be implemented with some special solution schemes 

for nonlinear finite element analysis, if the model is directly used. Nevertheless, with 

the flexibility in the design of representation schemes and the preparation of training 

data for a neural network material model, the evaluation of the stress-strain matrix 

[Dd, or [Ct] in a stress-controlled model in which {de} = [Ct ] {do}, is realizable either 

through proper training on an augmented training data set with additional infonnation 

but still using the representation schemes developed in this study or through the intro

duction of a new representation scheme with a correspondingly generated new training 

data set. 

The first training approach is based on the observation that the infonnation 
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Fig. 6.1 - The Representation Approach for Determining the Stress-Strain 
Matrix in a Stress-controlled Neural Network Material Model 

captured in a neural network material model is detennined solely by the information 

embedded in the training data. lfthe information of the stress-strain matrix [DtJ or [Cd 

is properly represented in the training data, a material model trained on this data set 

should contain the relevant information. As a consequence, elements of the material 

matrix can then be computed from a trained network. On the other hand, with the 

second representation approach, elements of the stress-strain matrix needs to be 

explicitly included lnto the current representation scheme for the output. Of course, 

experimental data on the elements of the constitutive matrix are not readily available, 

and have to be estlmated from the test results. If a reliable set of data containing 

explicit informatIon of the constitutive matrix is obtained, this additional information 

can be readily Inl'orporated in the neural network-based material model through train

ing OD the new data prepared with the updated representation scheme. This represen

tation approach is illustrated in Fig. 6.1. 

To illustrate the first training approach, the evaluation of [Cd in a stress-COD

trolled plain concrete model under biaxial loading is analyzed as an example. With a 
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Fig. 6.2 - The Training Approach for Determining the Stress- Strain Matrix in a 
Stress-controlled Neural Network Material Model of Concrete 

one-point representation scheme for the behavior of concrete in biaxial stress states, 

the network input consists of current stress-strain state and the stress increments (01, 

02, £1, £2, ilo}, il02), and the output includes the corresponding strain increments (~£b 

~£2)' In order to evaluate elements of the stress-strain matrix [Cd that correlates the 

expected strain increments with the given stress increments, as shown in Fig. 6.2, 

apparently, a set of data containing strain increments corresponding to stress states 

with a non -zero stress increment in one direction and a zero stress increment in 

another direction, should be added to the original training data set. Therefore, totally 

two sets of data are needed during training: 1) the strain increments when the stress 

increment in one direction is assumed to be non -zero, and zero in the remaining 

directions; and 2) the strain increments corresponding to nonzero stress increments. 

Similarly, for other representation schemes, these two approaches can be ex

tended to derive either the augmented representation scheme or the additional train

ing data set for the explicit determination of the constitutive matrix. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 Summary 

A neural network-based material modeling methodology for engineering materi

als is developed in this study. With this material modeling methodology, the stress

strain behavior of a material is captured within the distributed weight structure of a 

multilayer feedfonvard neural network trained directly on the stress-strain data ob

tained from experiments. The feasibility of this approach is verified through constitu

tive modeling of the behavior of plain concrete under monotonic proportional biaxial 

loadings and that under uniaxial cyclic compression. The general applicability of the 

approach is illustrated in the construction of a composite material model for reinforced 

concrete in a biaxial stress state by training stress-strain results on behaviors of rein

forced concrete panels tested in both pure shear and combined shear with normal 

stresses (Vecchio and Collins, 1982). 

A flexible and efficient simulator for multilayer feedforward neural networks is 

developed in this study, by implementing a dynamic node creation mechanism for 

architecture generation and a fast learning algorithm based on the Quickprop (Fahl

man, 1988) and the Delta - Bar-Delta (Jacobs, 1987) algorithms for weight update. 

The simulator is successfully used in training different material models with varying 

sizes and degrees of complexity in the training data. 

Representation schemes for modeling the stress - strain behavior of concrete and 

reinforced concrete under various stress states are developed for both stress-controlled 
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and strain-controlled models. A one-point representation scheme is devised for cap

turing the behavior of concrete under biaxial monotonic loading, and a three-point 

representation scheme is introduced to account for the history dependency of the 

material behavior especially in cyclic loading. The three-point representation schemes 

are used for concrete models in biaxial compression to account for the unloading 

mechanism, and for reinforced concrete models to characterize the tensile strain soft

ening behavior. 

A scheme combining incremental training with a generalization evaluation is 

investigated to estimate the size of a quasi-optimal or quasi-minimal training data 

set, and the approach is illustrated in the constitutive modeling of both concrete and 

reinforced concrete materials. 

With the use of neural networks, both stress-controlled and strain -controlled 

models can be readily built from experimental data. Because the experiment was 

usually conducted as stress-controlled, the simulation of material behavior with a 

stress-controlled model would be more straight fOlWard, but a strain -controlled 

model is more readily usable when implemented within a finite element procedure. 

Both stress-controlled and strain -controlled models for concrete in biaxial stress 

states and for reinforced concrete are constructed, and their performance evaluated in 

the study. The learning and generalization capability of these neural network-based 

material models are verified through comparison of stress-strain behaviors predicted 

by a neural network with those obtained from experiments. 

The neural network-based models of concrete in biaxial stress states are con

structed from experimental results obtained by Kupfer,et al. (1969) and Nelissen 

(1971), with a one-point representation scheme. A three-point representation scheme 

is also utilized to study the effect of redundant representation on the learning and 
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testing performance of material models. The presence of redundant information does 

not substantially improve the perfonnance of these material models. 

To add an unloading mechanism into the neural network-based material model, a 

simple elastic unloading scheme is studied in the training of a concrete model under 

biaxial compression with the use of a three-point representation scheme. The training 

da ta set is artificially generated with stress - strain data corresponding to two unloading 

cases where one starts unloading at a lower stress level and another at the highest stress 

level, and the testing case is the one that starts unloading at an intermediate stress level. 

The initial stiffness is used for the unloading stress - strain paths. 

The neural network-based model for concrete under uniaxial cyclic compres

sion is constructed with a three-point representation scheme, and trained on a set of 

experimental data from Karsan and Jirsa (1969). The predictability of the network that 

has been trained on a certain number of cycles of stress-strain data is investigated by 

testing the net on the stress-strain behavior of the next cycle. The testing is also 

conducted with a similar experiment reported by Sinha, et al. (1964). 

The feasibility of applying the neural network-based approach to composite 

material modeling is studied by simulating the stress-strain behavior of reinforced 

concrete as a generic composite material; the experimental data used are from Vecchio 

and Collins' tests of reinforced concrete panels in both pure shear and combined shear 

and nonnal stresses (1982). liaining data are extracted from experimental results on 

all the panels tested in pure shear. A general three-point representation scheme 

which includes stress - strain data, constituents material properties, and information of 

the reinforcements, is designed to capture the diverse material parameters of the 

composite. A quasi - minimal training data set is determined for this model, and the 

testing on generalization is conducted with panels tested in pure shear, combined shear 
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with normal stresses, and pure shear with changing loading conditions. 

Though the implementation of neural network-based material models in a finite 

element procedure is not conducted in the study, major issues with respect to the use of 

these models in finite element procedures for nonlinear structural analysis are general

ly discussed. 

7.2 Conclusions 

From the analysis and discussion on the performance of neural network-based 

material models of concrete and reinforced concrete under varying loading conditions, 

it can be concluded that the use of neural networks for the modeling of material 

behavior is viable and promising. Such an approach does not make a priori assumptions 

about the behavior of a material, but rather bases its prediction of stress-strain behav

ior on the experimental data with which it has been trained. Furthermore, the ability to 

employ neural networks for developing material models makes it possible to represent 

the state of material behavior knowledge as it evolves. Based on the results in this study, 

the following conclusions can be drawn: 

o The neural network-based material modeling methodology is effective, flex

ible, and generally applicable for the modeling of complex behavior of engi

neering materials. With a proper design on the representation schemes, be

haviors of concrete and reinforced concrete under different stress states can be 

readily captured in neural networks by training directly on the experimental 

results. The flexibility of representation scheme for the determination of ma-

terial parameters presented in the input and output makes it possible to ac

commodate non -conventional material parameters. 
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o The simulator developed in this study provides a flexible and efficient model

ing tool in solving the architecture determination problem and the estimation 

of a quasi -minimal training data set associated with the modeling of stress

strain behaviors of concrete and reinforced concrete. However, the use of a 

constant "trigger slope" for controlling the hidden node adaptation process is 

found to be not reliable, especially in the late training stage when a stringent 

learning accuracy is demanded. It is appears that a heuristic rule or manual 

control on the hidden node generation is more reliable. 

o The scheme of incremental training with testing for generalization evaluation 

appears to be a viable way to estimate a minimal training data set for the con

struction of material models. 

o A three-point representation scheme is able to include enough information to 

characterize the stress-strain history of a material. By including additional 

information about the material behavior, such problems as the representation 

of path dependency and the unique determination of stress-strain states can 

be resolved. A one -point representation scheme is sufficient to represent the 

stress - strain behavior of concrete in biaxial stresses under monotonic and 

proportional loadings. 

o The predictions of the stress-strain behavior by neural network-based mod

els of concrete and reinforced concrete match closely with the experimental 

results. These models can also generalize well on the untrained stress-strain 

paths by giving very reasonable predictions. For the reinforced concrete mod

el, after training on results from pure shear tests, the generalization capability 

of the network is remarkably good even on results from tests in combined shear 

and normal stresses. 
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o The implementation of neural network-based material models within a finite 

element procedure can be readily accomplished for static analysis with a con

jugate gradient solution methods and for dynamic analysis with explicit inte

gration schemes. 

7.3 Suggestions for Further Study 

The neural network-based approach to material modeling in computational 

mechanics provides an alternative way to modeling the complex behavior of engineer

ing materials including concrete and reinforced concrete. As has been discussed in this 

study, there are many benefits to using a neural network-based approach to material 

modeling; and there are also some drawbacks which should not be overlooked. In a 

word, this research is a first step in developing intelligent material models and much 

work needs to be done in the near future. A list of further extensions and some research 

needs arising out of this study are listed in the following paragraphs. 

o The neural network material models of concrete and reinforced concrete need 

to be implemented within a finite element package to analyze reinforced con

crete structures so that the validity of these material models on the structural 

level can be further studied, and associated issues with the implementation 

process should be investigated. 

o The material model for concrete under uniaxial cyclic compression needs to be 

trained on stress-strain data with reloading and unloading inside the enve

lope stress - strain curve. Experimental data on those testings need to be com

piled and processed. 



190 

o The approach developed in this study can be extended to model the stress

strain behavior of engineering materials in general stress states so long as the 

experimental results exist and an appropriate representation scheme can be 

designed. More experiments on the behavior of concrete under biaxial cyclic 

loading are required in order to build a comprehensive material model for 

concrete in biaxial stress states. 

o I t is felt that a series of comprehensive testing on different kinds of reinforced 

concrete structural members including panels need to be conducted in order to 

have enough experimental results for the construction of reasonable compos

ite material models in different stress states. 

o The approach can be extended to study the behavior of granular materials and 

soils as experimental results for those materials are abundant and readily 

available. 
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