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1. INTRODUCTION 

1.1 OVERVIEW 

. During the past forty years, reinforced concrete shear walls have been widely used as the 

primary lateral-load resisting systems for both wind and earthquake loading in multi-story build

ings throughout the world. Observations from previous earthquakes have shown that well-designed 

shear walls can be used to control both structural and nonstructural damage in the buildings (57). 

However, it is usually not economical to design tall reinf~rced concrete shear walls to remain elastic 

during severe earthquakes. As a result, the inelastic response of shear walls must be considered dur

ing the design process (48, 105). The inelastic· behavior of shear walls is controlled by the inelastic 

response of both the concrete and reinforcing steel. Tension stiffening, compression softening, and 

crack closing and reopening are the major aspects of inelastic behavior in concrete, while yielding, 

strain-hardening, and Baushinger effects must be considered when modelling the reinforcing steel. 

These phenomena are the major sources of energy dissipation in reinforced concrete structures and 

are important factors in determining the failure modes of reinforced concrete shear walls. In order 

for shear wall structures to survive large seismic disturbances, sudden failures due to shear and local 

instabilities must be suppressed (112). Therefore, structural engineers must understand thoroughly 

the inelastic behavior of reinforced concrete shear walls. They also must be able to predict the cor

rect failure mode in order to prevent the collapse of a structure due to a sudden failure of the primary 

load-carrying system under intense ground motion. 

Since the 1970's, a number of research programs have investigated the inelastic behavior of 

slender reinforced concrete shear walls subjected to cyclic lateral loads (29, 105, 140). Most of this 

research has concentrated on experimental work rather than the development of analytical models 

for evaluating the cyclic behavior of shear walls. In the current design process, most structural engi

neers rely on the ACI Building Code provisions (2) to evaluate the strength of shear walls. However, 

these design provisions are not sufficient to identify the likely modes of failure in shear walls (149). 

The procedures used to calculate the nominal shear strength of walls in the ACI Building Code (2) 
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are based on the modified truss analogy and rely on data from reinforced concrete beams subjected 

to monotonically increasing loads (148). Consequently, these procedures are often unconservative 

when used to calculate the shear strength of reinforced concrete shear walls subjected to cyclic load

ing. Because of this lack ofan appropriate analytical model for evaluating the cyclic response of 

shear wails, methods for assessing the strength, stiffness, and nonlinear defonnation response of 

slender reinforced concrete walls subjected to cyclic loadings need to be developed. 1hls is the over

all goal of this investigation. 

This research is part of an ongoing investigation of the cyclic behavior of slender reinforced 

concrete shear walls taking place in the Department of Civil Engineering at the University ofll1inois, 

Urbana-Champaign. Reinforced concrete shear walls with different shapes, reinforcement ratios, 

and loading histories were tested. The major objective of this phase of the research is to develop 

the appropriate analytical models for modelling the inelastic hysteresis behavior of slender rein

forced concrete shear walls. The finite element method was chosen as the numerical technique in 

this investigation because this method, when combined with the proper constitutive models for con

crete and reinforcing steel, offers a very powerful tool to investigate the response of shear walls with 

different configurations subjected to generalized loadings. Furthennore, fInite element analysis also 

yields important detailed infonnation on the behavior of shear walls, including the stress-strain rela

tionships in concrete and reinforcing steel, deflected shapes, and crack patterns, which cannot be 

obtained from other analytical methods such as truss models (103) and shear hysteresis models 

(108). 

The majorproblems of the nonlinear finite element analysis of reinforced concrete structures 

are the large amount of CPU time required for the analysis due to the complicated material models 

and the difficulties encountered in the stability and accuracy of the solutions (15). Some material 

models for concrete include excessively refined analyses, such as fracture mechanics and detailed 

crack localizations, which cause unneeded expenses (71). Most previous models for the cyclic be

havior of reinforced concrete (134, 151) were tested and verified successfully at the element level 

(the finite element model consists of one or few elements), but when these material models were used 
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in the structural level problems (the finite element model consists of a large number of elements, 

such as the modelling of actual reinforced concrete structures), numerical problems associated with 

the complex stress-strain relationships prevented the completion of most analyses (134, 151). 

Therefore, the need exists to develop new material models for concrete and reinforcing steel that 

can avoid these problems. 

The analytical models for concrete and reinforcing steel, once developed and verified using 

experimental results, will play an important role in the ongoing research. With these analytical mod

els, the finite element method can be used to explore in detail the behavior of reinforced concrete 

walls that have different configurations and reinforcement details, and are subjected to different 

loading histories from the wall specimens tested in the laboratory. 

1.2 OBJECTIVE AND SCOPE 

The major objectives of this research are: 

1) To develop finite element material models for concrete and reinforcing steel that are ap

propriate for modelling the response of slender reinforced concrete shear walls subjected to reversed 

cyclic loadings. The material models must be simple, stable, and reliable in order to make the analy

ses feasible and economical with respect to CPU time and the convergence of nonlinear solutions. 

However, these material models should include all phenomena that have a significant influence on 

the cyclic behavior of slender reinforced concrete shear walls. 

2) To verify the material models by comparing the calculated results with experimental data 

from several.1arge-scale tests of slender reinforced concrete shear walls subjected to cyclic loadings. 

The overall hysteresis response, deflected shapes, crack patterns, and observed failure modes will 

be considered. 

3) To extend the investigation on the behavior of slender reinforced concrete shear walls by 

using finite element analysis in lieu of further large-scale tests. The investigation includes studies 
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of the energy dissipation capacity of shear walls, the response of shear walls with openings, and the 

contribution of flanges to the response of C-shaped shear walls. 

This report first discusses the current status of the research on the finite element analysis of 

reinforced concrete members in Chapter 2. Then, the details of the proposed material models for 

concrete and reinforcing steel are described in Chapters 3 and 4, respectively. In Chapter 5, the finite 

element procedures and some important numerical techniques used in this research are briefly dis

cussed. Two experimental programs on the cyclic responses of slender reinforced concrete shear 

walls--one was the test of thirteen slender reinforced concrete shear walls at the Construction 

Technolo gy Laboratory, PCA and the other was the test of two C-shaped shear walls carried on at 

the Department of Civil Engineering, the University oflllinois, Urbana.;...Champaign-were used for 

testing and verifying the proposed material models. Several aspects of the test results from these 

two experimental programs, including the load vs. top deflection curves, the load vs. shear deforma

tion curves, crack patterns, and failure modes, are compared with those of the calculated results. 

The experimental setup, the analytical models, and the comparisons between the calculated response 

and the experimental data for these two experimental programs are described in Chapters 6 and 7. 

Mter the material models have been satisfactorily verified, the finite element method is used to study 

three topics dealing with the response of slender reinforced concrete shear walls: 1) the energy dis

sipation capacity of shear walls, 2) the response of shear walls with openings, and 3) the contribution 

of flanges to the response of C-shaped walls. These studies are described in Chapter 8. Summary, 

conclusions, and recommendations for future research are given in Chapter 9. 
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<ad 2. FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE MEMBERS 

The finite element method is a powerful structural analysis tool that has been widely used 

in many different types of problems. The strength of the finite element method is based primarily 

on its fundamental concept of discretization, which models a structure as an assemblage of several 

fInite elements. TIlls concept simplifies the modelling of complex structures and allows the for

mulation of the problem to be written in a matrix fonn, which is appropriate to be incorporated into 

computer programs. The concept of descretization is also useful for the study of problems with ma

terial and geometric nonlinearities, because it allows a variety of material and element models to be 

installed at the element level. Finite element users can select or develop the material and the element 

models that have the proper kinematic and constitutive relationships for the problems under study. 

As a result, with the proper material and element models for concrete and reinforcing steel, the finite 

element method can be a very powerful analytical tool for studying the behavior of reinforced con

crete structures. 

In this chapter, a brief review of the previous work in the finite element analysis of reinforced 

concrete is presented. This review emphasizes three areas related to the major objectives of this in

vestigation: the finite element analysis of shear walls, the cyclic response of reinforced concrete 

members, and the applications of the finite element method. The different approaches previously 

used to for modelling cracked concrete and reinforcing steel are then discussed. The proposed mate

rial models for concrete and reinforcing steel are described at the end of this chapter. 

2.1 LITERATURE REVIEW 

2.1.1 OVERVIEW 

The earliest publication of the finite element analysis of reinforced concrete was written by 

Ngo and Scordelis (99) in 1967. In this paper, simply supported reinforced concrete beams with 

predefmed cracks were analyzed using the finite element method. Since then, a large number of 

works on the finite element analysis of reinforced concrete have been published. Most of the early 
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investigators limited their work to two-dimensional plane stress problems and used the fInite ele

ment method to investigate the behavior of reinforced concrete beams tested in laboratories (32,41, 

70,98,99, 141). IofrietandMcNiece (78) used the finite element method to study behavior of rein

forced concrete slabs by using plate bending elements and a modified stiffness approach. Subse

quently, several other researchers successfully used plate and shell elements to investigate the behav

ior of slabs and reinforced concrete shell structures (12, 15, 23, 27, 65, 84, 71). 

Although the two-dimensional plane stress elements, plate elements, and shell elements 

have been successfully and widely used in the fInite element analysis of reinforced concrete, the use 

of the three-dimensional element is very limited. This is due both to the computational effort re

quired in the analysis and to the lack of knowledge concerning the behavior of concrete in a three-<li

mensional state of stress (136). SuidanandSchnobrich (135) used three-dimensionalisoparametric 

elements to model reinforced concrete beams. Meyer and Bathe (95) used three-dimensional ele-

ments and shell elements to model reinforced concrete nuclear reactors that were subjected to inter-

nal pressure and temperature loadings. Bathe and Ramaswamy (15) also used the three-dimensional 

finite elements to analyze prestressed concrete reactor vessels. The extensive summary of the pre

vious work:in the finite element analysis of reinforced concrete can be found in the State-of-the-Art 

report published by the American Society of Civil Engineers (136). 

2.1.2 PREVIOUS WORK ON RIC SHEAR WALLS 

Although the finite element method has been used in the analyses of various types of rein

forced concrete members, including beams, slabs, shells, and panels, its application in the analysis 

of reinforced concrete shear walls is quite limited. In 1972, Yuzugulla (157) used the finite element 

method to study the monotonic behavior of a shear wall-frame system which was tested at the Uni

versity of Tokyo. 'This research is one of the earliest attempts to model reinforced concrete shear 

walls by the finite element modeL Aktan and Hanson (4) analyzed the monotonic and cyclic re

sponses of slender reinforced concrete shear walls by using a finite element model that separated 

-the walls into subregions. In each of-the subregions, the linear behavior was represented by elastic 
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plane stress elements, and the nonlinear behavior was represented by joint elements connected to 

the boundary of the subregion. Bolander and Wight (26, 25) developed the finite element program 

SNAC primarily for use as a tool to investigate the inelastic response of shear wall dominant build

ings subjected to quasi-static loadings. 

Research in the finite element analysis of reinforced concrete shear walls in Japan is much 

more active than that in the U.S. Most of the shear wall research in Japan deals with the behavior 

of low-rise shear walls (height/length less than 1.0), which represent the reinforced concrete walls 

used in the nuclear power plants: Yamag:uchi and Nomura (153) used the fmite element method that 

was based on the plastic-fracture theory proposed by Bazant and Kim (20) to analyze four reinforced 

concrete shear walls subjected to monotonic and cyclic loadings. U eda and Kawai (139) used a finite 

element model which consisted of rigid elements and spring elements to model the monotonic re

sponse of shear walls. Sotomura andMarazumi (131) analyzed a series of reinforced concrete shear 

walls with openings by using a simple smeared crack model for concrete, and an elasto--plastic mod

el for reinforcing steel. Inoue et al. (73) developed the reinforced concrete material model based 

on the results from Vecchio and Collins' panel tests (143), where thirty reinforced concrete panels 

subjected to different uniform stress conditions were tested, and used the model in the analysis of 

several shear walls that had different reinforcement ratios and different shear span ratios. In all these 

previous analyses of reinforced concrete walls, most of the reinforced concrete models were simple, 

and, regardless of the differences in the material and element models, most of the analytical results 

agreed with the experimental results. 

2.1.3 PREVIOUS WORK ON CYCLIC RESPONSE OF RIC MEMBERS 

Although there has been a large amount of research in the past three decades on the finite 

element analysis of reinforced concrete members, there were few studies of the behavior of rein

forced concrete members subjected to cyclic loadings. Some of the pioneer researchers who used 

finite element analysis to model the cyclic response of reinforced concrete members include Cerven

ka (34), Cervenka and Gerstle (36,37), Darwin and Pecknold (45), Bergan and Roland (23), Aktan 
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and Hanson (4), and Agrawal et ale (3). Despite the promising results from some of these studies, _0'-

none of these studies is truly successful in modelling the cyclic response of reinforced concrete 

members. This is due to the fact that the reinforced concrete members studied in all these analyses 

were subjected to only a few cycles of load reversals. As a result, the cyclic response of these rein

forced concrete members did not demonstrate important hysteresis characteristics, such as the hing

ing effects in load vs. deflection curves, the effects of cyclic shear deformation, and the deterioration 

of concrete because of cyclic compressive loadings. 

Two major obstacles that most researchers experienced in the development of cyclic models 

for reinforced concrete are: 1) the lack of understanding in the cyclic response of reinforced concrete 

and 2) the nume~cal problems associated with complex rules for load reversals and stress-strain 

relationships in material models (102, 134). In order to obtain a detailed understanding of the cyclic 

behavior of reinforced concrete element and to gather essential experimental data needed for the for

mulation of such behavior, Stevens et ale (134) conducted cyclic tests on three reinforced concrete 

panels. In these tests, two panels with different amounts of reinforcement were subjected to load 

reversals in pure shear, while one other panel was subjected to reversed cyclic shear combined with 

biaxial compression. The average stress-strain relationship for these panels was then used as a basis 

for the development of a material model for concrete. Stevens et ale (134) proposed a concrete model 

based on the modified compression field theory. Two other researchers also used the results from 

these panel tests to verity their concrete models. Xu (151) proposed the model using a smeared non

orthogonal cracking approach, and Izumo et aL (75) developed the hysteresis constitutive law for 

reinforced concrete by combining several existing constitutive laws developed in Japan. The analyt

ical results at the element level (a fmite element model consists of one element) of these three models 

agreed well with the results of the panel tests. However, because of the complexities of these models, 

numerical problems usually occurred in the analysis of problems at the structural level (a finite ele

ment fTIodel consists of several elements) and, hence, prevented the completion of most analyses. 

Such problems greatly reduced the usefulness of these models. 
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2.1.4 APPLICATIONS OF THE FINITE ELEMENT METHOD 

Most of the previous work in the finite element analysis of the behavior of reinforced con

crete members concentrated on the development of the material model that could reproduce exper

imental results. Surprisingly, few researchers used the finite element method to investigate behavior 

of reinforced concrete members other than that of the specimens tested in the laboratory. Valliappan 

(141) was one of the first researchers to apply the finite element method to the analysis of reinforced 

concrete members other than reinforced concrete beams. In his paper, a material model flrst devel

oped using the experimental data from reinforced concrete beam tests was then used to investigate 

the behavior of reinforced concrete haunches and hinges. Lin and Scordelis (84) verified their lay

ered reinforced concrete shell element with the experimental results of several slabs tested in the 

laboratory. They demonstrated the applicability of the model by using it to analyze the failure load 

of a hyperbolic paraboloid shell. In an attempt to verify the safety of a vessel for a high-temperature 

gas--cooled reactor, Meyer and Bathe (95) used the three-dimensional reinforced concrete model 

to analyze the prestressed concrete vessels subjected to several different loading conditions. Vec

chio (142) used the finite element method to study the effects of a perforation and the reinforcement 

details on the behavior of reinforced concrete walls. He compared the computed response of three 

square reinforced concrete walls, the first was solid, the second was perforated and had reinforce

ment recommended by ACI, and the third was perforated but did not include the recommended rein

forcement details (2). 

During the past decade, some researchers used the finite element method to study the effects 

of different design parameters on the response of reinforced concrete members. Ueda and Kawai 

(139) conducted finite element analyses of reinforced concrete shear walls with different amounts 

of reinforcement and axial load. Mikame et al. (96) used the finite element method to conduct an 

extensive parametric study of reinforced concrete shear walls. The parameters studied included re

inforcement ratio, axial stress, compressive strength of concrete, cross sections of columns, and 

presence of openings. Massicotte et al. (90, 91) used the finite element method to analyze five rein-
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forced concrete panels which were tested under axial and lateral loadings at the University of Alber

ta The finite element analyses were then extended to investigate the behavior of twenty six rein

forced concrete panels with different aspect ratios, thickness, amount of reinforcement, magnitudes 

of in-plane load, in-plane and rotational edge restraints, and the loading sequence. 

2.2 CRACK MODELLING 

Tensile cracking is one of the most important reasons for nonlinearities in reinforced con

crete (38,39,47,84,151). Because concrete is weak in tension, tensile cracking can have asignifi

cant effect on the behavior of most reinforced concrete members, even at an early stage of loading. 

As a result, proper crack modelling is crucial to the success of the concrete model. In order to incor

porate cracking into the material model, the following basic components of crack modelling must 

be defined (136): 

1) Crack representation 

2) Crack initiation and crack propagation 

3) Constitutive relationship for cracked concrete 

During the past three decades, researchers have proposed a number of different models to 

represent cracks in reinforced concrete. The following sections discuss the different approaches that 

have been used to define the three basic components of crack modelling. 

2.2.1 CRACK REPRESENTATION 

In the finite element formulation, stress and strain are assumed to be continuous within one 

finite element However, when concrete cracks, discontinuities in stress and strain occur in the con

crete matrix. Crack representation is the way that these discontinuities are incorporated into the con

crete model In general, two different approaches have been used to represent cracks: 

1) Discrete crack model 

2) Smeared crack model 
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In the discrete crack model, cracks are represented as a separation of nodes along element 

boundaries (25) as shown in Fig. 2.1. The post-cracking behavior, such as tension stiffening, aggre

gate interlock, and dowel action, can be incorporated into the model by using linkage elements to 

connect the separated nodes. The discrete model was first introduced by N go and Scordelis (99) in 

1968 and was then adopted in other early investigations (70, 100). Although this model realistically 

represents the discontinuities in stress and strain across cracks, three major drawbacks prevent the 

successful application of this model: 

• Cracking can occur only along element boundaries. Such restriction introduces bias into 

the finite element solution (136). 

• If cracks are not predefined, cracking will cause the redefinition of the nodes. This node 

redefinition will continuously change the topology of the finite element mesh and, hence, destroy 

the narrow bandwidth in the structural stiffness matrix. 

• Once the separation of the nodes has occurred, crack closing and reopening needs to be 

considered as a contact problem. This greatly complicates the finite element procedure, especially 

in the problems that involve cyclic loading. 

In the smeared crack model, concrete is assumed to remain continuous after cracking. The 

stress-strain discontinuities across the cracks are averaged over the element in the vicinity of the 

cracks; consequently, the stress-strain relationship of cracked concrete can still be described in a 

continuous manner. At each integration point in a concrete element, cracks are considered to be par

allel and finely spaced over the area, and the average stress-strain relationship of cracked concrete 

is represented by a constitutive matrix (Fig. 2.2). The smeared crack model was first introduced by 

Rashid (120) in 1968. Since then, the model has been successfully used in a wide range of problems 

(136). The success and the popularity of the smeared crack model are the result of several practical 

advantages (25): 
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• Cracking can occur in any direction and multiple cracks are allowed at each integration 

point. 

• Each crack is represented by simply adjusting the constitutive matrix at the integration 

point where the crack occurs. The topology of the finite element mesh remains the same throughout 

the analysis. 

• Because cracks at each integration point are considered separately, the direction of each 

crack can be different, and partial cracking (cracking does not occur at every integration point in one 

element) is also a1lowed~ 

Because the smeared crack model represents cracks as being finely spaced or "smeared," the 

model is suitable for modelling reinforced concrete members with a distributed crack pattern. How

ever, for reinforced concrete members in which one or few large cracks dominate the response, the 

discrete crack model might be more appropriate than the smeared crack model. Recently, some re

searchers have used both crack models in the analysis of problems where the effects of both single 

cracks and distributed cracks are significant For example, Okamura et al. (107) used the finite ele

ment model which used both smeared crack and discrete crack elements in the region where large 

cracks were likely to occur to analyze the behavior of reinforced concrete shear walls. 

2.2.2 CRACK INITIATION AND CRACK PROPAGATION 

Most concrete models adopt a strength criterion for crack initiation. Cracking occurs at one 

integration point when the principal stress at that point exceeds the cracking stress. Some research

. ers simply used the uniaxial tensile strength or the modulus of rupture for the value of the cracking 

stress, while others used the tensile strength of concrete under the tension-tension or the tension

compression biaxial stress state, such as the biaxial strength envelop proposed by Kupfer et al. (81). 

After a crack has fonned, it will extend to the adjacent concrete element Two criteria have 

been used for detennining crack propagation: 
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1) Strength criterion 

2) Fracture mechanics criterion 

The strength criterion for crack propagation is similar to the strength criterion for crack initi

ation; the crack propagates when stress at the crack tip exceeds the cracking stress. Although the 

strength criterion seems logical, it is refuted by Bazant and Cedolin (17, 18, 30). They argue that 

when the finite element mesh is refmed and the crack tip becomes sharpened, high stress concentra

tion occurs at the crack tip even with a small applied load. If the strength criterion is used for crack 

propagation, such stress concentration will allow cracks to propagate even at an insignificant load 

level. Therefore, BaZant and Cedolin conclude that the strength criterion is not objective because 

the results depend on fmite element size and do not converge as the element size is reduced to zero' 

(30). 

The fracture mechanics criterion for the smeared crack model was first proposed by Bazant 

and Cedolin (17, 30) as the solution to the "non-objectivity" of the strength criterion. In this ap

proach, each crack is modelled by a one-element wide band of concrete elements (a blunt crack 

band). Based on the assumption that "the work consumed when the crack band is extended by a unit 

length is a constant" (17), the crack propagates to the next element at the tip of the crack band when 

the computed energy release rate of the crack band exceeds the critical value, which depends on the 

fracture energy (Gf) of concrete (83). Although several researchers have adopted this fracture me

chanics criterion (19,43,50,59, 67, 152), the application of the fracture mechanics in the finite ele

ment analysis of reinforced concrete structures is still very limited. 

Most of the previous researchers successfully used strength as a criterion for crack propaga

tion in the finite element analyses of various types of reinforced concrete members, including beams, 

slabs, sheils, and shear walls (151). The "non-objectivity" of the strength criterion did not have any 

effect on these analyses, because in most of these analyses, the size of a concrete element was much 

larger that the size of a crack, and a cracked element represented the average behavior of several 

cracks rather than the behavior of a single crack. Therefore, the strength criterion is sufficient for 
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crack propagation in the problems where cracks are distributed and the average response of cracked 

concrete dominates the behavior of the reinforced concrete members. However, for the crack propa

gation in the problems in which the behavior of reinforced concrete members is controlled by few 

dominant cracks, the fracture mechanics criterion might be required (122, 136). Examples of such 

pro blems are the analysis of shear crack propagation in a reinforced concrete nuclear vessel and the 

analysis of flexural crack propagation in a plain concrete notched beam. 

2.2.3 CONSTITUTIVE MODELLING OF CRACKED CONCRETE 

The constitutive modelling of cracked concrete consists of two major components: the 

stress-strain relationship and the crack model. The first component represents an average stress

strain relationship of cracked concrete in the direction of the crack. For monotonic loading, therela

tionship usually includes the nonlinear behavior of concrete SUbjected to uniaxial or biaxial com

pressive stress with a simple unloading algorithm. This relationship is developed by fitting a curve 

to experimental data. Several stress-strain curves for concrete have been proposed (39, 119, 136), 

and some of them have been used successfully in the finite element analysis of reinforced concrete 

members (86, 157). For cyclic loading, the stress-strain relationship must also include the important 

aspects of the cyclic behavior of concrete, such as crack closing and reopening as well as the effects 

of cyclic compressive stress and cyclic shear stress. Currently, the experimental data for some of 

these aspects related to the cyclic behavior are still limited and few researchers have proposed the 

complete stress-strain relationship for finite element applications (134, 151). 

The second component, the crack model, represents the relationship between strain (stress) 

in the global coordinate and strain (stress) in the direction of the crack (the crack coordinate). The 

fonnulation of the crack model is based primarily on the assumptions of the direction of the crack 

and on the transformation of strain (stress) in the global coordinate to strain (stress) in the direction 

of the crack. There are three major crack models that have been used successfully in the past: 1) 

the fixed crack model, 2) the rotating crack model, and 3) the non-orthogonal multi--crack model. 
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2.2.3.1 FIXED CRACK MODEL 

In the fixed crack model, cracking occurs normal to the direction of the maximum principal 

stress when the maximum principal stress reaches the cracking stress. The cracked concrete is then 

assumed to be orthotropic, with the axis of orthotropy (the crack coordinate) parallel and normal to 

the crack. The crack direction is assumed to remain fIxed throughout the analysis. The rotation of 

strain (stress) from the global coordinate to the crack coordinate can be done simply by using the 

conventional rotation matrix for strain (stress). The constitutive relationship of cracked concrete 

for two-dimensional plane stress problems can be written in the crack coordinate as follows: 

- [~1 ~2 ~] [~:~l 
o 0 {3G c1y12 

(2.1) 

El and E2 are the tangent stiffnesses of cracked concrete normal and parallel to the first crack, 

The second crack is allowed to occur in the direction normal to the first crack by adjusting the value 

of E2. The term ~G represents the shear stiffness retained in the crack direction because of aggregate 

interlock and dowel action. In the problems with monotonic loadings, several researchers (11, 12, 

21,26,39,46,65, 101, 151) reported that the term ~G is necessary for the nume~cal stability of the 

solution; the exact value of ~G, however, is not crucial to the solution, provided that the value is 

above the minimum value (65). 

The fixed crack model has been successfully used by several investigators, such as Agrawal 

et al. (3), Balakrishnan and Murray (9, 10), Cervenka (35), Darwin and Pecknold (45), Hand et ale 

(65), Jofriet and McNiece (78), Lin and Scordelis (84), Sotomura et a1. (131), Suidan and Schno

brich (135), and Yamaguchi et ale (153). Despite its success in the analyses of various types of rein

forced concrete members, the fixed crack model has been unable to correctly model the response 

of some reinforced concrete panels tested by Vecchio and Collins (143). Several researchers (11, 

42, 71, 90 ,97) have reported that the fixed crack model yields a response that is too strong for the 
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panels with highly anisotropic reinforcement This deficiency can be explained by Vecchio and Col

lins' test results (143), which indicate that cracks in the anisotropically reinforced panels, instead 

of remaining fixed, change their directions during the test Hence, the .~sumption of fixed crack 

direction imposes an extra constraint on the finite element analysis which leads to an overestimation 

of the calculated stiffness of the panels with anisotropic reinforcement As a result, some research

ers, such as Milford (97) and Gupta and Akbar (63), considered the assumption of fixed crack to 

be incorrect, and adopted the model that allowed cracks to rotate, the rotating crack model. 

2.2.3.2 ROTATING CRACK MODEL 

In the rotating crack model, cracked concrete is assumed to be orthotropic, as it is assumed 

in the fixed crack model. However, the axis of orthotropy, or th~ crack coordinate, does not remain 

fixed but is always aligned with the major principal strain direction. The transfonnations of the 

strain, stress, and the constitutive matrix of the rotating crack model from the crack coordinate to 

the global coordinate are similar to those of the fixed crack model except for the change in the crack 

direction. 

The early researchers who adopted the rotating crack model include Milford (97), and Vec-

chio, Collins (144), and Gupta and Akbar (63). In 1983, Gupta and Akbar (63) proposed the rotating 

crack model and defined two parts to the constitutive matrix: 1) the conventional constitutive matrix 

(similar to what is used in the fixed crack model) and 2) a contribution which reflects the possible 

changes in crack direction. Milford (97) was the first to incorporate this model into a finite element 

program and used it to analyze a reinforced concrete cooling tower. Vecchio and Collins (144) pro

posed another rotating crack model based on the compression field theory, which assumes that the 

principal stress direction of concrete coincides with the principal strain direction. Several other re

searchers who adopted the rotating crack model in their concrete models are Hu and Schnobrich (71, 

72), Crisfield and Wills (42), Balakrishnan and Murray (9, 10), Massicotte and McGregor (90), and 

Inoue et al. (73). 
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Results of the rotating crack model agree with the experimental results for panels with aniso

tropic reinforcement (143). However, the rotating crack model has suffered two major drawbacks: 

• Some researchers, suchasBazant (16),De Borst and Nauta (47), and Noguchi (102),criti

cized the validity of the assumption of crack rotation. Bazant and Noguchi argue that the rotation 

of the axes of orthotropy means that damage in concrete is temporary and depends solely on the cur

rent strain state. This is not true of concrete in general. 

• The crack rotation causes discontinuities in stress and strain in the crack direction. In the 

rotating crack model, stress and strain in the crack direction at the end of the last load step is different 

from stress and strain in the new crack direction at the beginning of the next load step (134). This 

complicates the rules defining the stress-strain relationship in a concrete model because, instead of 

using only one or a few curves to defme a certain region in the stress-strain relationship (as used 

in the fixed crack model), a whole family of curves are required (134). Furthennore, the rotation 

of the direction of the crack can cause false unloading and stress overshooting at some integration 

points. This usually leads to numerical difficulties during the analysis, especially in the case of cy

clic loadings. 

The rotating crack models have been applied successfully in the analysis of reinforced con

crete members under monotonic loadings. The only effort to incorporate the cyclic response into 

the rotating crack model has been done by Stevens et ale (134). This model is successful at the ele

ment level where the analytical results agree well with the cyclic response of reinforced concrete 

panels (134). However, the application of the model at the structural level is not as successful and 

is still very limited. 

2.2.3.3 NON-ORTHOGONAL MULTI-CRACK MODEL 

The non-orthogonal multi-crack model was proposed by De Borst and Nauta (46, 47) in 

1985 as a solution to the deficiencies of the fixed crack and the rotating crack models. The funda

mental feature of this model is a decomposition of a total strain increment Llc into a concrete strain 
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increment, ~Eco, and a crack strain increment, ~Ecr. The relationship between these strain incre

. ments can be written as the following: 

(2.2) 

Such strain decomposition allows intact concrete and cracks to be modelled separately. Be

cause crack strain is separated from concrete strain and is the summation of the contributions from 

all cracks at that point, each crack is treated independently and multiple non-orthogonal cracks can 

occur at one integration point Bolander and Wight (25,26) used this model successfully in the anal

ysis of the monotonic response of reinforced concrete shear walls. Xu (151) modified the model 

to include cyclic behavior. Xu's model was successful atthe element level when it was used to model 

the cyclic response of reinforced concrete panels tested be Stevens et ala (134). However, it was not 

successful at the structural level because numerical difficulties usually prevented the completion of 

most analyses (151). 

Although the model employs a useful concept of the strain decomposition, the application 

of the non-<lrthogonal multi-crack model is still limited (42, 151). The complexity of the model 

is one of the major factors that prevent the successful application of the model. For example, Cris

field and Wills (42), who considered this model to be most "hop~ful," encountered significant nu

merical difficulties while attempting to implement this model, and ended up adopting the rotating 

crack model instead. Another difficulty of using this model lies in the amount of computational ef

fort required in the calculation of the constitutive relationship. This calculation, at each integration 

point, involves matrix inversion, matrix addition, matrix subtraction, and several matrix multiplica

tions. 11ri.s problem becomes significant when a finite element model consists of a large number 

of concrete elements and is subjected to hundreds or even thousands of load steps. 
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2.3 MODELLING OF STEEL REINFORCEMENT 

The strength and stiffness of reinforced concrete members depend greatly on the characteris

tics of reinforcing steel (95). Fortunately, the development of the reinforcing steel model is much 

more straightforward than the development of the concrete model because the behavior of reinforc

ing steel is essentially uniaxial and is well defined both for monotonic and cyclic loadings (95). The 

steel reinforcement model consists of two major components: 1) the steel reinforcement representa-

tion and 2) the stress-strain relationship. 

2.3.1 STEEL REINFORCEMENT REPRESENTATION 

Three major models of steel reinforcement have been used successfully in the finite element 

analysis of reinforced concrete: 

1) Discrete steel model 

2) Embedded steel model 

3) Smeared steel model 

In a discrete model, a reinforcing bar is represented by a one-dimensional bar element. The 

model was used in the first publication of the finite element analysis of reinforced concrete by N go 

and Scoredelis (99) and is still being widely used (136). The advantages of this model are its simplic

ity and its ability to include bond-slip relationships between concrete and steel by using a linkage 

element to connect the common nodes of a bar element and a concrete element. The bending stiff

ness and the shear stiffness of the reinforcing bar can be modelled by using a beam element instead 

of a bar element. The major disadvantage of the discrete model is its mesh dependency; the direction 

and location of bar elements depend on the mesh layout of the finite element model. 

In an embedded model, areinforcing bar is considered to be a uniaxial member, but it is rep

resented by a two-dimensional or a three-dimensional isoparametric element. The stiffness of each 

layer of reinforcing bars is evaluated individually with an isoparametric shape function (54). The 
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model was proposed as a solution to the problem of mesh dependency in the discrete model. Perfect 

bond between concrete and reinforcing steel is assumed in this model. 

In a smeared model, reinforcing steel is assumed to be unifonnly distributed over a concrete 

element in a particular direction. The two-dimensional plane stress constitutive matrix for the 

smeared model can be written in the direction of the reinforcing bar as follows: 

[ 
eEs 0 0 1 [DS] = 0 0 0 
o 00 

(2.3) 

where Q represents the reinforcement ratio and Es represents the stiffness of the reinforcing steel. 

After being rotated to the global direction, the constitutive matrix of reinforcing steel is su-

perimposed on top of the constitutive matrix of concrete to obtain the total constitutive matrix of 

reinforced concrete. The perfect bond between reinforcing steel and concrete must also be assumed 

in this model. 

2.3.2 STRESS-STRAIN RELATIONSHIP OF REINFORCING STEEL 

The major characteristics of the cyclic stress-strain relationship of reinforcing steel include 

an initial elastic region, a yield plateau, a strain-hardening region, and the Bauschinger effect be

cause of load reversals. Several different stress-strain relationships have been used successfully in 

the finite element analysis of reinforced concrete members, ranging from very simple models which 

assume the stress-strain relationship to be elasto-plastic to very complex models which include the 

inelastic cyclic behavior such as the Bauschinger effects. The degree of sophistication of the stress

strain relationship required in the analysis depends on the nature of the problems being analyzed. 

For reinforced concrete members SUbjected to monotonic loadings, a simple bilinear or trilinear 

model might be adequate (134). But when reinforced concrete members are subjected to cyclic load

ings and have the behavior which is strongly influenced by the characteristics of reinforcing steel, 

a simple model is inadequate and a more realistic model is necessary (134). 
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- 2.4 PROPOSED MATERIAL MODELS 

One of the major objectives of this research is to develop material models for concrete and 

reinforcing steel that are appropriate for modelling the cyclic response of slender reinforced con

crete walls. The models for cyclic behavior of reinforced. concrete recently developed by Xu (151) 

and by Stevens et ale (134) were not successful in analyzing structural problems due to numerical 

difficulties associated with the complex stress-strain relationships (134,151). Hence, the usefulness 

of these models is limited. In order to avoid these numerical problems and to be practical for struc

tural problems regarding the computation time required in the analysis, the proposed. models must 

have the following properties: 

1) Simplicity - The models must be simple and should include only the aspects ofbehav

ior that have a significant effect on the cyclic behavior of slender reinforced concrete walls. 

2) Stability - The models must be stable and have a good convergence rate during the 

iteration procedure of the nonlinear analysis, especially when the analysis is done at the structural 

level 

3) Reliability - The models must be reliable. They must be the correct representations of 

the cyclic behavior of concrete and reinforcing steel in slender reinforced concrete walls. 

The proposed. models for concrete and reinforcing steel are described in the following sec-

tions. 

2.4.1 PROPOSED CONCRETE MODEL 

During the past decade, several researchers (10, 11,35,38,42,59,64, 71, 72, 90, 142) used 

Vecchio and Collins' experimental results of thirty reinforced concrete panels tested under different 

uniform stress conditions (143) as the basis for their concrete model development Although this 

approach seems reasonable and promising, it has on~ major drawback: the behavior of the reinforced 

concrete panels might not correctly represent the behavior of reinforced concrete in other types of 

reinforced concrete members. This is because the behavior of reinforced concrete depends greatly 
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on boundary conditions, loading history, and geometry of the member. Therefore, developing a con

crete model based on the panel test results does not guarantee the success of the model in other struc

tural problems. On the other hand, such an approach might result in an unnecessarily complicated 

model or in a model that lacks some of the essential aspects of the behavior of the reinforced concrete 

members being studied. 

Because the cyclic response of slender reinforced concrete walls is the maj or topic of this 

research, the proposed concrete model must correctly represent the behavior of concrete in the walls. 

From the test results of isolated walls tested by Oesterle etal. (105, 106) and also the test results of 

C-shaped walls tested in this investigation, there are several important aspects of behavior of con

crete that should be included in the concrete model: 

• Cracks are distributed quite unifonnl.y in the lower portion of the walls. 

• Most of the cracks that developed when the wall was subjected to cyclic loading were 

nearly orthogonal to the cracks that developed during the first load cycle. 

• The directions of most cracks did not change during testing. 

• Shear deformations were concentrated in the lower portion of the walls in the direction 

parallel to the base of the walls. 

Based on these observations, the smeared crack model with fixed orthogonal cracks using 

the strength criterion for crack initiation and propagation has been adopted in the proposed concrete 

model However, the conventional fixed crack model cannot represent the large shear deformation 

in the lower portion of the wall correctly. After trying several different approaches, it was concluded 

that the best way to model the shear defonnation in the walls was to separate shear strain from other 

strain components in the global coordinate system- as shown in Fig. 2.3. 

The separation of the shear strain from the global longitudinal and transverse strains leads 

to the separation of the shear stiffness in the global coordinate system from the normal stiffness in 

the crack coordinate system. The separation of shear strain also allows the lower portion of the wall 

to experience high shear deformation, as observed in the test results, without causing premature 
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crushing of concrete in the crack direction. The shear stiffness of the proposed model is controlled 

primarily by only one function, Ger. Two functions must be defined in the concrete model: the nor

mal stress function and the shear stress function. These two functions are described in Chapter 3. 

2.4.2 PROPOSED STEEL MODEL 

Although the smeared steel model has been used by several researchers recently, the discrete 

steel model was adopted in this investigation. The reasons for choosing the discrete steel model are 

as follows: 

• A discrete bar element is a correct representation of each reinforcing bar in shear walls. 

The layout of bar elements in the fInite element model can closely resemble the layout of reinforcing 

bars in shear walls. 

• If necessary, the effect of bond-slip between concrete and reinforcing steel can be added 

by using linkage elements. This cannot be done in the smeared steel model. 

• Because of the horizontal and vertical arrangement of the reinforcing bars in shear walls, 

and because of the layout of the finite element mesh, the discrete steel model does not suffer mesh 

dependency. Each group of reinforcing bars can be modelled correctly by a bar element without any . 

difficulties. 

There is only one .function, the uniaxial stress-strain relationship, which has to be defined 

in the steel model. This function is described in Chapter 4. 
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3. MATERIAL MODEL FOR CONCRETE 

The proposed material model for concrete, as described in Chapter 2, consists of two inde

pendent functions: the normal stress function and the shear stress function. The normal stress func

tion represents the average relationship between stress and strain in the direction normal to the crack 

while the shear stress function represents the average relationship between shear stress and shear 

strain in the direction parallel to the base of the walls. Two important characteristics of these two 

functions are the material nonlinearity and the history dependency. The nonlinear behavior of con

crete, which occurs when concrete cracks or is subjected to high compressive stress or cyclic load

ings, has a significant effect on the response of reinforced concrete shear walls. To model these types 

of behavior, each stress function is composed of several equations and rules, each of which simulates 

an important aspect of the nonlinear behavior of concrete. The behavior of concrete also greatly 

depends on the loading history. Hence, these functions must be history-dependent; the current 

stress depends not only on the current strain but also on the stress-strain history. At every integration 

point in each concrete element, several parameters reflecting the loading history need to be kept and 

updated. Because these two stress functions govern the response of the concrete model, their behav

ior is crucial to the success of the finite element analysis. As a result, a large amount of effort was 

spent developing and evaluating these functions. 

In this chapter, the nonnal stress function and the shear stress function are discussed. In each 

discussion, the related experimental data, the proposed function, and the evaluation of the function 

are presented. Because there is no single set of experimental data that represents the whole cyclic 

stress-strain relationship of concrete, each section of the proposed functions is evaluated separately 

with the appropriate set of the experimental data. In the situations where the proper experimental 

data are not available at the element level, the function is evaluated by comparing certain aspects 

of the experimental data with the corresponding calculated results from the finite element analyses. 

For example, experimental data on cyclic shear transfer do not exist at the element level; therefore, 
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the shear stress function is evaluated by comparing the calculated cyclic shear deformation in com

plete wall models with the experimental data. 

3.1 NORMAL STRESS FUNCTION 

The nonnal stress function represents the average stress-strain relationship in concrete in the 

direction normal to the crack. Because concrete is assumed to remain continuous after cracking, a 

stress-strain discontinuity across the crack is distributed over the entire concrete element As a re-

sult, the normal stress function represents not only the average stress-strain relationship in intact 

concrete but also the discontinuity due to cracking. The nonna! stress function used in the proposed 

concrete model is based on two major assumptions: 1) Poisson's ratio of cracked concrete is zero 

and 2) the behavior of cracked concrete is uniaxial in the direction of the crack. In the flIst assump

tion, Poisson's ratio of cracked concrete is assumed to be zero because the interaction between the 

two orthogonal directions is greatly reduced after cracking. This assumption has been adopted in 

most smeared crack concrete models (136). Some researchers allow concrete to regain Poisson's 

effect when cracks have been closed (9,44,45,86,87). However, in this study, Poisson's effect was 

found to be insignificant in the analysis of re:inforced concrete shear walls, and Poisson's ratio for 

cracked concrete is assumed to be zero throughout the analysis. In the second assumption, concrete 

is assumed to behave uniaxially in the direction of the crack; it is assumed that the stress in the crack 

direction depends solely on the strain in that direction. Although this assumption does not take into 

account the effect of biaxial stress or the reduction of the primary compressive strength due to the 

nonnal tensile strain as reported by Stevens et al. (134) and Belarbi and Hsu (22), it satisfactorily 

represents the average response of concrete in shear walls. The normal stress function is simplified 

because, based on this assumption, the nonnal stress function depends only on the stress and strain 

in one direction. In addition, it also allows the use of uniaxial test results of concrete to validate the 

concrete model 

In the analysis of the cyclic behavior of reinforced concrete members, the state of stress at 

an integration point in an individual element can change due to a change in the direction of the ap-
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plied loading or to a redistribution of stress due to nonlinear response anywhere in the structure. 

Therefore, all elements will be subjected to loading, unloading, and reloading during a particular 

analysis, and the normal stress function must be able to define the stress-strain relationship of any 

loading sequence. The function must also simulate all the important aspects of behavior of concrete 

in reinforced concrete shear walls. From observations of the experimental results and comparisons 

between analytical and experimental results, the important aspects of behavior in reinforced con

crete walls include: 

- Tension stiffening 

Crack closing and crack reopening 

- Compression softening 

Effects of steel confinement 

- Degradation of concrete properties with cyclic loading. 

All these aspects of behavior compose the complete stress-strain relationship in the direction 

normal to the crack (Fig. 3.1). Each of the aspects of behavior list above is discussed in the following 

sections. 

3.1.1 TENSION STIFFENING 

When reinforced concrete cracks, the concrete between cracks still carries tensile stress 

which is transferred through bond between the steel bar and the surrounding concrete (Fig. 3.2) (9, 

58, 85). Such behavior makes the average stiffness in tension of a reinforcing bar embedded in con

crete greater than that of a plain bar (Fig. 3.2) and, hence, is called "tension stiffening." The tension 

stiffening behavior is different from the tension softening behavior, which represents the average 

stress-strain response in the fracture zone of plain concrete after cracking (9, 85). Because the ten

sion stiffening behavior is caused by the interaction between concrete and steel, its characteristics 

depend on properties of both concrete and steel, such as crack spacing, reinforcement ratio, and in

terface bond transfer (9). Researchers have used experimental data (22, 116, 130, 143) and mathe

matical models (58, 66) to study the tension stiffening behavior of reinforced concrete. The results 
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from these studies exhibit a large amount of scatter (Fig. 3.3). As a result, the stress-stram relation

ship for tension stiffening has not yet been well defined. 

Two approaches have been used to represent the tension stiffening behavior in the flnite ele

ment analysis of reinforced concrete. In the first approach, the tension stiffening effect is included 

in the behavior of a reinforcing bar. After cracking, concrete is assumed to carry no tensile stress 

normal to cracks, and the stress-strain relationship of a reinforcing bar is modified to include the 

effect of tension stiffening. This approach was first introduced by Gilbert and Warner (60) in the 

analysis of reinforced concrete slabs, but few other researchers have adopted this approach. In the 

second approach, the tension stiffening of concrete is included in a concrete element After concrete 

cracks, the stress-strain relationship of a reinforcing bar remains the same as that of a plain bar while 

the tensile stress of concrete nonnal to the crack, instead of immediately decreasing to zero, gradual

ly decreases to represent the effect of tension stiffening. This approach was first introduced by Scan

lon and Murray (~21) and has since been used by many other researchers (8, 9, 10, 11, 35, 38, 39, 

42, 66, 72, 73, 78, 84, 90, 144, 153). Various types of descending branches of the post--cracking 

stress-strain curve, ranging from simple bilinear curves to curves combining complicated functions 

with several parameters, such as reinforcement ratios, crack direction, and bond stress, have been 

proposed. Despite the differences in their tension stiffening models, most of these researchers agree 

that the finite element analysis must include the effects of tension stiffening in order to accurately 

represent the load-deflecti.on curve of the reinforced concrete members, especially when the mem

bers are lightly reinforced (35, 69). 

In this investigation, the effect of tension stiffening is included in the concrete modeL The 

stress-strain relationship of concrete after cracking is represented by a discontinuous linear unload

ing model shown in Fig. 3.4. In this model, tensile stress of in the concrete immediately drops from 

the cracking stress Ocr to a smaller stress acrer after cracking. Then, as the tensile strain increases, 

the tensile stress decreases linearly to alower-bound stress of 0i at the tensile strain of ci. The tensile 

stress then remains constant at cri. This discontinuous linear unloading model has been successfully 
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used by Yamaguchi and Nomura (153) and Inoue et al (73) in the finite element analyses of rein

forced concrete shear walls. 

As can be seen in the experimental results of the reinforced concrete panels tested by Vecchio 

and Collins (143) in Fig. 3.3, the experimental data on tension stiffening behavior have varied wide

ly. Therefore, in the evaluation of the proposed model, no attempt was made to evaluate the tension 

stiffening of concrete at the element level. The tension stiffening model was evaluated at the struc

turallevel by comparing the analytical results and the experimental data from reinforced concrete 

shear walls. The parameters that define the tension stiffening behavior (u, Ci, and au were adjusted 

until the calculated load vs. top-deflection curves agreed the experimental data from the PCA wall 

tests (105,106). The parametric study used to detennine the appropriate values for these parameters 

are discussed in Chapter 6. It can be seen from the finite element results (Fig. 3.5) that tension stiff

ening has a significant effect on the calculated load-deflection curve for the walls, especially at early 

stages of the monotonic loading. However, its effect is less significant after reinforcing steel starts 

yielding or after the walls have been subjected to a few cycles of cyclic loading. 

3.1.2 CRACK CLOSING AND REOPENING 

When reinforced concrete members are subjected to cyclic loading, cracks close and reopen 

throughout the loading history. As the crack status changes from fully open to fully closed, the stiff

ness of cracked concrete increases from a value near zero to a value close to the initial modulus of 

elasticity for concrete (Be). Several researchers (61, 92, 102, 110, 132, 134, 147, 154, 158) report 

that cracked concrete can transfer compressive stress across cracks even when the cracks remain 

open. The misalignment of the two opposite crack surfaces allow high spots to come into contact 

and, hence, start transferring compressive stress. The stiffness of cracked concrete gradually in

creases as the cracks close. In Fig. 3.6, a typical cyclic stress-strain relationship and a relationship 

between stress and crack width are presented. These curves have several common characteristics: 

• The envelope curve of the cyclic tensile stress-strain relationship can be estimated by the 

monotonic curve for concrete in uniaxial tension, and the envelope curve of the cyclic compressive 
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stress-strain relationship can be estimated by the monotonic curve for concrete in uniaxial compres-

sion. 

• The unloading curve in tension (when cracks are closing) consists of three maj or regions: 

the initially stiff region, the softened region, and the stiffened region as show in Fig. 3.6. The curve 

then merges with the envelope curve in compression at some point in the compressive strain range. 

• The reloading curve in tension (when cracks are opening) starts with the same stiffness 

as the uncracked stiffness of concrete. Then, the curve gradually softens and merges with the enve

lope curve in tension at some point in the tensile strain range. 

In the smeared crack model, most researchers use the strain nonnal to the crack as the criteri-

on for defining crack closing and reopening. Early researchers, such as Cervenka (33) and Agrawal 

(3), consider a crack to be fully open when the strain nonnal to the crack is tensile (positive), and 

a crack to be fully closed when the strain nonna! to the crack is compressive (negative). In this ap

proach, the sudden increase in the concrete stiffness as the crack status changes from fully open to 

fully closed usually causes numerical difficulties in the analysis. As a result, small load increments 

must be used in order to prevent excessive compressive strain caused by the zero stiffness used in 

the load step prior to crack closing (3,33). Darwin and Pecknold (45) were the first to include a 

gradual increase in concrete stiffness as the cracks closed. However, such an increase in stiffness 

was not intended to represent the behavior of crack closing, but rather to prevent the numerical prob

lems associated with a sudden increase in the stiffness of cracked concrete. Due to a lack of exper

imental data to define the cyclic response of cracked concrete, it was not until the late 1980s that 

the complete stress-strain relationships for cracked concrete were proposed. Researchers who pro

posed these relationships include Stevens et al. (134), Xu (151), Izumo et ale (75), and Yankelevsky 

and Reinhardt (155). 

In this research, it was found that the simple crack closing and reopening models like the one 

proposed by Darwin and Pecknold (45) are not sufficient to model th~ cyclic response of reinforced 

concrete walls. As a result, the more realistic crack closing and reopening model must be included 
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in the nonnal stress function. The characteristics of crack closing and reopening in the proposed 

model are based on the characteristics of the cyclic response of concrete observed in the experimen-

tal data shown in Fig. 3.6 (134, .155). 

Typical crack closing and opening rules are described in Fig. 3.7 and 3.8. Cracks are consid

ered to be fully closed when the compressive strain exceeds En while cracks are considered to be 

partially open when the strain is between En and Ei. The cracks are considered to be fully open when 

the tensile strain exceeds Ei (Fig. 3.9). At each load step, the cracked concrete is considered to be 

opening if the incremental strain is tensile and to be closing if the incremental strain is compressive 

(the convention of positive strains or stresses corresponding to tension is used throughout this inves

tigation). The schemes for defining the stress-strain relationship have been adopted from the Focal 

Point Model proposed by Yankelevsky and Reinhardt (155). In the proposed model, five focal 

points, (0,01), (Ei,0"2), (EhO'D, (E3,0"3), (En,O"n), are used to define the cyclic tensile response of con

crete (Fig. 3.9). All these points except (En,O"xJ, which depends on the history of cyclic compressive 

loadings, are constant throughout all loading cycles. The rules defining crack closing and crack 

opening in the i direction can be described as follows: 

(E,O") represents the strain and stress at the last load step 

(Ec,O'c) represents the strain and stress at the current load step 

e:nax represents the previous maximum tensile strain in the i-th direction 

.6.E represents the incremental strain, Ec - C 

CRACK CLOSING (~E < 0) 

The stress-strain curves for crack closing are shown in Fig. 3.7. Three major regions are 

defined: 

Region 1: Initially Stiff Region [when 0'> 0"2]: The stress-strain curve is defmed by aline 

connecting (s, 0") and (0, (11). TIlls curve represents the initial response of concrete when 

the cracks begin to close. The stiffening becomes less pronounced when the crack closing 

starts at the larger strain. Region 1 ends when the compressive stress exceeds 0"2. 
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Region 2: Softened Region [when a = 02 and C > ci]: The stress-strain curve is a horizon

tal line connecting (c, 0) and (Ei, 02). In this zone, stress remains constant at 02, and the tan

gent stiffness is zero. This curve represents the closing of fully open cracks. Because the 

two opposite crack surfaces are widely separated, there is no resistance to closing of the 

cracks until the tensile strain is reduced to Ci and contact occurs between the two surfaces. 

Region 3: Stiffened Region [ when a < 02 and En < C < Ci ]: The stress-strain curve is a 

curve connecting (C, a) and (cn, an). The curve is defined by Eq. (3.1) 

where 

_ Gos 
Eos- -

Ec 

kl = Ec - En 

k2 = Gc - an 

(3.1) 

Et = the tangent stiffness at the beginning of the unloading curve 

Ee = the initial modulus of elasticity for concrete 

The values of s and Oos are defined such that the tangent stiffness at the starting point 

of the unloading curve (points E, F, and G in Fig. 3.7) is equal to Et and the tangent stiffness 

at the point (cn,ou) is equal to Ee. E t is the slope of the line connecting (c, 0) and (E3, 03), 

and Ee is the initial modulus of elasticity for concrete. This curve represents the gradual in

crease in the stiffness of cracked concrete that results from crack closing. The curve merges 

with the envelope curve for concrete under uniaxial compressive stress at (cn,an). 

CRACK OPENING (~c > 0) 

The stress-strain curves for crack opening are shown in Fig. 3.8. Each curve consists offour 

major regions: 
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Region 1: Initially Stiff Region [when 0 < 04 and En < E < Einax]: The stress-strain curve 

is defined by a line with a tangent stiffness equal to the initial modulus of elasticity for con

crete (Ec).This curve represents the initially stiff response of cracked concrete when the 

crack opening occurs. 

Region 2: Unear Softening Region I [when 02> a> 04 and En < E < EinaxJ: The stress

strain curve is defined by a line connecting (E,a) and (Einax/2,a2). 

Region 3: Unear Softening Region II [when a> 02 and En < E < EinaxJ: The stress-strain 

curve is a straight line connecting (Einaxl2,02) and (Einax,OV. 

Region 4: Softened Region [when 0= 0i and Einax < E ]: The stress-strain curve is defined 

by a horizontal line where 0 is equal to 0i and the tangent stiffness is zero. 

Although some experimental data related to the cyclic response of concrete in tension do ex

ist, they are not in the appropriate fonn to be used to evaluate the proposed crack closing and reopen

ing functions. For example, the experimental data by Reinhardt and Yankelevsky (155) are pres

ented in tenn of stress and crack width instead of stress and strain and, hence, are not applicable to 

the evaluation of the proposed functions. As aresult, the proposed crack closing and reopening func

tions have been evaluated at the structural level. The parameters that define the crack closing and 

reopening behavior, 01,02,03,0'4, and an, were adjusted so that the calculated response of reinforced 

concrete walls from the finite element analysis agree with the experimental data from the PCA wall 

tests (105, 106). The parametric study used to define the appropriate values of these parameters is 

described in Chapter 6. 

3.1.3 COMPRESSION SOFTENING 

Compression softening represents an observed softening of concrete when it is subjected to 

high compressive stress. The stress-strain relationship of concrete in uniaxial compression is essen

tially linear when the concrete is SUbjected to low compressive stress. As the compressive stress 

increases, the stress-strain curve of concrete begins to soften gradually until it reaches the compres-
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sive strength at the apex of the curve (Fig. 3.10). The compressive stress then starts to decrease with 

increasing compressive strain. Such degradation in strength represents the accumulated damage in 

concrete due to large compressive strains (136). Compression softening was found to have a signifi

cant effect on the calculated response of reinforced concrete wails, especially when extensive con

crete crushing occurs in the boundary elements. Hence, the compression softening behavior must 

be included in the normal stress function. 

Several stress-strain relationships for compression softening behavior in concrete have been 

proposed during the last four decades. The sununary of these relationships can be found in the paper 

by Popovics (119). In the proposed model, the relationship which was first proposed by Smith and 

Young (129) and was later used by several other researchers, such as Yankelevsky and Reinhardt 

(156) and Karsan and Jirsa (79), is adopted for describing the compression softening behavior. This 

relationship was chosen because it accurately represents the entire stress-strain" curve of concrete 

under uniaxial compression, representing both the ascending and descending portions with one sim

ple function. Furthermore, only concrete strength and the initial concrete stiffness need to be de

fined. The original relationship has been modified slightly so that the transition between the crack 

closing curve and the compression softening curve is smooth. Both the crack closing curve and the 

compression softening curve must have the same tangent stiffness, which is equal to the initial modu-

Ius of elasticity for concrete (Ec), at the transition point (En, OJ (Fig. 3.10). This relationship can 

be defined as follows: 

when E > En 

when e < en 

where Goc -

eoc -

fcult -

Ec -
e -

G - Ee e 

ee - en (1 _Z-Z,,) - e Zoe eoc 

fcult - an 
Goc e 
T 
the compressive strength of concrete 

the initial modulus of elasticity for concrete 

the base of the natural logarithms 
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The tenns En and an are defined in the previous section. The two concrete properties needed to be 

defined are Be and fcult. 

The comparison between the proposed function and experimental data is given in Fig. 3.11. 

The compression softening curve is used as an envelope curve for unconfined concrete. The rules 

for unloading and reloacling in this region and the effect of cyclic loadings are described in Section 

3.1.5. 

3.1.4 CONFINED CONCRETE 

Experimental data clearly indicate that "the strength and ductility of concrete are greatly in

creased under the condition of triaxial compression" (111). In reinforced concrete members, the 

condition of triaxial compression exists when concrete is confined by transverse reinforcement, 

which is usually provided in the form of a closely spaced spiral or tie reinforcement (111). Trans-

verse reinforcement provides passive confinement When the compressive stress is low, the trans-

verse reinforcement is slightly stressed and, hence, does not provide any confinement for concrete. 

As a result, the concrete within the transverse reinforcement is unconfined when the compressive 

stress is low. As the compressive stress approaches the compressive strength of concrete, the trans

verse steel starts to provide confinement because the crushed concrete is pushed against the trans

verse steeL This, in turn, creates reaction pressure against the concrete. Experimental data from 

several investigation have indicated that the confinement provided by transverse reinforcement can 

significantly increase the strength and ductility of concrete at high compressive stresses (111). 

According to the 1989 ACIBuilding Code (2), transverse reinforcement should be provided 

in the boundary elements of reinforced concrete shear walls. The transverse reinforcement can be 

either in the fonn of closed column ties or spiral reinforcement in accordance with Section 21.4.4 

(2). These spirals and closely-sPaced ties can provide confinement for concrete in the boundary 

elements. As a result, the behavior of confined concrete must be included in the normal stress func-

tion; otherwise, either the premature crushing of concrete in the confined boundary elements or nu

merical problems associated with concrete crushing will occur during the analysis. 
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The analytical model for confined concrete proposed by Shiekh and Uzumeri (125) was 

adopted in this research. The stress-strain curve for confined concrete is shown in Fig. 3.12. The 

curve consists of three sections: 1) the uncrushed section, 2) the crush plateau, and 3) the totally 

crushed section. The uncrushed section has a stress-strain curve that is similar to the compressive 

stress-strain curve of unconfined concrete prior to crushing. The stress-strain curve is linear with 

a tangent stiffness equal to the initial modulus of elasticity of concrete (Be) until it reaches the point 

(£n,an ). Then it follows the compression softening curve defined by Eq. 3.3 until the curve reaches 

the concrete compressive strength feult • The value of feult is equal to ksfe I, rather than fc', the uncon-

fined compressive strength. The tennksrepresents the increase in the compressive strength resulting 

from the confinement After reaching feulb the stress-strain curve enters the crush plateau where 

the compressive stress remains constant at fcult until the compressive strain reaches £2. When the 

compressive strain exceeds E2, the stress-strain curve is in the totally crushed section. The curve 

descends linearly from (E2, fculV to (E8S, 0.85· feulV and remains on this line until the compressive 

stress reaches 0.30·fcult. For larger compressive strains, the compressive stress remains constant at 

0.30· fcult. 

In the proposed analytical model for confined concrete, three parameters (ks, £2, and E85) 

have to be defined. The values of these parameters depend ~n several factors such as the volumetric 

transverse reinforcement ratio, tie spacing, characteristics of reinforcing steel, and the distribution 

of the longitudinal steel around the core concrete perimeter. The procedures for calculating these 

parameters are described in Appendix B. 

3.1.5 DEGRADATION OF CONCRETE PROPERTIES UNDER CYCLIC 
LOADINGS 

Because the primary objective of this research is to study the cyclic response of reinforced 

concrete shear walls, the normal stress function must include the degradation of strength due to cy

clic loading. The cyclic stress-strain relationship for concrete in the proposed model is based on 

the experimental work by Karsan and Jirsa (79) and Sinha et ale (128). Parts of the algorithm used 
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to define the cyclic stress-strain relationship in the proposed model are adopted from the model for 

cyclic behavior of concrete proposed by Yankelevsky and Reinhardt (156)~ 

The typical compressive cyclic stress-strain relationship used in the proposed concrete mod

el is shown in Fig. 3.13. The rules for defining this relationship are based on two curves: an envelope 

curve and a common point curve. The envelope curve de:fines the boundary of the permissible 

stress-strain loci; the stress-strain curve must always lie within the area enclosed by the envelope 

curve and the strain axis. The envelope curve is represented by the uniaxial stress-strain curve of 

concrete under monotonic compressive loading. Each point on the common point curve, (ccp,Gcp), 

represents the focal point of the reloading curve in compression whose previous maximum compres

sive strain at the beginning of the reloading curve was equal to cep. The common point curve is de

fmed in Eq. 3.4. 

where (ecp, ucp) are strain and stress on the common point curve 

(en, un) are parameters for the concrete model 
(eoc, uoc) are defined in Section 3.1.3. 

(3.4) 

The rules for loading and unloading in compression are shown in Fig. 3.14. The unloading 

curve consists of three major regions: the initial unloading (D-E), the softening unloading (E-F), 

and the zero-stress unloading (F-G). The initial unloading curve is a line with the slope Ee. The 

curve can start from any point on or below the envelope curve. It ends at the point where the com

pressive stress reaches 0.30 fcult • The softening unloading curve is a line connecting the end of the 

initial unloading curve and the point (cp,O) on the strain axis. Strain cp represents the pennanent 

compressive strain in the current load cycle. The value of cp is calculated by using Eq. 3.5 and 3.6, 

which were proposed by Yankelevsky and Reinhardt (156). 
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when 

Ep = 

Erne ax 
S = 

Eult 

E ult [1.0 - 0.425e(l-s)] (3.5) 
1 - (s e(l-s») 

ep = 0.70 . E~ax (3.6) 

E ult = the compressive strain at the compressive strength of concrete, fcult 

E~ax = the previous maximum compressive strain 

The zero-stress unloading curve starts from the point (cp,O) and then follows the strain axis. 

Once the curve reaches the origin, it follows the unloading curve of concrete in tension. 

The reloading curve in compression consists of three regions: the initial reloading (A-B, 

G-H), the softening reloading (B-C, H-I), and the envelope curve (C-D, I-J). The initial reloading 

curve is a line connecting the starting point of the reloading curve and the point on the common point 

curve with a strain equal to the previous maximum compressive strain, E ~ax. The curve ends when 

it intersects the corrunon point curve. The softening reloading curve is a line that starts at the end 

of the initial reloading curve and has the slope of 0.10 Ee. The softened reloading curve ends when 

it reaches the envelope curve. Then the reloading curve follows the envelope curve. The rules for 

these cyclic unloading and reloading curves are described in Appendix C. Comparisons between 

the proposed cyclic model and experimental results are shown in Fig. 3.15 through 3.17. 

All previous experimental work on the cyclic compressive behavior of concrete applies to 

unconfined concrete. Information on the cyclic compressive response of confined concrete was not 

available in the literature. Therefore, the approach used to define the monotonic stress-strain rela-

tionship for confined concrete (Section 3.1.4 and Fig. 3.12) and the loading and unloading curves 

used to define the cyclic stress-strain relationship of unconfined concrete are used to define the cy

clic stress-strain relationship for confined concrete. 

As shown in Fig. 3.18, the reloading curve in compression for confined concrete consists of 

three regions: the initial reloading (E-F), the softening reloading (F-G), and the crush plateau (A-B, 
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G-H-I). The initial reloading curve and the softening reloading curve are the same as those for un

confined concrete. The initial reloading curve (E-F) is a line connecting the starting point of the 

reloading curve and the point on the common point curve with a strain equal to the previous maxi

mum compressive strain, E~ax (point F). The curve ends when it intersects the common point curve 

(the common point curve is defined in Eq. 3.4). The softening reloading curve is a line that starts 

at the end of the initial reloading curve and has the slope of 0.10 Ee (point F). The softened reloading 

curve ends when it reaches the envelope curve (point G). Then, instead of following the enveloped 

curve as the stress-strain for unconfined concrete, the reloading curve remains horizontal until un

loading occurs (point B) or until the strain reaches E2 (point H). If the compressive strain exceeds 

E2, the curve descends linearly from (E2, aG) to (E8S, 0.85· oG) (oG is the compressive stress when 

the compressive strain is equal to E2) and remains on this line until the compressive stress reaches 

0.30·feul t • For larger compressive strains, the compressive stress remains constant at O.30·fcult• The 

reloading curve in this region is similar to the monotonic stress-strain relationship for confined con

crete after concrete has crushed (Fig. 3.12). 

The unloading curves for confined concrete are the same as those for unconfined concrete 

and consist of three regions: the initial unloading (B-C, I-J), the softening unloading (C-D, J-K), 

and the zero-stress unloading (D-E). The initial unloading curve starts with the tangent stiffness 

equal to the initial modulus of elasticity for concrete (Ee) (B-C,I-1) and continues until the compres-

. sive stress reaches 0.30-fcul t• Then, the curve is a line connecting the end of the initial unloading 

curve and the point (Ep, 0) (points D and K), where Ep is defined in Eq. 3.5. The zero-stress unloading 

curve starts from the point (Ep,O) and then follows the strain axis. Once the curve reaches the origin, 

it follows the unloading curve of concrete in tension. The cyclic stress-strain relationship of uncon

fined and confined concrete subjected to the same strain history is shown in Fig. 3.19. 

It can be seen that confined concrete is more ductile than unconfined concrete, and, hence, 

has better energy dissipation characteristics. 
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In the analysis of reinforced concrete walls in this investigation, strength degradation due 

to compressive cyclic loadings has an insignificant influence on the overall behavior of the structure 

because only a few concrete elements experience crushing during a typical analysis. However, in

corporation of the cyclic loading effect does facilitate identification of certain failure modes because 

progressive crUshing of the concrete in the boundary elements and adjacent web elements can be 

modelled. 

3.2 SHEAR STRESS FUNCTION 

The shear transfer mechanism in cracked concrete has been investigated by several research

ers during the last three decades. Most of the early experimental work related to shear transfer inves

tigated the behavior of both reinforced and unreinforced concrete specimens that had a single crack 

and were subjected to monotonic loadings. The results of this work were used to develop design 

equations for shear transfer in reinforced concrete structures. Therefore, the researchers concen

trated on investigating the strength rather than the stiffness of the shear transfer mechanism. F.ew 

researchers investigated the cyclic shear transfer behavior of reinforced concrete members because 

such experimental work requires a very complicated test set-up. Recent research on the cyclic shear 

transfer behavior of reinforced concrete panels was conducted by Stevens et al. at the University of 

Toronto (134). 

Most of the analytical models for shear transfer in reinforced concrete that were proposed 

during the 70s and the 80s were intended to simulate the shear transfer behavior of reinforced con

crete specimens with single cracks. These models commonly used three parameters: the crack 

width, the shear slip, and the area of the reinforcing steel. In the fInite element analysis of reinforced 

concrete, such an approach might be applicable for the discrete crack model because a crack in con

crete is treated as a separation between nodes. However, the method is not directly applicable for 

the smeared crack model because cracks are considered to be uniformly distributed in the smeared 

crack model and concrete is assumed to remain continuous after cracking. Therefore, the normal 
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crack strain, the shear strain, and the steel reinforcement ratio are reasonable parameters for deflning 

the shear stress function in a smeared cracking model. 

In the smeared crack model, two approaches have been used to represent the shear stiffness 

--.--1 

of cracked concrete: the reduced shear stiffness approach and the varied shear stiffness approach. " .. , / 

In the reduced shear stiffness approach, the value of the uncracked shear stiffness is reduced by a 

factor after concrete cracks to account for the remaining capacity of cracked concrete to carry shear 

stress by aggregate interlock. Most of the early investigators who used smeared crack models 

adopted this approach (3, 11, 15,26,38,42,44,65, 71, 72, 84, 97, 135, 153), and reduction factors 

ranging from 0.0 to 0.50 were used. In the varied shear stiffness approach, the shear stiffness of 

cracked concrete is assumed to be a function of the strain normal to the crack direction. This ap-

proach w~ first introduced by Cedolin and Dei Poli (15) in 1977. In their model, Cedolin and Dei 

Poli assume that the cracked shear stiffness is assumed to decrease linearly with an increase in the 

normal crack strain. Subsequently, several other researchers, such as Al-Mahaidi (7), Balakrishnan 

and Murray (9), Sotomura and Murazumi (131), Ueda and Kawai (139), and Cervenka (35), also 

adopted this approach and proposed several different functions to represent the shear stiffness of 

cracked concrete. Both the reduced shear stiffness approach and the varied shear stiffness approach 

yield satisfactory results for most analyses of reinforced concrete members subjected to monotonic 

loading. However, they are inadequate for problems where cyclic shear deformations govern the 

response. The shear transfer mechanisms for cracked concrete in these problems are much more 

complicated than assumed in either of these approaches. 

In order to model correctly the cyclic shear response of reinforced concrete walls, the shear 

stress function in the concrete model must include all the important characteristics of the cyclic shear 

behavior observed in the walls. The model must also be simple so that convergence of the solution 

can be obtained without requiring a large amount of computation time. This makes analysis of struc

turallevel problems both feasible and practical. In the proposed model, the shear stiffness of cracked 

concrete is divided into two components: 

40 



I ' 

i" ' 
I 
l L- __ 

1) Gist: Shear stiffness from the aggregate interlock or the interface shear transfer (IST) 

2) Gdow: Shear stiffness from the dowel action 

The total shear stiffness (G) can be written as follows: 

G - Gist + Gdow (3.7) 

These two components of shear stiffness and the effect of cyclic shear loading are described in the 

following sections. 

3.2.1 SHEAR STIFFNESS DUE TO INTERFACE SHEAR TRANSFER 

The surfaces of concrete cracks are rough and produce resistance when moved against each 

other (Fig. 3.20). Several researchers (68, 77, 82,94, 114, 137, 138, 145) have investigated interface 

shear transfer in concrete specimens with a single crack. Variables studied included initial crack 

width, concrete strength, aggregate size, nonnal restraining stiffness, shear stress intensity, and cy

clic shear stress. Of all these variables, the initial crack width was identified as having the most influ

ence on the interface shear transfer mechanism of cracked concrete. The shear stiffness from inter-

face shear transfer increases when the crack width decreases. Although several empirical fonnulas 

for calculating interface shear stiffness were proposed in these investigations, they all describe the 

relationship between the applied shear stress and the slip at the crack, and hence are not directly ap

plicable to the interface shear stiffness in the smeared crack model. 

In the proposed concrete model, Gist is defined as follows: 

where 

-1 

G;~ = 2.0. [_1_ + _1_] 
..,. G~ G~ 

z.st 1St 

Gist is the interface shear transfer stiffness in crack direction 1 

GTsr is the interface shear transfer stiffness in crack direction 2 
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The interface shear transfer stiffness is represented in the form that was first introduced by 

Buyukozturk et aL (28, 55) and is described in Eq. 3.9. (Fig. 3.21) 

Gi 
is! - PIGconc e~ < ea 

Gi PI [emin - e~] 
Gconc 

eO' < e~ < e . (3.9) - nun. is! [emin - ecr] 

G~ G· e . < e:m - nun 
lSt nun 

where #1 = Parameter used to relate interface shear transfer 
stiffness to shear stiffness of uncracked concrete 

·i The nonnal crack strain in i direction Enn, = 

Ea = The tensile strain when concrete cracks 

i 
E . mm = The nonnal crack strain where Gist = G min 

i 
G· mm = The minimum value of Gist 

Grone = The shear stiffness of uncracked concrete (2 [~~ v 1) 
Ec = The initial modulus of elasticity for concrete 

v = Poisson's ratio for uncracked concrete 

In this model, two parameters need to be defined: ~1 and Cmin. Gmin is used to set a limit 

for the minimum value of Gisr, because numerical problems can occur if Gist is set to O. The value 

of 0.0005 Grone is used for Gmin in the proposed model. 
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3.2.2 SHEAR STIFFNESS DUE TO DOWEL ACTION 

Reinforcing bars that pass through cracks in concrete provide stiffness through dowel action 

by the combination of three mechanisms: flexure, shear, and kinking (115) as shown in Fig. 3.22. 

The dowel action mechanisms have been investigated by Dulacska (52), Mattock (93), Paulay et ale 

(115), Jimenez et al. (77), and Laible et ale (82). Some important observations from these exper-

imental investigations are described as follows: 

• Dowel action exhibits a hardening type behavior; shear stiffness from dowel action in

creases with increasing shear deformation. At small shear deformations, dowel stiffness depends 

mostly on the shear and the flexural stiffness of the bar, because the part of the bar near the crack 

does not yet fully push against the surrounding concrete. When the shear deformation increases, 

the reinforcing bar starts to push against the surrounding concrete and the dowel action stiffness in

creases (Fig. 3.23). This behavior can be observed in several experimental results as shown in Fig. 

3.24. 

• Most researchers studied the shear strength rather than the shear stiffness of the dowel 

action. There are a few analytical models proposed for the dowel action stiffness, most of which 

use a beam on the elastic foundation approach to model the dowel action. A linear relationship is 

usually assumed between the dowel action stiffness and the diameter of the reinforcing bar. 

Based on these observations, the model for dowel action stiffness is proposed as follows: 

(3.10) 

where G 1w is the dowel action stiffness in crack direction 1 

G~w is the dowel action stiffness in crack direction 2 
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The model should include two important characteristics: an increase in dowel action stiffness 

as the shear strain increases and a linear relatioi1ship between the dowel action stiffness and the diam

eter of the reinforcing bar. The dowel action stiffness in crack direction i, G~w' is proposed in the 

following form (Fig. 3.25): 

G:u,w - G· I y I < I Yi I rrun 

G:Ww - I Y - Yi r f( ei,Q,rl,r21 Yn I Yi I < I Y I < I 'Yn + Yi I (3.11) 

G!ww - f( e i, Q, r l' r 2 ) I Yn + Yi I :5 I Y I 

where Y = 

'Yi = 

Yn , n = 

f( e i' Q, r l' r 2 ) = 

e· = l 

Q = 

rl = Qsl = 
if> s1 

r2 = Qs2 = 
1>s2 

steel mesh 

shear strain 

A parameter that includes influence of shear reversals 
and is defined in Section 3.2.3. 

the constants to be defined 

the function representing the effects of the bar 
diameter and the directions of reinforcing bars 

the crack angle in i direction 

the angle of steel reinforcement 

the steel reinforcement ratio in direction 1/ bar diameter (in.) 

the steel reinforcement ratio in direction 2/ bar diameter (in.) 

cracked concrete 
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f( e b Q, r l' r 2 ) is proposed in the following fonn: 

f(e i,Q,r1,r2) - (rl I sin(Q - eD I + r2 I cos(Q - 8J I ) fJ,2 G cone 

where #2 = Parameter used to relate dowel action stiffness 
to shear stiffness of uncracked concrete 

Gcone = The shear stiffness of uncracked concrete (2 [~~ v 1) 
Ec = The initial modulus of elasticity for concrete 

11 = Poisson's ratio for uncracked concrete 

substituting Eq. 3.12 into Eq. 3.11 and 3.10 (for both crack directions i = 1,2) yields: 

Gdow 

2. [[rr + r~] sc + r1r2] G I Y - Yi In 
. ( r 1 + r 2 ) ( s + C) #2 cone Y n 

2· 1/ G 
[

[rr + r~] sc + r1r2] 
( r 1 + r 2 ) ( S + C) r 2 ctJne 

where s = I sine Q - e 1 ) I 

C = I cos( Q - e 1 ) I 

I 1'1 < I I'i I 

I Yi I ~ I I' I < I I'll + I'i I 

I I'll + I'i I ~ I I' I 

(3.12) 

(3.13) 

The use Of: as a parameter in the dowel action stiffness is based on the analytical models 

proposed by Elliot (53) and Stanton (133), in which the dowel stiffness of a single bar varied linearly 

with its diameter. Therefore, the dowel action stiffness for a group of n bars should also vary linearly 

with nc:l> (el> = diameter of reinforcing bar). However, n<I> is not an appropriate parameter because 

n cannot be defined at each crack in the smeared crack model. Hence, the value of :' which is direct-

ed in «(2 - wup2 - Jt ",h)' ed . d ,ly relat to n'Z' <P - 4Ad> - 4Ac 1v.y ,IS us mstea. 
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In the dowel action stiffness model, three parameters must be defined: 1-"2' Y n, and n. The 

function of Gmin is the same as that of Gmin used for the interface shear transfer stiffness, and there

fore the value of 0.0005 Gconc is used again. 

3.2.3 EFFECT OF CYCLIC LOADING 

The shear transfer mechanisms for both reinforced and unreinforced concrete subjected to 

cyclic loadings have been investigated by several researchers: Paulay et ale (115), White and Holley 

(145), Laible et ale (82), Mattock (93), Paulay and Loeber (114), Jimenez et ale (76), and Stevens 

et ale (134). Most of these researchers investigated the cyclic shear transfer behavior of concrete 

specimens with a single crack. Only Stevens et ale (134) studied the behavior of reinforced concrete 

panels subjected to cyclic shear loadings. Although the detailed setup of each experimental test se

ries was different, all research identified similar aspects of behavior for cyclic shear transfer in 

cracked concrete (Fig. 3.26): 

• The load vs shear slip curves or shear stress vs shear strain curves consist of three parts: 

loading, unloading, and slip. (Fig. 3.26(a»). 

• The unloading stiffness is higher than the loading stiffness. The unloading stiffness seems 

to be independent of the loading history and remains constant throughout the duration of the test 

• Permanent shear displacement or permanent shear strain increases as the number of 

cycles increases. 

Although several researchers investigated the cyclic shear transfer behavior of reinforced 

concrete, few proposed analytical models for such behavior. In the model proposed by Stevens et 

ale (134), the cyclic shear transfer behavior is implicitly defined by the assumption that the direction 
I 

of principal stress coincides with the direction of the principal strain. Xu (151) proposed a model 

in which shear transfer behavior is defined in the crack coordinate as shown in Fig. 3.27 (a). Jimenez 

et ale (77) also proposed the hysteresis curve for the interface shear transfer mechanism that is shown 

in Fig. 3.27(b). The proposed model is qualitatively similar to Xu's model. 
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..... The proposed cyclic shear transfer model was based on observations from the experimental 

results and from the analytical models proposed by other researchers (Fig. 3.26 and 3.27). As shown 

in Fig. 3.28, the relationship between shear stress and shear strain consists of three regions: loading, 

unloading, and slip. In loading region (curves B-C and E-F), the relationship between shear stress 

and shear strain depends on the current total shear stiffness, G, which is based on the interface shear 

transfer stiffness and the dowel action stiffness as defined in Eq. 3.7. The unloading region (lines 

C-D and F-G) is defined by a line originating at the point where the incremental shear strain starts 

going in the opposite direction with a constant shear stiffness of Gunl- The unloading region ends 

when the unloading line intersects the strain axis (points A, D, and G). The slip region (lines D-E 

and A-B) connects the point where the unloading line intersects the strain axis and point 

(jJ . Y;:;ax' 7: slip) or point (j3 • r ;ax, - 'r slip) depending on the direction of loading. r;i;ax is the pre

vious maximum positive shear strain where the previous unloading curves intersect the strain axis 

(point D) while r ~a:x is a previous maximum negative shear strain where the previous unloading 

curves intersect the strain axis (point A). 

Two parameters for the cyclic shear behavior that need to be defined are 13 and 7: slip. ~ and 

7: slip are used to define points (j3 • r;i;a,x, 'r slip) and (j3 • r ;a:x, - "C slip) which govern the stiffness of the 

slip region (lines A-B and D-E). A large value of 7: slip results in a high shear stiffness in the slip region 

while a large value of ~ causes the slip region to be wide and the loading region (curves B-C and 

E-F) to start at larger shear strain. The parametric study used to define the appropriate values of 

these two parameters is described in Chapter 6. 

3.3 SUMMARY 

The material model for concrete consists of two functions: the normal stress function and 

the shear stress function. The nonna! stress function defines the stress-strain relationship of cracked 

concrete in the direction of the crack. The important aspects of the behavior of concrete that are 

"'-- included in the nonna! stress function are tension stiffening, crack closing and reopening, compres

sion softening, effects of transverse reinforcement, and the strength and stiffness degradation due 
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to cyclic compressive loadings. The shear stress function represents the relationship between shear 

stress and shear strain of cracked concrete. The important aspects of the shear transfer mechanisms 

that are included in the shear stress function are the interface shear stiffness, the dowel action stiff

ness, and the loading and unloading rules for cyclic shear loadings. 

Parameters for the normal stress function include eh Oh U, O"h 0"2, 0"3, 0"4, and, an while pa

rameters for the shear stress function include J.Ll, J.L2, cmin, Yn, n, 't'slip, Gun!' ~, and Gmin. The para

metric study used to define the appropriate values of these parameters is described in Chapter 6. 
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used other mathematical expressions to represent the cyclic response of reinforcing steel. Despite 

the differences in the formulations, all of these mathematical expressiolls have the two important 

characteristics of reinforcing steel in common: nonlinearity and history dependency. 

4.2 PROPOSED STEEL MODEL 

After trials with several different mathematical expressions, the Ramberg-Osgood equation 

was found to yield the most satisfactory results, based on both the accuracy of the model and the 

stability of the analysis. Therefore, the R-O equation was adopted to represent the cyclic stress

strain relationship of reinforcing steel in this research. The cyclic stress-strain relationship consists 

of three portions: the monotonic curve, the envelope curve, and the curve that controls load reversals 

from the yield plateau. 

4.2.1 MONOTONIC CURVE 

The monotonic curve consists of three regions as shown in Fig 4.2: the linear region (A-B), 

the yield plateau (B-C), and the strain-bardening region (C-D). The linear region and the yield pla-

teau region represent the elasto-plastic behavior of reinforcing steel. The initial stress-strain curve 

is linear elastic with the slope Es until it reaches the yield stress cry. Then, the curve becomes plastic 

until the strain reaches the strain-hardening region at Esh. However, the zero stiffness of the yield 

plateau regi~n usually causes numerical difficulties during the analysis; hence, a small value of the 

tangent stiffness (0.0001- Es) is used instead. The strain-hardening region starts at (Esh' cry). The 

R-O equation for the strain-hardening proposed by Aktan et ale (5) is adopted to represent the strain

hardening region of the proposed steel model (Eq. 4.2). 

_ Gom 
Eom -

Es 
G om, m = two parameters to be defined 

(4.2) 

The values of Oom and m can be taken from the values recommended in the report by Ak:tan 

et ale (5) or can be calculated such that the strain-hardening curve matches the available monotonic 
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The cyclic behavior of the reinforcing steel in the subsequent load cycles is greatly in

fluenced by the previous strain history. As a result, an analytical model for the cyclic behavior of 

reinforcing steel must be able to represent the initial monotonic loading behavior, the nonlinear 

stress-strain relationship due to the Bauschinger effects, and the history dependent characteristics 

of the reinforcing steel. 

The cyclic behavior of reinforcing steel was first studied experimentally by Singh et ala (127) 

in 1965, and several subsequent studies were conducted by Ak:tan et aL (5), Kent and Park (80), 

Seekin (124), and Ma et ala (89). The experimental results from these studies were later used by 

many researchers as the basis for the development of their reinforcing steel models. The approach 

that has been most widely used to represent the cyclic stress-strain relationship of reinforcing steel 

is based on the Ramberg-Osgood (R-O) equation. Although the equation was not originally in- . 

tended to be applied for the cyclic behavior of reinforcing steel, it possesses the two important char

acteristics of the cyclic loading curve: the initially linear behavior with the slope Es and the subse

quently softening behavior with increasing strain. The R-O equation can be "Written in the following 

fonn (5): 

where 

a-a. [ ~Ia-l] 
E - Ei = Es I 1 + ~ 

the strain and stress at the beginning of the curve 

the initial modulus of elasticity of reinforcing steel 

the parameters to be defined 

(4.1) 

Because the cyclic stress--strain relationship of reinforcing steel is strongly influenced by the 

. strain history, the values of the parameters 0"0 and a depend not only on the initial properties of the 

reinforcing steel but also on the previous stress-strain history of the steel (80). With the proper val

ues of these two parameters, the response of reinforcing steel calculated using the R-O equation is 

in good agreement with the experimental results (5, 80, 89, 109, 118). Besides the R-O equation, 

some researchers, such as Singh et al. (127), Xu (151), and Stevens et al. (134), have successfully 
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where 

E - Ei a - ai 
+ la~oar when (a - ai) ~ 0 (4.5) -Eo ao 

E - Ei a - ai -Ia~oar when (a - ai) < 0 (4.6) 
Eo 

- ao 

_ ao 
Eo - Es 

(E b a iJ = strain and stress at the beginning of the current 1/2 cycle 

a 0, a - parameters to be defined 

Es the initial modulus of elasticity for the reinforcing bar 

The parameters 0 0 and a reflect the history dependency of the cyclic behavior of reinforcing 

steel. The values of these two parameters depend on both the initial point of the current half cycle 

and the stress-strain history of the previous half cycles. Two different methods are used to calculate 

the parameters 0 0 and a of each half cycle depending on the location where the load reversal occurs 

on the current half cycle. The first method, which explicitly defines 0'0 and a, is used when the mag

nitude of the initial stress, ah is greater than the magnitude of the previous maximum stress (amax) 1. 

The second method, which uses the concept of "a common point" and "an ultimate point," is used 

when the magnitude of the initial stress, Oh is less than the magnitude of the previous maximum 

stress. The details of each method are described as follows: 

Method 1: When I aj I > I amax I 

When the unloading curve occurs at an initial stress that is greater than the previous 

maximum tensile stress or is less than the previous maximum compressive stress, 0 0 and a 

for Grade 60 reinforcing bar maybe calculated explicitly using the following equation: 

1 The previous maximum stress (omaJ is the previous maximum compressive stress when 0i is in com
pression and is the previous maximum tensile stress when (Ji is in tension 
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test results for the particular reinforcing steel. For the latter approach, two points on the strain-hard

ening curve, (Esb., Oy) and (E2, 02), are used to calculate 0am and m as follows: 

where 

m = In[ Esh El - (iy] _1_ 
E2E2 - a2 In a, 

a2 

aom -
ay 

~:~-1 ) 
e m-l 

(Esh, Oy) is the starting point of the strain-hardening curve 
(E2, 02) is an arbitrary point on the strain-hardening curve 
Eland E2 are the tangent stiffnesses at (Esh, Oy) and (£2, 02) respectively. 

(4.3) 

(4.4) 

Aktan et ale (5) reconunended values of m = 4.30 and crom = 0.70.oy based on the observed 

properties of reinforcing steel with a modulus of elasticity of 29,000 ksi and the yield strength of 

60ksi In the analysis of reinforced concrete shear walls in this research, the values of 0am and m 

were calculated according to the available experimental data for each type of reinforcing bar. 

4.2.2 ENVELOPE CURVES 

Typical envelope curves for the cyclic stress-strain relationship of steel using the proposed 

model are shown in Fig. 4.3. A complete stress-strain cycle (A-B-C) consists of two half cycles: 

a half cycle from tension (A-B) and a half cycle from compression (B-C). Each half cycle starts 

with an initial point (Eh 00 and with a stiffness equal. to the initial modulus of elasticity for reinforc

ing steel (Bs). The R-O equation is used to represent the stress-strain relationship of each half cycle 

(Eq. 4.5 and Eq. 4.6). 
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ments experience symmetrical load reversals. Therefore, their behavior is governed by en

velope curves defined using this method (Fig. 4.5). 

Method 2: When I ail < I amax I 

The values of 0 0 and a from Eq. 4.8 yield satisfactory cyclic response for reinforcing 

steel when the load cycles are symmetrical, and the strain gradually increases between subse

quent cycles. However, when the load cycles are highly unsymmetrical, or when unloading 

occurs at a low initial stress, the use of 0 0 and a from Eq. 4.8 usually results in an incorrect 

representation of the cyclic response of a reinforcing bar. As a result, another algorithm for 

calculating 0 0 and a in those unsymmetrical unloading cases is required. Such an algorithm 

is based on the following observations from the cyclic response of the reinforcing bars tested 

by Ak:tan et ale (5). 

• In a half cycle with an initial stress (oJ that is less than the previous maximum 

stress (O'maJ, a stress-strain curve will merge with and follow the previous half cycle of load -

ing in the same direction. 

• A cyclic stress-strain curve is bounded by the tensile and the compressive strength 

of the bar. When the stress in the half cycle approaches the strength of the steel, the stress

strain curve tends to flatten so that the stress does not exceed either of these two limits. 

These two observations led to the concepts of "common points" and "ultimate 

points." The definitions of common and ultimate points for a half cycle from tension are 

shown in Fig 4.6(a) while those for a half cycle from compression are shown in Fig. 4.6(b). 

In Fig. 4.6(a), a conunon point for a half c~cle from tension (curve C-E) is defined by point 

D. D is the point on the curve defined during the previous half cycle from tension (curve 

A-B) at strain equal to EB-O.Ol (EB is the strain at the end of half cycle A-B). In Fig. 4.6(b), 

a common point for a half cycle from compression (curve H-J) is defined by point I. I is 

the point on the curve defined during the previous half cycle from compression (curve F-G) 

at strain equal to EG+O.Ol (EG is the strain at the end of half cycle P-G). 
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where a = 6 A - 0.7938 B - 0.55723 

a = 7 A - 0.7735 B - 0.47989 

for 1/2 cycle from compression 

for 1/2 cycle from tension 

a max - the maximum tensile stress prior to the current 1/2 cycle 

the maximum compressive stress prior to the current 1/2 cycle 

(4.7) 

Equation 4.7 was first proposed by Ak:tan et ale (5). The values of A and B were ob

tained from a least squares analysis (Fig. 4.4) of the cyclic response of Grade 60 reinforcing 

bars. In this research, Eq. 4.6 was modified slightly so that the value of 0'0 was also appropri

ate to be used for modelling the cyclic responSe of reinforcing steel with yield stress other 

than 60 ksi. Such modification, which was based primarily on the observations of the cyclic 

response of reinforcing bars with different yield stresses (5, 124), is given in Eq. 4.8. The 

values of ao for Grade 75 steel calculated from this equation are shown in Fig. 4.4. 

where A, B, amax, and amin are the parameters defined in Eq. 4.7. 

!y is the yield stress of a reinforcing bar. 

(4.8) 

This method is used to define the cyclic behavior of the reinforcing steel that is sub

jected to syrrunetricalload cycles2 where the maximum compressive stress and the maxi

mum tensile stress gradually increase in subsequent cycles. In the analysis of shear walls 

with rectangular and barbell cross section, the main reinforcing bars in the boundary ele-

2 A symmetrical load cycle is defined as a load cycle where both a half cycle from tension and a half cycle 
from compression experience the same magnimde of strain. 
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at the ultimate point is set equal to 0.00 1· Es (Bs is the initial modulus of elasticity for the 

reinforcing bar). For example, after the stress-strain relationship for the current half cycle 

from compression in Fig. 4.6(b) (curve H-J) has been defined, the stress at the ultimate point 

(point J) is evaluated. If the magnitude of aJ is less than the magnitude of the tensile strength, 

curve H-J needs no adjustment. On the other hand, if the magnitude of aJ is greater than 

the magnitude of the tensile strength, curve H-J is adjusted so that stress at point J is equal 

to the tensile strength and the tangent stiffness at point J is equal to O.OOl·Es• 

It can be seen that a stress-strain curve of a half cycle defmed either by a common 

point or an ultimate point is limited by four constraints: 1) stress and strain at the initial point 

(ch aU, 2) stress and strain at the common point or at the ultimate point (C2, 02),3) the tangent 

stiffness at point (Eh aJ; Es, and 4) the tangent stiffness at point (c2, a2); Et. The values of 

aD and a that make the curve of a half cycle satisfy all these constraints can be calculated 

by using Eq. 4.9 and Eq. 4.10: 

a = (4.9) 

(4.10) 

where (ci' Gi) = strain and stress at the beginning of the current 1/2 cycle 

(c2' G2) = strain and stress at the common or ultimate point 

Es = the initial modulus of elasticity for the reinforcing bar 

Et = tangent stiffness of a curve at point (c2' G2) 

kl - c2 - ci k2 - G2 - Gi 

The reinforcing steel in the web of a wall typically experiences highly unsymmetrical 

load reversals due to shifting of the neutral axis of the walls during the cyclic loadings. here-
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An ultimate point for a half cycle from tension (curve C-E) is defined by point E in 

Fig.4.6(a). E is the point on the curve defined during the current half cycle from tension 

(curve C-E) at strain equal to Ec-O.09 (Ee is the strain at the beginning of half cycle C-E). 

An ultimate point for a half cycle from compression (curve I-J) is defined by point J in Fig. 

4.6(b). J is the point on the curve defmed during the current half cycle from compression 

(curve H-J) at strain equal to EH+O.09 (EH is the strain at the beginning of half cycle H-J). 

It should be noted that the strain increments of ± 0.01 and ± 0.09 used to define the conunon 

point and the ultimate point are obtained from the observation of the experimental data and 

from trials of different values of strain increments. 

By using common and ultimate points, the rules for defining the stress-strain rela

tionship of each half cycle can be described as follows: 

• In a half cycle with an initial stress that is less than the magnitude of the previous 

maximum stress in that direction, the values of 00 and U, which define the stress-strain rela

tionship of the current half cycle (Eq. 4.5 and Eq. 4.6), are calculated so that the current half 

cycle will merge with the previous half cycle from the same direction at a common point. 

At a common point, the stress-strain curves of both cycles have the same stress, strain, and 

tangent stiffness. For example, the current half cycle in tension in Fig. 4.6(a) (curve C-E) 

merges with the previous half cycle in tension (curve A-B) at the common point (point D) 

because the magnitude of the initial stress (oc) is less than the magnitude of the previous 

maximum tensile stress (0 A). At the cornman point, curves C-E and A-B have the same 

stress, strain, and tangent stiffness (EV. The tangent stiffness is defmed by the stress-strain 

relationship of curve A-B, which is already known. 

• After the stress-strain relationship of the current half cycle is defined, the stress 

at the ultimate point for the current half cycle is calculated. If the magnitude of the stress 

at the ultimate point exceeds the steel strength in that direction, the stress-strain relationship 

is adjusted so that stress at the ultimate point is equal to the strength. The tangent stiffness 
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fore, the calculated response of the reinforcing bars in the web are typically governed by the 

concept of a common point as shown in Fig. 4.5. 

4.2.3 LOAD REVERSALS FROM YIELD PLATEAU 

Another curve is required to define the cyclic response of the reinforcing steel in the pro

posed model, a curve to define the stress-strain relationship of the current half cycle when the pre

vious half cycle starts from a yield plateau. This curve, which is based on the analytical model pro

posed by Ma et ale (89) and Popov (118), represents the typical behavior of a reinforcing bar 

observed in the experimental data (5, 89, 118, 124). As shown in Fig. 4.7, a typical load cycle for 

a reinforcing bar that is unloaded from the yield plateau can be divided into two types: a cycle with 

a small loop width (cycle A-B-C) and a cycle with a large loop width (cycle D-E-F). A reloading 

curve (curve B-C) of a load cycle with a small loop width is nearly straight with a tangent stiffness 

equal to Es at the beginning and then experiences a well-defined yield plateau. A reloading curve 

(curve E-F) of a load cycle with a large loop width experiences a significantB auschinger effect from 

the beginning. Then, it merges with a monotonic strain-hardening curve that is shifted to the point 

where a load reversal occurs on a yield plateau (point D). 

Based on these 0 bservations, the steel model divides the load cycles that start unloading fr~m 

the yield plateau into two cases based on the loop width (~es ') of the load cycle (Fig. 4.8). These 

two cases are discussed as follows. 

Case 1: ~£s' < 0.50 -I£sh--eyl (Fig. 4.8 (a)) 

In a load cycle with a loop width (8.£s') smaller than 0.50 - lesh-€yl(A-B-C-D in Fig. 

4.8(a))3, the reloading half~ycle (B-C-D) will be an elasto-plastic curve similar to the ini-

tial stress-strain curve under monotonic loading. If the loading continues in the same direc

tion, the bar will experience strain-hardening at the same strain as defined for the monotonic 

case. 

3 esh is the strain at the beginning of the strain-hardening curve and ey is the yield strain. 

58 



Case 2: l1zs' > 0.50 ·Icsh-Ey' (Fig. 4.8 (b)) 

In a load cycle with aloop width (l1zs') equal to or greater than 0.50· IZsh-Eyl (E-F-G 

inFig. 4.8(b)), the reloading half-cycle (F-G) will not exhibit elasto-plastic behavior. The 

stiffness of the bar will decrease before the yield level is reached. A revised monotonic 

strain-hardening curve is defined beginning at point E, the point on the yield plateau at which 

unloading began. The reloading half -cycle will merge with this shifted strain-hardening 

curve at the common point of load cycle E-F-G (point G), where the strain at point G is 0.01 

larger than the strain at point E. 

4.3 EVALUATION OF THE STEEL MODEL 

The proposed material model for reinforcing steel has been evaluated using two sets of cyclic 

data for reinforcing bars (Aktan et ale (5) and Seekin (124)). Data are available from tests of reinforc

ing bars with three different yield stresses: 50 ksi, 60 ksi, and 75 ksi. A reinforcing bar is modelled 

by ~ single 2-node bar element. The bar element is SUbjected to prescribed displacement at one end 

which simulates the strain history used in the experiments. The values of all the parameters used 

in the stress-strain model (except the yield stress and the strain-hardening parameters) are the same 

for all the reinforcing steels being studied. The values of the yield stress and the strain-hardening 

parameters are adjusted according to the monotonic test results of each reinforcing bar. The compar

isons between the analytical results and the experimental results are shown in Fig. 4.9 (a)-(h). 

The calculated behavior of the reinforcing bars agree with the experimental result (Fig. 4.9). 

One advantage of the proposed steel model is that a single set of parameters can be used to predict 

the cyclic responses of reinforcing steel with different yield stresses. TIris makes the proposed. steel 

model practical because the cyclic test data of reinforcing bars are not available in most situations. 

The only parameters required for the steel model are the yield stress, fY' and the strain-hardening 

parameters, Csh, aOm, and m, all of which can be obtained from the monotonic test of a reinforcing 

bar. 
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4.4 SUMMARY 

The material model for reinforcing steel defines the stress-strain relationship in the axial 

direction for a reinforcing bar. This stress-strain relationship consists of three portions: 1) an elasto

plastic curve, 2) a strain-hardening curve, and 3) a load reversal curve. The elasto-plastic curve 

represents the initial elastic range and the yield plateau of a reinforcing bar and is governed by the 

initial modulus of elasticity (Es) and the yield stress (fy) of the reinforcing bar. The strain-hardening 

curve represents the hardening behavior of reinforcing steel in the post-yielding region and is de

scribed by the Ramberg-Osgood equation. Parameters for the strain-hardening curve are Esh, OOm, 

and m. The values of these parameters can· be calculated according to the available experimental 

data for a particular reinforcing steel or the values recommended by Aktan et ale (5) can be adopted. 

The load reversal curve represents the loading and unloading regions for reinforcing steel and is also 

described by the Ramberg-Osgood equation. The parameters for a load reversal curve are a, A, and 

B. The values of these parameters recommended by Aktan et al. (5) lead to calculated response that 

agreed well with the experimental data. The values of these parameters are summarized in Table 

4.1. 
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5. FINITE ELEMENT PROCEDURES 

Besides the development and verification of the material models, several other aspects of the 

analytical procedures influence the results obtained from the finite element analyses of reinforced 

concrete walls. These aspects, which include the finite element fonnulation, the algorithms used 

in the material models, the fmite element model, and the incremental-iterative algorithms, have sig

nificant effects on the accuracy, stability and convergence of the finite element solution. The proper 

selection of these prclcedures depends greatly on the nature of the problems being studied. There

fore, in order to obu in accurate and stable solutions with a good convergence rate, users have to 

select the fInite elemt ;nt procedures that are suitable for their problems. This requires an understand

ing of the character.h;tics of the finite element procedures, as well as the nature of the problems to 

be analyzed. 

The major objective of this chapter is to discuss some important characteristics of the fmite 

element procedures used in the analyses of reinforced concrete shear walls in this investigation. The 

finite element fonnulation and the finite element program FINITE are first discussed. Then some 

important algorithms used in the material models are described. The procedures for modelling rein

forced concrete shear walls and the incremental-iterative algorithms used to solve nonlinear equilib

rium equations are given at the end of this chapter. 

5.1 FINITE ELEMENT FORMULATION 

The most widely used finite element formulation for engineering applications is the dis

placement-based finite element method (13). This formulation is based primarily on the use of the 

principle of virtual work (displacement) and uses a displacement interpolation function together 

with nodal displacements to estimate the displacement field within each finite element The princi

ple of virtual displacement states that "the equilibrium of the body requires that for any compatible, 

small virtual displacements (which satisfy the essential boundary conditions) imposed on the body, 

the total internal virtual work is equal to the total external virtual work" and can be written as shown 

in Eq. 5.1 (13): 
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J-T J-T ~-T - Ubfb dV + usfs dS + LUi Pi (5.1) 

V s 

where U - virtual displacements 

e - virtual strains 

fb ' Is , Pi - body forces, surface tractions, and concentrated forces 

Ub' Us , U· - virtual displacements corresponding to ib ' is , Pi I 

a - actual stresses corresponding to actual strains E 

A continuous displacement field, u(m), for element m is interpolated from the nodal displace

ments, U, by using a displacement interpolation matrix, H(m>, as follows (13): 

(5.2) 

where u(m) - a continuous displacement field for element m 
H(m) - a displacement interpolation matrix for element m 

U - a vector of global displacement components at all nodes 

In linear system, strains in an element In, E (m), can be evaluated from the nodal displacements 

by using the strain-<lisplacement matrix, B(m) (13): 

(5.3) 

The strains in element m, E(m), can be related to the element stresses, d m), by using the constitutive 

matrix C: 

ff.m) = c(m) sCm) (5.4) 

By substituting Eq. 5.2 through 5.4 for both real and virtual displacements and strains into 

Eq.5.1 and rearranging the tenns, the principle of virtual displacement (Eq. 5.1) can be rewritten 

as follows (13): 
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KU - R (5.5) 

where (5.6) 

The matrix K is the stiffness of the element assemblage, 

K = ~ f B(ml c(m) B(m) d0m) (5.7) 

V(m) 

The load vector RB is the equivalent nodal load due to the element body forces, 

RB = I f H(ml f;) d0"') (5.8) 

m VCm) 

The load vector Rs is the equivalent nodal load due to the element surface forces, 

Rs = ~ f HS(ml fs(m) dS(m) (5.9) 

SCm) 

The load vector Rl is the equivalent nodal load due to the element initial stress 0 1, 

R[ = ~ f B(ml c!(m) £10m) (5.10) 

V(m) 

The load vector Rc is the vector of concentrated loads F , 

Rc = F (5.11) 

Although Eq. 5.1 is true for both linear and nonlinear materials, Eq. 5.5 is applicable only 

to problems with linear materials because it has been assumed that the stiffness matrix K is indepen

dent of the nodal displacements. This constant stiffness matrix, K, is in fact a result of the use of 

a constant constitutive matrix, C, and a constant strain-displacement matrix, B, both of which are 

used in the derivation of the stiffness matrix as shown in Eq. 5.7. As a result, the nodal displace

ments, U, corresponding to the load vector, R, can be calculated directly from Eq. 5.5. However, 

if the stress-strain relationship is nonlinear, or if the body experiences large displacements or strains, 

the constitutive matrix, C, or the strain-displacement matrix, B, will no longer be constant and will 
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depend on the current deformed configuration of the body. This will cause the stiffness matrix and 

the governing equilibrium equations to be nonlinear, therefore, incremental-iterative algorithms are 

required to solve the governing ,equilibrium equations. 

The fundam~ntal objective of the nonlinear finite element formulation is to search for the 

state of equilibrium of the body at time step (or load step) t + Llt corresponding to the applied load 

vector t+6.t R (assuming that the state of equilibrium at time step t is already known) (13). The state 

of equilibrium at time step t + ~tis obtained when the applied nodal load, t+~t R, is equal to the equiv

alent nodal load corresponding to the element stress, as follows, t+.6.tF (13): 

t+..dtR - t+..dt F = 0 (S.12) 

where t+..dtp = t F + LJF (S.13) 

IF = I jrB<mlT tcfml td0mJ 

m V{m} 

(S.14) 

LJP - Vector of the incremental. nodal forces corresponding to the changes 
in element stresses from time step t to t+~t 

However, because the incremental nodal load corresponding to the element stress, M, also depends 

on the incremental displacements, ~U, the value of Mis not known until the equilibrium state at 

time step t + ~t has been reached. As a result, the incremental nodal load corresponding to the incre

mental element stresses at time step t + ~t, M, has to be approximated by using the stiffness matrix 

at time step t, t K, which is already known (13). 

LlP = tK LlU (S.lS) 

The total nodal load corresponding to the element stress at time t+~t, t~t F, can be approxi

mated as follows: 

t+.t1tp = tF + tK LJU (S.16) 
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-- Substituting Eq. 5.16 into Eq. 5.12 leads to: 

tK LlU _ t+..dtR - tF (5.17) 

The resulting nodal displacements at time step t + .6.t can be approximated as follows: 

t+..dtu = tu + L1U (5.18) 

Equation 5.17 is the fundamental equation of equilibrium in the nonlinear fmite element for

mulation. However, because of the assumption used in Eq. 5.15, the approximation of the nodal 

displacements in Eq. 5.18 may contain significant errors depending on the size of the time step used. 

Therefore, Eq. 5.17 needs to be solved iteratively so that the state of equilibrium in Eq. 5.12 is ob

tained with sufficient accuracy (13). TIlls iterative process is discussed in Section 5.5. 

In general, nonlinear analyses can be classified into three different types as shown in Table 

5.1 (13). Because concrete cannot sustain large relative defonnation, most analyses of reinforced 

concrete members can be considered as having only material nonlinearities (15). However, geomet

ric nonlinearities can also have significant effects on the behavior of some types of reinforced con

crete members, such as reinforced concrete plates and shells, which undergo large rigid body dis

placements and rotations (23). Only the material nonlinearity is included in the finite element 

formulation in this investigation because displacements and strains in most concrete and steel ele

ments of the wall models remain small throughout the loading history and the major sources of non

linearities in the analysis are the stress-strain relationships for steel and concrete. 

5.2 FINITE 

The finite element analysis program, FINITE, was used in the analysis of reinforced concrete 

walls in this investigation. FINITE, which was jointly developed by the Civil Engineering depart

ments at the University of illinois at Urbana-Champaign, the University of Kansas, the University 
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ofWyommg, and Carnegie-Mellon University, is "a general purpose computer system for the analy

sis of linear and nonlinear structUres" (88). Nonlinear effects from strain-displacement relation

ships (geometric nonlinearities) and from material constitutive relationships (material nonlineari

ties) are both included in the finite element fonnulation. The total Lagrangian approach, which 

utilizes the second Piola-Kirchhoff stress and the Green engineering strain, is used in the fonnula

tion of the problems with geometric nonlinearity. The incremental-iterative Newton-Raphson al

gorithm is used for solving the nonlinear equilibrium equations (88). 

One feature which makes FINITE suitable for this study is the ability to allow installation 

of new element models and new material models with minimal effort. The ease with which these 

models can be installed is due primarily to FINITE's separation of the element and the material rou

tines from the main system. The main system is responsible for most of the major tasks in the analy

sis such as solving the equilibrium equations, managing all memory and databases, computing the 

stiffness matrix, and printing the results. It provides the necessary data for and receives the com

puted results from the element and the material routines through the use of subroutine arguments. 

A typical computational procedure for each load step is illustrated in Fig. 5.1, where the blocks with 

a solid boundary represent the tasks performed by the main system and the blocks with a broken 

boundary represent the tasks perfonned by the material and element routines. Because all the ele

ment model routines, regardless of their type or complexity, have similar arguments (which is also 

true for material model routines), model developers can add a new element model or a new material 

model without having to modify the main system. As a result, model developers can focus their 

attention on the performance of the new models rather than on the fonnulation of the finite element 

procedures (51). 

5.3 ALGORITHMS USED IN THE MATERIAL MODELS 

Besides the proper stress-strain relationships, another important aspect of the material mod

el that greatly influences the accuracy and the stability of the finite element,analysis is the algorithms 

used to update stresses and stiffnesses during the iterative procedures. Such algorithms detennine 
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the stress path at each integration point with respect to the computed strain increments. Despite the 

correct constitutive stress-strain relationship, improper algorithms can cause stresses to follow an 

incorrect path which will result in the incorrect response or an unstable solution. In the analysis of 

reinforced concrete walls subjected to cyclic loading, inappropriate algorithms can lead to anyone 

of these three problems: an inc,orrect stress path, false load reversals, or nonconvergence in the itera

tive procedures. Each of these problems is discussed below: 

5.3.1 INCORRECT STRESS PATH 

A typical iterative procedure to find equilibrium solutions for load steps A-B is shown in 

Fig. 5.2. In this figure, the iterative solutions follow path A-l-... -5-B while the true solutions fol

low a path which is a solid curve connecting points A and B. The intermediate solutions at point 

1,2, .. ,5 are incorrect because they do not satisfy the goverrring equilibrium equations; therefore, they 

should not cause any artificial damage to the finite element model (23). This is very important to 

both concrete and reinforcing steel because the behavior of these two materials depend on the load-

ing history(23). 

In the nonlinear finite element analysis, there are two different methods for calculating incre-

mental strains and updating stresses at each iteration: the path dependent method and the path inde

pendent method. As the solution is advancing from step n to step n+ 1, strain increments for updating 

stresses in these two methods can be written as follows (88): 

Path dependent method 

Path independent method LlE~I = E~+l - En 

where En 

i 
En+l 

i 

-

-

-

converged strains from the last load step n 

total strains at iteration i of load step n+ 1 

iteration number 
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In the path dependent method, the stress at iteration i is calculated from the iterative strain 

increment at iteration i and uses the non-<onverged stress and strain at iteration i-I as the initial 

condition. This method assumes that the iterative solution path (A-l-... -:-5-B in Fig. 5.2) is correct; 

therefore, any nonlinear behavior or damage that occurs along this path ,will affect the converged 

solution of this load step. ,In the path independent method, the stress at iteration i is calculated from 

the total strain increment and uses the converged stress and strain from the last load step as the initial 

condition. Since the stresses are always calculated from the converged stresses and strains of the 

last load step, the converged solution of the current load step will not be affected by the incorrect 

path of the iterative solution. Theoretically, the path independent method should be used in the nu

merical algorithms of the proposed material models because it does not introduce any errors caused 

by the incorrect path of the iterative solution (14, 23, 88, 95). However, in some situations such as 

the cracking of concrete, using the path independent method usually leads to a much slower conver

gence rate than using 'the path dependent method (88). 

The path independent method is used in most of the solution algorithms for the proposed con

crete and reinforcing steel models. The converged stresses and strains from the last load step are 

used as the initial condition for updating stresses at every iteration of the current load step. In the 

analysis of reinforced concrete walls, this method yields both a satisfactory convergence rate and 

a stable solution in most situations. However, in load steps where concrete cracking occurs at several 

integration points, the path independent method usually yields very a slow convergence rate or, 

sometimes, even leads to a divergent solution. This is due to the fact that when concrete at one in

tegration point cracks, it releases a large amount of strain energy. This usually causes concrete at 

the adjacent integration points, which has been cracked during the previous iteration to become un

cracked. Because the tensile stress of concrete changes abruptly as concrete's status changes, the 

r.epeated changing of concrete's status from cracked to uncracked and vice versa, which occurs when 

the path independent method is used, usually leads to a very slow convergence rate or even a diver

gent solution. To avoid such problem, the path dependent method is used for concrete cracking; the 

stresses and strains of concrete at the iteration where cracking occurs are used as the initial condition 
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for updating stresses in the following iteration. In order to prevent incorrect cracking introduced 

by an incorrect path of the iterative solutions, the load step size in the analysis should be small so 

that the iterative solution path remains close to the true solution path. This method, which was also 

recommended in the analysis of reinforced concrete members by other researchers (88), was found 

to yield satisfactory results for the analysis of reinforced concrete walls in this investigation. 

5.3.2 FALSE LOAD REVERSALS 

In the analysis of reinforced concrete members subjected to cyclic loading, load reversals 

in concrete and reinforcing steel are caused by the changes in the direction of applied load or by the 

-load redistribution due to material nonlinearity. As a result, these load reversals can occur through

out the loading history and have significant effects on the cyclic response of the members. For the 

purpose of this investigation, load reversals were div.ided into two categories: true load reversals and 

false load reversals. A true load reversal is defined as a load reversal that occurs with a large strain 

increment (compared with the strain increments of previous load steps), continues for several load 

steps, and has a significant effect on the response of the wall. A false load reversal is defined as a 

load reversal that occurs with a small strain increment and continues for only one or two steps before 

the load is again reversed to the original direction. The false load reversal does not have any signifi

cant effect on the response of the wall except that numerical problems such as a slow convergence 

rate or the non-convergence of the solutions may result Therefore, the solution algorithm must 

have the ability to prevent the occurrence of these false load reversals. Criteria for avoiding false 

load reversals are crucial to the success of the cyclic analysis. If the criteria are too relaxed and allow 

false load reversals to occur r~peatedly, the finite element solution will converge very slowly or, 

sometimes, diverge. On the other hand, if the criteria for identifying false load reversals are too 

strict, they may prevent the actual load reversals from occurring and cause the solution to follow an 

incorrect path. 
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In the proposed concrete and steel models, several criteria are used to prevent false load re

versals and to improve the convergence rate of the solutions with load reversals. These criteria are 

described as follows: 

• The total strain increments: The total, rather than iterative, strain increments are 

used to evaluate the load reversals for each component of strain. This is :in fact the path :inde

pendent method, which is described in Section 5.3.1. A reverse in the direction of the total 

strain increment correctly indicates that a load reversal has occurred because the total strain 

increments are calculated from the converged strains of the last load step. On the other hand, 

a reverse in a direction of the iterative strain increment is not a correct indication of a load 

reversal because the iterative strain increments are calculated from the strains of the last it

eration which are intennediate solutions that do not satisfy the equilibrium conditions. In 

each load step, the iterative strain increments might change directions several times depend

ing on the corrective strain increments at each iteration, even when the solutions continue 

on the loading path of the stress-strain curve and the total strain increments do not change 

directions at any iteration. 

• Maximum iteration number: In both the concrete and the steel models, load rever

sals are allowed to occur only when they start in the first five iterations of the current load 

step. Load reversals that start after the fifth iteration are not allowed and are treated asif they 

were on the current loading path. This criterion is based on the analytical results which show 

that most of the maj or load reversals and changes in stiffness occur in the first few iterations. 

Such behavior was also observed in the analysis of reinforced concrete shear walls by Oka

mura et aL (107). Load reversals that take place in later iterations are likely to be false load 

reversals and, therefore, should be prevented. If true load reversals do occur after the fifth 

iteration, this criterion will simply postpone the occurrences of these load reversals until the 

next load step. 
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- .. Magnitude of reversing strain: In the steel model, load reversals are allowed to 

occur only when the magnitude of the current reversing strain increment is greater than 25% 

of the magnitude of the total strain increment from the previous load step. The purpose of 

this criterion is to delay until the next load step the occurrence of load reversals that are small 

and likely to be false load reversals. If these load reversals are true, their magnitudes in the 

next load step will be large enough for load reversals to occur. If these load reversals are 

false, the directions of the strain increments in the next load step will reverse back to the orig

inal clirectionsand the solution will continue on the loading path. TIris algorithm is imple

mented only in the reinforcing steel model because the small loops of false load reversals 

usually cause numerical problems in evaluating parameters for the Ramberg-Osgood func

tions. 

It should be noted that these criteria are based primarily on trials of different ways to improve 

the convergence and the stability of the solutions. Such criteria depend greatly on the nature of the 

problems being studied; therefore, they might need some adjustments if applied to other types of 

reinforced concrete members or loading conditions. 

5.3.3 PROBLEMS WITH NEWTON-RAPHSON METHOD 

In the analysis of reinforced concrete walls, the problem that usually causes nonconvergence 

in the N ewton-Raphson algorithm, as shown in Fig. 5.3, occurs when the iterative solutions alternate 

between two points, A and C, on the solution path without converging to an equilibrium position 

at point E. TIlls problem usually occurs when the stress-strain curve for the material. model softens 

and then stiffens again such as yielding followed by strain-hardening in reinforcing steel. Because 

either point A or point C in Fig. 5.3 corresponds to an equilibrium position, the finite element solu

tion will not converge and continues to alternate between these two points. In order to improve the 

convergence rate of the solution, special numerical. techniques were implemented in both concrete 

and steel material models. If an alternating solution is detected during the iterative procedure, the 

solution path will be allowed to converge to point B and the solution will be corrected to point C 
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in the next load step. Although, point B is not on the true solution path, the selection of point B during 

the current load step does not have a significant effect on the accuracy of the finite element solution 

because the solution is corrected in the following load step. 

5.4 FINITE ELEMENT MODEL 

Another important aspect of the finite element procedures is the choice of the element modeL 

In this investigation, the fInite element model must correctly represent the geometry, boundary 

conditions, and loading history of the walls under study. The following sections discuss several as

pects of the finite element model for shear walls, including the types of elements, the size of the finite 

element mesh, the load step size, and the loading algorithm. 

5.4.1 TYPES OF ELEMENT 

The first question that arose in the modelling phase of the finite element analysis was what 

types of elements were most suitable for the concrete and reinforcing steel. There are two different 

methods for selecting the most suitable element The first method advocates the use of a small num

ber of elements with a high order interpolation function. For example, Stevens et al. (134) used ele

ments with a cubic displacement interpolation function and, hence, a quadratic strain distribution 

for concrete elements because they believed that this type of element would "take full advantage of 

the smeared nature of the constitutive laws"(134). The second method advocates the use of a large 

number of elements with a low order interpolation function such as linear displacement or quadratic 

displacement elements. Bergan and Roland (23) adopted this method because "it seems illogical 

to use high order interpqlation which implies artificial differentiability and smoothness of the dis

placement functions. Very simple types of elements are therefore usually preferable." 

When a reinforced concrete wall is subjected to cyclic loading, extensive cracking of the con

crete occurs in the lower portion of the wall. Therefore, the strain distribution in concrete is highly 

discontinuous; concrete strains at each point are governed only by the displacement of concrete in 

the vicinity and are not likely to be affected by the displacement of concrete at distant locations. 
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-
As a result, the use of several small linear elements, in which strains are calculated from displace

ments at four close node~, is more appropriate for representing the discontinuous displacement field 

in cracked walls than the use of a few large elements with a high order interpolation function, in 

which strains are influenced by displacements at distant nodes. In the finite element models used 

for the walls in this investigation, linear isoparametric 4-node elements with a 2x2 integration rule 

and 2-nade bar elements are used to represent the concrete and reinforcing steel, respectively. 

Another advantage of the linear element with a 2x2 integration rule is that the linear element 

perfonns well and remains stable even when cracking has occurred at all four integration points in 

the element (8, 50). The stiffness of a cracked linear element with a 2x2 integration rule has three 

zero energy modes, all of which represent the required rigid body motions of the element Other 

types of elements might have several additional zero energy modes when cracked. For example, the 

stiffness of a cracked quadratic element with a 2x2 integration rule has eight zero energy modes, 

three of which are the required rigid body modes while the other five are non-rigid body zero energy 

modes (50, 83) .. These additional zero energy modes allow the element to deform with no strain and, 

therefore, can cause unpredictable defonned shapes of the element in the solution (50, 83). 

In the cyclic analysis of reinforced concrete wails, the problem of the additional zero energy 

modes is very important because the whole analysis consists of several thousand iterative solutions 

and, therefore, opens up the possibility of the non-rigid body zero energy modes interfering with 

the results. Another element that has the same stability as the linear element with a 2x2 integration 

rule is a quadratic element with a 3x3 integration rule. However, this element requires much greater 

computational effort than the linear element Some researchers also reported that the quadratic ele

ment did not yield more accurate analytical results than the linear element (50). Consequently, the 

linear element was chosen in this investigation. After the element for concrete had been chosen, the 

selection of the element for reinforcing steel was straightforward. A 2-node bar element was se

lected because its displacement is compatible with the displacement along the boundary of the 

4-node linear element. The 2-node bar elements can also use the same finite element mesh as the 

concrete elements without the need to create extra nodes. 
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5.4.2 SIZE OF FINITE ELEMENT MESH 

The size of the finite element mesh also has a significant effect on the results of the analysis 

of reinforced concrete walls. The model with an unnecessarily fine mesh requires an extra amount 

of computation time while the model with a mesh that is too coarse might not be adequate to repre

sent the behavior of the wall correctly. The proper size of the finite element mesh for reinforced 

concrete members depends greatly on the nature of the problem being studied. Because there are 

no definite rules for selecting the proper mesh size for the analysis of reinforced concrete members, 

testing of finite element models with different mesh sizes is usually a good way to gain an initial 

understanding about the proper mesh size and the sensitivity of the results to different mesh sizes. 

In this investigation, the layout of the finite element mesh was also governed by the locations of rein

forcing bars. Because the reinforcing steel was modelled using bar elements, the mesh layout was 

designed such that the location of the steel elements were close to the actual locations of reinforcing 

bars in the wall. The details of the mesh layouts for specific wall specimens are given in Chapter 

6 and Chapter 7. 

Another aspect of the mesh size that must be considered is the effect of mesh refinement on 

the convergence of the solution. This is also related to the evaluation of the proposed material mod

els because an acceptable finite element model must yield solutions that converge as the mesh is re

fined (50). In the analytical models that are based on the fracture mechanics approach, a crack in 

concrete is modeled by a band of concrete elements and the fracture energy (Of), which represents 

work done in generating the unit area of a crack surface, is assumed to be constant (50). As a result, 

the stress-strain relationship of cracked concrete is also a function of an element size and must be 

adjusted as the finite element mesh is refined so that the fracture energy (Gf) of the crack band re

mains constant as shown in Fig. 5.4(a) (50). In the analytical models that are based on the strength 

criterion, each cracked element represents the average behavior of several cracks. If the same as

sumption of constant fracture energy is used, it can be shown (Fig. 5.4(b)) that the stress-strain rela

tionship of cracked concrete depends only on crack spacings and is independent of the mesh size. 
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As a result, the proposed concrete model used in this investigation, which is based on the strength 

criterion, should be applicable to any mesh size as long as the size of the concrete element is not of 

the same order of magnitude as or smaller than the size of the crack. 

In order to investigate the perfonnance of the proposed model with respect to mesh refine

ment, a reinforced concrete shear wall subjected to monotonic loading was analyzed using two dif-
~ . 

ferent finite element models: one with a fine mesh and the other with a coarse mesh. The configura

tion and the reinforcing steel of the wall model resembled those of wall Rl1. The model with a fine 

mesh consisted of 570 concrete elements and 993 steel elements while the model with a coarse mesh 

consisted of 180 concrete elements and 378 steel elements. The mesh layouts, the crack patterns, 

and the load-deflection curves of these two models are shown in Fig. 5.5, 5.6, and 5.7, respectively. 

It can be seen that both models yielded similar analytical results. Therefore, the proposed material 

models are considered to be objective with respect to mesh refinement Another important observa

tion from these analyses is that, although the two models yielded similar analytical results, the model 

with a fine mesh required six times as much CPU time as the model with a coarse mesh. This empha

sizes the importance of the proper mesh size especially when the analysis consists of several hundred 

load steps and the CPU time becomes a major concern in the analysis. 

5.4.3 LOADING ALGORITHMS 

In the analysis of reinforced concrete members, there are two different loading algorithms: 

a load-control algorithm and a displacement-control algorithm. In the load-control algorithm, 

loads are applied incrementally at each load step while, in the displacement-control algorithm, dis

placements at particular npdes are prescribed incrementally at each load step. Darwin and Pecknold 

(44) reported that the displacement-control algorithm gave more accurate analytical results for the 

cyclic responses of reinforced concrete members than the load-control algorithm. This is due to the 

fact that most reinforced concrete members experience softening behavior after the longitudinal re

inforcement has yielded or as the cyclic loading intensifies. Because the location where the soften-

1 The details of wall Rl are given in Chapter 6. 
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ing behavior starts and the strength of the reinforced concrete member is not known before the analy

sis, it is difficult to prescribe the proper load increments for the whole loading history. Too large 

load increments might exceed the strength of the member and cause the solution to diverge while 

too small load increments will require a large amount of CPU time in the analysis. The displace

ment-control algorithm usually yields a more stable solution than the load-control algorithm be

cause the prescribed displacements are not likely to exceed the defonnation capacity of the specimen 

except at the very end of the loading history. As a result, the displacement-control algorithm was 

used for loading the wall models in this investigation. 

Similarly to the selection of mesh size, the selection of the incremental displacement size 

also depends greatly on the nature of the problem being studied and can be estimated by initially 

trying several, analyses with different sizes of incremental displacement. In the analysis of rein

forced concrete walls considered in this investigation, in which the displacement at the top comer 

node of each wall was prescribed, an incremental displacement equal to half of the top displacement 

that caused initial cracking in the walls was found to yield good results for the first few cycles. In 

later cycles, when most of the steel elements in the lower 3 ft. of the wall had yielded and most of 

the concrete elements in the lower portion of the wall had cracked, the incremental displacements 

could be doubled. This increase in the size of the incremental displacements did not lead to numeri

cal problems because the two major causes of material nonlinearity (yielding of the steel and crack

ing of the concrete) had already occurred. 

Another important aspect of the loading algorithm used for the cyclic analysis of reinforced 

concrete walls is the technique used to prescribe incremental displacements when the applied load 

is reversed. Instead of abruptly reversing direction, a gradual change in the direction of the incre

mental displacements was used when the direction of the applied load changed. This is done by ad

ding two additional displacement increments between the load steps where the direction of loading 

is reversed. The magnitude of these two increments is very small compared to those of the regular 

increments. The typical displacement increments at the reversal of the applied load can be written 

as follows: 
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· reversal of the applied load 

! 
+0.05 in. +0.05 in. . +0.00001 in. -0.00001 in. -D.05 in.' -D.05 in. • ... ____ ... ___ ..... ' ..... ___ ...... ____ ........ ___ ....... ___ --rII. 
regular increments additional increments regular increments 

In each of these two additional displacement increments, only one iteration is allowed and 

the analysis then proceeds to the next step. The numerical problems usually occur if a regular load 

increment is used in the load step in which the reversal of the applied load occurs. At the first itera

tion of that load step, the finite element program does not know that the applied load is reversed; 

therefore, the current loading stiffness is used to find the solution for this iteration. The pro gram 

realizes that the applied load has been reversed when the stresses are updated and the residual load 

is calculated at the end of the first iteration. Then, the unloading stiffness is used instead for solving 

the equilibrium equation in the second iteration. If local load reversals in the stress-strain relation

ship occur at a large number of integration points, the loading stiffness and the unloading stiffness 

of the model will differ greatly. This difference might cause the solution calculated during the first 

iteration to deviate greatly from the true solution path and cause numerical problems in the solution. 

Therefore, the small displacement increments are added at the load step where the applied load is 

reversed. Because these two increments are very small, using only one iteration does not affect the 

equilibrium condition of the model and allows load reversals to occur in these additional steps while 

the iterative solution remains close to the true solution path.. Because load reversals have already 

occurred at most integration points in the previous load step, the correct unloading stiffness will be 

used in the first iteration and a much more stable solution is obtained when the regular displacement 

increment is used in the next step. 
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5.5 INCREMENTAL-ITERATIVE ALGORITHMS 

In the nonlinear analysis of reinforced concrete members, most of the computation time is 

spent solving the nonlinear equilibrium equations that govern the response of the finite element 

model (14). As a result, the appropriate strategy for solving these equations with good stability and 

proper accuracy is essential to the success of the finite element analysis. The incremental-iterative 

algorithms used for solving nonlinear equations in this investigation consist of two major elements: 

the N ewton-Raphson algorithms and the convergence criteria Each these elements is discussed be-

low. 

5.5.1 NEWTON-RAPHSON ALGORITHMS 

The widely used iteration schemes for the solution of the nonlinear finite element equations 

are based on the N ewton-Raphson (N-R) iteration algorithm. ill this algorithm, the displacement 

vector U that satisfies the equilibrium condition at time t+~t can be found by successive approxima

tions in the following fonn (95): 

(5.21) 

where t+.dt~-l - the tangent stiffness matrix at iteration i-I of load step t+~t 

t+.dtFi - 1 

- the incremental displacement vector at iteration i 

- the externally applied load vector at load step t+~t 

_ the load vector corresponding to the element stress at 
iteration i-I of load step t+~t 

The total displacement can be calculated as follows: 

(5.22) 

where is the total displacement at iteration i of load step t+~t 

The initial condition for Eq. 5.21 and 5.22 are as follows: 

78 



t+AtrfJ _ tu 
t+AtpO _ tp 

(5.23) 

(5.24) 

In this algorithm-the full N-R iteration-the stiffness matrix of the model, K, is updated 

in every iteration as shown in Eq. 5.21. Updating the stiffness matrix at every iteration is computa

tionally expensive, therefore the full N-R iteration might not be efficient nor necessary for some 

types of problems (13, 14, 95). This led to the development of the modified N-R iteration, in which, 

instead of being updated in every iteration, the new stiffness matrix is updated only at certain itera

tions. This method involves fewer calculations of the stiffness matrix than the full N-R iteration. 

Although, the modified N-R iteration usually requires more iterations for the solution to converge 

than the full N-R iteration, the total computation time required by the modified N-R iteration may 

be less than that required by the full N-R iteration because the stiffness matrix is updated less often. 

These two iteration algorithms are illustrated by a single degree of freedom system as shown in Fig. 

5.8. 

For the finite element analysis of reinforced concrete members, many researchers (10, 31, 

32, 44,45, 110) reported that the full N-R iteration yielded better results than the modified N-R 

iteration. TIrls is due to the fact that the behavior of both concrete and steel are strongly path depen

dent and the stiffnesses of concrete and steel at different stages (such as cracked vs. uncracked'con

crete or yielding vs.linear reinforcing steel) differ greatly. As a result, solving the equilibrium equa

tions using a tangent stiffness that does not correspond to the current status of the material may cause 

the solution to deviate greatly from the true solution path and result in a slow convergence rate or 

a divergent solution. In this investigation, the full N-R iteration was found to yield solutions with 

good stability and a good convergence rate. The convergence characteristics of the full N-R itera

tion and that of the modified N-R iteration are illustrated in Fig. 5.9. This figure shows the conver

gence parameters at four arbitrarily selected load steps from the analysis of wall B42with three dif

ferent frequencies of updating the stiffness matrix: updating every iteration (the full N-R iteration), 

2 The details of wall B4 are given in Chapter 6. 
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updating every three iterations, and updating every five iterations. It can be seen that, among all 

these updating stiffness schemes, the full N-R iteration required the fewest iterations for the conver

gence of the solution in all load steps. Furthennore, in the later load steps, which are not shown in 

Fig. 5.9, both of the analyses with the modified N-R iteration diverged and, therefore, had to be ter

minated early. In fact, it was the unstable characteristics of the modified N-R iteration, rather than 

the computation time required in the analysis, that governed the selection of the stiffness updating 

schemes. Despite the fewer iterations required by the full N-R iteration, the total computation time 

of the full N-R iteration and the modified N-R iteration, as shown in Table 5.2, are not significantly 

different because the fewer iterations were obtained at the expense of updating the stiffness matrix 

more often. 

5.5.2 CONVERGENCE CRITERIA 

Besides the selection of the proper numerical techniques and the proper algorithms for updat

ing stiffness, the success and accuracy of the incremental-iterative procedures also depend greatly 

on the convergence criteria, which define the conditions that must be satisfied for tennination of the 

iteration (14, 95). At the end of each iteration, some forms of the analytical solutions are checked 

with the cop-vergence tolerance to see whether the analysis can proceed. to the next load step or more 

iterations are needed for the current load step. If the convergence tolerance is too relaxed, the solu

tion might be inaccurate and follow an incorrect solution path. On the other hand, if the convergence 

tolerance is too strict, a large amount of computational effort will be spent obtaining solutions with 

unnecessary accuracy (14). In general, there are three different solution variables that have been 

used as convergence criteria: the displacement, the residua110ads, and the internal energy (14, 95). 

Each criterion uses some fonn (e.g. the Euclidean norm of the incremental displacements or the 

maximum entry of the residual load vector) of the corresponding solution variables to check the con

vergence of the iterative solutions. The proper selection of these criteria depend greatly on the nature 

of the problems being studied. For example, the internal energy criterion is suitable for the problems 
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in which the units of the load vector are inconsistent, such as a load vector that consists of both forces 

and moments. 

In this investigation, the ratio of the nonn of the residual load v~tor to the norm of the ap

plied load increment is used as the criterion for tennination of the iteration. The iterative solution 

of the current step is considered to converge if the following condition has been satisfied (88). 

(5.25) 

where II Xi II - the Euclidean nonn of vector x = II xf 
R - the total residual load vector 

M> - the applied load increment 

TOL - the convergence tolerance 

The residual load was chosen as the convergence criterion because it represented the current 

equilibrium condition of the solution. In addition, all entries of the residual load vector have the 

same units; therefore, there is no inconsistency when the nonn of the residual load is calculated. 

It should be noted that the residual load vector, R, is computed. from the total, rather than incremen

tal, equilibrium conditions. Therefore, errors do not accumulate in the solutions between load steps. 

Also, because the residual loads are computed from the total equilibrium conditions, the loads steps 

that converge will yield correct results even when the prior load steps did not converge (88). 

The convergence tolerance of 5 % was used in all the analyses of reinforced concrete walls 

in this investigation. This value yielded the solution with satisfactory accuracy and in reasonable 

computation time. 
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6. peA WALL TESTS 

As mentioned in Chapter 1, a reinforced concrete shear wall is an effective and economical 

structural component in tall buildings for resisting lateral load caused either by wind or by earth

quake. However, it is usually impractical and uneconomical to design shear walls to remain elastic 

during strong ground motion (103). In a severe earthquake, the inelastic behavior of reinforced con

crete shear walls, such as yielding of flexural reinforcement and cracking of concrete, are anticipated 

and desirable because these types of behavior help dissipate energy and, therefore, prevent a sudden 

collapse of the building. TIris concept leads to the need for the understanding of the inelastic cyclic 

behavior of reinforced concrete shear walls (103). Prior to the 1970s, despite a large number of 

buildings with shear walls having been built, the infonnation about the inelastic ductility, energy 

dissipation, and other important aspects of inelastic behavior of reinforced concrete shear walls was 

quite limited. In order to provide this needed infonnation, the Portland Cement Association (PCA) 

conducted an extensive experimental program to investigate the inelastic behavior of reinforced 

concrete structural walls. A variety of large-scale isolated structural walls with different design pa

rameters, such as cross sections, reinforcing steel, axial stress, and shear reinforcement, were tested 

under in-plane cyclic lateral load. This experimental study was one of the most elaborate and exten

sive research pro grams on reinforced concrete shear walls carried on in the US. It has provided valu

able detailed infonnation on the cyclic response of shear walls. 

The peA test pro gram was designed to investigate the important inelastic aspects of behav

ior in reinforced concrete walls. Its experimental results contain infonnation on most of the signifi

cant inelastic types of response. As a result, these experimental data are appropriate to be used as 

the basis for evaluating the analytical models developed in this research. A successful finite element 

model must be able to simulate the important nonlinear characteristics of all the wall specimens. 

One of the objectives of this evaluation is to use a single set of model parameters (except the parame

ters that are design variables, such as ratio of steel reinforcement) in the analyses of all the wall speci

mens. If the analytical model can reproduce the behavior of several shear walls with different design 
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variables, the model will be considered successful and can then be used to investigate of the behavior 

of walls that are different from the wall specimens tested in the laboratory. 

In this chapter, the peA experimental program and the details of the wall specimens are dis

cussed briefly. Then the finite element models, the analytical procedures, and the values of the pa

rameters used in the material models are described. Comparisons between different aspects of the 

experimental results and the calculated response are discussed at the end of this chapter. 

6.1 peA EXPERIMENTAL PROGRAM 

The primary objectives of the PCA experimental program were to detennine the load

deflection characteristics, the ductility, the energy dissipation capacity, and the flexural and shear 

strengths of the structural walls (105). In order to accomplish these objectives, a series of reinforced 

concrete structural walls wer.e tested under the in-plane, lateral, cyclic loading. The detailed de

scription of the test program can be found in the PCA reports on tests of isolated walls (105, 106). 

The nominal dimensions of the wall specimens and a typical steel reinforcement arrange

ment are shown in Fig. 6.1. Walls with two different cross sections-rectangular and barbell 

shaped-were selected for the evaluation of the proposed analytical models. The details of the thir

teen wall specimens that were analyzed in this research are summarized in Table 6.1. These walls 

were identified as R1, R2, R3, R4, B 1, B2, B3, B4, B5, B6, B7, B8, and B9. In addition to the wall 

cross section, the primary experimental parameters were: 

• the amount of the flexural reinforcement 

• the amount of the horizontal shear reinforcement 

• the amount of the transverse reinforcement in the boundary elements 

• the axial compressive stress 

• the loading history 

• the compressive strength of concrete 
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The flexural reinforcement in each wall specimen was selected based on the flexural provi

sions of the 1977 ACI Builcling Code (1). The design compressive strength of concrete was 3000 

psi for wall B 6 and 6000 psi for all other walls. The design yield stress of the flexural reinforcement 

was 60 ksi and the strain-hardening effect was neglected (103). 

Several criteria were used to select the" horizontal web reinforcement in each wall specimen. 

In specimens R1, R2, R4, B 1, B3, and B4, the minimum web reinforcement allowed in the 1977 ACI 

Building Code (1) was used. In specimens B2 andB5, the web reinforcement was selected such that 

the nominal shear strength was equal to the nominal flexural strength. The amount of the web rein

forcement provided in specimens B2 and B5 was also provided in specimens B6, B7, and B9. The 

horizontal web reinforcement in wall B8 was selected such that the nominal shear strength was equal 

to the nominal flexural strength which took into account the increase in the strength of the flexural 

reinforcement due to thestrain-bardening effect (106). 

Two methods were used to design the transverse reinforcement in the boundary elements. 

In the first method, the transverse reinforcement was selected to comply with the provisions in Sec

tion 7.10 of the 1977 ACI Building Code (1) for ordinary column ties. This amount of transverse 

reinforcement, which provided little, if any, confining pressure to concrete in the boundary ele

ments, was used in the specimens R1, B1, and B2. In the second method, which was used for all 

other specimens, the transverse reinforcement was designed as confinement reinforcement (103). 

Such reinforcement, which provides a significant amount of confining pressure for concrete in the 

boundary elements, was fabricated in the form of rectangular hoops and cross-tie reinforcement in 

accordance with the Appendix A of the 1977 ACI Building Code (1). TIlls confinement was pro

vided onI y in the lower 6 ft. of the boundary element, and the ordinary column ties were used over 

the remaining 9 ft. of the specimen. 

Specimens R1, R2, and B 1 through B5 were tested without any applied axial load. In speci

mens R3, R4, and B6 throughB9, constant axial compressive loads were maintained throughout the 

loading history. The axial loading system was designed such that the lower reaction beams for axial 
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load translated with the top displacement of the wall The resultant axial force remain~ vertical 

during the horizontal loading cycles. 

For lateral loading, a horizontal force·was applied through the top slab such that each wall 

was loaded as a cantilever beam with a point load at the end (103). Three different loading histories 

were used: monotonic loading, increasing incremental loading (IR), and modified reversing loading 

(MR). In the monotonic loading, a wall specimen was subjected to a monotonically increasing load 

to failure. In the IR loading, the amplitude of the applied displacement cycles was increased incre

mentally. During each increment, the specimen was subjected to three complete loading cycles. 

Before yielding occurred, the walls were cycled at three force levels. After initial yielding, deflec

tions were increased by 1 in. during each increment (103). In MR loading, the loading history was 

determined from "a statistical investigation of the dynamic response of isolated walls to various 

earthquake motions" (106). The typical IR and MR loading histories are shown in Fig. 6.2. Speci

men B4 was subjected to the monotonic loading while specimens R3 and B9 were subjected to MR 

loading. All other walls were SUbjected to IR loading. 

6.2 FINITE ELEMENT MODEL 

A typical finite element model of the peA wall specimens with rectangular and barbell cross 

sections is shown in Fig. 6.3. Concrete elements are modeled using 4-node isoparametric plane 

stress elements while reinforcing bars are modeled using 2-node truss elements. The concrete ele

ments can be divided into two groups: the concrete elements in the boundary elements and the con

crete elements in the web. Some parameters used to define the material model for these two groups 

of concrete elements are different because different amounts of flexural and transverse reinforce

ment influence the behavior of concrete. Each concrete element is surrounded by four steel elements 

as shown in Fig. 6.3. Horizontal steel elements represent the horizontal web reinforcement and 

transverse reinforcement in the boundary elements while vertical steel elements represent the longi

tudinal reinforcement in the boundary elements and the vertical reinforcement in the web. The mesh 

layout for the analytical model of the wall is governed by the location of the reinforcing bars and 

85 



by the size of the boundary elements. Four different mesh layouts were used to model the peA wall 

specimens. The details of the mesh layouts are described in Appendix D. 

The wall model is fixed at its base. Both translational degrees of freedom (u and v) of all 

nodes at the base of the wall are constrained. The model is loaded using a displacement-control 

algorithm. The displacement at the top comer node of the wall is prescribed. incrementally to simu

late the loading history of the wall specimens. The analysis is tenninated when a major failure has 

been observed in the analytical results. Details of the loading algorithm and the selection of a size 

of a load step are described in Chapter 5. A layer of elastic elements is placed at the top of the wall 

model to represent the top slab in a wall specimen. This layer of elastic elements helps distribute 

lateral load from the comer node to the lower portion of the wall. It also helps prevent excessive 

cracking of concrete and )7ielding of steel reinforcement caused by the large concentrated load at the 

comer node. In the walls with applied axial load, vertical point loads are applied at the top nodes 

of the boundary elements (Fig. 6.3). The magnitude of the point loads remain constant throughout 

the analysis. 

6.3 PARAMETRIC STUDY 

As described in Chapter 3, seventeen parameters that are required to define the proposed con

crete model include Ei, Oi, a, a!, a2, 0'3, 0'4, and an for the nonnal-stress function and fl.l, fl.2, Emin, 

Yo, n, 'tslip' GUnb ~, and Gmin for the shear-stress function. Unlike the steel model, where the exper

imental data on the cyclic response of reinforcing bars are available and can be used for evaluating 

values of·the material model parameters, the experimental data for several important aspects of cy

clic behavior of concrete, such as a cyclic shear stress-strain relationship, do not exist. Therefore, 

a parametric study was required to detennine appropriate values for the parameters that define the 

concrete model. Complete walls were chosen to evaluate the sensitivity of the structural response 

to the choice of each parameter. An objective of such study was to find one set of parameters that 

yielded satisfactory calculated responses for all walls. The parameters that define the concrete model 

were adjusted until several important aspects of the calculated results, such as load vs. deflection 
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relationship, load vs. shear distortion relationship, crack patterns, and failure modes, agreed with 

the experimental data from reinforced concrete walls. 

The following section describes the parametric study of the concrete model's parameters. 

The calculated results of walls Rl and B7 were selected to illustrate the sensitivity of the parameters 

because the behavior of these two walls represent the typical cyclic responses of reinforced concrete 

shear walls subjected to low and high nominal shear stress. Wall Rl is a representative of the walls 

that are subjected to low nominal shear stress while wall B7 is a representative of the walls that were 

subjected to high nominal shear stress. The calculated response of other w,alls is described in Section 

6.4. 

6.3.1 PARAMETERS USED TO DEFINE NORMAL STRESSES 

Eight parameters,ci, ah a, 0'1, 02, 03, 0'4, and an, are used to defme the stress-strain relation

ship of cracked concrete in the direction normal to the crack. These parameters control several im

portant aspects of the cyclic behavior of concrete, such as tension stiffening, crack closing, and crack 

reopening. The sensitivity of the calculated response of wall models to the choice of different values 

of nonnal-stress parameters are shown in Fig. 6.4 through 6.15. 

a : a is the parameter that determines the amount of tensile stress retained by con

crete immediately after cracking (Fig. 3.4). Figure 6.4 shows the calculated load vs. top 

deflection curves for wall B4 with different values of a. It can be seen that too large a value 

of a causes sudden drop in the load--carrying capacity of wall B4 while too small a value of 

a causes the load-carrying capacity of wall B4 to be significantly lower than the measured 

response. The value of a is important for the behavior of the walls subjected to monotonic 

loading; however, it does not have significant influence on the calculated response of the 

walls subjected to cyclic loading. 

ai : ai defines the tensile stress that cracked. concrete is able to sustain after the tensile 

strain of concrete exceeds Ei (Fig. 3.4). Figures 6.5 through 6.8 show the load vs. top deflec-
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tion curves and the load vs. shear distortion curves 1 for walls R1 and B7 with different values 

of O"i in the boundary elements and web. The different values of O'i do not have any effect 

on the shear distortion but have some influence on the calculated strength of the walls. Larg

er values of 0i incre~ the load-carrying capacity of the walls in each cycle because the 

cracked concrete can sustain higher tensile stress and, therefore, helps the flexural steel to 

resist the overturning moment The effects of different values of O'i are more evident in wall 

Rl than in wall B7 because wall R1 has smaller reinforcement ratio and, therefore, the con

tribution of concrete is more important 

ci : ci defines the strain at which the cracks begin to close (Fig. 3.9). ci also controls 

the initial tangent during crack closing (the slope of a line connecting [0'2,cU and [0'3,C3]). 

A small value of Ei delays crack closing until tensile strain is small and leads to a large initial 

tangent stiffness. TIlls causes the tangent stiffness of the load-deflection curve of the wall 

with a small value for Ei to change abruptly as the majority of the cracks are closing simulta

neously. A large value of ci causes the cracked concrete to start resisting compressive stress 

at higher tensile strains and, therefore, results in higher flexural stiffness of the wall as the 

cracks begin to close. As a result, a wall model with high value of Ci tends to have larger 

shear distortion than a wall model with low value of Ei. This behavior can be observed in 

the calculated results for walls Rl and B7 shown in Fig. 6.9 and 6.10. 

0'1 : 01 detemrines the initial stiffness of concrete when unloading from tension (Fig. 

3.9). A large value of 0'1 results in a high unloading stiffness of the wall when a load reversal 

occurs. However, 0'1 effects only the initial unloading stiffness of the load-deflecti.on curve 

because, once the stress in the cracked concrete reaches 0"2, the stiffness is controlled by other 

parameters. Figures. 6.11 and 6.12 show the calculated results for walls R1 and B 7 with dif

ferent values of 0'1- Wall R1 is more sensitive to the increase in the unloading stiffness than 

wall B7, because wall R1 has less flexural reinforcement 

1 Calculation of the shear distortion is described in Section 6.4.2 
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0'2,03, and an: 02,03, and on are the parameters that control the stress-strain curve 

for concrete when cracks are closing. 02 is the compressive stress at which crack closing is 

initiated, 03 defines the initial stiffness of the crack closing curve, and On is the compressive 

stress at which the cracks are fully closed and the reloading curve merges with the uniaxial 

compressive curve. The effects of changing the values of these param~ters on the calculated 

response of wall B7 are shown in Fig. 6.13 through 6.15. If the values of these three parame

ters are adjusted such that the cracked concrete can resist compressive stresses at high tensile 

strains (for example, large values for 02, 03, and on), the strength of the wall will be greatly 

reduced because the cracked concrete in the web is capable of resisting compressive stress, 

even when cracks are open. This reduces the moment arm between ,the resultant of the com

pressive and tensile forces and, hence; reduces the flexural capacity of the wall. 

It can be seen that the calculated behavior of the wall models is not very sensitive to the values 

of the normal stress parameters. Small changes in each parameter do not have significant influence 

on the analytical results. The values of the nonnal stress parameters used in the analysis of peA 

wall tests are given in Table 6.2(a). 

6.3.2 PARAMETERS USED TO DEFINES SHEAR STRESSES 

Nine parameters, Ill, J.12, emin, Yn, n, "(slip, Gunl, ~, and Gmin, are used to defined the cyclic 

shear stress-strain relationship of cracked concrete. The calculated response of wall B7 was used 

to study the sensitivity of the shear-stress parameters because wall B7 was subjected to high nontinal 

shear stress and experienced large inelastic shear distortion. Therefore, the sensitivity of the shear

stress parameters can be observed in the calculated response of wall B7 better than in the calculated 

response of other walls, such as wall R1, that were subjected to low nominal shear stress and experi

enced small inelastic shear distortion. The sensitivity of the calculated response of wall B7 to the 

choice of different values of the shear-stress parameters are shown in Fig. 6.16 through 6.20. 

III : J.11 is a coefficient which defines the interface shear stiffness (Eq. 3.9). It is used 

to adjust the contribution of the interface shear transfer mechanism to the total shear stiffness 
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of cracked concrete. Figure 6.16 shows the calculated results for wall B7 with different val

ues of fl.l .' A small value of fl.1 causes the load-top deflection curve to experience pinching 

due to the domination of the shear defonnation mode. The load vs. shear distortion curve 

for the wall with a small value of fl.1 is controlled mostly by the dowel shear stiffness. A large 

value of fl.1leads to a load deflection curve with less pinching and with smaller shear distor

tion because the shear stiffness of the wall is large and the wall tends to deform in flexure 

rather than shear. 

fl.2 : fl.2 is a coefficient which defines the dowel shear stiffness (Eq. 3.11). It is used 

to adjust the contribution of the dowel mechanism to the total shear stiffness of cracked con

crete. Figure 6.17 shows the calculated results for wall B7 with different values of fl.2. The 

effects of different values of fl.2 have similar trends as that of fl.1; large values of J.l.2 result in 

well--i:'ounded load-deflection curves with small shear distortions. However, the effect of 

small values of J.l.2 is less significant than the effect of small values of J.l.l. TIlls shows that 

the interface shear transfer is the major shear transfer mechanism in the cyclic response of 

reinforced concrete shear walls. 

fmin : fmin is the tensile strain at which concrete can no longer provide any inter-

face shear resistance (Eq. 3.9). The interface shear stiffness decreases linearly from the ini

tial value at the cracking strain (fer) to Gmin at fmin (Fig. 3.21). The calculated results for 

wall B7 with different values of fmin are shown in Fig. 6.18. A small value of fmin results 

in a load-deflection curve with significant pinching and with large shear distortions because 

the concrete cannot provide the necessary interface shear stiffness even when cracks are 

nearly closed. A large value of fmin leads to a well~ounded load-deflection curve with 

small shear distortion. 

'Y n : 'Y n is the parameter used in the calculation of the dowel shear stiffness (Eq. 3.14). 

The calculated results for wall B7 with different values of 'Yn are shown in Fig. 6.19. Yn has 

a significant effect on the shear distortion of the wall because the dowel shear stiffness is 
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proportional to (1/y0')3. A small value of Yn leads to a large dowel shear stiffness, greatly 

reduces the shear distortion of the wall, and results in a well-rounded load~eflecti.on curve. 

A large value of Yn significantly reduces the dowel shear stiffness and results in a load

deflection curve with significant pinching. 

Lslip: 'tslip defines the shear stress where the shear stiffness increases after the concrete 

has experienced slip near zero load (Fig. 3.27). The calculated results for wall B7 with dif

ferent values of Lslip are shown in Fig. 6.20. It can be seen that'tslip controls the shape of the 

hysteresis curve near the origin in both the load~eflection and the load-shear distortion 

curves. A small value of Lslip causes significant pinching while a large value Of'tslip leads 

to curves with a well-:rounded shape. 

The calculated response of the walls are more sensitive to the choice of the shear-stress pa

rameters than to the choice of the normal-stress parameters. Small changes in each of the shear

stress parameter may have significant effect on the calculated behavior of the wall. The values of 

the shear-stress parameters used in the analysis of peA walls are given in Table 6.2(b). 

6.4 EVALUATION OF THE FINITE ELEMENT RESULTS 

The analytical results from the finite element analysis of reinforced concrete walls contain 

a variety of infonnation, including nodal reactions, nodal displacements, and stress and strain at all 

Gauss points. This infonnation is essential to the development and evaluation of the proposed con

crete and steel models because it allows different aspects of the results to be compared with the ex

perimental data. The finite element results also provide the opportunity to inexpensively evaluate 

the behavior of a large number of walls with different configurations and reinforcement details. 'This 

infonnation helps researchers gain a better understanding of the cyclic behavior of reinforced con

crete walls, which will lead to an improvement in the design provisions for better cyclic inelastic 

perfonnance of the walls. 
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In the following sections, several important aspects of the fInite element results are 

compared with the experimental data. The comparisons include load vs. top-deflection curves, load 

vs. shear distortion curves, failure modes, and crack patterns. 

6.4.1 LOAD VS. TOP DEFLECTION CURVE 

The major function of reinforced concrete shear walls in tall buildings is to provide lateral 

stiffness. The design of shear walls is usually governed either by strength or lateral-stiffness re-

quirements. For the design of reinforced concrete walls in a seismic zone, the energy dissipation 

characteristics of the wall are also a major concern. All the important aspects of the cyclic behavior, 

which include the strength, the lateral stiffness, and the energy dissipation characteristics, are illus

trated in the load vs. top-deflection (P-.6.) curve of the walls. As a result, the P-.6. curve is the prima

ry focus in the evaluation of the results of the finite element analyses. A successful finite element 

model must be able to reproduce the P-.6. curve from the experimental results accurately. 

Calculated and measured P-.6. curves for the peA walls are shown in Fig. 6.21 through 6.33. 

The calculated response of all thirteen walls are in good agreement with the measured data. In gener

al, these walls can be divided into two groups according to the magnitude of the maximum applied 

shear stress (103). The first group includes walls Rl, R2, R4, Bl, B3, and B4 that were subjected 

to low nominal shear stress (less than 6.0 Pc). The second group comprises walls R3, B2, B5, B6, 

B7, B8, and B9 that were subjected to high nominal shear stress (greater than 6.0!id. 

The cyclic P-.6. curves are generally governed by two deformation modes: flexural and 

shear. In the flexural mode, a wall deforms by changing its curvature along the length of the wall. 

This mode of deformation is governed by the flexural stiffness of the wall. Under cyclic loading, 

the walls that deform in the flexural mode dissipate energy through yielding of flexural reinforce

ment and, therefore, display good energy dissipation characteristics. The shear mode of deformation 

occurs when the wall deforms primarily by changing the shear distortion in the lower part of the wall. 

This mode of deformation is governed by the shear stiffness of the wall and is usually less desirable 

than the flexural mode because the shear mode can cause "pinching" in the P-~ curve which leads 
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to poor energy dissipation characteristics. Sudden shear failure or web crushing can also occur in 

the walls that defonn primarily in the shear mode. 

Each section of the P-.D.: curve is dominated either by the flexural. or shear mode. A wall will 

deform in the shape that has the minimum strain energy; therefore, it will defonn in the mode that 

has the smaller stiffness. For example, when the applied lateral load is near zero, the majority of 

the cracks in the lower portion of the wall are open. This results in a low shear stiffness in that portion 

of the wall. Therefore, in this region of the P-.6. curve, the wall deforms primarily in the shear mode. 

As unloading continues, cracks in the compression zone start to close and reinforcing bars start to 

provide resisting force through dowel action. The shear stiffness increases and the behavior of the 

wall is dominated by flexUre. In the walls that are subjected to low nominal shear stresses, the flexu

ral stiffness is low due to the low reinforcement ratio in the boundary elements. Consequently, no 

pinching was observed in the P-~ curve, and the response was dominated by flexure. In the walls 

that are subjected to large nominal shear stress, the flexural stiffness is large because of the high rein

forcement ratio in the boundary elements, and the P-.6. curve experience significant pinching or 

stiffening behavior as the deformation mode changes from shear to flexure. 

6.4.2 LOAD VS. SHEAR DISTORTION CURVE 

Average shear distortion in the lower portion of the wall can be estimated from the displace

ments at four corner points of a rectangular region which is located on a web of the wall (Fig. 6.34). 

In the experiments, these displacements were obtained from L VDT readings, while in the finite ele

ment analysis, they were obtained from the displacements of the corresponding nodes. This shear 

distortion is an approximation because the calculation is based on several assumptions such as plane 

section of the wall remains plane and shear strain is uniformly distributed in the web of the walL 

However, it provides a reasonable estimate of the cyclic shear distortion in each wall specimen. Be

cause this shear distortion is directly related to the shear transfer mechanisms of reinforced concrete 

in the web, evaluation of shear distortions is useful in the development and verification of the pro

posed shear-stress function for the concrete model. The parameters required to define the shear 
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stress function were adjusted such that the load-shear distortion (P-y) curves of the finite element 

results agree with those of the experimental results. 

The comparisons between the measured and calculated P-y curves are shown in Fig. 6.35 

through 6.47. All comparisons show good agreement between the calculated results and the mea

sured data The P-y curves can be divided into two groups according to the magnitude of the maxi

mum applied shear stress. The P-y curves for the walls that were subjected to low nominal shear 

stress (walls R1, R2, R4, B1, and B3) experienced small, if any, pinching. On the other hand, the 

P-y curves for the walls that were subjected to high nominal shear stress (walls R3, B2, and B5 to 

B 9) experienced significant pinching and degradation of shear stiffness in the later cycles. 

6.4.3 FAILURE MODES 

Studying failure modes of the slender reinforced concrete structural walls under cyclic load

ings is also another objective of this research. Five different failure modes that were observed in 

the thirteen wall specimens are (105, 106): 

a) Bar fracture, 

b) Inelastic bar buckling, 

c) Instability of the compression zone, 

d) Web crushing, 

e) Boundary element crushing. 

The finite element models developed in this research should also be able to reproduce the 

mode of failure for each wall and to estimate the defonnation level at which the failure occurs. The 

post-failure behavior of the wall is not incorporated into the proposed model because such behavior 

is usually unstable and depends greatly on the loading technique used in the experimental work. 

Furthennore, some failure modes involve a sudden release of a large amount of strain energy which 

causes numerical problems in the analysis. 
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. The criteria for defining each failure mode are described in the following sections. Compari

sons between the calculated and observed failure modes are summarized in Table 6.3. 

(a) BAR FRACTURE 

Wall B4, which was subjected to monotonic loading, lost its load-carrying capacity because 

the main reinforcement fractured. Bar fracture was also observed in several other walls, such as R1, 

Bland B3. However the bars in these walls had buckled previously which led to the premature rup

ture of the reinforcing bars. 

The proposed steel model incorporates bar fracture by evaluating the calculated axial strain 

in each steel element. If the strain exceeds the ultimate tensile strain, which is an input parameter 

for the steel, bar fracture has occurred. 

(b) INELASTIC BAR BUCKLING 

Inelastic bar buckling was observed in wall R1, B 1, and B3. In these walls, longitudinal rein

forcement buckled within the lower 3' of the boundary elements. There were three major factors 

that influenced buckling' of the flexural reinforcement: 

• The loss of surrounding concrete, which acted as a lateral. support for reinforcing 

bar, caused by alternating tensile and compressive stresses (103, 110). 

• The reduction in tangent modulus of steel due to tensile or compressive yielding 

and the Bauscbinger effect (80, 103, 109, 118). 

• The eccentric compressive force on the reinforcing bar caused by increasing shear 

distortion (103, 106). 

Although, buckling of reinforcing bar did not result in a sudden loss of load carrying capacity 

in the structural walls, it did lead to bar fracture after several cycles of alternating tensile and com

pressive stress. 

Few researchers have investigated the inelastic bar buckling in reinforced concrete mem

bers. Gosam, et al. (62) studied shear requirements for load reversals on reinforced concrete mem-
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bers from the experimental results of several other researchers. They reported that loss of concrete 

cover and reduction of stiffness of reinforcing bars (Bauschinger effect) significantly reduced the 

buckling capacity of a reinforcing bar. Bertero and Collins (24) investigated inelastic bar buckling 

in the failure of the Olive View stair towers during the San Fernando earthquake and proposed equa

tions for calculating spacing of steel confinement required to prevent inelastic bar buckling. In both 

studies, the tangent modulus theory was used to calculate the buckling stress of the reinforcing bar. 

The equation is similar to the well-known Euler equation except that a tangent modulus (E0 was 

used instead of Young's modulus (Eq. 6.1). 

acr - ~2 E t (6.1) 

[k/ t 
where acr = Buckling stress 

Et = Tangent modulus of a reinforcing bar 
E t 

I = Unsupported length of a reinforcing bar 
(spacing between steel confinement) 

k = Factor for an effective length of a reinforcing bar 

r = Radius of gyration of a bar 

The value ofkdependson the buckling mode shape of the bar. Gosainetal. (62) andBertero 

and Collins (24) recorrnnended the values of k between 1/2 and 1 based on the buckling mode shape 

as shown in Fig. 6.48. In this research, the value of 1/2 is used. 

In the analysis, the buckling stress of the bars that have potential to buckle (bars at the face 

of the boundary elements in the lower 3 ft. of the wall) is calculated at the beginning of each load 

step. If the concrete adjacent to that bar has already spalled and the compressive stress of that bar 

exceeds the current buckling stress, the bar is considered to buckle. Concrete is considered to have 

spalled when the following criteria have been met 
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• Concrete at that Gauss point has been totally crushed (as described in Section 

3.1.4). 

• After crushing, the concrete at that Gauss point must have been subjected to alter

nating tensile and compressive stress for at least four cycles. 

The second criterion is based on the observation from the experimental work that concrete 

does not spall immediately after it has been crushed (110). The crushed concrete starts spalling after 

it has been subjected to a few cycles of alternating tensile and compressive stress. In the proposed 

model, a reinforcing bar is considered to lose its lateral support when concrete at the closest two 

Gauss points has spalled. 

(e) INSTABILITY OF THE COMPRESSION ZONE 

In this mode of failure, an out-of-plane instability of the compression zone occurred in the 

lower 3 ft. of the wall. It was observed only in wall R2. The wall lost its load-carrying capacity 

when a large out-of-j?lane displacement occurred in the lower portion of the wall following several 

large load reversals. This failure mode cannot be detected by the proposed model. In order to detect 

this mode of failure, buckling capacity of the wall needs to be investigated, which is beyond the 

scope of this investigation. 

(d) BOUNDARY ELEMENT CRUSHING 

Specimens R3 and R4, both of which were rectangular walls with applied axial loads, failed 

because the concrete in the boundary elements was crushed completely. The criteria for concrete 

crushing are discussed in Chapter 3. For confined concrete, the compressive stress-strain relation

ship can be divided into three regions: uncrushed, crushed plateau, and totally crushed (Fig. 3.12). 

Confined concrete is considered to be crushed when the compressive stress-strain curve reaches the 

totally crushed region (E < E2 )2. The value of E2 depends on the amount and the arrangement of 

steel reinforcement as described in Appendix B. For unconfined concrete (Fig. 3.10), the compres-

2 Compressive strain is considered to be negative while tensile strain is considered to be positive. 
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sive stress-strain relationship does not have the crush plateau. Concrete changes directly from un

crushed to totally crushed. To check crushing of concrete, the calculated compressive strain at every 

Gauss point is checked at the beginning of each new load step. If the compressive strain is less than 

C2 for confined concrete or is less than Cult for unconfined concrete (Fig 3.10 and 3.12), concrete 

at that Gauss point is considered to be crushed. 

(e) WEB CRUSHING 

Web crushing is a common failure mode in beams or walls "with large flanges and relatively 

thin web subjected to high shear stress" (103). The PCA wall specimens that experienced web crush-

ing are B2, B5, B6, B7, B8, and B9. As reported by Oesterle et ale (103), web crushing strength of _ ._ 

structural wall depends on deformation history, concrete strength, applied axial load, and applied 

lateral load. They also reported that the compressive strength of concrete struts in the web decreased 

due to the defonnation history. Such decrease in compressive strength led to the web crushing in 

concrete struts at a stress level that is much lower than the compressive strength of concrete. 

Several researchers have proposed analytical models for calculating the effective strength 

of concrete struts as described in Eq. 6.2 through 6.4. 

= Effective compressive strength of concrete struts 

Placas and Regan (117): fd 

eh 

Collins (40): fd 

kd 

y 

EO 

= 

= 

-

= 

= 
= 

98 

(25 + 500 flh) Ii (6.2) 

Horizontal shear reinforcement ratio 

kdlc (6.3) 

3.60 

1 + 21' 
Eo 

Average value of maximum shear strain 

Axial strain atC compressive stress 
of concrete cy der 



Stevens et al. (134): = 

= 

= 
= 

1 

0.80 + 0.34[ ~~ ] 

Principal tensile strain ..L to crack 

Axial strain at peak: compressive stress 
of concrete cylinder 

(6.4) 

Oesterle et al. (104) compared the effective strength calculated from Eq. 6.3 with the exper

imental results from the peA tests of isolated walls. The calculated results agree with the exper

imental data as shown in Fig. 6.49. 

During the experimental tests, it was observed that crushing of concrete struts started in the 

lower 3 ft of the compression zone in the walls that failed in the web crushing mode. These sections 

of the webs experienced high shear distortions prior to the crushing (0.010-0.030 radian). There-

fore, it is reasonable to assume that the reduction in compressive strength of concrete struts in slender 

reinforced concrete walls is related to shear distortion in the lower portion of the walls. The equation 

proposed by Collins (Eq. 6.3), which uses shear distortion as a measure of strain condition, was 

adopted in this research as a means of calculating the effective compressive strength of the concrete 

struts. Although Eq. 6.4, which was proposed by Stevens et al., is a refined version of Eq. 6.3, it 

is not appropriate for the analysis considered in this study because principal tensile strain is used as 

the measure of the strain condition. If Eq. 6.4 is used to calculate web crushing in shear walls, web 

crushing would be calculated to occur in the tensile boundary element, where the principal tensile 

strain is highest, rather than in the compression zone as observed in the PCA wall tests. 

In the proposed model, the compressive stress in the direction of the crack and the effective 

compressive strength are calculated at every Gauss point If the compressive stress exceeds the ef

fective compressive strength at any location, the concrete at that point is considered crushed. Be

cause the effective strength of concrete calculated from Eq. 6.3 is approximate, the proposed model 

can only indicate the possibility of a web ~shing mode of failure in an approximate manner. Dur

ing the analyses, web crushing was evaluated at the peak positive and negative displacement of each 
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load cycle. If the effective compressive strength of the concrete was exceeded at more than eight 

Gauss points in the web, web crushing was considered to have occurred during that load cycle. 

6.4.4 CRACK PATTERNS 

Crack patterns of the wall specimens can also be divided into two groups according to the 

level of the maximum nominal shear stress applied to the walls (103). Crack patterns of the walls 

that were subjected to low nominal shear stresses (walls R1, R2, R4, B1, and B3) consist of large 

horizontal cracks in the lower 3 ft. of the walls and some inclined cracks in the upper portion of the 

walls (Fig. 6.50[ aD. These horizontal cracks, which are the result of large tensile strain in the bound

ary elements, governed the cyclic response of the walls after a few inelastic cycles. The shear 

stresses were transferred primarily by aggregate interlock and dowel action mechanisms. Because 

of the low flexural strength of the walls, these shear transfer mechanisms were adequate to prevent 

a brittle shear failure mode and to develop the flexural failure mode instead. Crack patterns of the 

walls that were subjected to high nominal shear stresses (walls R3, B2, B4 through B9) were domi

nated by the inclined cracks "crisscrossing" the web (106) (Fig. 6.50[bD. Shear stress was trans

ferred primarily by truss action of the concrete struts along these inclined cracks. Because of their 

high flexural strength which resulted in high compressive stress in the concrete struts, these walls 

failed by crushing of concrete in the web. 

The typical calculated crack patterns in a wall that was subjected to low nominal shear stress 

(wall Rl) and in a wall that was subjected to high nominal shear stress (wall B7) are shown in Fig. 

6.51 and 6.52. Crack patterns are shown at seven load steps, each of which is the load step corre

sponding to a maximum or minimum displacement during the loading cycle. The thickness of each 

crack represents the magnitude of the tensile strain normal to the crack. The calculated crack pattern 

for wall Rl is dominated by horizontal cracks in the lower portion of the wall from the early stages 

of loading. Inclined cracks occur in the upper portion of the web during the later stages of loading. 

However, the crack widths of the horizontal cracks are larger than those of the inclined cracks. The 

calculated crack pattern for wall B7 includes both inclined cracks in the web and horizontal cracks 
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in the boundary elements. The steep angles of cracks in the web reflect the presence of high shear 

stresses. TIris shear stress, which is a result of the applied compressive axial stress and a large amount 

of flexural reinforcement in the boundary elements, caused the principal stress direction to rotate 

from the vertical direction and resulted in the inclined crack angles. As the load reversal continues, 

the widths of both the inclined and horizontal cracks increase. This reflects the combination of both 

the flexural and shear modes of defonnation. The calculated crack angles in the web for wall B7 

(Fig. 6.52), most of which are close to 45 degrees, are more unifonn than those for wall Rl, which 

are more scattered. Such behavior was also observed in the experimental results (Fig. 6.50). 

Another important observation from the calculated crack pattern is that the majority of the 

cracks remained open throughout the loading cycles in the lower portion of both walls Rl and B7. 

Only a srnall number of cracks, most of which were in the compression zone, closed. Because the 

concrete with wide-open cracks could provide little compressive and tensile resistance, the major 

force resistance in the lower portion of the wall was provided mainly by the reinforcing steel This 

behavior confinns the important role of reinforcing steel in governing the cyclic response of rein-

forced concrete shear walls. 

6.5 TYPICAL CYCLIC BEHAVIOR OF RIC SHEAR WALLS 

As mention in Section 6.2, the results of the finite element analysis contain a variety of in

formation, some of which cannot be measured directly and are useful for understanding of the cyclic 

response of reinforced concrete shear walls. It is important for the finite element users to realize 

that despite the several digits of precision obtained from the calculations, the finite element results 

cannot be more accurate or better than the assumptions used in the material models. The finite ele

ment method can provide valuable infonnation as long as the users are aware of all the important 

assumptions made in the material models and the limitations of finite element analysis, in general. 

In the following section, detailed results from the analysis of two wall specimens, Rl and 

B7, are examined. Rl is representative of the walls that were subjected to low nominal shear stress 

while B7 represents the walls that were subjected to high nominal shear stress. The analytical results 
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include deformed shapes, stress and strain distributions in the concrete, and stress-strain relation

ship in the reinforcing steeL 

The deformed shapes, shear strain distribution, axial strain (cy) distribution, and axial stress 

(Oy) distribution for walls Rl and B7 at several load steps are shown in Fig. 6.53 through 6.60. The 

load vs. strain curves for the longitudinal reinforcement are given in Fig. 6.61 and 6.62. The dis

tributions of strain in the vertical reinforcement at different heights above the base are shown in Fig. 

6.63 through 6.66. The complete stress-strain relationships for vertical reinforcing bars in the lower 

3 ft of walls Rl and B7 are shown in Fig. 6.67 and 6.68. Some important aspects of the cyclic behav

ior of the walls are summarized below: 

• Although wall Rl has a well-rounded force-deformation curve indicating good 

energy dissipation characteristics, the shear strain in the lower portion of wall Rl is as large 

as that of wall B7 (Fig. 6.54 and Fig. 6.58). This shows that the well-rounded P-D.. curve 

of wall Rl is not caused by the domination of the flexural mode of deformation but rather 

is caused by the low flexural stiffness of the wall. As a result, no pinching or increase in 

lateral stiffness is observed in the load-deflection curve as the mode of deformation char,tges 

from the shear mode to the flexural mode. In spite of the large shear distortion, wall Rl does 

not experience web crushing because the strength of the wall is governed by the low flexural 

capacity. 

• Shear distortions in both wall Rl and B7 are concentrated in the lower 6 ft of the 

walls. When the vertical steel yields, the crack widths increase. The increase in crack width 

greatly reduces the ability of concrete to transfer shear stress by aggregate interlock. The 

concentration of the shear distortion occurs in the area where the vertical steel has yielded 

(Fig. 6.54, 6.55, 6.58, and 6.59). Therefore, one possible way to decrease shear distortion 

of the wall is to provide additional reinforcement in the lower portion of the wall to help 

minimize the crack width of concrete in the web and, therefore, improve the shear transfer 

mechanism by aggregate interlock. This approach is discussed in Chapter 8. 
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• The distribution of vertical stress and strain in walls R1 and B7 (Fig. 6.55, 6.56, 

6.59, and 6.60) indicates that compressive stresses exceed 0.20 fe' in the lower 8 ft of the 

boundary element in wall R1 while at least 12 ft of the boundary element in wall B 7 is sub

jected to the same level of compressive stress. According to Section 21.5.3 of the 1989 ACI 

Building Code (2), which requires transverse reinforcement to be provided in the boundary 

elements with the stress3 at the extreme fiber exceeding 0.20 f' e, the transverse reinforce

ment should be provided in the boundary elements of wall R1 up to the height of 7 ft and 

in the boundary elements of wall B7 up to the height of 12 ft Based on the calculated results, 

the code provisions can estimate the location where the transverse reinforcement is needed 

in the boundary elements fairly accurately despite the simple method used in the calculation. 

However, if the configurations of the wall are more complicated or the wall is subjected to 

different types of loadings, these simple code provisions are "not likely to be able to estimate 

correctly the location where the transverse reinforcement is needed. In such situation, finite 

element analysis can be used to estimate the level of compressive stress in the boundary ele

ments for a proper design of the transverse reinforcement. 

• The distribution of strain in vertical reinforcement at different sections of the 

walls are shown in Fig. 6.63 through 6.66. In both walls, the vertical strain distribution is 

not linear as usually assumed in the design process. A large strain gradient occurs:in the com

pression zone. Because the compression zone is relatively small compared with the depth 

of the wall and the stress in reinforcing steel does not vary much after the steel has yielded, 

the assumption of linear strain distribution still provides a reasonable approximation of the 

flexural strength of the walls. However, such assumption is inadequate to estimate the stiff

ness of the wall especially when the wall is SUbjected to several large load reversals. In order 

to more closely estimate the defonnation characteristics of the walls, the nonlinear distribu

tion of vertical reinforcement at different sections must be considered. 

3 S tress is calculated from the factored force using a linear model and gross-section properties. 
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• The plots of load vs. strain in the main flexural reinforcement of walls R1 and B7 

are shown in Fig. 6.61 and 6.62. This curve together with the p-~ curves (Fig. 6.21 and 

Fig. 6.31) and the P-y curves (Fig. 6.35 and Fig. 6.45) illustrate the load resisting mecha

nisms in shear walls. Each half cycle of a p-~ curve consists of three major regions: 1) stiff 

unloading region, 2) shear dominated region, and 3) flexural dominated region. The stiff 

unloading region is a result of the initially high flexural and shear stiffness at the beginning 

of a load reversal. The shear dominated region is the section of the curve where a large in

crease in shear distortion occurs in the lower portion of the wall, while the flexural dominated 

region is the section of the curve where there is a large change in a curvature of the wall. For 

example, in the last load reversal of wall R1 (+4.00 in. to -4.00 in. in Fig. 6.21), the stiff 

unloading region is section A-B. Because of high shear and flexural stiffnesses at the begin

ning of unloading, there are small changes in the strain in longiwdinal reinforcement (Fig. 

6.61) and in the shear distortion (Fig. 6.35) in this region. The next region, which is the sec

tion of the curve from point B to point C (Fig. 6.21), is dominated by shear distortion. In 

this region, the top of the wall travels 3.0 in. with a large increase in shear distortion in the 

lower portion of the wall (Fig. 6.35) but with a small increase in compressive strain of the 

flexural reinforcement (Fig. 6.61). This shows that the wall deforms more in the shear mode 

than in the flexural mode. The next region, which is the section of the curve from point C 

to point D (Fig. 6.21), represents the flexural dominated region. In this region, the top of 

the wall travels 3.8 in. with a much smaller increase in shear distortion than that in the pre

vious region (Fig. 6.35) but with large increase in the compressive strain in the flexural rein

forcement (Fig. 6.61). This shows that, in this region, wall R1 deforms primarily in the flex

ural mode. Wall B7 also exhibits similar behavior. The only difference is that the flexural 

stiffness of wall B7 is much greater than that of wall Rl. This results in pinching of the p-~ 

curve as the curve changes from the shear dorninatedregion to the flexural dorninatedregion. 

• The typical stress-strain relationship for vertical reinforcing steel in the lower 

3 ft of walls Rl and B7 are shown in Fig. 6.67 and 6.68. All the reinforcing steel in this region 
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started yielding at the early stage of loading. Reinforcing bars that were located near and 

in the boundary elements experienced large load reversals and a significant Bauscbinger ef

fect. Tensile stress in the longitudinal bars at the base of both boundary elements could be 

as high as 140% of the yield stress. This high stress had a significant effect on the ultimate 

capacity of the walls and must be considered when the ultimate strength of the walls was eva

luated. It can also be seen that most of the reinforcing bars in the lower portion of both walls 

R1 and B7 experienced tensile strain,during most of the loading history. This indicates that 

the majority of the cracks in the lower portion of the walls remained open throughout the 

loading history and the major force resistance was provided by reinforcing steel. 

All these calculated results illustrate the variety of infonnation that can be obtained from the 

finite element analysis. Such infonnation can be useful both in the design process to check the in

elastic response of shear walls and in the research to obtain better understanding in the behavior of 

shear walls. Applications of the finite element method in the analysis of reinforced concrete shear 

walls are discussed in Chapter 8. 
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7. TESTS OF C-SHAPED WALLS 

When reinforced concrete shear walls are used as lateral load resisting systems in tall build-

ings, they are commonly constructed as elevator cores or stair wells. Such practices result in shear 

walls with intersecting flanges in the orthogonal direction. Although these intersecting flanges have 

a significant influence on the behavior of the wall when subjected to lateral loads, the flange con

tribution to the overall, load resisting capacity of the walls is not explicitly defined. For the design 

of structural walls, the current 1989 ACI Building Code (2) does not have any provision for evaluat

ing the effective width of intersecting flanges. Provisions for evaluating the effective width of T

beams are typically used. The definition of effective width for T-beams provides a conservative 

estimate of the strength of a wall under monotonic loadings; however, it is inadequate for calculating 

the behavior of the wall when subjected to cyclic loading. As a resul4 a better understanding of the 

contributions of intersecting flanges to the overall behavior of a wall is needed. 

There are also several other aspects of the behavior of intersecting legs that need further 

study, such as influence of vertical and horizontal web reinforcement and effects of confinement re

inforcement in the boundary elements. In order to provide some of the needed information, an ex

perimental program was undertaken to investigate the strength and stiffness characteristics of walls 

with intersecting flanges subjected to cyclic loadings. Two isolated, C-shaped wall specimens were 

tested under lateral load reversals at the University of lllinois. 

In this chapter, the experimental program is discussed briefly, the experimental results are 

summarized, and the proposed analytical models are used to calculate the cyclic response of the two 

wall specimens. 

7.1 EXPERIMENTAL PROGRAM 

The major objectives of the experimental program were: 

1) to investigate the inelastic cyclic response and energy dissipation characteristics 

of walls with intersecting flanges; 
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2) to detennine the effective stiffness of walls with intersecting flanges at various 

levels of displacement; 

3) to detennine the lnfluence of the amount of web reinforcement on the behavior 

of the walls; 

4) to provide experimental data to verify the results from finite element models of 

walls with intersecting flanges. 

In order to accomplish these objectives, two C-shaped, reinforced concrete walls were 

constructed and subjected to cyclic loadings. The details of the specimens and the testing procedures 

are described as follows. 

7.1.1 C-SHAPED WALL SPECIMENS 

Both of the wall specimens (walls eMS and CLS) had a C-shaped cross section. Each sec

tion consisted of two 36-in.long parallel webs and a 60-in. long connecting flange as shown in Fig. 

7.1. Both walls were 9-ft. tall and 3-in. thick. The 60-in. flange width was chosen to be longer 

than the effective width defined for a T-beam with a 3-in. flange in Sections 8.10.2 and 8.10.4 of 

the 1989 ACI Building Code (2). Each wall was cast on a base girder which was later anchored to 

the testing floor. 

Both walls had the same amount of flexural reinforcement. The main longitudinal reinforce

ment in each web consisted of ten #3 bars, four of which were placed in the boundary element at 

the intersection between the flange and the web while the other six bars were placed in the boundary 

element at the north end of the web (Fig. 7.1). The transverse reinforcement in the boundary element 

was made from No.1 0 gage wire. Square spirals were used in the boundary elements with four longi

tudinal reinforcing bars while rectangular spirals with cross-ties were used in the boundary elements 

with six longitudinal reinforcing bars (Fig. 7.1). The vertical spacing of all transverse reinforcement 

was 2 in. The amount of transverse reinforcement provided in the boundary elements was equal to 
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approximately two-thirds of the amount required in the 1989 ACI Building Code (2) for walls with 

high axial stresses. 

The difference between walls CLS and CMS was the amount of web reinforcement. Wall 

CLS was designed to have a web reinforcement ratio of 0.0025, the minimum allowed in the 1989 

ACI Building Code (2), while wall CMS had twice as much web reinforcement. Web reinforcement 

ratios in the vertical and horizontal directions are equal. A single layer of #2 defonned bars were 

used as the web reinforcement. The nominal spacing of the bars was 6 in. in wall CLS and 3 in. in 

wall CMS (Fig.7.1). Measured material properties for these two walls are given in Appendix F. 

Both walls were subjected to static load reversals with the lateral force applied at the top of 

the wall. Reinforcement was selected such that the nominal flexural capacity of each wall was less 

that the nominal shear capacity. According to the 1989 ACIBuilding Code (2), the nominal shear 

capacity of wall CLS was 63.3 kips and the nominal shear capacity of wall CMS waS 99.4 kips. The 

nominal flexural capacity of wall CLS was between 44.6 kips and 51.8 kips while the nominal flexu

ral capacity of wall CMS was between 53.2 kips and 64.4 kips. The lower bound of the nominal 

flexural capacity was obtained using an elasto-plastic stress-strain relationship for the reinforcing 

steel while the upper bound estimate included the strain-hardening behavior. 

7.1.2 TESTING PROCEDURES 

Both wall specimens were subjected to lateral load reversals in the north-south direction. 

The lateral load was applied by a single ram with a capacity of 100 kips located on the top of the 

wall (Fig. 7.2). The ram was attached to a 2-in. thick steel plate which transferred load from the 

ram to the wall specimen. All vertical reinforcing bars extended through the steel plate. The longitu

dinal steel and vertical web steel had. been threaded at the top prior to construction. Nuts were used 

to clamp the steel plate in place. The slip along this joint was measured to be less than 0.005 in. 

throughout the entire series of tests. 

An axial load of 100 kips was applied to both wall specimens. The load was applied by eight 

center hole jacks which were placed on the top steel plate as shown in Fig. 7.2. The locations of these 
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jacks were selected such that the axial load was evenly distributed over the cross section. The axial 

load,which resulted in a nominal axial stress of 265 psi, was maintained throughout the test. 

Each wall specimen was subjected to five stages of lateral load reversals. In stage I, a load 

of ± 10 kipsl, which was approximately half of the initial cracking load, was gradually applied to 

the wall specimen. This load cycle was used to evaluate the uncracked stiffness of the wall specimen 

and to check whether all the instruments were working properly. In stage II, the wall specimen was 

loaded to top deflection of ± 1 in. In stage ill, the wall specimen was again loaded to ± I-in. top 

deflection for two more cycles. This stage caused further yielding of the flexural reinforcement. 

In stage Iv, the wall specimen was loaded for three cycles at ± l.5-in. top deflection. Finally, in 

stage V, the wall specimen was loaded until it failed. In this stage, the wall specimen was loaded 

to a top deflection greater than 2 in. The exact deflection was determined during the test according 

to the perfonnance of the wall. The objective of this stage was to allow the wall specimen to experi

ence a top deflection greater than 2 in. for several cycles. The displacement histories for stages II 

to V for walls CLS and CMS are shown in Fig. 7.3. 

7.1.3 INSTRUMENTATION 

Three types of displacement measuring instruments were used during the tests: Linear Volt

age Displacement Transducers (LVDTs), dial gages, and mechanical strain gages. Thirty-seven 

L VDT's were used to monitor the response of specimen CLS and 45 L VDT's were used for specimen 

eMS. Twelve of these L VDTs measured the horizontal displacements, 9 ft, 6 it, and 3 ft above the 

base girder along the north and south sides of both webs. Twelve other LVDTs measured the relative 

displacements in the diagonal, horizontal, and vertical directions of four points that were located in 

a 3D-in. square in the lower, interior panel of both webs (points A,B,C, andD in Fig. 7. 1 (a)). These 

displacements were used to calculate shear distortion in the lower portion of the web. Thirteen other 

L VDTs measured the vertical displacement of the wall at 3 in. above the base. Four of these L VDTs 

were located at each of the four comers while the other nine were located along the base of the flange. 

1 Positive loadings cause the transverse flange to be in compression while negative loadings cause the trans
verse flange to be in tension. 
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In wall CMS, eightLVDTs were added to measure the vertical movement of the base girder. Some 

of the measurement from these L VDTs were later compared with the calculated nodal displacements 

from the £Dite element result Such comparison is discussed in Section 7.4. A total of 26 dial gages 

were attached to each wall specimen. These dial gages were used to measure the displacements and 

rotations of the base girder, to measure slip along the construction joints, and to provide backup mea

surements for some of the L VDTs. 

Two other types of instruments that were used to collect data during the tests were strain 

gages and load cells. Strain gages were attached to some of the vertical web reinforcement and main 

flexural reinforcement near the base of the wall specimen. Load cells were used to measure the ap

plied axial load in each jack. Data from LVDTs, strain gages, and load cells were collected by the 

data acquisition system and recorded digitally using a personal computer. 

7.2 OBSERVED RESPONSE OF THE WALLS 

Both walls remained uncracked during stage 1. During stage II and ill, cracking of the con

crete was observed in the lower portion of the wall and yielding of the longitudinal reinforcement 

in the boundary elements and vertical. web reinforcement in the transverse wall was observed. Sig

nificant horizontal cracks and inclined cracks were also observed in the webs of the specimens. Con

crete in the north boundary elements started spalling in this stage of the loading history. In stage 

Iv, at ± 1.S-in. top deflection, all cover concrete in the north boundary elements spalled. The main 

flexural reinforcing bars in the north boundary elements were observed to buckle slightly_ However, 

such buckling did not progress because the bars were still restrained by the confinement reinforce

ment 

Failures of both wall specimens occurred in load stage V following crushing of the concrete 

in the north boundary elements. Specimen CLS lost its load-carrying capacity when the rectangular 

spiral reinforcement in the lower portion of the north-west boundary element suddenly fractured 

and several longitudinal reinforcing bars buckled. This spiral reinforcement fractured because the 

adjacent longitudinal bars in the lower portion of the boundary element buckled in opposite direc-
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cent longitudinal bars in the lower portion of the boundary element buckled in the same direction. 

After the failure, the region of crushed concrete extended nearly the entire length of the web in both 

wall specimens. 

7.3 FINITE ELEMENT MODEL 

Mter the completion of the experimental program, the analytical models were developed to 

study the behavior of the walls. The selection of the finite element model and the analytical proce

dures are described below. 

7.3.1 CHOICE OF ELEMENT 

The material model for concrete described in Chapter 3 was developed for two-dimensional 

plane stress elements. The model yielded satisfactory results for the analysis of reinforced concrete 

shear walls with rectangular and barbell cross sections. Because of the configuration of the intersect

ing flanges in the C-shaped walls, the original plan was to modify the concrete material model to 

be used with shell elements and use the shell elements to model the three-dimensional wall speci

mens. But when the problem was considered carefully, it was found that it might be possible to use 

two-dimensional plane stress elements to model the C-shaped wall instead of shell elements withC?ut 

a loss in the accuracy of the solution. 

A shell element incorporates two types of stiffness: bending stiffness and in-plane stiffness. 

Without the bending stiffness, the shell element will behave in the same manner as a two-dimension

al plane stress element The C-shaped walls tested in this investigation had a long, thin flange (the 

span-to--depth ratio was about 36). Therefore, the bending stiffness of the flange will contribute 

little to the total stiffness of the wall (especially when the concrete in the flange cracks and the flexu-
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ral stiffness of the flange is greatly reduced) and the flange in the C-shaped wall can be modelled 

by using two-dimensional plane stress elements. 

Two linear finite element analyses of a C-shaped wall with the same dimensions as those of 

the walls tested in this research program were conducted to evaluate differences in the calculated 

results when the two-dimensional and the shell elements were used (Fig. 7.4). In the first analysis, 

two-dimensional plane stress elements were used to model the wall while the shell elements were 

used in the second analysis. In both cases, the top corner node of the wall was subjected to a pre

scribed displacement of + 1 in. (positive top displacement causes the intersecting flange to be in com

pression). The results of the two analyses are compared in Fig. 7.5 through 7.7 and in Table 7.1. 

Several aspects of the calculated results are compared in these figures, including the distribution of 

vertical displacement along the top of the wall (Fig. 7.5), the deformed shape (Fig. 7.6), the vertical 

stress distribution in the wall (Fig. 7.7), the reaction at the corner node (Table 7.1), and the CPU time 

required in the analysis (Table 7.1). The distribution of the vertical displacement at the top of the 

wall was selected for comparison because it represents the sum of the vertical strains distributed 

along the vertical axis of. the web and flange and, hence, represents the overall contribution of the 

web and flange in resisting the applied horizontal load. It can be seen that all these aspects of the 

calculated results using two-dimensional plane stress elements are nearly the same as those using 

shell elements. But using two-dimensional elements requires only about In of the CPU time re

quired when using shell elements (Table 7.1). Therefore, two-dimensional plane stress elements 

were used to model the C-shaped shear wall in this investigation. 

7.3.2 WALL MODEL 

Two-dimensional plane stress elements were used to model concrete elements in the walls. 

The same model was used for both walls CLS and CMS and, because of the symmetry, only half 

of each wall was modelled. The only d.i:fference between the finite element model of the two walls 

is the amount of web reinforcement The model comprises 266 concrete elements and 536 steel 

elements. All nodes at the base of the wall were fixed in the horizontal and vertical directions (Fig. 
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7.8). The axial load was applied by vertical nodal loads at 2 nodes in the web and 6 nodes along the 

south flange of the wall (Fig. 7.8). The horizontal displacement in the direction of loading at top 

corner node (Fig. 7.8) was specified to be the same as the displacement history used in the exper

imental program (Fig. 7.3). 

In the analyses of walls CLS and CMS, the values of all parameter used in the material mod

els are the same as those used in the analyses of the peA walls in Chapter 6 with two exceptions 

indicated below: 

• For eo, which controls the shear stiffness caused by aggregate interlock, a value 

of 25.0 . eer was used instead of 12.50 . eer. This change did not have influence the calcu

lated load vs. top deflection response of the walls. However, it reduced the shear deforma

tion in the lower 3 ft of the wall to a level which was consistent with the experimental re-

sults. The difference between the value of co used in the peA walls and that used in the 

C-shaped walls might be attributed to two factors: the difference in the magnitude of the 

applied axial stress and the difference in the type of gravel used in the concrete mix of the 

wall specimens. These two factors have significant influence on the interface shear transfer 

stiffness of cracked concrete. The adjustment of the material model parameters indicates 

that the finite element analysis cannot completely replace the experimental work and the 

experiment results are still needed for calibrating the material model. However, once the 

material model has been calibrated for a certain type of reinforced concrete member, the 

finite element method can be used to extend the investigation on the response of that rein

forced concrete member with different configurations, reinforcement details, and loading 

histories. 

• The concrete elements in the south flange (which were modelled by using two-

dimensional plane stress elements in the Y -Z plane) provided no shear stiffness in the 

direction of loading. Therefore, some of the shear stiffness parameters in the concrete ele

ments in the south boundary elements (/ll, J.L2, Gmin, 'tslip' and Gun1) were increased by a 
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factor of IOta take into account the increased shear stiffness of the south flange. The factor 

was determined by dividing the width of the south flange by the thickness of the boundary 

element. The other shear stiffness parameters (cmin, Y n, n, and ~) were not changed because 

they are not effected by the difference in the thickness of the concrete element 

7.4 EVALUATION OF THE FINITE ELEMENT RESULTS 

The comparisons between the calculated load vs. deflection at 3-ft, 6-ft, and 9-ft levels and 

the experimental data for walls CLS and CMS are shown in Fig. 7.9 and 7.10. The comparisons 

between the calculated load vs. shear distortion in the lower 3 ft of the web and the experimental 

data are shown in Fig. 7.11 and 7.12. The calculated responses of both walls are in good agreement 

with the experimental data. 

The criteria for evaluating the failure modes in the analyses of the PCA walls (Section 6.4.3) 

were also used in the analyses of the C-shaped walls. The comparisons between the calculated fail

ure modes and the observed failure modes are given in Table 7.2. The calculated results indicated 

that extensive crushing of concrete and inelastic bar buckling occurred in the north boundary ele

ments of both walls in load stage V. Extensive web crushing in the lower portion of both walls was 

also observed during the last load cycle of the calculated response. These calculated failure modes 

agreed with the experiment results. In the experiments, both walls lost their load-carrying capacity 

after the north longitudinal reinforcement had buckled and the concrete in the north boundary ele

ments had been crushed. Crushing of concrete along almost the entire length of the web was also 

o bserved in both walls at the end of the tests. 

Several aspects of the calculated responses of wall CLS and CMS are shown in Fig. 7.13 

through 7.22. Figures 7.13 through 7.18 show the calculated defonned shapes, the calculated verti

cal stress distribution, and the calculated shear strain distribution at different top-deflection levels 

for walls CLS and CMS. Figures 7.19 and 7.20 show the calculated crack patterns of both walls at 

different top-defiection levels. Figures 7.21 and 7.22 show the plots of the stress-strain relationship 
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of vertical reinforcement in the south flange at 3 in., 9 in., and 15 in. above the base. The following 

describes several important aspects of the calculated cyclic behavior of the C-shaped walls: 

• Inelastic shear strain was concentrated in the lower 3 ft. of both walls (Fig. 7.15 

and 7.18). The south flange did not significantly increase the inelastic shear stiffness of the 

walls. This is due to the fact that the thickness of the flange was much less than the depth 

of the web, and cracks in the lower portion of the flange remained open during most of the 

loading history. As a result, the shear stiffness of the flange in the N-S direction was much 

smaller than the shear stiffness of the web. Although wall CMS had twice the amount of web 

reinforcement provided in wall CLS, both walls experienced the same magnitude of shear 

distortion in the lower 3 ft of the walls. This indicates that the vertical and horizontal web 

reinforcement did not significantly improve the inelastic shear transfer capacity of the wall. 

The influence of different reinforcement details on the inelastic shear stiffness of walls is 

discussed in Section 9.1. 

• As can be seen in Fig. 7.21 and 7.22, all the vertical steel at the base of the flange 

was effective in providing tensile resistance when the flange was in tension. All vertical rein-

forcement at the base of the south flange experienced similar stress-strain histories. This 

indicates that the effective width of the flange when it was in tension could be as high as ten 

times the thickness of the flange. The use of a too small effective width can lead to a signifi

cant underestimation of the strength of the wall. This might result in the selection of inade

quate transverse reinforcement and unexpected crushing of the concrete in the boundary ele

ments opposite the intersecting flange. 

• When the flange is in compression, the concrete in the flange helps the south 

boundary elements provide the compression resistance. Figures 7.14 and 7.17 show that the 

compressive stress in the flange and in the south boundary element was quite uniform and 

remained low (less than 0.3 fc ') throughout the analyses. This indicates that concrete in the 

entire flange was effective in providing the compression resistance for the wall. However, 
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the effective width of the flange at its capacity cannot be concluded from the calculated re

sponse because the amount of reinforcement in the north boundary element was not enough 

to cause crushing of the concrete in the south boundary elements and in the intersecting 

flange. 

Because only two walls were analyzed, no major conclusions on the general cyclic behavior 

of C-shaped walls could be drawn from the calculated response. However, the proposed finite ele

ment models successfully simulated several important aspects of the cyclic behavior of C-shaped 

walls. Therefore, the finite element method can be used to extend the investigation on the behavior 

of C-shaped walls with different configurations. Such an investigation is discussed in Section 9.3. 
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8. APPLICATIONS OF THE FINITE ELEMENT METHOD 

The material models for concrete and reinforcing steel that were presented in Chapfers 3 and 

4 and verified in Chapters 6 and 7 can now be used to investigate behavior of reinforced concrete 

walls with different configurations and loading histories. Finite element analysis of reinforced con

crete members is useful both in research and in practice. In research, finite element analyses may 

be used to expand the scope of an experimental program. Because experimental testing is usually 

expensive and time--consuming, only a limited number of parameters can be studied. The finite ele

ment method can be a powerful tool for extending an investigation on the behavior of reinforced 

concrete members, provided that the fInite element analysis is able to simulate all the important as

pects of the experimental results. Finite element analysis also helps researchers to understand exper

imental results better by providing some important information (such as distribution of curvature 

and strain) which cannot be obtained from the experimental results. In design offices, the fInite ele

ment method can be used to check the load distribution within each component of a structure, to 

check the behavior of a structure subjected to different types of loadings, and to improve the behavior 

of a structure by changing the reinforcement details. 

This chapter illustrates three applications of finite element analysis to investigate the behav

ior of reinforced concrete shear walls. In the first application, finite element analysis is used to inves

tigate the energy dissipation capacity of shear walls with different reinforcement details. The second 

application involves using the finite element method to study and to improve the behavior of rein

forced concrete shear walls with openings. The third application studies the effective widths of C

shaped shear walls. 

8.1 ENERGY DISSIPATION CAPACITY OF RIC WALLS 

The two major objectives in the design of earthquake-resisting structures are: 1) to minimize 

structural damage in structures subjected to low-intensity earthquakes and 2) to prevent the collapse 

of but allow some structural damage in structures subjected to high-intensity earthquakes (123). 

Because of the large inherent lateral stiffness, a reinforced concrete shear wall is suitable for the first 
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objective. It can be designed to remain nearly elastic during a low-intensity earthquake and, hence, 

helps prevent structural damage to other components of the building. However, it is usually not eco

nomical to design a reinforced concrete shear wall to remain elastic during a strong earthquake. As 

a result, :in order to accomplish the second objective, designers must ensure that shear walls have 

adequate energy dissipation capacity in the inelastic range to survive a strong ground motion. 

8.1.1 ENERGY DISSIPATION MECHANISMS 

Concrete experiences significant degradation of strength and stiffness when subjected to 

large-amplitude cyclic loads. Therefore, the major energy dissipation in"reinforced concrete shear 

walls must be provided by the inelastic behavior of reinforcing steel (113). Appropriate detailed 

steel reinforcement can improve the energy dissipation capacity of the walls by 1) dissipating energy 

through yielding of the reinforcement itself and 2) reducing the strength and stiffness degradation 

of concrete and, hence, improving the energy dissipation capacity of concrete. The energy dissipated 

by a wall during a loading cycle can be represented by the area of the load vs. top deflection curve 

for that cycle. Reinforced concrete shear walls that defonn primarily in a flexural mode and have 

small inelastic shear defonnation will have a well-rounded load vs. deflection curve because the 

response of the wall is governed by the hysteresis behavior of the reinforcing steel. On the other 

hand, reinforced concrete shear walls that deform primarily in a shear mode and experience large 

inelastic shear defonnation have load vs. top deflection curves with a significant pinching because 

the response of the wall is governed by the cyclic shear transfer mechanisms of cracked concrete. 

As a result, walls that defonn mainly in a flexural mode have larger energy dissipation capacities 

and, hence, are more desirable in the design of earthquake-resistant structures than walls that deform 

mainly in a shear mode (113). 

In this investigation, the calculated energy dissipation of each wall model was evaluated by 

using the accumulated energy dissipation ratio, which is an accumulated ratio between the energy 

dissipated by the wall model in each cycle and the energy dissipated by an equivalent elasto-plastic 

system (Fig. 8.1). The elasto-p1astic system was chosen for comparison because it was the system 
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that had the best energy dissipation capacity (113). The initial stiffness of the elasto-plastic system 

is equal to the uncracked stiffness of the wall under study. As shown in Fig. ·8~ 1, the energy dissipated 

by a wall model in each cycle is represented by the area of the calculated load vs. top-deflection 

curve for that cycle (Al and A2in Fig. 8.1) while the energy dissipated by an elasto-plastic system' 

is represented by the area of the elasto-plastic load vs. top--deflection curve for that cycle (B 1 and 

B2 in Fig. 8.1). An energy dissipation ratio close to one reflects a wall with good energy dissipation 

capacity while a ratio close to zero reflects a wall with poor energy dissipation capacity. 

8.1.2 REINFORCEMENT DETAILS 

In order to improve the energy dissipation capacity of shear walls, designers must try to re

duce the inelastic shear defonnation (or increase inelastic shear stiffness) in the lower portion of the 

wall, allowing the wall to defonnmostly in the flexural mode. One possible way to reduce the inelas

tic shear defonnation and, hence, increase the energy dissipation capacity of the wall is to provide 

appropriate reinforcement details in the lower portion of the wall. The finite element method was 

used to study the effects of different arrangements of reinforcement on the inelastic shear deforma

tion and on the energy dissipation capacity of shear walls B2 and B7 which were tested at the peA 

and described in Chapter 6. The eight arrangements of reinforcement considered are shown in Fig. 

8.2 and the amount of reinforcement in each option is given in Table 8.1. Each of the reinforcement 

options is described below. 

Option # 1: Reinforcement details were the same as the original reinforcement 

details used in the PCA tests. The vertical web reinforcement ratio was 0.3% and the hori

zontal web reinforcement ratio was 0.6%. No diagonal reinforcement was used. 

Option #2: The amount of horizontal web reinforcement was doubled in the low-

er 5 ft of the web. This option was chosen to investigate the effectiveness of horizontal web 

reinforcement in limiting the inelastic shear defonnation of the wall. 

Option #3: Vertical web reinforcement with a reinforcement ratio of 0.6% was 

added to the lower 5 ft of the web. This additional reinforcement was embedded in the base 
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girder in the same way as a conventional vertical web reinforcement. This option was used 

to investigate the effects of varying amounts of vertical web reinforcement on the energy 

dissipation capacity of the wall. 

Option #4: Vertical web reinforcement with a reinforcement ratio of 0.6% was 

added in the lower 5 ft of the web. Unlike option #3, the additional vertical web reinforce

ment was not embedded in the base girder. 'This option was used to investigate the effective

ness of unanchored vertical web reinforcement in increasing the interface shear transfer stiff

ness of the web. 

Option #5: Distributed diagonal reinforcement with a ratio of 0.4% (in each 

direction) was added to the lower 5 ft of the web. The diagonal reinforcement was anchored 

in the base girder. This option was used to investigate the effectiveness of the distributed di

agonal. reinforcement in reducing the inelastic shear defonnation and in increasing the ener

gy dissipation capacity of the wall. 

Option #6: The reinforcement in this option is similar to that of option #5 except 

that the ratio of the additional diagonal reinforcement was 0.2% instead of 0.4%. This op

tion, together with option #5, was used to test the effectiveness of different amounts of diago

nal reinforcement in reducing inelastic shear deformation of the wall. 

Option #7: Four diagonal #5 bars (two in each direction) were added to the web. 

This option, together with option #5, was used to compare the effectiveness of distributed 

diagonal reinforcing bars to the effectiveness of concentrated reinforcing bars in improving 

the energy dissipation capacity of the wall. 

Option #8: Four diagonal #5 bars (two in each direction) were added to the web. 

The location of these bars was lower than the location of the bars in option #7 as shown in 

Fig. 8.2. TIlls option was used to investigate the effect of the location of the bars on their 

capacity to limit the inelastic shear defonnation of the wall. 
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A finite element mesh for each wall model was the same as that used in the analyses of the 

PCA walls in Chapter 6. Each wall model has the same boundary conditions, loading history, and 

the arrangement of horizontal and vertical reinforcing bar elements as the PCA wall models in Chap

ter 6 (Fig. 6.2 and 6.3). The area of the bar elements in the web was adjusted to represent the addi

tional web reinforcement in each reinforcement option. Diagonal reinforcement was incorporated 

into the wall model using a 2-node bar element connecting the two diagonally opposite nodes in each 

concrete element The material model parameters used in the analyses were the same as those used 

in the analyses of the peA walls in Chapter 6 (Table 6.2). 

8.1.3 ANALYTICAL RESULTS 

Figures 8.3 through 8.9 show the calculated response of walls B2 and B7 with the eight dif

ferent types of web reinforcement Figures 8.3 and 8.S show the load vs. top deflection curves while 

Fig. 8.4 and 8.6 show the load vs. shear distortion curves. Calculated crack patterns for walls B2 

and B7 are shown in Fig. 8.7 and Fig. 8.8. Figure 8.9 gives the plots of the accumulated energy 

dissipation ratio vs. the cycle number for walls B2 and B7 using the different reinforcement details. 

The calculated results for each reinforcement option are discussed below: 

Options #1, #2. and #3: As shown in Fig. 8.3 through 8.9, the wall models with rein

forcement options #1, #2, and #3 yield similar analytical results for load vs. top deflection 

curves, load vs. shear distortion curves, crack patterns, and energy dissipation capacity. The 

load-deflection curves experience significant pinching because of large inelastic shear de

formatio:n in the lower portion of the walls. Of the eight reinforcement options analyzed, 

these three options have the lowest energy dissipation capacities (Fig. 8.9). These analytical 

results show that increasing the amount of horizontal (option #2) and vertical (option #3) 

web reinforcement improves neither the energy dissipation capacity nor the strength of the 

walls. Extensive web crushing was also observed in the calculated response of both walls 

B2 and B7 with reinforcement options #1, #2, and #3. 
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As observed from the calculated response of the peA wall tests described in Chapter 

6, the interface shear transfer stiffness is a major component in the total shear stiffness of the 

reinforced concrete in the web. In order to reduce the inelastic shear deformation in the lower 

portion of the wall, the web reinforcement must be designed to minimize the crack width of 

concrete in the web because the magnitude of the interface shear transfer stiffness depends 

greatly on the crack ~dth. The widths of cracks in the web are governed primarily by the 

flexural behavior of the wall; therefore, increasing the horizontal web reinforcement does 

not have a significant effect on the crack widths as can be seen in Fig. 8.7 and 8.8. Increasing 

the vertical web reinforcement does not reduce the crack width either because, after yielding, 

the additional vertical reinforcement is not effective in holding the cracks together (Fig. 8.7 

and 8.8). The dowel stiffness of the additional vertical reinforcement is also insignificant 

because it is much less than the dowel stiffness provided by the longitudinal reinforcement 

in the boundary elements. Moreover, the dowel stiffness does not contribute much to the 

overall shear stiffness of reinforced concrete shear walls. As a result, increasing the amount 

of conventional web reinforcement will not limit inelastic shear distortion nor increase the 

energy dissipation capacity of the walls. Because the additional web reinforcement does not 

decrease the inelastic shear distortion in a wall, it cannot help prevent web crushing failure 

or increase the strength of the wall. This is due to the fact that the reduction in the compres

sive strength of concrete struts, which leads to the web crushing failure, is governed primari

ly by the magnitude of shear distortion in the lower portion of the wall (Eq. 6.3). 

Option #4: The energy dissipation capacity of wall models with reinforcement option 

#4 Js significantly better than the energy dissipation capacities of wall models with reinforce

ment options #1, #2, or #3. The load vs. top deflection curve displays much less pinching 

while the inelastic shear distortion in the lower 3 ft of both walls is reduced by nearly 50% 

(Fig. 8.3 through Fig. 8.6). The only difference between reinforcement in option #4 and #3 

is that the additional vertical web reinforcement in option #4 was not embedded in the base 

girder. This forced the vertical web reinforcement to yield primarily at the base level of the 
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wall Most of the vertical web reinforcement above the base level remained elastic and, 

therefore, was able to hold together the cracked concrete in the web. This resulted in smaller 

crack widths in the web, although the crack at the base of the wall was larger (Fig. 8.7 and 

8.8). The smaller crack widths in the web caused the increase in the interface shear stiffness 

of the cracked concrete and helped reduce the inelastic shear deformation, thereby improv

ing the energy dissipation capacity of the walls. 

Options #5 and #6: The energy dissipation capacities of wall models with reinforce

ment options #5 and #6 are greatly improved from those of options #1, #2, #3, and #4. Both 

load vs. ~op deflection curves and load vs. shear distortion curves have well rounded shapes 

(Fig. 8.3 through 8.6). The magnitude of the calculated shear distortion in the wall models 

with reinforcement options #5 and #6 is significantly smaller than that in the wall models 

with reinforcement options #1, #2, #3, and #4 (Fig. 8.4 and 8.6). These results show that 

the diagonal reinforcement is very effective in limiting the shear distortion and in improving 

the energy dissipation capacities of the walls. While vertical and horizontal web reinforce

ment indirectly helps transfer shear force through the dowel action and by transferring shear 

force to the diagonal. concrete struts, the diagonal. shear reinforcement directly transfers 

shear force to the base in the fonn of axial force, both tension and compression. Because 

the cyclic response of a reinforcing bar in the axial direction has good energy dissipation ca

pacity, the cyclic shear transfer mechanisms developed using diagonal reinforcement have 

much better energy dissipation capacities than the conventional shear transfer mechanisms 

which use interface shear transfer and dowel actions. Reinforcement option #5 has better 

energy dissipation capacity than option # 6 because of the larger amount of diagonal rein

forcement. Detennining the optimal amount of diagonal reinforcement requires a more de

tailed investigation including both experimental and analytical tests, which is beyond the 

scope of this study. 

Options #7 and #8: The improvements in the energy dissipation capacities of these 

two reinforcement op1;ions are close to those of options #5 and #6. This shows that both dis-
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tributed diagonal reinforcement and concentrated diagonal reinforcement are effective in 

improving the energy dissipation capacity of the walls. Although option·#5, which used dis

tributed diagonal reinforcement, has more energy dissipation capacity than option #7, which 

used concentrated diagonal reinforcement, option #7 might be more economical and more 

practical. This is due to the fact that option #5 requires nearly twice as much reinforcing steel 

as option #7. Furthern:'l.ore, option #5 requires a large number of reinforcing bars with differ

ent lengths. Therefore, it is more difficult to place the reinforcement for option #5 than for 

option #7, which requires only a few reinforcing bars with one or two different lengths. 

However, it should also be noted that the finite element analysis did not take into account 

bond-slip of the reinforcing bars and assumed a perfect bond between the concrete and rein

forcing steel. Bond-slip might be important when a single large bar is used to transfer a large 

shear force. 

From these analytical results, it can be seen that diagonal bars are the most effective fonn 

of reinforcement for improving the energy dissipation capacity of shear walls. In order for the diago

nal bars to be effective in transferring the shear force to the base, the bars should remain elastic 

throughout the loading history. To prevent the yielding of the diagonal reinforcement, engineers can 

simply assume that all the applied shear force is transferred by the diagonal reinforcement and pro

vide the amount of the diagonal reinforcement accordingly. Although diagonal reinforcement was 

used in the design of some shear walls in Chile (150), such practice is very limited in the U.S. and 

is not mentioned in the current ACI Building Code (2). More experimental programs are needed 

to study the cyclic response of reinforced concrete shear walls with diagonal reinforcement 

8.2 SHEAR WALLS WITH OPENINGS 

Solid, isolated reinforced concrete shear walls are not commonly used as the lateral-load 

resisting systems in tall buildings due to architectural constraints. Shear walls usually contain some 

openings or are connected with other structural members to form a lateral-load resisting system. 

As shown in Fig. 8.10, the shear wall systems generally used in tall buildings can be divided into 
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three types: coupled shear walls, wall-frame systems, and pierced shear walls (6, 126). Most pre

vious investigations of shear wall systems have concentrated on the behavior of wall-frame systems 

and coupled shear walls. The study of the response of pierced shear walls, especially the inelastic 

cyclic response, is quite limited (126). A pierced shear wall is usually designed as a solid wall and 

the effect of openings is often neglected. Reinforcement interrupted by the openings is simply 

moved to the sides of the openings. Such practice may be adequate in walls subjected to monotoni

cally increasing loads because the forces within the wall are not redistributed significantly and forces 

in each wall pier can be estimated using a conventional design method. However, when pierced 

walls are subjected to several cycles of post-yield load reversals, conventional design methods or 

a linear finite element analysis might not be able to estimate correctly the shear forces carried in each 

wall pier. This can result in inadequate distribution of shear reinforcement which can lead to a pre

mature failure of the structure. 

In this section, the finite element method is used to study the behavior of pierced shear walls. 

Experimental data from tests of pierced shear walls conducted at the Construction Technolo gy Labo

ratory of PCA (126) and at the Department of Civil Engineering, the University of Michigan (6) 

were used in this study. The major objectives of this study are: 1) to identify differences in the gener

al behavior of pierced shear walls and companion solid walls; 2) to study shear force redistribution 

in wall piers when the wall is SUbjected to severe cyclic loadings; and 3) to develop improved rein

forcement details for pierced shear walls. 

8.2.1 peA TESTS OF WALLS WITH AND WITHOUT OPENINGS 

Two wall specimens, a solid isolated wall (wall Cl1) and a companion wall with openings 

(wall PWl), were tested at the Construction Technology Laboratory of PCA in 1981 (126). As 

shown in Fig. 8.11, both specimens, which represented l/3-scale, six-story shear walls, had a total 

height of 18 it, a horizontal length of 6 ft-3 in., and a unifonn web thickness of 4 in. Every 3 ft over 

the height of the wall, a 2.5-in. thick stub representing a floor slab ran along both sides of the speci

mens. In wall PW1, an opening of 12.5 in. by 18.0 in. was located at the center of the wall panel 
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in each story (Fig. 8.12). Reinforcement details for wall ell are shown in Fig. 8.13. Reinforcement 

details for wall PWI were similar to those of wall CI1 except that the reinforcement interrupted by 

the openings was moved to the side of the openings. Both specimens were loaded as vertical cantile

vers using horizontal forces applied through the top slab (126). The loading history for each wall, 

which was derived from the dynamic response of a 6-story building subjected to an input ground 

motion of two actual earthquake records, is shown in Fig. 8.14. Material properties for both walls 

are given in Appendix G. Detailed descriptions of the test setup and the wall construction can be 

found in Ref. 126. 

8.2.1.1 EXPERIMENTAL RESULTS 

Specimen ell was able to sustain 2210ad cycles with a maximum applied load of 76.1 kips 

while specimen PWI was able to sustain 2310ad cycles with a maximum applied load of 65.7 kips 

before failure. The difference in the maximum applied loads can be attributed partly to the differ

ence in the material properties of the two specimens, especially the yield stresses of the longitudinal 

reinforcement (Table G.2). The experimental results indicated that openings had little effect on the 

response of the wall specimens (126). Both specimens experienced similar deformation characteris

tics. Extensive yielding of vertical reinforcement and large inelastic shear deformation were con

centrated in the lower 3 ft of the specimens. Significant pinching was observed in the load vs. shear 

distortion curves for both specimens. 

Although these two walls had similar deformation characteristics, therr failure modes were 

different. Wall ell failed in a "shear sliding" mode (126). During load cycle #22 (Fig. 8.14(a)), 

a large horizontal crack at mid-beight of the first story remained open across the full length of the 

specimen and the resistance to the applied shear force was provided solely by the dowel action of 

the vertical reinforcement across the crack. The specimen failed when concrete in the vicinity of 

this horizontal crack was severely distressed and could no longer provide the reaction to the dowel 

forces. Wall PWI failed in a shear-.<;ompression mode when diagonal cracks, which formed com

pression struts in both piers, spread into the boundary elements during load cycles 23 and 24 (Fig. 
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8.14(b)). Because the diagonal compression struts in the web were interrupted by the openings, 

shear stress had to be transferred through diagonal compression struts in the wall piers. This led to 

a concentration of shear force and shear deformation in the wall piers. Figure 8.15 illustrates the 

crack patterns in the the first story of walls CII and PWI after failure. 

8.2.1.2 ANALYTICAL RESULTS 

Both wall specimens were modelled using 4-node two-dimensional plane stress elements 

for concrete and 2-node bar elements for reinforcing steel. Finite element meshes for these models 

are shown in Fig. 8.16. A strip of 4-in. thick linear elements with a modulus of elasticity equal to 

the modulus of elasticity of concrete was used to model a floor slab at each story and at the top of 

the specimens. All nodes at the base of the wall were fixed in the horizontal and vertical directions. 

The horizontal displacement of the node at the upper left comer (Fig. 8.16) was specified to be the 

same as the displacement history used in the experimental program (Fig. 8.14). The material model 

parameters used in the analyses were the same as those used in the analyses of the PCA walls in Chap

ter 6 (Table 6.2). 

Figures 8.17 through 8.20 compare the calculated response with the experimental results for 

walls ClI and PWl. Load vs. top deflection curves are shown in Fig. 8.17 and 8.18 and the load 

vs. shear distortion in the first two stories are presented in Fig. 8.19 and 8.20. These comparisons 

show fair agreement between the calculated response and the experimental results. Calculated load 

vs. top deflection curves for both walls are significantly different from the experimental results dur

ing the first cycle of response. Such differences might be attributed to several factors such as the 

difference between the assumed material properties and the actual material properties and the pre

existing shrinkage cracks in the walls before the test. The calculated response provides a good 

approximation of the measured response in later load cycles. 

The calculated load vs. top deflection curves and the calculated load vs. shear distortion 

curves for both walls during the low-amplitude, post-yield cycles also deviate significantly from 
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the experimental data. During these cycles, both wall models experience larger shear distortion than 

that observed in the experimental results. 

Besides the top deflection and the shear distortion, another important aspect of the exper

imental results is the failure mode. The current version of the concrete model cannot predict the 

sliding shear failure mode because the upper bound of the dowel force is not included in the model. 

However, a careful study of the analytical. results indicates the potential failure mode of wall CIl. 

Crack patterns from the analytical results of wall CI1 at the end of load cycle #21 (Fig. 8.21 (a)) show 

that horizontal cracks at the middle of the trrst story remained open across the full length of the wall. 

As a result, the shear force in the first story had to be transferred to the base through the dowel action 

of the vertical reinforcement. Figure 8.21(a) also shows that wall CI1 experienced large inelastic 

shear strains in the first story. This large inelastic cyclic shear strain " damaged the concrete, making 

it unable to resist the large dowel forces in the reinforcing bars. This finally led to a sliding shear 

failure along the horizontal crack in the first story of wall Ol. 

Extensive web crushing was calculated in both piers of wall PWI in load cycles 20 through 

24. This agrees with the shear-compression failure mode observed in the experimental results. Two 

factors contribute to this mode of failure: 1) a reduction of the compressive strength of the concrete 

because of the large inelastic shear strain in each pier; and 2) a large shear stress in each pier. Figure 

8.21 (b) shows that specimen PW1 experienced large shear strains in both the first-story piers. These 

large shear strains caused a reduction in the compressive strength of the concrete as discussed in Sec

tion 6.4.3.5. The crack patterns for wall PW1 (Fig. 8.21 (b)) also show that most of the diagonal 

compressive struts in web were interrupted by the openings and, therefore, were ineffective in trans

ferring shear force. As a result, the shear force had to be transferred through the diagonal compres

sive struts in each pier. This resulted in high shear stresses in the compression pier. This high shear 

stress, together with the reduction in the compressive strength of the concrete in the wall piers, led 

to the shear-compression failure of wall PWI. 
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As can be seen from both the experimental and calculated results, the conventional design 

of shear reinforcement in pierced shear walls may be inadequate to control large inelastic shear de

fonnation or to prevent shear-:eompression failure in wall piers. In order to improve the perfor

mance of pierced shear walls, especially when subjected to severe cyclic loadings, engineers must 

try to minimize the inelastic shear deformation in the lower portion of the wall piers. This can be 

done by increasing the inelastic shear stiffness of the wall piers. As discussed in Section 8.1 where 

the influence of several different reinforcement layouts were studied, diagonal web reinforcement 

is most effective in increasing the inelastic shear stiffness of the walls. To study the effects of diago

nal reinforcement on the behavior of pierced walls, two wall models containing diagonal web rein

forcement in the lower portion of the walls were analyzed using the finite element method. Both 

wall models had the same configuration as wall PWl, but wall PWI-A had diagonal reinforcement 

in the first story while wall PWI-B had diagonal reinforcement in both the first and the second sto

ries (Fig. 8.22). The diagonal reinforcement ratio was 0.35% in each direction. 

Figures 8.23 through 8.26 compare the calculated response of walls PWl, PWI-A, and 

PWI-B. The results include load vs. top deflection curves (Fig. 8.23), load vs. shear distortion 

curves (Fig. 8.24), crack patterns (Fig. 8.25), and shear strain distributions (Fig. 8.26). Compari

sons of these results indicate that, among the three walls being studied, wall PWI-B had the most 

satisfactory inelastic response. Wall PWI-B had a well-rounded load vs. top deflection curve (Fig. 

8 .23( c)) and experienced small shear distortion in the first two stories (Fig. 8.24( c)). Inelastic shear 

strain in every story of wall PWI-B remained small, even during the last load cycle (Fig. 8.26(c)). 

Web crushing was not observed in either wall pier and wall PWI-B remained in a good condition 

after load cycle 23. 

The inelastic response of wall PWI-A was not much improved from the inelastic response 

of wall PW1 despite the presence of the diagonal reinforcement in the first story. The load vs. top 

deflection curve of wall PWI-A experienced some pinching, similar to that of wall PWI. Although 

the inelastic shear distortion was small in the first story of wall PWI-A, it was concentrated in the 

second story (Fig. 8.24(b) and Fig. 8.26(b)). The calculated results show extensive web crushing 
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of concrete in both wall piers at the second story of wall PWI-A during load cycles 20 through 24. 

Unlike the response of wall PWI where the flexural yielding was concentrated in the first story, the 

flexural yielding of wall PWl ~A was concentrated in the second story because the diagonal web 

reinforcement increased the flexural stiffness of the first story. This flexural yielding, which caused 

wide cracks in the second story (Fig. 8.25(b», greatly reduced the interface shear transfer capacity 

of the concrete in the second story of wall PWl-A. With a small interface shear transfer capacity 

and without the diagonal web reinforcement, the second story of wall PWI-A had inadequate inelas

tic shear stiffness to resist the applied cyclic loadings. This resulted in a shear-compression failure 

of the wall piers in the second story. The mode of failure in the second story of wall PWl-A was 

similar to that in the first story of wall PWl. 

In wall PWl-B, where diagonal reinforcement was provided in both the first and the second 

stories, flexural yielding concentrated in the first story rather than in the third story (Fig. 8.24(c». 

This occurred despite the higher flexural stiffness of the fIrst story because yielding of the longitudi

nal reinforcement in the first story required less applied load than yielding of the flexural reinforce

ment in the third story due to the larger applied moment in the first story. Unlike wall PWl-A where 

the inelastic shear stiffness of the second story was reduced significantly following flexural yielding, 

the inelastic shear stiffness in the first story of wall PW1-B did not degrade significantly due to the 

presence of the diagonal web reinforcement 

8.2.2 TESTS OF WALLS WITH STAGGERED OPENINGS 

Four isolated wall specimens with staggered openings tested at the University of Michigan 

(6), were also studied in this investigation. Each wall specimen had a barbell cross section, repre

sented a lIS-scale five-story wall, and was tested under reversed cyclic loadings. Wall WI was a 

solid wall while walls W2, W3, and W 4 had three different configurations of staggered door open

ings (Fig. 8.27). Reinforcement in each specimen was designed to represent the reinforcement com

monly used in walls in Chilean buildings. The amount of the transverse reinforcement in the bound

ary elements was about 50% of that required in Section 2625(e)4 of the 1988 UBC (74). Thevertical 
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and horizontal web reinforcement ratios were 0.27%. The longitudinal reinforcement in the bound

ary elements was similar in all four specimens (Fig. 8.28). However, the web reinforcement in the 

walls with openings differed from that used in the solid wall (Fig. 8.29). Web reinforcement inter

rupted by the openings was moved to the side of the openings. Following reinforcement details com

monly used in Chile (6), diagonal reinforcement was placed near each comer of the door openings 

(Fig. 8.29(b)). 

Each wall was subjected to two load cycles at overall drift levels of 0.25, 0.5, 0.75, 1.0, 1,5, 

and 2.0 % of the height of the wall (Fig. 8.30). An axial load of 60 kips was also applied throughout 

the tests. The material properties for wall WI, W2, W3, and W3 are given in Appendix H. More 

details on the experimental program can be found in Ref. 6. 

8.2.2.1 EXPERIMENTAL RESULTS 

Wall WI sustained 15 load cycles and a peak load of 36 kips when the test had to be tenni

nated because the maximum displacement of the actuator had been reached. Moderate damage 

which included minor crushing and spalling of the cover concrete in the boundary elements, was 

observed. Walls W2, W3, and W4 were able to sustain llioad cycles with peak: loads between 34 

kips and 36 kips before failure. A drift of 1 % was achieved in these specimens without causing any 

significant damage to the specimens. The specimens suddenly lost their load resisting capacities 

when an inclined crack originating from the top comer of the first-story opening penetrated into the 

east pier and caused extensive crushing in the east boundary element A typical crack pattern of the 

specimens after failure is shown in Fig. 8.31. It can be seen that the large inclined cracks observed 

in the east piers of walls W2, W3, and W 4 are similar to the diagonal crack that develops in a rein

forced concrete beam without stirrups which failed in shear (Fig. 8.32). 

8.2.2.2 ANALYTICAL RESULTS 

All wall specimens were modelled by using 4-node, two:-dimensional plane stress elements 

for concrete and 2-node bar elements for reinforcing steel. The finite element meshes of the wall 
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models are shown in Fig. 8.33. A row of elastic, plane stress elements was placed at the top of each 

wall model to represent the top slab. Both horizontal and vertical degrees of freedom of all nodes 

at the base of the wall were fixed. A constant vertical nodal load of 15 kips was applied at each of 

the four nodes at the top of the wall above the boundary elements. The horizontal displacement of 

the node at the upper west corner of each wall was specified to be the same as the displacement histo

ry used in the experimental tests (Fig. 8.30). The material model parameters used in the analyses 

were the same as those used in the analyses of the peA walls in Chapter 6 (Table 6.2). 

Measured load vs. top deflection curves are compared with the calculated response of walls 

WI, W2, W3, and W 4 in Fig. 8.34 through 8.37. The calculated response of wall WI agrees well 

with the experimental data. After 15 load cycle minor crushing of the concrete in the boundary ele

ments was calculated but the wall model still remained in a good condition. The calculated response 

of walls W2, W3, and W4 before the diagonal tension crack and the shear-compression failure oc

curred in the experimental tests also agreed well with the experimental data. However, the concrete 

model adopted in this study used the concept of a smeared crack; therefore, it could not reproduce 

the large diagonal tension crack that led to the shear-compression failure of the east piers. As a re

sult, the analytical model did not indicate the occurrence of the shear-compression failure in walls 

W2, W3, and W4. The analyses of these walls were terminated at the load cycle where the shear

compression failure occurred in the tests. 

Despite the inability of the current concrete model to reproduce the large diagonal tension 

crack and the shear -compression failure in the wall piers, the finite element method can still be used 

to explain the cause of such a failure and to study ways to improve the behavior of pierced walls. 

The shear -compression failure that occurred in walls W2, W3, and W 4 was the result of a large shear 

force carried by the east piers of the walls. This developed following a force redistribution in the 

lower portion of the walls after several cycles of inelastic response. When the walls were loaded 

in the east direction (the positive direction in Fig. 8.34 through 8.37), the compressive struts in the 

web were not capable of transferring the shear force to the base of the wall because they were inter

rupted by the openings. Furthennore, the tensile strain and the wide cracks in the lower west pier 
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(Fig. 8.38) made that pier ineffective in transferring the shear force. As a result, the east pier had 

to transfer the major portion of the applied shear force. Figure 8.39 shows the comparison between 

the total applied shear force and the shear forces carried by the east piers in walls W2, W3, and W 4. 

The horizontal lines indicate the nominal shear strength of the east piers according to the 1989 ACI 

Building Code (2). In some cases, the shear forces carried by the east pier were calculated to be as 

high as 60% of the total applied shear force, thereby exceeding the nominal shear strength of the piers 

during most of the loading history. TIris high shear force was the reason for the shear-compression 

failure in the wall piers. Table 8.2 summarizes the nominal shear strengths of the east piers in walls 

W2, W3, and W 4, and the calculated shear forces in the east piers during the last load cycle for both 

a linear and a nonlinear finite element analysis. It can be seen that the use of the conventional design 

method or even the linear finite element analysis can lead to an underestimation of the shear force 

in the critical pier and inadequate shear reinforcement. 

Because the shear-compression failure in the wall specimens was caused by excessive shear 

force in the east pier, two possible ways to prevent this mode of failure as well as to improve the 

perfonnance of a pierced wall were developed: 1) to provide adequate shear reinforcement in the 

east pier and 2) to reduce the magnitude of the shear force in the east pier. 

In the first approach, the result 'Of a nonlinear fInite element analysis can be used to estimate 

the magnitude of shear force that each wall pier must carry. This shear force can then be used to 

select the web reinforcement in the pier. The results of this analysis indicated that the horizontal 

web reinforcement ratio in the east piers of walls W2, W3, and W 4 should have been approximately 

1 %, rather than 0.3%. This calculation is based on an applied load of 20 kips in the wall pier and 

the assumption that the concrete does not contribute to normal shear strength under cyclic loading 

(2). 

In the second approach, engineers must try to increase the shear transfer capacity of the west 

pier so that it helps carry some of the shear force. As demonstrated in Sections 8.1 and 8.2.1.2, diago

nal web reinforcement is quite effective in increasing the inelastic shear transfer capacity, and, there-
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fore, might be applicable in this situation. Walls W2, W3, and W 4 were analyzed with diagonal rein

forcement in the lower 28 in. of the west piers (Fig. 8.40) in order to observe the effects of diagonal 

web reinforcement on the shear force distribution in the lower portion of the pierced walls. The diag

onal reinforcement ratio was 0.3% in each direction. Figure 8.41 shows the comparisons between 

the total applied shear and the shear force carried by the east piers when the diagonal reinforcement 

was used. Comparing' Fig. 8.41 with Fig. 8.39, it can be seen that diagonal reinforcement in the web 

can reduce the magnitude of the shear force in the east pier by as much as 50%. Fig 8.43 shows the 

calculated shear stress distribution for walls W2, W3, and W 4 with and without diagonal reinforce

ment in the west piers at the end of load cycle 11. This figure shows that the calculated shear stresses 

in the east piers of walls W2, W3, and W 4 were significantly reduced when the diagonal shear rein

forcement was provided in the west piers. 

It should be noted that most of the previous research on the response of pierced shear walls 

has considered the stress concentration around the openings to be the major detrimental effect of the 

openings in shear walls (126,6). This conclusion resulted in the reinforcement details around the 

openings which were used to prevent the crus~g of concrete due to stress concentration. However, 

the fInite element analyses of pierced. shear walls subjected. to cyclic loads shows that the major prob

lem caused by openings in shear walls is not the stress concentration, but rather the reduction in the 

inelastic shear transfer capacity of wall piers. The 1989 ACI Building Code (2) in Section 21.7.3.6 

mentioned briefly the maximum nominal shear strength of each wall pier. However, the code does 

not address the effect of openings on the shear transfer mechanisms of pierced walls. 

8.3 EFFECTIVE WIDTH OF FLANGES IN C-SHAPED WALLS 

Besides functioning as a lateral-load resisting system, reinforced concrete shear walls in tall 

buildings are often designed to function as elevator cores or stair wells. This results in walls which 

have cross-sections with intersecting legs. Despite the common uses of shear walls with intersecting 

flanges in tall buildings, the current ACI Building Code (2) does not address the contribution of the 

intersecting flanges to the total response of shear walls. In practice, the provisions for the effective 
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width of T -beams are usually used in determining the effective width of shear walls with intersecting 

flanges. Although such provisions might yield satisfactory results when shear walls are subjected 

to small or moderate earthquake loading, they do not represent the a bserved behavior of intersecting 

walls, especially at forces near the capacity. This can lead to an unexpected mode of failure in a wall 

that is subjected to a strong earthquake. 

8.3.1 ANALYTICAL PROGRAM 

In this section, the finite element method was used to study the contribution of a transverse 

flange to the response of C-shaped reinforced concrete shear walls. The twelve wall models ana

lyzed had the same configurations and material properties as wall CLS as described in Chapter 7 

except that the width of the south flange was varied in this series of analysis. In some cases, the 

amount of longitudinal reinforcement in the north boundary elements was also increased. The width 

of the south flanges in these models varied from 0 in. in wall CO to 140 in. in wall C 140 as shown 

in Fig. 8.44. Because each wall was symmetric, only half of each wall was modelled. The material 

model parameters used in these analyses were the same as those used in the analyses of C-shaped 

walls as discussed in Chapter 7. In order to take into account the shear stiffness in the N-S direction 

of the intersecting flange, the shear stiffness parameters of the concrete element in the south bound

ary elements that are influenced by the stiffness of the flange, which included Jll, Jl2, Gmin, Lslip' 

and Guru, were multiplied by the ratio of the width of the south flange to the thickness of the boundary 

element. 

Each wall was analyzed using four different combinations of loading history and reinforce

ment ratio (Table 8.3). In these analyses, the south flange is compressed under positive displace

ments and the south flange is in tension under negative displacements. In case A, each wall model 

was initially loaded to a top deflection of +0.15 in., then each wall was loaded to the top deflection 

of -2.50 in. In case B, each wall model was initially loaded to the top deflection of -0.15 in., then 

each wall was loaded to the top deflection of +2.50 in. The walls were initially loaded to the O.lS-in. 

level so that the initial stiffness of the walls could be detennined in both directions. In both cases 
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A and B, wall models had the same reinforcement as wall CLS. In case C, each wall model had five 

times as much longitudinal reinforcement in the north boundary elements as wall CLS. Each wall 

model in case C was subjected to the same loading history as walls in case B. In case D, each wall 

model, which had the same reinforcement as wall CLS, was loaded for two cycles at each of the fol

lowing top displacement levels: ± 0.1 in., ± 0.2 in., ± 1.0 in, ± 2.0 in. and ± 3.0 in (Fig. 8.45). 

8.3.2 CALCULATED RESPONSE 

Fig. 8.46 shows the effective width of the south flange in the C-Shaped wall models calcu

lated using the provisions for the effective width of T-beams in Section 8.10.3 of the 1989 ACI 

Building Code (2). Based on these provisions, the effective flange width for each web of the wall 

model should not exceed six times the flange thickness (18 in.). The calculated response of the wall 

models are shown in Fig. 8.47 through 8.50. The secant stiffnesses of the wall models at different 

deflection levels in the north and south directions are shown in Fig. 8.47. The curve with a broken 

line in Fig. 8.47 illustrates the stiffness of uncracked C-shaped walls with different flange widths 

calculated using simple beam theory. The maximum flange width used in the stiffness calculation 

was governed by the effective width of a T -beam recommended in Section 8.10.3 of the ACI B uild

ing Code (2). This curve correctly represents the uncracked stiffness of the C-shaped walls when 

the actual flange width does not exceed the effective flange width for T -beams recommended in the 

ACI Building Code (2). However, the uncracked stiffness of the wall is underestimated when the 

actual flange width is much larger than the effective flange width recommended for T -beams in the 

ACI Building Code (2). It can also be seen from this figure that the presence of the south flange 

significantly increased the uncracked stiffness of the walls. However, the effectiveness of the flange 

in providing the the stiffness decreased as the width of the flange increased. This can be explained 

by examining at the strain in the vertical reinforcement in the south flange of uncracked walls (Fig. 

8.50(a)). The magnitude of compressive strain in the south flange decreased as the distance from 

the web increased. This indicates that the portion of the south flange closest to the web is more effec

tive in providing the wall stiffness than the portion farther from the web. The stiffness of the walls 
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drastically decreased when the concrete started cracking. As can be seen in Fig. 8.47(b), at the 

deflection level +0.15 in., the south flange did not provide the wall with significant stiffness when 

acting in compression. This is due to that fact that the neutral axis of the wall was shifted close to 

the flange. As a result, the moment of inertia of the cracked wall depended on reinforcing steel in 

the north boundary elements and in the web (which were farther from the neutral axis) rather than 

on the concrete and reinforcing steel in the south flange (which were closer to the neutral axis). 

When the wall was loaded to the north (the flange is in tension), the flange was more effective in 

providing the stiffness since the neutral axis was shifted closer to the north boundary elements (Fig. 

8.47(a»). Therefore, reinforcing steel in the flange was far away from the neutral axis and was able 

to help increase the moment of inertia of the cracked wall. 

Figure 8.48 shows the load vs. top deflection curves for wall models subjected to monotoni

cally increasing loads in the north direction (case A). It can be seen that the capacity of the wall 

model increased with an increase in the width of the south flange. The increase in the strength of 

the walls can be explained by examining the strain distribution in the vertical reinforcement at the 

base of the south flange (Fig. 8.50(b». It can be seen that at the top deflection of -2.50 in., all vertical 

reinforcing steel in the south flange of every wall model experienced a tensile strain which was much. 

higher than the yield strain. This indicates that reinforcing steel in a flange width as high as 25 times 

the thickness of the web can effectively help the wall resist overturning moment. Although, the pres

ence of the south flange acted to increase the strength of the walls, it also led to extensive crushing 

of the concrete in the north boundary elements and in the web because of the higher strength. At 

the displacement level-2.50 in., wall CO experienced minor crushing in the north boundary ele

ments while wall Cl40 experienced extensive crushing of the concrete in the north boundary ele

ments and in the adjacent web after reaching a top deflection level of -1.50 in. As a result, neglecting 

the effect of vertical steel in the flange might cause a significant underestimation of the strength of 

the walls, and possibly leads to the selection of an inadequate amount of transverse reinforcement 

in the north boundary elements. 
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The calculated load vs. top deflection curves for wall models subjected to monotonically in

creasing load in the south direction (the south flange was in compression) are shown in Fig. 8.49. 

Wall models in case C (Fig. 8.49(b» had five times as much reinforcement in the north boundary 

elements as the wall models in case B (Fig. 8.49( a». All load vs. top deflection curves for wall mod

els with different flange widths in case B were similar, except for walls CO and CIO. TIlls is due 

to the fact that the amount of reinforcement in the north boundary elements was not enough to cause 

extensive crushlng of the concrete in the south boundary elements of the wall models except in walls 

CO and CIO. The strain distribution in the vertical reinforcing bars along the base of the south flange 

in Fig. 8.50( c) shows that, at the displacement level of +2.50 in., extensive crushing of the concrete 

occurred only in walls CO and CIO. (Because of the assumption of perfect bond between concrete 

and reinforcing bars in the analysis, this vertical strain in reinforcing bars also represented the verti

cal strain in the concrete elements along the base of the south flange.) 

The contribution of concrete in the south flange was more evident when the reinforcing steel 

in the north boundary elements was increased (case C), as shown in Fig. 8.49(b). Wall CO, CIO, C20, 

C30, and C40 had significantly less strength than walls CSO-C 140 because of the extensive crushing 

of concrete in the south flange. Figure 8.50(d), which shows the vertical strain distribution along 

the south flange at the displacement level of +2.50 in., indicates that extensive crushing of concrete 

occurred in walls CO, CIO, C20, C30, and C40 while concrete in other walls remained in a good 

condition. At the displacement level of +2.50 in., the strain distribution of concrete in the south 

flange (Fig. 8.50( d)) was much more uniform than the strain distribution of concrete in the south 

flange when the wall remained uncracked (Fig. 8.50(a». This indicates that, when the walls are 

loaded to their capacity, the real effective width of the flange is much larger than the effective width 

of the wall obtained from a linear analysis. Although the calculated results show that the effective 

width of the flange in C-shaped walls when the flange is in compression can be significantly larger 

than the effective width of the flange recommended in the provisions for T -beams in the ACI Build

ing Codes (2) (Fig. 8.46), the use of a conservative value for the effective width is still preferable. 
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The extra effective width will provide greater safety in the structure and prevent extensive crushing 

of the concrete in the boundary elements. 

The calculated cyclic response of the wall models are shown in Fig. 8.51. Similarly to the 

calculated results for the walls subjected to monotonic loading, the capacity of the walls loaded in 

the south direction (south flange was in compression) was not increased much by the presence of 

the south flange while the capacity of the walls loaded in the north direction (south flange was in 

tension) was increased significantly as the width of the flange increased. Crushing of concrete in 

the south boundary elements was observed only in wall CO and wall ClO. Crushing of concrete in 

the north boundary elements and in the web was observed in walls C70, C80, ClOO, C120, and Cl40 

while no sign of concrete crushing was observed in the north boundary elements of walls CO-C60. 

This observation indicates that although the presence of an intersecting flange along the south end 

of a wall increases the strength and helps prevent the crushing of concrete in the south boundary 

elements, it can cause extensive concrete crushing in the north boundary elements. As a result, extra 

transverse reinforcement should be provided in the boundary elements that are opposite the flange, 

especially when the flange is much wider than the thickness of the web. Fig. 8.51 also shows that 

the south flange did not have significant influence on the inelastic shear deformation of the C-shaped 

walls. Walls CO-C 140 experienced the same magnitude of inelastic shear deformation in the lower 

3 ft despite the difference in the width of the south flange in each wall model. 

8.4 SUMMARY 

This chapter illustrates the use of the finite element method to investigate the behavior of 

reinforced concrete walls with different configurations and design parameters. Several important 

fmdings from this investigation are summarized below: 

1) Diagonal web reinforcement is an effective means of limiting inelastic shear distortion 

in the lower portion of the walls. It also significantly improves the energy dissipation capacity of 

the walls. 
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2) Openings in reinforced concrete walls can significantly reduce the inelastic shear transfer 

capacity and may cause premature failures of the wall piers. Diagonal web reinforcement can help 

increase the shear transfer capacity of the wall piers and, hence, improve the perfonnance of the wall 

with openings. 

3) The effective width of a flange in a C-shaped wall calculated according to the ACI provi

sions for the effective width of a T-beam in Section 8.10 (2) is conservative when used to evaluate 

the uncracked stiffness of the wall or to evaluate the strength of the wall when the flange is in com

pression. However, this effective width can significantly underestimate the strength of the wall 

when the flange is in tension. This can lead to inadequate transverse reinforcement and premature 

crushing of concrete in the boundary elements opposite the flange. 

Although the proposed material models in this investigation are not capable of reproducing 

all observed aspects in reinforced concrete walls, such as sliding shear failures, the finite element 

analysis can still provide a wide-range of information that is useful for the study of the behavior of 

reinforced concrete walls. In order to successfully use the finite element method to study the re

sponse of reinforced concrete members, finite element users must realize the capability and limita

tions of the material models used in the analysis and understand the nature of the problems under 

study. This will help the users to select the appropriate calculated results that represents the impor

tant behavior of the reinforced concrete member and to interpret those results correctly. 
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9. SUMMARY AND CONCLUSIONS 

The major objective of this study was to use the fInite element method to study the cyclic 

response of slender, reinforced concrete shear walls. Because appropriate concrete and reinforcing 

steel models were not available, new material models which represent the cyclic response of rein

forced concrete in shear walls were developed in this investigation. These material models were 

verified both at the element and structural levels: the results of the finite element analyses were 

compared with the experimental data from several experimental programs. After the material mod

els had been satisfactorily tested and verified, the finite element method was used to extend the scope 

of the investigation of the response of slender reinforced concrete shear walls with different configu

rations, reinforcement details, and loading histories. 

9.1 OVERVIEW 

In this study, the finite element method was used to model the cyclic response of slender rein

forced concrete shear walls. The finite element method was chosen as the analytical tool in this re

search because it was a powerful and versatile numerical method capable of analyzing a wide range 

of both linear and nonlinear structural problems. With the proper material models for concrete and 

reinforcing steel, the finite element method can be used to study the response of reinforce concrete 

shear walls with various configurations and reinforcement details, subjected to different loading his

tories. 

Although, some researchers (Xu (151) and Stevens et ale (134)) have recently proposed ma

terial models for the cyclic response of reinforced concrete, these models were not successful when 

used to calculate response of complete structures due to numerical difficulties associated with the 

complicated stress-strain relationships. Most analyses diverged prior to completion (134, 151). 

Therefore, this research focused on developing new material models that can avoid these numerical 

difficulties and were appropriate for modeling the cyclic response of reinforced concrete shear 

walls. In order for the material models to be applicable in structural level problems and efficient 
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in terms of computation time, these new material models were required to be simple, stable, and 

reliable. 

Because the major objective of this research is to study the cyclic response of slender rein

forced concrete shear walls, the proposed concrete model must accurately represent the behavior of 

concrete in shear walls. Several important aspects of the behavior of concrete were observed from 

the measured response of walls tested in the laboratory: 1) cracks in the concrete tended to be distrib

uted unifonnly in the lower portion of the wall, 2) most of the cracks that developed when the wall 

was subjected to cyclic loading were nearly orthogonal to the cracks that developed during the first 

load cycle, and 3) most cracks did not rotate during the tests. Based on these observations, the pro

posed concrete model adopts the concept of a smeared crack model with fixed orthogonal cracks and 

uses a strength criterion for crack initiation and crack propagation. Cracks in concrete are assumed 

to be parallel and finely spaced. A crack occurs at an integration point when the maximum principal 

stress at that point exceeds the tensile strength of the concrete. A second crack at that integration 

point is allowed to fonn only in the direction perpendicular to the first crack. Once a crack fonTIS, 

its direction is fixed throughout the analysis. 

Inelastic shear distortion in the lower portion of the wall was observed to have a significant 

effect on the cyclic response of shear walls. In order for the proposed concrete model to be able to 

model this inelastic shear defonnation, the shear strain component is separated from other strain 

components. This separation allows the concrete element to experience large inelastic shear strain 

without causing premature crushing of the concrete in the direction of the crack. As a result, the 

proposed concrete model defines two functions: the nonnal stress function and the shear stress func

tion. 

The nonna! stress function defines the stress-strain relationship of cracked concrete in the 

direction of the crack. The typical normal stress function is shown in Fig. 3.1. The important aspects 

of behavior of concrete that are included in the nonnal stress function are 1) tension stiffening, 2) 

crack closing and crack reopening, 3) compression softening, 4) the effect of steel confinement, and 
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5) the stiffness degradation due to cyclic loading. The basis for modelling these aspects of behavior 

is found in experimental data and previous analytical studies. 

The shear stress function defines the relationship between shear stress and shear strain in the 

global coordinate system. The typical shear stress function is shown in Fig. 3.25(a). The shear stress 

function consists of three major components: 1) the shear stiffness from the interface shear transfer, 

2) the shear stiffness from the dowel action, and 3) the rules for cyclic loading. 

It was reported by several researchers (5, 80, 109, 118, 127) that the cyclic response of rein

forced concrete members was greatly influenced by the cyclic response of reinforcing steel. This 

is also true for the cyclic response of slender reinforced concrete walls. In order to model the cyclic 

response of the walls correctly, the analysis must use a realistic reinforcing steel model that includes 

all important aspects of nonlinear behavior such as yielding, strain-hardening, and the Bauschinger 

effects. The reinforcing steel model in this research adopted the cyclic stress-strain relationship for 

reinforcing steel proposed by Aktan et al. (5) in the fonn of a Ramberg-Osgood equation. Several 

important modification were made to the original relationship to increase the stability of the model 

and to improve the accuracy of the solution. The proposed reinforcing steel model was verified at 

the elemental level by using two sets of the cyclic response of a reinforcing bar: one by Aktan and 

et al. (5) and the other by Seckin (124). The calculated behavior was in excellent agreement with 

the experimental. data.. 

The finite element program used in this research is FINITE. The unique feature of FINITE 

which made it suitable for this research is that new material models can be installed with minimal 

effort. As a result, developers can focus their attentions on the perfonnance of the new material mod

els rather than on modifying the existing finite element program (51). Although FINITE is capable 

of analyzing both geometrically nonlinear and materially nonlinear problems, only material nonlin

earity was included in the analyses of reinforced concrete walls in this study. This is due to the fact 

that the displacement and strain in most concrete and reinforcing steel elements remained infinitesi

mal throughout the analysis and the major sources of nonlinearities in the analysis were the nonlinear 
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stress-strain relationships of concrete and reinforcing steel. The full Newton-Raphson iteration al

gorithm, in which the stiffness matrix is updated every iteration, was used 'as the iteration scheme 

for solving the nonlinear finite element equations. The ratio between the norm of the residual load 

and the nonn of the applied load was used as a convergence criterion. A convergence tolerance of 

5% was found to yield analyti.calresults with satisfactory accuracy within a reasonable computation 

time. 

In order to verify and calibrate the proposed material models, the fInite element method was 

used to model the cyclic responses of thirteen slender reinforced concrete shear walls tested at the 

Construction Technology Laboratory (105, 106). The design variables of these walls were: the 

shape of the cross section, the amount of longitudinal reinforcement, the amount of horizontal web 

reinforcement, the amount of transverse steel in the boundary elements, the axial compressive stress, 

the loading histories, and the compressive strength of the concrete. Several types of data from the 

tests including load vs. top deflection curves, load vs. inelastic shear defonnation curves, crack pat

terns, and failure modes, were compared with the results of the finite element analyses. The parame

ters used to define the nonna! stress and shear stress functions of the concrete model were adjusted 

so that the calculated response closely resembled the experimental results. After several trials, the 

optimum values of the parameters were detennined. Using one set of parameters in the all analyses, 

the calculated response of all thirteen walls agreed well with the experimental data. 

Another experimental program that was used to verify the proposed material models was the 

tests of C-shaped walls carried on as part of this research. Two C-shaped, reinforced concrete shear 

walls representing one-quarter scale models of reinforced concrete core walls were tested under cy

clic loadings. Two-dimensional plane stress elements were used to model both the web and flange 

of the test specimens. The bending stiffness of the flange was neglected because its contribution to 

the overall stiffness of the walls was insignificant, especially after the concrete in the flange had 

cracked and the vertical steel reinforcement in the flange had yielded. The major contribution of 

the flange was provided by its in-plane force, which can be modelled by using two-dimensional 
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plane stress elements. The calculated response of both C-shaped wall specimens also agreed well 

with the experimental data. 

After the material models for concrete and reinforcing steel had been thoroughly tested and 

satisfactorily verified, the finite element method was used to investigate three topics involving the 

response of slender reinforced concrete shear walls: 1) the energy dissipation capacity of shear walls, 

2) the response of shear walls with openings, and 3) the contribution of flanges to the response of 

C-shaped shear walls. 

In order for reinforced concrete shear walls to survive a strong earthquake, designers must 

ensure that the walls can dissipate energy when the wallis pushed into the inelastic range of response. 

In this study, the cyclic response of reinforced concrete shear walls with eight different web rein

forcement patterns were analyzed using the finite element method. The energy dissipation capacity 

of each wall was evaluated and compared. It was found that merely increasing the amount of con

ventional vertical or horizontal web reinforcement did not improve the energy dissipation capacity 

of the walls. However, additional vertical reinforcement in the web, when it was stopped above the 

base of the waIl and not embedded into the foundation, significantly improved the energy dissipation 

capacity of the wall. Among all the reinforcement options studied in this research, distributed diago

nal web reinforcement in the lower portion of the wall was most effective in increasing the energy 

dissipation capacity of the walls. Concentrated diagonal shear reinforcement was less effective than 

distributed diagonal shear reinforcement; however, the fonner might be more desirable in practice 

because it requires fewer reinforcing bars and, therefore, is easier to place and arrange during 

construction. 

To study the cyclic response of shear walls with openings, the finite element method was 

used to model the cyclic response of pierced shear walls tested at the Construction Technology Labo

ratory ofPCA (126) and at the University of Michigan (6). The objectives of this study were 1) to 

use the finite element method to study the general behavior of walls with openings and 2) to study 

ways to improve the cyclic response of these walls. The analytical results showed that the major 
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problem caused by the openings in shear walls was the reduction in the inelastic shear transfer capac

ity of the walls. The presence of the openings signfficantly reduced the ability of diagonal compres

sion struts in the web to transfer shear force and could result in a shear compression failure of con

crete in the wall piers. The finite element analysis showed that diagonal reinforcement in the wall 

piers could significantly improve the inelastic shear transfer capacity of the wall piers, thereby help

ing to prevent shear-compression failures of the boundary elements. The finite element method can 

also be used to estimate the magnitude of shear force in each wall pier after forces were redistributed 

so that the proper amount of transverse reinforcement can be provided. 

To study the contribution of flanges to the response of C-shaped walls, twelve C-shaped wall 

models with different flange widths, ranging from 0 in. to 140 in., were analyzed. The analytical 

results show that the effective width of a flange in C-shaped walls, both when the flange is in tension 

and when the flange is in compression, can be much larger than the effective width recommended 

in the provisions for T -beams in the 1989 ACI Building Code (2). When the flange is in compres

sion, the ACI provisions for the effective width of T -beams yield a conservative value (six times 

the flange thickness), which is desirable. However, when the flange is in tension, the width of the 

flange where vertical steel reinforcement effectively provides tensile forces for resisting the over

turning moment can be as high as 25 times the thickness of the web. The use of a too small an effec

tive flange width can lead to a significant underestimation of the strength of the wall which can cause 

unexpected crushing of the concrete in the boundary elements opposite the flange. 

9.2 CONCLUSIONS 

The following conclusions are drawn from this study. 

1) With the proper material models for concrete and reinforcing steel, the finite element 

method can be' a powerful and versatile analytical tool for studying the cyclic response 

of reinforced concrete shear walls. 
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2) In order for the analysis of the cyclic response of reinforced concrete shear walls to be 

feasible and efficient in terms of computation time, the material models must be simple, 

stable, and reliable. , 

3) The concrete model used in this study adopted the concept of a smeared crack model with 

fixed-orthogonal cracks and used a strength criterion for crack initiation and for crack 

propagation. Satisfactory results were obtained using this approach. 

4) The separation of the shear strain from other strain components allowed the concrete 

model to successfully simulate the inelastic shear defonnation of shear wall. 

5) Because the cyclic response of reinforcing steel has a significant effect on the cyclic re

sponse of shear walls, the analysis of shear walls requires a realistic steel model which 

takes into account yielding, strain-hardening, and the Bauschinger effects. In this study~ 

the cyclic stress-strain relationship of reinforcing steel expressed in the fonn of the Ram

berg-Osgood equation was found to yield good analytical results. 

6) In the analysis of reinforced concr~te shear walls, the full Newton-Raphson iteration al

gorithm, which updates the stiffness matrix every iteration, yields stable solutions with 

good convergence rate. 

7) Adding conventional vertical or horizontal web reinforcement does not improve the ener

gy dissipation capacity of shear walls. Among all the reinforcement details studied in this 

research, distributed diagonal shear reinforcement in the lower portion of the web is most 

effective in improving the energy dissipation capacity of shear walls. 

8) The presence of openings in shear walls can have a significant influence on the inelastic 

shear transfer capacity of the walls. The calculated results show that diagonal shear rein

forcement in the wall piers can improve significantly the shear transfer capacity of the 

wall piers. The finite element method can also be used to estimate the magnitude of the 

shear force in each wall pier so that the proper amount of transverse reinforcement can 

be provided. 
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9) The effective width of the flange in C-shaped walls, both when the flange is in compres

sion and when it is in tension, can be much larger than the effective width recommended 

in the provisions for T -beams in the 1989 ACI Building Codes (2). When the flange is 

in compression, using an effective flange width which is smaller than the actual effective 

flange width yields a conservative value of the wall's strength. However, when the flange 

is in tension, using a too small effective width can lead to a significant underestimation 

of the strength of the wall, possibly resulting in unexpected crushing of the concrete in 

the boundary elements opposite the flange. 

9.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

Several other subjects related to this research have been identified that need further inves

tigation. Experimental and analytical research needs are summarized below. 

9.3.1 EXPERIMENTAL PROGRAMS 

1) More experimental data on the cyclic behavior of reinforced concrete at the element level 

are needed. The types of behavior include the cyclic response of concrete under biaxial 

states of stress, the cyclic shear stress-shear strain relationship, and the upper bounds of 

the interface shear transfer mechanism and the dowel action mechanism. 

2) More experimental data are needed on the interaction between concrete and reinforcing 

bars, especially under cyclic loadings. These data are essential in the development of the 

linkage elements, which may be used to connect the reinforcing bar elements to the con

crete elements at the locations where bond-slip is important such as at the base of the 

walls. 

3) The effectiveness of the diagonal shear reinforcement for improving the energy dissipa

tion capacity of both solid walls and pierced walls should be investigated. This is neces

sary to verify the finite element results which indicate that the diagonal reinforcement 

is the most effective means of improving the energy dissipation capacity. 
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4) The cyclic response of C-shaped walls with different flange widths should be investi

gated. Although this type of shear wall is widely used as a major lateral load resisting 

system in tall buildings, there are no design provisions for such walls in the current 1989 

ACI Building Codes (2). Experimental data will be useful in the development of design 

provisions for such walls. 

9.3.2 ANALYTICAL MODELS 

Several aspects of the proposed material models for concrete and reinforcing steel can be 

improved to increase the capacity of the models. Some of the possible improvements are listed as 

follows. 

1) The reinforcing steel model can be included in the concrete model as a layer of reinforce

ment This will allow the arrangement of reinforcing steel in the finite element model 

to be mesh-independent Several layers of reinforcing steel with different angles can be 

included in one concrete element 

2) The rotating crack model should be added to the current proposed model as an option (Le., 

finite element users can choose either the fixed crack model or the rotating crack model). 

This will allow the concrete model to be able to simulate the response of the reinforced 

concrete member where crack rotation is important An example of such member is the 

reinforced concrete panel tested by Stevens et ale (134) where crack rotations were ob

served during the load reversals and had a significant e~ect on the cycle response of the 

paneL 

3) A concrete element with a discrete crack model should be developed. This element can 

be used where a single large crack is likely to occur such as the area at the base of the wall. 

4) A linkage element which models bond-slippage between concrete and reinforcing bars 

should be developed. Such an element can be used to connect concrete elements and rein

forcing steel elements in the location where bond-slippage is critical. 
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5) Improvements need to be made in the current shear stress function of the proposed con

crete model. Limiting strengths for both the interface shear transfer mechanism and the 

dowel action mechanism need to be added to the model. This must be done in conjunction 

with an experimental program because such infonnation is not available at the present 

time. 
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Table 4.1 Parameters used to define the Reinforcing Steel Model 
(for Grade 60 Steel) 

Type of Curve Parameter Value 

a strain hardening curve m 4.30 

crom 42.0 ksi 

a 1/2 cycle from compression a 6.0 

A 0.7938 

B 0.55723 

a 1/2 cycle from tension a 7.0 

A 0.7735 

B 0.47989 
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Table 5.1 Classifications of Nonlinear Analyses (from [13]) 

Type of analysis Description Type of fonnulation 

Materially-nonlinear only Infinitesimal displacements Material nonlinearity 
and strains 
Nonlinear stress-strain relationship 

Large displacements, large Displacements and rotations are Geometric nonlinearity 
rotations, but small strains large, but strains in fibers are small with or without material 

Stress-strain relationship may be nonlinearity 
linear or nonlinear. 

Large displacements, large Strains in fibers are large. Geometric nonlinearity 
rotations, and large strains Displacements and rotations may with or without material 

be large. -nonlinearity 
Stress-stram relationship may be 
linear or nonlinear 

Table 5.2 CPU Tune Required in the Analyses of Wall R1 with Different Schemes for Updating 
Stiffness Matrix 

CPU Tune required in the analysis (seconds)t 

Step Updating [K] every Updating [K] every Updating [K] every 
iteration 3 iterations 5 iterations 

13 31.20 34.23 34.16 

14 12.92 13.93 19.21 

15 31.75 34.45 50.41 

16 17.64 24.14 19.29 

Total 93.51 (100%) 106.75(114.2% ) 123.0 (131.5%) 

tHP 700 Machines 
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Table 6.1 Properties of PC A Wall Specimens (from Oesterl~ [103]) 

Speci- Shape 
men 

R1 

R2 

R3 

R4 

81 • • 
82 • • 
83 • • 
84 • • 
85 • • 
86 • • 
87 • • 
88 • • 
89 • • 

* IR = 
MN = 
MR = 
(2v = 
eh = 

(2n = 
, 

(2s = 

Axial Loading Iy 
Load type * Ie' (for QV) 
psi psi ksi 

0.0 IR 6490 74.2 

0.0 IR 6735 65.3 

220.0 MR 3535 78.3 

220.0 IR 3285 71.2 

0.0 IR 7685 652 

0.0 IR 7775 59.6 

0.0 IR 6860 63.5 

0.0 MN 6530 65.3 

0.0 IR 6570 64.4 

425.0 IR 3165 63.9 

545.0 IR 7155 66.4 

545.0 IR 6085 64.9 

545.0 MR 6395 62.3 

Increasing incremental loading 
Monotonic loading 
Modified reversing loading 

Reinforcement (%) 

, 
(2v (2h (2n (2s 

1.47 0.31 0.25 0.00 

4.00 0.31 0.25 2.07 

6.00 0.42 0.22 1.33 

3.50 0.31 0.28 1.07 

1.11 0.31 0.29 0.00 

3.67 0.63 0.29 0.00 

1.11 0.31 0.29 1.28 

1.11 0.31 0.29 1.28 

3.67 0.63 0.29 1.35 

3.67 0.63 0.29 0.81 

3.67 0.63 0.29 1.35 

3.67 128 0.29 1.35 

3.67 0.63 0.29 1.35 

Ratio of area of longitudinal reinforcement to gross area of the boundary element 

Ratio of area of horizontaJ web reinforcement to gross area of vertical section 
through the web 

Ratio of area of vertical web reinforcement to gross area of horizontal section 
through the web 

Ratio of volume of confinement reinforcement to the volume of 
core in accordance with Eq. A.4 of AC1318-71 
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Table 6.2 Parameters used to define the Concrete Model for PCA Wall Specimens 

a) Nonnal Stress Function 

Parameter Value Parameter Value 

E· z 50.0 ccr C· z 50.0 ccr 

a· l 
0.1 ocr o· L 

0.2 a cr 

a 0.2 a 0.3 

al 3.0 ocr 0 1 3.0 ocr 

a 2 0.2 ocr 02 0.2 a cr 

a3 0.8 ocr 03 0.8 a cr 

a4 0.2 ocr 0 4 0.2 a cr 

an 3.0 ocr On 3.0 Ocr 

Concrete in Web Concrete in Boundary Elements 

b) Shear Stress Function 

Parameter Value 

#1 0.20 

cmin 12.50ccr 

#2 0.20 

Gdow 
Yn 0.015 

n 3 

'r slip 0.04 ksi 

Cyclic 
GUnl 0.10 Gconc 

f3 0.70 

G· nun 0.0005 G conc 
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Table 6.3 Observed Failure Modes in peA Wall Specimens 

Experimental Results Analytical Results 
Speclmen~ ____ ~ __________________________ ~ ____ ~~ ________________________ ~ 

R1 

R2 

R3 

R4 

Failure t 
mode 

IB 

IC 

Be 

BC 

Description 

First buckling of the main flexural reinforcement 
was observed in Cycle 20, the second cycle at 
+3 In. deflection. First bar fracture occurred at 
Cycle 26, the second cycle at +4In. The speci
men lost load carrying capacity when the bar 
fractured. No concrete crushing was observed. 

Instability in the compression zone due to large 
out of plane displacement was observed In Cycle 
32, the second cycle at +4 in. The wall failed be
cause of buckling of the compression zone in 
Cycle 35, the second cycle at +5 in. 

Apparent crushing was observed In both bound
ary regions In Cycle 2, the first cycle at 3-ln. 
deflection but there was no drop In load 
associated with this crushing. The wall lost load 
carrying capacity In Cycle 8, at 3 In. -deflection 
due to extensive crushing In boundary elements. 

Crushing of the outer cover of the compression 
face was observed In Cycle 10 at a top deflection 
of 2 In. Further crushing of both boundary ele
ments occurred during Cycles 13, 14, and 15 at 
peak to deflection of 3 In. Significant drop In 
load-carrying capacity of the wall occurred In 
Cycle 16 at 4-ln. deflection due to extensive 
crushing of boundary elements 

IB 

BC 

Be 

BC 

Description 

First bar buckling was observed In bar # 207 at 
load step 412, the second cycle at +3-in. deflec
tion. Four more bars buckled In the later steps 
(#208, #209, #153, #154). Concrete at the face 
of the boundary element crushed 

No bars buckled in Wall A2. Concrete in both 
boundary elements were extensively crushed af
ter load step 425, the second cycle at +3-in 
deflection. 

No bars buckled in Wall A3. Concrete in the 
boundary elements started crushing at load step 
105, + 1.85-in. deflection in the first cycle. Ex
tensive concrete crushing In boundary elements 
started at load step 405, +2.90-ln.deflectlon. 

No bars buckled In Wall R4. Concrete in the 
boundary elements started crushing at load step 
174, +2-ln.deflection. Extensive crushing of 
concrete in the boundary elements occurred at 
load steps 465 and 508, +4- and -4-ln. deflec
tion. 

t IB .. Inelastic Bar B,uckllng BC = Boundary Element Crushing Ie = Instability In the Compression Zone BF = Bar Fracture WC = Web Crushing 
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Table 6.3 (Cont.) Observed Failure Modes in PCA Wall Specimens 

Specimen 
Experimental Results Analytical Results 

Failure t Description Failure t Description mode mode 

The first flexural bar was observed to buckle dur- First bar buckling occurred In bar # 220 at load 
Ing Cycle 22, the first 3-ln. deflection. In subse-
quent cycles, 13 other bars buckled. After the 

step 263, the second cycle at +2.0-ln. deflec-

81 18 first bar buckled, the boundary elements started IB tlon. Three more bars buckled In later steps 

to deteriorate. The wall lost load-carrying ca-
(#221, #222, and #145). Crushing of concrete 

paclty In Cycle 31, the first 5-ln.deflection , due 
In the boundary element was not extensive. 

to bar fracture. 

Crushing of concrete In the boundary element First bar buckling occurred In bar # 136 at load 

we was first observed In Cycle 22, at 3-ln. deflec- we 
step 717, the second cycle at +5.0-ln.deflectlon. 

82 tlon. First two bars buckled during Cycle 26 at Few concrete elements In web started crushing at 

IB 4-ln. deflection. Sudden web failure occurred load step 671 , the second cycle at -4.0 In. Exten-

In Cycle 28 at -5-ln.deflectlon. slve web crushing occurred at load steps 718 and 
770, the first cycle at ±5.0-ln.deflectlon 

Significant crushing and grinding of web con-
crete was observed after Cycle 28, +4-ln.deflec- No bars buckled In wall B3. Crushing of can-
tlon. Confinement hoops In the boundary ele- crete in the boundary elements occurred at load 

B3 
ments helped to contain concrete and prevent Be step 399, the second cycle at +3-ln.deflection. 

BF bar buckling. The specimen lost load-carrying Concrete crushing of the boundary elements 
capacity In Cycle 39, at 7 -In.deflectlon, when a became extensive at load steps 699 and 731, 
vertical bar fractured. The fractured bar still had the first cycle at ± 6-in.deflectlon. 
concrete cover and no evidence of previous 
buckling was observed. 

Crushing In the compression boundary element Concrete in the compression boundary element 
started at Load stage 9 (2-ln.deflection) and started crushing at load step 25, +0.50-ln. 

B4 BF progressively Increased throughout the test. BF deflection. Bar # 145 fractured at load step 115, 
The wall started losing Its load-carrying capac- + 7.80-ln. deflection. Three more bars fractured 
Ity at Load stage 15 (8.5-ln.deflectlon) when at later load steps (#160, #175, and #23,5). 
vertical bars fractured. 

t 16 >= Inelastic Bar Buckling BC == Boundary Element Crushing IC = Instability in the Compression Zone BF = Bar Fracture WC = Web Crushing 
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Table 6.3 (Cont.) Observed Failure Modes in PCA Wall Specimens 

Specimen 
Experimental Results Analytical Results 

Failure t Description Failuret 
Description mode mode 

Crushing of concrete In the boundary elements No bars buckled in Wall 85. Few concrete ele-

B5 we was first observed In Cycle 19, at +2-ln.deflec- we ments in web started crushing at load steps 629 
tion. The wall suddenly lost Its load-carrying ca- and 671, the second cycle at ± 4-ln.deflectlon. 
pacity in Cycle 28, at -5-ln.deflectlon, when Extensive web crushing occurred at load steps 
web crushing occurred. 718 and 770, the first cycle at ± 5-ln. deflection. 

Crushing of concrete In the boundary elements Crushing of concrete In the boundary elements 
was first observed In Cycle 16, at +1-ln.deflec- we started at load step150, +2-ln.deflecllon. Web 

B6 we tion. The wall suddenly lost Its load-carrying ca- crushing and extensive crushing in the bound-
paclty In Cycle 26, at +3-ln.deflectlon, when Be ary elements occurred at load steps 360 and 
several compression struts crushed slmulta- 390, ±3-in.deflectlon. 
neously . 

Crushing of concrete In the boundary elements Few concrete elements in web started crushing 
was first observed In Cycle 19, at 2-ln.deflectlon. at load step 599, the second cycle at -4-ln. 

87 we The wall suddenly lost its load -carrying capacity we deflection. Web crushing occurred extensively 
In Cycle 31, at +6-ln.deflectlon, when several at load steps 698 and 750, the second cycle at 
compression struts crushed simultaneously. ± 5-ln.deflectlon. 

Crushing of concrete In the boundary elements Few concrete elements In web started crushing 

was first observed In Cycle 14, at 2-ln.deflectlon. at load steps 646, the first cycle at +5 In.deflec-
B8 we The wall suddenly lost Its load-carrymg capacity we tion. Web crushing occurred extensively at load 

in Cycle 31 J at +6-ln.deflectlon, when several steps 698 and 750, the second cycle at ±5-ln. 

compression struts crushed simultaneously. deflection. 

Crushing of concrete In the boundary elements Crushing of concrete in the boundary elements 
was first observed in Cycle 2, at +5.3-ln.deflec-

Be 
occurred at load step 60, the second cycle at 

B9 we tion. The wall suddenly lost Its load-carrying ca- +5.30-ln. and became extensive at load step 
pacity In Cycle 4, at -4-ln.deflectlon, when sev- we 320 and 380 (+4.7-and -5.1-ln. deflection). 
eral compression struts In the lower left region of Web crushing of concrete occurred extensively 
the web crushed. at load step 380 (-5.1-ln. deflection). 

t IB = Inelastic Bar Buckling BC = Boundary Element Crushing IC == Instability In the Compression Zone BF == Bar Fracture WC = Web Crushing 

'- "'-



Table 7.1 Comparisons between 2-D Plane Stress Elements and Shell Elements 

'. ~li I~ rt'l 

/ 
I 

! ~ 

Type of Elements 

8-Node Plane Stress (2-D) 

8-Node Shell (3D) 

Horizontal Force (Pi at 
the Corner Node 

CPU time required 
for the analysis (HP 700) 

198.2 kips 5.6 seconds 

200.0 kips 38.3 seconds 

tThis force results in a 1-in horizontal displacement in the south direction at the corner node. 
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Table 7.2 Failure Modes in Walls CLS and CMS 

Specimen 
Experimental Results Analytical Results 

Failure t Description Fallurel 
Description mode mode 

Minor spalling was observed at the north end of Concrete at the outer face of the north boundary 
CLS IB the wall at a top deflection of -1.0 In. (1.0% drift) IB elements started crushing in the first cycle at 

BC During the top displacement cycles to -1.65 In. BC -1.0 in. top displacement. The north boundary 
(1.5% drift), all the concrete cover surrounding WC element became extensively crushed In the first 
the north boundary elements spaUed. The lon- cycle at -2.35 in. top displacement Buckling 
gltudlnal reinforcing bars were observed to was observed in the bar at the bottom of the 
buckle slightly. north boundary element in the last cycle at 

..... 
~ 

Significant buckling of the north longitudinal re- -2.90 in. top displacement. 

Inforcement was observed during the 2.0 In. Extensive web crushing in the web elements ad-

cycles (2% drift). Wall CLS failed In the third jacent to the north boundary elements was also 

cycle approaching -2.25 In. top displacement. observed in the last cycle at -2.90 in. top dis-

The failure followed crushing of the north placement. 

boundary elements 

Minor spalllng was observed at the north end of Concrete at the outer face of the north boundary 
CMS 18 the wall at a top deflection of -1.0 In. (1.0% drift) IB elements started crushing in the first cycle at 

Be During the top displacement cycles to -1.65 In. BC -0.5 in. top displacement. The north boundary 
(1.5% drift), all the concrete cover surrounding WC element became extensively crushed in the first 
the north boundary elements spalled. The lon- cycle at -1.0 In. top displacement. The crush-
gltudinal reinforcing bars were observed to ing of the north boundary element in wall CMS 
buckle slightly. was much more extensive than that of wall CLS. 

Significant buckling of the north longitudinal re-
Buckling was observed in the bar at the bottom 
of the north boundary element in the last cycle 

inforcement was observed during the 2.0 In. at -2.20 in. top displacement. 
cycles (2% drift). Wall CMS failed In the second Extensive web crushing in the web elements ad-
cycle approaching -2.50 In. top displacement. jacent to the north boundary elements was also 
The failure followed crushing of the north observed In the last cycle at -2.20 in. top dls-
boundary elements placement. 

t IB = Inelastlc Bar Buckling BC = Boundary Element Crushing IC = Instability in the Compression Zone BF = Bar Fracture WC = Web Crushing 



Table 8.1 Amount of Reinforcement in each Reinforcement Option 

Reinforcement Horizontal Vertical DiagonaJ 
Details Web Reinforcement Web Reinforcement Reinforcement 

Qh Qv 
(%) (%) 

Option # 1 0.60 0.30 none 

Option # 2 1.20 0.30 none 

Option # 3 0.60 0.90 (embedded) none 

Option # 4 0.60 0.30 (embedded) none 
0.60 (not embedded) 

distributed 
Option # 5 0.60 0.30 Qd = 0.60 

Option # 6 0.60 0.30 distributed 
Qd = 0.30 

Option # 7 0.60 0.30 4 # 5 bars 

Option # 8 0.60 0.30 4 # 5 bars 

Table 8.2 Shear Forces and Nominal Shear Strengths in the East Piers of Wall W2, W3, and W4 

WAu.. TOTAL APPUED 
SHEAR FORCE IN THE EAST PIER (kips) 

NOMINAL SHEAR STRENGTH 
FORCE (kips) UNCAR NONUNCAR 

OFTHE EAST PIER (KIPS) 

ANITE El..EMENl" ANALYSIS FINITE B..EMENT ANALYSIS 

W2 37.2 6.1 16.0 5.5 

W3 37.1 9.7 21.1 8.1 

W4 36.3 10.8 21.7 9.1 
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Table 8.3 Parametric Study of C-Shaped Walls 

Loading t 
Case Reinforcement 

cycle 1 cycle 2 

A +0.15 in. -2.5 in. SameasCLS 

B -D.15 in. +2.5 in. SameasCLS 

C -D.15 in. +2.5 in. Longitudinal reinforcement in the north boundary 
element was increased to five times that in CLS 

D Two cycles at ± 0.1, ± 0.2, Same'as CLS 
± 1.0, ± 2.0, and ± 3.0 in. 

tPositive loaidng places the transverse flange in compression and negative loading places the transverse flange in tension. 
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a) one-<iirectional cracking b) two-directional cracking 

Fig. 2.1 Discrete Crack Models (from [136J) 

a) one-<iirectional cracking b) constitutive matrix in crack direction 

Fig. 2.2 Smeared Crack Model 
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Fig. 3.10 Compression Softening Model 
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Fig. 3.22 The Mechanisms of Dowel Action (from Paulay et al.(llS)) 
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Fig. 3.23 The Interaction between Cracked Concrete and a Reinforcing Bar 
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a ) Typical Cyclic Shear Response 
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b) Shear Stress-Slip Curve (From Liable et a1. [82]) 

Fig. 3.26 Typical Cyclic Shear Response 
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c) Shear Stress-Slip Curve (From Mattock [93]) 
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Fig. 3.26 Typical Cyclic Shear Response (Cont) 
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a) Model for Cyclic Shear Stress vs Shear Strain by Xu (151) 

b) Model for Cyclic Shear Force vs. Shear Displacement by Jimenez et al. (77) 

Fig. 3.27 Cyclic Shear Model 
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Fig. 4.3 Envelope Curves 
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Fig. 6.9 Sensitivity of the Calculated Response of Wall Rl to the Choice of ci 
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Fig. 6.10 Sensitivity of the Calculated Response of Wall B7 to the Choice of Ei 
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Fig. 6.11 Sensitivity of the Calculated Response of Wall R1 to the Choice of cr1 
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Fig. 6.14 Sensitivity of the Calculated Response of Wall B7 to the Choice of 03 
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Fig. 6.13 Sensitivity of the Calculated Response of Wall B7 to the Choice of 02 
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Fig. 6.16 Sensitivity of the Calculated Response of Wall B7 to the Choice of J.ll 
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Fig. 6.15 Sensitivity of the Calculated Response of Wall B7 to the Choice of 03 and on 
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Fig. 6.17 Sensitivity of the Calculated Response of Wall B7 to the Choice of ~2 
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Fig. 6.18 Sensitivity of the Calculated Response of Wall B7 to the Choice of ~min 
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Fig. 6.19 Sensitivity of the Calculated Response of Wall B7 to the Choice ofYn 
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Fig. 6.20 Sensitivity of the Calculated Response of Wall B7 to the Choice Of'tslip 
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Fig. 6.21 Load VS. Deflection Curve for Wall Rl 
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Fig. 6.22 Load vs. Deflection Curve for Wall R2 
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Fig. 6.23 Load vs. Deflection Curve for Wall R3 

230 



so.o 

so.o 

40.0 

- 20.0 
en 
a.. 
52 ..... 

0.0 
~ 
9 

-20.0 

-40.0 

-60.0 

-80.0 
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 

Top Deflection, in. 
Experimental Data 

80.0 

60.0 

40.0 

- 20.0 
~ 
52 ..... 

0.0 

~ 
-20.0 

-40.0 

-60.0 

-80.0 
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 

Top Deflection, in. 
Calculated Response 

Fig. 6.24 Load vs. Deflection Curve for Wall R4 
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Fig. 6.25 Load vs. Deflection Curve for Wall B 1 
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Fig. 6.26 LOad vs. Deflection Curve for Wall B2 

233 



....... .J 

50.0 

25.0 

-25.0 

-50.0 

-~.o ~~~~~~~~++~++~++~++~++~++~4+~~~~ 

-6.0 -5.0 4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 
Top Deflection, in. 

Experimental Data 

-~ ~~~~~~~~++~++~++~++~++~++~4+~~~~ 

-s.o -5.0 4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 
Top Deflection, in. 

Calculated Response 
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Fig. 6.28 Load vs. Deflection Curve for Wall B4 
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Fig. "6.29 Load vs. Deflection Curve for Wall B5 
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Fig. 6.30 Load vs. Deflection Curve for Wall B6 
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Fig. 6.31 Load vs. Deflection Curve for Wall B7 
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a) Crack Pattern of a Wall Specimen Subjected to Low Nominal Shear Stress 

b) Crack Pattern of a Wall Specimen Subjected to High Nominal Shear Stress 

Fig.' 6.50 Typical Crack Patterns in PCA Wall Specimens 
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8-node plane stress elements (02DISOP) were used for two-dimensional analysis. 

8-node shell elements (OSHELL) were used for three-dimensional analysis. 

Fig. 7.4 FInite Element Model for Evaluating Differences between the Calculated 
Response using Plane Stress and Shell Elements 
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APPENDIX A 

COMPRESSION STIFFENING AND COMPRESSION SOFTENING CURVES FOR 
THE CONCRETE MODEL 

A.1 COMPRESSION STIFFENING CURVE 

A compression stiffening curve (curve A-B in Fig. A.1) is defined by the following equation: 

where s = 

_ aos 
eos- -

Ec 

kl = ec - en 

(Ai) 

Et = the tangent stiffness at the beginning of the unloading curve 

Ee = the initial modulus of elasticity for concrete 

(ec, ac) = the strain and stress at the current load step 

(en,an) = the strain and stress at the end of the compression 
stiffening curve 
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A.2 COMPRESSION SOFTENING CURVE 

A compression softening curve (curve B-C in Fig. A.2) is defined by the following equation: 

where 

CJ) 
CJ) 
Q) 
~ ..... 
CJ) 

when e > en 

when e < en 

Cracks I 

fully closed I 
I 

I 

a = Ec e 

aoc - fcult - an 

eoc - aoc e 
-y;-

fcult - the compressive strength of concrete 

Ee - the initial modulus of elasticity for concrete 

e - the base of the natural logarithms 

(en,an) = the strain and stress at the beginning of the 
compression softening curve 

Cracks partially open Cracks fully open 

Compression Stiffening Curve (A- B) 

strain 
Fig. A.1 Compression Stiffening Curve 
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CIJ 
CIJ 
CD 
~ ..... 
CIJ 

C 

Compression Softening Curve (8-C) 

strain 

Fig. A.2 Compression Softening Curve 
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APPENDIXB 

STRESS-STRAIN RELATIONSHIP FOR CONFINED CONCRETE 

The stress-strain relationship for confined concrete proposed by Shiekh and U zumeri 
(125) was adopted in the proposed concrete modeL Parameters of the relationship, which in-
cludeku, e1, e2, and c85 (Fig. B.l), are calculated as follows: 

step 1: Determine volumetric ratio of tie steel: 

e s = volume of tie steel at a level 

volume of core (center to center of outer ties) 

step 2: Determine A : 

n 

I cr 
A _ l __ i=_l~ 

a Aco 

n = the number of arcs 

Arc 

Ace = the area enclosed by the center line of outer tie 

C = the center-to-center distance between longitudinal bars 

a =5.5 

step 3: Determine A * : 

;. * - ;. (B - 0.5 stanO) (H - 0.5 stanO) 

8 and H = the center-to-center distance of perimeter 
tie of rectangular core· 

o = 45 degrees 

S = spacing between transverse reinforcement 

step 4: Determine P acc : 

p occ - 0.85/c (Aoc - As) 
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step 5: Determine Ks and fcult : 

l*B2 c-7 
ks - 2.73 -p vesfs 

occ 

step 6: Determine £1 : 

Ic in psi 

step 7: Determine £2 : 

GOO = strain corresponding to the maximum stress in plain concrete 

step 8: Determine £85 : 

a 
compression 

0.85 fcul! 

885 - 0.225 es A + G2 

I ---1-------1-
I I I 
I I I 

I I -+ 
1 ~---I-------I- ,-----

e 
e 85 compression 

Fig. B.l Stress-Strain Relationship for Confined. Concrete 
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APPENDIXC 

RULES FOR CYCLIC STRESS .... STRAIN RELATIONSHIP OF CONCRETE 

[ a,c ] = stress and strain at the current load step 

ENVELOPE CURVE: 

where a oe - feult - an 

aoee 
coe = -

Ee 

(c n, an) = the strain and stress at the beginning of the 
compression softening curve 

COMMON POINTS: 

PERMANENT COMPRESSIVE STRAIN cp: 

where 

e p is the permanent compressive strain for the current cycle 

ce 
S = T1UJX 

cul! 

Cult [1.0 - O.425e(1-s)] 

1 - (s eCl - s)) 

cp = 0.70· c~ 

Cult = the compressive strain at the compressive strength of concrete, !cult 

C!C -
c;;.T1UJX - the previous maximum compressive strain 
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There are 5 values of tangent stiffness used in the relationship : 

E1 = Ec = the initial modulus of elasticity for concrete 

E2 -

E3 -

E4 -

where EO.3 = 

E5 = 

Gcp - Gpr 

e~ax - epr 

stress-stran of the previous load step 

0.10 Ec 
if (E3 < E2) then E3 = E2 

0.30 feult 
E03 - Ep 

strain at stress = 0.30 fcult when unloading 
with tangent stiffness = Eeone from [Gv,E~ax] 

Valne of En in each cycle is adjusted as follows : 

[ G,e ] 

[ Gpr,Epr ] 

Et 

= 
= 

= 
= 
= 

stress,strain at the current load step 

stress,stntin at the previous load step 
tangent stiffness of the current load step 
stress on the envelope curve at strain = ~ax 
tangent stiffness of the envelope curve at strain = ~ax 

The rules for loading and unloading are described in Table C.l. 
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8-C 
H -I 

A-8 
G-H 

c-o 
1- J 

D-E 

E-F 

F-G 

Table C.l Loading and Unloading Rules for Unconfined Concrete 

LOADING: 

if E7nax > E ult then 

Et = E1 
else 

}-
if E < Ecmaxthen -

Et= E3 -

else 

}- Et=E2 -
endif 

endif 

a = apr + Et{E - Epr) 

if a < crv then 

~n 
cr = av 

Et = Ev 

UNLOADING: E > Epr 

Et = E1 
cr = apr + Et(E - Epr)---

if a < 0.30 fcult then 

Et = E4 
a = apT + Et(e - e pT 

endif 

if a < 0.0 then 
a = 0.0 

Et = 0.0 

endif 
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Description 

concrete has not been crushed yet 

use elastic Ec 

concrete has previously been crushed 

current strain less than previous max.strain 

use E3 

current strain is greater than prevo max.strain 
use secant stiffness between ((JpnEpr) and 

(ay,lmax) E2 

update stress at current step 

if the current stress is less that the stress 
. on the envelop curve, stress-strain curve 
follows the envelope curve 

Description 

use elastic Ec 

update stress at current step 

if the current stress is greater that 0.30 fcult 
use E4 instead. 

if the current stress is greater than 0.0, 
set stress and stiffness to be 0.0 



Envelope Curve 

-....---- Common Point 

0.30 fculJ 

Fig. C.l : Stress-strain of Unconfined Concrete subjected to Cyclic Compressive Loading 

~ Envelope Curve 
, 
', .... C Common Points \ ' 

B 

Fig. C.2 : Rules for Cyclic Compressive Loading 
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APPENDIX D 

FINITE ELEMENT MESHES FOR WALLS 
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I: -10 -I- -I- .~ 2@7.s~ 12" 2@10.s" 12" 2@7.s~ 

75" 

a) Walls R1 and R2 b) WaJl R3 

Fig. D.I Finite Element Meshes for peA Walls 
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APPENDIX E 

MATERIAL PROPERTIES FOR peA WALL TESTS 

Table E.1 Measured Concrete Properties (from (105, 106,103)) 

Specimen 

Rl 

R2 

R3 

R4 

Bl 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

B9 

f' = 
f~ = 
Be = 

fe' fr 
(Psi) (Psi) 

6490 655 

6735 650 

3535 -
3285 -
7685 730 

7775 710 

6860 635 

6530 680 

6570 625 

3164 657 

7155 873 

6085 614 

6396 633 

average compressive strength of concrete 
average modulus of rupture of concrete 
average modulus of elasticity of concrete 
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Ec 
(ksi) 

4030 

3890 

-
-

4080 

4200 

3960 

4100 

3970 

3350 

4310 

3900 

3940 



Size 

D3 

6mm 

No.3 

No.4 

No~6 

f = 
fsu = 
Es = 

Table E.2 Measured Reinforcing Steel Properties (from (105, 106, 103)) 

Properties 
R1 R2 R3 R4 

fy (ksi) 66.0 70.4 70.0 70.0 

fsu (ksi) 72.0 76.2 - -
Es (ksi x 1()3) 30.6 28.3 - -
fy (ksi) 75.7 77.6 75.0 75.0 

fsu (ksi) 101.5 100.2 - -
Es (ksi x 1()3) 31.4 32.6 - -
fy (ksi) 74.2 - - -
fsu (ksi) 111.0 - - -
Es (ksi x 1()3) 27.8 - - -
fy (ksi) - 65.3 78.3 71.2 

fsu (ksi) - 102.7 - -
Es (ksi x 1(}3) - 26.9 - -
fy (ksi) - - - -
fsu (ksi) - - - -
Es (ksi x 1(}3) - - - -

yielding strength of reinforcing steel 
strength of reinforcing steel 

B1 

68.7 

75.1 

33.0 

75.5 

100.8 

32.5 

-

-
-

65.2 

102.7 

28.3 

-
-
-

modulus of elasticity of reinforcing steel 
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Specimen 

B2 B3 B4 B5 B6 B7 B8 

67.1 69.0 73.8 69.2 70.7 - -
74.4 76.8 78.8 75.4 74.0 - -
33.8 32.5 28.4 31.2 30.0 - -

77.2 69.4 73.2 72.8 74.2 71.0 65.8 

101.6 95.5 98.8 97.4 98.0 101.0 893 

32.1 30.4 31.9 31.4 30.4 28.5 28.2 

- - - - - - -

- - - - - - -
- - - - - - -
- 63.5 653 - - - -
- 101.1 102.5 - - - -
- 25.9 27.5 - - - -

59.5 - - 64.4 63.9 66.4 64.9 

100.8 - - 106.4 106.3 108.8 108.2 

30.2 - - 29.5 28.5 28.4 27.5 

B9 

-

-

-

66.9 

88.9 

28.6 

-
-
-
-
-

.. "" •• j 

-
62.3 

106.5 

27.6 



APPENDIX F 

MATERIAL PROPERTIES FOR C-SHAPED WALLS 

Table F.1 Measured Concrete Properties 

fe' ft 

Specimen 
(Psi) (Psi) 

CLS 4500 425 

CMS 4050 420 

f' = 
f~ 

average compressive strength of concrete 
average splitting tensile strength of concrete 
average modulus of rupture of concrete fr 

= 
= 

Table F.2 Measured Steel Properties 

Reinforcing Steel 
fy fsa 

(ksi) (ksi) 

No. 2 Bar 55 71 

No.3 Bar 

#10 Wire 

62 91 

85 112 

yielding strength of reinforcing steel 
strength of reinforcing steel 
modulus of elasticity of reinforcing steel 

365 

fr 
(ksi) 

940 

1070 

Es 
(ksi) 

27,750 

28,400 

24,300 



APPENDIXG 

MATERIAL PROPERTIES FOR WALL CI1 AND PW1 

Table G.l Measured Concrete Properties (from (126) 

Specimen 
fe' ft 

(Psi) (Psi) 

f. I = 
ft = 
Be = 

CI-l 3375 480 

PW-l 3030 430 

average compressive strength of concrete 
average splitting tensile strength of concrete 
average modulus of elasticity of concrete 

Table 0.2 Measured Steel Properties (from (126» 

Specimen 

CI-l 

PW-1 

f = 
fsu = 
Es = 

Reinforcing Steel 

No.4 Bar 

6mmbar 

D-3 wire 

No.4 Bar 

6mmbar 

D-3 wire 

yielding strength of reinforcing steel 
strength of reinforcing steel 

fy 
(ksi) 

69.1 

68.6 

70.8 

60.4 

67.0 

78.0 

modulus of elasticity of reinforcing steel 
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fsu 
(ksi) 

110.5 

94.3 

81.9 

110.0 

90.5 

87.7 

Ee 
(ksi) 

3385 

2815 

Es 
(ksi) 

26,100 

29,500 

27,700 

24,000 

35,000 

28,500 

• , •• _ .• J 
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APPENDIX H 

MATERIAL PROPERTIES OF WALLS W1, W2, W3, AND W4· 

Table H.I Material Properties for Concrete (from (6)) 

fe' (PSi) Split Modulus 
<§blinder of 

Specimen trength Rupture 

28 days on test date (Psi) (psi) 

W-1 4940 4960 416 847 

W-2 4690 4830 425 816 

W-3 4790 5160 394 814 

W-4 4960 5260 409 852 

Table H.2 Material Properties for Reinforcing Steel (from (6)) 

Reinforcing 
Steel 

Yield Stress, fy Young's Modulus Yield Strain, Ey 

ksi ksi in.fm. 

#4 Bar 78.4 29000 0.0027 

#2 Bar 81.5 29000 0.0028 

3/16 "Bar 90.0 29000 0.0031 
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