UILU-ENG-93-2015

CIVIL ENGINEERING STUDIES
Structural Research Series No. 584

ISSN: 0069-4274

FINITE ELEMENT ANALYS!IS COF
- REINFORCED CONCRETE SHEAR WALLS

By

Chadchart Sittipunt
and
Sharon L. Wood

A Report to the
National Science Feundation
Research Grant BCS 83—-12992

Department of Civil Engineering
University of lllincis at Urbana—Champaign
Urbana, lllinois

December 1983







50272-101

REPORT DOCUMENTATION | *- REPORTNO.
PAGE - UILU-ENG-93-2015

3. Recipient's Accession No.

4. Title and Subtitle

Finite Element Analysis of Reinforced Concrete Shear Walls

5. Report Date
December 1993

6.

7. Author(s)

Chadchart Sittipunt and Sharon L. Wood

8. Performing Organization Report No.

SRS 584

9. Performing Organization Name and Address
University of Illinois at Urbana—Champaign
Department of Civil Engineering
205 North Mathews Avenue
Urbana, Illinois 61801

10. Project/Task/Work Unit No.

11.Contract(C) or Grant(G) No.

BCS 89-12992

12.Sponsoring Organization Name and Address

National Science Foundation
4201 Wilson Boulevard, Room 545
Arlington, VA 22230

13.Type of Report & Period Covered

14,

15.Supplementary Notes

16.Abstract (Limit: 200 words)

The primary objective of this study was to use the finite element method to study the cyclic response
of slender, reinforced concrete shear walls. Material models which represent the cyclic response of concrete
and reinforcing steel in shear walls were developed in this investigation. These material models were verified
both at the element and structural levels; the results of the finite element analyses were compared with the
experimental data from several experimental programs. After the material models had been satisfactorily
tested, the finite element method was used to extend the scope of the investigation of the response of slender
reinforced concrete shear walls with different configurations, reinforcement details, and loading histories.

17.Document Analysis  a. Descriptors

b. Identifiers/Open—Ended Terms

c. COSATI Field/Group

Concrete, Cyclic Loading, Energy Dissipation, Failure Modes, Finite Element Analysis, Nonlinear
Response, Reinforced Concrete, Reinforcing Steel, Shear Walls

18. Availability Statement

19. Security Class (This Report) 21.No. of Pages
UNCLASSIFIED 384

20. Security Class (This Page) 22.Price
UNCLASSIFIED

(See ANSI-Z33.18)

OPTIONAL FORM 272 (4-77)
Department of Commerce






ACKNOWLEDGEMENT

Financial support for this study was provided by the National Science Foundation under

Grant No. BCS §9-12992 at the University of Illinois.

The writers would like to express their sincere gratitude to the following persons for their

valuable contribution to this project:

Professor R.H. Dodds for his help and advice during the implementation of the material

models in FINITE.

Professors W.L. Gamble, N.M. Hawkins, D.A.W. Pecknold, W.C. Schnobrich, and M.A.

Sozen for their valuable criticism and advice.
W.R. Lackner and C.J. Wolschlag for their help during the experimental phase of this project.

H. Dalrymple, M.J. Lawson, and D.C. Hines, Jr. for assistance with instrumentation and data
acquisition during the experimental phase of the project.
C. Swan and the machine shop staff for fabrication the test specimens and the testing hard-

ware.

Acknowledgements are also due to the Civil Engineering Apollo Network (CEAN) for the
use of the Apollo DN-10000 workstation in the initial stage of this study and the Civil Engineering
Research Network (CERN) for the use of the HP9000/720 workstations in the final stage of this

study. This study could not have been completed without these computer facilities.

This report was prepared as a doctoral dissertation by C. Sittipunt, directed by S.L. Wood.






TABLE OF CONTENTS

2.1 LITERATURE REVIEW .. ittt it iiiaiit e ciae it tiaaneaaaananns

211 OVERVIEW ittt ittt ittt sttt re e ta st eenanannennnnn

2.12 PREVIOUS WORKONR/CSHEAR WALLS . ....ootiiiiiiiiiiiiineinnennn.

2.1.3  PREVIOUS WORK ON CYCLIC RESPONSE OF RfCMEMBERS ...............

2.14  APPLICATIONS OF THE FINITE ELEMENTMETHOD .........cccovviiinnn..

22 CRACKMODELLING .. .tttitttttiiitiatettiie it eieeeaeenannnneesnannnns

221 CRACKREPRESENTATION ....couuriiiiiiiiiieiiiinetientenannsennennns

222 CRACK INITIATION AND CRACK PROPAGATION .......c..ccoiiiinennnann.

223 CONSTITUTIVE MODELLING OF CRACKEDCONCRETE ...........c.cven..

2231 FIXEDCRACKMODEL .......oiiiiiiiiiiiiiiiiiiiiiiiciininan.

2232 ROTATINGCRACKMODEL .......citiiiiiiiinniiianeneenann.

2233 NON-ORTHOGONAL MULTI-CRACKMODEL ...........cvvvtnn..

2.3 MODELLING OF STEEL REINFORCEMENT ...... .ot

23.1 STEEL REINFORCEMENT REPRESENTATION .......ccvviiirunnnnnnnnnnnnn

23.2  STRESS-STRAIN RELATIONSHIP OF REINFORCING STEEL ............. ...

24 PROPOSED MATERIAL MODELS ......iiiiiiiiiiiiiiiiiiiiiineinnanananenenn.

241 PROPOSEDCONCRETEMODEL .....ututiiiiiniiiiiieeetetaennaneaaannn

242 PROPOSED STEEL MODEL ...ttt ittt iiineaananaeanens
MATERIAL MODELFORCONCRETE .......cciiiiiiiiiiiinenneennnns

3.1 NORMAL STRESSFUNCTION ...ttt cit e ceietaaaaiianannaas

3.1.1 TENSION STIFFENING . ...ttt iiiiiiaitectiarectaenseeenanns

3.12 CRACKCLOSINGANDREOPENING ......ciiimuiiiiiiiiiainneennnannn.

3.1.3 COMPRESSION SOFTENING .....uuiuiuiiiiiiiiiiiiiieteennceeeenenennns

314 CONFINEDCONCRETE . .....iiutiiiiiiiiiiaaaia i iaiiaaeeeeaaanns

3.1.5 DEGRADATION OF CONCRETE PROPERTIES UNDER CYCLIC LOADINGS ...

iv

O N O v

10
12
14
15
16
17
19
19
20
21

21

24



32 SHEARSTRESSFUNCTION ... ..ttt iiiintiiantiteeateiaaranteennnnns

3.2.1 SHEAR STIFFNESS DUE TO INTERFACE SHEAR TRANSFER ................
322 SHEARSTIFFNESSDUE TODOWELACTION .......coviviiinnnnnann.. v
323 EFFECTOFCYCLICLOADING ....coiiiiiiiiiiiiiiaieietinnnnenannns
3.3 SUMMARY ittt ittt et et ceens

MATERIAL MODEL FOR REINFORCING STEEL ........ccvviieeen.n..

4.1 CYCLIC STRESS-STRAINRELATIONSHIP .......ctiuiiuiiuniniineennnnnnreennnns
42 PROPOSED STEELMODEL . ... ..uitiitiiiittiitiiiietanteeeineeieaanneeanans

421 MONOTONICCURVE .....iiiiitiiiiiiiineiiciinnnnstecaceaarenansons
422 ENVELOPE CURVES ... .ttt ieiiiceiiia i aeeiaiaaaanaen
423 LOADREVERSALSFROMYIELDPLATEAU .....ccviinniiiiinnnnnnninnnns
43 EVALUATIONOFTHE STEELMODEL ... .ciiiiiiiiiiiiniiiitiinaiinannnnannns

L N B 1 11 N 2

5.1 FINITEELEMENTFORMULATION ......c.iuitiuiuiiiiiiiniiiiiiiieiaiiannnennnnns
B 1T 18 =
53 ALGORITHMS USED IN THE MATERIAL MODELS ......ctiiiiiiuinanninnnneannns

53.1 INCORRECT STRESS PATH ... ....cuveeinennenen e
532 FALSELOADREVERSALS .......utuueeent e,
533 PROBLEMS WITH NEWTON-RAPHSON METHOD ... ..'ounneeeeannnnnnnn..
54 FINITEELEMENTMODEL .. .....ecunnintne et e e e
541 TYPESOFELEMENT ... \outtnmne e e e
542  SIZE OF FINITE ELEMENTMESH ...\ uuineeniniee e e
543 LOADING ALGORITHMS .......ueuneeine et
55 INCREMENTAL-ITERATIVE ALGORITHMS ... .. e.ueeneneen e e eeeaneans
551 NEWTON-RAPHSON ALGORITHMS . .....euunenneeneeeaaaneeeaanneennn.
552 CONVERGENCE CRITERIA .......ouennninneeaniae e,

PCAWALLTESTS ..cciiiiiiiiiiiiiiiiiianeens Cerieceetecitatieaenns

6.1 PCAEXPERIMENTALPROGRAM .....uiuiitiiiiiiiineiaiinnraaneteannencennns
62 FINITEELEMENTMODEL ........ i iiiiitiiiiiiiiiiiiieiiiaetenainenennnns
63 PARAMETRIC STUDY ...ttt ittt e ettt ia et aeeatsateaaaannnas

49

49
51
51
52
58
59

61

61
65

67
69
71
72
72
74
75
73
78

82



6.3.1 PARAMETERS USED TO DEFINE NORMAL STRESSES ..........ccvvuunie.. 87

6.3.2 PARAMETERS USED TO DEFINES SHEAR STRESSES ........cccvveeannnn.. 89

6.4 EVALUATION OF THE FINITE ELEMENT RESULTS ................ U .. 91
64.1 LOAD VS.TOP DEFLECTION CURVE ........cuuuueennneeeaaannnnaeannns 92

642 LOAD VS.SHEAR DISTORTION CURVE .. ......uuuenneneeeaanneeaeannns 93

643  FAILUREMODES .....uuuunittne e e e e e 94
@BARFRACTURE ....onunnnine et e e 95

(b) INELASTIC BAR BUCKLING ... ....uuuueee e 95

(c) INSTABILITY OF THE COMPRESSION ZONE ... .. uneeeeeeeeeaann.. 97

(d) BOUNDARY ELEMENT CRUSHING . .....uueeeeeinaeneeeeaaannn. 97

(€ WEB CRUSHING ......0oinnneennee et e e 98

644 CRACKPATTERNS . ...ttt e e e e e 100

6.5 TYPICAL CYCLIC BEHAVIOR OF R/C SHEAR WALLS .......cvuuunnreeneenaaaenn.. 101
TESTS OF C=SHAPED WALLS ...ttt iieeenrneeaaeoaanncnans 106
7.1 EXPERIMENTAL PROGRAM .......utiinnieiin e e 106
7.1.1  C-SHAPED WALL SPECIMENS .. .....uuuuuetenanenaeeeeeananannennnnns 107

7.12  TESTINGPROCEDURES .......uuuennneeeaee e, 108

7.13  INSTRUMENTATION ... ..uurnnniiee e et eenees 109

72 OBSERVED RESPONSE OF THE WALLS ......uuuennnenneeeneaaaanneeeeens. 110
73  FINITEELEMENTMODEL . ....utunnmnnitteae et e e 111
731  CHOICE OFELEMENT ....uuunitee et 111

732  WALLMODEL .....uoinnt et e 112

74 EVALUATION OF THE FINITE ELEMENT RESULTS ... ....uvunnnannnnnneennnns. 114
APPLICATIONS OF THE FINITE ELEMENTMETHOD ................. 117
8.1 ENERGY DISSIPATION CAPACITY OFR/CWALLS .........cvveuennneeeananaaannn. 117
8.1.1 ENERGY DISSIPATION MECHANISMS ........uuuneineeeeeaannenennn.. 118

8.12 REINFORCEMENTDETAILS ........ccouvennnn. S 119

8.13  ANALYTICALRESULTS .. ....uuueinnnne et e e ee e eeenns 121

82 SHEAR WALLS WITH OPENINGS .....uvounreeenneeteeeeaneeeeeaannnneeeeaanns 124
821 PCA TESTS OF WALLS WITH AND WITHOUT OPENINGS .................. 125
8211 EXPERIMENTAL RESULTS .. ...couuummneeeaaeaaaaaanneannnns. 126

8212  ANALYTICAL RESULTS .....cuiennnnnee e 127

822 TESTS OF WALLS WITH STAGGERED OPENINGS . .....oveeeennnnneenannn, 130
8221 EXPERIMENTAL RESULTS .. ....cuuuuuunteiinaaeannnnneannanss 131



8222 ANALYTICALRESULTS ... ..ctininiuiiiniiiiiiiinnennaiiannns 131

83 EFFECTIVE WIDTH OF FLANGES IN C~SHAPED WALLS ........ccvvueeeeennnennn. 134
83.1 ANALYTICALPROGRAM ... ...t e et aaaasnn. 135
832 CALCULATEDRESPONSE ... ..tuunne et e e e 136
84 SUMMARY ...ttt e e e e e e e e 139
9. SUMMARY AND CONCLUSIONS it ititiiiittieeiteteascceaneonacenns 141
9.1 OVERVIEW .. eeeeeeee et e e e e e e e e e 141
92 CONCLUSIONS ...ttt e e e e e e e e 146
9.3 RECOMMENDATIONS FOR FUTURE RESEARCH ... eununeeee e 148
90.3.1 EXPERIMENTAL PROGRAMS . ...oonnnnnnne e e e 148
932  ANALYTICAL MODELS ... ...uuututeeta e 149
TABLES . iiiiiiiiiiiitiieteeeeeenoencensessanannans Ceeecececsccaaanan 151
FIGURES i iiiiiiiiiiieeeeesenceacacceasasssosccsscscesssnsassncananess 163
APPENDIX
A. COMPRESSION STIFFENING AND COMPRESSION SOFTENING CURVES FOR THE CON-
CRETE MODEL ...\t ettt e e e e e e e e e e e e e 348
Al  COMPRESSION STIFFENING CURVE . ...\ uuueet et e, 348
A2  COMPRESSION SOFTENING CURVE ............. e 349
B.  STRESS-STRAIN RELATIONSHIP FOR CONFINED CONCRETE .........ccuuunnn.... 351
C. RULES FOR CYCLIC STRESS-STRAIN RELATIONSHIP OF CONCRETE .............. 353
D.  FINITE ELEMENT MESHES FOR WALLS . .. .o uuueette ettt e e 357
E. MATERIAL PROPERTIES FOR PCA WALL TESTS ....veuununeneeenseananaaanannns 363
E.  MATERIAL PROPERTIES FOR C-SHAPED WALLS ......ccuuuuereseaaaannnns. 365
G. MATERIAL PROPERTIES FOR WALL CI1 ANDPW1 «.oonnnmeees i, 366
H  MATERIAL PROPERTIES OF WALLS W1, W2, W3, AND W4 . .. ..o enuanannnn... 367
LIST OF REFERENCES ........ Ceececereecaceanans Ceeecrerenacecacnncns 368
VITA ....... Ceeetecsctecceasascasceencoans cecsecsesecncacaas ceecsesescian 385



Table 4.1

Table 5.1
Table 5.2

Table 6.1
Table 6.2

Table 6.3
Table 7.1

Table 7.2
Table 8.1
Table 8.2

Table 8.3

Table C.1
Table E.1
Table E.2
Table F.1

Table F.2

Table G.1
Table G.2
Table H.1
Table H.2

LIST OF TABLES

Parameters used to define the Reinforcing Steel Model
(for Grade 60 Steel) . ... oo ittt e

Classifications of Nonlinear Analyses (from [13])

CPU Time Required in the Analyses of Wall R1 with Different
Schemes for Updating Stiffness Matrix ....... ... ... oa...

Properties of PCA Wall Specimens (from Oesterle [103])

Parameters used to define the Concrete Model for PCA Wall
Specimen

..................

...........

...................................................

Observed Failure Modes in PCA Wall Specimens

..................

Comparisons between 2—D Plane Stress Elements and
Shell Elements

Failure Modes in Walls CLS and CMS

Amount of Reinforcement in each Reinforcement Option...........

...............................................

...........................

Shear Forces and Nominal Shear Strengths in the East Piers
of Wall W2, W3, and W4 . .. .. i

Parametric Study of C—Shaped Walls ........... ... ... . ... ...
Loading and Unloading Rules for Unconfined Concrete
Measured Concrete Properties (from (104, 105))
Measured Reinforcing Steel Properties (from (104, 105))
Measured Concrete Properties .. ...t

------------
..................

...........

Measured Steel Properties
Measured Concrete Properties (from (125))
Measured Steel Properties (from (125))
Material Properties for Concrete (from (6)) -.....................
Material Properties for Reinforcing Steel (from (6))

.....................................

......................

..........................

...............






Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 3.1
Fig. 3.2
Fig. 3.3

Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12

Fig. 3.13
Fig. 3.14
Fig. 3.15

Fig. 3.16
Fig. 3.17

Fig. 3.18
Fig. 3.19
Fig. 3.20

LIST OF FIGURES

Discrete Crack Models (from [136]) -« .voooneeoneineinenns, .. 164
Smeared Crack Model . ... ... i 164
Separation of Shear Strain .......... .ottt i 165
Typical Normal Stress Function .............. ... ..o oo it 166
Tension Stiffening . . ... ... i 166
Scatter in Data Representing Tension Stiffening

(from Vecchio and Collins [143]) ... .. iiiiiiiiiiiiiii et 167
Tension Stiffening Model ...... ... .. i i 167
Load vs. Deflection Curve of Wall B4 (from Oesterle [105]) .......... 168
Response of Concrete Subjected to Cyclic Tension .................. 168
Rules for Crack Closing (Ae < 0) .. .voiiiiiiiiiiiii i 169
Rules for Crack Opening (Ae > 0) ...ttt 170
Focal Points for Crack Closing and Opening ................cooo.... 171
Compression SofteningModel ............ ... .. . il 171

Evaluation of Compression Softening Function (from Oesterle [105]) .. 172
The Proposed Model for Confined Concrete

(from Shiekh and Uzumeri [125]) ... ..ottty 172
Proposed Compressive Cyclic Stress—Strain Relationship ............ 173
Rules for Unloading and Reloading: Unconfined Concrete ........... 173

Comparison of Calculated and Experimental Data

for Response of Concrete subjected to Cyclic Compression Loads
(Sinha et al. [128]) < oiiiiiiii ittt et i i e 174

Comparison of Calculated and Experimental Data

for Response of Concrete subjected to Cyclic Compression Loads
(Karsan and Jirsa [79]) .« ccciniiiiiii ittt ittt e aaee 175

Comparison of Calculated and Experimental Data
for Response of Concrete subjected to Cyclic Compression Loads

(Karsan and Jirsa [79]) .. .cievnmiiiiiiiii i ee 176
Rules for Unloading and Reloading: Confined Concrete ............. 177
Calculated Cyclic Response for Unconfined and Confined Concrete ... 178
Interface Shear Transfer ......... ... i, 179



Fig. 3.21

Fig. 3.22
Fig. 3.23
Fig. 3.24
Fig. 3.25
Fig. 3.26
Fig. 3.27
Fig. 3.28
Fig. 3.29
Fig. 4.1

Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5

Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 5.1
Flg. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig.5.9
Fig. 6.1
Fig. 6.2

Relationship between Shear Interface Transfer Stiffness

and Normal Strain across Cracks ......... ... ... e 179
The Mechanisms of Dowel Action (from Paulay et al.(115)) .......... 180
The Interaction between Cracked Concrete and a Reinforcing Bar .... 180
Typical Characteristics of Dowel Action ................ e 181
Relationship between Dowel Action Stiffness and Shear Strain ........ 181
Typical Cyclic Shear Response ............... e 182
Cyclic Shear Model ...... ..ot it 185
The Proposed Cyclic Shear Model ....... ... ... oo, 186
Monotonic Loading Curve of Reinforcing Steel R 187
Typical Cyclic Stress—Strain Relationship for

Reinforcing Steel (from Aktan [5]) ............... e 187
Monotonic Loading Curve for Reinforcing Steel .................... 187
Enveloped Curves ...ttt 188
Equation for so (From Aktanetal. [5]) ........ ..ol 188
Analytical Stress—Strain Relationship of Reinforcing Bars

IMR/CShear Walls ...t i et e i iaaae e 189
Common Points and Ultimate Points ............ ...t 190
Typical Experimental Results of Load Reversals from the Yield Plateau 191
Unloading from Yield Plateau (From Popov [118]) .................. 192
Evaluation of the Proposed Steel Model ........................... 193
Solution Algorithm for each Load Step (from[49]) .................. 201
Solution Path of Incremental—iterative Algorithm (from [23]) ........ 202
Numerical Problem with Newton—Raphson Iteration Algorithm ...... 202
Relationship between Fracture Energy and Mesh Size ............... 203
FInite Element Mesh for WallR1 ........ .. ... . i iiiiiiiin, 204
Calculated Crack Patterns for Wall R1 ........... ... ... ... ... 204
Calculated Load—Deflection Curves for WallR1 ................... 205
Newton—Raphson Iterative Algorithms .................... ... .. 206
Convergence Rate of Different Schemes for Updating Stiffness Matrix . 207
Nominal Dimensions of the PCA Wall Specimens (from [106]) ........ 208
Typical Loading Histories (from [103]) ....... ..ottt 209



Fig. 6.3
Fig. 6.4
Fig. 6.5

Fig. 6.6
Fig. 6.7
Fig. 6.8

Fig. 6.9

Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15

Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26
Fig. 6.27
Fig. 6.28
Fig. 6.29

Finite Element Model for a PCA Wall Specimen .................... 210
Sensitivity of the Calculated Response of Wall B4 to the Choice of a ... 211
Sensitivity of the Calculated Response of Wall R1 to the Choice of oi in

Boundary Elements ......... ... . il 212
Sensitivity of the Calculated Response of Wall B7 to
the Choice of ol in Boundary Elements .. ......... ..., 213
Sensitivity of the Calculated Response of Wall R1 to
the Choiceof aiin Web .. ... oo i 214
Sensitivity of the Calculated Response of Wall B7 to
the Choice of oiin Web . ... .. .. i i i 215

‘Sensitivity of the Calculated Response of Wall R1 to the Choice of €i .. 216

Sensitivity of the Calculated Response of Wall B7 to the Choice of €i ... 217
Sensitivity of the Calculated Response of Wall R1 to the Choice of 01 .. 218
Sensitivity of the Calculated Response of Wall B7 to the Choice of 61 .. 219
Sensitivity of the Calculated Response of Wall B7 to the Choice of 02 .. 220
Sensitivity of the Calculated Response of Wall B7 to the Choice of 63 .. 221

Sensitivity of the Calculated Response of Wall B7 to
the Choiceof o3 andon ....... ... ..o, 222

Sensitivity of the Calculated Response of Wall B7 to the Choice of u1 .. 223
Sensitivity of the Calculated Response of Wall B7 to the Choice of u2 .. 224
Sensitivity of the Calculated Response of Wall B7 to the Choice of e, . 225
Sensitivity of the Calculated Response of Wall B7 to the Choice of yn .. 226
Sensitivity of the Calculated Response of Wall B7 to the Choice of tg;p . 227

Load vs. Deflection Curve for WallR1 ....... ... ... . oo .. 228
Load vs. Deflection Curve for WallR2 ... ... ... ... oo ... 229
Load vs. Deflection Curve for WallR3 ....... ... ... ... . . . ... 230
Load vs. Deflection Curve for WallR4 ...... et 231
Load vs. Deflection Curve for Wall B1 ............. ... o .. 232
Load vs. Deflection Curve for Wall B2 ... ... ... ... . ... 233
Load vs. Deflection Curve for WallB3 ...... ... ... ... ... . ..... 234
Load vs. Deflection Curve for WallB4 ... ... .. ... ... .......... 235
Load vs. Deflection Curve for WallBS ........ .. .. ... ... ... ... 236



Fig.
Fig.
. 6.32
Fig.
Fig.
Fig.
Fig.
. 6.37
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

6.30
6.31

6.33
6.34
6.35
6.36

6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49

6.50
6.51

6.52

6.53

6.54

6.55

6.56

Load vs. Deflection Curve for WallB6 .. ...t 237

Load vs. Deflection Curve for WallB7 .............. S, 238
Load vs. Deflection Curve for Wall B8 ....... ... ... .. ... .. .. .. 239
Load vs. Deflection Curve for Wall B9 ..........cuviiininiannnn.. 240
Estimation of Shear Distortion .. .......ccoiiiiiiiiiiiiiiinnnnn.. 241
Load vs. Shear Distortion at 6—ft Leve: WallR1 ................... 242
Load vs. Shear Distortion at 6—ft Level: WallR2 ................... 243
Load vs. Shear Distortion at 6—ft Level: WallR3 ................... 244
Load vs. Shear Distortion at 6—ft Leve: WallR4 .. ... ... .. .. ... 245
Load vs. Shear Distortion at 6—ft Level: WallB1 ................... 246
Load vs. Shear Distortion at 6—ft Level: WallB2 ................... 247
Load vs. Shear Distortion at 6—ft Level: Wall B3 ................... 248
Load vs. Shear Distortion at 6—ft Level: Wall B4 ................... 249
Load vs. Shear Distortion at 6—ft Level: WallBS ................... 250
Load vs. Shear Distortion at 6—ft Level: WallB6 ................... 251
Load vs. Shear Distortion at 6—ft Level: WallB7 ................... 252
Load vs. Shear Distortion at 6—ft Level: Wall B8 ................... 253
Load vs. Shear Distortion at 6—ft Level: WallB9 ................... 254
Buckling Modes of Reinforcing Bars (from Gosain et al [61]) ......... 255
Effective Strength Factors vs. Normalized Shear Distortion

for Shear Walls (from [103]) ... ..ottt 255
Typical Crack Patterns in PCA Wall Specimens ..................... 256
Calculated Crack Patterns for Wall R1 at :

Different Top—Deflection Levels . ...... ..o, 257
Calculated Crack Patterns for Wall B7 at

Different Top—Deflection Levels .. ... ... ..o i i 258
Calculated Deformed Shape of Wall R1 at

Different Top—Deflection Levels . ......... .o il 259
Calculated Shear Strain Distribution in Wall R1 at

Different Top—Deflection Levels ........ ... o oo iiiiiin. 260
Calculated gyy Distribution in Wall R1 at

Different Top—Deflection Levels .. ... ... ... o i i, 261
Calculated oyy Distribution in Wall R1 at

Different Top—Deflection Levels .. ......... .o oo, 262



Fig. 6.57
Fig. 6.58
Fig. 6.59
Fig. 6.60

Fig. 6.61
Fig. 6.62
Fig. 6.63

Fig. 6.64
Fig. 6.65
Fig. 6.66
Fig. 6.67
Fig. 6.68

Fig. 7.1
Fig. 7.2
Fig. 7.3

Fig. 7.4
Fig. 7.5

Fig. 7.6
Fig. 7.7
Fig. 7.8

Fig. 7.9

Calculated Deformed Shape of Wall B7 at
Different Top—Deflection Levels . .. ... ...

Calculated Shear Strain Distribution in Wall B7 at :
Different Top—Deflection Levels .. ... .. ... ..o i i

Calculated eyy Distribution in Wall B7 at
Different Top—Deflection Levels . . . ... .. ... oo ia...

Calculated oyy Distribution in Wall B7 at
Different Top—Deflection Levels . .. ...... ... oo oL

Calculated Load vs. Strain in Flexural Reinforcement: WallR1 .......
Calculated Load vs. Strain in Flexural Reinforcement: WallB7 ... .....

Calculated Strain in Vertical Reinforcing Steel at
Maximum Positive Loadings: Wall R1 ................. .. ... .. ...

Calculated Strain in Vertical Reinforcing Steel at
Maximum Negative Loadings: Wall R1 . .... ... .. ... ... .. .. ..

Calculated Strain in Vertical Reinforcing Steel at
Maximum Positive Loadings: Wall B7 ........ ... ... ... .. .. ...

Calculated Strain in Vertical Reinforcing Steel at
Maximum Negative Loadings: Wall B7 ........... ... ... ... ......

Calculated Stress—Strain Relationship in
Vertical Reinforcementfor Wall R1 . ... ... ... ...

Calculated Stress—Strain Relationship in
Vertical Reinforcementfor Wall B7 ... .. ... ... ... . oo ...

WallsCLSand CMS ............. ... i eiieeeiieactaaeaaan
Experimental Setup . ...... .ot i e

Imposed Displacement Histories during Stages I through V
for Walls CLSand CMS ... ... . i i i i ie e,

Finite Element Model for Evaluating Differences between
the Calculated Response using Plane Stress and Shell Elements . ......

Wall Model and the Calculated Vertical Displacements at
thetopofthe Wall ... .. .. . . . L.

Calculated Deformed Shapes of the C—Shaped Walls ...............
Distribution of Calculated Axial Stress in the C—Shaped Wall Model .

Loading and Boundary Conditions for Finite Element Models
of Walls CLSand CMS ... . i it cieiaan



Fig. 7.10 Load vs. Deflection Curves at Different Levels for Wall CMS ......... 284

Fig. 7.11 Load vs. Shear Distortion at 3—ft Level: WallCLS .................. 285
Fig. 7.12 Load vs. Shear Distortion at 3—ft Level: WallCMS ............... .. 286
Fig. 7.13 Calculated Deformed Shape of Wall CLS .............. ... .. ... 287
Fig. 7.14 Calculated Vertical Stress Distributionin WallCLS ................. 288
Fig. 7.15 Calculated In—plane Shear Strain Distributionin Wall CLS .......... 289
Fig. 7.16 Calculated Deformed Shape of WallCMS ......................... 290
Fig. 7.17 Calculated Vertical Stress Distributionin WallCMS ................. 291
Fig. 7.18 Calculated In—plane Shear Strain Distribution in WallCMS .......... 292
Fig. 7.19 Calculated Crack Patterns for Wall CLS at Different

Top—Deflection Levels ..... ... it 293
Fig. 7.20 Calculated Crack Patterns for Wall CMS at Different

Top—Deflection Levels . ..... .. .ottt 294
Fig. 7.21 Calculated Stress—Strain Relationship in Vertical Reinforcement

in South Flange for Wall CLS ... ... ... . i i i, 295
Fig. 7.22 Calculated Stress—Strain Relationship in Vertical Reinforcement

in South Flange for WallCMS ... ... .. ... i i i, 296
Fig. 8.1 Calculation of the Accumulated Energy Dissipation Ratio ............ 297
Fig. 8.2 Reinforcement Details Considered in the Finite Element Analyses .... 298
Fig. 8.3 Load vs. Top Deflection Curves for Wall B2 with

Different Reinforcement Details ...... ..o, 299
Fig. 8.4 Load vs. Shear Distortion Curves for Wall B2 with

Different Reinforcement Details ............. ... oot 300
Fig. 8.5 Load vs. Top Deflection Curves for Wall B7 with

Different Reinforcement Details ........... .. i it 301
Fig. 8.6 Load vs. Shear Distortion Curves for Wall B7 with

Different Reinforcement Details .............coooiiiiiiiiiiai... 302
Fig. 8.7 Crack Patterns in Wall B2 with Different Reinforcement Details ...... 303
Fig. 8.8 Crack Patterns in Wall B7 with Different Reinforcement Details ...... 304
Fig. 8.9 Accumulated Energy Dissipation Ratio for Walls B2and B7 .......... 305
Fig. 8.10 Shear Wall Systems (from [125]) .......ccciiiiiiiiiiiiiiiiiiinan, 306
Fig. 8.11 Overall Dimensions of Walls CI1and PW1........... ... ... .. .... 307
Fig. 8.12 Location and Dimensions of Openings in Wall PW1 ... ... .......... 307

xiv



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

8.13
&8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32

8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42

Reinforcement Detailsin Wall CI1 ...... ... ... . o i,
Top—Deflection History for Walls CI1 and PW1 ...... e
Specimens CI1 and PW1 after Failures .......................... ..
Finite Element Meshes for Walls CI1 and PW1 .....................
Load vs. Top Deflection Curves for WallCI1 .......................
Load vs. Top Deflection Curves for WallPW1 ... ... ... ... ... .. ..
Load vs. Shear Distortion for Wall CI1 ........ ... ... . oo ...
Load vs. Shear Distortion for WallPW1 ......... ... .. ... .. ....
Shear Strain Distribution and Crack Patterns for Walls CI1and PW1...
Diagonal Reinforcementin Wall PW1 .. ... . ... ... ... ... ......
Load vs. Top Deflection Curves for WallPW1 ......................
Load vs. Shear Distortion Curves for Wall PW1 ... ... .. ... .. ..
Crack Patternsin Wall PW1 .. ... ... i
Shear Strain Distributionin Wall PW1 ... ... ... .. oL
Dimensions of Wall Specimens Tested at the University of Michigan ...
Reinfo’rcement Details for Wall W1: Cross Section ..................

Reinforcement Details for Wall Specimens: Elevation ...............

‘Typical Top—Deflection History for Walls W1, W2, W3,and W4 ......

Crack Patternsin Wall W2 after Failure ......... ... oouiueeeennn.

Diagonal Tension Shear Failure in Reinforced Concrete Beam
6 340) 05 11 135 ) P

Finite Element Meshes for Wall Specimens ........................
Load vs. Top Deflection Curve for Wall W1 ... .. .................
Load vs. Top Deflection Curve for Wall W2 ... ... .. ... ... . .. ....
Load vs. Top Deflection Curve for Wall W3 ... .. ... ... .o ...
Load vs. Top Deflection Curve for Wall W4 . ... ... ... ... ... ...
Crack Patterns in Wall W2: Original Reinforcement Details ..........
Shear Forces Distribution in Walls W2, W3, and W4 . ................
Diagonal Reinforcement in Walls W2, W3,and W4 .................
Shear Forces in Walls W2, W3, and W4: with Diagonal Reinforcement .
Crack Patterns in Wall W2: with Diagonal Reinforcement ............

Xv

327
328
329
330
331
332
333
334
335
336



Fig. 8.43

Fig. 8.44
Fig. 8.45
Fig. 8.46
Fig. 8.47

Fig. 8.48
Fig. 8.49
Fig. 8.50

Fig. 8.51
Fig. A.l
Fig. A2
Fig. B.1
Fig. C.1

Fig. C.2
Fig. D.1
Fig. D.2
Fig. D.3
Fig. D.4

Influence of Diagonal Reinforcement on the
Shear Stress Distribution in Walls W2, W3,and W4 .................

Finite Element Meshes for C—Shaped Wall Models ............... ..
‘Top—Deflection History for C—Shaped Walls: Case D ...............
Effective Width of the South Flange for C—Shaped Walls ............

Secant Stiffnesses of C—Shaped Walls at Different
Deformation Levels . ... ... i

Calculated Load vs. Top Deflection Curves for
C—Shaped Walls: Case A .. ... . ittt ittt

Calculated Load vs. Top Deflection Curves for
C—Shaped Walls: CasesBand C ........ ...,

Distribution of Strain in Vertical Reinforcing Bars along
the Base of the South Flange ....... ... ... . .. i it

Calculated Results of C—Shaped Walls subjected to Cyclic Loadings .. .
Compression Stiffening Curve .......... ...l
Compression Softening Curve ..........oiiiiiiiiiiiiiiiiiiann.
Stress—Strain Relationship for Confined Concrete ..................

Stress—strain of Unconfined Concrete subjected to _
Cyclic Compressive Loading .. ........oiiiiiiiiiiiiiiiiinanenn.n.

Rules for Cyclic Compressive Loading ............... . ... e
Finite Element Meshesfor PCAWalls ..... ... ... . oLt
Finite Element Meshes for Walls CLSand CMS ....................
Finite Element Meshes for Walls CI1and PW1 .....................
Finite Element Meshes for Walls W1, W2, W3,and W4 ..............

xvi



1. INTRODUCTION

1.1 OVERVIEW

" During the past forty years, reinforced concrete shear walls have been widely used as the
primary lateral—ioad resisting systems for both wind and earthquake loading in multi—story build-
ings throughout the world. Observations from previous earthquakes have shown that well-designed
shear walls can be used to control both structural and nonstructural damage in the buildings (57).
However, itis usually not economical to design tall reinforced concrete shear walls to rema.in elastic
during severe earthquakes. As arésult, the inelastic response of shear walls must be considered dur-
ing the design process (48, 105). The inelastic behavior of shear walls is controlled by the inelastic
response of both the concrete and reinforcing éteel. Tension stiffening, compression softening, and
crack closing and reopening are the major aspects of inelastic behavior in conCretc, while yielding,
strain—hardening, and Baushinger effects must be considered when modelling the reinforcing steel.
These phenomena are the major sources of energy dissipation in reinforced concrete structures and
are important factors in determining the failure modes of reinforced concrete shear walls. In order
for shear wall structures to survive large seismic disturbances, sudden failures due to shear and local
instabilities must be suppressed (112). Therefore, structural engineers must understand thoroughly
the inelastic behavior of reinforced concrete shear walls. They also must be able to predict the cor-
rect failure mode in order to prevent the collapse of a structure due to a sudden failure of the primary

load—carrying system under intense ground motion.

Since the 1970’s, a number of research programs have investigated the inelastic behavior of
slender reinforced concrete shear walls subjected to cyclic lateral loads (29, 105, 140). Most of this
research has concentrated on experimental work rather than the development of analytical models
for evaluating the cyclic behavior of shear walls. In the current design process, most structural engi-
neers rely on the ACI Building Code provisions (2) to evaluate the strength of shear walls. However,
these design provisions are not sufficient to identify the likely modes of failure in shear walls (149).
The procedures used to calculate the nominal shear strength of walls in the ACI Building Code (2)

1



are based on the modified truss analogy and rely on data from reinforced concrete ’beams subjected
to monotonically increasing loads (148). Consequently, these procedures are often unconservative
when used to calculate the shear strength of reinforced concrete shear walls subjected to cyciic load-
ing. Because of this lack of an appropriate analytical model for evaluating the cyclic response of
shear walls, methods for assessing the strength, stiffness, and nonlinear deformation response of
slender reinforced concrete walls subjected to cyclic loadings need to be developed. This is the over-

all goal of this investigation.

This research is part of an ongoing investigation of the cyclic behavior of slender reinforced
concrete shear walls taking place in the Department of Civil Engineering at the University of Illinois,
Urbana—Champaign. Reinforced concrete shear walls with different shapes, reinforcement ratios,
and loading histories were tested. The major objective of this phase of the research is to develop
the appropriate analytical models for modelling the inelastic hysteresis behavior of slender rein-
forced concrete shear walls. The finite element method was chosen as the numerical technique in
this investigation because this method, when combined with the proper constitutive models for con-
crete and reinforcing steel, offers a very powerful tool to investigate the response of shear walls with
different configurations subjected to generalized loadings. Furthermore, finite element analysis also
yields important detailed information on the behavior of shear walls, including the stress—strain rela-
tionships in concrete and reinforcing steel, deflected shapes, and crack patterns, which cannot be
obtained from other analytical methods such as truss models (103) and shear hysteresis models

(108).

The major problems of the nonlinear finite element analysis of reinforced concrete structures
are the large amount of CPU time required for the analysis due to the complicated material models
and the difficulties encountered in the stability and accuracy of the solutions (15). Some material
models for concrete include excessively refined analyses, such as fracture mechanics and detailed
crack localizations, which cause unneeded expenses (71). Most previous models for the cyclic be-
havior of reinforced concrete (134, 151) were tested and verified successfully at the élement level

(the finite element model consists of one or few elements), but when these material models were used



in the structural level problems (the finite element model consists of a large number of elements,
such as the modelling of actual reinforced concrete structures), numerical problems associated with
the complex stress—strain relationships prevented the completion of most analyses (134, 151).
Therefore, the need exists to develop new material models for concrete and reinforcing steel that

can avoid these problems.

The analytical models for concrete and reinforcing steel, once developed and verified using
experimental results, will play an important role in the ongoing research. With these analytical mod-
els, the finite element method can be used to explore in detail the behavior of reinforced concrete
walls that have different configurations and reinforcement details, and are subjected to different

loading histories from the wall specimens tested in the laboratory.
1.2 OBJECTIVE AND SCOPE

The major objectives of this research are:

1) To develop finite element material models for concrete and reinforcing steel that are ap-
propriate for modelling the response of slender reinforced concrete shear walls subjected to reversed
cyclic loadings. The material models must be simple, stable, and reliable in order to make the analy-
ses feasible and economical with respect to CPU time and the convergence of nonlinear solutions.
However, these material models should include all phenomena that have a significant influence on

the cyclic behavior of slender reinforced concrete shear walls.

2) To verify the material models by comparing the calculated results with experimental data
from several large—scale tests of slender reinforced concrete shear walls subjected to cyclicloadings.
The overall hysteresis response, deflected shapes, crack patterns, and observed failure modes will

be considered.

3) To extend the investigation on the behavior of slender reinforced concrete shear walls by

using finite element analysis in licu of further large—scale tests. The investigation includes studies



of the energy dissipation capacity of shear walls, the response of shear walls with openings, and the

contribution of flanges to the response of C—shaped shear walls.

This report first discusses the current status of the research on the finite element analysis of
reinforced concrete members in Chapter 2. Then, the details of the proposed material models for
concrete and reinforcing steel are described in Chapters 3 and 4, respectively. In Chapter 5, the finite
element procedures and some important numerical techniques used in this research are briefly dis-
cussed. Two experimental programs on the cyclic responses of slender reinforced concrete shear
walls—one was the test of thirteen slender reinforced concrete shear walls at the Construction
Technology Laboratory, PCA and the other was the test of two C—shaped shear walls carried on at
the Department of Civil Engineering, the University of Illinois, Urbana~Champaign—were used for
testing and verifying the proposed material models. Several aspects of the test results from these
two experimental programs, including the load vs. top deflection curves, the load vs. shear deforma-
tion curves, craék pattemns, and failure modes, are compared with those of the calculated results.
The experimental setup, the analytical models, and the comparisons between the calculated response
and the experimental data for these two experimental programs are described in Chapters 6 and 7.
After the material models have been satisfactorily verified, the finite element method is used to study
three topics dealing with the response of slender reinforced concrete shear walls: 1) the energy dis-
sipation capacity of shear walls, 2) the response of shear walls with openings, and 3) the contribution
of flanges to the response of C—shaped walls. These studies are described in Chapter 8. Summary,

conclusions, and recommendations for future research are given in Chapter 9.
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2. FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE MEMBERS

The finite element method is a powerful structural analysis tool that has been widely used
in many different types of probiems. The strength of the finite element method is based primarily
on its fundamental concept of discretization, which models a structure as an assemblage of several
finite elements. This concept simplifies the modelling of complex structures and allows the for-
mulation of the problem to be written in a matrix form, which is appropriate to be incorporated into
computer programs. The concept of descretization is also useful for the study of problems with ma-
terial and geometric nonlinearities, because it allows a variety of material and element models to be
installed at the élement level. Finite element users can select or develop the material and the element
models that have the proper kinematic and constitutive relationships for the problems under study.
As aresult, with the proper material and element models for concrete and reinforcing steel, the finite
element method can be a very powerful analytical tool for studying the behavior of reinforced con-

crete structures.

In this chapter, a briefreview of the previous work in the finite element analysis of reinforced
concrete is presented. This review emphasizes three areas related to the major objectives of this in-
vestigation: the finite element analysis of shear walls, the cyclic response of reinforced concfete
members, and the applications of the finite element method. The different approaches previously
used to for modelling cracked concrete and reinforcing steel are then discussed. The proposed mate-

rial models for concrete and reinforcing steel are described at the end of this chapter.

2.1 LITERATURE REVIEW

2.1.1 OVERVIEW

The earliest publication of the finite element analysis of reinforced concrete was written by
Ngo and Scordelis (99) in 1967. In this paper, simply supported reinforced concrete beams with
predefined cracks were analyzed using the finite element method. Since then, a large number of

works on the finite element analysis of reinforced concrete have been published. Most of the early



investigators limited their work to two—dimensional plane stress problems and used the finite ele-
ment method to investigate the behavior of reinforced concrete beams tested in laboratories (32, 41,
70, 98, 99, 141). Jofriet and McNiece (78) used the finite element method to study behavior .of rein-
forced concrete slabs by using plate bending elements and a modified stiffness approach. Subse-
quently, several otherresearchers successfully used plate and shell elements to investigate the behav-

ior of slabs and reinforced concrete shell structures (12, 15, 23, 27, 65, 84, 71).

Although the two—dimensional plane stress elements, plate elements, and shell elements
have been successfully and widely used in the finite element analysis of reinforced concrete, the use
of the three—dimensional element is very limited. This is due both to the computational effort re-
quired in the analysis and to the lack of knowledge concerning the behavior of concrete in a three—di-
mensional state of stress (136). Suidan and Schnobrich (135) used three—dimensional isoparametric
elements to model reinforced concrete beams. Meyer and Bathe (95) used three—dimensional ele-
ments and shell elements to model reinforced concrete nuclear reactors that were subjected to inter-
nal pressure and temperature loadings. Bathe and Ramaswamy (15) also used the three—dimensional
finite elements to analyze prestressed concrete reactor vessels. The extensive summary of the pre-
vious work in the finite element analysis of reinforced concrete can be found in the State—of—the—Art

report published by the American Society of Civil Engineers (136).
2.1.2 PREVIOUS WORK ON R/C SHEAR WALLS

Although the finite element method has been used in the analyses of various types of rein-
forced concrete members, including beams, slabs, shells, and panels, its ai)p]ication in the analysis
of reinforced concrete shear walls is quite limited. In 1972, Yuzugulla (157) used the finite element
method to study the monotonic behavior of a shear wall-frame system which was tested at the Uni-
versity of Tokyo. This research is one of the earliest attempts to model reinforced concrete shear
walls by the finite element model. Aktan and Hanson (4) analyzed the monotonic and cyclic re-
sponses of slender reinforced concrete shear walls by using a finite element model that separated

the walls into subregions. In each of the subregions, the linear behavior was represented by elastic



plane stress elements, and the nonlinear behavior was represented by joint elements connected to
the boundary of the subregion. Bolander and Wight (26, 25) developed the finite element program
SNAC primarily for use as a tool to investigate the inelastic response of shear wall dominant build-

ings subjected to quasi—static loadings.

Research in the finite element analysis of reinforced concrete shear walls in Japan is much
more active than that in the U.S. Most of the shear wall research in Japan deals with the behavior
of low-rise shear walls (height/length less than 1.0), which represent the reinforced concrete walls
used.in the nuclear power plants. Yamaguchi and Nomura (153) used the finite element method that
was based on the plastic—fracture theory proposed by Bazant and Kim (20) to analyze fourreinforced
concrete shear walls subjected to monotonic and cyclic loadings. Ueda and Kawai (139) used a finite
element model which consisted of rigid elements and spring elements to model the monotonic re-
sponse of shear walls. Sotomura and Marazumi (131) analyzed a series of reinforced concrete shear
walls with openings by using a simple smeared crack model for concrete, and an elasto—plastic mod-
el for reinforcing steel. Inoue et al. (73) developed the reinforced concrete material model based
on the results from Vecchio and Collins’ panel tests (143), where thirty reinforced concrete panels
subjected to different uniform stress conditions were tested, and used the model in the analysis of
several shear walls that had different reinforcement ratios and different shear spanratios. Inall these
previous analyses of reinforced concrete walls, most of the reinforced concrete models were simple,
and, regardless of the differences in the material and element models, most of the analytical results

agreed with the experimental results.
2.1.3 PREVIOUS WORK ON CYCLIC RESPONSE OF R/C MEMBERS

Although there has been a large amount of research in the past three decades on the finite
element analysis of reinforced concrete members, there were few studies of the behavior of rein-
forced concrete members subjected to cyclic loadings. Some of the pioneer researchers who used
finite element analysis to model the cyclic response of reinforced concrete members include Cerven-

ka (34), Cervenka and Gerstle ( 36, 37), Darwin and Pecknold (45), Bergan and Holand (23), Aktan



and Hanson (4), and Agrawal et al. (3). Despite the promising results from some of these studies,
none of these studies is truly successful in modelling the cyclic response of reinforced concrete
members. This is due to the fact that the reinforced concrete members studied in all these émalyses
were subjected to only a few cycles of load reversals. As a result, the cyclic response of these rein-
forced concrete members did not demonstrate important hysteresis characteristics, such as the hing-
ing effects in load vs. deflection curves, the effects of cyclic shear deformation, and the deterioration

of concrete because of cyclic compressive loadings.

Two major obstacles that most researchers experienced in the development of cyclic models
for reinforced concrete are: 1) the lack of understanding in the cyclic response of reinforced concrete
and 2) the numerical problems associated with complex rules for load reversals and stress—strain
relationships in material models (102, 134). In order to obtain a detailed understanding of the cyclic
behavior of reinforced concrete element and to gather essential experimental data needed for the for-
mulation of such behavior, Stevens et al. (134) conducted cyclic tests on three reinforced concrete
panels. In these tests, two panels with different amounts of reinforcement were subjected to load
reversals in pure shear, while one other panel was subjected to reversed cyclic shear combined with
biaxial compression. The average stress—strain relationship for these panels was then used as a basis
for the development of a material model for concrete. Stevens etal. (134) proposed a concrete model
based on the modified compression field theory. Two other researchers also used the results from
these panel tests to verity their concrete models. Xu (15 i) proposed the model using a smeared non—
orthogonal cracking approach, and Izumo et al. (75) developed the hysteresis constitutive law for
reinforced concrete by combining several existing constitutive laws developed in Japan. The analyt-
icalresults at the element level (a finite element model consists of one element) of these three models
agreed well with the results of the panel tests. However, because of the complexities of these models,
numerical problems usually occurred in the analysis of problems at the structural level (a finite ele-
ment plodel consists of several elements) and, hence, prevented the completion of most analyses.

Such problems greatly reduced the usefulness of these models.



2.1.4 APPLICATIONS OF THE FINITE ELEMENT METHOD

Most of the previous work in the finite element analysis of the behavior of reinforced con-
crete members concentrated on the development of the material model that could reproduce exper-
imental results. Surprisingly, few researchers used the finite element method to investigate behavior
of reinforced concrete members other than that of the specimens tested in the laboratory. Valliappan
(141) was one of the first researchers to apply the finite element method to the analysis of reinforced
concrete members other than reinforced concrete beams. In his paper, a material model first devel-
oped using the experimental data from reinforced concrete beam tests was then used to investigate
the behavior of reinforced concrete haunches and hinges. Lin and Scordelis (84) verified their lay-
ered reinforced concrete shell element with the experimental results of several slabs tested in the
laboratory. They demonstrated the applicability of the model by using it to analyze the failure load
of a hyperbolic paraboloid shell. In an attempt to verify the safety of a vessel for a high—temperature
gas—cooled reactor, Meyer and Bathe (95) used the three—dimensional reinforced concrete model
to analyze the prestressed concrete vessels subjected to several different loading conditions . Vec-
chio (142) used the finite element method to study the effects of a perforation and the reinforcement
details on the behavior of reinforced concrete walls. He compared the computed response of three
square reinforced concrete walls, the first was solid, the second was perforated and had reinforce-
ment recommended by ACI, and the third was perforated but did not include the recommended rein-

forcement details (2).

During the past decade, some researchers used the finite element method to study the effects
of different design parameters on the response of reinforced concrete members. Ueda and Kawai
(139) conducted finite element analyses of reinforced concrete shear walls with different amounts
of reinforcement and axial load. Mikame et al. (96) used the finite element method to conduct an
extensive parametric study of reinforced concrete shear walls. The parameters studied included re-
inforcement ratio, axial stress, compressive strength of concrete, cross sections of columns, and

presence of openings. Massicotte et al. (90, 91) used the finite element method to analyze five rein-



forced concrete panels which were tested under axial and lateral loadings at the University of Alber-
ta. The finite element analyses were then extended to investigate the behavior of twenty six rein-
forced concrete panels with different aspect ratios, thickness, amount of reinforcement, magnitudes

of in—plane load, in—plane and rotational edge restraints, and the loading sequence.

2.2 CRACK MODELLING

Tensile cracking is one of the most important reasons for nonlinearities in reinforced con-
crete (38, 39,47, 84, 151). Because concrete is weak in tension, tensile cracking can have a signifi-
cant effect on the behavior of most reinforced concrete members, even at an early stage of loading.
As aresult, proper crack modelling is crucial to the success of the concrete model. In order to incor-
porate cracking into the material model, the following basic components of crack modelling must

be defined (136):

1) Crack representation
2) Crack initiation and crack propagation

3) Constitutive relationship for cracked concrete

During the past three decades, researchers have proposed a number of different models to
represent cracks in reinforced concrete. The following sections discuss the different approaches that

have been used to define the three basic components of crack modelling.
2.2.1 CRACK REPRESENTATION

In the finite element formulation, stress and strain are assumed to be continuous within one
finite element. However, when concrete cracks, discontinuities in stress and strain occur in the con-
crete matrix. Crackrepresentation is the way that these discontinuities are incorporated into the con-

crete model. In general, two different approaches have been used to represent cracks:

1) Discrete crack model

2) Smeared crack model
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In the discrete crack model, cracks are represented as a separation of nodes along element
boundaries (25) as shown in Fig. 2.1. The post—cracking behavior, such as ténsion stiffening, aggre-
gate interlock, and dowel action, can be incorporated into the model by using linkage elerﬁcnts to
connect the separated nodes. The discrete model was first introduced by Ngo and Scordelis (99) in
1968 and was then adopted in other early investigations (70, 100). Although this model realistically
represents the discontinuities in stress and strain across cracks, three major drawbacks prevent the

successful application of this model:

® Cracking can occur only along element boundaries. Such restriction introduces bias into

the finite element solution (136).

® If cracks are not predefined, cracking will cause the redefinition of the nodes. This node
redefinition will continuously change the topology of the finite element mesh and, hence, destroy

the narrow bandwidth in the structural stiffness matrix.

® Once the separation of the nodes has occurred, crack closing and reopening needs to be
considered as a contact problem. This greatly complicates the finite element procedure, especially

in the problems that involve cyclic loading.

In the smeared crack model, concrete is assumed to remain continuous after cracking. The
stress—strain discontinuities across the cracks are averaged over the element in the vicinity of the
cracks; consequently, the stress—strain relationship of cracked concrete can still be described in a
continuous manner. Ateach integration pointin a concrete element, cracks are considered to be par-
allel and finely spaced over the area, and the average stress—strain relationship of cracked concrete
is represented by a constitutive matrix (Fig. 2.2). The smeared crack model was first introduced by
Rashid (120) in 1968. Since then, the model has been successfully used in a wide range of problems
(136). The success and the popularity of the smeared crack model are the result of several practical

advantages (25):
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® Cracking can occur in any direction and multiple cracks are allowed at each integration

point.

® Each crack is represented by simply adjusting the constitutive matrix at the integration
point where the crack occurs. The topology of the finite element mesh remains the same throughout

the analysis.

® Because cracks at each integration point are considered separately, the direction of each
crack can be different, and partial cracking (cracking does not occur at every integration point in one

element) is also allowed.

Because the smeared crack model represents cracks as being finely spaced or “smeared,” the
model is suitable for modelling reinforced concrete members with a distributed crack pattern. How-
ever, for reinforced concrete members in which one or few large cracks dominate the response, the
discrete crack model might be more appropriate than the smeared crack model. Recently, some re-
searchers have used both crack models in the analysis of prol_)lems where the effects of both single
cracks and distributed cracks are significant. For example, Okamura et al. (107) used the finite ele-
ment model which used both smeared crack and discrete crack elements in the region where large

cracks were likely to occur to analyze the behavior of reinforced concrete shear walls.
2.2.2 CRACK INITIATION AND CRACK PROPAGATION

Most concrete models adopt a strength criterion for crack initiation. Cracking occurs at one
integration point when the principal stress at that point exceeds the cracking stress. Some research-
- ers simply used the uniaxial tensile strength or the modulus of rupture for the value of the cracking
stress, while others used the tensile strength of concrete under the tension-tension or the tension—

compression biaxial stress state, such as the biaxial strength envelop proposed by Kupfer et al. (81).

After a crack has formed, it will extend to the adjacent concrete element. Two criteria have

been used for determining crack propagation:

12



1) Strength criterion

2) Fracture mechanics criterion

The strength criterion for crack propagation is similar to the strength criterion for crack initi-
ation; the crack propagates when stress at the crack tip exceeds the cracking stress. Although the
strength criterion seems logical, it is refuted by Bazant and Cedolin (17, 18, 30). They argue that
when the finite element mesh is refined and the crack tip becomes sharpened, high stress concentra-
tion occurs at the crack tip even with a small applied load. If the strength criterion is used for crack
propagation, such stress concentration will allow cracks to propagate even at an insignificant load
level. Therefore, Bazant and Cedolin conclude that the strength criterion is not objective because
the results depend on finite element size and do not converge as the element size is reduced to zero

(30).

The fracture mechanics criterion for the sméaxed crack model was first proposed by Bazant
and Cedolin (17, 30) as the solution to the “non—objectivity” of the strength criterion. In this ap-
proach, each crack is modelled by a one—element wide band of concrete elements (a blunt crack
band). Based on the assumption that k“the work consumed when the crack band is extended by a unit
length is a constant” (17), the crack propagates to the next element at the tip of the crack band when
the computed energy release rate of the crack band exceeds the critical value, which depends on the
fracture energy (Gg) of concrete (83). Although several researchers have adopted this fracture me-
chanics criterion (19, 43, 50, 59, 67, 152), the application of the fracture mechanics in the finite ele-

ment analysis of reinforced concrete structures is still very limited.

Most of the previous researchers successfully used strength as a criterion for crack propaga-
tion in the finite element analyses of various types of reinforced concrete members, including beams,
slabs, shells, and shear walls (151). The “non—objectivity” of the strength criterion did not have any
effect on these ‘analyses, because in most of these analyses, the size of a concrete element was much
larger that the size of a crack, and a cracked element represented the average behavior of several

cracks rather than the behavior of a single crack. Therefore, the strength criterion is sufficient for
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crack propagation in the problems where cracks are distributed and the average response of cracked
concrete dominates the behavior of the reinforced concrete members. However, for the crack propa-
gation in the problems in which the behavior of reinforced concrete members is controlled Aby few
dominant cracks, the fracture mechanics criterion might be required (122, 136). Examples of such
problems are the analysis of shear crack propagation in a reinforced concrete nuclear vessel and the

analysis of flexural crack propagation in a plain concrete notched beam.

2.2,.3 CONSTITUTIVE MODELLING OF CRACKED CONCRETE

The constitutive modelling of cracked concrete consists of two major components: the
stress—strain relationship and the crack model. The first component represents an average stress—
strain relationship of cracked concrete in the direction of the crack. For monotonic loading, the rela-
tionship usually includes the nonlinear behavior of concrete subjected to uniaxial or biaxial com-
pressive stress with a simple unloading algorithm. This relationship is developed by fitting a curve
to experimental data. Several stress—strain curves for concrete have been proposed (39, 119, 136),
and some of them have been used successfully in the finite element analysis of reinforced concrete
members (86, 157). Forcyclic loading, the stress—strain relationship must also include the important
aspects of the cyclic behavior of concrete, such as crack closing and reopening as well as the effects
of cyclic compressive stress and cyclic shear stress. Currently, the experimental data for some of
these aspects related to the cyclic behavior are still limited and few researchers have proposed the

complete stress—strain relationship for finite element applications (134, 151).

The second component, the crack model, represents the relationship between strain (stress)
in the global coordinate and strain (stress) in the direction of the crack (the crack coordinate). The
formulation of the crack model is based primarily on the assumptions of the direction of the crack
and on the transformation of strain (stress) in the global coordinate to strain (stress) in the direction
of the crack. There are three major crack models that have been used successfully in the past: 1)

the fixed crack model, 2) the rotating crack model, and 3) the non—orthogonal multi—crack model.
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2.2.3.1 FIXED CRACK MODEL

In the fixed crack model, cracking occurs normal to the direction of the maximum principal
stress when the maximum prinf:ipal stress reaches the cracking stress. The cracked concrete is then
assumed to be orthotropic, with the axis of orthotropy (the crack coordinate) parallel and normal to
the crack. The crack direction is assumed to remain fixed throughout the analysis. The rotation of
strain (stress) from the global coordinate to the crack coordinate can be done simply by using the
conventional rotation matrix for strain (stress). The constitutive relationship of cracked concrete

for two—dimensional plane stress problems can be written in the crack coordinate as follows:

00 E, 0 0] [og
do,| = |0 E, O 0g, (2.1)

071, 0 0 BG| |9Y12

E; and E are the tangent stiffnesses of cracked concrete normal and parallel to the first crack.
The second crack is allowed to occur in the direction normal to the first crack by adjusting the value
of E;. The term PG represents the shear stiffness retained in the crack direction because of aggregate
interlock and dowel action. In the problems with monotonic loadings, several researchers (11, 12,
21,26, 39, 46, 65, 101, 151) reported that the term PG is necessary for the numerical stability of the
solution; the exact value of BG, however, is not crucial to the solution, provided that the value is

above the minimum value (65).

The fixed crack model has been successfully used by several investigators, such as Agrawal
et al. (3), Balakrishnan and Murray (9, 10), Cervenka (35), Darwin and Pecknold (45), Hand et al.
(65), Jofriet and McNiece (78), Lin and Scordelis (84), Sotomura et al. (131), Suidan and Schno-
brich (135), and Yamaguchi et al. (153). Despite its success in the analyses of various types of rein-
forced concrete members, the fixed crack model has been unable to correctly model the response
of some reinforced concrete panels tested by Vecchio and Collins (143). Several researchers (11,
42,71, 90 ,97) have reported that the fixed crack model yields a response that is too strong for the
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panels with highly anisotropic reinforcement. This deficiency can be explained by Vecchio and Col-
lins’ test results (143), which indicate that cracks in the anisotropically Ieinforcea panels, instead
of remaining fixed, change their directions during the test. Hence, the ‘a'ssurnption of ﬁxed crack
direction imposes an extra constraint on the finite element analysis which leads to an overestimation
of the calculated stiffness of the panels with anisotropic reinforcement. As aresult, some research-
ers, such as Milford (97) and Gupta and Akbar (63), considered the assumption of fixed crack to

be incorrect, and adopted the model that allowed cracks to rotate, the rotating crack model.

2.2.3.2 ROTATING CRACK MODEL

In the rotating crack model, cracked concrete is assumed to be orthotropic, as it is assumed
in the fixed crack model. However, the axis of orthotropy, or the crack coordinate, does not remain
fixed but is always aligned with the major principal strain direction. The transformations of the
strain, stress, and the constitutive matrix of the rotating crack model from the crack coordinate to
the global coordinate are similar to those of the fixed crack model except for the change in the crack

direction.

The early researchers who adopted the rotating crack model include Milford (97), and Vec-
chio, Collins (144), and Gupta and Akbar (63). In 1983, Gupta and Akbar (63) proposed the rotating
crack model and defined two parts to the constitutive matrix: 1) the conventional constitutive matrix
(similar to what is used in the fixed crack model) and 2) a contribution which reflects the possible
changes in crack direction. Milford (97) was the first to incorporate this model into a finite element
program and used it to analyze a reinforced concrete cooling tower. Vecchio and Collins (144) pfo-
posed another rotating crack model based on the compression field theory, which assumes that the
principal stress direction of concrete coincides with the principal strain direction. Several other re-
searchers who adopted the rotating crack model in their concrete models are Hu and Schnobrich (71,
72), Crisfield and Wills (42), Balakrishnan and Murray (9, 10), Massicotte and McGregor (90), and
Inoue et al. (73).
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Results of the rotating crack model agree with the experimental results for panels with aniso-

tropic reinforcement (143). However, the rotating crack model has suffered two major drawbacks:

@ Someresearchers, suchasBazant (16), De Borst and Nauta (47), and Noguchi (102), criti-
cized the validity of the assumption of crack rotation. Bazant and Noguchi argue that the rotation
of the axes of orthotropy means that damage in concrete is temporary and depends solely on the cur-

rent strain state. This is not true of concrete in general.

® The crack rotation causes discontinuities in stress and strain in the crack direction. In the
rotating crack model, stress and strain in the crack direction at the end of the lastload step is different
from stress and strain in the new crack direction at the beginning of the next load step (134). This
complicates the rules defining the stress—strain relationship in a concrete model because, instead of
using only one or a few curves to define a certain region in the stress—strain relationship (as used
in the fixed crack model), a whole family of curves are required (134). Furthermore, the rotation
of the direction of the crack can cause false unloading and stress overshooting at some integration
points. This usually leads to numerical difficulties during the analysis, especially in the case of cy-
clic loadings.

The rotating crack models have been applied successfully in the analysis of reinforced con-
crete members under monotonic loadings. The only effort to incorporate the cyclic response into
the rotating crack model has been done by Stevens et al. (134). This model is successful at the ele-
ment level where the analytical results agree well with the cyclic response of reinforced concrete
panels (134). However, the application of the model at the structural level is not as successful and
is still very limited.

2.2.3.3 NON-ORTHOGONAL MULTI-CRACK MODEL

The non—orthogonal multi—crack model was proposed by De Borst and Nauta (46, 47) in

1985 as a solution to the deficiencies of the fixed crack and the rotating crack models. The funda-

mental feature of this model is a decomposition of a total strain increment Ag into a concrete strain
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increment, A€, and a crack strain increment, Ae". The relationship between these strain incre-

" ments can be written as the following:

de = A&7 + Ag° (22

Such strain decomposition allows intact concrete and cracks to be modelled separately. Be-
cause crack strain is separated from concrete strain and is the summation of the contributions from
all cracks at that point, each crack is treated independently and multiple non—orthogonal cracks can
occur at one integration point. Bolander and Wight (25, 26) used this model successfully in the anal-
ysis of the monotonic response of reinforced concrete shear walls. Xu (151) modified the model
to include cyclic behavior. Xu’s model was successful atthe element level when it was used to model
the cyclic response of reinforced concrete panels tested be Stevens et al. (134). However, it was not
successful at the structural level because numerical difficulties usually prevented the completion of

most analyses (151).

Although the model employs a useful concept of the strain decomposition, the application
of the non—orthogonal multi—crack model is still limited (42, 151). The complexity of the model
is one of the major factors that prevent the successful application of the model. For example, Cris-
field and Wills (42), who considered this model to be most “hqpe_,ful,” encountered significant nu-
merical difficulties while attempting to implement this model, and ended up adopting the rotating
crack model instead. Another difficulty of using this model lies in the amount of computational ef-
fort required in the calculation of the constitutive relationship. This calculation, at each integration
point, involves matrix inversion, matrix addition, matrix subtraction, and several matrix multiplica-
tions. This problem becomes significant when a finite element model consists of a large number

of concrete elements and is subjected to hundreds or even thousands of load steps.
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2.3 MODELLING OF STEEL REINFORCEMENT

The strength and stiffness of reinforced concrete members depend greatly on the characteris-
tics of reinforcing steel (95). Fortunately, the development of the reinforcing steel model is much
more straightforward than the development of the concrete model because the behavior of reinforc-
ing steel is essentially uniaxial and is well defined both for monotonic and cyclic loadings (95). The
steel reinforcement model consists of two major components: 1) the steel reinforcement representa-

tion and 2) the stress—strain relationship.
2.3.1 STEEL REINFORCEMENT REPRESENTATION

Three major models of steel reinforcement have been used successfully in the finite element

analysis of reinforced concrete:

1) Discrete steel model
2) Embedded steel model

3) Smeared steel model

In a discrete model, a reinforcing bar is represented by a one—dimensional bar element. The
model was used in the first publication of the finite element analysis of reinforced concrete by Ngo
and Scoredelis (99) and is still being widely used (136). The advantages of this model are its simplic-
ity and its ability to include bond—slip relationships between concrete and steel by using a linkage
element to connect the common nodes of a bar element and a concrete element. The bending stiff-
ness and the shear stiffness of the reinforcing bar can be modelled by using a beam element instead
of a bar element. The major disadvantage of the discrete model is its mesh dependency; the direction

and location of bar elements depend on the mesh layout of the finite element model.

In an embedded model, areinforcing bar is considered to be a uniaxial member, but it is rep-
resented by a two—dimensional or a three—dimensional isoparametric element. The stiffness of each

layer of reinforcing bars is evaluated individually with an isoparametric shape function (54). The
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model was proposed as a solution to the problem of mesh dependency in the discrete model. Perfect

bond between concrete and reinforcing steel is assumed in this model.

In a smeared model, reinforcing steel is assumed to be uniformly distributed over a concrete
element in a particular direction. The two—dimensional plane stress constitutive matrix for the

smeared model can be written in the direction of the reinforcing bar as follows:

0E; 00
D] =1 000 (23)
0 00

where p represents the reinforcement ratio and Eg represents the stiffness of the reinforcing steel.

After being rotated to the global direction, the constitutive matrix of reinforcing steel is su-
perimposed on top of the constitutive matrix of concrete to obtain the total constitutive matrix of
reinforced concrete. The perfect bond between reinforcing steel and concrete must also be assumed

in this model.

2.3.2 STRESS—-STRAIN RELATIONSHIP OF REINFORCING STEEL

The major characteristics of the cyclic stress—strain relationship of reinforcing steel include
an initial elastic region, a yield plateau, a strain—hardening region, and the Bauschinger effect be-
cause of load reversals. Several different stress—strain relationships have been used successfully in
the finite element analysis of reinforced concrete members, ranging from very simple models which
assume the stress—strain relationship to be elasto—plastic to very complex models which include the
inelastic cyclic behavior such as the Bauschinger effects. The degree of sophistication of the stress—
strain relationship required in the analysis depends on the nature of the problems being analyzed.
For reinforced concrete members subjected to monotonic loadings, a simple bilinear or trilinear
model might be adequate (134). But when reinforced concrete members are subjected to cyclic load-
ings and have the behavior which is strongly influenced by the characteristics of reinforcing steel,

a simple model is inadequate and a more realistic model is necessary (134).
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2.4 PROPOSED MATERIAL MODELS

One of the major objectives of this research is to develop material models for concrete and
reinforcing steel that are apprdpriate for modelling the cyclic response of slender reinforced con-
crete walls. The models for cyclic behavior of reinforced concrete recently developed by Xu (151)
and by Stevens et al. (134) were not successful in analyzing structural problems due to numerical
difficulties associated with the complex stress—strain relationships (134, 151). Hence, the usefulness
of these models is limited. In order to avoid these numerical problems and to be practical for struc-
tural problems regarding the computation time required in the analysis, the proposed models must

have the following properties:

1) Simplicity — The models must be simple and should include only the aspects of behav-
ior that have a significant effect on the cyclic behavior of slender reinforced concrete walls.

2) Stability — The models must be stable and have a good convergence rate during the
iteration procedure of the nonlinear analysis, especially when the analysis is done at the structural
level

3) Reliability — The models must be reliable. They must be the correct representations of

the cyclic behavior of concrete and reinforcing steel in slender reinforced concrete walls.

The proposed models for concrete and reinforcing steel are described in the following sec-

tHons.
2.4.1 PROPOSED CONCRETE MODEL

During the past decade, several researchers (10, 11, 35, 38,42, 59, 64,71, 72, 90, 142) used
Vecchio and Collins’ experimental results of thirty reinforced concrete panels tested under different
uniform stress conditions (143) as the basis for their concrete model development. Although this
approach seemsreasonable and promising, it has one major drawback: the behavior of the reinforced
concrete panels might not éorrectly represent the behavior of reinforced concrete in other types of

reinforced concrete members. This is because the behavior of reinforced concrete depends greatly
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on boundary conditions, loading history, and geometry of the member. Therefore, developing a con-
crete model based on the panel test results does not guarantee the success of the model in other struc-
tural problems. On the other hand, such an approach might result in an unnecessarily con.lplicated
model or in a model thatlacks some of the essential aspects of the behavior of the reinforced concrete

members being studied.

Because the cyclic response of slender reinforced concrete walls is the major topic of this
research, the proposed concrete model must correctly represent the behavior of concrete in the walls.
From the test results of isolated walls tested by Oesterle et al. (105, 106) and also the test results of
C—shaped walls tested in this investigation, there are several important aspects of behavior of con-

crete that should be included in the concrete model:

® Cracks are distributed quite uniformly in the lower portion of the walls.
® Most of the cracks that developed when the wall was subjected to cyclic loading were
nearly orthogonal to the cracks that developed during the first load cycle.

@ The directions of most cracks did not change during testing.

Shear deformations were concentrated in the lower portion of the walls in the direction

- parallel to the base of the walls.

Based on these observations, the smeared crack model with fixed orthogonal cracks using
the strength criterion for crack initiation and propagation has been adopted in the proposed concrete
model. However, the conventional fixed crack model cannot represent the large shear deformation
in the lower portion of the wall correctly. After trying several different approaches, it was concluded
that the best way to model the shear deformation in the walls was to separate shear strain from other

strain components in the global coordinate system as shown in Fig. 2.3.

The separation of the shear strain from the global longitudinal and transverse strains leads
to the separation of the shear stiffness in the global coordinate system from the normal stiffness in
the crack coordinate system. The separation of shear strain also allows the lower portion of the wall

to experience high shear deformation, as observed in the test results, without causing premature
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crushing of concrete in the crack direction. The shear stiffness of the proposed model is controlled
primarily by only one function, G Two functions must be defined in the concrete model: the nor-

mal stress function and the shear stress function. These two functions are described in Chapter 3.

2.4.2 PROPOSED STEEL MODEL

Although the smeared steel model has been used by several researchers recently, the discrete
steel model was adopted in this investigation. The reasons for choosing the discrete steel model are

as follows:

® A discrete bar element is a correct representation of each reinforcing bar in shear walls.
The layout of bar elements in the finite element model can closely resemble the layout of reinforcing

bars in shear walls.

® If necessary, the effect of bond—slip between concrete and reinforcing steel can be added

by using linkage elements. This cannot be done in the smeared steel model.

® Because of the horizontal and vertical arrangement of the reinforcing bars in shear walls,
and because of the layout of the finite element mesh, the discrete steel model does not suffer mesh
dependency. Each group of reinforcing bars can be modelled correctly by a bar element without any -
difficulties.

There is only one function, the uniaxial stress—strain relationship, which has to be defined

in the steel model. This function is described in Chapter 4.
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3. MATERIAL MODEL FOR CONCRETE

The proposed material model for concrete, as described in Chapter 2, consists of two inde-
pendent functions: the normal stress function and the shear stress function. The normal stress func-
tion represents the average relationship between stress and strain in the direction normal to the crack
while the shear stress function represents the average relationship between shear stress and shear
strain in the direction parallel to the base of the walls. Two important characteristics of these two
functions are the material nonlinearity and the history dependency. The nonlinear behavior of con-
crete, which occurs when concrete cracks or is subjected to high compressive stress or cyclic load-
ings, has a significant effect on the response of reinforced concrete shear walls. To model these types
of behavior, each stress function is composed of several equations and rules, each of which simulates
an important aspect of the nonlinear behavior of concrete. The behavior of concrete also greatly
depends on the loading history. Hence, these functions must be history—dependent; the current
stress depends not only on the current strain but also on the stress—strain history. Atevery integration
point in each concrete element, several parameters reflecting the loading history need to be kept and
updated. Because these two stress functions govern the response of the concrete model, their behav-
ior is crucial to the succeés of the finite element analysis. As a result, a large amount of effort was

spent developing and evaluating these functions.

In this chapter, the normal stress function and the shear stress function are discussed. In each
discussion, the related experimental data, the proposed function, and the evaluation of the function
are presented. Because there is no single set of experimental data that represents the whole cyclic
stress—strain relationship of concrete, each section of the proposed functions is evaluated separately
with the appropriate set of the experimental data. In the situations where the proper experimental
data are not available at the element level, the function is evaluated by comparing certain aspects
of the experimental data with the corresponding calculated results from the finite element analyses.

For example, experimental data on cyclic shear transfer do not exist at the element level; therefore,
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the shear stress function is evaluated by comparing the calculated cyclic shear deformation in com-

plete wall models with the experimental data.

3.1 NORMAL STRESS FUNCTION

The normal stress function represents the average stress—strain relationship in concrete in the
direction normal to the crack. Because concrete is assumed to remain continuous after cracking, a
stress—strain discontinuity across the crack is distributed over the entire concrete element. As are-
sult, the normal stress function represents not only the average stress—strain relationship in intact
concrete but also the discontinuity due to cracking. The normal stress function used in the proposed
concrete model is based on two major assumptions: 1) Poisson’s ratio of cracked concrete is zero
and 2) the behavior of cracked concrete is uniaxial in the direction of the crack. In the first assump-
tion, Poisson’s ratio of cracked concrete is assumed to be zero because the interaction between the
two orthogonal directions is greatly reduced after cracking. This assumption has been adopted in
most smeared crack concrete models (136). Some researchers allow concrete to regain Poisson’s
effect when cracks have been closed (9, 44, 45, 86, 87). However, in this study, Poisson’s effect was
found to be insignificant in the analysis of reinforced concrete shear walls, and Poisson’s ratio for
cracked concrete is assumed to be zero throughout the analysis. In the second assumption, concrete
is assumed to behave uniaxially in the direction of the crack; itis assumed that the stress in the crack
direction depends solely on the strain in that direction. Although this assumption does not take into
account the effect of biaxial stress or the reduction of the primary compressive strength due to the
normal tensile strain as reported by Stevens et al. (134) and Belarbi and Hsu (22), it satisfactorily
represents the average response of concrete in shear walls. The normal stress function is simplified
because, based on this assumption, the normal stress function depends only on the stress and strain
in one direction. In addition, it also allows the use of uniaxial test results of concrete to validate the

concrete model.

In the analysis of the cyclic behavior of reinforced concrete members, the state of stress at

an integration point in an individual element can change due to a change in the direction of the ap-
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plied loading or to a redistribution of stress due to nonlinear response anywhere in the structure.
Therefore, all ¢lements will be subjected to loading, unloading, and reloading during a particular
analysis, and the normal stress function must be able to define the stress—strain Ielationshié of any
loading sequence. The function must also simulate all the important aspects of behavior of concrete
in reinforced concrete shear walls. From observations of the experimental results and comparisons
between analytical and experimental results, the important aspects of behavior in reinforced con-

crete walls include:

— Tension stiffening

— Crack closing and crack reopening
— Compression softening

— Effects of steel confinement

— Degradation of concrete properties with cyclic loading.

All these aspects of behavior compose the complete stress—strain relationship in the direction
normal to the crack (Fig. 3.1). Each of the aspects of behavior list above is discussed in the following

sections.
3.1.1 TENSION STIFFENING

When reinforced concrete cracks, the concrete between cracks still carries tensile stress
which is transferred through bond between the steel bar and the surrounding concrete (Fig. 3.2) (9,
58, 85). Such behavior makes the average stiffness in tension of a reinforcing bar embedded in con-
crete greater than that of a plain bar (Fig. 3.2) and, hence, is caued “tension stiffening.” The tension
stiffening behavior 1s different from the tension softening behavior, which répresents the average
stress—strain response in the fracture zone of plain concrete after cracking (9, 85). Because the ten-
sion stiffening behavior is caused by the interaction between concrete and steel, its characteristics
depend on properties of both concrete and steel, such as crack spacing, reinforcement ratio, and in-
terface bond transfer (9). Researchers have used experimental data (22, 116, 130, 143) and mathe-

matical models (58, 66) to study the tension stiffening behavior of reinforced concrete. The results
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from these studies exhibit a large amount of scatter (Fig. 3.3). As aresult, the stress—strain relation-

ship for tension stiffening has not yet been well defined.

Two approaches have been used to represent the tension stiffening behavior in the finite ele-
ment analysis of reinforced concrete. In the first approach, the tension stiffening effect is included
in the behavior of a reinforcing bar. After cracking, concrete is assumed to carry no tensile stress
normal to cracks, and the stress—strain relationship of a reinforcing bar is modified to include the
effect of tension stiffening. This approach was first introduced by Gilbert and Warner (60) in the
analysis of reinforced concrete slabs, but few other researchers have adopted this approach. In the
second approach, the tension stiffening of concrete is included in a concrete element. After concrete
cracks, the stress—strain relationship of a reinforcing bar remains the same as that of a plain bar while
the tensile stress of concrete normal to the crack, instead of immediately decreasing to zero, gradual-
ly decreases to represent the effect of tension stiffening. This approach was first introduced by Scan-
lon and Murray (}21) and has since been used by many other reseatrchers (8, 9, 10, 11, 35, 38, 39,
42, 66, 72,73, 78, 84, 90, 144, 153). Various types of descending branches of the post—racking
stress—strain curve, ranging from simple bilinear curves to curves combining complicated functions
with several parameters, such as reinforcement ratios, crack direction, and bond stress, have been
proposed. Despite the differences in their tension stiffening models, most of these researchers agree
that the finite element analysis must include the effects of tension stiffening in order to accurately
represent the load—deflection curve of the reinforced concrete members, especially when the mem-

bers are lightly reinforced (35, 69).

In this investigation, the effect of tension stiffening is included in the concrete model. The
stress—strain relationship of concrete after cracking is represented by a discontinuous linear unload-
ing model shown in Fig. 3.4. In this model, tensile stress of in the concrete immediately drops from
the cracking stress O¢; to a smaller stress a0 after cracking. Then, as the tensile strain increases,
the tensile stress decreases linearly to a lower—bound stress of 0; at the tensile strain of ;. The tensile

stress then remains constant at ;. This discontinuous linear unloading model has been successfully
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used by Yamaguchi and Nomura (153) and Inoue et al. (73) in the finite element analyses of rein-

forced concrete shear walls.

As can be seen in the experimental results of the reinforced concrete panels tested by Vecchio
and Collins (143) in Fig. 3.3, the experimental data on tension stiffening behavior have varied wide-
ly. Therefore, in the evaluation of the proposed model, no attempt was made to evaluate the tension
stiffening of concrete at the element level. The tension stiffening model was evaluated at the struc-
tural level by comparing the analytical results and the experimental data from reinforced concrete
shear walls. The parameters that define the tension stiffening behavior (c, €;, and o;) were adjusted
until the calcula;ted load vs. top—deflection curves agreed the experimental data from the PCA wall
tests (105,106). The parametric study used to determine the appropriate values for these parameters
are discussed in Chapter 6. It can be seen from the finite element results (Fig. 3.5) that tension stiff-
ening has a significant effect on the calculated load—deflection curve for the walls, especially at early
stages of the monotonic loading. However, its effect is less significant after reinforcing steel starts

yielding or after the walls have been subjected to a few cycles of cyclic loading.

3.1.2 CRACK CLOSING AND REOPENING

‘When reinforced concrete members are subjected to cyclic loading, cracks close and reopen
throughout the loading history. As the crack status changes from fully open to fully closed, the stiff-
ness of cracked concrete increases from a value near zero to a value close to the initial modulus of
elasticity for concrete (E;). Several researchers (61, 92, 102, 110, 132, 134, 147, 154, 158) report
that cracked concrete can transfer compressive stress across cracks even when the cracks remain
open. The misalignment of the two opposite crack surfaces allow high spots to come into contact
and, hence, start transferring compressive stress. The stiffness of cracked concrete gradually in-
creases as the cracks close. In Fig. 3.6, a typical cyclic stress—strain relationship and a relationship

between stress and crack width are presented. These curves have several common characteristics:

® Theenvelope curve of the cyclic tensile stress—strain relationship can be estimated by the

monotonic curve for concrete in uniaxial tension, and the envelope curve of the cyclic compressive
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stress—strain relationship can be estimated by the monotonic curve for concrete in uniaxial compfes-

sion.

® Theunloading curve in tension (when cracks are closing) consists of three majorregions:
the initially stiff region, the softened region, and the stiffened region as show in Fig. 3.6. The curve

then merges with the envelope curve in compression at some point in the compressive strain range.

® The reloading curve in tension (when éracks are opening) starts with the same stiffness
as the uncracked stiffness of concrete. Then, the curve gradually softens and merges with the enve-

lope curve in tension at some point in the tensile strain range.

In the smeared crack model, most researchers use the strain normal to the crack as the criteri-
on for defining crack closing and reopening. Early researchers, such as Cervenka (33) and Agrawal
(3), consider a crack to be fully open when the strain normal to the crack is tensile (positive), and
a crack to be fully closed when the strain normal to the crack is compressive (negative). In this ap-
proach, the sudden increase in the concrete stiffness as the crack status changes from fully open to
fully closed usually causes numerical difficulties in the analysis. As aresult, small load increments
must be used in order to prevent excessive compressive strain caused by the zero stiffnesé used in
thc.load step prior to crack closing (3, 33). Darwin and Pecknold (45) were the first to include a
gradual increase in concrete stiffness as the cracks closed. However, such an increase in stiffness
was not intended to represent the behavior of crack closing, but rather to prevent the numerical prob-
lems associated with a sudden increase in the stiffness of cracked concrete. Due to a lack of exper-
imental data to define the cyclic response of cracked concrete, it was not until the late 1980s that
the complete stress—strain relationships for cracked concrete were proposed. Researchers who pro-
posed these relationships include Stevens et al. (134), Xu (151), Izumo et al. (75), and Yankelevsky
and Reinhardt (155).

In this research, it was found that the simple crack closing and reopening models like the one
proposed by Darwin and Pecknold (45) are not sufficient to model the cyclic response of reinforced

concrete walls. As aresult, the more realistic crack closing and reopening model must be included
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in the normal stress function. The characteristics of crack closing and reopening in the proposed
model are based on the characteristics of the cyclic response of concrete observed in the experimen-

tal data shown in Fig. 3.6 (134, 155).

Typical crack closing and opening rules are described in Fig. 3.7 and 3.8. Cracks are consid-
ered to be fully closed when the compressive strain exceeds €, while cracks are considered to be
partially open when the strain is between €, and €;. The cracks are considered to be fully open when
the tensile strain exceeds €; (Fig. 3.9). Ateach load step, the cracked concrete is considered to be
opening if the incremental strain is tensile and to be closing if the incremental strain is compressive
(the convention of positive strains or stresses corresponding to tension is used throughout this inves-
tigation). The schemes for defining the stress—strain relationship have been adopted from the Focal
Point Model proposed by Yankelevsky and Reinhardt (155). In the proposed model, five focal
points, (0,01), (€;,02), (€5,01), (€3,03), (€n,0n), are used to define the cyclic tensile response of con-
crete (Fig. 3.9). All these points except (€,,05), which depends on the history of cyclic compressive
loadings, are constant throughout all loading cycles. The rules defining crack closing and crack

opening in the i direction can be described as follows:

(g,0) represents the strain and stress at the last load step
(e¢,0c) represents the strain and stress at the current load step
glax represents the previous maximum tensile strain in the i—th direction

Aeg represents the incremental strain, . — €
CRACK CLOSING (As <

The stress—strain curves for crack closing are shown in Fig. 3.7. Three major regions are

defined:

Region 1: Initially Stiff Region [ when 0> 03 ]: The stress—strain curve is defined by a line
connecting (g, 0) and (0, 01). This curve represents the initial response of concrete when
the cracks begin to close. The stiffening becomes less pronounced when the crack closing

starts at the larger strain. Region 1 ends when the compressive stress exceeds 03.
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Region 2: Softened Region [ when 6 =0 and € > ¢; ]: The stress—strain curve is a horizon-
tal line connecting (€, 0) and (g;, 02). In this zone, stress remains constant at 03, and the tan-
gent stiffness is zero. This curve represents the closing of fully open cracks. Becausé the
two opposite crack surfaces are widely separated, there is no resistance to closing of the

cracks until the tensile strain is reduced to €; and contact occurs between the two surfaces.

Region 3: Stiffened Region [ when 0 < 07 and &, < € < g; ]: The stress—strain curve is a
curve connecting (€, 0) and (€, On). The curve is defined by Eq. (3.1)

E.— & O.— O Oc = Op\°
Ceos s o= CUos - T ( CUo.s ") (3.1)
E k,
where | s = (Ex (klEc = k2>
Py

GOS = lkZ’ 1

IklEc - kzl.--x
€os = %—f

E; = the tangent stiffness at the beginning of the unloading curve

E. = the initial modulus of elasticity for concrete
The values of s and 05 are defined such that the tangent stiffness at the starting point
of the unloading curve (points E, F, and G in Fig. 3.7) is equal to E; and the tangent stiffness
at the point (&p,0y) is equal to E¢. E; is the slope of the line connecting (g, o) and (&3, 03),
and E. is the initial modulus of elasticity for concrete. This curve represents the gradual in-
crease in the stiffness of cracked concrete thatresults from crack closing. The curve merges

with the envelope curve for concrete under uniaxial compressive stress at (€p,0p)-

CRACK OPENING (Ag >

The stress—strain curves for crack opening are shown in Fig. 3.8. Each curve consists of four

major regions:
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Region 1: Initially Stiff Region [ when 0 < 04 and &; <€ < &&,,4 ]: The stress—strain curve
is defined by a line with a tangent stiffness equal to the initial modulus of elasticity for con-

crete (Ec). This curve represents the initially stiff response of cracked concrete when the

crack opening occurs.

Region 2: Linear Softening Region | [ when 03 > 6 > 04 and €, <€ < €4,54]: The stress—

strain curve is defined by a line connecting (£,0) and (&k,4+/2,02).

Region 3: Linear Softening Region Il [ when 0> 03 and g, < € < €f,,.]: The stress—strain

curve is a straight line connecting (£5,.2/2,02) and (€5,ax,09)-

Region 4: Softened Region [ when 0=0; and &k, < € ]: The stress—strain curve is defined

by a horizontal line where 0 is equal to 0; and the tangent stiffness is zero.

Although some experimental data related to the cyclic response of concrete in tension do ex-
ist, they are notin the appropriate form to be used to evaluate the proposed crack closing and reopen-
ing functions. For example, the experimental data by Reinhardt and Yankelevsky (155) are pres-
ented in term of stress and crack width instead of stress and strain and, hence, are not applicable to
the evaluation of the proposed functions. As aresult, the proposed crack closing and reopening func-
tions have been evaluated at the structural level. The parameters that define the crack closing and
reopening behavior, 01,02,03,04, and O, were adjusted so that the calculated response of reinforced
concrete walls from the finite element analysié agree with the experimental data from the PCA wall
tests (105, 106). The parametric study used to define the appropriate values of these parameters is

described in Chapter 6.

3.1.3 COMPRESSION SOFTENING

Compression softening represents an observed softening of concrete when it is subjected to
high compressive stress. The stress—strain relationship of concrete in uniaxial compression is essen-
tially linear when the concrete is subjected to low compressive stress. As the compressive stress

increases, the stress—strain curve of concrete begins to soften gradually until it reaches the compres-
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sive strength at the apex of the curve (Fig. 3.10). The compressive stress then starts to decrease with
increasing compressive strain. Such degradation in strength represents the accumulated damage in
concrete due to large compressive strains (136). Compression softening was found to have :; signifi-
cant effect on the calculated response of reinforced concrete walls, especially when extensive con-
crete crushing occurs in the boundary elements. Hence, the compression softening behavior must

be included in the normal stress function.

Several stress—strain relationships for compression softening behavior in concrete have been
proposed during the last four decades. The summary of these relationships can be found in the paper
by Popovics (119). In the proposed model, the relationship which was first proposed by Smith and
Young (129) and was later used by several other researchers, such as Yankelevsky and Reinhardt
(156) and Karsan and Jirsa (79), is adopted for describing the compression softening behavior. This
relationship was chosen because it accurately represents the entire stress—strain curve of concrete
under uniaxial compression, representing both the ascending and descending portions with one sim-
ple function. Furthermore, only concrete strength and the initial concrete stiffness need to be de-
fined. The original relationship has been modified slightly so that the transition between the crack
closing curve and the compression softening curve is smooth. Both the crack closing curve and the
compression softening curve must have the same tangent stiffness, which is equal to the initial modu-
lus of elasticity for concrete (E.), at the transition point (€, 0p) (Fig. 3.10). This relationship can

be defined as follows:

when & > g, o = E.¢ 32)
- 0 - =z
when ¢ < g, g~ 0On —=n = ___.___808 n (1 -5 (3.3)
oc oc
where Coc = feup — On
Ooc €
Eoc =
Ec
Sfeur = the compressive strength of concrete

E. = the initial modulus of elasticity for concrete
e = the base of the natural logarithms
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The terms €, and 0, are defined in the previous section. The two concrete properties needed to be

defined are E. and fy;.

The comparison between the proposed function and experimental data is given in Fig. 3.11.
The compression softening curve is used as an envelope curve for unconfined concrete. The rules
for unloading and reloading in this region and the effect of cyclic loadinés are described in Section
3.1.5.

3.1.4 CONFINED CONCRETE

Experimental data clearly indicate that “the strength and ductility of concrete are greatly in-
creased under the condition of triaxial compression” (111). In reinforced concrete members, the
condition of triaxial compression exists when concrete is confined by transverse reinforcement,
which is usually provided in the form of a closely spaced spiral or tie reinforcement (111). Trans-
verse reinforcement provides passive confinement. When the compressive stress is low, the trans-
verse reinforcement iS slightly stressed and, hence, does not provide any confinement for concrete.
As aresult, the concrete within the transverse reinforcement is unconfined when the compressive
stress is low. As the compressive stress approaches the compressive strength of concrete, the trans-
verse steel starts to provide confinement because the crushed concrete is pushed against the trans-
verse steel. This, in turn, creates reaction pressure against the concrete. Experimental data from
several investigation have indicated that the confinement provided by transverse reinforcement can

significantly increase the strength and ductility of concrete at high compressive stresses (111).

According to the 1989 ACI Building Code (2), transverse reinforcement should be provided
in the boundary elements of reinforced concrete shear walls. The transverse reinforcement can be
either in the foﬁn of closed column ties or spiral reinforcement in accordance with Section 21.4.4
(2). These spirals and closely-spaced ties can provide confinement for concrete in the boundary
elements. As aresult, the behavior of confined concrete must be included in the normal stress func-
tion; otherwise, either the premature crushing of concrete in the confined boundary elements or nu-

merical problems associated with concrete crushing will occur during the analysis.
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The analytical model for confined concrete proposed by Shiekh and Uzumeri (125) was
adopted in this research. The stress—strain curve for confined concrete is shown in Fig. 3.12. The
curve consists of three sections: 1) the uncrushed section, 2) the crush plateau, and 3) thé totally
crushed section. The uncrushed section has a stress—strain curve that is similar to the compressive
stress—strain curve of unconfined concrete prior to crushing. The stress—strain curve is linear with
a tangent stiffness equal to the initial modulus of elasticity of concrete (E.) until it reaches the point
(&4,0n )- Then it follows the compression softening curve defined by Eq. 3.3 until the curve reaches
the concrete compressive strength foyy. The value of feyy is equal to ksf.’, rather than £/, the uncon-
fined compressive strength. The term kgrepresents the increase in the compressive strength resulting
from the confinement. After reaching f.y, the stress—strain curve enters the crush plateau where
the compressive stress remains constant at fy;; until the compressive strain reaches €,. When the
compressive strain exceeds €5, the stress—strain curve is in the totally crushed section. The curve
descends linearly from (g3, fou1t) to (€8s, 0.85 - foyyr) and remains on this line until the compressive
stress reaches 0.30-f.y;;. For larger compressive strains, the compressive stress remains constant at

O.SO'fcult.

In the proposed analytical model for confined concrete, three parameters (kg, €2, and €gs)
have to be defined. The values of these parameters depend on several factors such as the volumetric
transverse reinforcement ratio, tie spacing, characteristics of reinforcing steel, and the distribution
of the longitudinal steel around the core concrete perimeter. The procedures for calculating these

parameters are described in Appendix B.

3.1.5 DEGRADATION OF CONCRETE PROPERTIES UNDER CYCLIC
LOADINGS

Because the primary objective of this research is to study the cyclic response of reinforced
concrete shear walls, the normal stress function must include the degradation of strength due to cy-
clic loading. The cyclic stress—strain relationship for concrete in the proposed model is based on
the éxperimental work by Karsan and Jirsa (79) and Sinha et al. (128). Parts of the algorithm used
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to define the cYclic stress—strain relationship in the proposed model are adopted from the model for

cyclic behavior of concrete proposed by Yankelevsky and Reinhardt (156).

The typical compressive cyclic stress—strain relationship used in the proposed concrete mod-
elis shown inFig. 3.13. The rules for defining this relationship are based on two curves: an envelope
curve and a common point curve. The envelope curve defines the boundary of the permissible
stress—strain loci; the stress—strain curve must always lie within the area enclosed by the envelope
curve and the strain axis. The envelope curve is represented by the uniaxial stress—strain curve of
concrete under monotonic compressive loading. Each point on the common point curve, (€cp,Ocp),
represents the focal point of the reloading curve in compression whose previous maximum compres-

sive strain at the beginning of the reloading curve was equal to €. The common point curve is de-

fined in Eq. 3.4.
- £c - & 1 _zq?—"'
where (€cp, Ocp) are strain and stress on the common point curve

(€n, 0, ) are parameters for the concrete model
(€0c» Ouc) are defined in Section 3.1.3.

The rules for loading and unloading in compression are shown in Fig. 3.14. The unloading
curve consists of three major regions: the initial unloading (D—E), the softening unloading (E-F),
and the zero-stress unloading (F-G). The initial unloading curve is a line with the slope Ec. The
curve can start from any point on or below the envelope curve. It ends at the point where the com-
pressive stress reaches 0.30 oy The softening unloading curve is a line connecting the end of the
initial unloading curve and the point (€5,0) on the strain axis. Strain €, represents the permanent
compressive strain in the current load cycle. The value of ; is calculated by using Eq. 3.5 and 3.6,
 which were proposed by Yankelevsky and Reinhardt (156).
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€4 [1.0 — 0.425¢(1=9)] (3.5)

8 =
F 1 — (s ed=9)
ife,<0.70 €5 & = 0.70 - e | (3.6)
SC
when s = 2=
ult

&, = the compressive strain at the compressive strength of concrete, foyyt

€hax = the previous maximum compressive strain

The zero-stress unloading curve starts from the point (€5,0) and then follows the strain axis.

Once the curve reaches the origin, it follows the unloading curve of concrete in tension.

The reloading curve in compression consists of three regions: the initial reloading (A-B,
G-H), the softening reloading (B—C, H-I), and the envelope curve (C-D, I-J). The initial reloading
curve is a line connecting the starting point of the reloading curve and the point on the common point
curve with a strain equal to the previous maximum compressive Strain, £f,ax. The curve ends when
it intersects the common point curve. The softening reloading curve is a line that starts at the end
of the initial reloading curve and has the slope of 0.10 E¢. The softened reloading curve ends when
it reaches the envelope curve. Then the reloading curve follows the envelope curve. The rules for
these cyclic unloading and reloading curves are described in Appendix C. Comparisons between
the proposed cyclic model and experimental results are shown in Fig. 3.15 through 3.17.

All previous experimental work on the cyclic compressive behavior of concrete applies to
unconfined concrete. Information on the cyclic compressive response of confined concrete was not
available in the literature. Therefore, the approach used to define the monotonic stress—strain rela-
tionship for confined concrete (Section 3.1.4 and Fig. 3.12) and the loading and unloading curves
used to define the cyclic stress—strain relationship of unconfined concrete are used to define the cy-

clic stress—strain relationship for confined concrete.

As shown in Fig. 3.18, the reloading curve in compression for confined concrete consists of

three regions: the initial reloading (E-F), the softening reloading (F—G), and the crush plateau (A-B,
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G-H-I). The initial reloading curve and the softening reloading curve are the same as those for un-
confined concrete. The initial reloading curve (E-F) is a line connecting the starting point of the
reloading curve and the point on the common point curve with a strain equal to the previoﬁs maxi-
mum compIessive strain, £max (point F). The curve ends when it intersects the common point curve
(the common point curve is defined in Eq. 3.4). The softening reloading curve is a line that starts
at the end of the initial reloading curve and has the slope of 0.10 E, (point F). The softened reloading
curve ends when it reaches the envelope curve (point G). Then, instead of following the enveloped
curve as the stress—strain for unconfined concrete, the reloading curve remains horizontal until un-
loading occurs (point B) or until the strain reaches €, (point H). If the compressive strain exceeds
€4, the curve descends linearly from (g3, 0g) to (€85, 0.85 - 0g) (0 is the compressive stress when
the compressive strain is equal to €3) and remains on this line until the compressive stress reaches
0.30-fcyyt. For larger compressive strains, the compressive stress remains constant at 0.30-feyj. The
reloading curve in this region is similar to the monotonic stress—strain relationship for confined con-

crete after concrete has crushed (Fig. 3.12).

The unloading curves for confined concrete are the same as those for unconfined concrete
and consist of three regions: the initial unloading (B—C, I-J), the softening unloading (C-D, J-K),
and the zero—stress unloading (D-E). The initial unloading curve starts with the tangent stiffness
equal to the initial modulus of elasticity for concrete (E¢) (B—C, I-J) and continues until the compres-
" sive stress reaches 0.30°f.y;. Then, the curve is a line connecting the end of the initial unloading
curve and the point (€, 0) (points D and K), where €pis defined in Eq. 3.5. The zero—stress unloading
curve starts from the point (€p,0) and then follows the strain axis. Once the curve reaches the origin,
it follows the unloading curve of concrete in tension. The cyclic stress—strain relationship of uncon-

fined and confined concrete subjected to the same strain history is shown in Fig. 3.19.

It can be seen that confined concrete is more ductile than unconfined concrete, and, hence,

has better energy dissipation characteristics.
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In the analysis of reinforced concrete walls in this investigation, strength degradation due
to compressive cyclic loadings has an insignificant influence on the overall behavior of the structure
because only a few concrete elements experience crushing during a typical analysis. Hovs;ever, in-
corporation of the cyclic loading effect does facilitate identification of certain failure modes because
progressive crushing of the concrete in the boundary elements and adjacent web elements can be

modelled.

3.2 SHEAR STRESS FUNCTION

The shear transfer mechanism in cracked concrete has been investigated by several research-
ers during the last three decades. Most of the early experimental work related to shear transfer inves-
tigated the behavior of both reinforced and unreinforced concrete specimens that had a single crack
and were subjected to monotonic loadings. The results of this work were used to develop design
equations for shear transfer in reinforced concrete structures. Therefore, the researchers concen-
trated on investigating the strength rather than the stiffness of the shear transfer mechanism. Few
researchers investigated the cyclic shear transfer behavior of reinforced concrete members because
such experimental work requires a very complicated test set—up. Recentresearch on the cyclic shear

transfer behavior of reinforced concrete panels was conducted by Stevens et al. at the University of

Toronto (134).

Most of the analytical models for shear transfer in reinforced concrete that were proposed
during the 70s and the 80s were intended to simulate the shear transfer behavior of reinforced con-
crete specimens with single cracks. These models commonly used three parameters: the crack
width, the shear slip, and the area of the reinforcing steel. In the finite element analysis of reinforced
concrete, such an approach might be applicable for the discrete crack model because a crack in con-
crete is treated as a separation between nodes. However, the method is not directly applicable for
the smeared crack model because cracks are considered to be uniformly distributed in the smeared

crack model and concrete is assumed to remain continuous after cracking. Therefore, the normal
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crack strain, the shear strain, and the steel reinforcement ratio are reasonable parameters for defining

the shear stress function in a smeared cracking model.

In the smeared crack model, two approaches have been used to represent the shear stiffness
of cracked concrete: the reduced shear stiffness approach and the varied shear stiffness approach.
In the reduced shear stiffness approach, the value of the uncracked shear stiffness is reduced by a
factor after concrete cracks to account for the remaining capacity of cracked concrete to carry shear
stress by aggregate interlock. Most of the early investigators who used smeared crack models
adcpted this approach (3, 11, 15, 26, 38, 42, 44, 65, 71, 72, 84, 97, 135, 153), and reduction factors
ranging from 0.0 to 0.50 were used. In the varied shear stiffness approach, the shear stiffness of
cracked concrete is assumed to be a function of the strain normal to the érack direction. This ap-
proach was first introduced by Cedolin and Dei Poli (15) in 1977. In their model, Cedolin and Dei
Poli assume that the cracked shear stiffness is assumed to decrease linearly with an increase in the
normal crack strain. Subsequently, several other researchers, such as Al-Mahaidi (7), Balakrishnan
and Murray (9), Sotomura and Murazumi (131), Ueda and Kawai (139), and Cervenka (35), also
adopted this approach and proposed several different functions to represent the shear stiffness of
cracked concrete. Both the reduced shear stiffness approach and the varied shear stiffness approach
yield satisfactory. results for most analyses of reinforced concrete members subjected to monotonic
loading. However, they are inadequate for problems where cyclic shear deformations govern the
response. The shear transfer mechanisms for cracked concrete in these problems are much more

complicated than assumed in either of these approaches.

In order to model correctly the cyclic shear response of reinforced concrete walls, the shear
stress function in the concrete model must include all the important characteristics of the cyclic shear
behavior observed in the walls. The model must also be simple so that convergence of the solution
can be obtained withoutrequiring a large amount of computation time. This makes analysis of struc-
tural level problems both feasible and practical. In the proposed model, the shear stiffness of cracked

concrete is divided into two components:
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1) Gist: Shear stiffness from the aggregate interlock or the interface shear transfer IST)

2) Ggow: Shear stiffness from the dowel action

The total shear stiffness (G) can be written as follows:

G = Gy + Gy, (3.7)

These two components of shear stiffness and the effect of cyclic shear loading are described in the

following sections.
3.2.1 SHEAR STIFFNESS DUE TO INTERFACE SHEAR TRANSFER

The surfaces of concrete cracks are rough and produce resistance when moved against each
other (Fig. 3.20). Several researchers (68, 77, 82,94, 114, 137, 138, 145) have investigated interface
shear transfer in concrete specimens with a single crack. Variables studied included initial crack
width, concrete strength, aggregate size, normal restraining stiffness, shear stress intensity, and cy-
clic shear stress. Of all these variables, the initial crack width was identified as having the mostinflu-
ence on the interface shear transfer mechanism of cracked concrete. The shear stiffness from inter-
face shear transfer increases when the crack width decreases. Although several empirical formulas
for calculating interface shear stiffness were proposed in these investigations, they all describe the
relationship between the applied shear stress and the slip at the crack, and hence are not directly ap-

plicable to the interface shear stiffness in the smeared crack model.

In the proposed concrete model, Gig is defined as follows:

-1
1 1
G = 20| =r + =
“’ [G}g G?m,] (38

where G,-ls, is the interface shear transfer stiffness in crack direction 1
G;-";, is the interface shear transfer stiffness in crack direction 2
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The interface shear transfer stiffness is represented in the form that was first introduced by

Buyukozturk et al. (28, 55) and is described in Eq. 3.9. (Fig. 3.21)

. i <
Gy = H1 Geone Enn Eor
G;&‘ = K [em‘." _ 8;1’1} Gconc Eq = 85,,, < Emin (3.9)
[Emin — o]
- £ < ¢
where 75} = Parameter used to relate interface shear transfer
stiffness to shear stiffness of uncracked concrete
Emn E The normal crack strain in i direction
Eo = The tensile strain when concrete cracks
i
& min = The normal crack strain where Gigs = G in
i
G in = The minimum value of Gig
, ] E
Gcone = The shear stiffness of uncracked concrete | =————
21+
E. = The initial modulus of elasticity for concrete
v = Poisson’s ratio for uncracked concrete

In this model, two parameters need to be defined: Y and €. Gy is used to set a limit

for the minimum value of G;,, because numerical problems can occur if Gis is set to 0. The value

of 0.0005 Gepnc 1s used for Gy, in the proposed model.
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3.2.2 SHEAR STIFFNESS DUE TO DOWEL ACTION

Reinforcing bars that pass through cracks in concrete provide stiffness through dowel action
by the combination of three mechanisms: flexure, shear, and kinking (115) as shown in Fig. 3.22.
The dowel action mechanisms have been investigated by Dulacska (52), Mattock (93), Paulay et al.
(115), Jimenez et al. (77), and Laible et al. (82). Some important observations from these exper-

imental investigations are described as follows:

® Dowel action exhibits a hardening type behavior; shear stiffness from dowel action in-
creases with increasing shear deformation. At small shear deformations, dowel stiffness depends
mostly on the shear and the flexural stiffness of the bar, because the part of the bar near the crack
does not yet fully push against the surrounding concrete. When the shear deformation increases,
the reinforcing bar starts to push against the surrounding concrete and the dowel action stiffness in-
creases (Fig. 3.23). This behavior can be observed in several experimental results as shown in Fig.

3.24.

® Most researchers studied the shear strength rather than the shear stiffness of the dowel
action. There are a few analytical models proposed for the dowel action stiffness, most of which
use a beam on the elastic foundation approach to model the dowel action. A linear relationship is

usually assumed between the dowel action stiffness and the diameter of the reinforcing bar.

Based on these observations, the model for dowel action stiffness is proposed as follows:

-1
1 1
Gapw = 2.0- [ it @ ] (3.10)
dow dow

where GL,, isthe dowel action stiffness in crack direction 1
G%, isthe dowel action stiffness in crack direction 2
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The model should include two important characteristics: an increase in dowel action stiffness
as the shear strain increases and a linear relationship between the dowel action stiffness and the diam-
eter of the reinforcing bar. The dowel action stiffness in crack direction i, G/, is proposed in the

following form (Fig. 3.25):

G, = Gun ly <1yl
Gy = F(8:2rry) |l iyt sty i <ipnty 3.11
wow = f(0:2,r1m5) | —5- vilslyl<lyn+y; (3.11)
Gfiaw = f{ 0,R,r,75) lyn+y; =1yl
where y = shear strain
y;, = A parameter that includes influence of shear reversals
and is defined in Section 3.2.3.
Yn,n = the constants to be defined
f6,2,r,r,) = the function representing the effects of the bar
diameter and the directions of reinforcing bars
; = the crack angle in i direction
Q = the angle of steel reinforcement
rh = %—11- = the steel reinforcement ratio in direction 1 / bar diameter (in.)
k)
r, = g—sz = the steel reinforcement ratio in direction 2 / bar diameter (in.)
.S
orthoganal cracks:
62 = 91 + 90°
steel mesh cracked concrete
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f(6:,9,r,r,) isproposed in the following form:

fB:2.rry) = (ry|sin@ —6)| + r,]cos@ —6)1) t Goone (3.12)
where Mo = Parameter used to relate dowel action stiffness
- to shear stiffness of uncracked concrete
Gcone = The shear stiffness of uncracked concrete _Ee
21+
E. = The initial modulus of elasticity for concrete
v = Poisson’s ratio for uncracked concrete
substituting Eq. 3.12 into Eq. 3.11 and 3.10 (for both crack directions i = 1,2) yields:
r[r%+r%]sc+r1r2 YoV pisiyl<ip+nl (3.13)
- ! Yil=s1y YaT Vi -
G '("1"‘r2)(5‘*'c)'uszcl Vn |
) .r[r§+r%]sc+r1r2 c ] i
dow (r1+r2)(s+c)ﬂ2 conc Yotyvilsly
where -5 = |sin(2 — 6;)]
c = |cos( 2 — 6;)]
The use of % as a parameter in the dowel action stiffness is based on the analytical models

proposed by Elliot (53) and Stanton (133), in which the dowel stiffness of a single bar varied linearly
with its diameter. Therefore, the dowel action stiffness for a group of n bars should also vary linearly

with n® (® = diameter of reinforcing bar). However, n® is not an appropriate parameter because

n cannot be defined at each crack in the smeared crack model. Hence, the value of £ which is direct-

¢7

2
ly related to n® (-Q- LA

G - Tig - &w), is used instead.
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In the dowel action stiffness model, three parameters must be defined: K-,V and n. The
function of G, is the same as that of Gy, used for the interface shear transfer stiffness, and there-

fore the value of 0.0005 G,y is used again.

3.2.3 EFFECT OF CYCLIC LOADING

The shear transfer mechanisms for both reinforced and unreinforced concrete subjected to
cyclic loadings have been investigated by several researchers: Paulay et al. (115), White and Holley
(145), Laible et al. (82), Mattock (93), Paulay and Loeber (114), Jimenez et al. (76), and Stevens
et al. (134). Most of these researchers investigated the cyclic shear transfer behavior of concrete
specimens with a single crack. Only Stevens et al. (134) studied the behavior of reinforced concrete
panels subjected to cyclic shear loadings. Although the detailed setup of each experimental test se-
ries was different, all research identified similar aspects of behavior for cyclic shear transfer in

—

cracked concrete (Fig. 3.26):

® The load vs shear slip curves or shear stress vs shear strain curves consist of three parts:

loading, unloading, and slip. (Fig. 3.26(a)).

® The unloading stiffnessis higher than the loading stiffness. The unloading stiffness seems

to be independent of the loading history and remains constant throughout the duration of the test.

® Permanent shear displacement or permanent shear strain increases as the number of

cycles increases.

Although several researchers investigated the cyclic shear transfer behavior of reinforced
concrete, few proposed analytical models for such behavior. In the model proposed by Stevens et
al. (134), the cyclic shear transfer bghavior is implicitly defined by the assumption that the direction
of principal stress coincides with the direction of the principal strain. Xu (151) proposed a model
in which shear transfer behavior is defined in the crack coordinate as shown in Fig. 3.27(a). Jimenez
etal. (77) also proposed the hysteresis curve for the interface shear transfer mechanism thatis shown

in Fig. 3.27(b). The proposed model is qualitatively similar to Xu’s model.
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The proposed cyclic shear transfer model was based on observations from the experimental
results and from the analytical models proposed by other researchers (Fig. 3.26 and 3.27). Asshown
in Fig. 3.28, the relationship between shear stress and shear strain consists of three regions: 1§ading,
unloading, and slip. Inloading region (curves B—C and E-F), the relationship between shear stress
and shear strain depends on the current total shear stiffness, G, which is based on the interface shear
transfer stiffness and the dowel action stiffness as defined in Eq. 3.7. The unloading region (lines
C-D and F-G) is defined by a line originating at the point where the incremental shear strain starts
going in the opposite direction with a constant shear stiffness of G,;. The unloading region ends
when the unloading line intersects the strain axis (points A, D, and G). The slip region (lines D-E
and A-B) connects the point where the unloading line intersects the strain axis and point
B * Ydax Tgip) OF Point (B * Ymax, — Ty,) depending on the direction of loading. Y is the pre-
vious maximum positive shear strain where the previous unloading curves intersect the strain axis
(point D) while 9.4 is a previous maximum negative shear strain where the previous unloading

curves intersect the strain axis (point A).

Two parameters for the cyclic shear behavior that need to be defined are  and 7,,- P and
T, are used to define points (B * Y, Tgjp) and B * Ymax — T i) Which govern the stiffness of the
slipregion (lines A—B and D-E). A large value of 7, results in a high shear stiffness in the slip region
while a large value of P causes the slip region to be wide and the loading region (curves B—C and
E-F) to start at larger shear strain. The parametric study used to define the appropriate values of

these two parameters is described in Chapter 6.

3.3 SUMMARY

The material model for coﬁcrete consists of two functions: the normal stress function and
the shear stress function. The normal stress function defines the stress—strain relationship of cracked
concrete in the direction of the crack. The important aspects of the behavior of concrete that are
included in the normal stress function are tension stiffening, crack closing and reopening, compres-

sion softening, effects of transverse reinforcement, and the strength and stiffness degradation due
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to cyclic compressive loadings. The shear stress function represents the relationship between shear
stress and shear strain of cracked concrete. The important aspects of the shear transfer mechanisms
that are included in the shear stress function are the interface shear stiffness, the dowel action stiff-

ness, and the loading and unloading rules for cyclic shear loadings.

Parameters for the normal stress function include g;, 03, a, 01, 02, 03, O4, and, o, while pa-
rameters for the shear stress function include w1, 42, €min, Yo, 1, Tslip> Gunls B, and Gmin. The para-

metric study used to define the appropriate values of these parameters is described in Chapter 6.

48



used other mathematical expressions to represent the cyclic response of reinforcing steel. Despite
the differences in the formulations, all of these mathematical expressions have the two important

characteristics of reinforcing steel in common: nonlinearity and history dependency.

4.2 PROPOSED STEEL MODEL

After trials with several different mathematical expressions, the Ramberg—Osgood equation
was found to yield the most satisfactory résults, based on both the accuracy of the model and the
stability of the analysis. Therefore, the R—O equation was adopted to represent the cyclic stress—
strain relationship of reinforcing steel in this research. The cyclic stress—strain relationship consists
of three portions: the monotonic curve, the envelope curve, and the curve that controls load reversals

from the yield plateau.

4.2.1 MONOTONIC CURVE

The monotonic curve consists of three regions as shown in Fig 4.2: the linear region (A-B),
the yield plateau (B—C), and the strain-hardening region (C-D). The linearregion and the yield pla-
teau region represent the elasto—plastic behavior of reinforcing steel. The initial stress—strain curve
is linear elastic with the slope E until it reaches the yield stress 0y. Then, the curve becomes plastic
until the strain reaches the strain-hardening region at €g. However, the zero stiffness of the yield
plateau region usually causes numerical difficulties during the analysis; hence, a small value of the
tangent stiffness (0.0001 - Ey) is used instead. The strain-hardening region starts at (€sp, Oy). The
R—-QOequation for the strain—hardening proposed by Aktan etal. (5)is adopted torepresent the strain—
hardening region of the proposed steel model (Eq. 4.2).

m
e _ @ a
Eom Oom + [Uom] (42)
Eom = EE% Oom»m = two parameters to be defined
s .

The values 6f Oom and m can be taken from the values recommended in the report by Aktan

et al. (5) or can be calculated such that the strain-hardening curve matches the available monotonic
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The cyclic behavior of the reinforcing steel in the subsequent load cycles is greatly in-
fluenced by the previous strain history. Asa iesult, an analytical model for the cyclic behavior of
reinforcing steel must be able to represent the initial monotonic loading behavior, the nbn]inear
stress—strain relationship due to the Bauschinger effects, and the history dependent characteristics

of the reinforcing steel.

The cyclic behavior of reinforcing steel was first studied experimentally by Singh et al. (127)
in 1965, and several subsequent studies were conducted by Aktan et al. (5), Kent and Park (80),
Seckin (124), and Ma et al. (89). The experimental results from these studies were later used by
many researchers as the basis for the development of their reinforcing steel models. The approach

that has been most widely used to fepresent the cyclic stress—strain relationship of reinforcing steel

is based on the Ramberg-Osgood (R-O) equation. Although the equation was not originally in-

tended to be applied for the cyclic behavior of reinforcﬁig steel, it possessés the two important char-
acteristics of the cyclic loading curve: the initially linear behavior with the slope Es and the subse-

quently softening behavior with increasing strain. The R—O equation can be written in the following

form (5):
_o-0; o—o0;%1
E—& = E, 1+ la,—o__—o,ll (4.1)
where (epo) = the strain and stress at the beginning of the curve
Es = the initial modulus of elasticity of reinforcing steel
0o, @ = the parameters to be defined

Because the cyclic stress—strain relationship of reinforcing steel is strongly influenced by the

* strain history, the values of the parameters 0, and o depend not only on the initial properties of the
reinforcing steel but also on the previous stress—strain history of the steel (80). With the proper val-
ues of these two parameters, the response of reinforcing steel calculated using the R—O equation is
in good agreement with the experimental results (5, 80, 89, 109, 118). Besides the R-O equation,
some researchers, such as Singh et al. (127), Xu (151), and Stevens et al. (134), have successfully
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E—¢g _ O0=—0;  |0—0;

Eo - T o, 0, when (@—0) =0 . 4.5)

E—¢E; g—0; o —0y® when (@—0)<0 (4.6)
%, o, Oo

7]
Es
(¢;50) =  strain and stress at the beginning of the current 1/2 cycle

where o =

O, =  parameters to be defined
Es

the initial modulus of elasticity for the reinforcing bar

The parameters 0, and o reflect the history dependency of the cyclic behavior of reinforcing
steel. The values of these two parameters depend on both the initial point of the current half cycle
and the stress—strain history of the previous half cycles. Two different methods are used to calculate
the pararneters' o and a of each half cycle depending on the location where the load reversal occurs
on the current half cycle. The first method, which explicitly defines 0, and @, is used when the mag-
nitude of the initial stress, 0;, is greater than the magnitude of the previous maximum stress (Opax) !
The second method, which uses the concept of “a common point” and “an ultimate point,” is used
when the magnitude of the initial stress, j, is less than the magnitude of the previous maximum

stress. The details of each method are described as follows:
Method 1: When |g;| > |omax|

When the unloading curve occurs at an initial stress that is greater than the previous
maximum tensile stress or is less than the previous maximum compressive stress, 0, and a

for Grade 60 reinforcing bar maybe calculated explicitly using the following equation:

1 The previous maximum stress (Omayx) is the previous maximum compressive stress when oj is in com-
pression and is the previous maximum tensile stress when ¢ is in tension
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testresults for the particular reinforcing steel. For the latter approach, two points on the strain—hard-

ening curve, (€sh, Oy) and (g2, 02), are used to calculate Ogy and m as follows:

- wWlExE1 0oy 1
m ln[ A :l o5 (4.3)
0,
- _ 9%
Uom - b(t_ﬂl'_l) (4‘4)
Az )
€ m-1
where (€sh, Oy) is the starting point of the strain-hardening curve

(g2, 07) is an arbitrary point on the strain-hardening curve
E1 and Ej are the tangent stiffnesses at (€sh, Oy) and (€2, 02) respectively.

Aktan et al. (5) recommended values of m = 4.30 and Gy = 0.70-0y based on the observed
properties of reinforcing steel with a modulus of elasticity of 29,000 ksi and the yield strength of
60 ksi. In the analysis of reinforced concrete shear walls in this research, the values of Ogm and m

were calculated according to the available experimental data for each type of reinforcing bar.

4.2.2 ENVELOPE CURVES

Typical envelope curves for the cyclic stress—strain relationship of steel using the proposed
model are shown in Fig. 4.3. A complete stress—strain cycle (A-B—C) consists of two half cycles:
a half cycle from tensioﬁ (A-B) and a half cycle from compression (B—C). Each half cycle starts
with an initial point (g;, 0;) and with a stiffness equal to the initial modulus of elasticity for reinforc-
ing steel (Es). The R-O equation is used to represent the stress—strain relationsﬁip of each half cycle
(Eq. 4.5 and Eq. 4.6).
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ments experience symmetrical load reversals. Therefore, their behavior is governed by en-

velope curves defined using this method (Fig. 4.5).
Method 2: When |oi] < |Omax]

The values of 0, and a from Eq. 4.8 yield satisfactory cyclic response for reinforcing
steel when the load cycles are symmetrical, and the strain gradually increases between subse-
quent cycles. However, when the load cycles are highly unsymmetrical, or when unloading
occurs at a low initial stress, the use of 0, and a from Eq. 4.8 usually results in an incorrect
representation of the cyclic response of a reinforcing bar. As a result, another algorithm for
calculating 0, and a in those unsymmetrical unloading cases is required. Such an algorithm
is based on the following observations from the cyclic response of the reinforcing bars tested

by Aktan et al. (5).

® In a half cycle with an initial stress (o) that is less than the previous maximum
stress (Omax), a stress—strain curve will merge with and follow the previous half cycle of load-

ing in the same direction.

@ A cyclic stress—strain curve is bounded by the tensile and the compressive strength
of the bar. When the stress in the half cycle approaches the strength of the steel, the stress—

strain curve tends to flatten so that the stress does not exceed either of these two limits.

These two observations led to the concepts of “common points” and “ultimate
points.” The definitions of common and ultimate points for a half cycle from tension are
shown in Fig 4.6(a) while those for a half cycle from compression are shown in Fig. 4.6(b).
In Fig. 4.6(a), a common point for a half cycle from tension (curve C-E) is defined by point
D. D is the point on the curve defined during the previous half cycle ﬁqm tension (curve
A-B) at strain equal to €g-0.01 (ep is the strain at the end of half cycle A-B). In Fig. 4.6(b),
a common point for a half cycle from compression (curve H-J) is defined by point I. 1is
the point on the curve defined during the previous half cycle from compression (curve F-G)

at strain equal to €g+0.01 (g is the strain at the end of half cycle F-G).
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0p = A + B(Omax — Opp) 4.7

where a = 6 A = 0.7938 B = 0.55723 for 1/2 cycle from compression
a =7 A= 07735 B = 047989 for 1/2 cycle from tension

Omax =  the maximum tensile stress prior to the current 1/2 cycle B
Onin =  the maximum compressive stress prior to the current 1/2 cycle

Equation 4.7 was first proposed by Aktan et al. (5). The values of A and B were ob-
tained from a least squares analysis (Fig. 4.4) of the cyclic response of Grade 60 reinforcing
bars. In this research, Eq. 4.6 was modified slightly so that the value of oy was also appropri-
ate to be used for modelling the cyclic response of reinforcing steel with yield stress other
than 60 ksi. Such modification, v?hich was based primarily on the observations of the cyclic .
response of reinforcing bars with different yield stresses (5, 124), is given in Eq. 4.8. The
values of o, for Grade 75 steel calculated from this equation are shown in Fig. 4.4.

bg
oy = Agbiﬁ + B(Omax — Oy (4.8)
where A, B, Omax, and Opiy are the parameters defined in Eq. 4.7.

Jy is the yield stress of a reinforcing bar.

This method is used to define the cyclic behavior of the reinforcing steel that is sub-
jected to symmetrical load cycles? where the maximum compressive stress and the maxi-
mum tensile stress gradually increase in subsequent cycles. In the analysis of shear walls

with rectangular and barbell cross section, the main reinforcing bars in the boundary ele-

2 A symmetrical load cycle is defined as a load cycle where both a half cycle from tension and a half cycle
from compression experience the same magnitude of strain.
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at the ultimate point is set equal to 0.001-Es (E; is the initial modulus of elasticity for the
reinforcing bar). For example, after the stress—strain relationship for the current half cycle
from compression in Fig. 4.6(b) (curve H-J) has been defined, the stress at the ultimate ;;oint
(pointJ) is evaluated. If the magnitude of oy is less than the magnitude of the tensile strength,
curve H-J needs no adjustment. On the other hand, if the magnitude of oy is greater than
the magnitude of the tensile strength, curve H-J is adjusted so that stress at point J is equal

to the tensile strength and the tangent stiffness at point J is equal to 0.001-Es.

It can be seen that a stress—strain curve of a half cycle defined either by a common
point or an ultimate pointis limited by four constraints: 1) stress and strain at the initial point
(&4, 0D, 2) stress and strain at the common point or at the ultimate point (€2, 02), 3) the tangent
stiffness at point (g;, 0;); Es, and 4) the tangent stiffness at point (g3, 03); E;. The values of
0o and a that make the curve of a half cycle satisfy all these constraints can be calculated

by using Eq. 4.9 and Eq. 4.10:

= (E_ ____k_z__l
. (E, ! ) lk1Es -k 49
azl
Vcl Es — kzla—l
where (¢i,0;) =  strain and stress at the beginning of the current 1/2 cycle
(e2,02) =  strain and stress at the common or ultimate point
Es = the initial modulus of elasticity for the reinforcing bar
Ei = tangent stiffness of a curve at point (g2, 07)
ky = ¢e—-¢& k = 0,-0;

The reinforcing steel in the web of a wall typically experiences highly unsymmetrical
load reversals due to shifting of the neutral axis of the walls during the cyclic loadings. here-
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An ultimate point for a half cycle from tension (curve C-E) is defined by point E in
Fig. 4.6(a). E is the point on the curve defined during the current half cycle from tension
(curve C-E) at strain equal to £c—0.09 (ec is the strain at the beginning of half cycle C—E).
An ultimate point for a half cycle from compression (curve I-J) is defined by point J in Fig.
4.6(b). T is the point on the curve defined during the current half cycle from compression
(curve H-J) at strain equal to eg+0.09 (ey is the strain at the beginning of half cycle H-J).
It should be noted that the strain increments of +0.01 and +0.09 used to define the common
point and the ultimate point are obtained from the observation of the experimental data and

from trials of different values of strain increments.

By using common and ultimate points, the rules for defining the stress—strain rela-

tionship of each half cycle can be described as follows:

® In a half cycle with an initial stress that is less than the magnitude of the previous
maximum stress in that direction, the values of 0y and a, which define the stress—strain rela-
tionship of the current half cycle (Eq. 4.5 and Eq. 4.6), are calculated so that the current half
cycle will merge with the previous half cycle from the same direction at a common point.
At a common point, the stress—strain curves of both cycles have the same stress, strain, and
tangent stiffness. For example, the current half cycle in tension in Fig. 4.6(a) (curve C-E)
merges with the previous half cycle in tension (curve A—B) at the common point (point D)
because the magnitude of the initial stress (Oc) is less than the magnitude of the previous
maximum tensile stress (0a). At the common point, curves C-E and A-B have the same
stress, strain, and tangent stiffness (Ey). The tangent stiffness is defined by the stress—strain

relationship of curve A-B, which is already known.

® After the stress—strain relationship of the current half cycle is defined, the stress
at the ultimate point for the current half cycle is calculated. If the magnitude of the stress
at the ultimate point exceeds the steel strength in that direction, the stress—strain relationship

is adjusted so that stress at the ultimate point is equal to the strength. The tangent stiffness
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fore, the calculated response of the reinforcing bars in the web are typically governed by the

concept of a common point as shown in Fig. 4.5.
4.2.3 LOAD REVERSALS FROM YIELD PLATEAU

Another curve is required to define the cyclic response of the reinforcing steel in the pro-
posed model, a curve to define the stress—strain relationship of the current half cycle when the pre-
vious half cycle starts from a yield plateau. This curve, which is based on the analytical model pro-
posed by Ma et al. (89) and Popov (118), represents the typical behavior of a reinforcing bar
observed in the experimental data (5, 89, 118, 124). As shown in Fig. 4.7, a typical load cycle for
a reinforcing bar that is unloaded from the yield plateau can be divided into two types: a cycle with
a small loop width (cycle A-B—C) and a cycle with a large loop width (cycle D-E-F). Areloading
curve (curve B—C) of a load cycle with a small loop width is nearly straight with a tangent stiffness
equal to Es at the beginning and then experiences a well-defined yield plateau. A reloading curve
(curve E-F) of aload cycle with alarge .loop width experiences a significant Bauschinger effect from
the beginning. Then, it merges with a monotonic strain-hardening curve that is shifted to the point

where a load reversal occurs on a yield plateau (point D).

Based on these observations, the steel model divides the load cycles that startunloading from
the yield plateau into two cases based on the loop width (Ags”) of the load cycle (Fig. 4.8). These

two cases are discussed as follows.

Case 1: Agg’ < 0.50-legi—€yl  (Fig. 4.8 (2))

In aload cycle with a loop width (Ags") smaller than 0.50 - lesp—ey/(A-B—C-D in Fig.
4.8(a))3, the reloading half—cycle (B—C-D) will be an elasto—plastic curve similar to the 1m—
tial stress—strain curve under monotonic loading. If the loading continues in the same direc-
tion, the bar will experience strain—hardening at the same strain as defined for the monotonic

case.

3 &gy is the strain at the beginning of the strain-hardening curve and €y is the yield strain.
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Case 2: Ags’ = 0.50-legh—€yl  (Fig. 4.8 (b))

Inaload cycle with aloop width (Aes”) equal to or greater than 0.50 - lesy—ey! (E-F-G
in Fig. 4.8(b)), the reloading half-cycle (F-G) will not exhibit elasto—plastic behavior. -The
stiffness of the bar will decrease before the yield level is reached. A revised monotonic
strain—hardening curve is defined beginning at pointE, the point on the yield plateau at which
unloading began. The reloading half-cycle will merge with this shifted strain—hardening
curve at the common point of load cycle E-F-G (point G), where the strain at point Gis 0.01

larger than the strain at point E.
4.3 EVALUATION OF THE STEEL MODEL

The proposed material model forreinforcing steel has been evaluated using two sets of cyclic
data for reinforcing bars (Aktan et al. (5) and Seckin (124)). Data are available from tests of reinforc-
ing bars with three different yield stresses: 50 ksi, 60 ksi, and 75 ksi. A reinforcing bar is modelled
by a single 2-node bar element. The bar element is subjected to prescribed displacement at one end
which simulates the strain history used in the experiments. The values of all the parameters used
in the stress—strain model (except the yield stress and the strain-hardening parameters) are the same
for all the reinforcing steels being studied. The values of the yield stress and the strain—hardening
parameters are adjusted according to the monotonic testresults of each reinfoi‘cing bar. The compar-

isons between the analytical results and the experimental results are shown in Fig. 4.9 (a)—(h).

The calculated behavior of the reinforcing bars agree with the experimental result (Fig. 4.9).
One advantage of the proposed steel model is that a single set of parameters can be used to predict
the cyclic responses of reinforcing steel with different yield stresses. This makes the proposed steel
model practical because the cyclic test data of reinforcing bars are not available in most situations.
;I'he only parameters required for the steel model are the yield stress, fy, and the strain-hardening
parameters, €sh, Oom, and m, all of which can be obtained from the monotonic test of a reinforcing

bar.
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4.4 SUMMARY

The material model for reinforcing steel defines the stress—strain relationship in the axial
direction for areinforcing bar. This stress—strain relationship consists of three portions: 1) an elasto—
plastic curve, 2) a strain—hardening curve, and 3) a load reversal curve. The elasto—plastic curve
represents the initial elastic range and the yield plateau of a reinforcing bar and is governed by the
initial modulus of elasticity (Es) and the yield stress (fy) of the reinforcing bar. The strain-hardening
curve represents the hardening behavior of reinforcing steel in the post—yielding region and is de-
scribed by the Ramberg—Osgood equation. Parameters for the strain—hardening curve are €sh, O0m,
and m. The values of these parameters can-be calculated according to the available experimental
data for a particular reinforcing steel or the values recommended by Aktan et al. (5) can be adopted.
The load reversal curve represents the loading and unloading regions for reinforcing steel and is also
described by the Ramberg—Osgood equation. The parameters for a load reversal curve are @, A, and
B. The values of these parameters recommended by Aktan et al. (5) lead to calculated response that
agreed well with the experimental data. The values of these parameters are summarized in Table
4.1.



5. FINITE ELEMENT PROCEDURES

Besides the development and verification of the material models, several other aspects of the
analytical procedures influence the results obtained from the finite element analyses of reinforced
concrete walls. These aspects, which include the finite element formulation, the algorithms used
in the material models, the finite element model, and the incremental~iterative algorithms, have sig-
nificant effects on the accuracy, stability and convergence of the finite element solution. The proper
selection of these prccedures depends greatly on the nature of the problems being studied. There-
fore, in order to obt:in accurate and stable solutions with a good convergence rate, users have to
select the finite elem:nt procedures that are suitable for their problems. Thisrequires an understand-
ing of the characteristics of the finite element procedures, as well as the nature of the problems to

be analyzed.

The major objective of this chapter is to discuss some important characteristics of the finite
element procedures used in the analyses of reinforced concrete shear walls in this investigation. The
finite element formulation and the finite element program FINITE are first discussed. Then some
important algorithms used in the material models are described. The procedures for modelling rein-
forced concrete shear walls and the incremental—iterative algorithms used to solve nonlinear equilib-

rium equations are given at the end of this chapter.
5.1 FINITE ELEMENT FORMULATION

The most widely used finite elemeﬁt formulation for engineering applications is the dis-
placement—based finite element method (13). This formulation is based primarily on the use of the
principle of virtual work (displacement) and uses a displacement interpolation function together
with nodal displacements to estimate the displacement field within each finite element. The princi-
ple of virtual displacement states that “the equilibrium of the body requires that for any compatible,
small virtual displacements (which satisfy the essential boundary conditions) imposed on the body,
the total internal virtual work is equal to the total external virtual work™ and can be written as shown

in Eq. 5.1 (13):

61



f o dv = j U, dv + j U f,dS + > U F; (5.1)
% i ‘

s

where 17 = virtual displacements
g = virtual strains
fy . fs» F; = body forces, surface tractions, and concentrated forces

U,, Us, U; = virtual displacements corresponding to f} , fs , F;

g = actual stresses corresponding to actual strains €

A continuous displacement field, u(™@, for element mis interpolated from the nodal displace-

ments, U, by using a displacement interpolation matrix, H(™), as follows (13):

u™(x,y,2) = H™(x,y,2) U 5.2)
where u™ = acontinuous displacement field for element m
H®™ = adisplacement interpolation matrix for element m
U = avector of global displacement components at all nodes

In linear system, strains in an element m, €@, can be evaluated from the nodal displacements

by using the strain—displacement matrix, B® (13):

em = Bpmy (5.3)

The strains in element m, €™, can be related to the element stresses, 6, by using the constitutive

matrix C:

By substituting Eq. 5.2 through 5.4 for both real and virtual displacements and strains into
Eq. 5.1 and rearranging the temis, the principle of virtual displacement (Eq. 5.1) can be rewritten
as follows (13):

62



KU

]
~

where R = RB + Rs -+ R[ + RC
The matrix K is the stiffness of the element assemblage,
K= f BT ) gm) gytm)
m
Vim

The load vector Rp is the equivalent nodal load due to the element body forces,

Ry = z f T £ aven

m Vim

The load vector Rg is the equivalent nodal load due to the element surface forces,

R = > gsm? £ gs

m
S
The load vector Ry is the equivalent nodal load due to the element initial stress o,

. T
Ry = z IB(M) ol ™) gy7(m)
m om

The load vector R is the vector of concentrated loads F,

R, = F

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

Although Eq. 5.1 is true for both linear and nonlinear materials, Eq. 5.5 is applicable only
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to problems with linear materials because it has been assumed that the stiffness matrix K is indepen-
dent of the nodal displacements. This constant stiffness matrix, K, is in fact a result of the use of
a constant constitutive matrix, C, and a constant strain—displacement matrix, B, both of which are
used in the derivation of the stiffness matrix as shown in Eq. 5.7. As a result, the nodal displace-
menfs, U, corresponding to the load vector, R, can be calculated directly from Eq. 5.5. However,
if the stress—strainrelationship is nonlinear, or if the body experiences large displacements or strains,

the constitutive matrix, C, or the strain—displacement matrix, B, will no longer be constant and will



depend on the current deformed configuration of the body. This will cause the stiffness matrix and
the governing equilibrium equations to be nonlinear; therefore, incremental-iterative algorithms are

required to solve the governing equilibrium equations.

The fundamental objective of the nonlinear finite element formulation ié to search for the
state of equilibrium of the body at time step (or load step) t + At corresponding to the applied load
vector "AtR (assuming that the state of equilibrium at time step tis already known) (13). The state
of equilibrium at time step t + Atis obtained when the applied nodal load, *AtR, is equal to the equiv-

alent nodal load corresponding to the element stress, as follows, AR (13):

1+dtp _ t+dtp = (5.12)
where HAE = 'F + AF (5.13)
F = Z t BT 1t 5(m) 1 qyr(m) (5.14)
- .
Vm
AF = YVector of the incremental nodal forces corresponding to the changes

in element stresses from time step t to t+At

However, because the incremental nodal load corresponding to the element stress, AF, also depends
on the incremental displacements, AU, the value of AF is not known until the equilibrium state at
time step t+ At has beenreached. As aresult, the incremental nodal load corresponding to the incre-
mental element stresses at time step t + At, AF, has to be approximated by using the stiffness matrix

at time step t, t K, which is already known (13).
AF = 'K AU (5.15)

The total nodal load corresponding to the element stress at time t+At, *AtE can be approxi-

mated as follows:

AR = 'F 4+ 'K AU (5.16)



Substituting Eq. 5.16 into Eq. 5.12 leads to:
KAU = '*4'R —'F - (5.17)

The resulting nodal displacements at time step t + At can be approximated as follows:

A = 1T 4+ AU | (5.18)

Equation 5.17 is the fundamental equation of equilibrium in the nonlinear finite element for-
mulation. However, because of the assumption used in Eqg. 5.15, the approximation of the nodal
displacements in Eq. 5.18 may contain significant errors depending on the size of the time step used.
Therefore, Eq. 5.17 needs to be solved iteratively so that the state of equilibrium in Eq. 5.12 is ob-

tained with sufficient accuracy (13). This iterative process is discussed in Section 5.5.

In general, nonlinear analyses can be classified into three different types as shown in Table
5.1 (13). Because concrete cannot sustain large relative deformation, most analyses of reinforced
concrete members can be considered as having only material nonlinearities (15). However, geomet-
ric nonlinearities can also have significant effects on the behavior of some types of reinforced con-
crete members, such as reinforced concrete plates and shells, which undergo large rigid body dis-
placements and rotations (23). Only the material nonlinearity is included in the finite element
formulation in this investigation because displacements and strains in most concrete and steel ele-
ments of the wall models remain small throughout the loading history and the major sources of non-

linearities in the analysis are the stress—strain relationships for steel and concrete.

5.2 FINITE

The finite element analysis program, FINITE, was used in the analysis of reinforced concrete
walls in this investigation. FINITE, which was jointly developed by the Civil Engineering depart-

ments at the University of Illinois at Urbana—Champaign, the University of Kansas, the University
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of Wyoming, and Carnegie-Mellon University, is ““a general purpose computer system for the analy-
sis of linear and nonlinear structures” (88). Nonlinear effects from strain—displacement relation-
ships (geometric nonlinearities) and from material constitutive relationships (material nonlineari-
ties) are both included in the finite element formulation. The total Lagrangian approach, which
utilizes the second Piola-Kirchhoff stress and the Green engineering strain, is used in the formula-
tion of the problems with geometric nonlinearity. The incremental-iterative Newton—Raphson al-

gorithm is used for solving the nonlinear equilibrium equations (88).

One feature which makes FINITE suitable for this study is the ability to allow installation
of new element models and new material models with minimal effort. The ease with which these
models can be installed is due primarily to FINITE’é separation of the element and the material rou-
tines from the main system. The main system is responsible for most of the major tasks in the analy-
sis such as solving the equilibrium equations, managing all memory and databases, computing the
stiffness matrix, and printing the results. It provides the necessary data for and receives the com-
puted results from the element and the material routines through the use of subroutine arguments.
A typical computational proceduré for each load step is illustrated in Fig. 5.1, where the bldcks with
a solid boundary represent the tasks performed by the main system and the blocks with a broken
boundary represent the tasks performed by the material and element routines. Because all the ele-
ment model routines, regardless of their type or complexity, have similar arguments (which is also
true for material model routines), model developers can add a new element model or a new material
model without having to modify the main system. As a result, model developers can focus their
attention on the performance of the new models rather than on the formulation of the finite element

procedures (51).

5.3 ALGORITHMS USED IN THE MATERIAL MODELS

Besides the proper stress—strain relationships, another important aspect of the material mod-
el that greatly influences the accuracy and the stability of the finite element analysis is the algorithms

used to update stresses and stiffnesses during the iterative procedures. Such algorithms determine
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the stress path at each integration point with respect to the computed strain increments. Despite the
correct constitutive stress—strain relationship, improper algorithms can cause stresses to follow an
incorrect path which will result in the incorrect response or an unstable solution. In the anaiysis of
reinforced concrete walls subjected to cyclic loading, inappropriate algorithms can lead to any one
of these three problems: an incorrect stress path, false load reversals, or nonconvergence in the itera-

tive procedures. Each of these problems is discussed below:

5.3.1 INCORRECT STRESS PATH

A typical iterative procedure to find equilibrium solutions for load steps A-B is shown in
Fig.5.2. In this figure, the iterative solutions follow path A—1—...-5-B while the true solutions fol-
low a path which is a solid curve connecting points A and B. The intermediate solutions at point
1,2,..,5 are incorrect because they do not satisfy the governing equilibrium equations; thereforé, they
should not cause any artificial damage to the finite element model (23). This is very important to
both concrete and reinforcing steel because the behavior of these two materials depend on the load-

ing history(23).

In the nonlinear finite element analysis, there are two different methods for calculating incre-
mental strains and updating stresses at each iteration: the path dependent method and the path inde-
pendentmethod. Asthe solution is advancing from step n to step n+1, strain increments for updating

stresses in these two methods can be written as follows (88):

Path dependent method Agby = g — &7l (5.19)
Path independent method | Asf,l = sfl w1 — &n (5.20)
where &n =  converged strains from the last load step n
ei +1 =  total strains at iteration i of load step n+1
i =  iteration number
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In the path dependent method, the stress at iteration i is calculated from the iterative strain
increment at iteration i and uses the non—converged stress and strain at iteration i~1 as the initial
condition. This method éssumes that the iterative solution path (A—1-...-5-B in Fig. 5.2) is correct;
therefore, any nonlinear behavior or damage that occurs along this path will affect the converged
solution of this load step. In the path independent method, the stress at iteration i is calculated from
the total strain increment and uses the converged stress and strain from the last load step as the initial
condition. Since the stresses are always calculated from the converged stresses and strains of the
last load step, the converged solution of the current load step will not be affected by the incorrect
path of the iterative solution. Theoretically, the path independent method should be used in the nu-
merical algorithms of the proposed material models because it does not introduce any errors caused
by the incorrect path of the iterative solution (14, 23, 88, 95). However, in some situations such as
the cracking of concrete, using the path independent method usually leads to a much slower conver-

gence rate than using the path dependent method (88).

The path independent method is used in most of the solution algorithms for the proposed con-
crete and reinforcing steel models. The converged stresses and strains from the last load step are
used as the initial condition for updating stresses at every iteration of the current load step. In the
analysis of reinforced concrete walls, this method yields both a satisfactory convergence rate and
a stable solution in most situations. However, in load steps where concrete cracking occurs at several
integration points, the path independent method usually yields very a slow convergence rate or,
sometimes, even leads to a divergent solution. This is due to the fact that when concrete at one in-
tegration point cracks, it releases a large amount of strain energy. This usually causes concrete at
the adjacent integration points, which has been cracked during the previous iteration to become un-
cracked. Because the tensile stress of concrete changes abruptly as concrete’s status changes, the
repeated changing of concrete’s status from cracked to uncracked and vice versa, which occurs when
the path independent method is used, usually leads to a very slow convergence rate or even a diver-
gent solution. To avoid such problem, the path dependent method is used for concrete cracking; the

stresses and strains of concrete at the iteration where cracking occurs are used as the initial condition
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for updating stresses in the following iteration. In order to prevent incorrect cracking introduced
by an incorrect path of the iterative solutions, the load step size in the analysis should be small so
that the iterative solution path remains close to the true solution path. This method, which was also
recommended in the analysis of reinforced concrete members by other researchers (88), was found

to yield satisfactory results for the analysis of reinforced concrete walls in this investigation.

5.3.2 FALSE LOAD REVERSALS

In the analysis of reinforced concrete members subjected to cyclic loading, load reversals

in concrete and reinforcing steel are caused by the changes in the direction of applied load or by the

load redistribution due to material nonlinearity. Asaresult, these load reversals can occur through-

out the loading history and have significant effects on the cyclic response of the members. For the
purpose of this investigation, load reversals were divided into two categories: true load reversals and
false load reversals. A true load reversal is defined as a load reversal that occurs with a large strain
increment (compared with the strain increments of previous load steps), continues for several load
steps, and has a sigxﬁﬁcant effect on the response of the wall. A false load reversal is defined as a
load reversal that occurs with a small strain increment and continues for only one or two steps before
the load is again reversed to the original direction. The false load reversal does not have any signifi-
cant effect on the response of the wall except that numerical problems such as a slow convergence
rate or the non—convergence of the solutions may result. Therefore, the solution algorithm must
have the ability to prevent the occurrence of these false load reversals. Criteria for avoiding false
load reversals are crucial to the success of the cyclic analysis. If the criteria are too relaxed and allow
false load reversals to occur repeatedly, the finite element solution will converge very slowly or,
sometimes, diverge. On the other hand, if the criteria for identifying false load reversals are too
strict, they may prevent the actual load reversals from occurring and cause the solution to follow an

incorrect path.
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In the proposed concrete and steel models, several criteria are used to prevent false load re-
versals and to improve the convergence rate of the solutions with load reversals. These criteria are

described as follows:

@ The total strain increments: The total, rather than iterative, strain increments are
used to evaluate the load reversals for each component of strain. This is in fact the path inde-
pendent method, which is described in Section 5.3.1. A reverse in the direction of the total
strain increment correctly indicates that a load reversal has occurred because the total strain
increments are calculated from the converged strains of the last load step. On the other hand,
areverse in a direction of the iterative strain increment is not a correct indication of a load
reversal because the iterative strain increments are calculated from the strains of the last it-
eration which are intermediate solutions that do not satisfy the equilibrium conditions. In
each load step, the iterative strain increments might change directions several times depend-
ing on the corrective strain increments at each iteration, even when the solutions continue
on the loading path of the stress—strain curve and the total strain increments do not change

directions at any iteration.

@ Maximum iteration number: In both the concrete and the steel models, load rever-
sals are allowed to occur only when they start in the first five iterations of the current load
step. Load reversals that start after the fifth iteration are not allowed and are treated as if they
were on the current loading path. This criterion is based on the analytical results which show
that most of the major load reversals and changes in stiffness occur in the first few iterations.
Such behavior was also observed in the analysis of reinforced concrete shear walls by Oka-
mura et. al. (107). Load reversals that take place in later iterations are likely to be false load
reversals and, therefore, should be prevented. If true load reversals do occur after the fifth
iteration, this criterion will simply postpone the occurrences of these load reversals until the

next load step.
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® Magnitude of reversing strain: In the steel model, load reversals are allowed to
occur only when the magnitude of the current reversing strain increment is greater than 25%
of the magnitude of the total strain increment from the previous load step. The purpoée of
this criterion is to delay until the next load step the occurrence of load reversals that are small
and likely to be false load reversals. If these load reversals are true, their magnitudes in the
next load step will be large enough for load reversals to occur. If these load reversals are
false, the directions of the strain increments in the next load step will reverse back to the orig-
inal directions and the solution will continue on the loading path. This algorithm is imple-
mented only in the reinforcing steel model because the small loops of false load reversals
usually cause numerical problems in evaluating parameters for the Ramberg—Osgood func-

tons.

It should be noted that these criteria are based primarily on trials of different ways to improve
the convergence and the stability of the solutions. Such criteria depend greatly on the nature of the
problems being studied; therefore, they might need some adjustments if applied to other types of

reinforced concrete members or loading conditions.

5.3.3 PROBLEMS WITH NEWTON-RAPHSON METHOD

In the analysis of reinforced concrete walls, the problem that usually causes nonconvergence
in the Newton—Raphson algorithm, as shown in Fig. 5.3, occurs when the iterative solutions alternate
between two p}oints, A and C, on the solution path without converging to an equilibrium position
at point E. This problem usually occurs when the stress—strain curve for the material model softens
and then stiffens again such as yielding followed by strain-hardening in reinforcing steel. Because
either point A or point C in Fig. 5.3 corresponds to an equilibrium position, the finite element solu-
tion will not converge and continues to alternate between these two points. In order to improve the
convergence rate of the solution, special numerical techniques were implemented in both concrete
and steel material models. If an alternating solution is detected during the iterative procedure, the

solution path will be allowed to converge to point B and the solution will be corrected to point C
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in the nextload step. Although, pointB isnot on the true solution path, the selection of point B during
the current load step does not have a significant effect on the accuracy of the finite element solution

because the solution is corrected in the following load step.
5.4 FINITE ELEMENT MODEL

Another important aspect of the finite element procedures is the choice of the element model.
In this investigation, the finite element model must correctly represent the geometry, boundary
conditions, and loading history of the walls under study. The following sections discuss several as-
pecfs of the finite element model for shear walls, including the types of elements, the size of the finite

element mesh, the load step size, and the loading algorithm.
5.4.1 TYPES OF ELEMENT

The first question that arose in the modelling phase of the finite element analysis was what
types of elements were most suitable for the concrete and reinforcing steel. There are two different
methods for selecting the most suitable element. The first method advocates the use of a small nurn-
ber of elements with a high order interpolation function. For example, Stevens et al. (134) used ele-
ments with a cubic displacement interpolation function and, hence, a quadratic strain distribution
for concrete elements because they believed that this type of element would “take full advantage of
the smeared nature of the constitutive laws”(134). The second method advocates the use of a large
number of elements with a low order interpolation function such as linear displacement or quadratic
displacement elements. Bergan and Holand (23) adopted this method because “it seems illogical
to use high order interpolation which implies artificial differentiability and smoothness of the dis-

placement functions. Very simple types of elements are therefore usually preferable.”

When areinforced concrete wall is subjected to cyclic loading, extensive cracking of the con-
crete occurs in the lower portion of the wall. Therefore, the strain distribution in concrete is highly
discontinuous; concrete strains at each point are governed only by the displacement of concrete in

the vicinity and are not likely to be affected by the displacement of concrete at distant locations.
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As aresult, the use of several small linear elements, in which strains are calculated from displace-
ments at four close nodes, is more appropriate for representing the discontinuous displacement field
in cracked walls than the use of a few large elements with a high order interpolation fun;:ﬁon, in
which strains are influenced by displacements at distant nodes. In the finite element models used
for the walls in this investigation, linear isoparametric 4-node elements with a 2x2 integration rule

and 2-node bar elements are used to represent the concrete and reinforcing steel, respectively.

Another advantage of the linear element with a 2x2 integration rule is that the linear element
performs well and remains stable even when cracking has occurred at all four integfation points in
the element (8, 5S0). The stiffness of a cracked linear element with a 2x2 integration rule has three
zero energy modes, all of which represent the required rigid body motions of the element. Other
types of elements might have several additional zero eﬁergy modes when cracked. For example, the
stiffness of a cracked quadratic element with a 2x2 integration rule has eight zero energy modes,
three of which are the required rigid body modes while the other five are non-rigid body zero energy
modes (50, 83). These additional zero energy modes allow the element to deform with no strain and,

therefore, can cause unpredictable deformed shapes of the element in the solution (50, 83).

In the cyclic analysis of reinforced concrete walls, the problem of the additional zero energy
modes is very important because the whole analysis consists of several thousand iterative solutions
and, therefore, opens up the possibility of the non—rigid body zero energy modes interfering with
the results. Another element that has the same stability as the linear element with a 2x2 integration
rule is a quadratic element with a 3x3 integration rule. However, this element requires much greater
computational effort than the linear element. Some researchers also reported that the quadratic ele-
ment did not yield more accurate analytical results than the linear elemeni (50). Consequently, the
linear element was chosen in this investigation. After the element for concrete had been chosen, the
selection of the element for reinforcing steel was straightforward. A 2-node bar element was se-
lected because its displacement is compatible with the displacement along the boundary of the
4-node linear element. The 2-node bar elements can also use the same finite element mesh as the

concrete elements without the need to create extra nodes.
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5.4.2 SIZE OF FINITE ELEMENT MESH

The size of the finite element mesh also has a significant effect on the results of the analysis
of reinforced concrete walls. The model with an unnecessarily fine mesh requires an extra amount
of computation time while the model with a mesh that is too coarse might not be adequate to repre-
sent the behavior of the wall correctly. The proper size of the finite element mesh for reinforced
concrete members depends greatly on the nature of the problem being studied. Because there are
no definite rules for selecting the proper mesh size for the analysis of reinforced concrete members,
testing of finite element models with different mesh sizes is usually a good way to gain an initial
understanding about the proper mesh size and the sensitivity of the results to different mesh sizes.
In thisinvestigation, the layout of the finite element mesh was also governed by the locations of rein-
forcing bars. Because the reinforcing steel was modelled using bar elements, the mesh layout was
designed such that the location of the steel eléments were close to the actual locations of reinforcing
bars in the wall. The details of the mesh layouts for specific wall specimens are given in Chapter
6 and Chapter 7.

Another aspect of the mesh size that must be considered is the effect of mesh refinement on
the convergence of the solution. This is also related to the evaluation of the proposed material mod-
els because an acceptable finite element model must yield solutions that converge as the mesh is re-
fined (50). In the analytical models that are based on the fracture mechanics approach, a crack in
concrete is modeled by a band of concrete elements and the fracture energy (Gs), which represents
work done in generating the unit area of a crack surface, is assumed to be constant (50). Asaresult,
the stress—strain relationship of cracked concrete is also a function of an element size and must be
adjusted as the finite element mesh is refined so that the fracture energy (Gg) of the crack band re-
mains constant as shown in Fig. 5.4(a) (50). In the analytical models that are based on the strength
criterion, each cracked element represents the average behavior of several cracks. If the same as-
sumption of constant fracture energy is used, it can be shown (Fig. 5.4(b)) that the stress—strain rela-

tionship of cracked concrete depends only on crack spacings and is independent of the mesh size.
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As aresult, the proposed concrete model used in this investigation, which is based on the strength
criterion, should be applicable to any mesh size as long as the size of the concrete element is not of

the same order of magnitude as or smaller than the size of the crack.

In order to investigate the performance of the proposed model with respect to mesh refine-
ment, a reinforced concrete shear wall subjected to monotonic loading was analyzed using two dif-
ferent finite element models: one with a fine mesh and the other with a coarse mesh. The configura-
tion and the reinforcing steel of the wall model resembled those of wallR1l. The model with a fine
mesh consisted of 570 concrete elements and 993 steel elements while the model with a coarse mesh
consisted of 180 concrete elements and 378 steel elements. The mesh layouts, the crack patterns,
and the load—deflection curves of these two models are shown in Fig. 5.5, 5.6, and 5.7, respectively.
It can be seen that both models yielded similar analytical results. Therefore, the proposed material
models are considered to be objective with respect to mesh refinement. Another important observa-
tion from these analyses is that, although the two models yielded similar analytical results, the model
with a fine mesh required six times as much CPU time as the model with a coarse mesh. This empha-
sizes the importance of the proper mesh size especially when the analysis consists of several hundred

load steps and the CPU time becomes a major concern in the analysis.
5.4.3 LOADING ALGORITHMS

In the analysis of reinforced concrete members, there are two different loading algorithms:
a load—control algorithm and a displacement—control algorithm. In the load—control algorithm,
loads are applied incrementally at each load step while, in the displacement—control algorithm, dis-
placements at particular nodes are prescribed incrementally at each load step. Darwin and Pecknold
(44) reported that the displacement—control algorithm gave more accurate analytical results for the
cyclic responses of reinforced concrete members than the load—control algorithm. This is due to the
fact that most reinforced concrete members experience softening behavior after the longitudinal re-

inforcement has yielded or as the cyclic loading intensifies. Because the location where the soften-

1 The details of wall R1 are given in Chapter 6.
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ing behavior starts and the strength of the reinforced concrete member is not known before the analy-
sis, it is difficultto prescribe the proper load increments for the whole loading history. Too large
load increments might exceed the strength of the member and cause the solution to divmée while
too small load increments will require a large amount of CPU time in the analysis. The displace-
ment—control algorithm usually yields a more stable solution than the load—control algorithm be-
cause the prescribed displacements are not likely to exceed the deformation capacity of the specimen
except at the very end of the loading history. As a result, the displacement—control algorithm was

used for loading the wall models in this investigation.

Similarly to the selection of mesh size, the selection of the incremental displacement size
also depends greatly on the nature of the problem being studied and can be estimated by initially
trying several analyses with different sizes of incremental displacement. In the analysis of rein-
forced concrete walls considered in this investigation, in which the displacement at the top corner
node of each wall was préscribed, an incremental displacement equal to half of the top displacement
that caused initial cracking in the walls was found to yield good results for the first few cycles. In
later cycles,when most of the steel elements in the lower 3 ft. of the wall had yielded and most of
the concrete elements in the lower portion of the wall had cracked, the incremental displacements
could be doubled. This increase in the size of the incremental displacements did not lead to numeri-
cal problems because the two major causes of material nonlinearity (yielding of the steel and crack-

ing of the concrete) had already occurred.

Another important aspect of the loading algorithm used for the cyclic analysis of reinforced
concrete walls is the technique used to prescribe incremental displacements when the applied load
is reversed. Instead of abruptly reversing direction, a gradual change in the direction of the incre-
mental displacements was used when the direction of the applied load changed. This is done by ad-
ding two additional displacement increments between the load steps where the direction of loading
is reversed. The magnitude of these two increments is very small compared to those of the regular
increments. The typical displacement increments at .the reversal of the applied load can be written

as follows:
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reversal of the applied load

+0.05in. +0.05in. +0.00001in. -0.00001 in. -0.05in.  -0.05in.
iR

regular increments additional increments regular increments

In each of these two additional displacement increments, only one iteration is allowed and
the analysis then proceeds to the next step. The numerical problems usually occur if a regular load
increment is used in the load step in which the reversal of the applied load occurs. At the first itera-
tion of that load step, the finite element program does not know that the applied load is reversed;
therefore, the current loading stiffness is used to find the solution for this iteration. The program
realizes that the applied load has been reversed when the stresses are updated and the residual load
is calculated at the end of the first iteration. Then, the unloading stiffness is used instead for solving
the equilibrium equation in the second iteration. If local load reversals in the stress—strain relation-
ship occur at a large number of integratidn points, the loading stiffness and the unloading stiffness
of the model will differ greatly. This difference might cause the solution calculated during the first
iteration to deviate greatly from the true solution path and cause numerical problems in the solution.
Therefore, the small displacement increments are added at the load step where the applied load is
reversed. Because these two increments are very small, using only one iteration does not affect the
equilibrium condition of the model and allows load reversals to occur in these additional steps while
the iterative solution remains close to the true solution path. Because load reversals have already
occurred at most integration points in the previous load step, the correct unloading stiffness will be
used in the first iteration and a much more stable solution is obtained when the regular displacement

increment is used in the next step.
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5.5 INCREMENTAL-ITERATIVE ALGORITHMS

In the nonlinear énalysis of reinforced concrete members, most of the computation time is
spent solving the nonlinear equilibrium equations that govern the response of the finite element
model (14). As aresult, the appropriate strategy for solving these equations with géod stability and
proper accuracy is essential to the success of the finite element analysis. The incremental-iterative
algorithms used for solving nonlinear equations in this investigation consist of two major elements:
the Newton—Raphson algorithms and the convergence criteria. Each these elements isdiscussed be-

low.

5.5.1 NEWTON~-RAPHSON ALGORITHMS

The widely used iteration schemes for the solution of the nonlinear finite element equations
are based on the Newton—Raphson (N—QR) iteration algorithm. In this algorithm, the displacement
vector U that satisfies the equilibrium condition at time t+At can be found by successive approxima-

tions in the following form (95):

t+digi=1 A7fi = t+dtp _ t+dtpi-1 (5.21)
where t+drgi—1 = the tangent stiffness matrix at iteration i—1 of load step t+At
AU = the incremental displacement vector at iteration i
t+dip = the externally applied load vector at load step t+At
1+dtpi—=1 = theload vector corresponding to the element stress at

iteration i-1 of load step t+At

The total displacement'can be calculated as follows:
t+AtUi = t+AtUi—1 + AU‘ (5.22)

where  ‘*4U'  is the total displacement at iteration i of load step t+At

The initial condition for Eq. 5.21 and 5.22 are as follows:
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1+ 0 = 17 (5.23)
t+AzFO = 'F (5.24)

In this algorithm—the full N-R iteration—the stiffness matrix of the model, K, is updated
in every iteration as shown in Eq. 5.21. Updating the stiffness matrix at every iteration is computa-
tionally expensive, therefore the full N-R iteration might not be efficient nor necessary for some
types of problems (13, 14, 95). This led to the development of the modified N-R iteration, in which,
instead of being updated in every iteration, the new stiffness matrix is updated only at certain itera-
tions. This method involves fewer calculations of the stiffness matrix than the full N-R iteration.
Although, the modified N-R iteration usually requires more iterations for the solution to converge
than the full N-R iteration, the total computation time required by the modified N-R iteration may
be less than that required by the full N-R iteration because the stiffness matrix is updated less often.
These two iteration algoriﬂlms are illustrated by a single degree of freedom system as shown in Fig.

5.8

For the finite element analysis of reinforced concrete members, many researchers (10, 31,
32, 44, 45, 110) reported that the full N-R iteration yielded better results than the modified N-R
iteration. This is due to the fact that the behavior of both concrete and steel are strongly path depen-
dent and the stiffnesses of concrete and steel at different stages (such as cracked vs. uncracked con-
crete or yielding vs. linear reinforcing steel) differ greatly. As aresult, solving the equilibrium equa-
tions using a tangent stiffness that does not correspond to the current status of the material may cause
the solution to deviate greatly from the true solution path and result in a slow convergence rate or
a divergent solution. In this investigation, the full N-R iteration was foqnd to yield solutions with
good stability and a good convergence rate. The convergence characteristics of the full N-R itera-
tion and that of the modified N-R iteration are illustrated in Fig. 5.9. This figure shows the conver-
gence parameters at four arbitrarily selected load steps from the analysis of wall B4?with three dif-

ferent frequencies of updating the stiffness matrix: updating every iteration (the full N-R iteration),

2 The details of wall B4 are given in Chapter 6.
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updating every three iterations, and updating every five iterations. It can be seen that, among all
these updating stiffness schemes, the full N-R iteration required the fewest iterations for the conver-
gence of the solution in all load steps. Furthermore, in the later load steps, which are not shown in
Fig. 5.9, both of the analyses with the modified N-R iteration diverged and, therefore, had to be ter-
minated early. In fact, it was the unstable characteristics of the modified N-R iteration, rather than
the computation time required in the analysis, that governed the selection of the stiffness updating
schemes. Despite the fewer iterations required by the full N-R iteration, the total computation time
of the full N-R iteration and the modified N-R iteration, as shown in Table 5.2, are not significantly
different because the fewer iterations were obtained at the expense of updating the stiffness matrix

more often.

5.5.2 CONVERGENCE CRITERIA

Besides the selection of the proper numerical techniques and the proper algorithms for updat-
ing stiffness, the success and accuracy of the incremental-iterative procedures also depend greatly
on the convergence criteria, which define the conditions that must be satisfied for termination of the
iteration (14, 95). At the end of each iteration, some forms of the analytical solutions are checked
with the convergence tolerance to see whether the analysis can proceed to the nextload step or more
iterations are needed for the current load step. If the convergence tolerance is too relaxed, the solu-
tion might be inaccurate and follow an incorrect solution path. On the other hand, if the convergence
tolerance is too strict, a large amount of computational effort will be spent obtaining solutions with
unnecessary accuracy (14). In general, there are three different solution variables that have been
used as convergence criteria: the displacement, the residual loads, and the internal energy (14, 95).
Each criterion uses some form (e.g. the Euclidean norm of the incremental displacements or the
maximum entry of the residual load vector) of the correéponding solution variables to check the con-
vergence of the iterative solutions. The proper selection of these criteria depend greatly on the nature

of the problems being studied. For example, the internal energy criterion is suitable for the problems
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in which the units of the load vector are inconsistent, such as a load vector that consists of both forces

and moments.

In this investigation, the ratio of the norm of the residual load vector to the norm of the ap-
plied load increment is used as the criterion for termination of the iteration. The iterative solution

of the current step is considered to converge if the following condition has been satisfied (88).

x TOL
IRI<|ap | * TOL (525)
where |x;]| = the Euclidean norm of vector x =y z x
R = the total residual load vector
AP =  the applied load increment
TOL =  the convergence tolerance

The residual load was cho sen as the convergence criterion because it represented the current
equilibrium condition of the solution. In addition, all entries of the residual load vector have the
same units; therefore, there is no inconsistency when the norm of the residual load is calculated.
It should be noted that the residual load vector, R, is computed from the total, rather than incremen-
tal, equilibrium conditions. Therefore, errors do not accumulate in the solutions between load steps.
Also, because the residual loads are computed from the total equilibrium conditions, the loads steps

that converge will yield correct results even when the prior load steps did not converge (88).

The convergence tolerance of 5% was used in all the analyses of reinforced concrete walls
in this investigation. This value yielded the solution with satisfactory accuracy and in reasonable

computation time.
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6. PCA WALL TESTS

As mentioned in Chapter 1, a reinforced concrete shear wall is an effective and economical
structural component in tall buildings for resisting lateral load caused either by wind or by earth-
quake . However, it is usually impractical and uneconomical to design shear walls to remain elastic
during strong ground motion (103). Ina severe earthquake, the inelastic behavior of reinforced con-
crete shear walls, such as yielding of flexural reinforcement and cracking of concrete, are anticipated
and desirable because these types of behavior help dissipate energy and, therefore, prevent a sudden
collapse of the building. This concept leads to the need for the understanding of the inelastic cyclic
behavior of reinforced concrete shear walls (103). Pror to the 1970s, despite a large number of
buildings with shear walls having been built, the information about the inelastic ductility, energy
dissipation, and other important aspects of inelastic behavior of reinforced concrete shear walls was
quite limited. In order to provide this needed information, the Portland Cement Association (PCA)
conducted an extensive experimental program to investigate the inelastic behavior of reinforced
concrete structural walls. A variety of large—scale isolated structural walls with different design pa-
rameters, such as cross sections, reinforcing steel, axial stress, and shea: reinforcement, were tested
under in—plane cyclic lateral load. This experimental study was one of the most elaborate and exten-
sive research programs on reinforced concrete shear walls carried on in the US. Ithas provided valu-

able detailed information on the cyclic response of shear walls.

. The PCA test program was designed to investigate the important inelastic aspects of behav-
ior inreinforced concrete walls. Its experimental results contain information on most of the signifi-
cant inelastic types of response. As a result, these experimental data are appropriate to be used as
the basis for evaluating the analytical models developed in thisresearch. A successful finite element
model must be able to simulate the important nonlinear characteristics of all the wall specimens.
One of the objectives of this evaluation is to use a single set of model parameters (except the parame-
ters that are design variables, such asratio of steel reinforcement) in the analyses of all the wall speci-

mens. If the analytical model can reproduce the behavior of several shear walls with different design
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variables, the model will be considered successful and can then be used to investigate of the behavior

of walls that are different from the wall specimens tested in the laboratory.

In this chapter, the PCA experimental program and the details of the wall specimens are dis-
cussed briefly. Then the finite element models, the analytical procedures, and the values of the pa-
rameters used in the material models are described. Comparisons between different aspects of the

experimental results and the calculated response are discussed at the end of this chapter.
6.1 PCA EXPERIMENTAL PROGRAM

The primary objectives of the PCA experimental program were to determine the load-—l
deflection characteristics, the ductility, the energy dissipation capacity, and the flexural and shear
strengths of the structural walls (105). In order to accomplish these objectives, a series of reinforced
concrete structural walls were tested under the in—plane, lateral, cyclic loading. The detailed de-

scription of the test program can be found in the PCA reports on tests of isolated walls (105, 106).

The nominal dimensions of the wall specimens and a typical steel reinforcement arrange-
ment are shown in Fig. 6.1. Walls with two different cross sections—yectangular and barbell
shaped—were selected for the evaluation of the proposed analytical models. The details of the thir-

teen wall specimens that were analyzed in this research are summarized in Table 6.1. These walls
were identified as R1, R2, R3, R4, B1, B2, B3, B4, B5, B6, B7, B8, and B9. In addition to the wall

cross section, the primary experimental parameters were:
® the amount of the flexural reinforcement

® the amount of the horizontal shear reinforcement

the amount of the transverse reinforcement in the boundary elements

® the axial compressive stress

the loading history

the compressive strength of concrete
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The flexural reinforcement in each wall specimen was selected based on the flexural provi-
sions of the 1977 ACI Building Code (1). The design compressive strength of concrete was 3000
psi for wall B6 and 6000 psi for all other walls. The design yield stress of the flexural remfofcement
was 60 ksi and the strain—hardening effect was neglected (103).

Several criteria were used to select the horizontal web reinforcement in each wall specimen.
In specimens R1, R2, R4, B1, B3, and B4, the minimum web reinforcement allowed m the 1977 ACI
Building Code (1) was used. In specimens B2 and B5, the web reinforcement was selected such that
the nominal shear strength was equal to the nominal flexural strength. The amount of the web rein-
forcement provided in specimens B2 and B5 was also provided in specimens B6, B7, and BS. The
horizontal web reinforcement in wall B8 was selected such that the nominal shear strength was equal
to the nominal flexural strength which took into account the increase in the strength of the flexural

reinforcement due to the strain-hardening effect (106).

Two methods were used to design the transverse reinforcement in the boundary elements.
In the first method, the transverse reinforcement was selected to comply with the provisions in Sec-
tion 7.10 of the 1977 ACI Building Code (1) for ordinary column ties. This amount of transverse
reinforcement, which provided little, if any, confining pressure to concrete in the boundary ele-
ments, was used in the specimens R1, B1, and B2. In the second method, which was used for all
other specimens, the transverse reinforcement was designed as confinement reinforcement (103).
Such reinforcement, which provides a significant amount of confining pressure for concrete in the
boundary elements, was fabricated in the fom of rectangular hoops and cross—tie reinforcement in
accordance with the Appendix A of the 1977 ACI Building Code (1). This confinement was pro-
vided only in the lower 6 ft. of the boundary element, and the ordinary column ties were used over

the remaining 9 ft. of the specimen.

Specimens R1, R2, and B1 through B5 were tested without any applied axial load. In speci-
mens R3, R4, and B6 through B9, constant axial compressive loads were maintained throughout the

loading history. The axial loading system was designed such that the lower reaction beams for axial
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load translated with the top displacement of the wall. The resultant axial force remained vertical

during the horizontal loading cycles.

For lateral loading, a horizontal force was applied through the top slab such that each wall
was loaded as a cantilever beam with a point load at the end (103). Three different loading histories
were used: monotonic loading, increasing incremental loading (IR), and modified reversing loading
(MR). In the monotonic loading, a wall specimen was subjected to a monotonically increasing load
to failure. In the IR loading, the amplitude of the applied displacement cycles was increased incre-
mentally. During each increment, the specimen was subjected to three complete loading cycles.
Before yielding occurred, the walls were cycled at three force levels. After initial yielding, deflec-
tions were increased by 1 in. during each increment (103). In MR loading, the loading history was
determined from “a statistical investigation of the dynamic response of isolated walls to various
earthquake motions” (106). The typical IR and MR loading histories are shown in Fig. 6.2. Speci-
men B4 was subjected to the monotonic loading while specimens R3 and B9 were subjected to MR
loading. All other walls were subjected to IR loading.

6.2 FINITE ELEMENT MODEL

A typical finite element model of the PCA wall specimens with rectangular and barbell cross
sections is shown in Fig. 6.3. Concrete elements are modeled using 4-node isoparametric plane
stress elements while reinforcing bars are modeled using 2—-node truss elements. The concrete ele-
ments can be divided into two groups: the concrete elements in the boundary elements and the con-
crete elements in the web. Some parameters used to define the material model for these two groups
of concrete elements are different because different amounts of flexural and transverse reinforce-
ment influence the behavior of concrete. Each concrete elementis surrounded by four steel elements
as shown in Fig. 6.3. Horizontal steel elements represent the horizontal web reinforcement and
transverse reinforcement in the boundary elements while vertical steel elements represent the longi-
tudinal reinforcement in the boundary elements and the vertical reinforcement in the web. The mesh

layout for the analytical model of the wall is governed by the location of the reinforcing bars and
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by the size of the boundary elements. Four different mesh layouts were used to model the PCA wall

specimens. The details of the mesh layouts are described in Appendix D.

The wall model is fixed at its base. Both translational degrees of freedom (u and v) of all
nodes at the base of the wall are constrained. The model is loaded using a displacement—control
algorithm. The displacement at the top corner node of the wall is prescribed incrementally to simu-
late the loading history of the wall specimens. The analysis is terminated when a major failure has
been observed in the analytical results. Details of the loading algorithm and the selection of a size
of a load step are described in Chapter 5. A layer of elastic elements is placed at the top of the wall
model to represent the top slab in a wall specimen. This layer of elastic elements helps distribute
lateral load from the corner node to the lower portion of the wall. It also helps prevent excessive
cracking of concrete and*yielding of steel reinforcement caused by the large concentrated load at the
corner }node. In the walls with applied axial load, vertical point loads are applied at the top nodes
of the boundary elements (Fig. 6.3). The magnitude of the point loads remain constant throughout

the analysis.
6.3 PARAMETRIC STUDY

Asdescribed in Chapter 3, seventeen parameters that are required to define the proposed con-
crete model include ¢;, G;, @, 01, 02, 03, O4, and Oy, for the normal—stress function and 1y, 12, €min,
Y 1, Tslip> Gual, B and Gmin for the shear—stress function. Unlike the steel model, where the exper-
imental data on the cyclic response of reinforcing bars are available and can be used for evaluating
values of the material model parameters, the experimental data for several important aspects of cy-
clic behavior of concrete, such as a cyclic shear stress—strain relationship, do not exist. Therefore,
a parametric study was required to determine appropriate values for the parameters that define the
concrete model. Complete walls were chosen to evaluate the sensitivity of the structural response
to the choice of each parameter. An objective of such study was to find one set of parameters that
yielded satisfactory calculated responses for all walls. The parameters that define the concrete model

were adjusted until several important aspects of the calculated results, such as load vs. deflection
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relationship, load vs. shear distortion relationship, crack patterns, and failure modes, agreed with

the experimental data from reinforced concrete walls.

The following section describes the pﬁfmnc&ic study of the concrete model’s parameters.
The calculated results of walls R1 and B7 were selected to illustrate the sensitivity of the parameters
because the behavior of these two walls represent the typical cyclic responses of reinforced concrete
shear walls subjected to low and high nominal shear stress. Wall R1 is a representative of the walls
that are subjected to low nominal shear stress while wall B7 is a representative of the walls that were
subjected to high nominal shear stress. The calculated response 6f other walls is described in Section

6.4.

6.3.1 PARAMETERS USED TO DEFINE NORMAL STRESSES

Eight parameters,g;, 0, @, 01, 02, 03, 04, and Oy, are used to define the stress—strain relation-
ship of cracked concrete in the direction normal to the crack. These parameters control several im-
portant aspects of the cyclic behavior of concrete, such as tension stiffening, crack closing, and crack
reopening. The sensitivity of the calculated response of wall models to the choice of different values

of normal-—stress parameters are shown in Fig. 6.4 through 6.15.

o : ais the parameter that determines the amount of tensile stress retained by con-
crete immediately after cracking (Fig. 3.4). Figure 6.4 shows the calculated load vs. top
deflection curves for wall B4 with different values of a. It can be seen that too large a value
of a causes sudden drop in the load—carrying capacity of wall B4 while too small a value of
o causes the load—carrying capacity of wall B4 to be significantly lower than the measured
response. The value of a is important for the behavior of the walls subjected to monotonic
loading; however, it does not have significant influence on the calculated response of the
walls subjected to cyclic loading.

0; : 0jdefines the tensile stress that cracked concrete is able to sustain after the tensile

strain of concrete exceeds g; (Fig. 3.4). Figures 6.5 through 6.8 show the load vs. top deflec-

87



tion curves and the Ioad vs. shear distortion curves! for walls R1 and B7 with different values
of o; in the boundary elements and web. The different values of o; do not have any effect
on the shear distortion but have some influence on the calculated strength of the walls. I;arg-
er values of 0j increase the load—carrying capacity of the walls in each cycle because the
cracked concrete can sustain higher tensile stress and, therefore, helps the flexural steel to
resist the overturning moment. The effects of different values of ¢; are more evident in wall
R1 than in wall B7 because wa]l R1 has small;r reinforcement ratio and, therefore, the con-

tribution of concrete is more important.

&; : €; defines the strain at which the cracks begin to close (Fig. 3.9). €; also controls
the initial tangent during crack closing (the slope of a line connecting [02,¢1] and [03,€3]).
A small value of €; delays crack closing until tensile strain is small and leads to a large initial
tangent stiffness. This causes the tangent stiffness of the load—deflection curve of the wall
with a small value for €; to change abruptly as the majority of the cracks are closing simulta-
neously. A large value of €; causes the cracked concrete to start resisting compressive stress
at higher tensile strains and, therefore, results in higher flexural stiffness of the wall as the
cracks begin to close. As a result, a wall model with high value of €; tends to have larger
shear distortion than a wall model with low value of €;. This behavior can be observed in

the calculated results for walls R1 and B7 shown in Fig. 6.9 and 6.10.

o1 : 01 determines the initial stiffness of concrete when unloading from tension (Fig.
3.9). Alargevalue of 0 resultsina high unloading stiffness of the wall when aload reversal
occurs. However, 01 effects only the initial unloading stiffness of the load—deflection curve
because, once the stress in the cracked concrete reaches 02, the stiffness is controlled by other
parameters. Figures. 6.11 and 6.12 show the calculated results for walls R1 and B7 with dif-
ferent values of ;. Wall R1 is more sensitive to the increase in the unloading stiffness than

wall B7, because wall R1 has less flexural reinforcement.

L' Calculation of the shear distortion is described in Section 6.4.2
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09, 03, and Op: 0y, 03, and O, are the parameters that control the stress—strain curve
for concrete when cracks are closing. o3 is the compressive stress at which crack closing is
initiated, 03 defines the initial stiffness of the crack closing curve, and oy, is the compreésive
stress at which the cracks are fully closed and the reloading curve merges with the uniaxial
compressive curve. The effects of changing the values of these paraméters on the calculated
response of wall B7 are shown in Fig. 6.13 through 6. 15. If the values of these three parame-
ters are adjusted such that the cracked concrete can resist compressive stresses at high tensile
strains (for example, large values for 0y, 03, and Gy), the strength of the wall will be greatly
reduced because the cracked concrete in the web is capable of resisting compressive stress,
even when cracks are open. This reduces the moment arm between the resultant of the com-

pressive and tensile forces and, hence, reduces the flexural capacity of the wall.

It can be seen that the calculated behavior of the wall models is not very sensitive to the values
of the normal stress parameters. Small changes in each parameter do not have significant influence
on the analytical results. The values of the normal stress parameters used in the analysis of PCA

wall tests are given in Table 6.2(a).

6.3.2 PARAMETERS USED TO DEFINES SHEAR STRESSES

Nine parameters, W1, 12, €min, Yn, N Tslip» Gunt, B, and Gmin, are used to defined the cyclic
shear stress—strain relationship of cracked concrete. The calculated response of wall B7 was used
to study the sensitivity of the shear—stress parameters because wall B7 was subjected to high nominal
shear stress and experienced large inelastic shear distortion. Therefore, the sensitivity of the shear—
stress parameters can be observed in the calculated response of wall B7 better than in the calculated
response of other walls, such as wall R1, that were subjected to low nominal shear stress and experi-
enced small inelastic shear distortion. The sensitivity of the calculated response of wall B7 to the

choice of different values of the shear—stress paraineters are shown in Fig. 6.16 through 6.20.

Wi:prisa coefficient which defines the interface shear stiffness (Eq.3.9). Itisused

to adjust the contribution of the interface shear transfer mechanism to the total shear stiffness
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of cracked concrete. Figure 6.16 shows the calculated results for wall B7 with different val-
ues of Y .- A small value of p; causes the load—top deflection curve to experience pinching
due to the domination of the shear deformation mode. The load vs. shear distortion curve
for the wall with a small value of u is controlled mostly by the dowel shear stiffness. A large
value of p1 leads to a load deflection curve with less pinching and with smaller shear distor-
tion because the shear stiffness of the wall is large and the wall tends to deform in flexure

rather than shear.

Uy : Up is a coefficient which defines the dowel shear stiffness (Eq. 3.11). Itis used
to adjust the contribution of the dowel mechanism to the total shear stiffness of cracked con-
crete. Figure 6.17 shows the calculated results for wall B7 with different values of p. The
effects of different values of p; have similar trends as that of pi1; large values of i result in
well-rounded load—deflection curves with small shear distortions. However, the effect of
small values of Y is less significant than the effect of small values of p;. This shows that
the interface shear transfer is the major shear transfer mechanism in the cyclic response of

reinforced concrete shear walls.

€min - Emin iS the tensile strain at which concrete can no longer provide any inter-
face shear resistance (Eq. 3.9). The interface shear stiffness decreases linearly from the ini-
tial value at the cracking strain (€r) t0 Guip at €min (Fig. 3.21). The calculated results for
wall B7 with different values of €y, are shown in Fig. 6.18. A small value of e, results
in a load—deflection curve with significant pinching and with large shear distortions because
the concrete cannot provide the necessary interface shear stiffness even ‘when cracks are
nearly closed. A large value of &y, leads to a well-rounded load—deflection curve with

small shear distortion.

Ya : Ynis the parameter used in the calculation of the dowel shear stiffness (Eq. 3.14).
The calculated results for wall B7 with different values of y, are shown in Fig. 6.19. y, has

a significant effect on the shear distortion of the wall because the dowel shear stiffness is
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proportional to (l/yn)3 . A small value of v, leads to a large dowel shear stiffness, greatly
reduces the shear distortion of the wall, and results in a well-rounded load—deflection curve.
A large value of vy, significantly reduces the dowel shear stiffness and results in a load—

deflection curve with significant pinching.

Tslip: Tslip defines the shear stress where the shear stiffness increases after the concrete
has experienced slip near zero load (Fig. 3.27). The calculated results for wall B7 with dif-
ferent values of Tgjip are shown in Fig. 6.20. It can be seen that tgjip controls the shape of the
hysteresis curve near the origin in both the load—deflection and the load—shear distortion
curves. A small value of Tg};p causes significant pinching while a large value of Tg;p leads

to curves with a well-rounded shape.

The calculated response of the walls are more sensitive to the choice of the shear—stress pa-
rameters than to the choice of the normal-stress parameters. Small changes in each of the shear—
stress parameter may have significant effect on the calculated behavior of the wall. The values of

the shear—stress parameters used in the analysis of PCA walls are given in Table 6.2(b).
6.4 EVALUATION OF THE FINITE ELEMENT RESULTS

The analytical results from the finite element analysis of reinforced concrete walls contain
a variety of information, including nodal reactions, nodal displacements, and stress and strain at all
Gauss points. This information is essential to the development and evaluation of the proposed con-
crete and steel models because it allows different aspects of the results to be compared with the ex-
perimental data. The finite element results also provide the opportunity to inexpensively evaluate
the behavior of a large number of walls with different configurations and reinforcement details. This
information helps researchers gain a better understanding of the cyclic behavior of reinforced con-
crete walls, which will lead to an improvement in the design provisions for better cyclic inelastic

performance of the walls.
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In the following sections, several important aspects of the finite element results are
compared with the experimental data. The comparisons include load vs. top—deflection curves, load

vs. shear distortion curves, failure modes, and crack patterns.
6.4.1 LOAD VS. TOP DEFLECTION CURVE

The major function of reinforced concrete shear walls in tall buildings is to provide lateral
stiffness. The design of shear walls is usually governed either by strength or lateral—stiffness re-
quirements. For the design of reinforced concrete walls in a seismic zone, the energy dissipation
characteristics of the wall are also a major concern. All the important aspects of the cyclic behavior,
which include the strength, the lateral stiffness, and the energy dissipation characteristics, are illus-
trated in the load vs. top—deflection (P-A) curve of the walls. As aresult, the P-A curve is the prima-
ry focus in the evaluation of the results of the finite element analyses. A successful finite element

model must be able to reproduce the P-A curve from the experimental results accurately.

Calculated and measured P—-A curves for the PCA walls are shown in Fig. 6.21 through 6.33.
The calculated response of all thirteen walls are in good agreement with the measured data. In gener-
al, these walls can be divided into twb groups according to the magnitude of the maximum applied
shear stress (103). The first group includes walls R1, R2, R4, B1, B3, and B4 that were subjected
to low nominal shear stress (less than 6.0 /fTC). The second group comprises walls R3, B2, BS, B6,
B7, B8, and B9 that were subjected to high nominal shear stress (greater than 6.0 \/}:)

The cyclic P-A curves are generally governed by two deformation modes: flexural and
shear. In the flexural mode, a wall deforms by changing its curvature along the length of the wall.
This mode of deformation is governed by the flexural stiffness of the wall. Under cyclic loading,
the walls that deform in the flexural mode dissipate energy through yielding of flexural reinforce-
ment and, therefore, display good energy dissipation characteristics. The shear mode of deformation
occurs when the wall deforms primarily by changing the shear distortion in the lower part of the wall.
This mode of deformation is governed by the shear stiffness of the wall and is usually less desirable

than the flexural mode because the shear mode can cause “pinching” in the P-A curve which leads
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to poor energy dissipation characteristics. Sudden shear failure or web crushing can also occur in

the walls that deform primarily in the shear mode.

Each section of the P-A curve is dominated either by the flexural or shear mode. A wall will
deform in the shape that has the minimum strain energy; therefore, it will deform in the mode that
has the smaller stiffness. For example, when the applied lateral load is near zero, the majority of
the cracks in the lower portion of the wall are open. Thisresultsinalow shear stiffnessin that portion
of the wall. Therefore, in this region of the P-A curve, the wall deforms primarily in the shear mode.
As unloading continues, cracks in the compression zone start to close and reinforcing bars start to
provide resisting force through dowel action. The shear stiffness increases and the behavior of the
wall is dominated by flexure. In the walls that are subjected to low nominal shear stresses, the flexu-
ral stiffness is low due to the low reinforcement ratio in the boundary elements. Consequently, no
pinching was observed in the P-A curve, and the response was dominated by flexure. In the walls
that are subjected to large nominal shear stress, the flexural stiffness is large because of the high rein-
forcement ratio in the boundary elements, and the P-A curve experience significant pinching or

stiffening behavior as the deformation mode changes from shear to flexure.

6.4.2 LOAD VS. SHEAR DISTORTION CURVE

Average shear distortion in the lower portion of the wall can be esﬁxﬁated from the displace-
ments at four corner points of a rectangular region which is located on a web of the wall (Fig. 6.34).
In the experiments, these displacements were obtained from LVDT readings, while in the finite ele-
ment analysis, they were obtained from the displacements of the corresponding nodes. This shear
distortion is an approximation because the calculation is based on several assumptions such as plane
section of the wall remains plane and shear strain is uniformly distributed in the web of the wall.
However, it provides areasonable estimate of the cyclic shear distortion in each wall specimen. Be-
cause this shear distortion is directly related to the shear transfer mechanisms of reinforced concrete
in the web, evaluation of shear distortions is useful in the development and verification of the pro-

posed shear—stress function for the concrete model. The parameters required to define the shear
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stress function were adjusted such that the load—shear distortion (P-¥y) curves of the finite element

results agree with those of the experimental results.

The comparisons between the measured and calculated P—y curves are shown in Fig. 6.35
through 6.47. All comparisons show good agreement between the calculated results and the mea-
sured data. The P—y curves can be divided into two groups according to the magnitude of the maxi-
mum applied shear stress. The P—y curves for the walls that were subjected to low nominal shear
stress (walls R1, R2, R4, B1, and B3) experienced small, if any, pinching. On the other hand, the
P~y curves for the walls that were subjected to high nominal shear stress (walls R3, B2, and BS to

B9) experienced significant pinching and degradation of shear stiffness in the later cycles.
6.4.3 FAILURE MODES

Studying failure modes of the slender reinforced concrete structural walls under cyclic load-
ings is also another objective of this research. Five different failure modes that were observed in

the thirteen wall specimens are (105, 106):

a) Bar fracture,

b) Inelastic bar buckling,

c¢) Instability of the compression zone,
d) Web crushing,

e) Boundary element crushing.

The finite element models developed in this research should also be able to reproduce the
mode of failure for each wall and to estimate the deformation level at which the failure occurs. The
post—failure behavior of the wall is not incorporated into the proposed model because such behavior
is usually unstable and depends greatly on the loading technique used in the experimental work.
Furthermore, some failure modes involve a sudden release of a large amount of strain energy which

causes numerical problems in the analysis.

94



~ Thecriteria for defining each failure mode are described in the following sections. Compari-

sons between the calculated and observed failure modes are summarized in Table 6.3.

(a) BAR FRACTURE

‘Wall B4, which was subjected to monotonic loading, lostits load—carrying capacity because
the main reinforcement fractured. Bar fracture was also observed in several other walls, suchasR1,
B1 and B3. However the bars in these walls had buckled previously which led to the premature rup-

ture of the reinforcing bars.

The proposed steel model incorporates bar fracture by evaluating the calculated axial strain
in each steel element. If the strain exceeds the ultimate tensile strain, which is an input parameter

for the steel, bar fracture has occurred.

(b) INELASTIC BAR BUCKLING

Inelastic bar buckling was observed in wallR1, B1, and B3. In these walls, longitudinal rein-
forcement buckled within the lower 3’ of the boundary elements. There were three major factors

that influenced buckling of the flexural reinforcement:

® The loss of surrounding concrete, which acted as a lateral support for reinforcing

bar, caused by alternating tensile and compressive stresses (103, 110).

® The reduction in tangent modulus of steel due to tensile or compressive yielding

and the Bauschinger effect (80, 103, 109, 118).

® The eccentric compressive force on the reinforcing bar caused by increasing shear

distortion (103, 106).

Although, buckling of reinforcing bar did notresultin a sudden loss .of load carrying capacity
in the structural walls, it did lead to bar fracture after several cycles of alternating tensile and com-

pressive stress.

Few researchers have investigated the inelastic bar buckling in reinforced concrete mem-

bers. Gosain, et al. (62) studied shear requirements for load reversals on reinforced concrete mem-
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bers from the experimental results of several other researchers. They reported that loss of concrete
cover and reduction of stiffness of reinforcing bars (Bauschinger effect) significantly reduced the
buckling capacity of a reinforcing bar. Bertero and Collins (24) investigated inelastic bar buckling
in the failure of the Olive View stair towers during the San Fernando earthquake and proposed equa-
tions for calculating spacing of steel confinement required to prevent inelastic bar buckling. In both
studies, the tangent modulus theory was used to calculate the buckling stress of the reinforcing bar.
The equation is similar to the well-known Euler equation except that a tangent modulus (E;) was

. used instead of Young’s modulus (Eq. 6.1).

72 E
Ocr = ; (6.1)
[#]
r
where O = Buckling stress
E, = Tangent modulus of a reinforcing bar E
t
[ = Unsupported length of a reinforcing bar 1
(spacing between steel confinement)
k = Factor for an effective length of a reinforcing bar
r = Radius of gyration of a bar

The value of k depends on the buckling mode shape of the bar. Gosain et al. (62) and Bertero
and Collins (24) recommended the values of k between 1/2 and 1 based on the buckling mode shape
as shown in Fig. 6.48. In this research, the value of 1/2 is used.

In the analysis, the buckling stress of the bars that have potential to buckle (bars at the face
of the boundary elements in the lower 3 ft. of the wall) is calculated at the beginning of each load
step. If the concrete adjacent to that bar has already spalled and the compressive stress of that bar
exceeds the current buckling stress, the bar is considered to buckle. Concrete is considered to have

spalled when the following criteria have been met:
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® Concrete at that Gauss point has been totally crushed (as described in Section

3.1.4).

® After crushing, the concrete at that Gauss point must have been subjected to alter-

nating tensile and compressive stress for at least four cycles.

The second criterion is based on the observation from the experimental work that concrete
does not spall immediateiy after it has been crushed (110). The crushed concrete starts spalling after
it has been subjected to a few cycles of alternating tensile and compressive stress. In the proposed
model, a reinforcing bar is considered to lose its lateral support when concrete at the closest two

Gauss points has spalled.
(c) INSTABILITY OF THE COMPRESSION ZONE

In this mode of failure, an out—of—plane instability of the compression zone occurred in the
lower 3 ft. of the wall. It was observed only in wall R2. The wall lost its load—carrying capacity
when a large out—of—plane displacement occurred in the lower portion of the wall following several
large load reversals. This failure mode cannot be detected by the proposed model. In order to detect
this mode of failure, buckling capacity of the wall needs to be investigated, which is beyond the

scope of this investigation.
(d) BOUNDARY ELEMENT CRUSHING

Specimens R3 and R4, both of which were rectangular walls with applied axial loads, failed
because the concrete in the boundary elements was crushed completely. The criteria for concrete
crushing are discussed in Chapter 3. For confined concrete, the compressive stress—strain relation-
ship can be divided into three regions: uncrushed, crushed plateau, and totally crushed (Fig. 3.12).
Confined concrete is considered to be crushed when the compressive stress—strain curve reaches the
totally crushed region (¢ < €3)2. The value of €3 depends on the amount and the arrangement of

steel reinforcement as described in Appendix B. For unconfined concrete (Fig. 3.10), the compres-

2 Compressive strain is considered to be negative while tensile strain is considered to be positive.
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sive stress—strain relationship does not have the crush plateau. Concrete changes directly from un-
crushed to totally crushed. To check crushing of concrete, the calculated compressive strain atevery
Gauss point is checked at the begimiing of each new load step. If the compressive strain is less than
€, for confined concrete or is less than € for unconfined concrete (Fig 3.10 and 3.12), concrete

at that Gauss point is considered to be crushed.
(e) WEB CRUSHING

Web crushing is a common failure mode in beams or walls “with large flanges and relatively
thin web subjected to high shear stress” (103). The PCA wall specimens that experienced web crush-
ing are B2, BS, B6, B7, B, and B9. As reported by Oesterle et al. (103), web crushing strength of
structural wall depends on deformation history, concrete strength, applied axial load, and applied
lateral load. They alsoreported that the compressive strength of concrete struts in the web decreased
due to the deformation history. Such decrease in compressive strength led to the web crushing in

concrete struts at a stress level that is much lower than the compressive strength of concrete.

Several researchers have proposed analytical models for calculating the effective strength

of concrete struts as described in Eq. 6.2 through 6.4.

T d = Effective compressive strength of concrete struts
Placas and Regan (117):  f; = (25 + 500 o) Jf: 6.2)
0y = Horizontal shear reinforcement ratio
Collins (40): fa = ky fe (6.3)
k, = 3.60
2y
1+ &
y = Average value of maximum shear strain
&g = Axial strain at compressive stress

of concrete cylinder
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Stevens et al. (134): fa = ky fe (6.4)
kd = 1
0.80 + 0.34[ & ]

&y = Principal tensile strain L to crack

™
o
it

Axial strain at peak compressive stress
of concrete cylinder

Oesterle et al. (104) compared the effective strength calculated from Eq. 6.3 with the exper-
imental results from the PCA tests of isolated walls. The calculated results agree with the exper-

imental data as shown in Fig. 6.49.

During the experimental tests, it was observed that crushing of concrete struts started in the
lower 3 ft of the compression zone in the walls that failed in the web crushing mode. These sections
of the webs experienced high shear distortions prior to the crushing (0.010-0.030 radian). There-
fore, itis reasonable to assume that the reduction in compressive strength of concrete struts in slender
reinforced concrete walls isrelated to shear distortion in the lower portion of the walls. The equation
proposed by Collins (Eq. 6.3), which uses shear distortion as a measure of strain condition, was
adopted in this research as a means of calculating the effective compressive strength of the concrete
struts. Although Eq. 6.4, which was proposed by Stevens et al., is a refined version of Eq. 6.3, it

is not appropriate for the analysis considered in this study because principal tensile strain is used as

the measure of the strain condition. If Eq. 6.4 is used to calculate web crushing in shear walls, web

crushing would be calculated to occur in the tensile boundary element, where the principal tensile

strain is highest, rather than in the compression zone as observed in the PCA wall tests.

In the proposed model, the compressive stress in the direction of the crack and the effective
compressive strength are calculated at every Gauss point. If the compressive stress exceeds the ef-
fective compressive strength at any location, the concrete at that point is considered crushed. Be-
cause the effective strength of concrete calculated from Eq. 6.3 is approximate, the proposed model
can only indicate the possibility of a web crushing mode of failure in an approximate manner. Dur-

ing the analyses, web crushing was evaluated at the peak positive and negative displacement of each
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load cycle. If the effective compressive strength of the concrete was exceeded at more than eight

Gauss points in the web, web crushing was considered to have occurred during that load cycle.
6.4.4 CRACK PATTERNS

Crack pattemns of the wall specimens can also be divided into two groups according to the
level of the maximum nominal shear streés applied to the walls (103). Crack patterns of the walls
that were subjected to low nominal shear stresses (walls R1, R2, R4, B1, and B3) consist of large
horizontal cracks in the lower 3 ft. of the walls and some inclined cracks in the upper portion of the
walls (Fig. 6.50[a]). These horizontal cracks, which are the result of large tensile strain in the bound-
ary elements, governed the cyclic response of the walls after a few inelastic cycles. The shear
stresses were transferred primarily by aggregate interlock and dowel action mechanisms. Because
of the low flexural strcngih of the walls, these shear transfer mechanisms were adequate to prevent
a brittle shear failure mode and to develop the flexural failure mode instead. Crack patterns of the
walls that were subjected to high nominal shear stresses (walls R3, B2, B4 through B9) were domi-
nated by the inclined cracks “crisscrossing™ the web (106) (Fig. 6.50[b]). Shear stress was trans-
ferred primarily by truss action of the concrete struts along these inclined cracks. Because of their
high flexural strength which resulted in high compressive stress in the concrete struts, these walls

failed by crushing of concrete in the web.

The typical calculated crack patterns in a wall that was subjected to low nominal shear stress
(wall R1) and in a wall that was subjected to high nominal shear stress (wall B7) are shown in Fig.
6.51 and 6.52. Crack patterns are shown at seven load steps, each of which is the load step corre-
sponding to a2 maximum 6r minimum displacement during the loading cycle. The thickness of each
crack represents the magnitude of the tensile strain normal to the crack. The calculated crack pattern
for wall R1 is dominated by horizontal cracks in the lower portion of the wall from the early stages
of loading. Inclined cracks occur in the upper portion of the web during the later stages of loading.
However, the crack widths of the horizontal cracks are larger than those of the inclined cracks. The
calculated crack pattern for wall B7 includes both inclined cracks in the web and horizontal cracks
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in the boundary elements. The steep angles of cracks in the web reflect the presence of high shear
stresses. This shear stress, which is aresult of the applied compressive axial stress and a large amount
of flexural reinforcement in the boundary elements, caused the principal stress direction fo rotate
from the vertical direction and resulted in the inclined crack angles. As the load reversal continues,
the widths of both the inclined and horizontal cracks increase. This reflects the combination of both
the flexural and shear modes of deformation. The calculated crack angles in the web for wall B7
(Fig. 6.52), most of which are close to 45 degrees, are more uniform than those for wall R1, which

are more scattered. Such behavior was also observed in the experimental results (Fig. 6.50).

Another important observation from the calculated crack pattern is that the majority of the
cracks remained open throughout the loading cycles in the lower portion of both walls R1 and B7.
Only a small number of cracks, most of which were in the compression zone, closed. Because the
concrete with wide—open cracks could providé little compressive and tensile resistance, the major
force resistance in the lower portion of the wall was provided mainly by the reinforcing steel. This
behavior confirms the important role of reinforcing steel in governing the cyclic response of rein-

forced concrete shear walls.

6.5 TYPICAL CYCLIC BEHAVIOR OF R/C SHEAR WALLS

As mention in Section 6.2, the results of the finite element analysis contain a variety of in-
formation, some of which cannot be measured directly and are useful for understanding of the cyclic
response of reinforced concrete shear walls. It is important for the finite element users to realize
that despite the several digits of precision obtained from the calculations, the finite element results
cannot be more accurate or better than the assumptions used in the material models. The finite ele-
ment method can provide valuable information as long as the users are aware of all the important

assumptions made in the material models and the limitations of finite element analysis, in general.

In the following section, detailed results from the analysis of two wall specimens, R1 and
B7, are examined. R1 is representative of the walls that were subjected to low nominal shear stress

while B7 represents the walls that were subjected to high nominal shear stress. The analytical results
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include deformed shapes, stress and strain distributions in the concrete, and stress—strain relation-

ship in the reinforcing steel.

The deformed shapes, shear strain distribution, axial strain (gy) distribution, and axial stress
(Oy) distribution for walls R1 and B7 at several load steps are shown in Fig. 6.53 through 6.60. The
load vs. strain curves for the longitudinal reinforcement are given in Fig. 6.61 and 6.62. The dis-
tributions of strain in the vertical reinforcement at different heights above the base are shown in Fig.
6.63 through 6.66. The complete stress—strain relationships for vertical reinforcing bars in the lower
3 ftof wallsR1 and B7 are shown in Fig. 6.67 and 6.68. Some important aspects of the cyclic behav-

ior of the walls are summarized below:

® Although wall R1 has a well-rounded force—deformation curve indicating good
energy dissipation characteristics, the shear strain in the lower portion of wall R1 is as large
as that of wall B7 (Fig. 6.54 and Fig. 6.58). This shows that the well-rounded P-A curve
of wall R1 is not caused by the domination of the flexural mode of deformation but rather
is caused by the low flexural stiffness of the wall. As a result, no pinching or increase in
lateral stiffness is observed in the load—deflection curve as the mode of deformation changes
from the shear mode to the ﬂéxural mode. In spite of the large shear distortion, wall R1 does
not experience web crushing because the strength of the wall is governed by the low flexural

capacity.

® Shear distortions in both wall R1 and B7 are concentrated in the lower 6 ft of the
walls. When the vertical steel yields, the crack widths increase. The increase in crack width
greatly reduces the ability of concrete to transfer shear stress by aggregate interlock. The
concentration of the shear distortion occurs in the area where the vertical steel has yielded
(Fig. 6.54, 6.55, 6.58, and 6.59). Therefore, one possible way to decrease shear distortion
of the wall is to provide additional reinforcement in the lower portion of the wall to help
minimize the crack width of concrete in the web and, therefore, improve the shear transfer

mechanism by aggregate interlock. This approach is discussed in Chapter 8.
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® The distribution of vertical stress and strain in walls R1 and B7 (Fig. 6.55, 6.56,
6.59, and 6.60) indicates that compressive stresses exceed 0.20 £’ in the lower 8 ft of the
boundary element in wall R1 while at least 12 ft of the boundary element in wall B7 is.sub‘
jected to the same level of compressive stress. According to Section 21.5.3 of the 1989 ACI
Building Code (2), which requires transverse reinforcement to be provided in the boundary
elements with the stress? at the extreme fiber exceeding 0.20 ', the transverse reinforce-
ment should be provided in the boundary elements of wall R1 up to the height of 7 ft and
in the boundary elements of wall B7 up to the height of 12 ft. Based on the calculated results,
the code provisions can estimate the location where the transverse reinforcement is needed
in the boundary elements fairly accurately despite the simple method used in the calculation.
However, if the configurations of the wall are more complicated or the wall is subjected to
different types of loadings, these simple code provisions are not likely to be able to estimate
correctly the location where the transverse reinforcement is needed. In such situation, finite
element analysis can be used to estimate the level of compressive stress in the boundary ele-

ments for a proper design of the transverse reinforcement.

o The distribution of strain in vertical reinforcement at different sections of the
walls are shown in Fig. 6.63 through 6.66. In both walls, the vertical strain distribution is
not linear as usually assumed in the design process. A large strain gradient occurs in the com-
pression zone. Because the compression zone is relatively small compared with the depth
of the wall and the stress in reinforcing steel does not vary much after the steel has-yielded,
the assumption of linear strain distribution still provides a reasonable approximation of the
flexural strength of the walls. However, such assumption is inadequate to estimate the stiff-
ness of the wall especially when the wall is subjected to several large load reversals. In order
to more closely estimate the deformation characteristics of the walls, the nonlinear distribu-

tion of vertical reinforcement at different sections must be considered.

3 Stress is calculated from the factored force using a linear model and gross—section properties.
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® The plots of load vs. strain in the main flexural reinforcement of walls R1 and B7
are shown in Fig. 6.61 and 6.62. This curve together with the P-A curves (Fig. 6.21 and
Fig. 6.31) and the P—y curves (Fig. 6.35 and Fig. 6.45) illustrate the load resisting met.:ha-
nisms in shear walls. Each half cycle of a P—A curve consists of three major regions: 1) stiff
unloading region, 2) ._shear dominated region, and 3) flexural dominated region. The stiff
unloading region is a result of the initially high flexural and shear stiffness at the beginning
of a load reversal. The shear dominated region is the section of the curve where a large in-
crease in shear distortion occurs in the lower portion of the wall, while the flexural dominated
region is the section of the curve where there is a large change in a curvature of the wall. For
example, in the last load reversal of wall R1 (+4.00 in. to —4.00 in. in Fig. 6.21), the stiff
unloading region is sectioﬁ A-B. Because of high shear and flexural stiffnesses at the begin-
ning of unloading, there are small changes in the strain in longitudinal reinforcement (Fig.
6.61) and in the shear distortion (Fig. 6.35) in thisregion. The next region, which is the sec-
tion of the curve from point B to point C (Fig. 6.21), is dominated by shear distortion. In
this region, the top of the wall travels 3.0 in. with a large increase in shear distortion in the
lower portion of the wall (Fig. 6.35) but with a small increase in compressive strain of the
flexural reinforcement (Fig. 6.61). This shows that the wall deforms more in the shear mode
than in the flexural mode. The next region, which is the section of the curve from point C
to point D (Fig. 6.21), represents the flexural dominated region. In this region, the top of
the wall travels 3.8 in. with a much smaller increase in shear distortion than that in the pre-
vious region (Fig. 6.35) but with large increase in the compressive strain in the flexural rein-
forcement (Fig. 6.61). This shows that, in this region, wall R1 deforms primarily in the flex-
ural mode. Wall B7 also exhibits similar behavior. The only difference is that the flexural
stiffness of wall B7 is much greater than that of wall R1. This results in pinching of the P-A

curve as the curve changes from the shear dominated region to the flexural dominated region.

® The typical stress—strain relationship for vertical reinforcing steel in the lower

3ftof wallsR1 and B7 are shown in Fig. 6.67 and 6.68. All thereinforcing steel in this region
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started yielding at the early stage of loading. Reinforcing bars that were located near and
in the boundary elements experienced large load reversals and a significant Bauschinger ef-
fect. Tensile stress in the longitudinal bars at the base of both boundary elements couid be
as high as 140% of the yield stress. This high stress had a significant effect on the ultimate
capacity of the walls and must be considered when the ultiinate strength of the walls was eva-
luated. It can also be seen that most of the reinforcing bars in the lower portion of both walls
R1 and B7 experienced tensile strain during most of the loading history. This indicates that
the majority of the cracks in the lower portion of the walls remained open throughout the

loading history and the major force resistance was provided by reinforcing steel.

All these calculated results illustrate the variety of information that can be obtained from the
finite element analysis. Such information can be useful both in the design process to check the in-
elastic response of shear walls and in the research to obtain better understanding in the behavior of
shear walls. Applications of the finite element method in the analysis of reinforced concrete shear

walls are discussed in Chapter 8.
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7. TESTS OF C-SHAPED WALLS

When reinforced concrete shear walls are used as lateral load resisting systems in tall build-
ings, they are commonly constructed as elevator cores or stair wells. Such practices result in shear
walls with intersecting flanges in the orthogonal direction. Although these intersecting flanges have
a significant influence on the behavior of the wall when subjected to lateral loads, the flange con-
tribution to the overall, load resisting capacity of the walls is not explicitly defined. For the design
of structural walls, the current 1989 ACI Building Code (2) does not have any provision for evaluat-
ing the effective width of intersecting flanges. Provisions for evaluating the effective width of T—
beams are typically used. The definition of effective width for T-beams provides a conservative
estimate of the strength of a wall under monotonic loadings; however, itis inadequate for calculating
the behavior of the wall when subjected to cyclic loading. As a result, a better understanding of the

contributions of intersecting flanges to the overall behavior of a wall is needed.

There are also several other aspects of the behavior of intersecting legs that need further
study, such as influence of vertical and horizontal web reinforcement and effects of confinement re-
inforcement in the boundary elements. In order to provide some of the needed information, an ex-
perimental program was undertaken to investigate the strength and stiffness characteristics of walls
with intersecting flanges subjected to cyclic loadings. Two isolated, C—shaped wall specimens were

tested under lateral load reversals at the University of Illinois.

In this chapter, the experimental program is discussed briefly, the experimental results are
summarized, and the proposed analytical models are used to calculate the cyclic response of the two

wall specimens.

7.1 EXPERIMENTAL PROGRAM

The major objectives of the experimental program were:

1) to investigate the inelastic cyclic response and energy dissipation characteristics

of walls with intersecting flanges;
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2) to determine the effective stiffness of walls with intersecting flanges at various

levels of displacement;

3) to determine the influence of the amount of web reinforcement on the behavior

of the walls;

4) to provide experimental data to verify the results from finite element models of

walls with intersecting flanges.

In order to accomplish these objectives, two C—shaped, reinforced concrete walls were
constructed and subjected to cyclic loadings. The details of the specimens and the testing procedures

are described as follows.

7.1.1 C-SHAPED WALL SPECIMENS

Both of the wall specimcns (walls CMS and CLS) had a C—shaped cross section. Each sec-
tion consisted of two 36—in. long parallel webs and a 60~in. long connecting flange as shown in Fig.
7.1. Both walls were 9—ft. tall and 3—in. thick. The 60—in. flange width was chosen to be longer
than the effective width defined for a T-beam with a 3—in. flange in Sections 8.10.2 and 8.10.4 of
the 1989 ACI Building Code (2). Each wall was cast on a base girder which was later anchored to

the testing floor.

Both walls had the same amount of flexural reinforcement. The main longitudinal reinforce-
ment in each web consisted of ten #3 bars, four of which were placed in the boundary element at
the intersection between the flange and the web while the other six bars were placed in the boundary
element atthe noﬁh end of the web (Fig. 7.1). The transverse reinforcement in the boundary element
was made from No.10 gage wire. Square spirals were used in the boundary elements with four longi-
tudinal reinforcing bars while rectangular spirals with cross—ties were used in the boundary elements
with six longitudinal reinforcing bars (Fig. 7.1). The vertical spacing of all transverse reinforcement

was 2 in. The amount of transverse reinforcement provided in the boundary elements was equal to

107



approximately two—thirds of the amount required in the 1989 ACI Building Code (2) for walls with

high axial stresses.

The difference between walls CLS and CMS was the amount of web reinforcement. Wall
CLS was designed to have a web reinforcement ratio of 0.0025, the minimum allowed in the 1989
ACIBuilding Code (2), while wall CMS had twice as much web reinforcement. Web reinforcement
ratios in the vertical and horizontal directions are equal. A single layer of #2 deformed bars were
used as the web reinforcement. The nominal spacing of the bars was 6 in. in wall CLS and 3 in. in

wall CMS (Fig. 7.1). Measured material properties for these two walls are given in Appendix F.

Both walls were subjected to static load reversals with the lateral force applied at the top of
the wall. Reinforcement was selected such that the nominal flexural capacity of each wall was less
that the nominal shear capacity. According to the 1989 ACI Building Code (2), the nominal shear
capacity of wall CLS was 63.3 kips and the nominal shear capacity of wall CMS was 99.4 kips. The
nominal flexural capacity of wall CLS was between 44.6 kips and 51.8 kips while the nominal flexu-
ral capacity of wall CMS was between 53.2 kips and 64.4 kips. The lower bound of the nominal
flexural capacity was obtained using an elasto—plastic stress—strain relationship for the reinforcing

steel while the upper bound estimate included the strain—hardening behavior.
7.1.2 TESTING PROCEDURES

Both wall specimens were subjected to lateral load reversals in the north-south direction.
The lateral load was applied by a single ram with a capacity of 100 kips located on the top of the
wall (Fig. 7.2). The ram was attached to a 2-in. thick steel plate wlﬁch transferred load from the
ram to the Wéll specimen. All vertical reinforcing bars extended through the steel plate. The longitu-
dinal steel and vertical web steel had been threaded at the top prior to construction. Nuts were used
to clamp the steel plate in place. The slip along this joint was measured to be less than 0.005 in.

throughout the entire series of tests.

An axialload of 100 kips was applied to both wall specimens. The load was applied by eight

center hole jacks which were placed on the top steel plate as shown in Fig. 7.2. The locations of these
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jacks were selected such that the axial load was evenly distributed over the cross section. The axial

load, which resulted in a nominal axial stress of 265 psi, was maintained throughout the test.
Each wall specimen was subjected to five stages of lateral load reversals. In stage I, a load

of + 10 kips!, which was approximately half of the initial cracking load, was gradually applied to

| the wall specimen. Thisload cycle was used to evaluate the uncracked stiffness of the wall specimen

and to check whether all the instruments were working properly. In stage II, the wall specimen was
loaded to top deflection of 1 in. In stage III, the wall specimen was again loaded to + 1-in. top
deflection for two more cycles. This stage caused further yielding of the flexural reinforcement.
In stage IV, the wall specimen was loaded for three cycles at = 1.5-in. top deflection. Finally, in
stage V, the wall specimen was loaded until it failed. In this stage, the wall specimen was loaded
to a top deflection greater than 2 in. The exact deflection was determined during the test according
to the performance of the wall. The objective of this stage was to allow the wall specimen to experi-
ence a top deflection greater than 2 in. for several cycles. The displacement histories for stages IT
to V for walls CLS and CMS are shown in Fig. 7.3.

7.1.3 INSTRUMENTATION

Three types of displacement measuring instruments were used during the tests: Linear Volt-
age Displacement Transducers (LVDTs), dial gages, and mechanical strain gages. Thirty—seven
LVDT’s were used to monitor the response of specimen CLS and 45 LVDT’s were used for specimen
CMS. Twelve of these LVDTs measured the horizontal displacements, 9 ft, 6 ft, and 3 ft above the
base girder along the north and south sides of both webs. Twelve other LVDTs measured the relative
displacements in the diagonal, horizontal, and vertical directions of four points that were located in
a 30—in. square in the lower, interior panel of both webs (points A,B,C, and D in Fig. 7.1(a)). These
displacements were used to calculate shear distortion in the lower portion of the web. Thirteen other
LVDTs measured the vertical displacement of the wall at 3 in. above the base. Four of these LVDTs

were located ateach of the four corners while the other nine were located along the base of the flange.

1 Ppositive loadings cause the transverse flange to be in compression while negative loadings cause the trans-
verse flange to be in tension.
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In wall CMS, eight LVDTs were added to measure the vertical movement of the base girder. Some
of the measurement from these LVDTs were later compared with the calculated nodal displapements
from the finite element result. Such comparison is discussed in Section 7.4. A total of 26 dial gages
were attached to each wall specimen. These dial gages were used to measure the displacements and
rotations of the base girder, to measure slip along the construction joints, and to provide backup mea-

surements for some of the LVDTs.

Two other types of instruments that were used to collect data during the tests were strain
gages and load cells. Strain gages were attached to some of the vertical web reinforcement and main
flexural reinforcement near the base of the wall specimen. Load cells were used to measure the ap-
plied axial load in each jack. Data from LVDTs, strain gages, and load cells were collected by the

data acquisition system and recorded digitally using a personal computer.

7.2 OBSERVED RESPONSE OF THE WALLS

Both walls femained uncracked during stage I. During stage II and I, cracking of the con-
crete was observed in the lower portion of the wall and yielding of the longitudinal reinforcement
in the boundary elements and vertical web reinforcement in the transverse wall was observed. Sig-
nificant horizontal cracks and inclined cracks were also observed in the webs of the specimens. Con-
crete in the north boundary elements started spalling in this stage of the loading history. In stage
IV, at £+ 1.5-in. top deflection, all cover concrete in the north boundary elements spalled. The main
flexural reinforcing bars in the north boundary elements were observed to buckle slightly. However,
such buckling did not progress because the bars were still restrained by the confinement reinforce-

ment.

Failures of both wall specimens occurred in load stage V following crushing of the concrete
in the north boundary elements. Specimen CLS lost its load—carrying capacity when the rectangular
spiral reinforcement in the lower portion of the north—-west boundary element suddenly fractured
and several longitudinal reinforcing bars buckled. This spiral reinforcement fractured because the
adjacent longitudinal bars in the lower portion of the boundary element buckled in opposite direc-
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tions. Specimen CMS lost its load—carrying capacity at the second cycle approaching —2.50—in. top
deflection when extensive buckling of the longitudinal bars occurred in the north boundary ele-
ments. However, no fracture of the spiral reinforcement was observed in wall CMS because tﬁe adja-
cent longitudinal bars in the lower portion of the boundary element buckled in the same direction.
After the failure, the region of crushed concrete extended nearly the entire length of the web in both

wall specimens.
7.3 FINITE ELEMENT MODEL

After the completion of the experimental program, the analytical models were developed to
study the behavior of the walls. The selection of the finite element model and the analytical proce-

dures are described below.
7.3.1 CHOICE OF ELEMENT

The material model for concrete described in Chapter 3 was developed for two—dimensional
plane stress elements. The model yielded satisfactory results for the analysis of reinforced concrete
shear walls with rectangular and barbell cross sections. Because of the configuration of the intersect-
ing flanges in the C—shai)ed walls, the original plan was to modify the concrete material model to
be used with shell elements and use the shell elements to model the three—dimensional wall speci-
mens. But when the problem was considered carefully, it was found that it might be possible to use
two—dimensional plane stress elements to model the C—shaped wall instead of shell elements without

a loss in the accuracy of the solution.

A shell element incorporates two types of stiffness: bending stiffness and in—plane stiffness.
Without the bending stiffness, the shell element will behave in the same manner as atwo—dimension-
al plane stress element. The C—shaped walls tested in this investigation had a long, thin flange (the
span—to—depth ratio was about 36). Therefore, the bending stiffness of the flange will contribute
little to the total stiffness of the wall (especially when the concrete in the flange cracks and the flexu-
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ral stiffness of the flange is greatly reduced) and the flange in the C—shaped wall can be modelled

by using two—dimensional plane stress elements.

Two linear finite element analyses of a C—shaped wall with the same dimensions as those of
the walls tested in this research program were conducted to evaluate differences in the calculated
results when the two—dimensional and the shell elements were used (Fig. 7.4). In the first analysis,
two-dimensional plane stress elements were used to rflodel the wall while the shell elements were
used in the second analysis. In both cases, the top corner node of the wall was subjected to a pre-
scribed displacement of +1 in. (positive top displacement causes the intersecting flange to be in com-
pression). The results of the two analyses are compared in Fig. 7.5 through 7.7 and in Table 7.1.
Several aspects of the calculated results are compared in these figures, including the distribution of
vertical displacement along the top of the wall (Fig. 7.5), the deformed shape (Fig. 7.6), the vertical
stress distribution in the wall (Fig. 7.7), the reaction at the corner node (Table 7.1), and the CPU time
required in the analysis (Table 7.1). The distribution of the vertical displacement at the top of the
wall was selected for comparison because it represents the sum of the vertical strains distributed
along the vertical axis of the web and flange and, hence, represents the overall contribution of the
web and flange in resisting the applied horizontal load. It can be seen that all these aspects of the
calculated results using two—dimensional plane stress elements are nearly the same as those using
shell elements. But using two—dimensional elements requires only about 1/7 of the CPU time re-
quired when using shell elements (Table 7.1). Therefore, two—dimensional plane stress elements

were used to model the C—shaped shear wall in this investigation.

7.3.2 WALL MODEL

Two—dimensional plane stress elements were used to model concrete elements in the walls.
The same model was used for both walls CLS and CMS and, because of the symmetry, only half
of each wall was modelled. The only difference between the finite element model of the two walls
is the amount of web reinforcement. The model comprises 266 concrete elements and 536 steel

elements. All nodes at the base of the wall were fixed in the horizontal and vertical directions (Fig.
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7.8). The axial load was applied by vertical nodal loads at 2 nodes in the web and 6 nodes along the
south flange of the wall (Fig. 7.8). The horizontal displacement in the direction of loading at top
corner node (Fig. 7.8) was specified to be the same as the displacement history used in the exper-

imental program (Fig. 7.3).

In the analyses of walls CLS and CMS, the values of all parameter used in the material mod-
els are the same as those used in the analyses of the PCA walls in Chapter 6 with two exceptions

indicated below:

® For £(, which controls the shear stiffness caused by aggregate interlock, a value
of 25.0- €, was used instead of 12.50 - €. This change did not have influence the calcu-
lated load vs. top deflection response of the walls. However, it reduced the shear deforma-
tion in the lower 3 ft bf the wall to a level which was consistent with the experimental re-
sults. The difference between the value of €g used in the PCA walls and that used in the
C—shaped walls might be attributed to two factors: the difference in the magnitude of the
applied axial stress and the difference in the type of gravel used in the concrete mix of the
wall specimens. These two factors have significantinfluence on the interface shear transfer
stiffness of cracked concrete. The adjustment of the material model parameters indicates
that the finite element analysis cannot completely replace the experimental work and the
experiment results are still needed for calibrating the material model. However, once the
material model has been calibrated for a certain type of reinforced concrete member, the
finite element method can be used to extend the investigation on the response of that rein-
forced concrete member with different configurations, reinforcement details, and loading

histories.

® The concrete elements in the south flange (which were modelled by using two—
dimensional plane stress elements in the Y-Z plane) provided no shear stiffness in the
direction of loading. Therefore, some of the shear stiffness parameters in the concrete ele-

ments in the south boundary elements (U1, u2, Gpin, Tslip> and Gypl) were increased by a
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factor of 10 to take into account the increased shear stiffness of the south flange. The factor
was determined by dividing the width of the south flange by the thickness of the boundary
element. The other shear stiffness parameters (€min, Yo, 1, and f) were not changed because

they are not effected by the difference in the thickness of the concrete element.

7.4 EVALUATION OF THE FINITE ELEMENT RESULTS

The comparisons between the calculated load vs. deflection at 3—ft, 6-ft, and 9—ftlevels and
the experimental data for walls CLS and CMS are shown in Fig. 7.9 and 7.10. The comparisons
between the calculated load vs. shear distortion in the lower 3 ft of the web and the experimental
data are shown in Fig. 7.11 and 7.12. The calculated responses of both walls are in good agreement

with the experimental data.

The criteria for evaluating the failure modes in the analyses of the PCA walls (Section 6.4.3)
were also used in the analyses of the C—shaped walls. The comparisons between the calculated fail-
ure modes and the observed failure modes are given in Table 7.2. The calculated results indicated
that extensive crushing of concrete and inelastic bar buckling occurred in the north boundary ele-
ments of both walls in load stage V. Extensive web crushing in the lower portion of both walls was
also observed during the last load cycle of the calculated response. These calculated failure modes
agreed with the experiment results. In the experiments, both walls lost their load—carrying capacity
after the north longitudinal reinforcement had buckled and the concrete in the north boundary ele-
ments had been crushed. Crushing of concrete along almost the entire leﬁgm of the web was also

observed in both walls at the end of the tests.

Several aspects of the calculated responses of wall CLS and CMS are shown in Fig. 7.13
through 7.22. Figures 7.13 through 7.18 show the calculated deformed shapes, the calculated verti-
cal stress distribution, and the calculated shear strain distribution at different top—deflection levels
for walls CLS and CMS. Figures 7.19 and 7.20 show the calculated crack patterns of both walls at

different top—deflection levels. Figures 7.21 and 7.22 show the plots of the stress—strain relationship
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— of vertical reinforcement in the south flange at 3 in., 9 in., and 15 in. above the base. The following

describes several important aspects of the calculated cyclic behavior of the C—shaped walls:

[ e Inelastic shear strain was concentrated in the lower 3 ft. of both walls (Fig. 7.15

and 7.18). The south flange did not significantly increase the inelastic shear stiffness of the
B walls. This is due to the fact that the thickness of the flange was much less than the depth
of the web, and cracks in the lower portion of the flange remained open during most of the
loading history. As aresult, the shear stiffness of the flange in the N-S direction was much
smaller than the shear stiffness of the web. Although wall CMS had twice the amount of web
- reinforcement provided in wall CLS, both walls experienced the same magnitude of shear
distortion in the lower 3 ft of the walls. This indicates that the vertical and horizontal web
reinforcement did not significantly improve the inelastic shear transfer capacity of the wall.
The influence of different reinforcement details on the inelastic shear stiffness of walls is

discussed in Section 9.1.

® Ascanbe seenin Fig. 7.21 and 7.22, all the vertical steel at the base of the flange
was effective in providing tensile resistance when the flange wasin tension. All vertical rein-
forcement at the base of the south flange experienced similar stress—strain histories. This
indicates that the effective width of the flange when it was in tension could be as high as ten
} ' times the thickness of the flange. The use of a too small effective width can lead to a signifi-
cant underestimation of the strength of the wall. This might result in the selection of inade-
quate transverse reinforcement and unexpected crushing of the concrete in the boundary ele-

ments opposite the intersecting flange.

® When the flange is in compression, the concrete in the flange helps the south
boundary elements provide the compression resistance. Figures 7.14 and 7.17 show that the
compressive stress in the flange and in the south boundary element was quite uniform and
~~~~~~~ remained low (less than 0.3 f,') throughout the analyses. This indicates that concrete in the

| entire flange was effective in providing the compression resistance for the wall. However,
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the effective width of the flange at its capacity cannot be concluded from the calculated re-
sponse because the amount of reinforcement in the north boundary element was not enough

to cause crushing of the concrete in the south boundary elements and in the intersecting

flange. —

Because only two walls were analyzed, no major conclusions on the general éyclic behavior
of C—shaped walls could be drawn from the calculated response. However, the proposed finite ele-
ment models successfully simulated several important aspects of the cyclic behavior of C—shaped
walls. Therefore, the finite element method can be uéed to extend the investigation on the behavior

of C—shaped walls with different configurations. Such an investigation is discussed in Section 9.3.
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8. APPLICATIONS OF THE FINITE ELEMENT METHOD

The material models for concrete and reinforcing steel that were presented in Chapters 3 and
4 and verified in Chapters 6 and 7 can now be used to investigate behavior of reinforced concrete
walls with different configurations and loading histories. Finite element analysis of reinforced con-
crete members is useful both in research and in practice. In research, finite element analyses may
be used to expand the scope of an experimental program. Because experimental testing is usually
expensive and time-consuming, only a limited number of parameters can be studied. The finite ele-
ment method can be a powerful tool for extending an investigation on the behavior of reinforced
concrete members, provided that the finite element analysis is able to simulate all the important as-
pects of the experimental results. Finite element analysis also helps researchers to understand exper-
imental results better by providing some important information (such as distribution of curvature
and strain) which cannot be obtained from the experimental results. In design offices, the finite ele-
ment method can be used to check the load distribution within each component of a structure, to
check the behavior of a structure subjected to different types of loadings, and to improve the behavior

of a structure by changing the reinforcement details.

This chapter illustrates three applications of finite element analysis to investigate the behav-
ior of reinforced concrete shear walls. In the first application, finite element analysis is used to inves-
tigate the energy dissipation capacity of shear walls with different reinforcement details. The second
application involves using the finite element method to study and to improve the behavior of rein-
forced concrete shear walls with openings. The third application studies the effective widths of C—

shaped shear walls.

8.1 ENERGY DISSIPATION CAPACITY OF R/C WALLS

The two major objectives in the design of earthquake-resisting structures are: 1) to minimize
structural damage in structures subjected to low—intensity earthquakes and 2) to prevent the collapse
of but allow some structural damage in structures subjected to high—intensity earthquakes (123).

Because of the large inherent lateral stiffness, a reinforced concrete shear wall is suitable for the first
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objective. It can be designed to remain nearly elastic during a low—intensity earthquake and, hence,
helps prevent structural damag'e to other components of the building. However, itis usually noteco-
nomical to design a reinforced concrete shear wall to remain elastic during a strong earthquake. As
a result, in order to accofnplish the second objective, designers must ensure that shear walls have

adequate energy dissipation capacity in the inelastic range to survive a strong ground motion.

8.1.1 ENERGY DISSIPATION MECHANISMS

Concrete experiences significant degradation of strength and stiffness when subjected to
large—amplitude cyclic loads. ’I’hérefore, the major energy dissipation m reinforced concrete shear
walls must be provided by the inelastic behavior of reinforcing steel (113). Appropriate detailed
steel reinforcement can improve the energy dissipation capacity of the walls by 1) dissipating energy
through yielding of the reinforcement itself and 2) reducing the strength and stiffness degradation
of concrete and, hence, improving the energy dissipation capacity of concrete. The energy dissipated
by a wall during a loading cycle can be represented by the area of the load vs. top deflection curve
for that cycle. Reinforced concrete shear walls that deform prima.n‘ly in a flexural mode and have
small inelastic shear deformation will have a well-rounded load vs. deflection curve because the
response of the wall is governed by the hysteresis behavior of the reinforcing steel. On the other
hand, reinforced concrete shear walls that deform primarily in a shear mode and experience large
inelastic shear deformation have load vs. top deflection curves with a significant pinching because
the response of the wall is governed by the cyclic shear transfer mechanisms of cracked concrete.
As a result, walls that deform mainly in a flexural mode have larger energy dissipation capacities
and, hence, are more desirable in the design of earthquake-resistant structures than walls that deform

mainly in a shear mode (113).

In this investigation, the calculated energy dissipation of each wall model was evaluated by
using the accumulated energy dissipation ratio, which is an accumulated ratio between the energy
dissipated by the wall model in each cycle and the energy dissipated by an equivalent elasto—plastic

system (Fig. 8.1). The elasto—plastic system was chosen for comparison because it was the system
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that had the best energy dissipation capacity (113). The initial stiffness of the elasto—plastic system
is equal to the uncracked stiffness of the wall under study. As shownin Fig.-8.1, the energy dissipated
by a wall model in each cycle is represented by the area of the calculated load vs. top—déﬂection
curve for that cycle (A; and A in Fig. 8.1) while the energy dissipated by an elasto—plastic system'
is represented by the area of the elasto—plastic load vs. top—deflection curve for that cycle (B; and
B, in Fig. 8.1). An energy dissipation ratio close to one reflects a wall with good energy dissipation

capacity while a ratio close to zero reflects a wall with poor energy dissipation capacity.
8.1.2 REINFORCEMENT DETAILS

In order to improve the energy dissipation capacity of shear walls, designers must try to re-
duce the inelastic shear deformation (or increase inelastic shear stiffness) in the lower portion of the
wall, allowing the wall to deform mostly in the flexural mode. One possible way toreduce the inelas-
tic shear deformation and, hence, increase the energy dissipation capacity of the wall is to provide
appropriate reinforcement details in the lower portion of the wall. The finite element method was
used to study the effects of different arrangements of reinforcement on the inelastic shear deforma-
tion and on the energy dissipation capacity of shear walls B2 and B7 which were tested at the PCA
and described in Chapter 6. The eight arrangements of reinforcement considered are shown in Fig.
8.2 and the amount of reinforcement in each option is given in Table 8.1. Each of the reinforcement

options is described below.

Option #1:  Reinforcement details were the same as the original reinforcement
details used in the PCA tests. The vertical web reinforcement ratio was 0.3% and the hori-

zontal web reinforcement ratio was 0.6%. No diagonal reinforcement was used.

Option #2:  The amount of horizontal web reinforcement was doubled in the low-
er 5 ft of the web. This option was chosen to investigate the effectiveness of horizontal web

reinforcement in limiting the inelastic shear deformation of the wall.

Option #3: Vertical web reinforcement with a reinforcement ratio of 0.6% was

added to the lower 5 ft of the web. This additional reinforcement was embedded in the base
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girder in the same way as a conventional vertical web reinforcement. This option was used
to investigate the effects of varying amounts of vertical web reinforcement on the energy

dissipation capacity of the wall.

Option #4:  Vertical web reinforcement with a reinforcement ratio of 0.6% was
added in the lower S ft of the web. Unlike option #3, the additional vertical web reinforce-
ment was not embedded in the base girder. This option was used to investigate the effective-
ness of unanchored vértical web reinforcement in increasing the interface shear transfer stiff-

ness of the web.

Option #5:  Distributed diagonal reinforcement with a ratio of 0.4% (in each
direction) was added to the lower 5 ft of the web. The diagonal reinforcement was anchored
in the base girder. This option was used to investigate the effectiveness of the distributed di-
agonal reinforcement in reducing the inelastic shear deformation and in increasing the ener-

gy dissipation capacity of the wall.

Option #6:  The reinforcement in this option is similar to that of option #5 except
that the ratio of the additional diagonal reinforcement was 0.2% instead of 0.4%. This op-
tion, together with option#5, was used to test the effectiveness of different amounts of diago-

nal reinforcement in reducing inelastic shear deformation of the wall.

Option #7:  Four diagonal #5 bars (two in each direction) were added to the web.
This option, together with option #5, was used to compare the effectiveness of distributed
diagonal reinforcing bars to the effectiveness of concentrated reinforcing bars in improving

the energy dissipation capacity of the wall.

Option #8:  Four diagonal #5 bars (two in each direction) were added to the web.
The location of these bars was lower than the location of the bars in option #7 as shown in
Fig. 8.2. This option was used to investigate the effect of the location of the bars on their

capacity to limit the inelastic shear deformation of the wall.
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A finite element mesh for each wall model was the same as that used in the analyses of the
PCA walls in Chapter 6. Each wall model has the same boundary conditions, loading history, and
the arrangement of horizontal and vertical reinforcing bar elements as the PCA wall models 1n Chap-
ter 6 (Fig. 6.2 and 6.3). The area of the bar elements in the web was adjusted to represent the addi-
tional web reinforcement in each reinforcement option. Diagonal reinforcement was incorporated
into the wall model using a 2-node bar element connecting the two diagonally opposite nodes in each
concrete element. The material model parameters used in the analyses were the same as those used

in the analyses of the PCA walls in Chapter 6 (Table 6.2).
8.1.3 ANALYTICAL RESULTS

Figures 8.3 through 8.9 show the calculated response of walls B2 and B7 with the eight dif-
ferent types of web reinforcement. Figures 8.3 and 8.5 show the load vs. top deflection curves while
Fig. 8.4 and 8.6 show the load vs. shear distortion curves. Calculated crack patterns for walls B2
and B7 are shown in Fig. 8.7 and Fig. 8.8. Figure 8.9 gives the plots of the accumulated energy
dissipation ratio vs. the cycle number for walls B2 and B7 using the different reinforcement details.

The calculated results for each reinforcement option are discussed below:

Options #1, #2. and #3: As shown in Fig. 8.3 through 8.9, the wall models with rein-
forcement options #1, #2, and #3 yield similar analytical results for load vs. top deflection
curves, load vs. shear distortion curves, crack patterns, and energy dissipation capacity. The
load—deflection curves experience significant pinching because of large inelastic shear de-
formation in the lower portion of the walls. Of the eight reinforcement options analyzed,
these three options have the lowest energy dissipation capacities (Fig. 8.9). These analytical
results show that increasing the amount of horizontal (option #2) and vertical (option #3)
web reinforcement improves neither the energy dissipation capacity nor the strength of the
walls. Extensive web crushing was also observed in the calculated response of both walls
B2 a.nd B7 with reinforcement options #1, #2, and #3.
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As observed from the calculated response of the PCA wall tests described in Chapter
6, the interface shear transfer stiffness is 2 major component in the total shear stiffness of the
reinforced concrete in the web. In order to reduce the inelastic shear deformation in the lower
portion of the wall, the web reinforcement must be designed to minimize the crack width of
concrete in the web because the magnitude of the interface shear transfer stiffness depends
greatly on the crack width. The widths of cracks in the web are governed primarily by the
flexural behavior of the wall; therefore, increasing the horizontal web reinforcement does
not have a significant effect on the crack widths as can be seen in Fig. 8.7 and 8.8. Increasing
the vertical web reinforcement does notreduce the crack width either because, after yielding,
the additional vertical reinforcement is not effective in holding the cracks together (Fig. 8.7
and 8.8). The dowel stiffness of the additional vertical reinforcement is also insignificant
because it is much less than the dowel stiffness provided by the longitudinal reinforcement
in the boundary elements. Moreover, the dowel stiffness does not contribute much to the
overall shear stiffness of reinforced concrete shear walls. As a result, increasing the amount
of conventional web reinforcement will not limit inelastic shear distortion nor increase the
energy dissipation capacity of the walls. Because the additional web reinforcement does not
decrease the inelastic shear distortion in a wall, it cannot help prevent web crushing failure
or increase the strength of the wall. This is due to the fact that the reduction in the compres-
sive strength of concrete struts, which leads to the web crushing failure, is governed primari-

ly by the magnitude of shear distortion in the lower portion of the wall (Eq. 6.3).

QOption #4: The energy dissipation capacity of wall models with reinforcement option
#4 is significantly better than the energy dissipation capacities of wall models with reinforce-
ment options #1, #2, or #3. The load vs. top deflection curve displays much less pinching
while the inelastic shear distortion in the lower 3 ft of both walls is reduced by nearly 50%
(Fig. 8.3 through Fig. 8.6). The only difference between reinforcement in option #4 and #3
is that the additional vertical web reinforcement in option #4 was not embedded in the base

girder. This forced the vertical web reinforcement to yield primarily at the base level of the
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wall. Most of the vertical web reinforcexhent above the base level remained elastic and,
therefore, was able to hold together the cracked concrete in the web. Thisresulted in smaller
crack widths in the web, although the crack at the base of the wall was larger (Fig. 8.7 .and
8.8). The smaller crack widths in the web caused the increase in the interface shear stiffness
of the cracked concrete and helped reduce the inelastic shear deformation, thereby improv-

ing the energy dissipation capacity of the walls.

Options #5 and #6: The energy dissipation capacities of wall models with reinforce-
ment options #5 and #6 are greatly improved from those of options #1, #2, #3, and #4. Both
load vs. top deflection curves and load vs. shear distortion curves have well rounded shapes
(Fig. 8.3 through 8.6). The magnitude of the calculated shear distortion in the wall models
with reinforcement options #5 and #6 is significantly smaller than that in the wall models
with reinforcement options #1, #2, #3, and #4 (Fig. 8.4 and 8.6). These results show that
the diagonal reinforcement is very effective in limiting the shear distortion and in improving
the energy dissipation capacities of the walls. While vertical and horizontal web reinforce-
ment indirectly helps transfer shear force through the dowel action and by transferring shear
force to the diagonal concrete struts, the diagonal shear reinforcement directly transfers
shear force to the base in the form of axial force, both tension and compression. Because
the cyclic response of a reinforcing bar in the axial direction has good energy dissipation ca-
pacity, the cyclic shear transfer mechanisms developed using diagonal reinforcement have
much better energy dissipation capacities than the conventional shear transfer mechanisms
which use interface shear transfer and dowel actions. Reinforcement option #5 has better
energy dissipation capacity than option # 6 because of the larger amount of diagonal rein-
forcement. Determining the optimal amount of diagonal reinforcement requires a more de-
tailed investigation including both experimental and analytical tests, which is beyond the
scope of this study.

Options #7 and #8: The improvements in the energy dissipation capacities of these

two reinforcement options are close to those of options #5 and #6. This shows that both dis-
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tributed diagonal reinforcement and concentrated diagonal reinforcement are effective in
improving the energy dissipation capacity of the walls. Although option#5, which used dis-
tributed diagonal reinforcement, has more energy dissipation capacity than option #7, Which
used concentrated diagonal reinforcement, option #7 might be more economical and more
practical. Thisis due to the fact that option #5 requires nearly twice as much reinforcing steel
as option #7. Furthermore, option #5 requires a large number of reinforcing bars with differ-
ent lengths. Therefore, it is more difficult to place the reinforcement for option #5 than for
option #7, which requires only a few reinforcing bars with one or two different lengths.
However, it should also be noted that the finite element analysis did not take into account
bond-—slip of the reinforcing bars and assumed a perfect bond between the concrete and rein-
forcing steel. Bond—slip might be important when a single large bar is used to transfer alarge

shear force.

From these analytical results, it can be seen that diagonal bars are the most effective form
of reinforcement for improving the energy dissipation capacity of shear walls. In order for the diago-
nal bars to be effective in transferring the shear force to the base, the bars should remain elastic
throughout the loading history. To prevent the yielding of the diagonal reinforcement, engineers can
simply assume that all the applied shear force is transferred by the diagonal reinforcement and pro-
vide the amount of the diagonal reinforcement accordingly. Although diagonal reinforcement was
used in the design of some shear walls in Chile (150), such practice is very limited in the U.S. and
is not mentioned in the current ACI Building Code (2). More experimental programs are needed

to study the cyclic response of reinforced concrete shear walls with diagonal reinforcement.
8.2 SHEAR WALLS WITH OPENINGS

Solid, isolated reinforced concrete shear walls are not commonly used as the lateral-load
resisting systems in tall buildings due to architectural constraints. Shear walls usually contain some
openings or are connected with other structural members to form a lateral-load resisting system.

As shown in Fig. 8.10, the shear wall systems generally used in tall buildings can be divided into
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three types: coupled shear walls, wall-frame systems, and pierced shear walls (6, 126). Most pre-
vious investigations of shear wall systems have concentrated on the behavior of wall-frame systems
and coupled shear walls. The study of the response of pierced shear walls, especially the inelastic
cyclic response, is quite limited (126). A pierced shear wall is usually designed as a solid wall and
the effect of openings is often neglected. Reinforcement interrupted by the openings is simply
moved to the sides of the openings. Such practice may be adequate in walls subjected to monotoni-
cally increasing loads because the forces within the wall are not redistributed significantly and forces
in each wall pier can be estimated using a conventional design method. However, when pierced
walls are subjected to several cycles of post-yield load reversals, conventional design methods or
a linear finite element analysis might not be able to estimate correctly the shear forces carried in each
wall pier. This can result in inadequate distribution of shear reinforcement which can lead to a pre-

mature failure of the structure.

In this section, the finite element method is used to study the behavior of pierced shear walls.
Experimental data from tests of pierced shear walls conducted at the Construction Technology Labo-
ratory of PCA (126) and at the Department of Civil Engineering, the University of Michigan (6)
were used in this study. The major objectives of this study are: 1) to identify differences in the gener-
al behavior of pierced shear walls and companion solid walls; 2) to study shear force redistribution
in wall piers when the wall is subjected to severe cyclic loadings; and 3) to develop improved rein-

forcement details for pierced shear walls.
8.2.1 PCA TESTS OF WALLS WITH AND WITHOUT OPENINGS

Two wall specimens, a solid isolated wall (wall CI1) and a companion wall with openings
(wall PW1), were tested at the Construction Technology Laboratory of PCA in 1981 (126). As
shown in Fig. 8.11, both specimens, which represented 1/3—scale, six—story shear walls, had a total
height of 18 ft, a horizontal length of 6 ft-3 in., and a uniform web thickness of 4 in. Every 3 ft over
the height of the wall, a 2.5—in. thick stub representing a floor slab ran along both sides of the speci-
mens. In wall PW1, an opening of 12.5 in. by 18.0 in. was located at the center of the wall panel
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in each story (Fig. 8.12). Reinforcement details for wall CI1 are shown in Fig. 8.13. Reinforcement
details for wall PW1 were similar to those of wall CI1 except that the reinforcement interrupted by
the openings was moved to the side of the openings. Both specimens were loaded as vertical cantile-
vers using horizontal forces applied through the top slab (126). The loading history for each wall,
which was derived from the dynamic response of a 6-story building subjected to an input ground
motion of two actual earthquake records, is shown in Fig. 8.14. Material properties for both walls
are given in Appendix G. Detailed descriptions of the test setup and the wall construction can be
found in Ref. 126.

8.2.1.1 EXPERIMENTAL RESULTS

Specimen CI1 was able to sustain 22 load cycles with a maximum applied load of 76.1 kips
while specimen PW1 was able to sustain 23 load cycles with a maximum applied load of 65.7 kips
before failure. The difference in the maximum applied loads can be attributed partly to the differ-
ence in the material properties of the two specimens, especially the yield stresses of the longitudinal
reinforcement (Table G.2). The experimental results indicated that openings had little effect on the
response of the wall specimens (126). Both specimens experienced similar deformation characteris-
tics. Extensive yielding of vgrﬁca.l reinforcement and large inelastic shear deformation were con-
centrated in the lower 3 ft of the specimens. Significant pinching was observed in the load vs. shear

distortion curves for both specimens.

Although these two walls had similar deformation characteristics, their failure modes were
different. Wall CI1 failed in a “shear sliding” mode (126). During load cycle #22 (Fig. 8.14(a)),
a large horizontal crack at mid-height of the first story remained open across the full length of the
specimen and the resistance to the applied shear force was provided solely by the dowel action of
the vertical reinforcement across the crack. The specimen failed when concrete in the vicinity of
this horizontal crack was severely distressed and could no longer provide the reaction to the dowel
forces. Wall PW1 failed in a shear—compression mode when diagonal cracks, which formed com-

pression struts in both piers, spread into the boundary elements during load cycles 23 and 24 (Fig.
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8.14(b)). Because the diagonal compression struts in the web were interrupted by the openings,
shear stress had to be transferred through diagonal compression struts in the wall piers. This led to
a concentration of shear force and shear deformation in the wall piers. Figure 8.15 illustrates the

crack patterns in the the first story of walls CI1 and PW1 after failure.

8.2.1.2 ANALYTICAL RESULTS

Both wall specimens were modelled using 4-node two—dimensional plane stress elements
for concrete and 2—node bar elements for reinforcing steel. Finite element meshes for these models
are shown in Fig. 8.16. A strip of 4-in. thick linear elements with a modulus of elasticity equal to
the modulus of elasticity of concrete was used to model a floor slab at each story and at the top of
the specimens. All nodes at the base of the wall were fixed in the horizontal and vertical directions.
The horizontal displacement of the node at the upper left corner (Fig. 8.16) was specified to be the
same as the displacement history used in the experimental program (Fig. 8.14). The material model
parameters used in the aﬁalyses were the same as those used in the analyses of the PCA wallsin Chap-

ter 6 (Table 6.2).

Figures 8.17 through 8.20 compare the calculated response with the experimental results for
walls CI1 and PW1. Load vs. top deflection curves are shown in Fig. 8.17 and 8.18 and the load
vs. shear distortion in the first two stories are presented in Fig. 8.19 and 8.20. These comparisons
show fair agreement between the calculated response and the experimental results. Calculated load
vs. top deflection curves for both walls are significantly different from the experimental results dur-
ing the first cycle of response. Such differences might be attributed to several factors such as the
difference between the assumed material properties and the actual material properties and the pre-
existing shrinkage cracks in the walls before the test. The calculated response provides a good

approximation of the measured response in later load cycles.

The calculated load vs. top deflection curves and the calculated load vs. shear distortion

curves for both walls during the low—amplitude, post-yield cycles also deviate significantly from
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the experimental data. During these cycles, both wall models experience larger shear distortion than

that observed in the experimental results.

Besides the top deflection and the shear distortion, another important aspect of the exper-
imental results is the failure mode. The current version of the concretc.model cannot predict the
sliding shear failure mode because the upper bound of the dowel force is not included in the model.
However, a careful study of the analytical results indicates the potential failure mode of wall CI1.
Crack patterns from the analytical results of wall CI1 at the end of load cycle #21 (Fig. 8.21(a)) show
that horizontal cracks at the middle of the first story remained open across the full length of the wall.
As aresult, the shear force in the first story had to be transferred to the base through the dowel action
of the vertical reinforcement. Figure 8.21(a) also shows that wall CI1 experienced large inelastic
shear strains in the first story. This large inelastic cyclic shear strain damaged the concrete, making
it unable to resist the large dowel forces in the reinforcing bars. This finally led to a sliding shear
failure along the horizontal crack in the first story of wall CI1.

Extensive web crushing was calculated in both piers of wall PW1 in load cycles 20 through
24. This agrees with the shear-compression failure mode observed in the experimental results. Two
factors contribute to this mode of failure: 1) areduction of the compressive strength of the concrete
because of the large inelastic shear strain in each pier; and 2) a large shear stress in each pier. Figure
8.21(b) shows that specimen PW1 experienced large shear strains in both the first—story piers. These
large shear strains caused a reduction in the compressive strength of the concrete as discussed in Sec-
tion 6.4.3.5. The crack patterns for wall PW1 (Fig. 8.21 (b)) also show that most of the diagonal
compressive struts in web were interrupted by the openings and, therefore, were ineffective in trans-
ferring shear force. As a result, the shear force had to be transferred through the diagonal compres-
sive struts in each pier. This resulted in high shear stresses in the compression pier. This high shear
stress, together with the reduction in the compressive strength of the concrete in the wall piers, led

to the shear—compression failure of wall PW1.
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As can be seen from both the experimental and calculated results, the conventional design
of shear reinforcement in pierced shear walls may be inadequate to control large inelastic shear de-
formation or to prevent shear—compression failure in wall piers. In order to improve thé perfor-
mance of pierced shear walls, especially when subjected to severe cyclic loadings, engineers must
try to minimize the inelastic shear deformation in the lower portion of the wall piers. This can be
done by increasing the inelastic shear stiffness of the wall piers. As discussed in Section &.1 where
the influence of several different reinforcement layouts were studied, diagonal web reinforcement
is most effective in increasing the inelastic shear stiffness of the walls. To study the effects of diago-
nal reinforcement on the behavior of pierced walls, two wall models containing diagonal web rein-
forcement in the lower portion of the walls were analyzed using the finite element method. Both
wall models had the same configuration as wall PW1, but wall PW1-A had diagonal reinforcement
in the first story while wall PW1-B had diagonal reinforcement in both the first and the second sto-

ries (Fig. 8.22). The diagonal reinforcement ratio was 0.35% in each direction.

Figures 8.23 through 8.26 compare the calculated response of walls PW1, PW1-A, and
PW1-B. The results include load vs. top deflection curves (Fig. 8.23), load vs. shear distortion
curves (Fig. 8.24), crack patterns (Fig. 8.25), and shear strain distributions (Fig. 8.26). Compari-
sons of these results indicate that, among the three walls being studied, wall PW1-B had the most
satisfactory inelastic response. Wall PW1-B had a well-rounded load vs. top deflection curve (Fig.
8.23(c)) and experienced small shear distortion in the first two stories (Fig. 8.24(c)). Inelastic shear
strain in every story of wall PW1-B remained small, even during the last load cycle (Fig. 8.26(c)).
Web crushing was not observed in either wall pier and wall PWl-B remained in a good condition

after load cycle 23.

The inelastic response of wall PW1-A was not much improved from the inelastic response
of wall PW1 despite the presence of the diagonal reinforcement in the first story. The load vs. top
deflection curve of wall PW1-A experienced some pinching, similar to that of wall PW1. Although
the inelastic shear distortion was small in the first story of wall PW1-A, it was concentrated in the

second story (Fig. 8.24(b) and Fig. 8.26(b)). The calculated results show extensive web crushing
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of concrete in both wall piers at the second story of wall PW1-A during load cycles 20 through 24.
Unlike the response of wall PW1 where the flexural yielding was concentrated in the first story, the
flexural yielding of wall PW1—A was concentrated in the second story because the diagoﬁal web
reinforcement increased the flexural stiffness of the first story. This flexural yielding, which caused
wide cracks in the second story (Fig. 8.25(b)), greatly reduced the interface shear transfer capacity
of the concrete in the second story of wall PW1-A. With a small interface shear transfer capacity
and without the diagonal web reinforcement, the second story of wall PW1—A had inadequate inelas-
tic shear stiffness to resist the applied cyclic loadings. This resulted in a shear-compression failure
of the wall piers in the second story. The mode of failure in the second story of wall PW1-A was

similar to that in the first story of wall PW1.

In wall PW1-B, where diagonal reinforcement was provided in both the first and the second
stories, flexural yielding concentrated in the first story rather than in the third story (Fig. 8.24(c)).
This occurred despite the higher flexural stiffness of the first story because yielding of the longitudi-
nal reinforcement in the first story required less applied load than yielding of the flexural reinforce-
ment in the third story due to the larger applied moment in the first story. Unlike wall PW 1—A where
the inelastic shear stiffness of the second story was reduced significantly following flexural yielding,
the inelastic shear stiffness in the first story of wall PW1-B did not degrade significantly due to the

presence of the diagonal web reinforcement.

8.2.2 TESTS OF WALLS WITH STAGGERED OPENINGS

Four isolated wall specimens with staggered openings tested at the University of Michigan
(6), were also studied in this investigation. Each wall specimen had a barbell cross section, repre-
sented a 1/5—scale five-story wall, and was tested under reversed cyclic loadings.' Wall W1 was a
solid wall while walls W2, W3, and W4 had ﬂlree different configurations of staggered door open-
ings (Fig. 8.27). Reinforcement in each specimen was designed to represent the reinforcement com-
monly used in walls in Chilean buildings. The amount of the transverse reinforcement in the bound-

ary elements was about 50% of that required in Section 2625(e)4 of the 1988 UBC (74). The vertical
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and horizontal web reinforcement ratios were 0.27%. The longitudinal reinforcement in the bound-
ary elements was similar in all four specimens (Fig. 8.28). However, the web reinforcement in the
walls with openings differed from that used in the solid wall (Fig. 8.29). Web reinforcemeﬁt inter-
rupted by the openings was moved to the side of the openings. Following reinforcement details com-
monly used in Chile (6), diagonal reinforcement was placed near each corner of the door openings

(Fig. 8.29(b)).

Each wall was subjected to two load cycles at overall drift levels of 0.25, 0.5, 0.75, 1.0, 1,5,
and 2.0 % of the height of the wall (Fig. 8.30). An axial load of 60 kips was also applied throughout
the tests. The material properties for wall W1, W2, W3, and W3 are given in Appendix H. More
details on the experimental program can be found in Ref. 6.

8.2.2.1 EXPERIMENTAL RESULTS

Wall W1 sustained 15 load cycles and a peak load of 36 kips when the test had to be termi-
nated because the maximum displacement of the actuator had been reached. Moderate damage
which included minor crushing and spalling of the cover concrete in the boundary elements, was
observed. Walls W2, W3, and W4 were able to sustain 11 load cycles with peak loads between 34
kips and 36 kips before failure. A drift of 1% was achieved in these specimens without causing any
significant damage to the specimens. The specimens suddenly lost their load resisting éapacitics
when an inclined crack originating from the top corner of the first-story opening penetrated into the
east pier and caused extensive crushing in the east boundary element. A typical crack pattern of the
specimens after failure is shown in Fig. 8.31. It can be seen that the large inclined cracks observed
in the east piers of walls W2, W3, and W4 are similar to the diagonal crack that develops in a rein-
forced concrete beam without stirrups which failed in shear (Fig. 8.32).

8.2.2.2 ANALYTICAL RESULTS

All wall specimens were modelled by using 4-node, two—dimensional plane stress elements

for concrete and 2—node bar elements for reinforcing steel. The finite element meshes of the wall
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models are shown in Fig. 8.33. A row of elastic, plane stress elements was placed at the top of each
wall model to represent the top slab. Both horizontal and verﬁcal degrees of freedom of all nodes
at the base of the wall were fixed. A consﬁnt vertical nodal load of 15 kips was applied ai each of
the four nodes at the top of the wall above the boundary elements. The horizontal displacement of
the node at the upper west corner of each wall was specified to be the same as the displacement histo-
ry used in the experimental tests (Fig. 8.30). The material model parameters used in the analyses
were the same as those used in the analyses of the PCA walls in Chapter 6 (Table 6.2).

Measured load vs. top deflection curves are compared with the calculated response of walls
W1, W2, W3, and W4 in Fig. 8.34 through 8.37. The calculated response of wall W1 agrees well
with the experimental data. After 15 load cycle minor crushing of the concrete in the boundary ele-
ments was calculated but the wall model still remained in a good condition. The calculated response
of walls W2, W3, and W4 before the diagonal tension crack and the shear—compression failure oc-
curred in the experimental tests also agreed well with the experimental data. However, the concrete
model adopted in this study used the concept of a smeared crack; therefore, it could not reproduce
the large diagonal tension crack that led to the shear~compression failure of the east piers. As are-
sult, the analytical model did not indicate the occurrence of the shear—compression failure in walls
W2, W3, and W4. The analyses of these walls were terminated at the load cycle where the shear—

compression failure occurred in the tests.

Despite the inability of the current concrete model to reproduce the large diagonal tension
crack and the shear—compression failure in the wall piers, the finite element method can still be used
to explain the cause of such a failure and to study ways to improve the behavior of pierced walls.
The shear—compression failure that occurred in walls W2, W3, and W4 was the result of alarge shear
force carried by the east piers of the walls. This developed following a force redistribution in the
lower portion of the walls after several cycles of inelastic response. When the walls were loaded
in the east direction (the positive direction in Fig. 8.34 through 8.37), the compressive struts in the
web were not capable of transferring the shear force to the base of the wall because they were inter-

rupted by the openings. Furthermore, the tensile strain and the wide cracks in the lower west pier
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(Fig. 8.38) made that pier ineffective in transferring the shear force. As a result, the east pier had
to transfer the major portion of the applied shear force. Figure 8.39 shows the comparison between
the total applied shear force and the shear forces carried by the east piers in walls W2, W3, aﬁd w4,
The horizontal lines indicate the nominal shear strength of the east piers according to the 1989 ACI
Building Code (2). In some cases, the shear forces carried by the east pier were calculated to be as
high as 60% of the total applied shear force, thereby exceeding the nominal shear strength of the piers
during most of the loading history. This high shear force was the reason for the shear—compression
failure in the wall piers. Table 8.2 summarizes the nominal shear strengths of the east piers in walls
W2, W3, and W4, and the calculated shear forces in the east piers during the last load cycle for both
a linear and a nonlinear finite element analysis. It can be seen that the use of the conventional design
method or even the linear finite element analysis can lead to an underestimation of the shear force

in the critical pier and inadequate shear reinforcement.

Because the shear—compression failure in the wall specimens was caused by excessive shear
force in the east pier, two possible ways to prevent this mode of failure as well as to improve the
performance of a pierced wall were developed: 1) to provide adequate shear reinforcement in the

east pier and 2) to reduce the magnitude of the shear force in the east pier.

In the first approach, the result of a nonlinear finite element analysis can be used to estimate
the magnitude of shear force that each wall pier must carry. This shear force can then be used to
select the web reinforcement in the pier. The results of this analysis indicated that the horizontal
web reinforcement ratio in the east piers of walls W2, W3, and W4 should have been approximately
1%, rather than 0.3%. This calculation is based on an applied load of 20 kips in the wall pier and

the assurmption that the concrete does not contribute to normal shear strength under cyclic loading

).

In the second approach, engineers must try to increase the shear transfer capacity of the west
pier so thatit helps carry some of the shear force. Asdemonstrated in Sections 8.1and 8.2.1.2, diago-

nal web reinforcement is quite effective in increasing the inelastic shear transfer capacity, and, there-
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fore, might be applicable in this situation. Walls W2, W3, and W4 were analyzed with diagonal rein-
forcement in the lower 28 in. of the west piers (Fig. 8.40) in order to observe the effects of diagonal
web reinforcement on the shear force distribution in the lower portion of the pierced walls. The diag-
onal reinforcement ratio was 0.3% in each direction. Figure 8.41 shows the comparisons between
the total applied shear and the shear force carried by the east piers when the diagonal reinforcement
was used. Comparing Fig. 8.41 with Fig. 8.39, it can be seen that diagonal reinforcement in the web
can reduce the magnitude of the shear force in the easf pier by as much as 50%. Fig 8.43 shows the
calculated shear stress distribution for walls W2, W3, and W4 with and without diagonal reinforce-
ment in the west piers at the end of load cycle 11. This figure shows that the calculated shear stresses
in the east piers of walls W2, W3, and W4 were significantly reduced when the diagonal shear rein-

forcement was provided in the west piers.

It should be noted that most of the previous research on the response of pierced shear walls
has considered the stress concentration around the openings to be the major detrimental effect of the
openings in shear Waﬂs (126, 6). This conclusion resulted in the reinforcement details around the
openings which were used to prevent the crushing of concrete due to stress concentration. However,
the finite element analyses of pierced shear walls subjected to cyclic loads shows that the major prob-
lem caused by openings in shear walls is not the stress concentration, but rather the reduction in the
inelastic shear transfer capacity of wall piers. The 1989 ACI Building Code (2) in Section 21.7.3.6
mentioned briefly the maximum nominal shear strength of each wall pier. However, the code does

not address the effect of openings on the shear transfer mechanisms of pierced walls.
8.3 EFFECTIVE WIDTH OF FLANGES IN C-SHAPED WALLS

Besides functioning as a lateral-load resisting system, reinforced concrete shear walls in tall
buildings are often designed to function as elevator cores or stair wells. This results in walls which
have cross—sections with intersecting legs. Despite the common uses of shear walls with intersecting
flanges in tall buildings, the current ACI Building Code (2) does not address the contribution of the

intersecting flanges to the total response of shear walls. In practice, the provisions for the effective
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width of T-beams are usually used in determining the effective width of shear walls with intersecting
flanges. Although such provisions might yield satisfactory results when shear walls are subjected
to small or moderate earthquake loading, they do not represent the observed behavior of intérsecm'ng
walls, especially at forces near the capacity. This canlead to an unexpected mode of failure in a wall

that is subjected to a strong earthquake.

8.3.1 ANALYTICAL PROGRAM

In this section, the finite element method was used to study the contribution of a transverse
flange to the response of C—shaped reinforced concrete shear walls. The twelve wall models ana-
lyzed had the same configurations and material properties as wall CLS as described in Chapter 7
except that the width of the south flange was varied in this series of analysis. In some cases, the
amount of longitudinal reinforcement in the north boundary elements was also increased. The width
of the south flanges in these models varied from 0 in. in wall C0 to 140 in. in wall C140 as shown
in Fig. 8.44. Because each wall was symmetric, only half of each wall was modelled. The material
model paraméters used in these analyses were the same as those used in the analyses of C—shaped
walls as discussed in Chapter 7. In order to take into account the shear stiffness in the NS direction
of the intersecting flange, the shear stiffness parameters of the concrete element in the south bound-
ary elements that are influenced by the stiffness of the flange, which included ul, u2, Guin, Tstips
and Gypi, were multiplied by the ratio of the width of the south flange to the thickness of the boundary

element.

Each wall was analyzed using four different combinations of loading history and reinforce-
ment ratio (Table 8.3). In these analyses, the south flange is compressed under positive displace-
ments and the south flange is in tension under negative displacements. In case A, each wall model
was initially loaded to a top deflection of +0.15 in., then each wall was loaded to the top deflection
of -2.50 in. In case B, each wall model was initially loaded to the top deflection of —0.15 in., then
each wall was loaded to the top deflection of +2.50 in. The walls were initially loaded to the 0.15—in.
level so that the initial stiffness of the walls could be determined in both directions. In both cases
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A and B, wall models had the same reinforcement as wall CLS. In case C, each wall model had five
times as much longitudinal reinforcement in the north boundary elements as wall CLS. Each wall
model in case C was subjected to the same loading history as walls in case B. In case D, eéch wall
model, which had the same reinforcement as wall CLS, was loaded for two cycles at each of the fol-

lowing top displacement levels: 0.1 in., £0.2 in., 1.0 in, 2.0 in. and +3.0 in (Fig. 8.45).

8.3.2 CALCULATED RESPONSE

Fig. 8.46 shows the effective width of the south flange in the C—Shaped wall models calcu-
lated using the provisions for the effective width of T-beams in Section 8.10.3 of the 1989 ACI
Building Code (2). Based on these provisions, the effective flange width for each web of the wall
model should not exceed six times the flange thickness (18 in.). The calculated response of the wall
models are shown in Fig. 8.47 through 8.50. The secant stiffnesses of the wall models at different
deflection levels in the north and south directions are shown in Fig. 8.47. The curve with a broken
line in Fig. 8.47 illustrates the stiffness of uncracked C—shaped walls with different flange widths
calculated using simple beam theory. The maximum flange width used in the stiffness calculation
was governed by the effective width of a T-beam recommended in Section 8.10.3 of the ACI Build-
ing Code (2). This curve correctly represents the uncracked stiffness of the C—shaped walls when
the actual flange width does not exceed the effective flange width for T-beams recommended in the
ACI Building Code (2). However, the uncracked stiffness of the wall is underestimated when the
actual flange width is much larger than the effective flange width recommended for T-beams in the
ACI Building Code (2). It can also be seen from this figure that the presence of the south flange
significantly increased the uncracked stiffness of the walls. However, the effectiveness of the flange
in providing the the sﬁffness»decreased as the width of the flange increased. This can be explained
by examining at the strain in the vertical reinforcement in the south flange of uncracked walls (Fig.
8.50(a)). The magnitude of compressive strain in the south flange decreased as the distance from
the web increased. This indicates that the portion of the south flange closest to the web is more effec-

tive in providing the wall stiffness than the portion farther from the web. The stiffness of the walls
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drastically decreased when the concrete started cracking. As can be seen in Fig. 8.47(b), at the
deflection level +0.15 in., the south flange did not provide the wall with significant stiffne;s when
acting in compression. This is due to that fact that the neutral axis of the wall was shifted close to
the flange. As a result, the moment of inertia of the cracked wall depended on reinforcing steel in |
the north boundary elements and in the web (which were farther from the neutral axis) rather than
on the concrete and reinforcing steel in the south flange (which were closer to the neutral axis).
When the wall was loaded to the north (the flange is in tension), the flange was more effective in
providing the stiffness since the neutral axis was shifted closer to the north boundary elements (Fig.
8.47(a)). Therefore, reinforcing steel in the flange was far away from the neutral axis and was able

to help increase the moment of inertia of the cracked wall.

Figure 8.48 shows the load vs. top deflection curves for wall models subjected to monotoni-
cally increasing loads in the north direction (case A). It can be seen that the capacity of the wall
model increased with an increase in the width of the south flange. The increase in the strength of
the walls can be explained by examining the strain distribution in the vertical reinforcement at the
base of the south flange (Fig. 8.50(b)). It can be seen that at the top deflection of —2.50 in., all vertical
reinforcing steel in the south flange of every wall model experienced a tensile strain which was much
higher than the yield strain. This indicates that reinforcing steel in a flange width as high as 25 times
the thickness of the web can effectively help the wall resist overturning moment. Although, the pres-
ence of the south flange acted to increase the strength of the walls, it also led to extensive crushing
of the concrete in the north boundary elements and in the web because of the higher strength. At
the displacement level —2.50 in., wall CO experienced minor crushing in the north boundary ele-
ments while wall C140 experienced extensive crushing of the concrete in the north boundary ele-
ments and in the adjacent web after reaching a top deflection level of —1.50 in. Asaresult, neglecting
the effect of vertical steel in the flange might cause a significant underestimation of the strength of
the walls, and possibly leads to the selection of an inadequate amount of transverse reinforcement

in the north boundary elements.
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The calculated load vs. top deflection curves for wall models subjected to monotonically in-
creasing load in the south direction (the south flange was in compression) are shown in Fig. 8.49.
Wall models in case C (Fig. 8.49(b)) had five times as much reinforcement in the north boundary
elements as the wall models in case B (Fig. 8.49(a)). Allload vs. top deflection curves for wall mod-
els with different flange widths in case B were similar, except for walls CO and C10. This is due
to the fact that the amount of reinforcement in the north boundary elements was not enough to cause
extensive crushing of the concrete in the south boundary elements of the wall models except in walls
CO and C10. The strain distribution in the vertical reinforcing bars along the base of the south flange
in Fig. 8.50(c) shows that, at the displacement level of +2.50 in., extensive crushing of the concrete
occurred only in walls CO and C10. (Because of the assumption of perfect bond between concrete
and reinforcing bars in the analysis, this vertiéal strain in reinforcing bars also represented the verti-

cal strain in the concrete elements along the base of the south flange.)

The contribution of concrete in the south flange was more evident when the reinforcing steel
in the north boundary elements was increased (case C), as shown in Fig. 8.49(b). Wall CO, C10, C20,
C30, and C40 had significantly less strength than walls C50—C140 because of the extensive crushing
of concrete in the south flange. Figure 8.50(d), which shows the vertical strain distribution along
the south flange at the displacement level of +2.50 in., indicates that extensive crushing of concrete
occurred in walls C0, C10, C20, C30, and C40 while concrete in other walls remained in a good
condition. At the displacement level of +2.50 in., the strain distribution of concrete in the south
flange (Fig. 8.50(d)) was much more uniform than the strain distribution of concrete in the south
flange when the wall remained uncracked (Fig. 8.50(a)). This indicates that, when the walls are
loaded to their capacity, the real effective width of the flange is much larger than the effective width
of the wall obtained from a linear analysis. Although the calculated results show that the effective
width of the flange in C—shaped walls when the flange is in compression can be significantly larger
than the effective width of the flange rgcommended in the provisions for T-beams in the ACI Build-

ing Codes (2) (Fig. 8.46), the use of a conservative value for the effective width is still preferable.
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The extra effective width will provide greater safety in the structure and prevent extensive crushing

of the concrete in the boundary elements.

The calculated cyclic response of the wall models are shown in Fig. 8.51. Similarly to the
calculated results for the walls subjected to monotonic loading, the capacity of the walls loaded in
the south direction (south flange was in compression) was not increased much by the presence of
the south flange while the capacity of the walls loaded in the north direction (south flange was in
tension) was increased significantly as the width of the flange increased. Crushing of concrete in
the south boundary elements was observed only in wall CO and wall C10. Crushing of concrete in
the north boundary elements and in the web was observed in walls C70, C80, C100, C120, and C140
while no sign of concrete crushing was observed in the north boundary elements of walls CO—C60.
This observation indicates that although the presence of an intersecting flange along the south end
of a wall increases the strength and helps prevent the crushing of concrete in the south boundary
elements, it can cause extensive concrete crushing in the north boundary elements. As aresult, extra
transverse reinforcement should be provided in the boundary elements that are opposite the flange,
especially when the flange is much wider than the thickness of the web. Fig. 8.51 also shows that
the south flange did not have significant influence on the inelastic shear deformation of the C—shaped
walls. Walls CO—C140 experienced the same magnitude of inelastic shear deformation in the lower

3 ft despite the difference in the width of the south flange in each wall model.

8.4 SUMMARY

This chapter illustrates the use of the finite element method to investigate the behavior of
reinforced concrete walls with different configurations and design parameters. Several important

findings from this investigation are summarized below:

1) Diagonal web reinforcement is an effective means of limiting inelastic shear distortion
in the lower portion of the walls. It also significantly improves the energy dissipation capacity of

the walls.
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2) Openings in reinforced concrete walls can significantly reduce the inelastic shear transfer
capacity and may cause premature failures of the wall piers. Diagonal web reinforcement can help
increase the shear transfer capacity of the wall piers and, hence, improve the performance of the wall

with openings.

3) The effective width of a flange in a C—shaped wall calculated according to the ACI provi-
sions for the effective width of a T-beam in Section 8.10 (2) is conservative when used to evaluate
the uncracked stiffness of the wall or to evaluate the strength of the wall when the flange is in com-
pression. However, this effective width can significantly underestimate the strength of the wall
when the flange is in tension. This can lead to inadequate transverse reinforcement and premature

crushing of concrete in the boundary elements opposite the flange.

Although the proposed material models in this investigation are not capable of reproducing
all observed aspects in reinforced concrete walls, such as sliding shear failures, the finite element
analysis can still provide a wide—range of information that is useful for the study of the behavior of
reinforced concrete walls. In order to successfully use the finite element method to study the re-
sponse of reinforced concrete members, finite element users must realize the capability and limita-
tions of the material models used in the analysis and understand the nature of the problems under
study. This will help the users to select the appropriate calculated results that represents the impor-

tant behavior of the reinforced concrete member and to interpret those results correctly.
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9. SUMMARY AND CONCLUSIONS

The major objective of this study was to use the finite element method to study thé cyclic
response of slender, reinforced concrete shear walls. Because appropriate concrete and reinforcing
steel models were not available, new material models which represent the cyclic response of rein-
forced concrete in shear walls were developed in this investigation. These material models were
verified both at the element and structural levels: the results of the finite element analyses were
compared with the experimental data from several experimental programs. After the material mod-
elshad been satisfactorily tested and verified, the finite element method was used to extend the scope
of the investigation of the response of slenderreinforced concrete shear walls with different configu-

rations, reinforcement details, and loading histories.

9.1 OVERVIEW

In this study, the finite element method was used to model the cyclic response of slender rein-
forced concrete shear walls. The finite element method was chosen as the analytical tool in this re-
search because it was a powerful and versatile numerical method capable of analyzing a wide range
of both linear and nonlinear structural problems. With the proper material models for concrete and
reinforcing steel, the finite element method can be used to study the response of reinforce concrete
shear walls with various configurations and reinforcement details, subjected to different loading his-

tories.

Although, some researchers (Xu (151) and Stevens et al. (134)) have recently proposed ma-
terial models for the cyclic response of reinforcéd concrete, these models were not successful when
used to calculate response of complete structures due to numerical difficulties associated with the
complicated stress—strain relationships. Most analyses diverged prior to completion (’134, 151).
Therefore, this research focused on developing new material models that can avoid these numerical
difficulties and were appropriate for modeling the cyclic response of reinforced concrete shear

walls. In order for the material models to be applicable in structural level problems and efficient
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in terms of computation time, these new material models were required to be simple, stable, and

reliable.

Because the major objeétive of this research is to study the cyclic response of slender rein-
forced concrete shear walls, the proposed concrete model must accurately represent the behavior of
concrete in shear walls. Several important aspects of the behavior of concrete were observed from
the measured response of walls tested in the laboratory: 1) cracks in the concrete tended to be distrib-
uted uniformly in the lower portion of the wall, 2) most of the cracks that developed when the wall
was subjected to cyclic loading Were nearly orthogonal to the cracks that developed during the first
load cycle, and 3) most cracks did not rotate during the tests. Based on these observations, the pro-
posed concrete model adopts the concept of a smeared crack model with fixed orthogonal cracks and
uses a strength criterion for crack initiation and crack propagation. Cracks in concrete are assumed
to be parallel and finely spaced. A crack occurs at an integration point when the maximum principal
stress at that point exceeds the tensile strength of the concrete. A sécond crack at that integration
point is allowed to form only in the direction perpendicular to the first crack. Once a crack forms,

its direction is fixed throughout the analysis.

Inelastic shear distortion in the lower portion of the wall was observed to have a significant
effect on the cyclic response of shear walls. In order for the proposed concrete model to be able to
model this inelastic shear deformation, the shear strain component is separated from other strain
components. This separation allows the concrete element to experience large inelastic shear strain
without causing premature crushing of the concrete in the direction of the crack. As aresult, the
proposed concrete model defines two functions: the normal stress function and the shear stress func-

tion.

The normal stress function defines the stress—strain relationship of cracked concrete in the
direction of the crack. The typical normal stress function is shownin Fig. 3.1. The important aspects
of behavior of concrete that are included in the normal stress function are 1) tension stiffening, 2)

crack closing and crack reopening, 3) compression softening, 4) the effect of steel confinement, and
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5) the stiffness degradation due to cyclic loading. The basis for modelling these aspects of behavior

is found in experimental data and previous analytical studies.

The shear stress function defines the relationship between shear stress and shear strain in the
global coordinate system. The typical shear stress function is shown in Fig. 3.25(a). The shear stress
function consists of three major components: 1) the shear stiffness from the interface shear transfer,

2) the shear stiffness from the dowel action, and 3) the rules for cyclic loading.

It was reported by several researchers (5, 80, 109, 118, 127) that the cyclic response of rein-
forced concrete members was greatly influenced by the cyclic response of reinforcing steel. This
is also true for the cyclic response of slender reinforced concrete walls. In order to model the cyclic
response of the walls correctly, the analysis must use a realistic reinforcing steel model that includes
all important aspects of nonlinear behavior such as yielding, strain—hardening, and the Bauschinger
effects. The reinforcing steel model in this research adopted the cyclic stress—strain relationship for
reinforcing steel proposed by Aktan et al.(5) in the form of a Ramberg—Osgood equation. Several
important modification were made to the original relationship to increase the stability of the model
and to improve the accuracy of the solution. The proposed reinforcing steel model was verified at
the elemental level by using two sets of the cyclic response of a reinforcing bar: one by Aktan and
et al. (5) and the other by Seckin (124). The calculated behavior was in excellent agreement with

the experimental data.

The finite element program used in this research is FINITE. The unique feature of FINITE
which made it suitable for this research is that new material models can be installed with minimal
effort. Asaresult,developers can focus their attentions on the performance of the new material mod-
els rather than on modifying the existing finite element program (51). Although FINITE is capable
of analyzing both geometrically nonlinear and materially nonlinear problems, only material nonlin-
earity was inclu_ded in the analyses of reinfqrced concrete walls in this study. This is due to the fact
that the displacement and strain in most concrete and reinforcing steel elements remained infinitesi-

mal throughout the analysis and the major sources of nonlinearities in the analysis were the nonlinear
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stress—strain relationships of concrete and reinforcing steel. The full Newton—Raphson iteration al-
gorithm, in which the stiffness matrix is updated every iteration, was used as the iteration scheme
for solving the nonlinear finite element equations. The ratio between the norm of the residﬁal load
and the norm of the applied load was used as a convergence criterion. A convergence tolerance of
5% was found to yield analytical results with satisfactory accuracy within a reasonable computation
time.

In order to verify and calibrate the proposed material models, the finite element method was
used to model the cyclic responses of thirteen slender reinforced concrete shear walls tested at the
Construction Technology Laboratory (105, 106). The design variables of these walls were: the
shape of the cross section, the amount of longitudinal reinforcement, the amount of horizontal web
reinforcement, the amount of transverse steel in the boundary elements, the axial compressive stress,
the loading histories, and the compressive strength of the concrete. Several typés of data from the
tests including load vs. top deflection curves, load vs. inelastic shear deformation curves, crack pat-
terns, and failure modes, were compared with the results of the finite element analyses. The parame-
ters used to define the normal stress and shear stress functions of the concrete model were adjusted
so that the calculated response closely resembled the experimental results. After several trials, the
optimum values of the parameters were determined. Using one set of parameters in the all analyses,

the calculated response of all thirteen walls agreed well with the experimental data.

Another experimental program that was used to verify the proposed material models was the
tests of C—shaped walls carried on as part of this research. Two C—shaped, reinforced concrete shear
walls representing one—quarter scale models of reinforced concrete core walls were tested under cy-
clic loadings. Two—dimensional plane stress elements were used to model both the web and flange
of the test specimens. The bending stiffness of the flange was neglected because its contribution to
the overall stiffness of the walls was insignificant, especially after the concrete in the flange had
cracked and the vertical steel reinforcement in the flange had yielded. The major contribution of

the flange was provided by its in—plane force, which can be modelled by using two—dimensional
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plane stress elements. The calculated response of both C—shaped wall specimens also agreed well

with the experimental data.

After the material models for concrete and reinforcing steel had been thoroughly tested and
satisfactorily verified, the finite element method was used to investigate three topics involving the
response of slender reinforced concrete shear walls: 1) the energy dissipation capacity of shear walls,
2) the response of shear walls with openings, and 3) the contribution of flanges to the response of

C—shaped shear walls.

In order for reinforced concrete shear walls to survive a strong earthquake, designers must
ensure that the walls can dissipate energy when the wall is pushed into the inelastic range of response.
In this study, the cyclic response of reinforced concrete shear walls with eight different web rein-
forcement patterns were analyzed using the finite element method. The energy dissipation capacity
of each wall was evaluated and compared. It was found that merely increasing the amount of con-
ventional vertical or horizontal web reinforcement did not improve the energy dissipation capacity
of the walls. However, additional vertical reinforcement in the web, when it was stopped above the
base of the wall and not embedded into the foundation, significantly improved the energy dissipation
capacity of the wall. Among all the reinforcement options studied in this research, distributed diago-
nal web reinforcement in the lower portion of the wall was most effective in increasing the energy
dissipation capacity of the walls. Concentrated diagonal shear reinforcement was less effective than
distributed diagonal shear reinforcement; however, the former might be more desirable in practice
because it requires fewer reinforcing bars and, therefore, is easier to place and arrange during

constructon.

To study the cyclic response of shear walls with openings, the finite element method was
used to model the cyclic response of pierced shear walls tested at the Construction Technology Labo-
ratory of PCA (126) and at the University of Michigan (6). The objectives of this study were 1) to
use the finite element method to study the general behavior of walls with openings and 2) to study

ways to improve the cyclic response of these walls. The analytical results showed that the major
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problem caused by the openings in shear walls was the reduction in the inelastic shear transfer capac-
ity of the walls. The presence of the openings significantly redﬁced the ability of diagonal compres-
sion struts in the web to transfer shear force and could result in a shear compression failure. of con-
crete in the wail piers. The finite element analysis showed that diagonal reinforcement in the wall
piers could significantly improve the inelastic shear transfer capacity of the wall piers, thereby help-
ing to prevent shear—compression failures of the boundary elements. The finite element method can
also be used to estimate the magnitude of shear force in each wall pier after forces were redistributed

so that the proper amount of transverse reinforcement can be provided.

To study the contribution of flanges to the response of C—shaped walls, twelve C—shaped wall
models with different flange widths, ranging from 0 in. to 140 in., were analyzed. The analytical
results show that the effective width of a flange in C—shaped walls, both when the flange is in tension
and when the flange is in compression, can be much larger than the effective width recommended
in the provisions for T-beams in the 1989 ACI Building Code (2). When the flange is in compres-
sion, the ACI provisions for the effective width of T-beams yield a conservative value (six times
the flange thickness), which is desirable. However, when the flange is in tension, the width of the
flange where vertical steel reinforcement effectively provides tensile forces for resisting the over-
turning moment can be as high as 25 times the thickness of the web. The use of a too small an effec-
tive flange width canlead to a significant underestimation of the strength of the wall which can cause

unexpected crushing of the concrete in the boundary elements opposite the flange.

9.2 CONCLUSIONS

The following conclusions are drawn from this study.

1) With the proper material models for concrete and reinforcing steel, the finite element
method can be a powerful and versatile analytical tool for studying the cyclic response

of reinforced concrete shear walls.
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2) In order for the analysis of the cyclic response of reinforced concrete shear walls to be
feasible and efficient in terms of computation time, the material models must be simple,

stable, and reliable.

3) The concrete model used in this study adopted the concept of a smeared crack model with
fixed—orthogonal cracks and used a strength criterion for crack initiation and for crack

propagation. Satisfactory results were obtained using this approach.

4) The separation of the shear strain from other strain components allowed the concrete

model to successfully simulate the inelastic shear deformation of shear wall.

5) Because the cyclic response of reinforcing steel has a significant effect on the cyclic re-
sponse of shear walls, the analysis of shear walls requires a realistic steel model which
takes into account yielding, strain-hardening, and the Bauschinger effects. In this study,
the cyclic stress—strain relationship of reinforcing steel expressed in the form of the Ram-

berg—Osgood equation was found to yield good analytical results.

6) In the analysis of reinforced concrete shear walls, the full Newton—Raphson iteration al-
gorithm, which updates the stiffness matrix every iteration, yields stable solutions with

good convergence rate.

7) Adding conventional Vertical or horizontal web reinforcement does not improve the ener-
gy dissipation capacity of shear walls. Among all the reinforcement details studied in this
research, distributed diagonal shear reinforcement in the lower portion of the web is most

effective in improving the energy dissipation capacity of shear walls.

8) The presence of openings in shear walls can have a significant influence on the inelastic
shear transfer capacity of the walls. The calculated results show that diagonal shear rein-
forcement in the wall piers can improve significantly the shear transfer capacity of the
wall piers. The finite element method can also be used to estimate the magnitude of the
shear force in each wall pier so that the proper amount of transverse reinforcement can

be provided.
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9) The effective width of the flange in C—shaped walls, both when the flange is in compres-
sion and when it is in tension, can be much larger than the effective width recommended
in the provisions for T-beams in the 1989 ACI Building Codes (2). When the ﬁange is
in compression, using an effective flange width which is smaller than the actual effective
flange width yields a conservative value of the wall’s strength. However, when the flange
is in tension, using a too small effective width can lead to a significant underestimation
of the strength of the wall, possibly resulting in unexpected crushing of the concrete in

the boundary elements opposite the flange.
9.3 RECOMMENDATIONS FOR FUTURE RESEARCH

Several other subjects related to this research have been identified that need further inves-

tigation. Experimental and analytical research needs are summarized below.

9.3.1 EXPERIMENTAL PROGRAMS

1) More experimental data on the cyclic behavior of reinforced concrete at the elementlevel -

are needed. The types of behavior include the cyclic response of concrete under biaxial
states of stress, the cyclic shear stress—shear strain relationship, and the upper bounds of

the interface shear transfer mechanism and the dowel action mechanism.

2) More experimental data are needed on the interaction between concrete and reinforcing
bars, especially under cyclic loadings. These data are essential in the development of the
linkage elements, which may be used to connect the reinforcing bar elements to the con-
crete elements at the locations where bond-slip is important such as at the base of the

walls.

3) The effectiveness of the diagonal shear reinforcement for improving the energy dissipa-
tion capacity of both solid walls and pierced walls should be investigated. This is neces-
sary to verify the finite element results which indicate that the diagonal reinforcement

is the most effective means of improving the energy dissipation capacity.
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4) The cyclic response of C—shaped walls with different flange widths should be investi-
gated. Although this type of shear wall is widely used as a major lateral load resisting
system in tall buildings, there are no design provisions for such walls in the currént 1989
ACI Building Codes (2). Experimental data will be useful in the development of design

provisions for such walls.

9.3.2 ANALYTICAL MODELS

Several aspects of the proposed material models for concrete and reinforcing steel can be

improved to increase the capacity of the models. Some of the possible improvements are listed as

follows.

1) The reinforcing steel model can be included in the concrete model as a layer of reinforce-
ment. This w1]l allow the arrangement of reinforcing steel in the finite element model
to be mesh~independent. Several layers of reinforcing steel with different angles can be

included in one concrete element.

2) Therotating crack model should be added to the current proposed model as an option (i.e.,
finite element users can choose either the fixed crack model or the rotating crack model).
This will allow the concrete model fo be able to simulate the response of the reinforced
concrete member where crack rotaﬁon is important. An example of such member is the
reinforced concrete panel tested by Stévens et al. (134) where crack rotations were ob-
served during the load reversals and had a significant effect on the cycle response of the

panel.

3) A concrete element with a discrete crack model should be developed. This element can

be used where a single large crackis likely to occur such as the area at the base of the wall.

4) A linkage element which models bond—slippage between concrete and reinforcing bars
should be developed. Such an element can be used to connect concrete elements and rein-

forcing steel elements in the location where bond-slippage is critical.
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5) Improvements need to be made in the current shear stress function of the proposed con-
crete model. Limiting strengths for both the interface shear transfer mechanism and the
dowel action mechanismneed to be added to the model. This must be done in conjunction
with an experimental program because such information is not available at the present

time.
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Table 4.1 Parameters used to define the Reinforcing Steel Model

(for Grade 60 Steel)
Type of Curve Parameter Value
a strain hardening curve m 4.30
Oom 42.0 ksi

a 1/2 cycle from compression a 6.0

A 0.7938

B 0.55723
a 1/2 cycle from tension a 7.0

A 0.7735

B 0.47989
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Table 5.1 Classifications of Nonlinear Analyses (from [13D)

Type of analysis Description Type of formulation
Materially—nonlinear only Infinitesimal displacements Material nonlinearity
and strains
Nonlinear stress—strain relationship
Large displacements, large Displacements and rotations are Geometric nonlinearity

rotations, but small strains

large, but strains in fibers are small
Stress—strain relationship may be
linear or nonlinear.

with or without material
nonlinearity

Large displacements, large
rotations, and large strains

Strains in fibers are large.
Displacements and rotations may
be large.

Stress—strain relationship may be
linear or nonlinear

Geometric nonlinearity
with or without material

nonlinearity

Table 5.2 CPU Time Required in the Analyses of Wall R1 with Different Schemes for Updating

Stiffness Matrix
CPU Time required in the analysis (secondsfr
Step Updating [K] every Updating [K] every Updating [K] every
iteration 3 iterations 5 iterations

13 31.20 34.23 34.16

14 12.92 13.93 19.21

15 31.75 34.45 50.41

16 17.64 24.14 19.29
Total 93.51 (100%) 106.75(114.2%) 123.0 (131.5%)

THP 700 Machines
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Table 6.1 Properties of PCA Wall Specimens (from Oesterle [103])

Axial |Loading f}, Reinforcement (%)
Speci— | Shape | Load | type*| f.'
men . . (for gv) '
psi pst ksi Ov Op On Qs
R1 |msmss=| 00| IR 6490 | 74.2 147 | 031 | 025 | 0.00
R2 | e 0.0 IR 6735 | 65.3 4.00 0.31 0.25 2.07
R3 smemame | 220.0 MR 3535 | 783 6.00 0.42 0.22 1.33
R4 |essemeam| 220.0 IR 3285 | 71.2 3.50 0.31 0.28 1.07
Bi |M——fli 0.0 IR 7685 | 65.2 1.11 0.31 029 | 0.00
B2 o 0.0 IR 7775 | 59.6 3.67 0.63 0.29 0.00
BS || 00 IR 6860 | 63.5 1.11 0.31 029 | 128
B4 |eefgl 0.0 | MN 6530 | 65.3 111 | 031 | 029 | 1.28
BS |He=fjl 0.0 13] 6570 | 64.4 367 | 063 | 029 | 1.35
B6 |Helll| 425.0 IR 3165 | 63.9 367 | 063 | 029 | 0.81
B7 |Hme=ill 5450 IR 7155 | 66.4 367 | 083 | 029 | 1.35
B8 |M==fll| 5450 IR 6085 | 64.9 367 | 128 | 029 | 135
BS |l 545.0 MR 6395 | 62.3 3.67 0.63 0.2 1.35
* |R = Increasing incremental loading

MN = Monotonic loading

MR = Modified reversing loading

Ov = Ratio of area of longitudinal reinforcement to gross area of the boundary element

O = Ratio of area of horizontal web reinforcement to gross area of vertical section

through the web ‘
On = Ratio of area of vertical web reinforcement to gross area of horizontal section
through the web
Qs = Ratio of volume of confinement reinforcement to the volume of

core in accordance with Eq. A.4 of ACl 31871
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Table 6.2 Parameters used to define the Concrete Model for PCA Wall Specimens

a) Normal Stress Function

Parameter Value Parameter Value
&; 50.0 ¢, &; 50.0 &,
Gi 0-1 Gcr Ui 0-2 acr
a 0.2 a 03
O’l 3-0 Ucr 01 3-0 Ucr
02 . 0-2 Ocr 02 0.2 Gcr
03 0.8 Ucr 03 0-8 Gcr
04 0.2 Gcr 04 . 0.2 Ucr
On 3.0 0, On 3.0 o,

Concrete in Web Concrete in Boundary Elements

b) Shear Stress Function

Parameter Value
r Hq 0.20
Cis 1 € 12.50&,
( 122 0.20
Grw Yn 0.015
L n 3
( T 0.04 ki
Cyelic Gont 0.10 Geone
B 0.70
\ e 0.0005 G cone

155



961

Table 6.3 Observed Failure Modes in PCA Wall Specimens

Specimen

Experimental Results

Analytical Results

FailureT
mode

Description

Fallure
mode

Description

R1

First buckling of the main flexural reinforcement
was observed in Cycle 20, the second cycle at
+3 In. deflection. First bar fracture occurred at
Cycle 26, the second cycle at +4 in. The speci-
men lost load carrying capacity when the bar
fractured. No concrete crushing was observed.

IB

First bar buckling was observed in bar # 207 at
load step 412, the second cycle at +3—in. deflec-
tion. Four more bars buckled in the later steps
(#208, #209, #153, #154). Concrete at the face
of the boundary element crushed

R2

Instabllity in the compression zone due to large
out of plane displacement was observed in Cycle
32, the second cycle at +4 in. The wali failed be-
cause of buckling of the compression zone in
Cycle 35, the second cycle at +5 in.

BC

No bars buckled in Wall R2. Concrete in both
boundary elements were extensively crushed af-
ter load step 425, the second cycle at +3—in
deflection.

R3

BC

Apparent crushing was observed In both bound-
ary reglons in Cycle 2, the first cycle at 3—in.
deflection but there was no drop In load
associated with this crushing. The wall lost load
carrying capacity in Cycle 8, at 3 In.—deflection
due to extensive crushing in boundary elements.

BC

No bars buckled in Wall R3. Concrete in the
boundary elements started crushing at load step
105, +1.85—in. deflection in the first cycle. Ex-
tensive concrete crushing in boundary elements
started at load step 405, +2.90—In.deflection.

R4

BC

Crushing of the outer cover of the compression
face was observed in Cycle 10 at a top deflection
of 2 in. Further crushing of both boundary ele-
ments occurred during Cycles 13, 14, and 15 at
peak to deflection of 3 in. Significant drop Iin
load—carrying capacity of the wall occurred in
Cycle 16 at 4—In. deflection due to extensive
crushing of boundary elements

BC

No bars buckled in Wall R4. Concrete in the
boundary elements started crushing at load step
174, +2-in.deflection. Extensive crushing of
concrete in the boundary elements occurred at
load steps 465 and 508, +4— and —4—in. deflec-
tion. ‘

f B = (nelastic Bar Buckling BGC = Boundary Element Crushing IC = Instability in the Compression Zone BF = Bar Fracture WC = Web Crushing
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Table 6.3 (Cont.) Observed Failure Modes in PCA Wall Specimens

Experimental Results

Analytical Results

Description

Failure T
mode

Description

Thefirst flexural bar was observed to buckle dur-
ing Cycle 22, the first 3—In. deflection. In subse-
quent cycles, 13 other bars buckled. After the
first bar buckled, the boundary elements started
to deteriorate. The wall lost load—carrying ca-
pacity in Cycle 31, the first 5—in.deflection , due
to bar fracture.

B

First bar buckling occurred In bar # 220 at load
step 263, the second cycle at +2.0—In. deflec-
tion. Three more bars buckled in later steps
(#221, #222, and #145). Crushing of concrete
in the boundary element was not extensive.

Crushing of concrete In the boundary element
was first observed in Cycle 22, at 3—in. deflec-
tion. First two bars buckled during Cycle 26 at
4—In. deflection. Sudden web failure occurred
in Cycle 28 at —5—in.deflection.

WC

First bar buckling occurred in bar # 136 at load
step 717, the second cycle at +5.0—in.detlection.
Few concrete elements in web started crushing at
load step 671, the second cycle at —4.0 in. Exten-
slve web crushing occurred at load steps 718 and
770, the first cycle at +5.0—In.deflection

Significant crushing and grinding of web con-
crete was observed after Cycle 28, +4—in.deflec-
tion. Confinement hoops in the boundary ele-
ments helped to contain concrete and prevent
bar buckling. The specimen lost load—carrying
capacity in Cycle 39, at 7—in.deflection, when a
vertical bar fractured. The fractured bar still had
concrete cover and no evidence of previous
buckling was observed.

BC

No bars buckled in wall B3. Crushing of con-
creteinthe boundary elements occurred at load
step 399, the second cycle at +3—in.deflection.
Concrete crushing of the boundary elements
became extensive at load steps 699 and 731,
the first cycle at +6—in.deflection.

Specimen
Fallure T
mode
B1 IB
B2 WC
IB
B3 BF
B4 BF

Crushing in the compression boundary element
started at Load stage 9 (2—In.deflection) and
progressively increased throughout the test.
The wall started losing its load—carrying capac-
ity at Load stage 15 (8.5—Iin.deflection) when
vertical bars fractured.

BF

Concrete in the compression boundary element
started crushing at load step 25, +0.50—In.
deflection. Bar # 145 fractured at load step 115,
+7.80—in. deflection. Three more bars fractured
at later load steps (#160, #175, and #235).

U IB = Inelastic Bar Buckling BC = Boundary Element Crushing IC = Instability in the Compression Zone BF = Bar Fracture WC = Web Crushing
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Table 6.3 (Cont.) Observed Failure Modes in PCA Wall Specimens

Specimen

Experimental Results

Analytical Results

Fallure
mode

Description

Failure
mode

Description

BS

WC

Crushing of concrete in the boundary elements
was first observed in Cycle 19, at +2—In.deflec-
tion. The wall suddenly lost its load—carrying ca-
pacity in Cycle 28, at —5-in.deflection, when
web crushing occurred.

WC

No bars buckled in Wall B5. Few concrete ele-
ments in web started crushing at load steps 629
and 671, the second cycle at +4—in.deflection.
Extensive web crushing occurred at load steps
718 and 770, the first cycle at + 5—in. deflection.

B6

WC

Crushing of concrete in the boundary elements
was first observed in Cycle 16, at +1—in.dellec-
tion. The wall suddenly lost its load—carrying ca-
pacity In Cycle 26, at +3—In.deflection, when
several compression struts crushed simuita-
neously.

WC
BC

Crushing of concrete In the boundary elements
started at load step150, +2~in.deflection. Weh
crushing and extensive crushing in the bound-
ary elements occurred at load steps 360 and
390, +3-—in.deflection.

B7

WC

Crushing of concrete in the boundary elements
was first observed in Cycle 19, at 2—in.detflection.
The wall suddenly lost its load—carrying capacity
in Cycle 31, at +6—in.deflection, when several
compression struts crushed simultaneousty.

WC

Few concrete elements in web started crushing
at load step 599, the second cycle at —4—In.
deflection. Web crushing occurred extensively
at load steps 698 and 750, the second cycle at
+ 5—in.deflection.

B8

WC

Crushing of concrete in the boundary elements
was first observed in Cycle 14, at 2—in.deflection.
The wall suddenly lost Its load—carrying capacity
in Cycle 31, at +6—In.deflection, when several
compression struts crushed simultaneously.

WC

Few concrete elements in web started crushing
at load steps 6486, the first cycle at +5 In.deflec-
tion. Web crushing occurred extensively at load
steps 698 and 750, the second cycle at +5—in.
deflection.

B9

WC

Crushing of concrete in the boundary elements
was first observed in Cycle 2, at +5.3—in.deflec-
tion. The wall suddenly lost its load—carrying ca-
pacity in Cycle 4, at —4—in.deflection, when sev-
eral compression struts in the lower left region of
the web crushed.

BC
wC

Crushing of concrete in the boundary elements
occurred at load step 60, the second cycle at
+5.30—In. and became extensive at load step
320 and 380 (+4.7—and —5.1—In. deflection).
Web crushing of concrete occurred extensively
at load step 380 (~5.1—in. deflection).

U IB = Inelastic Bar Buckling BGC = Boundary Element Crushing IC = Instability in the Compression Zone BF = Bar Fracture WC = Web Crushing




Table 7.1 Comparisons between 2-D Plane Stress Elements and Shell Elements

N, 4
3 |1 ini & . . .
| Horizontal Force (F) at CPU time required
Type of Elements the Corner Node for the analysis (HP 700)
D 8—Node Plane Stress (2—-D) 198.2 kips 5.6 seconds
8—Node Shell (3D) 200.0 kips 38.3 seconds

TThis force results in a 1—in horizontal displacement in the south direction at the corner node.
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Table 7.2 Failure Modes in Walls CLS and CMS

Specimen

Experimental Results

Analytical Results

Falluref
mode

Description

Fallure
mode

Description

CLS

B
BC

Minor spalling was observed at the north end of
the wall at a top deflection of —1.0In. (1.0% drift)
During the top displacement cycles to —1.65 In.
(1.5% drift), all the concrete cover surrounding
the north boundary elements spalled. The lon-
gitudinal reinforcing bars were observed to
buckle slightly.

Significant buckling of the north longitudinal re-
Inforcement was observed during the 2.0 In.
cycles (2% drift). Wall CLS falled in the third
cycle approaching —2.25 in. top displacement.
The fallure followed crushing of the north
boundary elements

IB
BC
WC

Concrete at the outer face of the north boundary
elements started crushing in the first cycle at
—1.0in. top displacement. The north boundary
element became extensively crushed in the first
cycle at —2.35 in. top displacement Buckling
was observed in the bar at the bottom of the
north boundary element in the last cycle at
~2.90 in. top displacement.

Extensive web crushing in the web elements ad-
jacent to the north boundary elements was also
observed in the last cycle at —2.90 in. top dis-
placement.

CMS

IB
BC

Minor spalling was observed at the north end of
the wall at a top deflection of —1.0In. (1.0% drift)
During the top displacement cycles to —1.65 in.
(1.5% drift), all the concrete cover surrounding
the north boundary elements spalled. The lon-
gitudinal reinforcing bars were observed to
buckle slightly.

Significant buckling of the north longitudinal re-
inforcement was observed during the 2.0 in.
cycles (2% drift). Wall CMS failed in the second
cycle approaching —2.50 in. top displacement.
The failure followed crushing of the north
boundary elements

B
BC
WC

Concrete at the outer face of the north boundary
elements started crushing in the first cycle at
—-0.5 in. top displacement. The north boundary
element became extensively crushed in the first
cycle at —1.0 In. top displacement. The crush-
Ing of the north boundary element in wall CMS
was much more extensive than that of wall CLS.
Buckling was observed in the bar at the bottom
of the north boundary element in the last cycle
at —2.20 in. top displacement.

Extensive web crushing in the web elements ad-
jacent to the north boundary elements was also
observed in the last cycle at —2.20 in. top dis-
placement.

T

IB = Inelastic Bar Buckling BC = Boundary Element Crushing IC = instability in the Compression Zone BF = Bar Fracture WC = Web Crushing




Table 8.1 Amount of Reinforcement in each Reinforcement Option

Reinforcement Horizontal Vertical Diagonal
Details Web Reinforcement | Web Reinforcement | Reinforcement
On Qv
(%) (%)
Option # 1 0.60 0.30 none
Option # 2 1.20 0.30 none
Option # 3 0.60 0.90 (embedded) none
Option # 4 0.60 0.30 (embedded) none
0.60 (not embedded)
. distributed
Option # 5 0.60 0.30 04 = 0.60
. distributed
Option # 6 0.60 0.30 04 = 0.30
Optibn #7 0.60 0.30 4 # 5 bars
Option # 8 0.60 0.30 4 # 5 bars

Table 8.2 Shear Forces and Nominal Shear Strengths in the East Piers of Wall W2, W3, and W4

WALL TOTAL APPLIED SHEAR FORCE N THE EAST PIER (dps) NOMINAL SHEAR STRENGTH
FORCE (kips) UNEAR NONLINEAR OF THE EAST PIER (KIPS)
FINITE ELEMENT ANALYSIS FINITE ELEMENT ANALYSIS
W2 37.2 6.1 16.0 55
W3 37.1 9.7 21.1 8.1
W4 36.3 10.8 21.7 9.1
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Table 8.3 Parametric Study of C—Shaped Walls

Loading ,
Case : Reinforcement

cycle 1 cycle 2
A +0.15 in. -251in. Same as CLS
B -0.15in. +2.51n. Same as CLS

. . Longitudinal reinforcement in the north boundary

C -0.15in. +2.5 mn. element was increased to five times that in CLS
D Two cycles at £0.1, £0.2, Same-as CLS

+1.0, £2.0, and £3.0in.

TPositive loaidng places the transverse flange in compression and negative loading places the transverse flange in tension.
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c) Shear Stress—Slip Curve (From Mattock [93])
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Fig. 3.26 Typical Cyclic Shear Response (Cont.)
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Fig. 3.28 The Proposed Cyclic Shear Model
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Fig. 5.5 FInite Element Mesh for Wall R1
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Fig. 7.7 Distribution of Calculated Axial Stress in the C-Shaped Wall Model
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E
Cycle # 2

A is the energy dissipation capacity of each cycle.

B; is the energy dissipation capacily of an elasto—plastic material with
the same max. load and max. displacement of each cycle.

K; is the uncracked stiffness of the wall
DA

The accumlated energy dissipation ratio of cyclei = _i

2.5

i

Fig. 8.1 Calculation of the Accumulated Energy Dissipation Ratio
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Fig. 8.10 Shear Wall Systems (from [126])
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Fig. 8.11 Overall Dimensions of Walls CI1 and PW1
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Fig. 8.12 Location and Dimensions of Openings in Wall PW1
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Fig. 8.16 Finite Element Meshes for Walls CI1 and PW1
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b) Calculated Results: Wall CI1

Fig. 8.17 Load vs. Top Deflection Curves for Wall CI1
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APPENDIX A

COMPRESSION STIFFENING AND COMPRESSION SOFTENING CURVES FOR

THE CONCRETE MODEL

A.1 COMPRESSION STIFFENING CURVE

A compression stiffening curve (curve A-B in Fig. A.1) is defined by the following equation:

where

SC 871 GC - Un GC - Un s

80\9 GOS + ( Gos ) (A‘l)

— E. - k2 b
’ (E, 1) <k1Ec - kz)
:il
Oos = VC?J —
lk]_EC —_ kzlx—l

Eos = %_05

k1= gc—sn
k2= GC-UH

E. = the tangent stiffness at the beginning of the unloading curve

E. = the initial modulus of elasticity for concrete

(e.,0.) = the strain and stress at the current load step

(¢4,0,) = the strain and stress at the end of the compression

stiffening curve
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A.2 COMPRESSION SOFTENING CURVE

A compression softening curve (curve B—C in Fig. A.2) is defined by the following equation:

when ¢ > ¢, g = E.¢ (A.2)
f— — £-tn
when ¢ < g, O —0n & _%n e(l ——a;:) (A.3)
Ooc €oc
where Ooc = four — On
Opc €
& —J
oc EC
fou = the compressive strength of concrete

E. = the initial modulus of elasticity for concrete

e = the base of the natural logarithms

(5,0, = the strain and stress at the beginning of the
compression softening curve

Cracks i . Cracks ful o' en
s ed Cracks partially open ly op

stress

|
:'
"/ Compression Stiffening Curve (A—B)

[en,0n]

strain
Fig. A.1 Compression Stiffening Curve

4

349



stress

Compression Softening Curve (B—C)

cult

strain

Fig. A.2 Compression Softening Curve
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APPENDIX B

STRESS—STRAIN RELATIONSHIP FOR CONFINED CONCRETE

The stress—strain relationship for confined concrete proposed by Shiekh and Uzumeri
(125) was adopted in the proposed concrete model. Parameters of the relationship, which in-
clude foy, €1, €2, and £g5 (Fig. B.1), are calculated as follows:

step 1: Determine volumetric ratio of tie steel :

Os = volume of tie steel at a level
volume of core (center to center of outer ties)

step 2: Determine A :

n
C?
i
A= 1-£
co

n = the number of arcs

Ao = the area enclosed by the center line of outer tie
C = the center—to—center distance between longitudinal bars
a=55

step 3: Determine A*:

A* = A(B — 05stan6) (H — 0.5 s tan6)

BandH = the center—to—center distance of perimeter

tie of rectangular core.
6 = 45 degrees
S =  spacing between transverse reinforcement

step 4: Determine Py :

Poce = 0-85f2 (Aoc - As)
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step 5: Determine Kg and foyp :
* 2 7 .
ks = 273 %,-fc— Jos f For = ks
step 6: Determine g4 :

g, = 055k f, X10"6  f inpsi

step 7: Determine &5 :

2
2 = 1+%(1-1-5.0(2%))——-9”‘4c

200 ‘/f:

&gp = strain corresponding to the maximum stress in plain concrete

step 8: Determine egs :

g5 = 0.225 Os ‘/—-% -+ €y

le
compression

Four = Ksfe—-———=
0.85 fopyy —— - A — - ——— .
0.30 £,y — S Y T
1| Ee '
‘ Eu €2 €85 compression

Fig. B.1 Stress—Strain Relationship for Confined Concrete
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APPENDIX C

RULES FOR CYCLIC STRESS-STRAIN RELATIONSHIP OF CONCRETE

[oe] = stress and strain at the current load step
ENVELOPE CURVE:
Oy = Opc* F—S_x—s"] el == + g, (C.1)
where Ooc = fouy — On

(¢5,0,) = the strain and stress at the beginning of the
compression softening curve

COMMON POINTS:
Op = Op + 0.85%(Oeny — Op) (C.2)

PERMANENT COMPRESSIVE STRAIN ¢,:

&p 1is the permanent compressive strain for the current cycle

— (1-5)
. = €4 [1.0 — 0.425¢(1-9)] (C3)
1 - (s e(l‘s))
ife,<0.70- ¢ & = 0.70 - ehu
where  ( _ fma
€l

£,, = the compressive strain at the compressive strength of concrete, fou

Emax

the previous maximum compressive strain
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There are 5 values of tangent stiffness used in the relationship :

E1 = E;= the initial modulus of elasticity for concrete
E2 = -2
& cmax - & pr
where Opr€pr =  stress—stran of the previous load step
E3 = 010 E;

if (E3 < E2) then E3 = E2

030 f
E 4 = cult
€03 ~ ¥p
where €93 = strain at stress = 0.30 fouir when unloading
with tangent stiffness = Econc from [0y, £5as]
E5 = Je

[
smax

Value of g, in each cycle is adjusted as follows :

On

& = E5

[ o]

stress,strain at the current load step
[ Oprgpr] = stress,strain at the previous load step

Et = tangent stiffness of the current load step
Oy = stress on the envelope curve at strain = ey
Ev = tangent stiffness of the envelope curve at strain = epax

The rules for loading and unloading are described in Table C.1.
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Table C.1 Loading and Unloading Rules for Unconfined Concrete

LOADING: & < gy

Description

if anax > gyt then

concrete has not been crushed yet
use elastic E¢

Et = E1
else concrete has previously been crushed
— ife < €Snaxthen —— current strain less than previous max.strain
B-C _
H-1 ] Et=E3 use E3
_ else _ current strain is greater than prev. max.strain
A-B Et = E2 | use secant stiffness between (opr,gpr) and
G-H . - (OwEmax) E2
- endif
endif
0 = Opr + Ey{e — gpr) update stress at current step
if 0 < o, then if the current stress is less that the stress
0 = Oy ‘on the envelop curve, stress—strain curve
C-D : follows the envelope curve
[=J Et = Ev
endif
UNLOADING: & > Epr Description
D-E Et = E1 use elastic Ec
0 = Opr + Ey(€ — gp)——— | update stress at current step
ifo<O. th |
if 0 < 0.30 foup then if the current stress is greater that 0.30 fcult
E-F Et = E4 use E4 instead.
g = Opr + El(s - 8pr)"
endif
if 0 < 0.0 then ] .
= 0.0 if the current stress is greater than 0.0,
F-G o=u set stress and stiffness to be 0.0
Et = 0.0
endif
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0.30 £ 1
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Fig. C.1 : Stress—strain of Unconfined Concrete subjected to Cyclic Compressive Loading

- - e /— Envelope Curve

Common Point
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c
€max

A G I|F
€p

Fig. C.2 : Rules for Cyclic Compressive Loading
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APPENDIX D

FINITE ELEMENT MESHES FOR WALLS

AN
_ A
T ' 1
18@10” 18@10" 180"
| _‘L__ Y
| 7 - 6" b— ol ale | .
6@10.5 2@75" I 12" ‘ 2@105" l 12" 2@75"
75" 75"
a) Walls R1 and R2 b) Wall R3

Fig. D.1 Finite Element Meshes for PCA Walls
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c) Wall R4

d) Walls B1, B3, B4, and B9

Fig. D.1 Finite Element Meshes for PCA Walls (cont.)
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e) Walls B2, B5, B6, B7, and B8
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180"

Fig. D.1 Finite Element Meshes for PCA Walls (cont.)
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Fig. D.3 Finite Element Meshes for Walls CI1 and PW1
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Fig. D.4 Finite Element Meshes for Walls W1, W2, W3, and W4
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APPENDIX E

MATERIAL PROPERTIES FOR PCA WALL TESTS

Table E.1 Measured Concrete Properties (from (105, 106,103))

pecimen o o o
R1 6490 655 4030
R2 6735 650 3890
R3 3535 ' - -
R4 3285 - -
B1 7685 730 4080
B2 7775 710 4200
B3 6360 635 3960
B4 6530 680 4100
BS 6570 625 3970
B6 3164 657 3350
B7 7155 873 4310
B8 6085 614 3900
B9 6396 633 3940

f.’ =  average compressive strength of concrete

fr =  average modulus of rupture of concrete

E. =  average modulus of elasticity of concrete
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Table E.2 Measured Reinforcing Steel Properties (from (105, 106, 103))

Specimen

Size | Froperties | pi| me|®s | R4 |B1 | B2| B3| B4| BS| B6 | B7]| B8 | BO
£, (ksi) 66.0| 70.4|70.0 | 70.0 | 68.7| 67.1| 69.0| 738 | 692|707 | - | - | -

D3 | fiy (ksi) 720 7621 — | — | 751|744 768|788 | 754 | 740| - | - | -
Esksix10%) | 30.6| 283 | — | — [33.0]338|325]|284|312|300| - | - | -
£, (ksi) 757| 77.6| 75.0 | 75.0 | 75.5| 772 | 69.4 | 732 | 72.8 | 742 | 71.0 | 65.8 | 66.9

6mm | fiu (ksi) 101.5/1002] - | - |100.8{101.6| 95.5| 98.8 | 97.4 | 98.0 |101.0| 89.3 | 83.9
Es(ksix10%) | 314 326 — | — |325{321{304| 319|314 304|285}|282]286
£y, (ksi) 42 - | - | -1 =-1-|=-1-=-1=-1]1-|-1-1-

No.3 | fi (ksi) mo| - | = | =-f{-1=-1-=-1-=-41-1-1- -1 -
Es(six10® 278 - [ = | = | - | - | - | - | = | = | - -1 -
£y, (ksi) - | 653|783|712|652| - |635|653| — | — | - -1 -

No.4 | fou (ksi) - (1027} - | - |1027] - [1or1{1025 - | - | - -1 -
EsGksix10®)| — | 269 — | — | 283 - | 259|275 — | - | - -1 -
£y (ksi) - = =] =1 = |595] - | - | 644|639 664|649 | 623

No: 6 | fy (ksi) - -] =1 -1 - ]1008] - | — |106.4|1063|108.8{1082}106.5
Esksix10®)| — | = | = | = | = |302| - | — |295]|285|284|275]|276

fy = yielding strength of reinforcing steel

f:u = strength of reinforcing steel

Es = modulus of elasticity of reinforcing steel
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APPENDIX F

MATERIAL PROPERTIES FOR C—-SHAPED WALLS

Table E 1 Measured Concrete Properties

f

« fc’ fr
Specimen (os) (osD) (ksD)
CLS 4500 425 940
CMS 4050 420 1070
.. = average compressive strength of concrete
fi = average splitting tensile strength of concrete
ff = average modulus of rupture of concrete

Table F2 Measured Steel Properties

365

f, f, E
Reinforcing Steel Y s s
eimoreing Stee (ksi) (&si) (ksi)
No. 2 Bar 55 71 27,750
No. 3 Bar 62 91 28,400
#10 Wire 85 112 24,300
fy = yielding strength of reinforcing steel
éu = strength of reinforcing steel
Es = modulus of elasticity of reinforcing steel




APPENDIX G

MATERIAL PROPERTIES FOR WALL Ci1 AND PW1

Table G.1 Measured Concrete Properties (from (126))

. ' fi Ec
Specimen s (s ()
CI-1 3375 480 3385
PW-1 3030 430 2815
f. =  average compressive strength of concrete
fr = average splitting tensile strength of concrete
E. =  average modulus of elasticity of concrete
Table G.2 Measured Steel Properties (from (126))
. . . fy fou Es
Specimen Reinforcing Steel (ks (ksi) ksi)
CI-1 No. 4 Bar 69.1 110.5 26,100
6 mm bar 68.6 94.3 29,500
D-3 wire 70.8 81.9 27,700
PW-1 No. 4 Bar 60.4 110.0 24,000
6 mm bar 67.0 90.5 35,000
D-3 wire 78.0 87.7 28,500
f; = yielding strength of reinforcing steel
tzu = strength of reinforcing steel
Es = modulus of elasticity of reinforcing steel
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MATERIAL PROPERTIES OF WALLS W1, W2, W3, AND W4

APPENDIX H

Table H.1 Material Properties for Concrete (from (6))

£’ (psi) Split Modulus
Cylinder of

Specimen wrength Rupture

' 28 days on test date (psi) (psi)
W-1 4940 4960 416 847
Ww-2 4690 4830 425 816
Ww-=3 4790 5160 394 814
w4 4960 5260 409 852

Table H.2 Material Properties for Reinforcing Steel (from (6))

Reinforcing Yield Stress, f, | Young’s Modulus | Yield Strain, ey
ksi © ksi in./in.
#4 Bar 78.4 29000 0.0027
#2 Bar 81.5 29000 0.0028
3/16 "Bar 90.0 29000 0.0031
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