
Inferring Method Effect Summaries for Nested Heap Regions

Mohsen Vakilian, Danny Dig, Robert Bocchino, Jeffrey Overbey, Vikram Adve, Ralph Johnson

University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Email: {mvakili2,dig,bocchino,overbey2,vadve,rjohnson}@illinois.edu

Abstract—Effect systems are important for reasoning about
the side effects of a program. Although effect systems have
been around for decades, they have not been widely adopted
in practice because of the large number of annotations that they
require. A tool that infers effects automatically can make effect
systems practical. We present an effect inference algorithm and
an Eclipse plug-in, DPJIZER, which alleviate the burden of
writing effect annotations for a language called Deterministic
Parallel Java (DPJ). The key novel feature of the algorithm
is the ability to infer effects on nested heap regions. Besides
DPJ, we also illustrate how the algorithm can be used for
a different effect system based on object ownership. Our
experience shows that DPJIZER is both useful and effective:
(i) inferring effect annotations automatically saves significant
programming burden; and (ii) inferred effects are more precise
than those written manually, and are fine-grained enough to
enable the compiler to prove determinism of the program.

I. INTRODUCTION

Programs written in mainstream imperative languages

have side effects on the memory. Programmers have em-

braced this paradigm because it avoids copying the pro-

gram’s state between different method invocations. However,

this paradigm also makes it harder for programmers or tools

to understand or analyze programs in a modular fashion.

Knowing what parts of the program’s state are mutated

by a method can help programmers modify large programs

without introducing subtle mutation errors and can serve

as explicit, machine-checkable documentation. It can enable

safety tools to detect inconsistencies between intended usage

of API methods and their actual usage, it is a building

block for several other compiler analyses (e.g., MODREF

analysis), and it can enable compilers to check the safety of

parallel programs [1]–[3].

Effect systems express the effects of methods in terms of

reads and writes of a subsets of the heap. Such groups of

memory locations are referred to as “regions.” Modern effect

systems such as DPJ [4], [5] and JOE [6] express effects in

terms of nested heap regions. Nested heap regions specify

logical inclusion of regions, which is useful for recursion,

subtyping, etc.

Effect annotations describing the side effects of each

method can enable modular analysis of effects. But, although

these annotations have been around for decades, they have

not been used much in practice. The reason is that manually

writing such effects is tedious and error-prone. In this paper,

we present an algorithm that automatically infers the effects

of each program statement, and summarizes them at the

level of method declarations as method effect summaries.

There is prior work on inferring effects on flat regions [7]–

[9]; however, the key novelty of our algorithm is its ability

to infer effects for programs even on nested heap regions,

including recursive as well as non-recursive data structures.

Deterministic Parallel Java (DPJ) [4], [5] is an explicitly

parallel language that aims to enable programmers to write

safe parallel programs. DPJ is an extension to Java with an

effect system based on regions. DPJ gives static guarantees

that a program that type-checks with the DPJ compiler

is safe, i.e., the program’s behavior is deterministic. A

deterministic program produces identical externally visible

results in all executions for a given input.

The heart of DPJ is a type system that checks whether the

parallel constructs access the shared data without conflicts.

The programmer (i) specifies the shared data by virtually

partitioning the heap into regions and (ii) specifies which

regions are read or written by each method.

Using DPJ, we have safely parallelized several pro-

grams [5]; the parallel programs are deterministic and they

exhibit good speedup. However, to get these benefits the pro-

grammer has to write region and effect annotations by hand.

This job is nontrivial, error-prone, and time consuming. For

example, a Monte Carlo financial application contains 1502

LOC and 314 annotations. A Barnes-Hut N-body application

contains 698 LOC and 148 annotations.

This paper presents our tool, DPJIZER, which alleviates

the programmer’s burden when writing effect annotations.

Given a program with region annotations, DPJIZER infers

the method effect summaries and annotates the program.

When summarizing the effect information, DPJIZER elimi-

nates redundant effects, which makes the effect annotations

concise and easier to understand. We implemented DPJIZER

as an extension to Eclipse’s refactoring engine, thus it

offers all the convenient features of a practical refactoring

engine: previewing changes, selection of edits to be applied,

undo/redo, etc.

The inference algorithm at the heart of DPJIZER is

built on a classical constraint-based type-inference approach,

but we use it to infer effects. The algorithm generates

constraints from primitive operations (variable access, as-

signment, method calls, and method overriding declarations),

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4823183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

using the appropriate parameter and type substitutions at

method invocations. It then solves these constraints by

processing them iteratively and propagating the constraints

through the call graph until a fixed point is reached and

no more constraints are discovered. The novelty in the

algorithm lies in the constraint solving phase. This phase

handles nested regions by taking advantage of the structure

of region specifications in the target language (e.g., Region

Path Lists [5] in DPJ or object “levels” in the object

ownership system, JOE [6]). It handles recursive structures

by summarizing these nested heap regions in each case.

Although DPJIZER is designed to help in porting a Java

program to DPJ, its applicability goes well beyond DPJ.

Given a concurrent program that uses shared memory, by

inferring the method effects, DPJIZER helps a programmer

discover the patterns of shared data. This information is

crucial in helping the programmer find out the accesses

to shared data that need to be protected. Moreover, the

underlying algorithm is useful beyond concurrent programs.

For example, we show how the algorithm can be used

to infer effects for a different effect specification system

based on object ownership, which is a general mechanism to

reason about and express the side effects of object-oriented

programs.

This paper makes the following contributions:

1. Algorithm. To the best of our knowledge, this paper

presents the first algorithm for inferring method effect sum-

maries for a full Object-Oriented language (e.g., aliasing,

recursion, polymorphism, generics, arrays, etc.) with a so-

phisticated effect system (e.g., parameterized regions, nested

regions for recursive data-structures, etc.).

2. Tool. We implemented the effect inference algorithm

in an interactive tool called DPJIZER. A programmer can

use DPJIZER to infer method effects for a Java or a DPJ

program. DPJIZER writes the inferred effects into the source

code as DPJ annotations or as code comments. DPJIZER is

built as an Eclipse plugin that extends Eclipse’s refactoring

engine.

3. Evaluation. We used DPJIZER to infer method effects

in several real programs. We compare the effects inferred

with DPJIZER against effects manually inferred by program-

mers. The comparison shows that DPJIZER can drastically

reduce the burden of writing annotations manually, while the

automatically inferred effects are more precise.

II. OVERVIEW OF DPJ

Deterministic Parallel Java (DPJ) [5] is a programming

language that ensures parallel tasks are noninterfering. Two

tasks are noninterfering if for each pair of memory accesses,

one from each task, either both accesses are reads, or the

two accesses operate on disjoint sets of memory locations.1

1The full DPJ language [5], [10] also allows commutativity annotations
that specify noninterference directly, without checking reads and writes.
Here we focus on inferring read and write effects.

Noninterfering tasks can run in parallel while still exhibiting

the same behavior as if they were run sequentially.

DPJ provides a type system that guarantees noninterfer-

ence of parallel tasks for a well-typed program. In DPJ,

the programmer assigns every object field and array cell

to a region of memory and annotates each method with a

summary (called a method effect summary) of the method

read and write effects. The programmer also marks which

code sections to run in parallel, using several standard con-

structs, such as cobegin for parallel statement execution

and foreach for parallel loops. The compiler uses the

region annotations and method effect summaries to check

that all pairs of parallel tasks are noninterfering.

A. Region Names

1 class Node {

2 region Mass, Force;

3 double mass in Mass;

4 double force in Force;

5 void setMass(double mass) writes Mass {

6 /* writes Mass */

7 this.mass = mass;

8 }

9 void setForce(double force) writes Force {

10 /* writes Force */

11 this.force = force;

12 }

13 void initialize(double mass, double force)

14 writes Mass, Force {

15 cobegin {

16 /* writes Mass */

17 this.setMass(mass);

18 /* writes Force */

19 this.setForce(force);

20 }

21 }

22 }

Figure 1. Using field region names to distinguish writes to different object
fields. In Section III, we will show how to infer the underlined method effect
summaries.

Figure 1 illustrates the use of region names to distinguish

writes to different fields of an object. Line 2 declares

Mass and Force as region names that are available within

the scope of class Node. These are called field region

declarations. Lines 3 and 4 declare fields mass and force

and place them in regions Mass and Force, respectively.

Field region declarations are static, so there is one for each

class. For example, all mass fields of all Node instances

are in the same region, Mass.

Each method must have a method effect summary record-

ing the effects that it performs on the heap, in terms of reads

and writes to regions. For example, method setMass (line

5) has the summary writes Mass, because the effect of

line 7 is to write the field mass, located in region Mass;

and similarly for setForce (line 9). It is permissible

for a method effect summary to be overly conservative;

for example, setMass could have said writes Mass,

Force. However, this may inhibit parallelism. It is an error

for a method effect summary to be not conservative enough,

for example if setMass had said pure, meaning “no

effect.”

Together, the DPJ annotations allow the compiler to

efficiently analyze noninterference of parallel code sec-

tions, as illustrated in the initialize method. From

the method effect summaries, the compiler can infer that

the effect of line 17 is writes Mass and the effect of

line 19 is writes Force. The compiler can then use

the distinctness of the names Mass and Force to prove

noninterference: although both statements in the cobegin

perform writes, the writes are to disjoint regions of the heap.

B. Region Parameters

As shown in section II-A, region names are useful for

distinguishing parts of an object from each other. Often,

however, we need to distinguish different object instances

from each other. To do this, DPJ uses region parameters,

which operate similarly to Java generic parameters [11] and

allow us to instantiate different object instances of the same

class with different regions.

1 class Node<region P> {

2 region L, R;

3 double mass in P;

4 Node<L> left in L;

5 Node<R> right in R;

6 void setMass(double mass) writes P {

7 /* writes P */

8 this.mass = mass;

9 }

10 void setMassOfChildren(double mass)

11 writes L, R {

12 cobegin {

13 /* writes L */

14 if (left != null) left.setMass(mass);

15 /* writes R */

16 if (right != null) right.setMass(mass);

17 }

18 }

19 }

Figure 2. Using region parameters to distinguish writes to different object
instances.

Figure 2 illustrates the use of region parameters to dis-

tinguish writes to different object instances. In line 1, we

declare class Node to have one region parameter P (we use

the keyword region to distinguish DPJ region parameters

from Java type parameters). As with Java generics, when

we write a type using a class with region parameters, we

provide an argument to the parameter, as shown in lines 4

and 5. The argument must be a valid region name in scope.

We can use the region name P within the scope of the

class. For example, line 3 declares field mass in region P.

When this.mass is accessed, the effect is on region P,

as shown in line 7. However, when we access field mass

through a selector other than this, we resolve the region

P by substituting the actual argument given in the type of

the selector. For example, the effect of left.setMass

in line 14 is writes L. We get this by looking at the

declaration writes P of setMass and substituting L for

P from the type of left. (The read of field left also

generates a read effect on region L; but in DPJ, write effects

imply read effects, so the read is covered by writes L.)

We can then use an analysis similar to the one discussed

in Section II-A to prove that the statements in lines 14 and

16 are noninterfering, since their write effects are on the

disjoint regions L and R.

C. Region Path Lists (RPLs)

In conjunction with array index regions and index-

parameterized arrays (discussed further in Section III-E1),

basic region names and region parameters can be used to

express important parallel algorithms. However, it is often

essential to be able to express a nesting relationship between

regions. For example, to express tree-like recursive updates

we need a nested hierarchy of regions. DPJ provides two

ways to express nesting: region path lists and owner regions.

Here we focus on region path lists; we defer the discussion

of owner regions until after we have presented the effect

inference algorithm.

A region path list (RPL) extends the idea of a simple

region name introduced in Section II-A. An RPL is a colon-

separated list of names that expresses the nesting relationship

syntactically: if P and R are names, then P:R is nested under

P. Nested RPLs are particularly useful in conjunction with

region parameters: if we append names to parameters, such

as P:L and P:R, then by left-recursive substitution we can

generate arbitrarily long chains of names, such as P:L:L:R.

1 class Node<region P> {

2 region L, R;

3 double mass in P;

4 Node<P:L> left in P:L;

5 Node<P:R> right in P:R;

6 void setMassForTree(double mass) writes P:* {

7 /* writes P */

8 this.mass = mass;

9 cobegin {

10 /* writes P:L:* */

11 if (left != null)

12 left.setMassForTree(mass);

13 /* writes P:R:* */

14 if (right !=null)

15 right.setMassForTree(mass);

16 }

17 }

18 }

Figure 3. Using RPLs and region parameters to recursively update a tree
in parallel.

Figure 3 illustrates the use of this technique to write a

recursive tree update. The example is similar to the one

shown in Figure 2, except that lines 4 and 5 use regions P:L

and P:R instead of L and R, and the method invocations in

lines 12 and 15 are recursive. To write the method effect

summary in line 6, we need some new syntax: because the

tree can be arbitrarily deep, and the RPLs arbitrarily long, we

use a star (*) to stand in for any sequence of RPL elements.

Then we can write the method effect summary writes

P:*, as shown in line 6. Note that the rules discussed in

Section II-A for method effect summaries are still followed:

by substituting the RPL arguments in the types of left and

right in for P, we get the inferred effects shown in lines

10 and 13; and those effects are covered by the summary.

Further, because the RPLs form a tree, we can conclude that

all regions under P:L and all regions under P:R are disjoint,

so effects of lines 12 and 15 are noninterfering.

III. EFFECT INFERENCE ALGORITHM

We present our algorithm using Core DPJ [5], a small

skeleton language that illustrates the ideas yet is tractable

to formalize. To make the presentation easier to follow, we

start with a simplified form of Core DPJ corresponding to

the features introduced in Section II-A, i.e., basic region

names with no region parameters or nesting. Then we build

up the language to add region parameters, region path lists

and owner regions. We also discuss how to handle array

regions and inheritance. Finally, we discuss how to adapt

the algorithm for use with other languages.

A. Basic region names

Figure 4 shows the syntax of the initial language. Note

that we have moved field region declarations to the global

scope to simplify the region names in the formal language.

The algorithm consists of two phases, constraint generation

and constraint solving.

Meaning Symbol Definition

Programs program region-decl∗ class∗

Region decls region-decl region r
Classes class class C {field∗ µ∗}
Fields field T f in r
Types T C

Methods µ T m(T x) { e }
Expressions e this.f | this.f = e | e.m(e) | new T | z

Variables z this | x

Figure 4. Syntax of Core DPJ with basic region names. C, f , m, x and
r are identifiers.

1) Constraint Generation: The constraint generation

phase computes for each method µ a constraint set Kµ,

where each element of Kµ is one of the constraints reads r,

writes r, and invokes µ′. The first two constraints indicate

the presence of a read or write effect in the method itself.

The invokes constraint asserts that one method is invoking

another, either directly or indirectly; these constraints will

cause the solving phase (Section III-A2) to account for the

read and write effects of callees.

The constraint generation phase visits each method body

and walks the AST to generate a set of constraints. Figure 5

shows the constraint generation rules for the simplified

language. The rules are similar to the ones for typing DPJ

expressions [5], except that we do not check assignments

or method formal parameter bindings for soundness (we

(FIELD-ACCESS) (this, C) ∈ Γ field(C, f) = T f in r

Γ ⊢ this.f : T, {reads r}

(ASSIGN) (this, C) ∈ Γ Γ ⊢ e : T,K field(C, f) = T ′ f in r

Γ ⊢ this.f = e : T,K ∪ {writes r}

(INVOKE) Γ ⊢ e1 : C,K1 Γ ⊢ e2 : T,K2 method(C,m) = µ

µ = Tr m(Tx x) { e }
Γ ⊢ e1.m(e2) : Tr ,K1 ∪K2 ∪ {invokesµ}

(NEW) ·
new C : C, ∅

(VARIABLE) (z, T) ∈ Γ
z : T, ∅

Figure 5. Rules for computing the constraints generated by an expression.

assume that full DPJ type checking has been done as a

separate pass).

The judgment Γ ⊢ e : T,K means that expression e has

type T and generates constraint set K in environment Γ.
The environment Γ is a set of pairs (z, T) binding variable

z to type T . The term method(C,m) means the method

named m defined in class C, while field(C, f) means the

field named f defined in class C. For each method µ =
Tr m(Tx x) { e } , let Cµ be the class where µ is defined.

Then Kµ is just the set of constraints such that

{(this, Cµ), (x, Tx)} ⊢ e : T,Kµ.

As an example, we show how to generate the constraints

for the bodies of methods setMass, setForce and

initialize in Figure 1. In line 7, rule ASSIGN generates

the constraint writes Mass for assignment to the field in

region Mass. Similarly, rule ASSIGN generates the constraint

writes Force for method setForce. In method ini-

tialize, there are two method invocations (lines 17 and

19). Therefore, rule INVOKE generates two constraints invokes

setMass and invokes setForce.

2) Constraint Solving: The constraint solving phase com-

putes for each method µ an effect set Eµ, where each

element of Eµ is one of the effects reads r or writes r.

This phase comprises the following steps:

1) For each method µ, for each constraint invokes µ′ in

Kµ, add the elements of Kµ′ to Kµ.

2) Repeat step 1 until no more constraints are added to

any Kµ.

Step 1 prunes the constraint sets Kµ by never adding

redundant constraints. For example, since writes cover reads,

there is no need for any Kµ to contain both reads r and

writes r; the second constraint suffices.

The algorithm terminates, because the total number of

regions is bounded, so the total number of constraints that

can be added to the Kµ is bounded. At the end of this

process, for each µ we let Eµ = effects(Kµ), where

the function effects extracts the read and write constraints

(i.e., the effects) from Kµ. As an example, from Figure 1,

the constraints invokes setMass and invokes setForce

generate the effects writes Mass and writes Force.

B. Region Parameters

This section extends Core DPJ by adding region param-

eters. CoreDPJ allows only one region parameter to each

class in order to simplify the formal rules. Also, CoreDPJ

disallows type parameters, as they are irrelevant to our effect

inference algorithm. Figure 6 shows the new syntax.

Meaning Symbol Definition

Classes class class C〈P 〉 {field∗ µ∗}
Regions R r | P
Types T C〈R〉

Figure 6. New syntax of Core DPJ with region parameters. P is an
identifier. Other syntactic elements are the same as in Figure 4.

1) Constraint Generation: Figure 7 shows the rules for

generating reads, writes, and invokes constraints in Core DPJ

with region parameters. The new rule INVOKE records the

region substitution θ = {P 7→ R} that the constraint solver

will need when translating the effects of one method to

another. The term param(C) represents the region parameter

P of class C.

(FIELD-ACCESS) (this, C〈P 〉) ∈ Γ field(C, f) = T f in R

Γ ⊢ this.f : T, {reads R}

(ASSIGN) (this, C〈P 〉) ∈ Γ Γ ⊢ e : T,K field(C, f) = T ′ f in R

Γ ⊢ this.f = e : T,K ∪ {writes R}

(INVOKE) Γ ⊢ e1 : C〈R〉,K1 Γ ⊢ e2 : T,K2 method(C,m) = µ

µ = Tr m(Tx x) { e } θ = {param(C) 7→ R}
Γ ⊢ e1.m(e2) : θ(Tr),K1 ∪K2 ∪ {invokes µ where θ }

(NEW) ·
new C〈R〉 : C〈R〉, ∅

(VARIABLE) (z, T) ∈ Γ
z : T, ∅

Figure 7. Rules for generating constraints in Core DPJ with region
parameters.

As an example, we show how to generate the con-

straints for the code in Figure 2. According to rule AS-

SIGN, line 8 generates the constraint writes P. In line

14, Rule FIELD-ACCESS generates the constraint reads L

for accessing the field left. Then, because the type of

this.left is Node<L>, rule INVOKE generates the con-

straint set {reads L, invokes setMass where {P 7→ L}}.
Line 16 generates similar constraints, using region R instead

of L.

2) Constraint Solving: The constraint solving phase is

identical to the one described in Section III-A2, except that

the algorithm applies substitutions θ in resolving invokes

constraints:

1) For each method µ, for each constraint (invokes µ′

where θ) in Kµ, add the elements of θ(Kµ′) to Kµ.

2) Repeat step 1 until no more constraints are added to

any Kµ.

Here we apply the substitution θ elementwise to sets Kµ,

and we apply θ to constraints as follows:

θ(reads R) = reads θ(R)

θ(writes R) = writes θ(R)

θ(invokes µ where θ′) = invokes µ where θ(θ′)

θ({P 7→ R}) = {P 7→ θ(R)}

The number of region parameters is finite, so the number

of region substitutions is finite. Therefore, there are a finite

number of invokes constaints. Thus, the algorithm terminates

for the same reason given in Section III-A2.

Figure 8 illustrates the constraints and effects inferred by

each iteration of the algorithm on the method setMas-

sOfChildren in Figure 2. For brevity, we show only

the effects coming from left.setMass(). Just before

iteration 1, the effect of method setMass is summarized as

writes P. In iteration 1, the invokes effect leads the algorithm

to infer the effect writes L by applying the substitutions

P 7→ L on the effect of setMass. The algorithm does not

infer any new effects in iteration 2, so it terminates after

iteration 2.

Before Iteration 1 Iteration 1

Effects reads L writes L

Constraints invokes setMass where {P 7→ L}

Figure 8. Effects and constraints inferred in each iteration of the algorithm
for method setMassOfChildren in Figure 2

C. Region Path Lists (RPLs)

This section adds RPLs to Core DPJ. Only the syntax for

regions, shown in Figure 9, is new. Root is a special name

representing the root of the region tree.

Meaning Symbol Definition

Regions R Root | r | P | R : r | R : ∗

Figure 9. Syntax of RPLs. Other syntactic elements are the same as in
Figure 6.

Constraint generation is the same as explained in Sec-

tion III-B1. However, we need to extend the solving phase

to handle recursion that would not terminate if we naively

applied the algorithm from Section III-B2. For example, that

algorithm would not terminate on the code in Figure 3,

because it would try to infer effects on infinite chains of

RPL elements, such as P : L : R : · · · . In such a case,

we want to cut off the recursion and summarize the infinite

set of RPLs with a partially specified RPL ending in ∗, as
described in Section II-C.

1) Algorithm Description: We say that an invokes con-

straint (invokes µ where θ) ∈ Kµ′ is recursive if and only

if µ = µ′, i.e., the method includes its own effects, through

a chain of one or more invocations. We define an expanding

substitution to be a substitution such as P 7→ R, where P

is the first RPL element of R, and R has more than one

element. For example, P 7→ P : R is expanding but P 7→ P

and P 7→ P ′ : R are not.

RPLs can become arbitrarily long when going under

multiple region substitutions. We bound the length of RPLs

to get readable effects and guarantee the termination of the

algorithm. Usually, developers write RPLs of length at most

three.

Figure 10 shows the modified constraint solving algo-

rithm. In lines 1–6, the algorithm normalizes the invokes

constraints of all methods. This normalization step truncates

all long RPLs and appends a star to them. It also detects

expanding substitutions in recursive invokes constraints and

appends a star to the RPLs in such substitutions.

The truncate function makes sure that no RPL longer than

a predefined length gets created. If it gets a long RPL, it

cuts it off to fit within the limit and appends a star, e.g.

P : R : S : T becomes P : R : ∗ to have a length of

three. It is necessary to make sure that the truncated RPL

ends with a star so that it covers the original long RPL.

The summarize function makes sure that each expanding

substitution in the given recursive invokes constraint ends

with a star. For example, summarize returns the substitution

P 7→ P : R : ∗ given the expanding substitution P 7→ P : R.

The algorithm iterates until all the effect and constraint

sets stabilize. As before, each iteration of the main loop

iterates over the method set M and adds effects implied

by the invokes constraints of Kµ. After adding the effects

of the callee in line 10, the algorithm iterates over the

invokes constraints of the callee, applies the substitution of

the callee on the region substitution of the invokes constraint,

and truncates the resulting region substitution to make sure

that no long RPL occurs. If the truncated substitution is

recursive and expanding, then the algorithm summarizes it

before adding it back to Kµ.

As before, all unions are up to redundant constraints and

effects. For instance, once writes R : ∗ appears in Kµ, the

algorithm never again adds reads R or writes R toKµ in line

10. Similarly, once invokes µ with P 7→ P : R : ∗ appears in

Kµ, the algorithm never adds invokes µ with P 7→ P : R : R
in lines 13 and 15. This pruning ensures that the algorithm

terminates (Section III-C3).

2) Example: Figure 11 illustrates the constraints and

effects inferred by each iteration of the repeat loop in

lines 7–16 of Figure 10 for the method setMassForTree

in Figure 3. Before starting iteration 1, the constraints and

effects are those computed up to line 7 of Figure 10. In this

example, we let the cut-off limit for the truncate function

be three. As a result, before iteration 1, the normalization

step of the algorithm (Section III-C1), appends stars to the

invokes constraints. In iteration 1, the algorithm detects two

recursive invokes constraints with expanding substitutions.

Then, it applies the substitutions of these two invokes

constraints on the effects discovered before iteration 1. This

input : Program P with region annotations

SetM of methods

Set Kµ of constraints for each method µ
output: A set of effects, Eµ , for each method µ

foreach µ ∈ M do1

foreach c = (invokes µ′ where θ) ∈ Kµ do2

if µ′ = µ and isExpanding(θ) then3

c ← (invokes µ′ where summarize(truncate(θ)))4

else5

c ← (invokes µ′ where (truncate(θ)))6

repeat7

foreach µ ∈ M do8

foreach c = (invokes µ′ where θ) ∈ Kµ do9

Kµ ← Kµ ∪ truncate(effects(K
µ′))10

foreach c
′ = (invokes µ′′ where θ′) ∈ K

µ′ do11

if µ′′ = µ and isExpanding(θ(θ′)) then12

Kµ ← Kµ ∪ (invokes µ′′ where13

summarize(truncate(θ(θ′))))
else14

Kµ ← Kµ ∪ (invokes µ′′
where truncate(θ(θ′)))15

until no Kµ changes16

foreach µ ∈ M do17

Eµ = effects(Kµ)18

Figure 10. The inference algorithm for RPLs.

Before Iteration 1 Iteration 1

Effects reads P:L, P:R writes P writes

P:L:*, P:R:*

Constraints invokes setMassForTree() where

{P 7→ P:L:*}, setMassForTree()
where {P 7→ P:R:*}

Figure 11. Effects and constraints inferred in each iteration of Figure 10
for the method setMassForTree in Figure 3.

application discovers the two new effects of iteration 1. The

algorithm terminates after iteration 2 because it does not find

any new effects in iteration 2.

Note that even though the effect summary writes P:*

shown in Figure 3 is correct (i.e., it type-checks), DPJIZER

infers a more precise (i.e., a more refined) summary. For

this program, DPJIZER infers writes P, P:L:*, P:R:*.

The effect writes P comes from the write access in line 8,

while writes P:L:* comes from the recursive function in

line 12. DPJIZER recognizes the recursive traversal of the

data structure, and partially specifies the affected regions as

P:L:*. The effect writes P:R:* comes from the recursive

function in line 15.

3) Termination and Algorithmic Complexity: There are

only a finite number of RPLs of a certain maximum length.

So, the total number of effects and constraints that can be

added to each set Kµ is finite. Because all Kµ sets are finite,

the algorithm terminates.

We analyze the running time of our algorithm in terms of

two parameters m and n and a constant c. The parameter m

is the maximum number of method invocations in a method

body, n is the number of possible RPL elements, and the

constant c is the maximum length of RPLs.

Because the length of RPLs is bounded by c, the total

number of possible RPLs is O(nc). Therefore, the number

of reads and writes effects of a method is O(nc).

Each method makes at most m invocations and each

invokes constraint has at most n region substitutions of a

length of at most nc. Therefore, the number of invokes

constraints of a method is O(mnc+1). In other words,

∀µ |Kµ| = O(mnc+1).
Assuming that the running time of the set union operation

is linear in the size of its operands, the running of the

algorithm is a polynomial in terms of m and n.

D. Owner Regions

DPJ provides a mechanism called owner regions for

recursively partitioning a flat data structure (such as an

array) in a divide-and-conquer manner. Figure 12 illustrates

how to use owner regions to write parallel quicksort. The

class DPJArray wraps an ordinary Java array and can

be used to partition the array into subranges, and class

DPJPartition is used to split the DPJArray into left

and right segments segs.left and segs.right, as

shown in lines 7 and 8.

The class DPJPartition dynamically partitions an

array into two subarrays which are nested under the this

region. Therefore, QSort.sort creates a binary tree of

QSort objects, with each in its own region. The compiler

verifies the noninterference of effects because the object

references to DPJPartition are distinct and the subarrays

are in disjoint regions nested under the object references.

In lines 11 and 12, the type of segs.left

is segs:DPJPartition.Left, where DPJParti-

tion.Left is a field region name (Section II-A) and the

final local variable segs functions as an RPL. When

a variable appears as an RPL, the region it represents is

associated with the object reference stored in the variable

at runtime, as in ownership type systems [6], [12]. The

region of the variable is nested under the region bound to

the first parameter of the variable’s type. Here, segs has

type DPJPartition<P>, so segs is nested under P. This

fact allows us to write the method effect summary writes

P:* covering both the write to P in line 6 and the recursive

invocations of sort in lines 12 and 15. Given this effect

summary, the compiler can use the inferred effects shown in

lines 10 and 13 to prove that the statements in the cobegin

block are noninterfering.

Figure 13 shows the syntax of Core DPJ extended to

support owner regions. Note that we have changed the

syntax of expressions in the following ways: (1) we add

a let construct to simulate final local variables; and (2)

we require the selector and actual argument of a method

invocation expression to be variables to keep the typing rules

simple.

Constraint generation works exactly as described in Sec-

tion III-B1 except for rules LET and INVOKE, shown in

Figure 14. In rule LET, we have to account for the fact that

RPLs generated inside the let expression may contain a

local variable z that is not in scope outside the body of

the expression. Therefore, we coarsen any such RPL z : R

1 class QSort<region P> {

2 final DPJArray<P> A in P;

3 QSort(DPJArray<R> A) pure { this.A = A; }

4 void sort() writes P:* {

5 /* Quicksort partition: writes P */

6 int p = qsPartition(A);

7 final DPJPartition<P> segs =

8 new DPJPartition<P>(A, p);

9 cobegin {

10 /* writes segs:DPJPartition.Left:* */

11 new QSort<segs:DPJPartition.Left>

12 (segs.left).sort();

13 /* writes segs:DPJPartition.Right:* */

14 new QSort<segs:DPJPartition.Right>

15 (segs.right).sort();

16 }

17 }

18 }

19

20 class DPJPartition<region P> {

21 region Left, Right;

22 DPJArray<this:Left> left in this:Left;

23 DPJArray<this:Right> right in this:Right;

24

25 DPJPartition(DPJArray<P> A, int pivot) {

26 left = (DPJArray<this:Left>)

27 A.subarray(0, pivot);

28 right = (DPJArray<this:Right>)

29 A.subarray(pivot, A.length - pivot);

30 }

31 }

Figure 12. Using owner regions to write quicksort.

Meaning Symbol Definition

Regions R Root | r | P | z | R : r | R : ∗
Expressions e let z = e in e | this.f | this.f = e |

z.m(z) | new C〈R〉 | z

Figure 13. Core DPJ with owner regions.

to R′ : ∗, where the type of z is C〈R′〉. Rule INVOKE

is nearly identical to the one shown in Figure 7, except

that we record the substitutions this 7→ z1 and x 7→ z2
as well as the substitution param(C) 7→ R. With these

changes, the solving algorithm works exactly as described

in Section III-C1.

(LET) Γ ⊢ e1 : C〈R〉,K1 Γ ∪ {(x, T1)} ⊢ e2 : T2,K2

θ = {x 7→ R : ∗}
Γ ⊢ let x = e1 in e2 : θ(T2), θ(K1 ∪K2)

(INVOKE) {(z1, C〈R〉), (z2, T)} ⊆ Γ method(C,m) = µ

µ = Tr m(Tx x) { e′ }
θ = {param(C) 7→ R, this 7→ z1, x 7→ z2}

Γ ⊢ z1.m(z2) : θ(Tr),K ∪ {invokes µ where θ }

Figure 14. Rules for generating constraints in Core DPJ with owner
regions.

E. Other DPJ Features

We now show how we extended the algorithm described

in Section III-C to handle the key remaining features of DPJ:

arrays and inheritance.

1) Arrays: DPJ provides two capabilities for computing

with arrays: array RPL elements and index-parameterized

arrays. An array RPL element is [e], where e is an integer

expression. Since array regions are just RPL elements (e.g.,

Root:[e]:r), the algorithm can handle them in exactly

the same way as described for name RPL elements. We just

need a constraint collection rule that says that if expression

e uses a method-local variable that is out of scope at the

point of the method prototype, then we replace the element

[e] in any RPL with [?], representing an unknown array

index element in the DPJ type system.

An index-parameterized array allows the programmer to

use an array index expression in the type of an indexed

element. For example, the programmer can specify that

the type of array index expression A[e] is C<[e]>. To

handle index-parameterized arrays, we just add constraint

generation rules for assignment and access through array

index expressions that are nearly identical to the rules for

field assignment and access shown in Figure 7. The rules

are also similar to the rules for array access typing shown

in [5].

2) Inheritance: DPJ supports inheritance, e.g., class

B〈P 〉 extends A〈R〉. Inheritance raises two issues for the

inference algorithm. First, we must translate inherited meth-

ods and fields from the superclass to the subclass. We do

this by applying the translating substitution θ implied by

the chain of extends clauses from the superclass to the

subclass. For example, if class C1〈P1〉 extends C2〈R1〉, and
C2〈P2〉 extends Object, then the translating substitution

from C2 to C1 is {P2 7→ R1}.

Second, DPJ requires that the declared effects of a method

include the effects of all overriding methods [5]. This gives

rise to a constraint similar to the one we represented by an

invokes constraint, except that it is simpler, because there

is no recursion in the inheritance graph. To handle this

constraint, we make two simple extensions to the algorithm.

First, in the constraint collection phase, after collecting

constraints from each method body, we add to each Kµ the

constraint isOverriddenBy µ′ where θ, for each method µ′

such that µ is overridden by µ′. Here, θ is the translating

substitution defined above. Second, in the constraint solving

phase, in each iteration of the repeat loop in Figure 10,

between lines 7 and 16, we add another iteration over all

methods µ ∈ M to add θ(Kµ′) to Kµ for each constraint

isOverriddenBy µ′ where θ in Kµ.

F. Applicability Beyond DPJ

The relevance of our effect inference algorithm is not

limited to DPJ: with suitable modifications, the algorithm

can be adapted to infer effects for other object-oriented effect

systems, such as ownership-based systems [6], [13], [14],

that have features similar to DPJ’s. Here, we illustrate how

the inference algorithm might be adapted to work on the

ownership-based effect system by Clarke and Drossopoulou

called Java with Ownership and Effects, or JOE [6].

JOE also employs method effect summaries and supports

effects on regions similar to DPJ’s owner regions, except

that JOE has no RPLs. Instead, JOE uses effect shapes of the

form p.n and under p.n, where p is a final local variable

or context parameter (similar to a DPJ region parameter),

and n ≥ 0 is a natural number. The shape p.n refers to all

descendants of p in the region tree that are n levels below

p in the tree, with p.0 being equivalent to p. The shape

under p.n is similar to an RPL with ∗ at the end and refers

to all p.n′ such that n′ ≥ n. The key rule of JOE, which

defines the region tree, is that if variable z has type C〈o〉,
then the shape z.n is covered by the shape o.n+ 1, where
o = owner(z) is the region bound to the owner parameter

in the type of z.
To adapt our algorithm to JOE, we make the following

modifications. First, instead of substitutions P 7→ R, we

use substitutions p.n 7→ p′.n + k, for k ≥ 0. Second, in
rule LET (Figure 14), when a variable z goes out of scope,

we generate an effect for the outer scope by applying the

substitution z.n 7→ o.n+1, where o = owner(z). (We could

also replace z.n with under o, as our LET rule does for

DPJ, but replacing z.n with o.n+1 is more precise.) Third,

we define an expanding substitution to be p.n 7→ p.n + k,

for k > 0, and when we see an expanding substitution, we

replace its right-hand side with under p.n+ k. Otherwise,

the algorithm works as described in the previous sections.

1 class List<o> {

2 int data;

3 List<this> next;

4 void update(int data)

5 writes this, under this+1 {

6 /* writes this */

7 this.data = data;

8 /* invokes update where

9 {this.n 7→ this.n+1} */

10 let z = next in

11 /* invokes update where

12 {this.n 7→ z.n+0} */

13 if (z != null) z.update(data);

14 }

15 }

Figure 15. Example of inferring effects for JOE.

Figure 15 shows how the algorithm infers effects for a

simple recursive JOE program. This code traverses and up-

dates a list such that each node of the list owns the next node.

The initial constraints gathered in the constraint collecting

phase are shown in the comments. Rule INVOKE generates

the effect in lines 11–12, which is adjusted to the effect

in lines 8–9 by the LET rule discussed above. At the end

of initial constraint collection, the constraints are as shown

in lines 8–9 and 11–12. In the first iteration of the solving

algorithm, the expanding substitution shown in lines 8–9 gets

summarized as this.n 7→ under this.n+ 1. Applying
this substitution to the effect writes this and putting the

result back into the constraint set yields the inferred effects

shown in line 5. The algorithm then terminates because there

are no new effects to add.

IV. THE DPJIZER TOOL

We have built an interactive tool, DPJIZER, incorporating

the algorithm discussed in Section III. We implemented

DPJIZER as an Eclipse plug-in. Given a partial DPJ program

with legal region annotations, DPJIZER produces a legal DPJ

program with region and effect annotations. In addition, the

tool has some valuable interactive features. A programmer

can select an effect in a method summary, and DPJIZER

highlights the statements or expressions that generated that

effect (as seen in the screen fragment in Figure 16). Alter-

nately, the programmer can select a statement or expression,

and DPJIZER highlights its corresponding effect in the effect

summary. Thus, when the compiler reports interference

warnings, the developer can use DPJIZER to localize the

problem and refine the region annotations accordingly.

We now describe in more detail how DPJIZER helps pro-

grammers write DPJ programs. Typically, a DPJ programmer

carries out the following steps to convert a given sequential

Java program to DPJ.

1) Choose which sections of code are to be run in

parallel, but do not yet insert the parallel constructs

(cobegin, foreach, etc.).

2) Devise a strategy for using region declarations, region

parameters, and RPLs to express the noninterference

of the parallel sections. Add these annotations and

make sure they pass the type checker. At this point,

the methods all have an empty summary, which in

DPJ means the most conservative effect, i.e., writes

Root:*. Such effect summaries will pass the type

checker but will not allow parallelism to be safely

expressed.

3) For methods transitively invoked by a parallel section,

refine the method summaries as necessary to make the

parallel tasks mutually noninterfering.

4) Add the parallel constructs to the parallel sections.

5) If there are any interference warnings, then revisit

steps two and three to revise the region annotations

and/or method effect summaries to eliminate the in-

terference.

DPJIZER helps this process in the following ways. First,

step three is completely automated. This automation removes

a lot of work from the development process, particularly if

the user has to do two or more iterations of steps two and

three. While the compiler provides error information of the

form “effect E is missing from the summary of method

m” that helps the user fix bad summaries, step three is still

time consuming and difficult. Code with many methods and

invocations requires a lot of summaries. Further, it is difficult

for a user to manually propagate effects backwards along

the call graph and around cycles. DPJIZER automates this

process.

Figure 16. The programmer selects an effect in the effect summary and
DPJIZER highlights the statement that generated that effect.

Second, DPJIZER helps step five by identifying the state-

ments and expressions within a method that are contributing

“bad” effects. A key part of this step is understanding the

statements and methods that contribute these effects; the tool

simplifies that greatly by allowing users to map effects back

to the expressions that produce them, and vice versa. With

additional programming (not yet implemented for lack of

time), the tool will also help understand better how effects

are propagated from methods to call sites, along with the

relevant substitutions and how they propagate around cycles

in the call graph, in some cases leading to summarization

with ‘*’.

V. EVALUATION

Research Questions. To evaluate the effectiveness of

DPJIZER, we answer the following two questions:

• Q1: Is DPJIZER useful? Does it alleviate the burden

of writing effect annotations?

• Q2: Are the inferred effects precise? Do the inferred

effects enable the compiler to prove determinism of the

program?

We answer these questions in two ways: with a case study

running the tool ourselves, and with a survey in which we

asked other programmers who have written DPJ programs to

run the tool and describe their experience using it. The case

study (Section V-A) provides quantitative answers, while the

survey (Section V-B) provides qualitative answers.

A. Case Study

1) Methodology: Table I lists the programs that we used

as case studies. Program size is given in non-blank, non-

comment lines of source code, counted by sloccount. These

programs were manually annotated with regions and effects

by other programmers before the existence of DPJIZER. We

took these programs, erased the effect annotations leaving

only the region annotations, and used DPJIZER to infer the

method effects.

To answer the first question (usefulness), we report the

number of effects that programmers wrote manually. To

answer the second question (precision), we check that the

effects inferred by DPJIZER are not interfering in the parallel

constructs (e.g., cobegin). We also compare the effects

written manually with those inferred by DPJIZER.

Note that DPJIZER’s analysis does not take parallel state-

ments into account. When using DPJIZER, it is assumed that

the code has an appropriate set of region annotations such

that a fine-grained enough set of effects would make the

effects of statements in parallel statements noninterfering.

So, the answer to the second question (precision) clarifies

whether DPJIZER infers such fine-grained effects.

2) Quantitative Results:

Q1: Is DPJIZER useful? From Table I one can see that

if the programmers had used DPJIZER to infer the method

effects, they would have saved writing 406 effects. Further,

the programmers would have saved the time it took to

generate these effects by manually propagating constraints

backwards through the call graph, around cycles, and up the

inheritance graph.

Q2: Are the inferred effects precise? Do the inferred

effects enable the compiler to prove determinism of the

program? We carefully analyzed the programs in Table I

and compared the effects written by programmers with the

effects inferred automatically by DPJIZER. Since program-

mers did not write effects for all methods, we can only

compare the effects for the methods that were annotated.

Table I shows the number of differences between the

manually and automatically inferred effects. Note that in all

cases, DPJIZER infers effects that are the same as, or more

precise than those written by the programmer. In terms of

precision, there are two categories of differences between

manually and automatically inferred effects: (i) granularity

and (ii) redundancy.

In terms of granularity, some of the manual effects are

too coarse-grained in the choice of effect keyword, e.g.,

writes R instead of reads R. This is legal (i.e., it type-checks)

but unnecessarily coarse and forbids the parallel execution

of two methods (e.g., two get() methods) that only read

region R and otherwise could have been executed in parallel.

Second, some manually inferred effects are too coarse-

grained in the region specification. For example, the pro-

grammer specified writes P:* when the appropriate effect

inferred by DPJIZER was writes P, P:L:*, P:R:*. The

coarser region inferred by programmer forbids any other

method that writes in a subregion of P to run in parallel.

This is an unnecessary restriction because the method only

writes in subregions created using the L or R prefixes, so

that another method that writes into P:M should be allowed

to run in parallel.

In terms of redundancy, some of the manually written

summaries contain redundant effects. For example, the pro-

grammer specified reads R writes R, but the read effect

is subsumed by the write. Alternatively, the programmer

wrote writes P, P:*, where the first region is redundant

since it is subsumed by the second region. Such redundan-

cies do not hinder parallelism but make the method effect

summary unnecessarily verbose, which can hinder program

understanding.

We carefully analyzed the source code of the methods,

and indeed DPJIZER inferred the most fine-grained effects

that are possible to express with the current DPJ language

and the user-defined threshold on the RPL length, and the

summaries do not contain redundant effects.

With respect to redundancy, DPJIZER does a better job

than the programmer. With respect to granularity, there

is a trade-off between expressible parallelism, reusability,

and readability of code. Fine-grained effects enable more

parallelism. However, the programmer might prefer coarser-

grained effects to aid reusability. For example, the program-

mer might make effects of a method coarser-grained to

allow future code extensions. For instance, she may prefer to

summarize the effect of a method as writes R, even though

reads R covers the effects of that method. But, she chooses

the coarser-grained effect, writes R, because she anticipates

subclasses that will override the method with the effect

writes R. DPJIZER works in a closed-world environment:

it only infers effects based on the available code and does

not take reusability into account. Therefore, the programmer

has to rerun DPJIZER each time she extends the code. Also,

an effect like writes P:* is coarser-grained than writes P,

P:L:*, P:R:*, but it is more readable.

For each program, the programmer wrote a set of regions

and parallel constructs. Then, DPJIZER inferred a set of

sufficiently fine-grained effects that enabled the compiler

to prove determinism of the program. That is, DPJIZER

inferred fine-grained effects that did not interfere in the

parallel statement, and enabled all of the specified parallel

constructs to run safely. To verify this, we checked that the

compiler did not report any interference warnings in the

code with inferred effects. The other way to verify this is to

notice that DPJIZER inferred effects that were finer-grained

than those written manually. Therefore, because none of the

manually written effects interfered in the parallel statements,

none of the inferred effects interfered either.

B. User Survey

We also conducted a preliminary survey of other program-

mers who have previously written DPJ programs. This study

comprised the following steps:

1) We elided the effect annotations on the programs

previously parallelized by these users, but retained the

region annotations they had written.

2) The users then used DPJIZER to infer the effect

annotations for those programs.

3) The users finally filled out a brief questionnaire asking

about the results, usability and overall experience of

using DPJIZER.

This study is limited because it only has a small number

of users and they all know the study authors. Nevertheless,

it provides some preliminary feedback on the usefulness of

the tool from experienced DPJ programmers not involved in

designing or building DPJIZER (none of them had seen or

even participated in discussions about DPJIZER before the

survey).

Program SLOC
of

Manually

Written

Effects

of Effects

Too Coarse

By

of

Redundant

Effects
keyword region

Barnes-Hut 698 47 1 0 3

CollisionTree 1021 83 4 14 0

IDEA 299 3 0 0 0

K-means 540 3 0 0 0

ListRanking 106 4 1 2 0

MergeSort 147 7 0 4 0

MonteCarlo 1502 179 5 0 16

QuadTree 143 13 1 2 0

QuickSort 150 12 0 0 3

StringMatch 380 54 5 21 2

SumReduce 60 1 0 0 0

Total 5046 406 17 43 24

Table I
LIST OF PROGRAMS, SIZES OF THOSE PROGRAMS, AND THE NUMBER OF

EFFECTS PROGRAMMERS HAVE WRITTEN. WE ALSO REPORT THE

MANUAL EFFECTS THAT ARE TOO COARSE-GRAINED BY KEYWORD

(E.G., PROGRAMMER WROTE writes R INSTEAD OF reads R) OR BY

REGION (E.G., PROGRAMMER WROTE reads R:* INSTEAD OF reads R).
THE LAST COLUMN SHOWS THE NUMBER OF REDUNDANT EFFECTS

(E.G., PROGRAMMER WROTE BOTH reads R writes R).

Usefulness: The users said the tool saved “a significant

fraction” of porting effort. One user said the tool saved “a lot

of time in the process of writing/adding annotations . . . and

then compiling to find more methods to annotate.”

Accuracy: One user thought the tool inferred too many

annotations: he would prefer to see fewer effect annotations,

and could re-run the tool if more were needed. Conversely,

he said the tool did help eliminate some redundant annota-

tions (compared with his manual effect summaries).

Requested features: The most requested features

included incremental addition of annotations; presenting

choices of annotations to the user and letting him choose;

and recommending better region structure to produce more

fine-grain effects. (The latter is outside the scope of the

current work but is a subject of future work, as described in

Section VII.)

Summary: Overall, all users said that they would use

DPJIZER to help write DPJ programs. One user said “I think

it will also help me redesign region structures to be more

precise and effective.”

VI. RELATED WORK

Method effect summaries. Many effect systems employ

effect summaries to enable modular analysis and compos-

ability of program components. The original proposals for an

object-oriented effect system [3], [15] use summaries, as do

several systems combining object ownership with some form

of effects [6], [14], [16]. Our work presents an algorithm and

a tool that can be used to infer such summaries.

Effect inference. The seminal work on inferring effects

is from Jouvelot and Gifford [7]. They use a technique

called algebraic reconstruction to infer types and effects in

a mostly functional language. Talpin and Jouvelot [8] build

on this work to develop a constraint-based solving algo-

rithm. These algorithms are tailored to a mostly-functional

language with a much simpler effect system than DPJ’s:

nested effects cannot be expressed, so no summaries such

as R : ∗ have to be inferred.

Bierman and Parkinson [9] present an inference algorithm

for Greenhouse and Boyland’s effect system [3]. The fea-

tures they consider are similar to the smallest subset of Core

DPJ we covered in section III-A, plus support for unique

reference annotations and a limited form of nesting. Again

there is no unbounded nesting.

Side-effect analysis [17]–[20] uses interprocedural alias

analysis and dataflow propagation algorithms to compute the

side effects of functions. There are two major differences

between these algorithms and DPJIZER. First, DPJIZER op-

erates on programmer-specified region types, which identify

and express effects more precisely than alias analysis. Sec-

ond, DPJIZER exploits the structure of RPLs to do a custom

solution for recursive calls, which should significantly speed

up convergence of the constraint solver.

Commutativity analysis [21] uses symbolic execution to

collect the side effects of methods and reason about which

pairs of methods commute with each other. The analysis

is fully automatic, but less expressive than DPJ, because

programs must be written in a certain restricted style in order

for the analysis to work.

Region and type inference. There is extensive litera-

ture on region inference for region-based memory man-

agement [22]–[25]. Several researchers have studied the

problem of inferring types or type qualifiers for imperative

programs with references. Kiezun et al. [26] show how to

infer Java generic parameters and arguments. Agarwal and

Stoller show how to do type inference for parameterized

race-free Java [27]. Quinonez et al. [28] present a tool called

Javarifier for inferring reference immutability for variables

(i.e., that the reference is never used to update the state

of any object that it transitively points to). Terauchi and

Aiken [29] present a type inference algorithm for deter-

ministic parallelism using linear types supplemented with

fractional permissions [30].

These algorithms are broadly similar to ours, in that they

collect constraints across the whole program and solve them.

However, the technical details are quite different because the

problem domains differ from our problem of inferring effects

for nested regions. The region and type inference techniques

may be useful in extending DPJIZER to infer DPJ region

annotations.

VII. CONCLUSIONS

We have presented an effect inference algorithm and

a tool, DPJIZER, that ease the burden of writing DPJ

programs. Our experience shows that DPJIZER infers ef-

fects that are are both readable and precise. The DPJIZER

algorithm is also applicable to other effect systems that rely

on method effect summaries and nested heap regions. As

future work, we plan to extend the capabilities of DPJIZER

so that it can help with region inference, i.e., inferring region

declarations, region parameters, and region arguments. Re-

gion inference in DPJ is challenging, but preliminary work

indicates that it should be possible to infer regions for many

common parallel patterns.

VIII. ACKNOWLEDGMENTS

This work is funded by Microsoft and Intel through the

Universal Parallel Computing Research Center (UPCRC) at

the University of Illinois and by NSF grants 07-02724, 07-

20772, 08-33128 and 08-33188.

REFERENCES

[1] J. M. Lucassen et al., “Polymorphic effect systems,” in POPL,
1988.

[2] R. T. Hammel and D. K. Gifford, “FX-87 perfor-
mance measurements: Dataflow implementation,” Tech. Rep.
MIT/LCS/TR-421, 1988.

[3] A. Greenhouse and J. Boyland, “An object-oriented effects
system,” ECOOP, 1999.

[4] “DPJ homepage,” http://dpj.cs.illinois.edu.

[5] R. L. Bocchino, V. S. Adve, D. Dig, S. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and
M. Vakilian, “A Type and Effect System for Deterministic
Parallel Java,” to appear in OOPSLA 2009.

[6] D. Clarke and S. Drossopoulou, “Ownership, encapsulation
and the disjointness of type and effect,” in OOPSLA, 2002.

[7] P. Jouvelot and D. Gifford, “Algebraic reconstruction of types
and effects,” in POPL, 1991.

[8] J.-P. Talpin and P. Jouvelot, “Polymorphic type, region and
effect inference,” J. Funct. Prog., July 1992.

[9] G. Bierman and M. Parkinson, “Effects and effect inference
for a core java calculus,” Workshop on Object Oriented
Developments (WOOD), 2003.

[10] R. L. Bocchino, V. S. Adve, S. V. Adve, and M. Snir, “Parallel
Programming Must Be Deterministic By Default,” in First
USENIX Workshop on Hot Topics in Parallelism (HotPar),
2009.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java
Language Specification, Third Edition. Addison-Wesley
Longman, 2005.

[12] D. G. Clarke et al., “Ownership types for flexible alias
protection,” OOPSLA, 1998.

[13] C. Boyapati, B. Liskov, and L. Shrira, “Ownership types for
object encapsulation,” in POPL, 2003.

[14] C. Boyapati, R. Lee, and M. Rinard, “Ownership types for
safe programming: preventing data races and deadlocks,” in
OOPSLA, 2002.

[15] K. R. M. Leino et al., “Using data groups to specify and
check side effects,” 2002.

[16] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith,
“Multiple ownership,” OOPSLA, 2007.

[17] J. P. Banning, “An efficient way to find the side effects of
procedure calls and the aliases of variables,” in POPL, 1979.

[18] B. G. Ryder, W. A. Landi, P. A. Stocks, S. Zhang, and
R. Altucher, “A schema for interprocedural modification side-
effect analysis with pointer aliasing,” TOPLAS, 2001.

[19] A. Salcianu and M. C. Rinard, “Purity and side effect analysis
for Java programs,” in VMCAI, 2005.

[20] A. Rountev, “Precise identification of side-effect-free methods
in java,” in ICSM, 2004.

[21] P. C. Diniz, “Commutativity analysis: A new analysis tech-
nique for parallelizing compilers,” TOPLAS, 1997.

[22] M. Tofte and L. Birkedal, “A region inference algorithm,”
TOPLAS, 1998.

[23] W.-N. Chin, F. Craciun, S. Qin, and M. Rinard, “Region
inference for an object-oriented language,” in PLDI, 2004.

[24] A. Banerjee, M. Barnett, and D. A. Naumann, “Boogie meets
Regions: A verification experience report,” in VSTTE, 2008.

[25] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney, “Region-based memory management in Cyclone,”
PLDI, 2002.

[26] A. Kiezun, M. D. Ernst, F. Tip, and R. M. Fuhrer, “Refactor-
ing for parameterizing Java classes,” in ICSE, 2007.

[27] R. Agarwal and S. D. Stoller, “Type inference for parameter-
ized race-free Java,” in VMCAI, 2004.

[28] J. Quinonez, M. S. Tschantz, and M. D. Ernst, “Inference of
reference immutability,” in ECOOP, 2008.

[29] T. Terauchi and A. Aiken, “A capability calculus for concur-
rency and determinism,” TOPLAS, 2008.

[30] J. Boyland, “Checking interference with fractional permis-
sions,” SAS, 2003.

