
10 UILU-ENG-87 -2001 

,2- 'ACIVIL ENGINEERING STUDIES 
):31 STRUCTURAL RESEARCH SERIES NO. 531 

• I 10 
129A 
531 

ISSN: 0069-4274 

3-DIMENSIONAL CONTRIBUTION TO 
FRAME-WALL LATERAL BEHAVIOR 

By 
CLAUDIO CHESI 

and 

w. C. SCHNOBRICH 

A Report on a Research Project 
Sponsored by 
THE NATIONAL SCIENCE FOUNDATION 
Research Grant CEE 83-12041 

DEPARTMENT OF CIVIL ENGINEERING 

UNIVERSITY OF ILLINOIS 

AT URBANA-CHAMPAIGN 

URBANA, ILLINOIS 

FEBRUARY 1987 





S0272 -J OJ 

REPORT DOCU MEIfT AnON 1 L4,REPORT NO. 

PAGE 
4. Title end S4Jbtltle 

3-Dimensional Contribution to Frame-Wall Lateral Behavior 

7. Authori.) 
Claudio Chesi and William C. Schnobrich 

9. Performlna Ors.nlz.tlon N.me .nd Addr ... 

University of Illinois 
208 North Romine Street 
Urbana, IL 61801 

12. Sponsortna O .... ntz.tlon N.me and Add,.... 

National Science Foundation 
1800 "G" Street, NW 
Washington, D.C. 20550 

15. Supplementary Note. 

·16. Abstract (Limit: 200 wordS) 

5. Repoit Date 

February 1987 

L Performlnc O .... nlntlon Rept. No. 

10. Projec:tITuk/Wortl Unit No. 

11. ContractCC) or Gr.ntCG) No. 

ec) 

(G) 

CEE 83-12041 

U. TySM of Report & Period CoYered 

14. 

Behavior of the first floor of the U.S.-Japan seven story reinforced concrete test 
structure was modeled by a finite element model. The constitutive matrix describing 
material behavior is a normal concrete model which included a smeared cracking 
capability. The computed response of the system was shown to have a dependence on the 
level of tension stiffening present in the concrete. The selection too Iowa value 
distorted the behavior observed in the model. The 3-dimensional effects presented in 
the test structure was also observed in the computational model. Motion of the tension I 
column was transmitted through the slab and beams to the outer frames. This mechanism . 
provided a significant contribution to the lateral load resistance. ! 

I 

17. Document Analysis a. Oes.crlpto,... 

Earthquake Response, Full-Seal· Test, Inelastic Behavior, Finite Element Analysis 

b. Identlfie,.../~n·Ended Terms 

c. COSATI Field/Group 

18. Availability Statement 

(See ANSI-Z39.18) 

119. Security Cia .. (This Report) 21. No. of Pa.es 

1~ __ U_n_c_l_a_s_s_l_·f __ i_e_d __________ ~ ____ 4~1~ _____ . ____ 

1
20

• ~~rr~~~i.f~~dPai:e) 22. Price 

See Instructions on Revers. OPTIONAL FOR .. 272 (4-77) 
(Formerly NTIS-35) 
Oepartment of Commerce 





3-DIMENSIONAL CONTRIBUTION TO 
FRAME-WALL LATERAL BEHAVIOR 

by 

Claudio Chesi 
and 

W. C. Schnobrich 

A Report on a Research Project 
Sponsored by the 

National Science Foundation 
Research Grant CEE 83-12041 

University of Illinois at Urbana-Champaign 
Urbana, Illinois 

February 1987 





TABLE OF CONTENTS 

Page 

INTRODUCTION ..................................................... 1 

NUMERICAL MODEL .................................................. 2 

NON-LINEAR STATIC ANALYSIS - MAIN RESULTS ........................ 8 

CONCLUSIONS ...................................................... 13 

ACKNOWLEDGEMENTS ................................................. 14 

TABLES ........................................................... 15 

FIGURES .......................................................... 16 

APPENDIX ......................................................... 34 

REFERENCES ....................................................... 41 





3-DIMENSIONAL CONTRIBUTION TO FRAME-WALL LATERAL BEHAVIOR 

by Claudio Chesi and William Schnobrich 

INTRODUCTION 

The subject of the research was suggested by the U.S.-Japan 

Cooperative Research Program, which consisted of the construction and 

pseudo-dynamic testing of a model building. In that program, the test 

specimen was a full-scale seven-story reinforced concrete frame-wall 

structure. Figs. I and 2 show schematic views of that structure. 

Resistance to lateral loads was provided by three parallel frames: two 

moment resisting space frames (the outer ones, frames A and C) and a 

coupled frame-wall (frame B). The connection among frames was realized 

by floor slabs with transversal beams. 

Several interesting aspects of the seismic behavior of concrete 

frames have been clarified by the experimental work and subsequent 

analytical studies associated with the NSF supported research being 

performed within that program. In this investigation, interest has been 

devoted to a specific experimental result, showing the sort of 

interaction occurring among parallel frames, due to the coupling action 

of transversal beams. 

In the early stages of loading, the response is controlled mainly by 

shear wall deformation. As loading proceeds, bending in the plane of the 

wall, indeed. causes extremely large elongation at the tension side of 

the wall, so that transversal beams framing into that wall undergo large 

relative vertical displacements between their ends. The shear forces 

thus generated have a stabilizing effect on the shear wall, increasing, 



2 

at the same time, the overturning moment in the outer frames. 

the so-called "3-dimensional effect." 

This is 

The contribution of the 3-dimensional effects to the building's 

ultimate resistance has a simple but meaningful interpretation in a 

collapse analysis, assuming that in the collapse mechanism plastic 

hinges develop at all the transversal beam ends (Yoshimura and Kurose, 

1985). More complete studies have been developed by Otani et al. (1985) 

and by Charney and Bertero (1982). These authors have incorporated the 

3-dimensional effect into computer codes for frame analysis, by simply 

introducing spring connections between the shear wall tension side and 

the corresponding columns in the outer frames. The spring stiffness is 

taken as close as possible to the transversal beam stiffness. 

In the present work, a finite element non-linear model is 

developed, representing a single floor of the test structure. The load 

has been progressively increased through a static monotonic process. 

Attention has been focused on the mechanisms generating the 3-dimensional 

effect. An estimation is also given of the contribution of this last 

mechanism to the total building resistance at different load levels. 

NUMERICAL MODEL 

The portion of the building included in the numerical model 

consisted of the first story plus a portion of the next story, up to 

mid-height between the first and second floor. Due to symmetry of the 

structure about the plane containing the shear wall, only one side, i.e., 

one-half of the building, was analyzed. A schematic view of the 
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structure as modelled is shown in Fig. 3; the finite element modelling of 

it resulted in the grid of Fig. 4. 

The following two kinds of elements have been used for the 

discretization of the different structural components: 

1) For the shear wall: a 9-node Lagrangian shell element (Milford 

and Schnobrich, 1984); the wall is subjected to in-plane forces only, so 

the element is used mainly to describe a membrane behavior. 

2) For the slab: the same kind of shell element but here it is 

subjected to both in-plane and out-of-plane forces. 

3) For the T-beams, resulting from an effective slab width plus 

eccentric web: the webs have been represented by the eccentric shell 

stiffener beam element (Milford and Schnobrich, 1984), which is in the 

form of a 3-node Lagrangian beam element. This last element, if used in 

conj unction with the 9-node Lagrangian shell element, is expected to 

provide an accurate description of the T-beam behavior. This feature was 

of special interest for the present analysis, as there was experimental 

evidence of a beam-slab interaction having a much more pronounced effect 

than conventionally assumed. 

4) For the columns: the same elements as in 3), which can simply 

work as beam column elements, if not coupled to shell elements. 

5) For the shear wall's eccentric columns: again, the same beam 

elements as in 4), but now with a zero bending stiffness. 

Non-linear material behavior was specified for all the elements but 

the columns. In the Milford and Schnobrich formulation, the beam is 

handled as a layered system, thus, the non-linear beam elements have 

non-zero bending stiffness in one direction only. For the purpose of 
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analyzing the 3-dimensional effect, however, bi-axial column bending had 

to be considered for the columns in the outer frames. These columns 

were, thus, considered to remain elastic. This assumption of elastic 

behavior for columns is supported by experimental results, those results 

showing plastic hinges occurring in beams much earlier than in columns. 

The RCSHELL and RCBEAM material models (Milford and Schnobrich, 

1984) present in Finite for the analysis of non-linear analysis of 

concrete behavior have been used in this study. Although these models 

represent exactly the same material, two distinct material 

specifications are required for shell and beam elements respectively. 

The concrete properties which are required as input to the material 

models are listed in Table 1 (see also Fig. 5). A reduced integration 

order (2x2 for shell elements and 2 for beam elements) has been used, so 

as to reduce poss ible problems from membrane and/or shear locking, the 

phenomena often observed with this class of element. With this 

implementation, no problems were encountered relative to the possible 

activation of zero-energy modes. 

The unloading capabilities, as incorporated in the two material 

mode Is, have been proven to be very important even for a monotonic 

loading process. As cracking is occurring at some integration points, 

indeed, temporary unloading and/or re-loading may be taking place at some 

other points. A typical a- E:. relationship as it will exist following 

several subsequent load steps is shown in Fig. 6 for a generic 

integration point. The tension stiffening parameter (fi), governing the 

post-cracking behavior of concrete, has shown a remarkable effect on the 

global structural response. Figure 7 shows the crack distribution 



5 

recorded in the shear wall at collapse for the cases computed while using 

/3-5 and that for {3=20. The corresponding (7- £ relationships for the 

reinforced concrete in the shear wall and that in the end columns are 

shown in Fig. 8. In both cases (i.e., for the two {3 values) a shear 

collapse occurs, although the two mechanisms are quite different. Note 

that in the second case ({3=S) , the horizontal crack at the wall base has 

propagated to all the integration points along the lowest level, and the 

wall bending stiffness was consequently sensibly reduced. 

In carrying out this investigation while using a model which 

includes only the first one and one-half stories, the following loads 

have been applied to the model: 

- vertical load, including slab weight and axial loads on 

columns and shear wall; these represent the effects of 

the upper stories in the response; 

- lateral load, including horizontal inertia force at 

the slab level, shear force and moment at the top 

of the wall. 

The lateral load was affected by a multiplier, representing the 

ratio between the total horizontal force and the total building weight 

(refer~nced in the following as the "lateral load intensity factor"). 

The constraints imposed on the model are: 

- .symmetry conditions on the symmetry plane; 

- fixed conditions at the colWUTI ends and shear wall bases; 

- hinges at the column's mid-heights; 

- the same horizontal displacement for the columns and the shear 

wall at the top of the model. 
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Moreover, the same z rotation (see Fig. 4) is imposed at all of the nodes 

at the slab-wall intersection; this stipulation is required as a 

consequence of the absence of a drilling mode for the planar wall 

elements. The theory which forms the basis for the development does not 

include a stiffness for rotations around the normal. This is a typical 

problem for shell elements intersecting at right angles. 

Several different models (ten) had to be tried, before the proper 

one could be defined. Major difficulties originated from two problems: 

1) In the early attempts to solve the problem, the model included a 

generic floor, with the shear wall and columns spanning one-half of 

the interstory height above and below the slab. In this way, the 

modelled portion of the wall was 5 m (16' 5") wide and 3 m (10') 

high. The constraints associated with the model make it impossible 

for the expected bending behavior to develop. By analyzing a model 

which included the entire first story, instead, (i.e., from the base 

of the columns to mid-height between the first and second stories) 

allowed the inclusion in the model of a larger portion of the wall. 

The expected behavior was then observed. 

2) Special care had to be used in the definition of the normal and the 

shear stresses applied at the top of the shear wall. These 

represent the shear load and moment coming from the upper 

structure. Improper stress distributions caused a local failure 

before a global collapse of the model could take place. The 

solution shown in Fig. 9 was then adopted: an extra portion of the 

wall was included in the model and the loads applied at the top of 

that wall. In this way, the same moment at the base of wall could 
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be developed by lower intens i ty forces. Stresses, moreover, were 

not imposed in the whole region of interest but, rather, were 

allowed to redistribute. 

Note also that a simplified model was used in most of the preliminary 

analyses, with non-linearity restricted to only the wall. This last, 

indeed, due to the extremely high lateral stiffness just of the wall 

itself, governs totally the model's global response. 

A few remarks about the model: 

1) The real structural behavior cannot be reproduced by a numerical 

model that includes only one floor: 

- not only external forces, but internal forces as well have 

to be specified, in order to represent continuity with 

upper floors. Internal forces, however, are not known 

a priori; 

- a single load pattern must be used throughout the analysis, 

while the internal force distribution depends on the load 

level; 

- due to the absence of the upper floors, column and wall 

axial loads representing those upper floors do not include 

the effect of the shear forces associated with the trans

verse beam bending of the upper levels. 

2) As a consequence, the lateral load systems in the model and in the 

test structure are different. Equivalence between the two has been 

imposed so that yielding of the wall's main reinforcement occurs for 

the same lateral load factor in both cases. 
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3) It is worth underlining, however, that the model does not have, as 

its purpose, the reproduction of the global structural behavior; 

rather, it aims at reproducing the three-dimensional resistance 

contribution developed by the slab and transverse beams. This is a 

local phenomenon, requiring the analysis of a single floor only. 

NON-LINEAR STATIC ANALYSIS - MAIN RESULTS 

The non-linear analysis was carried out by progressively increasing 

the lateral load intensity factor through 136 load steps. Major efforts 

(see Appendix) were required to follow the crack opening and propagation 

throughout the shear wall, which governed the whole structural response. 

On the one side, indeed, the non-linear problem connected with wall 

cracking is a hard one. The wall is subjected to in-plane or membrane 

forces only. The stiffness contribution associated with an integration 

point suddenly drops to zero at that integration point as cracking 

occurs, then large amounts of load are released and have to be 

redistributed. On the other end, the shear wall is by far the stiffest 

element in the model, so that most of the lateral load is carried by it, 

and the resistance contribution from the other elements is very small. 

The following is a brief history of the wall cracking and 

structural behavior. 

The linear elastic range extends up to a lateral load intensity 

factor of 0.113 (note that, according to Wight et ale (1984), the design 

value was 0.112). Non-linearity occurs because of cracking at the base 

of the wall with the end column in tension (see Fig. 10). As a 

consequence of this, cracking soon extends to the adjacent points along 
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the wall base. During the next load steps, other points on the wall end 

column crack, followed immediately by the adjacent wall points. At the 

same time, the crack at the wall base propagates towards the compressed 

end, causing a "neutral axis migration" to take place. Note that, 

because of this last phenomenon, the increase in the moment is carried 

more by a lever arm action than by an increase in tension stresses. 

Figure 11 gives a clear picture of this effect; the increase of axial 

load in the column does not counterbalance that in the wall moment. At 

load step no. 84, the wall base and the end column are completely cracked 

(26 cracks opened or integration points cracked, see Fig. 10); then, the 

axial load in the left end column starts increasing again, until 

reinforcement yielding occurs in the end column at load step no. 119. 

This step corresponds to a lateral load factor of 0.244. The 

corresponding crack distribution is given in Fig. 10. The strain profile 

over a cross section at the base of the wall is shown in Fig. 12. 

Agreement with the experimental profile is satisfactory; note, moreover, 

that a few wall bars had already yielded at previous load steps. 

The analysis was then carried on for a few more load steps, and 

terminated at load step no. 136, before the model had reached a complete 

collapse (no plastic hinges had formed yet in beams). The reason for 

stopping the analysis was due to the very low convergence rate of the 

model. The lateral load carrying capacity of the system, indeed, was 

extremely reduced, so that the load step size was necessarily very 

small. Most of the expected behavior had already developed. 

A global description of the structural response is given in 

Fig. 13, in terms of the lateral load-horizontal deflection curve. 
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Sudden, but temporary decreases in stiffness can be observed at the 

cracking of each of the integration points of the wall end column in 

tension. The figure also shows the high degradation of the wall's 

lateral stiffness, resulting in the transfer of the addi tional shear 

forces from going into the wall to going into the adj acent columns, as 

the lateral load increases. 

In order to investigate the 3 -dimensional effect, attention has 

been focused on the elongation of the tension side of the wall, which is 

the key parameter controlling the bending of the transverse beams. With 

the cracks opening to nearly the compression column, the wall tends to 

pivot around that compression column. Thus, movement on the tension side 

is quite significant, while on the compression side the movements are 

nominal. Figure 14 shows the load deflection curve, relating the lateral 

load factor to the vertical displacements at the joint where the beams 

frame into the wall's tension side. 

Fig. 13 is reflected in this figure. 

The same behavior observed in 

A comparison is also given with 

test results. The model appears a little stiffer than the test 

structure, mainly at the low load levels (where the model assumes 

concrete to be uncracked). 

The magni tude of vertical displacements suggests that bending of 

transversal beams has been activated. This is discussed in the 

following. 

Figure 15 shows the axial loads present at the base of both the 

columns and the shear wall for a lateral load factor of 0.244. The 

effect of gravity is not included in the values given in Fig. 15. 

Columns A and C, connected by beams to the wall's tension side, undergo 
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much higher loads than the corresponding columns connected to the wall's 

compression side (as expected based on the observed displacements 

described in the previous paragraph). The effect is most pronounced in 

column c· , the increase in axial load which comes from the 

transversal beam shear, gives a measure of the 3-dimensional effect. 

Figure 16 shows that, as expected, the axial load increase in the column 

and the shear in the transversal beam are about the same and grow 

proportionally to wall elongations. Note that the vertical equilibrium 

is satisfied by axial forces in columns A, B, C, D, E, and F. A portion 

of the boundary column's axial load has been transferred to the 

surrounding columns as a consequence of the wall's tension side 

elongation. The wall moment resistance is thus enhanced by the formation 

of a moment resisting mechanism, including both the wall and the columns. 

A measure of the contribution developed by the 3-dimensional effect 

to the total resistance can be defined by comparing the moment developed 

by ~C to the total overturning moment. The result of this comparison is 

shown in Fig. 17, where the beams at all the floors are supposed to 

develop the same contribution at collapse. Again, the dependence on the 

end column elongation is evident. After this member has entirely 

cracked, the percent contribution becomes almost constant. Note that a 

meaningful value of this is reached with the wall main reinforcement 

still elastic: the deformations activating the 3-dimensional effect come 

more from the concrete cracking than from column bar yielding. 

The 3-D contribution to resist the overturning moment reached a 

value of 6.12% at load step no. 136, at which point the analysis was 

terminated. It is not difficult to give an approximate evaluation of 
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the maximum value for this 3-D contribution. A further increase of the 

lateral load would produce plastic elongation of the reinforcement in the 

wall's end column and formation of plastic hinges at both ends of the 

transverse beams (this was observed in the experimental analys is as 

well). In such a situation, the limit value for shear in transversal 

beams has been estimated as T = 6t (metric tons), or 13.2 kips, 

corresponding to a value of 6.87% for the above percentage contribution. 

(The average value of the shear stress in the transverse beam is about 

5 kg/cm2, or 70 psi.) This resul t is not far from the one given by 

Yoshimura (1985), who estimated the contribution of the transverse beams 

to building moment resistance at a value of 8%. 

It is worth mentioning also that a meaningful contribution to the 

bending resistance of the transverse beams is provided by the slab. 

Clear evidence of this was given, among others, by Yoshimura (1985), 

through an analysis of the status of bar yielding in the test structure, 

and by Joglekar et al. (1985), who tested beam-column-slab assemblies. 

It is a common conclusion that the slab width which is effective with the 

beam in carrying moment is significantly larger than that prescribed by 

design codes (ACI 318-83 included). In the present analysis, eccentric 

shell stiffener beam elements have been used to model the transverse 

beams. This modelling allows a good representation of the beam-slab 

interaction phenomenon, and the same conclusion has been achieved. 

Figure 18 shows bending moments in the transverse beams and both 

moments and tension strains in the slab, at load step no. 136. The slab 

contributes to the moment carrying capacity mainly by providing the beam 

with additional tension bars (the moment carried by the slab itself is 
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only a small percentage of total moment). In Fig. 18, a reasonable value 

for the effective slab width (w) is suggested (w is the ratio of total 

tension force carried by bars in the beam influence area and the tension 

per unit length at the beam axis). A value of w = 215 cm (7') is so 

found, while a value w = 150 cm (4' 11") would be prescribed by the ACI 

318-83 Code. When computing the limit value for the shear force, 

w - 215 cm was used. Note, however, that w is a function of the lateral 

load intensity (as also remarked by Joglekar et al. (1985)), in the sense 

that a higher value should be expected for higher load intensities. 

CONCLUSIONS 

The behavior of the first floor of the U.S.-Japan seven-story test 

structure was modelled by a finite element model, which used as its 

material, those properties of reinforced concrete. Nine-noded shell and 

three-noded beam elements were selected for the model. 

The computed response of the system was shown to have a dependence 

on the level of tension stiffening assumed to be present in the 

concrete. Se lection of too low a value for the stiffening parameter f3 

distorts the behavior observed in the model. 

used in this study. 

Values of 5 and 20 were 

The three -dimensional effects present in the test structure were 

also present in the model. With increased deflections the wall tended to 

pivot about the compression columns. The motion at the tension column 

was transmitted through the transverse beams to the columns in the out 

frames. Computed response was similar to the experiment. 
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The computed effective slab width was found to be in excess of that 

prescribed by ACI 318-83. 
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Concrete initial tangent modulus (Eo) 

Concrete cylinder strength (f') 
. c 

Concrete tensile strength (ft ) * 
Strain at maximum concrete stress (s ) cu 
Ultimate stress factor (FCU) 

Ultimate strain factor (ECU) 

Linear elastic option 

Fixed crack direction option 

Concrete tension stiffening 

Concrete tension stiffening factor (S) 

Number of concrete layers 

Number of reinforcement layers 

Reinforcement tangent modulus 

Reinforcement plastic modulus 

Reinforcement tension stiffening 

Yield stress of reinforcement 

237000 kg/cm 2 

290 " 

22 

0.0021 

0.89 

1.42 

"F ALSE" 

"F ALSE" 

"TRUE" 

5 

8 

4 

" 

1710000 kg/cm 2 

o 
"F ALSE" 

3650 kg/cm 2 

Then, for each reinforcement layer at each integration 

point: 

- depth of reinforcement layer "i" 

- area of reinforcement for layer "i" 

- direction of reinforcement layer "i" 

(*) Concrete tensile strength computed as: 

f t = 5 /4200 = 324 psi = 22 kg/cm 2 

TABLE 1 
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Figure 7 Crack distribution in the shear wall for 
different values of the S parameter 
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Figure 9 The modified scheme for the finite element analysis, 
including an extra-portion of the shear wall 
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APPENDIX 

The RCSHELL and RCBEAM Material Models 

Two options exist for handling the tension stiffening effect 

present in a finite element description of the behavior of a region of 

reinforced concrete: TENSC and TENSS. With TENSC the stiffening is 

assigned to the concrete model, while with TENSS the steel model 

reflects the stiffening effect. 

1) If the TENSC option (tension stiffening applied to concrete) is 

used, the response of the material models to increasing tension strains 

is governed by the following rules: 

a) A linear elastic behavior is assumed for o<Ot (at concrete 

tensile strength). In Fig. A.l, at the end of the first load step 

£=£1; the corresponding stress is 01 and the initial tangent modulus 

(Eo) is used. This modulus is also used for the next step; 

b) If during a load step, the tensile stress increases such that the 

specified tensile strength (Ot~) ____ i_s ___ e_x __ c_e_e_d~e~d~,~~i~n~i~t~l_·a_l~l~y ___ n~o 

correction is applied to this computed stress. In Fig. A.l if 

during the second load step the strain is increased from £1 to £2. 

the new stress value is 02 (independent of the number of iterations 

performed), and this stress is not yet corrected for having exceeded 

at. Furthermore, the initial value of the tangent modulus (Eo) is 

assumed to remain at (Eo) for the next load step also; 

c) I f in the next load step the s train is further increased, the 

corresponding stress is then computed on the unloading branch of 
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+the 0-£ diagram. In Fig. A.l at step 3, £ is increased to £3 and 

the corresponding stress is 03. Due to the assumption E=Eo, 

however, the residual load is proportional to 110=°3-°3· This 

residual load is now iterated out of the system. At the next 

stiffness update the tangent modulus will be set to zero (in 

Fig. a.l, step 4, £=£4 produced 0=°4) . 

The above behavior is controlled, in the material models, by the crack 

flags CFlAG and CCFlAG , wi th CFLAG o corresponding to uncracked 

concrete, i.e., o<Ot, and CFlAG = 1 to cracked concrete. CFlAG is used 

to check the current state of the material and, consequently, to take 

decision, while CCFlAG is used to store the updated value of CFlAG. The 

updated value is transferred to CFLAG at iteration 1 of each next load 

step. In Fig. A.l, when 0=02 (i.e., at the end of the second load step), 

CFlAG - 0 and CCFlAG - 1. As CFLAG = 0, the s tress is computed by 

extrapolating along the linear branch of the diagram and the updated 

value for E will still be Eo. At the conclusion of the second step, 

CCFLAG is se t to 1. Then in the next step, CFlAG is set to 1; if a 

stiffness update is requested (at the second iteration or further), E is 

set to zero. 

As a consequence of this manner of handling the conditions at the 

initiation of cracking, the computed solution may depend on the load step 

size. An examp Ie is given in Fig. A. 2a. The strain £b is reached 

through two load steps; the corresponding stress is abo In' Fig. A.2b the 

same strain £b is reached through three load steps, and the corresponding 

stress is abo Because the solution now includes enough load steps beyond 
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cracking to trigger iterations on the unbalanced excess tension, stress 

difference in final results are significant. 

Due to the above problems, updating the tangent stiffness matrix at 

the second iteration, rather than at the first one, has been proven an 

efficient procedure. 

2) If the TENSS option (tension stiffness lumped to steel) is 

used, the behavior of concrete is the same as with the TENse option, 

while the steel stress is always given the corrected value, i. e., the 

most updated one. The global behavior at first cracking results to be as 

shown in Fig. A.3: 

a) let the starting point be A, corresponding to a strain value £1; 

b) if the strain is increased from £1 to £2, the new solution is not in 

B', as it might be expected, but, rather, in B, as the steel elastic 

modulus has been updated to the new value 4Es; 

c) if no iteration is done, the solution at the next load step will be 

on the OD branch of the diagram, but, 

d) if iterations are done, the negative residual load Rl causes the 

strain to be reduced to a value £~. This las t corresponds to a 

positive residual load R2. At the next iterations, the solution 

will always oscillate between strain values less than and greater 

than £t, respectively. No convergence can be found. 
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Choosing a suitable solution procedure 

The above problems suggest that special care should be used in 

membrane applications, if one or both the material models are employed, 

and the TENSC option activated. Using a very small load step size could, 

generally, lead to a good solution, provided that a reduced number of 

iterations per step is done. While iterating, indeed, overshooting may 

occur at new integration points, and unloading will start at the next 

step only. 

A more rational approach would require to size the load steps so as 

to minimize overshooting. This is what was tried in the present work; 

details about the solution procedure are given in the following. The 

procedure was applied to the shear wall elements, which undergo membrane 

stresses only. 

For the purpose of checking whether overshooting occurred at an 

integration point, the tension principal stress has to be compared to 

the tensile concrete strength (at). The output stresses come from the 

superposition of both concrete and steel stresses; so the concrete 

stresses have to be separated as: 

a 
x-conc. ax-tot. - ax-steel a 

x-tot. 
E £ 

S X 

in each of the X and Y directions of the reference system. The 

principal strain directions have then to be found, which are assumed, in 

Milford's and Schnobrich's material model, to coincide with the 

principal stress directions. Finally, rotating the concrete stresses to 

the principal directions gives the "principal stresses". From these 

values, the a-£ theoretical curve can be reproduced and cracking 

checked. The a values for the current load step and the previous one are 
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now compared. If overshooting occurred at an integration point at a too 

large extent, comparing the two solutions suggests a better size for the 

load step, so as to reduce overshooting. If no new crack has opened, the 

size for the next load step is governed by the highest tension stress. 

After at has been exceeded at an integration point, a small load step is 

used in order to allow a stiffness update. 

A better solution to the problem, however, would require changes in 

the material model such that: 

1) the computed solution is always on the a-£ curve; 

2) if cracking occurred, the tangent modulus is immediately set 

to zero (eliminate the need of waiting for a new load step). 
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Figure A.2 Different responses due to different loading 
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