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CHAPTER 1

INTRODUCTION

1.1 Objective and Scope

The availability, diversity, and utilization of anisotropic materials
have 1increased at a remarkable rate during the past few decades. When
attempts were made to predict the behavior of these materials, it was
evident that the available theoretical methods were far from satisfactory.
As a result, much renewed interest has been directed to the theory of anis-
tropic elasticity. In particular, the problem of stress concentration
around cavities in a medium occupying the entire space has long been the
subject of numerous investigations, not only because of its important role
in fundamental elasticity problems but also because of ﬁodern engineering
design concerns.

The objective of this study is to develop an explicit analytical solu-
tion for the non-axisymmetric problem of three—dimensional stress
concentration in a transversely isotropic medium containing a spheroidal or

spherical cavity.

1.2 History and Literature Survey

Stress concentration can be described as the local intensification of
stress as the result of nearby changes 1in geometry or discontinuities in
material or load. When a cavity exists inside the material, it gives rise

to stress concentration and often leads to structural failure. Since the



first investigations of the stress concentration problem during the second
half of the 19th century, considerable research has been done on the
problems of determining the stress concentration produced in an elastic
body by a spherical or spheroidal cavity. A general review of stress
concentration in linear elasticity has been given in a 1958 survey paper by
Sternberg [40]. Eight years later, Neuber and Hahn [31] again reviewed
stress concentration in scientific research and engineering. Because of
the enormous number of articles concerning this subject, we will only
briefly present the work relevant to the three-dimensional stress concen-
tration problems in an infinite medium containing a spheroidal or spherical
cavity or inclusion.

As early as 1866, Lamé [22] investigated the problem of the spherical
shell wunder uniform external pressure. A few decades later, Larmor [24]
studied the effect of a spherical cavity on a field of pure shear. A
closed form solution for a spherical cavity in an infinite isotropic medium
under uniaxial tension was presented, without derivation, by Southwell and
Gough [39]. Goodier [14] investigated the concentration of stress around
spherical and cylindrical inclusions and obtained 1in a general form the
Southwell and Gough solution. The spheroidal cavity under uniform axial
tension, pure shear, and torsion was first considered by Neuber [30]. An
investigation of the stress concentration around an ellipsoidal cavity in
an isotropic medium under arbitrary plane stress perpendicular to the axis
of revolution of the cavity was undertaken in 1947 by Sadowsky and
Sternberg [35]. They further presented an analysis of the triaxial ellip-—

soidal cavity in an infinite medium under a uniform stress field at



infinity [36]. In 1951, Edwards [9] obtained a solution for the stress
concentration around a spheroidal inclusion in a medium subjected to a uni-
form stress field at dinfinity. A general representation of the stress
concentration problems in isotropic materials appeared in 1965 when
Podil'chuk [32] studied the deformation of an axisymmetrically loaded elas-—
tic spheroidal cavity. Later, he extended his study to include the non-
axisymmetric deformation of spheroidal cavities [33].

Although the stress concentration problem has been extended to aniso-
tropic materials, very few three-dimensional anisotropic elasticity
problems have been solved. Chen [5] solved the problem of uniaxial axisym-
metric tension applied at large distances from a cavity in a transversely
isotropic medium. In 1971, he also presented the general solution for an
infinite elastic transversely isotropic medium containing a spheroidal
inclusion [7] with the restriction that the prescribed stress field is
axisymmetric and torsionless. In addition, he solved the spheroidal inclu-
sion problem under pure shear in and out of the plane of isotropy and
modified Bose's solution [3] for the torsion of a transversely isotropic
medium containing an isotropic inclusion, to the case of a spheroidal
inclusion in which the material may be transversely isotropic, provided
that the axes of anisotropy of both the medium and the inclusion be the
same [4]. To the the best of our knowledge, Chen's solution for the stress
concentration around spheroidal inclusions and cavities in a transversely
isotropic material under pure shear are the ounly non—-axyisymmetric problems
whose solutions are available. The present work extends the work by Chen

[4-7] whose solutions can be deduced from this approach.



1.3 Organization of the Study

After the aforementioned historical review of the problem of stress
concentration, the basic formulae and the potential functions approach in
the three—dimensional elasticity theory of transversely isotropic materials
are presented in Chapters 2 and 3, respectively.

In Chapter 4, we introduce the special coordinate systems used to
solve the cavity problem and the potential functions in terms of the asso-
ciated Legendre functions of the first and second kind as well as some
important identities that the potential functions satisfy. The formulation
and the analytical approach of solving the first and second boundary value
problems of elasticity theory for a spheroidal cavity embedded in a trans-
versely isotropic medium are presented in Chapters 5 and 6. Problems for
cavities and inclusions subjected to a general constant stress field at
infinity are solved at the end of these two chapters,

In Chapter 7, numerical investigation of the stress concentration
factors associated with axisymmetric and non-axisymmetric problems for a
variety of materials 1is carried out. The effect of anisotropy on the
stress concentration factor is discussed.

Chapter 8 summarizes the developments of this study and makes recom-

mendations for further study.



CHAPTER 2
TRANSVERSELY ISOTROPIC MATERIALS

2.1 Definition

A transversely isotropic material ié an anisotropic one for which the
Hookean matrix at a point remains invariant under an arbitrary rotation
about an axis (the "axis of elastic symmetry” of the material).

.Theré' are séme crystalline materials recognized as transversely
isotropic. These include ice, cadmium, cobalt, magnesium, and zinc. Other
examples of transverse isotropy are provided by materials having hexagonal
structures such as fiber-reinforced composites [Z]Ias shown in Fig. 1 and
the honeycomb structures of Fig. 2, as well as laminated media (Fig. 3).
Stratified rocks and scils can also be modeled as a homogeneous transverse=

ly isotropic medium [23,37,38,42].

2.2 Fundamental Formulae

Consider a homogeneous transversely isotropic elastic medium occupying
a region of the three—dimensional Euclidian space referred to a fixed
cylindrical coordinates system (r, 8, z) in which the z-axis coincides with
material axis of symmetry. Let (ug, ug, uz) denote the cylindrical scalar
components of the displacement vector and (€pr, €gg, Yzz, Yoz Yrz>» Yrg)

denote engineering strains by
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In certain applications of the theory of elasticity of transversely

isotropic materials, Hooke's law may be written in the form

- o -
err all a12 a13 0 0 0 rr
€56 315 37 35 O 0 0 Sy
€22 313 313 333 0 0 0 %2
- (2.2.3)
Yez 0 0 0 aM‘ 0 0 062
Yez 0 0 0 0 a, 0 9y
0 -
Yre_J 0 0 0 0 2 (all 312) cre
— pad .J - -

4 ~ ~ L 1
In the literature, the coefficients 3115 3195 3135 239, and a,, are called

“"compliances” whereas the elastic constants are called "stiffnesses”. We
may also write, for convenience, age ™ 2(all - alz).

It is evident from Egs. (2.2.2) and (2.2.3) that the elastic constants
(stiffnesses) can be converted to the compliances and vice versa by the
standard determinant procedure for solving simultaneous equations. By
doing so, the following relationships are found:
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2,3 The Engineering Constants

Some authors replace the elastic constants and the compliances by the
so—called engineering constants which can be interpreted to be Young's
moduli, the shear moduli, and Poisson's ratios associated with various

directions (see [25]). If we introducefthese'constants which are related

to the compliances by:

- X ey v
1 " E 22" 37" 3
(2.3.1)
-+ = L 1_2(1+v)
R R N O s
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E are Young's moduli in the plane of isotropy and perpendicular

respectively.

Poisson's ratio characterizing transverse contraction 1in the

of isotropy when tension is applied in this plane.

Poisson's ratio characterizing transverse contraction in the
of isotropy when tension is applied in a direction normal to the

of isotropy.

G and G are shear moduli for the plane of isotropy and any plane per-—

pendicular to it respectively.

The engineering constants and the elastic constants can be related to

other by means of Eqs. (2.2.5) and (2.3.1). These relations are given

[ c
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where A and p are the well known Lame's constants, v is Poisson's ratio,

and E is Young's moduli.

2.4 Restriction on the Elastic Constants

Eubanks and Sternberg [15] show that the necessary and sufficient con—

ditions for positive definiteness of the strain energy density are that

i > leppl 20 s ey 2 0 e 20, e >0
(2.4.1)
CoqalCyy +c,,) = 2¢ 2 _ C,,Ch,—C 2 -C,.C > 0
33711 12 13 11733 13 13766
or
a;; > [alzl >0 , a3, >0 , a, > o , age > 0
(2.4.2)
2
a33(ay; *ap) 22,3 > 0
or, equivalently,
E>0 , E>0 G>0 G ==tu >0
’ ’ 2(1+v)
(2.4.3)

(l—v)-232%>0 , l<v<l

Negative values of Poisson's ratio have been reported indirectly by
Hearmon in Reference [19] for zinc and cadmium sulfide (CdS). This data is
questionable, since virtually all real materials have positive values of
Poisson's ratio. The negative values of Poisson's ratio are, therefore,

omitted from the discussion in Chapter 7.
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Inequalities (2.4.3) become for materials having positive Poisson's

ratio:

>0 , 0<v<1-25° (2.4.4)

=1
v
o
t
v
o
(31
mijm

the last inequality of (2.4.4) is plotted in Fig. 4. The interior area

. s E
bounded by a parabola corresponding to a specific value of-E , represents
the valid domain of variation of Poisson's ratio. Line OI represents the

E
isotropic materials. It is noteworthy that for values of E > 2, Poisson's

ratio v might exceed unity.

2.5 Values of the Elastic Constants

The numerical values of the elastic constants for a variety of differ-
ent hexagonal crystalline and non-crystalline materials are reported by
Hearmon in the revised edition of Landolt-Bdrunstein [19]. Some of these
materials are listed in Tables 1 and 2. In both tables, the unit used for
the elastic constants cij is the gigapascal (GPa = 1010 dyne/cm2) and the
unit used for the compliances ajj 1is the reciprocal of terapascal
(TPa = 103 GPa).

Moreover, the elastic constants of fiber reinforced materials can be
calculated by utilizing the technique developed by Hlavacek [17,18] or by
Hashin and Rosen [15]. Achenbach [l] has presented a procedure for the

computation of the effective moduli of laminated media while Salamon [37]
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derived expressions for the elastic moduli of a stratified rock mass and
Wardle and Gerrard [42] discussed the restrictions on the ranges of some

of the five elastic constants.



Table

l. Elastic Constants for Hexagonal Crystals

Material Values of the Elastic Constants (GPa) Values of the Compliances (TPa)

‘11 ‘12 “13 €33 4y 11 319 %13 433 344
Beryllium, Be 292 24 6 349 163 3.45 -0.28  -0.05 2.87  6.16
Cadmium, Cd 116 42 41 50,9  19.6 12.2  -1.2 -8.9 33.8  51.1
Cobalt, Co 295 159 111 335 71.0 5.11 =-2.37  -0.94 3.69 . 14.1
Graphite, C 1060 180 15 36.5 4 0.98 -0.16  =-0.33 27.5 250
Hafnium, Hf 181 77 66 197 55,7 7.16  -2.48  =1.57 6.13 18,0
Ice, Hy0 at (-16°C) 13.5 6.5 5.9 14.9  3.09 105 -40 -25 87 325
Magnesium, Mg 59.3  25.7  2l.4  6l.5  16.4 22.0  -7.8 ~5.0 19.7  60.9
Quartz, B-Si0 117 16 33 110 36.0 9.41  -0.6 ~2.6  10.6  27.7
Rhenium, Re 616 273 206 683 161 2.11 -0.80  -0.40 1.70  6.21
Silver Aluminum, Ag A% 142 85 75 168 34,1 11.9 -5.7 -2.8 8.35 29.3
Titanium, Ti 160 90 66 181  46.5 9.69 ~4.71  -1.82 6.86  21.5
Zinc, Zn 165 31.1  50.0 6l.8  39.6 8.22  0.60 -7.0 27.7  25.3
Zinc Oxide (Zincite), ZnO 209 120 104 218 44,1 7.82  =3.45  =2.10 6.64  22.4
Zirconium, O-Zr 144 74 67 166  33.4 10,1 -4.0  ——2.4 8.0  30.1

ST



Table 2. Elastic Constants for Hexagonal Systems
Non—-Crystalline Materials

Material Values of the elastic constants (GPa) Values of the compliances (TPa)
11 ‘12 %13 %33 s 11 212 %13 833
Al-CuAl, composite 123 60 60 123 29.7 11.9 -3.9 -3.9 11.9 33.7
Bone (dried phalanx) 21.2 9.5 10.2 37 .4 7.5 63 -23 -11 33 133
Bone (fresh phalanx) 19.7 12.1 12.6 32.0 5.4 89 ~-43 -18 45 185
Bone (dried femur) 23.8 10.2 11.2 33.4 8.2 56 -18 -13 38 122
Ceramics BaTiO3 166 77 78 162 43 8.55 -2.61 -2.85 8.93 23.3

(Barium—-Titanate)

Fiber Reinforced Resins

Carbon fiber/epoxy resin

Type of Fiber

Fiber Fraction
Graphite Thornel 50 0.55 10.0 4.8 5.6 186 ~ 5.9 130 ~-62 -2.08 5.49 169
Graphite Thornel 75 0.56 9,2 5.0 5.2 309 6.3 154 -84 -1.20 3.27 159
Rocks
Micha schist 85.6 18.6 20.1 68.6 25.2 12.9 -2.0 -3.2 16.4 39.7

Eclogite 171 60 59 208  58.5 7.02  ~-1.99 1.43 5.61 17.1

9T
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CHAPTER 3

POTENTIAL SOLUTIONS FOR TRANSVERSELY ISOTROPIC MATERIALS

3.1 Introduction

At the beginning of the twentieth century, Michell [28] and Fredholm
[13] generated important three-dimensional solutions in transversely
isotropic materials. Lekhnitskii [25] presented a solution procedure for
axisymmetric torsionless problems in terms of a single stress function
satisfying a fourth-order partial differential equation. Elliott [10-11]
presented a comparable solution in terms of two stress functions each
satisfying a second-order partial differential equation. Shortly after
Elliot's presentation, Eubanks and Sternberg [12] proved the completeness
of the Lekhnitskii and Elliot representations for the case of axisymmetry.
Hu [21] introduced a third potential function suitable for non—axisymmetric
stress field. This solution was implied in Fredholm's work ([l3]. The
completeness of the three—function approach for general non-axisymmetric

problems was proven in Reference [41].

3.2 Fundamental Formulae

Adopting the notations in Section 2.2 and combining Eqs. (2.2.1) and

(2.2.2), we obtain the stress—displacement relations that take the form



Ju u iy 18]
- r Bl . z
9rr T %11 3¢ Tl Tt TR S
DUr up 1 DUG Ouz
%6 = €12 3¢ Tl T YT e )ty T,
Ju u du Ju
r T 1 9 z
= —_— — = — —Z
0zz Cl3( ar r r J9 ) + C33 3z
o, =2¢,,( E-EEE it )
vz 44 r 39 dz

re

1 1 94y dug  ug

e S D U i vl i vl

It has been shown [41] that in the absence of body forces,

representation is complete

3 13y
o =37 O Y 9) T 5

P
Y T T 98

i)
(03 *0) -5

L, 22
271 5z T T2 ez

where ¢1(r,8,z), ¢2(r,6,z) and y(r,8,z) satisfy the equations

in which

(3.2.1)

the following

(3.2.2)

(3.2.3)
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2
I S M (3.2.4)
st r? 362 3 322

2
V283—2+
T

3

I

In these equations, kl and kz are the roots of the equation

2 2, 2 . = 2.5
ey eyt ey )i Hllegg ¥, ) ey, —eppeglkbe, (e, +epy) =0 (3.2.5)
2 2
and Vl and v, are the roots of the equation
c c"v4+[c (2¢,, +c,.) =c,,¢ ]v2+c c,, =0 (3.2.6)
11744 13 44 13 11713 33744
vwhereas vg is defined by
2c ‘ c
bg = _“2 = c““ (3.2.7)
€11 T ‘12 66

The constants vi and vg are either real or complex conjugate (with a real

part different from zero) depending upon the elastic constants, but the

cons tant v§ is always real and positive. We also specify that v 29 and

1° Vv

v3 always have positiwve real parts.

The constants kl and k2 are related to vi and vé respectively by

2 2
11 V5~ %4s _ V5(C13 * C44)

3 2
“137F s 337 S Yy

(3.2.8)

or, equivalently

kilegg * o) + oy ki €34

cM(l + kj) + c

v, =

J €11 13
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By using Eqs. (3.2.5), (3.2.6) and (3.2.8), it is not difficult to obtain

the following identities

- 233

v2
2 Cll

2
1
2
2 2 ©11%33 7 C13 ~
v, + VZ =
1 ©11%4

2¢13%,

(3.2.10)

2 2
_ %33 F Cus *(egg ey
1 2 CAA(CIS + caA)

Sometimes, it is convenient to employ three new variables defined by
Z. =__Z_ s ] = l’ 2, 3 (3.2.11)
j v,

3
These new three variables generates three distinct spaces (r,G,zl),
(r,e,zz) and (r,e,z3) different from the physical space. The differential

operations V? defined by Eq. (3.2.4) become, in the spaces (r,e,zj), the

Laplacian defined by

2 32
V,=-—2
J Jr

2

3 32
=+
39

—_—
32?
]

or

(3.2.12)

NN
T

L
22

the displacement components in Eq. (3.2.2) can be, alternately, expressed

in the following form



u
T

1 3
ug =T o0 (41 9 -3¢

u [ JEEe——

z

3
=30 (9

ky
V1

21

13
te ) + r 996

oy

3  ky 39,
9z

1 Vo 822

(3.2.13)

and, consequently, the stress components can be written in the form

o =-¢,,{ + ]
rY 44 2 2 2 2
‘vl azl | vz 322
—2e (22 4+ L 22 (6, + 8,0 - = (L2
66 T or 2 392 1 or T a6
. 2 2
(L +Kky) 370y (1 +ky) 379,
7o ~ _CAA[ vz 322 ¥ vz 822
1 1 2 2
cae [ (o +¢>+i<ll1
66 32 r 36
24, 220,
o ,,[(l+k)—-—+(l+k)——:']
2z 3z¢ 3z’
1 2
[(l+k1)l 3%, (A +kp 1 3%, 1 3%
gy, = ¢ - + = -—
6z 44 vl T 36321 vy T aoazz v3 9rdz
(L +k) 0% (L +ky 2%, 11 3%
orz €44 v drdzy 2 drdzy vy T 363z,
32 1 3 2 3y 8%y | 2
o) ( - —) (¢, +¢,) tc (= — + + =
o 66 £ 5736 £2 28 1 2 66 N az§ r2

2 2
(1 +ky) 37¢; (1 +ky) 3¢y

(3.2.14)
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2 .
Numerical values of vj and kj are calculated for some materials and

listed in Tables 3 and 4 for real and complex kj respectively.
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2

Table 3. Values of vi and %j for Selected Materials

Material vi v% vg kl k2

Cobalt 2.999 0.379 1.044 4,471 0.2237
Graphite 9.040 0.004 0.009 504.1 0.0020
Hafnium 1.755 0.620 1.071 2.153 0.4644
Ice 2.706 0,408 0.883 3.719 0.2689
Magnesium 2.052 0.505 0.976 2.785 0.3590
Quartz : 1.670 0.563 0.713 2,310 0.4329
Titanium 1.880 0.602 1.329 2.261 0.4423
Zirconium 2.675 0.431 - 0.954 3.504 0.2854

Table 4. Values of v? and kj for Selected Materials*

2 2

Material v3 vl kl

Berylium 1.216 1.050 + 0,3058 1 0.8491 + 0.5283 1
Cadmium 0.5297 0.575 + 0.3283 1 0.7779 + 0.6284 1
Zinc 0.5915 0.286 + 0.5411 1 0.0847 + 0,9964 1

2
*Values of vg and k2 are the complex conjugate of Vi and k, respectively.
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CHAPTER 4

THE SPHEROIDAL CAVITY PROBLEM

4,1 Statement of Problem

Consider an infinite elastic transversely isotropic medium, as shown

in Fig. 5, containing a spheroidal cavity whose surface is defined by

) | .
z_§+;__~l (4.1.1)

a b2

where a and b are the two semi-axes of the spheroid.

In the absence of body forces, we wish to dévelop displacement fields
whose stresses vanish at infinity and which satisfy given boundary condi-
tions on the cavity surface. In this chapter, we introduce applicable
coordinate systems and potential fu;ctions. General solutions to problems
in which either the displacement vector or the surface traction vector is
prescribed on the surface of the cavity will be considered in the following

chapters.

4,2 The Coordinate System

We have to determine the potential functions ¢l(r,e,zl), ¢2(r,6,z2)
and w(r,e,zl) which are the solution of Laplace's equation in the spaces
(r,e,zl), (r,e,zz) and (r,e,z3) respectively. Since we have a problem in
which the natural boundaries are spheroids with center at the origin of
coordinates, it is suitable to employ [5-9] the spheroidal coordinate

systems. defined by
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2 3 2.%
= qa. .- 1 1l - p.
X aJ(qJ ) ( pJ)

cosb

1
y = aj(q§ - l)1 (1 - pi)si sin® (4.2.1)

or equivalently,

1

2 ks 2. %
r =a.(q, -1 1 - p.
“3(q3 Y ( pJ)

(4.2.2)
z

sa_
3 7% 93 Py
where qj and pj are parameters which can be determined for any point whose
coordinates (r,z) are known. The aj are constants to be determined later.
Let Dj denote the value qj on the spheroidal surface, then the three
coordinate systems coincide on the surface of spheroid if the following

equalities are satisfied

2 v2 2 _ 2 vZ 2_ 2 2 2 _ a2
@1 V1 P17 %y ¥y Py T ¥y V30,
(4.2.3)
2 2 2 2 2 _ .2
a; oy = 1) =0, (p; = 1) =05 (p; - 1) =D
from which we obtain
2 =a_2 bz
aj 7 " (4.2.4)
v
]
2
2 a ‘
T — (4.2.5)
DJ az-bzv

where j = 1, 2 and 3.
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It is 1interesting to note that when qj = Dj’ Eq. (4.2.2) reduces to
the equation of the spheroidal surface described by Eq. (4.1.1) and the
parameters pj become independent of v? and equal'g. The coordinate systems
defined by Eq. (4.2.2) can be represented graphically in the physical space
for real values .of v?. For example, when the cavity is spherical and Vj =
0.5 and 2.0, Eq. (4.2.2) generates two types of spheroidal and hyperbo-

loidal surfaces that have a common spherical surface corresponding to the

same value Vj. These coordinate systems are shown in Figs. 5 and 6.

4.3 The Potential Functions

As indicated in Section 3.2, the potential functions ¢l, ¢2, and ¥
must satisfy Laplace's equation in the spaces (r,e,zl), (r,6,z,) and
(r,e,z3) respectively. It is well known [20, 29, 34] that the products
P;m(pj) Q: (qj) [cos mB, sin me] are harmonic in the spaces (r,e,zj) and
regular in the region exterior to a spheroid, where P;m(pj) and Q:(qj) are
the associatea Legendre functions of the first and second kind respectively
and will be defined explicitly later. For the problem at hand, the poten—
tial functions are constructed by the following combination of the Legendre

associated functions of first and second kind:

© n+l 2a,
. = N R ~m m _p™m m
b nzo L G D PanPy) % (9) mPL () 0y (ap)]

- [A, cosm6+B. sin mf]
jnm jnm
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© n+l 2a3 -n m Cem n
vo= 1] iy Parn(Py) Qe (9) =Pl (Py) Qy(ay)]

n=0 w=0 (4.3.1)

. [A3m51n mé + B3nmcos mo]

j = 1,2

because they are harmonic in (r,e,zj) and thgir first and second deriw}a-
tives vanish at large distances from the spheroid. Furthermore, as will be
shown later, the first derivative of the chosen potential functions with
respect to r or zy can be written 1in simple forms which lead to possible
solutions -6f the first and secor;d boundary value problems.

In these potential functions, P;"tpj) and Qg(qj) are the associated

Legendre functions of degree n and order m, of the first and second kind

respectively. They are defined [20,27,34] by

11 1
- -m/2 '
pnm(pj) = (1-p§') J J JPn(Pj)(de)m (4.3.2)
Pj Pj Pj
- (n=-m)! m
Qnm(qj) = m-!— Qn (4.3.3)
d™_(q,)
Q: (qj) = (qi-l)m/z —ﬁL (4.3.4)
q
b

in which

1 d“(pﬁ -t

Pn(pj)a n o, dp? (4.3.5)

J

2
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1 q.+1
= - - T .
Q,(ay) =7 Pylay) In —J——qj -1~ Taley)
_ (2n-1) (2n - 5)
Tn(qj) T 1.n Pn—l(qj> * 3(n-jl) n- 3(q )+
(2n-9) .
*Stac) Ta-sl9y)

(£.3.6)

(4.3.7) .

Legendre associated functions defined by Egs. (4.3.2) and (4.3.6) are

listed in Appendix A for different values of n and m.
The Legendre associated functions defined by Eqs. (4.3.2)

satisfy the following identities

@ + @rw@-n+D) @@ = 52 Q)
(¢"-1)
Q™+ @em@-arD QT N@ = 5 Q0 (@)
(g -1)
+ +m+1) m'l()=—---—2—r5'———0m()
..Qn (a) + (n+m)(n+m Q 5 L Qe
(q -1
and
(n-m)(n+m+1) BT ~(mHl) 0y 4 ) ~(m=1) 5 ——P—r P %(p
(l p)
(a+m) (a+n+1) 21T () 4 2 "Dy = 2B T (g
2.5 n—-1
(1-p7)
2m -m
(n-m)(n-m+1) P (“”'l)( ) + Bo “(@=1) 0y - 7% el (P

(1-p7)

and (4.3.7)

(4.3.8)

(4.3.9)
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The first derivatives of Pp"(p) and Qp"(q) with respect to the argument are

given by
=m
d P_ (p) 1
2 2%  —(m-1 -
(1-ph) —5— = - -0 B, " V@) +mp 2T
m (4.3.10)
d Q (q) 3
2
(0" -1 —FH— = @ -1 ™V (@ +mqql@

The representation of the potential functions in terms of the associ-

ated Legendre function as shown in Eq. (4.3.1) enables us to write the

partial derivative with respect to r and z4 in very simple forms. Recall-

ing Eq. (4.2.2), one can easily obtain:

3 P,
il _2__3%_’7'_2_
] .(q, -
r aJ(qJ Pj)
2
) 1-p]
P _ ( pJ) z,
sz a? Py (q‘;'-pg')
(4.3.11)
3qj _ ' qj r
2 2
] . . = P.
roa (qJ PJ)
2
) -
Yy . (Zj 125
2 2
] -
5 %395 (5-py)
By means of Eqs. (4.3.8)-(4.3.10), it can be readily shown that-
3, © n+l
- _ P-(m+1) (m+1) _P-(m-l) (m=1)
2 nZO mzo [e_ (p;) Q" (e - B (py) Q" " (ay)]

- [A, i .32,
[ 5amCOS mé + Bjnm51n,m6] (4.2.12)
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3¢, ® n+l _ »
S;j.s nzo mzo 2 an(pj) Qi(qj)[Ajnmcos m6-+Bjnmsin mé ] (4.3.13)

and Eq. (4.3.1) can also be written in the form

=L [p

r -(m+l)(p.) Q(m+l)

=(m=1) (m-1)
ma; i) % (ay) +P) (p;) Q (a)1

J
(4.3.14)

-[Ajnmcos mé + Bjnms1n mé ]

4,4 Some Remarks on the Potential Functions

(1)

(ii)

(iii)

The Legendre associated function of the first kind wused in the
expressions of the potential functions in Eq. (4.3.2) 1is equivalent

to the following definition

P = (-1 {EZEL 5P () (4.4.1)
where
a"p_(p)
o) = (- (1-pH/? - S (4.4.2)

dp

for all values of m < n.

For values of m > n, Eq. (4.3.2) generateé a function of p singular
at p=1or p= -1, This situation is encountered in our potential
functions when m = n and m = n+l. However, it will be shown later
that for these two particular cases, singularities inside the medium

are always removable.

The sum with respect to m in the expression of the potential func-

tion is truncated after the value m = ntl.
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CHAPTER 5

THE FIRST BOUNDARY VALUE PROBLEM

5.1 Introduction

The first boundary value problem consists éf finding stresses and dis-
»placements of an elastic body in equilibrium when the body forces are known
and the displacements of the body are prescribed. In this chapter, the
first »boundary value problem is solved for an unbounded elastic trans-
versely isotropic medium containing a spheroidal cavity with =zero body
forces and vanishing stress and displacement fiélds at infinity. Explicit
solutions are préseﬁted for two problems involving a rigid spheroidal

inclusion.

5.2 Fundamental Formulae

The components of the displacement vector in Eqs. (3.2.13) can be

written as

+ u + u

r2 - r3

(5.2.1)
6 o1 T Yg2 T Ugs3

(7
[l
(=

z2

where

Uniyersity of Illinoisy
Meiz Refercnos Hoom
5106 NCiIT
208 N. Bomine Stra
Urbana, Iilincis 61807
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0%, 1 39, k., ov,
= —d 4 = S R |
Tj th 4 > 8j r 238 ’ zj Vs azJ
(5.2.2)
=130 -y
“r37 T8 °  Ye3 or

Substituting the expressions of ¢j and ¥ defined by Eqs. (4.3.1) into

Eqs. (5.2.2) we obtain:

n+l

T - (m+l) (m+l) -(m-1) (m-1)
. = -[P . ) =P . .
u g RZO mzo [P py0 T ay) — B () Q) T ay) ]
o[Ajnmcos mé + Bjnmsin mé ]
© n+l
n= m:
'[A3nmcos mé - B3nmsin mé ]
= n+l1
- (m+1 m+1 -1 -
(5.2.3)
-[B., cos mé - A. sin m6]
jnm jnm
© n+l
- - (mt+l) (m+1) -(m-1) (m-1)
Ug3 T nzo mZO [Pn (p3) Qn (q3)'-Pn e 3) Q (q3)]
-[B3nmcos mé + A3nmsin mé ]
© n+l 2kj - m
v, = nZO Zo ” P (pj) Q, (qj) [Ajnmcos me +Bjnmsin mo ]
On the surface of a spheroidal cavity (qj = pj and pj = p), the components

of the displacement vector become:
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n+l

_ - - —(mHl)
u, = ) ) ;[anmcos mé - e sin mé] P (p)
n=0 m=0
= . -(m-1) Y
+ [Bnmcos med-Bnm51n md ] Pn (p) ]
< n+l
u, = E E {[anmsin mb + Enmcos mo ] P;(m+l)(p) (5.2.4)
Y =0 m=0
+ [-B sin mO8 + B cos m6] P—(m-l)(p)}
nm ‘ nm n
© ntl -m
u, = } z [Ynmcos ms + ?nmsin mo ] Pn (p)
n=0 m=0
where
_almtl) _ A (m+l) (m+1)
“nm Qn (ol) Alnm Qn (p2) Aan.+Qn (03) A3nm
(m-1) (m-1) (m=1)
Snm Qn (“l) Alnm + Qn (52) A2nm+0‘n (c3) A3nm
2k 2k
_ 1 m 2 m
Ynm _, vl Qn(ol) Alnm + v2 Qn(DZ) A2nm
(5.2.5)
- (m+1) (m+1) (m+1)
®am Qn (ol) Blnm + Qn ( 2) Ban Qn (03) BBnm
= (m-1) (m-1) (m-1)
Fam Qn ( l) Blnm + Qn (”2) Ban Qn ( 3) B3nm
- 2kl m m
nm 2 Qn( 1) Blnm * Qn(“z) Ban

With respect to rectangular Cartisian coordinates, the components of
the displacement vector (uyg, Uy, uz) can be written in terms of (ur, ug ,

uz) as follows:
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u = u cos 6 - u_.sin 8
X T )
u_ = u_sin 6 + u.cos 8 (5.2.6)
y r 3]
u =u
z z

Substituting Eqs. (5.2.4) into Egs. (5.2.6) we obtain:

© n+l )
u = ) (e, cos(m+l)6--anm sin(m+1)6] Pn(m+l)(p)
n=0 m=0
+ (B o cos(m—l)6-+§nm sin(m-1)8] P;(m°l)(p)}
© ntl
= i Q =(m+1)
o nZO mZO (g sin(mrl)®+ o, costm)) ¥, (») (5.2.7)

+ -8 o sin(m—1)8-+-_8nm cos(m-1)¢8] P;(m.l)(P)}

n;l -m
) [ynmcos m6 + Y omSin mo ) Pn (p)
0 m=0

(=]
1}
Ht~ 8

If a displacement vector on the surface of the spheriodal cavity 1is
prescribed, then the components of that vector, in Cartesian coordinates,
u, v, and w can be represented by a series expansion of spherical harmonics

as follows:

n .
- - - . -m
i (unmcos m$ + u sin mb ) Pn (p)

©
- N - . -m .
v HZO m;0 (vnmcos mé + vnmSIn mo) Pn (p) (5.2.8)
w = E Z (wnmcos md + w__sin mb) Pn (p)
n=0 m=0
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where P.™(p) is the Legendre associated function, defined by Eq. (4.3.2),

satisfying the following orthogonality condition

e m 8;4 G-m! ,
J P, (p) Pj (p) dp = T , (5.2.9)
el (1+3) (1+m)!

Using this orthogonality property and that of the trigomometric

functions, the coefficients in Egs. (5.2.8) can be evaluated by:

) 27 1
_(n+m)! (2n+1) -
“am T (n-m)! 27X dsé u(p,8) an(p)cos md dp
m
0 0
(5.2.10)
2m 1

- _(n+m! (2n+1) - .
“nm " (2—2)! 2:xm f de J u(p,8) P_"(p)sin me dp

0 0

in which Ay = 2 and Ay = 1 for m # O. The coefficients vgp, Vpm, Wom, and
anm can be evaluated in a similar manner. Equating coefficients in the
identical trigonometric and spherical functions in (5.2.7) to those in

(5.2.8) yields

nm 2

— (v - u
Olnm 2 nm+1 nm+1



nm

BnO

nl

1l
(@]

for m

form < n

0 form

1

- n{(n+l) %nh0

n0

N
~
i

Ynm-1 T Vnm—l)

n0

N
Pany
<

1
Hh
o]
A
=]

1A
o

n,n+l

for
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n+l

n+l

for

for

n+1l

=]
]

n+1l

Equations (5.2.11) can be written in matrix forms as follows

e o)
" Pep ™y
2k 2k

1l m 2 m
v—l Q, (py) —\)'; Q (e

(m+1) ]
Q (03)

n

(m=1)
Q (03)

n

(5.2.11)
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Q, (ol)
(m-1)
Q, (ol)
2k
1 m
—;;l— Qn(ol)

in which [Rpp] and [Rpm] are 3 x | matrices

of m, as follows:

for m = 1
r‘l - I
=
| 2 (U +v0)
i
[Rnl] - ! “ho
!
L Y
for 2 < m < n-l
X 5]
2 unm+l nm+l
- 1 -
[an] - 2 (unm—l vnm—l
W
— nm —
for m = n # 1
_ 0 —
1 -
[Rnn] Tl 2 (unn—l nn-1
w

2 m
B

£,)
2 2

37

Qn

-0

(m+1)

(2-1) '

n

nl

nm

ol

nn

(o

defined, for

(

to|

- | L
= | 5«

v -u
nm+1 nm+1

v +0
nm—1 nm-1
w
nm

3) Blnm
p3) Ban = [an
B3nm

)

)

(5.2.12b)

different values

(5.2.13a)

(5.2.13b)

(5.2.13¢)
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form=n+1

B 0 ] 0
- 2w -5 ) R 1= |3 (v _+5 ) (5.2.13.4d)
[Rnn+l] - 2 “Yan” Vnn ? nn+l 2 nn  0n cbe LD
L 0 i L o i
If m= 0, the stress field becomes independent of 6. This 1is the

axisymmetric case which will be discussed in the next section. Equations
(5.2.12a) and (5.2.12b) have a unique solution if the determinant A is not

zZero:

2k
_ 2 m (m+1)
A= _T;' Qn (02) [Qn

(m-1) (m-1) (m+1)
5 (ol) Q, (03) +Q (ol) Q. (03)

2k (5.2.14)

1 m (m+1) (m-1) (m-1)
-5 Q (o) 19T (0, )M (o) + )™ (0,) Q]

1

As mentioned in the previous chapter, the Legendre associated function of
the first kind defined by (4.3.2) is singular at p = 1 and -1 for the two
cases corresponding tom = n and m = ntl. However, the equations oap, =
Onn+l = C%ppn = Oop+l = Yootl = Yool = O automatically remove these

singularities inside the medium.

5.3 The Axisymmetric Problems

Consider the class of problems in which the potentials do not depend
upon B, therefore the first boundary value problem can be deduced directly
from the preceeding section by taking m = 0 for which the potential

functions become:
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o 2a,
S R .
35 nzo G A4n0 PastPy) Qe (@) =P () 0 1 (a)] (5.3.1)
=0
j=1,2

and the displacements in cylindrical coordinates take the form:

8

-1 1
.= -2 A, P . .

o 2k.
- —L A P 5.3.2
qu nzO v, jn0 n(pj) Qn(qj) ( )
uej:=0

The components of the prescribed displacement vector omn the surface of the
spheroidal cavity, in the axisymmetric case, can be represented 1in the

forms:

w = 2 v P (p)

Here u and w are the components of the displacement vector in the r~ and
z-direction. Expressing Eqs. (5.3.2) on the surface of the spheroid and

equating their coefficients to those in Eqs. (5.3.3) we obtain:
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1 1 ' - _1
Q (0q) Ay g +Q (o)) Ayg = 73 U
. (5.3.4)
L (o A +Q (¢,) A =iw
5 Q.(59) A0 T Qo) Arng T3 Vo

Bv solving (5.3.4) we determine the unknowns A;p, and Aspg which enable us
to determine the stress field without difficulty.

To illustrate the method developed in this chapter, we will consider
the problem of a rigid spheroidal 1inclusion embedded in a transversely
isotropic medium when the medium 1is subjected to the following loads at
large distances from the inclusion:

(1) Uniaxial tension in the direction of the axis of symmetry of the
medium.
(11) Pure shearing stress in the plane perpendicular to the axis of

symmetry of the medium.

5.4 Rigid Spheroidal Inclusion Under Axisymmetric Uniaxial Tension

The boundary conditions in this case are:
o =T , O =c. _ =g =0 at infinity (5.4.1)
u_=u_=u_=0 on the surface of spheroid (5.4.2)

In the absence of the inclusion, the uniform stress field (Eqs. 5.4.l) can
be extended throughout the space, thereby violating the boundary conditions

in Eqs. (5.4.2). The stress and displacement field are found to be:

o =T o= =c_=0 (5.4.3)
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c T. r (c

+c. ) T. z
13 1o 11 ¥¢127 o
Llr = - 5 N Uz = B (5-4.4)
te 2.l - B
[eg3(eyy +epp) = 2e 4] [eqgle)y vepa) =25l

We now seek a solution which, upon superposition on the uniform field,
removes the residual displacements, given by Eqs. (5.4.4), on the surface
of the spheroid. Therefore, consider the problem where the negative of the
displacements given by Egs. (5.4.4) are specified on the boundary of the

spheroidal inclusion. These displacements are:

) 13 Yo ~ 2¢153 TP -1
u = 5 r = - 5 Pl (p)
[eqq(eyy Feyp) - 2ep,] [eqqleyy Feyp) - 2ey4]
(5.4.5)
=(epte) Ty - =(egyte) Tya
w = 3 z = 5 Pl(p)
[eqq(eyy +egp) ~2ey,] [e35(eqy +ep) - 2e5,]

in which a and b are the semiaxes of the spheroid. From Eqs. (5.3.3) it is
easily found that the only non-zero coefficients are those corresponding to

n = 1. Thus,

| ) 2c13 TO b
11 7
[eqg(eq +eyp) = 2e1,]
(5.4.6)
_ Tl ey Tya
Y10 2

[eqq(eqy teyp) = 2e,]

Equations (5.3.4) become in this case:
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— - - - —

c T, b
1 13 70
Ql(e,) Q7 (e,) A - -
171 172 110 [c.(c.. +c..) =2¢2.]
33711 T12 13
= (5.4.7)
R o) ) N (c1y *egp) Tpa
v, 1P N7 NP2 210 - h 2
1 2 1L T Aeaglegptegy) m 265l
Solving the simultaneous equations we obtain:
. %o 2¢ 3k,
A = [ - b Q,(0,)
110 248 {c, ., (c,, +c )-2c2] v 172
33711 12 13 2
+ (eqy+er,) aQi(e,)]
11 12 172
(5.4.8)
~ —TO 2Cl3kl
A = [ - b0, (c,)
210 248 (e, (c,, +c )—2c2] v 1l
33'711 12 13 1
+ (c,, +c )aOl(o )]
11 12 1071
where
k k
o2 1 e 1
The potential functions, therefore, are
2u,
Substituting Eqs. (5.4.9) into Egs. (3.2.13) and (3.2.14) and adding the
solution obtained in the absence of the inclusion, we obtain the desired

solution for which the displacements and stresses become:
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[a]
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.
=

2 b
o, v, (g, = 1)%*(q
J J

J 1]

2—

2
Pj)

1 1
13 To 810 Qlap) Ay Qe
-1 : 5 + 1t T
legg(egy+eqp) - 2¢53 oy (-1 o (1=
: (e +¢120T s Zky Appg Qqay)
[e. (c., +¢c )-2c2] a vz q
33%¢11 712 13 1 V1 1
2ky Ajyg Qlay)
+ > lz
@y V2 9
0
2 Al (1+k) q; +1 s
= z 2c {- [ = Ln - ]
sh e T 2 2 @ -1 -0
j j j '3 TP
1
1 Q7 (q.)
4 — .__];__.j_ }
W22yt
3 Y
Ajlo (1+k.) 1 qi+l qj
= z 2c { { = Ln - ]
Lo T 2 2 1 (- o2
] 3 3 qj qj Pj
1 2
1 Ql(q.) 2q.(1-p)
_ i b B
+ [ L. + 1}
V@@ ent @i-n?-ph.
3 h| j i Y3
2 A, (1+k.) l( ) 2(l 2)
=T + 1 2, 20 [qul CAAP Bl
0" oy ALy @-1%  (P-1E-pD)
J i Y j i 57 Pj
2 A, (1+k.) p.(l—p??)li
. T j10 J ] 1
= LT 2y,

]

(5.4.10)
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5.5 Rigid Spheroidal Inclusion Under Pure Shearing Stress in the Plane of
Isotropy

The boundary conditions in this case are:

%y = T0 * Cxx T Sy = Opp = Oy = Oy = 0 at infinity (5.5.1)

u = u =u =0 on the surface of the spheroid (5.5.2)

O == =Tosin26, I.=TpC0s 28, o =0 =0 =0 (5.5.3)

In the absence of the inclusion, Egqs. (5.5.1) or (5.5.3) represent the

stress field in the medium. The displacement field, accordingly, is found

to be:

x » u =0 (5.5.4)

Consider the problem where the negative of these displacements are

specified on the boundary of the spheroid.. Thus,

T b

T T
0 0 2.5 . 0 -1
u= - y = - b(l-p")“sin & = = — P_"(p)sin 6
2C66 2066 66 1
(5.5.5)
TO T 2.4 b _
vV = - X = - b(l-p”)°cos 6 = ~ — P_"(p)cos 6
2C66 266 66 I
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Comparing Eqs. (5.5.5) to Eqs. (5.2.8), we find that the only non-zero
coefficients are:
- _ Tob . B Tob :
11 T ¢ ’ =< 5.5.6
1 66 11 o6 )
By inspecting Eqs. (5.2.11) and (5.2.13) we conclude that the desired
problem is corresponding ton =1, m= 2, Aj12 = 0, and Bj12 to be
determined. Therefore, Eqs. (5.2.12B) become:
-— X — - — -
3 3 3 0 ‘
‘ Q}e) Qle)) Q)| | By,
. 1 1 ToP
! - = | - — (5.5.7)
l Q) (py) Q; (py) Q; () 8,10 ceq |
i i
!
I 2k 2k
! 1 .2 2 2
I — Q7 (py) — Q;(e,) 0 B 0
: 172 312
|_V1 1l "2 : - L — L __.l
which have the solution:
: L kzvl Tob
112 (kl-kZ)D et
k, v TAb
1 2 0
B (5.5.8)
212 (kl-kz)D 66
S 1
312 2, .
%3%3 Cs6
where
1 1 1
o ky vy Q7(eq) ki v, 07(e,) ) Qy(ey)
T2 2, 2 2 2
a; v (kl kz) a; Vu (kl kz) d3Vq
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The potential functions corresponding to the problem at hand are:

2y -2 2 -2 2
65 =73 By1alPy (py) Qplay) = By(ps) Qp(q,)] sin 26
(5.5.9)
2a3 s ) " )
o= 3T By, [P (py) Q5(ay) = BoT(py) Qqlag)] cos 26

Substituting into Eqs. (3.2.2) and adding the solution of that in the

absence of the cavity, we obtain the following displacements and stresses:

1 1

2
u_ = { —+ [ + ) ]
r ; 2 i .z 2 1
e 2 aq (q3-l) j=1 oy (qj--l)2
3
1 - 2 4 2
- — ) B, a2, q,(p, =6p, +8p. - 3)Isin 2%
33y 3123 93Py T 0P 8Py = ) isin
T.T T B Ql( ) 2 B L
o o= o 08 T P Ul 2 Byyy 9 (@)
S c 2 e (2o s 2 )%
66 *q q3 j=1 C!j (qJ -1)
3
1 T 2 4 2
+—= ) B.,, a; q.(p,-6p, +8p.~-3)}cos 24
3r3 521 J12 3 93Py~ OP; 8Py 7 3) Jcos
2 % k, uz. 3
u == 1 B, ——L (p7 - 3p, + 2)sin 25
z 3r% jo1 jl2 vj 3 3
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2 2 Byp(l+ky) q
g = {T 4+ 2c r Z
rr 110 4o t LT 32 oDl b
1 1
Byjp, Qlay) 2 Bypy @ (9y)
+C66[" v(2_1)15+,‘1 o (2_1);,
%3 a5 J j qj
2c 3
* B - 6p. +8p, =3)}sin 26
i jzl j12 @3 94(py-6py+8p;=3)
2 B, l+k 2 q.
= 2§ _ji2 - ;
Ogg = {=Tg * 2¢4, T Zl 3 ( 2 ¥ ) (qz-l)z(qz_p ;
1 1
B312 Ql(q3) 2 lez' O‘l(qj)
" %6 2% " 2 %
oy (@3-1F  §=l e, (ai-1)
2c 3
66 4 |
T L Bjup of ay(py - opy By - Dsin 20
J
2 B, . (l+k,) q
922 T T4 ] -1 3 -+ Jz sin 29
j=1 ozj (@5 -1)°(q5 - p9)
“ 3 B, a;(l+k))
1 12
Urz =-—CA[0 {_3.2 : (p _3p'+2)
3 rT j=1 v,
J
3 2 B,,, (1+k,) b,
S 1 - } sin 26
2 J=l (12. V. (qz-l)(qz-p)
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B P
~ 312 3
9z = 2644 1T 3 21y (2.2
3 V3 (93 (a3-p3)
2 3 B... a2(l+k.)
+ 3 ) 12 3) (p; =3p, +2)} cos 28
3r7 j=1 3 J ]
B q B, T QRgw
e e 2 a1 3 _ . Pa2 %9
e 0~ *%66 2 2ol ph 66 2_ %

1

66 ) , 2 i
o j=1 a, C-1)7
J i (qJ )

3 4 . 2
., o q, (p.-6p5 +8p, -3 26
I a5 (py=6py +8p;-3)} cos

At the spheroid interface, these equations may be reduced to:

u =u, =u_ =20
r & z
2
ar 2 B..,(l+k.)
= 2 —_— ) 12 sin 2%
er - 44 4 LT3 2 2
b j=1 v (p, =p")
J ]
2
ar 2 B 12 1+k. 2 1
g =2¢,, — y == ——1_ —) sin 26
86 44 bé» J;l N VZ VZ (o _pZ)
h h] 3
2
ar 2 B (1+k.)
o =-2¢,, — ) 12 sin 2%
zz 4b b4 j=1 v (cz—pz)
i3
r 2 B, . (l+k.) p
o = 2<:[44 — E 12 . > 5 sin 26
rz b j=1 v, (p=-p7)
] ]
B P
_ r 312
Oe, = -2c_,‘4 5 3 5 cos 26

(5.5.10)
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e = "%%6 3 75 cos 26 (5.5.11)
3 (03-p)

If we obtain a transformation of the stress components from cylindrical
coordinates to spheroidal coordinates by means of the equations in Appendix

B, we obtain

2
g =" 2 r T, sin 2%
nn abD r2+5422 0
_ 2 r2 (l+k)(1-v2) (l+k)(l-v2)
0¢¢ = [ 1 27 2 1
abDd (kl-kz) (r2+v§ sa 22) (r2v+\)i sa 22)
- 3 A ]TO sin 28 (5.5.12)
(r"+s z7)
2 2 2
_ ) 2 r : kl[\)3(l+k2) -2\)2]
26
abD (kl-kz) (r2+v§ s4 22)
ko [v2(1 +k.) - 2v2]
23 1 L ] T, sin 26
.(r2+vi SA 22) 0
2s rz
o = 7. sin 26
ne a2D r +s z 0
o} 2 L T, cos 28

ne abD "r2 +s4 22 0

cos 28

2
o == (1-v) T
06 2 3 22 b, VZigh,r 0

3sz) r“+s

where D is defined by Eq. (5.5.8) and s =%.
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In a special case where the medium is isotropic, Egs. (5.5.12) become

after taking the proper limit:

2
= 81 - v) I T, sin 26
nn 2 4 0
D r +s z
0
g =& 1.2 T. sin 26
% p %4 22 0
0
-8 ’ 1. sin 28
958 4 2 ‘oS¢
L)O r +'s 2z
(5.5.13)
8(1—\))52 Tz
OYW = > TO sin 28
DO r + s z
Ona 8(1-v) L T, cos 28
D ’/r2+sl‘zz
o¢5 =0
where
Dy = (p%=1)(3p2=7+8v) Q, (p.) = (p2 +8v 7
0 5 5 Q(pg) = (ppt8v=7)
(5.5.14)
0 "1-s< a
For a rigid spherical inclusion we must evaluate the limit of DO as -,
. therefore:
lim D = 22 (4-5v) (5.5.15
T +3.15)

P
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Substituting the limiting value of Dy into Egs. (5.5.13), we obtain the

stresses in the matrix at the spherical inclusion interface.
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CHAPTER 6

THE SECOND BOUNDARY VALUE PROBLEM

6.1 Introduction

The second boundary value problem consists of finding stresses and
displacements of an elastic body in equilibrium when the body forces are
known and the surface forces are prescribed. In succeeding sections of
this chapter cﬁe second boundary value problem is solved for equilibrium of
an elastic transversely isotropic medium containing a spheroidal cavity.
Examples are given for a variety of constant loadings applied at suffi-
ciently large distances from the wunloaded cavity 1in the absence of body

forces.

6.2 Fundamental Formulae

Let ny and ny denote the components of the unit normal (direction
cosines) to the spheroidal surface for which qj = oj . The n's may be

evaluated from the expressions

n =——r , n = -z (6.2.1)
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The projections ty, tz, and t, of the traction vector acting upon an

area to which the normal is given by the direction cosines ny and n; can be

expressed as follows

t =0 n +g¢o n

r rXr r rz z
t =0 n +ag n

z Zr T zz 2z (6.2.2)
t, =0 n +o¢ n

6 fr r 6z z

We shall express these components in terms of the potential functions
defined by Eqs. (4.3.1). First, however, we will obtain an expression that

will be used frequently in the analysis:

3 3 ar 3 9z, aj Alfl pi) 3 3
s 7 ) 7 s TPy T (6.2.3)
3q St qu 3z, 23q (q J—l) ot iz,

On the surface of the spheroidal cavity we have qj = ©; and Pj = p. Thus,

1.
3 a, 0. (1-pH)7F 3 5
[ — 1] = [ 14— — 4+ p ] (6.2.4)
9y o -7 w37 g -
103 ; R
Using Eqs. (4.2.3) and (6.2.1) we obtain
3 a. A 3 ]
aqj 4.0 V. b [nr N Vi Pz 3z, ]q - (6.2.5)
ity R

therefore,

Unlversity of Illinoig’
Meiz Pe 7023& h51

208 L. Rcm ne Straast
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3 3 v, b 3
S A P T [qu ]q - (6.2.6)
R i3

in which j =1, 2, and 3.

6.3 The Components of the Traction Vector Due to ¢q and ¢

Consider now the gradient solution which is based on two potentials ¢1
and ¢2. The components of the displacement vector due to either part, say

¢j; where j = 1, 2, are:

3¢, 1 59, k. 3¢,
_2Y o mod W edd 6.3.1)
Urj or ’ 85 r 36 i 2] vy ez

Substituting Eqs. (3.2.1) into Egqs. (6.2.2), the components of the traction

vector due to the potential ¢j become:

aur. 1 Bu9 ur. c13 auz.
ts =l S (s T )Yy, 5 L
J J q.%P .
J 3
1 3u . Buz.
+ c44[ Y. az. + or ] = TR,
J J qj 3
1 3u du, . u,.
- r 81 _ _83
tej c66[ r 06 * or r ]q = P
3 (6.3.2)
1 aue 1 auz.
+ c44[ v, dz T 98 ]q - © 0,
]
1 Bur. auz.
tzj = c44[ Tg- azj + or ]q.=o. "R
J ]
du Jdu,. u_, c Ju_.
T 1 Al ] 33 27
+
tlegs 5 tes( s 5 Y7 ) S o ! n,
J J q.=pP
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It is not difficult to show that by means of Eqs. (3.2.8), (6.2.6), and

(6.3.1), Eqs. (6.3.2) take the form:

1 (1+k.) su_,
trJ =— { N b 1 =l
A .V, 3q. =p
OLJ J qJ qJ ]
a c13 k. 3u4
- (C12 - 2 ) * [urj 36 ) _ !
b v, q.=
J J ]
1 (1+k.) u ., i '
toy == fogy® i 21 (6.3.3)
A a aq. =p
i3 95 9577
a c k du
o _ A3 3 ri _
(eyy - w1
b Y 36 q.=0.
J ]
1 (l+kj)vj au%j
tzj Y C44b a. k., [ 9q. ] _
J 3] J QJ‘Dj

6.4 The Components of the Traction Vector Due to Y

The components of the displacement vector due to the potential func-

tion ¥ (the “"curl” portion) can be written as:

=13 )] -
Yr3 T T 36 ) u u , =0 (6.4.1)

It can be shown that Eqs. (6.4.1) satisfy the following equation:

1 %u u du
- 83 + r3 - - r3 (6.4.7_)

r 986 r or
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Substituting Eqs. (3.2.1) into Eqs. (6.2.2) and setting uzz = 0, the compo-

nents of the traction vector due to the potential function { become:

ou c ou
_ T3 12 83
eyt len ot (e el TR
437P3
c ou
+ 44 [ r3 ] .
v3 323 q.=p z
373
(6.4.3)
1 Bur3 Bue3 Ugs i 3u63
t.,=c¢c,, [ — + - ] n +— [ ] n
83 66" r 298 T b - T \)3 823 = z
43705 937P3
c du ou l] du,. u
_ 44 r3 r3 63 3
tz3_ v3 [ 323 ] - n +C13[ or r 9d6 + r ] =0 nz
93%P3 437f3

By using Eqs. (3.2.8), (6.2.6), (6.4.1), and (6.4.2), it can be shown that

Eqs. (6.4.3) have the form:

1 v Ju . a ou
r3 63
t {c, b= ] - cpe T lu g+ ] }
r3 A 66 « 3q - 66 b " r3 L -
3 3 a4, 437P3
c v Jdu a du
66 3 83 r3
= eme— e + . —— .
t83 x {b 5 [ aq3 ] ) 5 [ 58 u63] - } (6.4.4)
3 q3 Q3 3 73
_Sa g, e ]
T:23 A bv 3z
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6.5 The Couponents of the Traction Vector in Terms of the Legendre
Associated Functions

Expressions of the displacement components are given by Egs. (5.2.3).
Substituting these expressions into Egs. (6.3.3) and (6.4.4) we obtain,
after some algebraic manipulation, the following expressions for the compo-

nents of the traction vector on the surface of the spheroidal cavity:

1 -(m+l) -(m-1) R .
5= [MjnmPn (p) +Njnm Pn (p)] [Ajnm cos mb +Bjnm sin mé]
1 —(m+l) -(m=-1) _ .
t3=% [M3nm Pn (p) + N3n.mP (p)][A3nmcos m8 B3nm51n me ]
1 - (m+1) - (n-1) ) -
t:ej =3 [_Mjnmpn (p) + NjnmPn (p)] [Bjnmc:os mé Ajnmsn.n mb ]
' (6.5.1)
_1 =(m+1) -{(m-1) . .
t83 =3 [M3nmPn (p) N3nmPn (p)] [B3nmcos m8 +A3mn sin mo]
1 -m .
== +
tzj N Sj Pn (p) [Ajnm cos mb Bjnm sin mé]
= 1 S P-m( ) [A cos m6 - B sin m6]
tz3 X “3nm - a P 3nm 3om

where:




1
v, 3™ (q) .
“30m T %66 ° o [ 5, T
437P3
() 305 (q)
N. =c,, b S e
jnm 44 a. Vv, cqj q.=p
J ] i3
a c, .k
3 -1
C e, -2 y@-1 TP
12 2 3
b v,
]
N = c b'—é [ e 3 ] a
3nm 66 - aq 3q3 q.=p +-E 66
373
m N
(1 +ki) BQn<q.l)
S. =2¢c,, b [ — ]
jnm 44 a, 3q. -
b h| q.=p.
J
a —
S3nm = %44 by, " Q (Py)
By setting
= +
tr trl tr2 + t1'3
B = tg1 T Fgp t Ty
L, =t te o+ £, 1
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and using the following transformation:

ot
1

t
]

6 -t sin 6

t cos
T 8

cos 6

t_sin 0 + t
T 8

@+1) o™ (o)
(@-1) " (o)

(6.5.2)

(6.5.3)

(6.5.4)
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we obtain:
© n+l
e =2 7 7 {[8_ cos(mtl)e + E__sin(m+l)8] P (m+1)
X A nm nm n
n=0 m=0
+ [y cos(m1)s + 5 sin(m-1)8] 2~ (p)}
Ynm ’ nm ' n
o n+l
1 . _ - (m+1)
g, =3 Z Z {{8_ , sin(mwl)e - 8 cos(m+l)6] P (p) (6.5.5)
n=0 m=0
+ [-y_ sin(m-1)8 + 7 cos(m-1)8] »_ ™D (p))
Yom ‘ "nm n P
1 ® n+l _ . -m
€, =% E z [cnm cos mé + Z.p Sit md ] Pn (p)
n=0 m=0
where:

8nm = M1nm Alnm + Man A2nm + M3nm A3nm

<+

Ynm = Nlnm Alnm + Nan A2nm N3nm A3nm

+ +

Cnm = Slnm Alnm San Aan anm A3nm

(6.5.6)

Bnm = Mlnm Blnm + Man Ban - M3nm B3nm

Y =N +

nm 1nm Blnm Nan Ban - N3nm B3nm

cnm = slnm Blnm +5

2nm Ban - S3nm B3nm

1If a surface force on the spheroidal cavity 1s prescribed, then the compo-

0 0 0
nents of that vector, in Cartesian coordinates, t,, ty, and t, can be

represented by a series expansion of spherical harmonics as follows:

—a
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0o_1 = -m
t, =3 7 ) (g cos m8 + By Sin m8) P T(p)
n=0 m=0
0o _1 % ¢ = -m (6.5.7)
=5 ! 1 (h__cosmé+h  sinme) P "(p) T
n=0 m=0
0 T T = -m
t. == ) ) (2 cosmé+1L__ sin _6) P (p)
z . n
n=0 m=0

in which the coefficients gup, Zam, Pnm, Dnm, £nm» and Inm can be evaluated
by using the orthogonality property which leads to equations similar to
those of Eqs. (5.2.10). By equating the coefficients 1in the identical
trigonometric and spherical functions in (6.5.5) ¢to those in (6.5.7) we

obtain the following equations:

— -

| Mlnm Man M3nm 'Alngw
Nlnm Nan 1\'3nm Aan = [vnm]
S1nm San, s3nm A3nm

- — L -

(6.5.8)

Mlnm Man —M3nm rhlnm

Nlnm N2nm -N3nm Ban = [Vnm
S1nm S2nm -SBnm-J IBBn?J

where [vpp] and [vpp] are defined as follows:



for m = 1

nm

form=n> 1

v =

for m =10 + 1

[Vnn+l

[N
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l -
7 (b —eyy)
nl] - hnO
L 2nl
—1 _ —_
7 Poper ™ Bopet)
- 1 -
[Vnm] - E.(hnm—l gnm—l)
— ?’nm e
(6.5.9)
— 0 —
- N 1 -
[Vnn] B 2 (hnn—l gnn—l)
2
- nm _
— 0 —
- _ i .y
[Vnn+l] B 2 (hnn + gnn
b 0 o

Aaa_dua
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For values of m = n and m = n + 1, singularities at p =1,

by the equations Bpp = énm =Yoo+l = ;nn+1 =Zan+l = Znn+1

6.6 The Axisymmetric Problem

For the axisymmetric problem in which the stress field

of 8, the potential functions take the form

-1 are removed

= Oﬁ

is independent

© 2a,
= 5 —2Jd -
b5 7 LD 2300 Pan (P57 %1 (957 7Py (P00 (00 (6.6.1)
v =0
j=1, 2
If a surface force on the spheroidal cavity is prescribed, the compo-
nents of this vector can be represented by:
0_1 +© -1
B TY Lo 8n L (p)
n=0
(6.6.2)
0o_1 =
==
2 A= ZnO Pn(p)
n=0
Therefore, Eqs. (6.5.6) which determine the coefficient Aing and Aqno are
reduced to:
r T 1T
Mo Mano | Aan-! ‘i? 8a1
t i ' _ | (6.6.3)
! ! .
| S1n0 S200 ! L %m0 | L a0
By solving (6.6.3), the stress and displacement field can be readily

obtained
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As an illustration, we will consider in the next sections the problem
of transversely isotropic medium containing a spheroidal cavity when the
medium 1s subjected, at large disfances from the cavity, to

(i) Uniaxial tension in the direction of axis of symmetry of the
medium (z-direction).
(ii) Hydrostatic tension in thejplane of isotropy (xy-plane).

(iii) Pure shear stress in the plane of isotropy (xy-plane).

(iv) VUniaxial tension in the direction perpendicular to the axis of
synmetry of the medium (x—-direction).

Numerical evaluation for case (i) and (iv) are presented in the next

chapter.

6.7 Uniaxial Tension in the z-Direction

This problem is an axisymmetric ome in which op5 =05, = O. There-

fore, the boundary conditions in this case are

= = = = i ini 6.7.1
o Tg » 9pp = 9gg =0, =0 at infinity ( )

t_=t_ =0 on the spheroidal surface (6.7.2)

g = T 5 g =g =g =0 (6.7-3)

(6.7.4)
b Tob
t =o_n_+0 _n = TO-I P == Pl(p)
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Now, consider the problem in which the negative of these traction compo-

nents are specified on the spheroidal cavity, therefore:

(6.7.5)

1
t. = - X Tob Pl(p)

Comparing Eqs. (6.7.5) to Eqs. (6.6.2), we find that the only non-zero

coefficient is 219 = ~Tob. Therefore,

1+ k) 2a 1
Y10 = "2eus Ty WY T e W0
(1 + k)
2 2a 1
Myjo = "2 5 Qley) + 3 ce6 Y loy)
(6.7.6)
s.. =2¢c,,(1L+k) Q)
110 44 1 9 leg
s =2c,,(1+k) Q (o,)
210 ~ “Cus4 27 1 Py
and Eqs. (6.6.3) which determine A;;5j and Ay;y become:
Y10 Mr10 810 0
- (6.7.7)
S S A i1y
110 210 210 2 To

from which we obtain
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Tob , (1+k,) a
Al1p ='§?EETTEZTZ (=vsg *—;;——— Q (ey) + % Q (p,))]
-T.b (1 +k,) a
B 0 2 1
210 T TG, -kpa 3 T A (0 *75 Q6]
where
- a ol 1
A = 44 % Q1 (ey) Q7 (e,y) Fy
2
] =l+bv3(l+kl)(l+k2) : Q) () ) Q; (py) |
1 1 1
a(k, =k,) vy Qi(ey) vy Qiley)
The potential functions in this case are:
2a,
0, = 5T 4,101P()) Qylap) - Qylapl (G =1,2)

Substituting (6.7.10) into (3.2.1)

in the absence of the cavity,

problem at hand become:

c 2 Q(q)
SR gl S L L

- = - 2

[c33(cll-+c12) 2c13] 1 a.(q 1)
(cll-+c12) 2 2k A, 110 Ql(qJ
u =z [ 5 TO+Z 5
[c33(c 12)--2c13] i=1 ajv (qj-l)

the displacement

and adding the solutionm of

—

(6.7.8)

(6.7.9)

(6.7.10)

the problem

and stress field for the
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1
2 2A, (1+k.) 07(q.)
- 7310 o 1
- _Zl L o T ey e T w
] h i3 j
i
(1 +k, ) p5
44 2 2 2
p qj( 3 pj)
1
2 24, (1+k.) Ql(q.)
Ope = L —i— {l-c,, ——1=0,(q.) + ¢, —5—17 ]
66 (=1 o 44 \)2 q 1 ] 66 (qz - l)’i
J i i i
2 2
c,, (1+k.)p. c..q.(1-p)
+ [ a4 14, 881 1} (6.7.11)
v?q. (q% N pg) (q%—l) (q%-p%)
ititty Y3 3 b
2 A, (1+k.) Ql(q.) q.(l—p%)
- 10 i 173 i i
o T. + z 2c { + ]
2z 0 g e o (@2 -D%F  (2-D(a’-p)
J i j j i Pj
2.4
2 (1+k, ) Py (l-p )
- 10 i
rz 'Zl - 2c44 ( l) ' 2 2) ]
3= %373 q 1373

At the spheroid interface, the equations of the stresses in the medium take

the form:
2c4452 % 2 z2
g__ = A, C v, (l+k,)
rr a3 j=1 10 J r +Vv.s 22
2
2%452 § ) (1 +k )z2 2 °
Oppg =3 A,nar v, [ + ]
6o a3 o1 310 73 ] (r 2+\)2 54 22) \)gs[‘ r2+ %54 z2
(6.7.12)
2
2c 2 T
g._ = 442 ) Ao oz% v,(1+k,) 5
2z ab j=1 ] J r +vjs z
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2¢,,s 2 rz
44 2
o__ =~ 7oA. ol v.(1+k,) —————
Tz ab2 j=1 31073 3 ] r2+\)§'5422

By transforming Eqs. (6.7.12) from cylindrical coordinates to spheroidal

coordinates by means of Eqs. (B.3) in Appendix B we obtain:

2
S (VRS S N F 1 ks Ui e B4 T Al ) v |
o0 ab2 r2+\)25422 r2+\)2 4 2
1 2
2¢ 2 v, [v (l+k) +2 ]
o = 66 f110 41 V1 35 2 +2r (6.7.13)
N o]
fo a b2 (rz +v§ sA z7)
2o 2t 1+k, 2r2
+A21042 3s( )z-+-r "
2,20 2 ‘
2 pA

For an isotropic medium containing a spheroidal cavity, Eqs. (6.7.13) are

reduced by the limiting process to:

3TO

)
Oy 27 -5 [-(1+5v) + 10 sin’v]

(6.7.14)
3T,

} _ 2
Tog = 77 - 59) [-(1 +5v) + 10v sin“Y)

where vy is the meridional angle shown in Fig. 8.
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6.8 Hydrostatic Tension in the Plane of Isotropy

The boundary conditions of this problem are

o =g = T 5 (%) =0 =0 (6.8.1)

t =t =0 on the spheroidal surface (6.8.2)

In the absence of the cavity, the state of stress is represented by Egs.
(6.8.1). Therefore, the tractions that must be removed to satisfy the

boundary conditions of (6.8.2) are:

a 1 2T.a

2.7
t =0 nr+oznz-T0>\(l—p)— . 1

(6.8.3)

We now consider the problem in which the negative of these tractions are

applied on the surface of the spheroidal cavity. Thus,

2T, a :
0 0 -1 0
IR em e =O
L. T Pl (p) ’ c, (6.8.4)
It follows that the only non-zero term in Eqs. (6.6.2) is g, = -2Tsa.

This term is corresponding to n = 1. The coefficients AllO and A210 can be

determined by solving the equations

Mio Mo 4110 “Tga|

(6.8.5)

S110 Sa10 4210 0
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where Myj9, My1g, Syjp, and S,;,5 are given by Egs. (b.7.6). By solving Egs.

(6.8.5) we obtain:

\ i b (1+k,) _rg
110 1
2egg (ky=kp)Qp(py) Fy
b (L+k) T,
A910 = oL — (6.8.6)
2
buy (1+k)(1+ky)  Qy(p,) Q; (py)
Fpo=1+ [ i - T3 ]
a ky=ky Vo Qo) vy Q)
The potential functions for this case take the form:
¢j =3 10[ 2(p ) Q2(0 ) - Qo(qj)] (6.8.7)
The stress field becomes:
2 2A, (1+k.) Q (q )
- 310 .o 1
o =Tot L tHmey =3 Qlay) +ege 53
j=1 a, v, q, (q. - L)
hi 33
(I+k.) p
* Cu4 7 }
v, q,.(q.=-p))
3
(6.8.8)
1
2 24, (1+k.) Q7 (q.)
= 410 L3
9 = To * 2 treyy =7 Q) +egg =53
=ty 39 (a5-1

2 2
1+k. . 2 . (1-p.,
. c44( J)pJ . 6 qj( pJ) 5
V. @®-p3 (@2 -1(q?-p2)
Ji73 | 3 3 ]
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l 9
2 AL (1+k. ) (1-p°
) 310( J) Ql(qj) qJ( PJ)
g Y 2 [ T+ J
2z gap 4 a (2-1% (2-1)(q%-pD)
] 3 b ] J
2.k
2 A (1+k.) . (1-p.
o = ] -2 10 3 Pl( pl)
rz 51 44 e v (2_1)%( 2_ 2)
J i3 13 93 7 P;

On the spheroidal surface, these equations take the form:

2
) ZcM 2 A.lo(l+kj) p
C[1:1' - Z 2
a j=1 vj (o, =-p")
2 2 2
2C44 2 (l+kj) P 2a (l—p )
%88 T Zl 10 ! 22 a2 ]
= \). - - -
J 3 p.=p ) bv3vj(o p)
(6.8.9)
2 AL (L+k.) (L-p>)
fof = 2¢ —a' Z 110 i °
zz 4432 5 v (pg__pz)
b ]
2c 2 A .(1+k.) p(1l- 2)%
44 j10 i/ Pi47P
o_, = )
rz 2

. 2
b =] V. -
b i (DJ p)
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By transforming Egqs. (6.8.9) from cylindrical coordinates to spheroidal

coordinates by means of Eqs. (B.3) in Appendix B we obtain:

2
_ v, (1+kl)(l+k2) 2 4 2
o¢¢ = TO (r™+s z7)
SFl (kz-kl)
(l-szvz) (l-—szvz)
[ - ]
2 4 2.1 2 4 2.1
(r -+v2 s z )Ql( 2) v (r <+vl s z )Ql( l)
(6.8.10)
1 (l-+k Y(1 - s v ) [\):32(1-+-k2)s4 22+-2r2]
958 = To t 72 4 2
SF, (k —kl) ) Ql(oz) (r +vzs z)
(1 +k2) (l-szvi) [v§(1 +k )sa 22+2r2]
- }
V1 Qi(ol) (r2+vi s 2)
For isotropy, by taking the proper limit we find
d
1
(6.8.11)

(lim F, ) =
lisotmpy (l-v)oz(pz-l)[Qi(p)]

where

L= Fa+ et =021+ (6P -1 v +1-3079, (o) +0° - ]
i (6.8.12)

and, accordingly,
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4 2
s z

T _ ‘
0, = - —2 {(p%-1) [(30%-1)Q, () = 1 +2[(o°~1)Q; (0)-1] —
r+s z

00
4

T
= - =2 (3P 2v+ 1) (p° ~1)Q () +2v =1 -0" (6.8.13)

o}
86 1

4 2

+2v 151 () ~1) 22—}
r+s z

For an isotropic medium containing a spherical cavity, Eqs. (6.8.13)
become
3T
_ 0 2,
S ) (1=5 cos™y)
3 (6.8.14)
T
0 . 2
086 =z - —(—7——:-—5-:)-5- (=4 +5v sin Y)
where Y is the meridional angle shown in Fig. 8.
6.9 Pure Shear Stress in the Plane of Isotropy
The boundary conditions are
L gyy =0, * 0., " oyz = 0 at infinity (6.9.1)
(6.9.2)

t, =t =t on the spherical surface.

In the absence of the cavity, the state of stress in the medium can be

represented by:
=0 (6.9.3)
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or, equivalently in cylindrical coordinates:

o3 = =g = -1 sin 26 , o__, = T, cos 28 , S =3rz==czé =0
rr 86 0 re 0 (6.9.4)
and the displacement components are:
T T
u_ = rsin28 , u, = - r cos 25 , u_ =20 (6.9.5)
T o6 8 2c66 z

The components of the traction vector generated by the solution of Eq.

(6.9.3) are:

- .. a 2.k 2a -1 .
ty cmcnx+cxyny+cxznz 3 (1=-p”)°sing = > o Pl (p) sin 35

a 2.% o 2a -1
3 (L-p ) “cos?’ = TOPl (p) cos 3
(6.9.6)

t = 0 n +o + =
y o Tyx"x " yy'y T %y2"z T o

t =0  n +0 n +0o_n =0
y ZX X zy y zz 2z

Now, we consider the problem in which the negative of these traction compo-

nents are specified on the surface of the spheroid. Thus,

0 2a -1
t = - =

x = 7o Pl (p) sin ®

0__2a -1 (6.9.7)
ty -3 1 Pl (p) cos 3§

From Egs. (6.5.7) and (6.9.7), we find that the only non-zero coefficients
in Eqs. (6.5.7) are:

- = - .= =2 6.9.8
gy = Zaro . nyy aTO ( )
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therefore, the problem at hand is corresponding to the case in which m = 2,

n =1, and A, = 0, The coefficients B, are determined from:
jl2 j12 -
- - ‘ - r g
(M My Myp | [ Bipo 0
N2 Moo N3 Byio | = | —2aTg (6.9.9)
CS12 S22 TSz [Ba | L9
where:
Bai a2
Migo = 73 leg(Fky) = 6 — e ]
b~V b
1
8a § a2
My1p = T3 [og(Itky) = 6 — c ]
b v, b
(12 az
3 2
Magp = “8cgg 7 (V3 =65
b"v b
3
2c az(l+k ) a
e L Lo 2tk
112 2 66 - <1'P1
b v b
1
2 21+k.)
. _ Cu4s %2 27, e qu( ;
Y212 2 66 1%P2
b VZ b
A,V a

Nypp = 20gg [ 52 + = QF(o,)]
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a ai(l+k )y
S = —8c e _-——_1.._
112 44 3
b v
1
a ag(l+k2)
Sppp = 8¢, I (6.9.10)
b v
2
a -2 a Gg
5312 = 2344 , Ql (03) = 8ca4 = =
bv3 b V3

The solution of Egqs. (6.9.9), after some algebric manipulation, is given by:

k,wv,a b2 T

3 - 21 0
112 2 _
al(kl kz)F3 s
2
. . klvzab to (
212 2 6.9.11)
éz(kl-kz)F3 44
i
2
='.VBab —T—Q_
B312 2. o [
%353 Cu44 [
where:
ab Ql<o) abkal(o) ab k. v Ql(g)
F 2_2____#___&___2_4-__#_1_1_ (6912)
3 2 2 2 2 2 .9.

Vq aq v3 az(kl-kz) Vs al(kl-kz)
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The potential functions for this case are:

2a
-2 2 =2
%3 ='—3‘13le (7, (pj) Qz(qj) =P (Pj) Qé(qj)] sin 29
(6.9.13)
2a

3 -2 2 -
b3 = 57 Bypy [P (py) Q(ay) - 2g7(py) Q5(aj)] cos 28

j=1, 2

Substituting Eqs‘. (6.9.13) into Eqs. (3.2.1) and adding the solution of the

problem in the absence of the cavity we find,

3 1
T arq r Qi(q,)
,u={-—0—r+B ['ll(l—p)3(3+p)+-——];——-l-—l]
r ”e 112" 3 1 L e G- nE
66 1'%
3 1
%% 3 T
+ B, .| (l=-p,) (3+p,) +— —F—— ]
212 3 2 2 2 5
3 1 ’
359, 3 r Qifay)
+ B (== (1-p,) (3+p,) ~ = —=—=—— 1] sin 28
312 3 3 2 2 i
ir 2a3 (43-1)
3 1
T azq r 0;(q,)
sy = (= ——r+ 3,0 = - ke + — — =]
2Cq 3 20) (g7 -1)
ang 3 r Qi(q:)
3r ) 2a2 (g~ -1
&
a§q3 3 r Qi(qa)
+ Baipl=——= (1=-p,) (3+p,) - —]} cos 25
312 3 3 3 " 2 ]
3r 2a, (q5-1)
3 3
2

2
2 Biigkog
AV

B...k a
(l-pl)2(2 +p) 42127272
3r 1 v

(1- p2)2(2 +p2)] sin 2¢
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66

2, Byyp(1+ky) q

77

= {7 +2c,,r 12(l+k2) 97
O T3 (IR 22 @il
3
a9 oy (a;)
* 2egg Bypol- == (L-p) (3 +p)) + —
20y (q] = 1)
3
2a (qz
3 1
* 2e6 Byppl- =7~ (1-py) <3+P3> - 5 1} sin 25
2 2a,(q5 - 1)
393
1+k 2 q
112 1 1
= {e= <+ ooy ———
(rg* 20,7 PR R SR SUPIS- PO B
1 1 3 ‘9 9172
+.Eé£g ( iiig - :i ) q2 ]
3 NN IR SN D N
2 2 3 % 12 7P
-2::663112[ v (l-pl) (3 +p,l) + 5 » ]
2a_(q7 - 1)
3 1
azq2 3 Ql(qz)
“2eggB1a(m T (1mpp) (3+py) 4 T |
Zaz(qz -1)
3 1
@34, 3 “ Ql(q3)
m— - - ———————— i 2
665312(7 5 (1-Py) (3¥py) - ———5— ] sin 29
-a3(q3-l)
- 2e. 23 112(E +kp) 9
4é 3 2

BZlZ(l +k2)

2 2
(ql - l)z(ql - pl)

47

3

)

2 2
(42 -1 (a% - p2)

] sin 296

University of Illinoig
Metz ERzfercnos Zocnm

- 'w-r--l—
BN H

Urbano, Tllircis 21801
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2
4 3 B. a (1l+k.)
2
Iz = usl™ T3 L a-pp ey
E r’ j=1 v,
J
2 B (1+k.) P.
+ 2r 112 1 J } sin 26
j=1 cr.‘?‘v. (qz—l)(qz-p)
33 3 i 73
4 3 B.12 G?(l-+k.) 2
o,, =¢,,{ P - I (1-p.)(2+p.)
8z 44 . J J
3r” j=1 v,
]
B P
- p —12 3 } cos 28 (6.9.14)
av, (42 -1)(q%-p%)
373 Y373 TRy
3
) { L g [a.q 3 jS(q.)
a c - B. (L=-p.) " (3+p,) - ]
) 66 Lo P12l T N
2cp  3=1 J r ] J 2aj(qj- 1*
a.q Ol(q )
- By, [ =2 (1-p,) (3 +p,) + ——2— ]
@3%43
~ B q.
2 7312 3
- az ( 2.-1)2< 7 2) } cos 29
3 93 937 P3

On the spheroidal surface, the stress components in the medium take the

form:
210 r2 (l-bkl) (1+k,)
Urr";—{'l*( _k){ T, 24,2 2,742 s
3 kl 2 r \"2 z r vls 2z
ngkl 2v§k2
(L +k, - ) (1+k, - )
) 2 1 2 2 2
o T V3 V3
o8 " {l+m _k)[ 7.2 4.2 T 2,747 )simie
3 1 2 T \)ZSZ T \)lSZ
(6.9.15)
27 r? (1+k.) v2  (L+k) v2
g = 0 [ 1 2 - 2 l } . 28
2z 2 2 & 2 2 2 7 4 sin

F (kl-kz) r +vzs z T +vls z
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T 32 (1 +k1) vg (1 +k2) v2
g =2———-—=——‘——rz[‘,Z 5 3 2412]Sin26
Tz
F3 (kl—kz) T +v25 4 T +vls z
2T zr
2
o] = —— y_.§ ~————— cos 2§
bz F 3 r +v,s z
3 3
210 r2
O g = [ 5 = 1] cos 26
F3 r +v,S5 2z

The stress components in spheroidal coordinates are obtained by using the

transformation in Appendix B and take the form:

27 (1+k )(l-—vz) r2
0 1 2
c¢¢ = — [-1 + - )
F3 (kl—kz) r +\)Zs z
(1+k.) (1 -v2) 2
2 1 .
- 5 % 3 ] sin 28
(kl-kz) r +\)ls z
2T rz (1+k )v2—2k v2
0 1773 172
9g¢ = L+ (=373
F3 \J3(kl-k2) r+v,s 2z
(6.9.16)
(1+k )v2-2k v2
- 2.3 2 1 1} sin 26
2. 2 4 2
r+v_s z
1
21:0 2 9 z¢r2+5422
g = - — V. S cos 28
8¢ 3 2 2 4 2
F3 r +\)3 z
o] =0 =g =0

nn no ne
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For an isotropic medium, Egs. (6.9.16) may be reduced to:

o

BTO T
g = —= [=(l=-vV) + —/——— | sin 2¢
& d r2+s4 22
3
810 r2
Gee=‘—-"[(l—\))+v—2——z—2] sin 29
d3 r +s z
(6.9.17)
8t szz
O¢6 -0 (1-v) T cos 28
d3, Yr“+s 2z
an © on¢ = %ne T 0
where
2 2 2 '
dy = (07 =1)(3p"=7+8v) Q(p) - (" +1) (6.9.18)

Furthermore, for an isotropic medium containing a spherical cavity Egs.

(6.9.17) are reduced to:

1510

S _ Coainl .
UYY = T =5v) (1 v sin” v) sin 28

T 2 | (6.9.19)
Ogg = —(-7-:—5—\))- (=1 + v cos” v) cos 28 -7

15(1=-v)

Yo = (7 -5v) ©

0 cos Y sin 28

g (¢ .
nn ny né
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6.10 Uniaxial Tension .in the x-Direction

The distribution of the stress field throughout a medium subjected to
uniaxial tension in the x-direction T, may be achieved by superposition of

the solutions for the following two cases:

1

(1) ox

1
-Gy = ’E‘ To

(i1) oy
The solution of case (i) may be obtained directly from Section (6.8)
after replacing To‘by'% To. On the other hand, the solution of case (ii)
can be obtained from the solution of Section (6.9) after replacing 6 by
(9‘+‘%) and T, by %‘To. Therefore, the stress components at the spher-

oldal cavity surface for the desired problem are:

v§ (1+k, ) (1+k,) . s - szv§>
%¢ = To (r"+s 27) 73 4 2.1
2$Fl (kz—kl) vz(r -+v2 sz )Q1(°2)

(l-szvz) T (1+k )(l—vz) r2
- 73 412 1 ]+ -1+ - 2 73 4 32
vl(r -+vl s z )Ql(pl) F3 (kl-kz) T -+v2 s z

-2
{14k, ) (1=-v]) r
\ 2 \ ll

(6.10.1)

2 2 2 4 2 2
T (1+k1)(l-s vz) [v3(1+k2) s z +2r"]

o, = {
e 1 2 2 4 2
ZSFl(kz—kl) vy Ql(pz) (r +vy sz )

(1+k2)<1-s2vi> [v§(1+kl) s¥ 22 +212] T,
- }+— {1+

. 2 2
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CHAPTER 7

THE EFFECT OF ANISOTROPY ON THE STRESS CONCENTRATION FACTORS

7.1 Introduction

In this chapter, numerical results will be presented for a transverse-
ly 1isotropic medium containing a spherical cavity subjected to the
following load cases, applied at large distances from the cavity.

(1) ﬁniaxial tension in the direction of the axis of symmetry of the
material (z-direction).

(ii) Uniaxial tension in the direction perpendicular to the axis of

symmetry of‘the material (x-direction),
Elementary dimensional considerations show that the stress concentration
factor must depend upon four dimensionless ratios of either the five elas-
tic constants (stiffnesses), or the compliances, or the engineering
coustants. Adopting the engineering constants and noting that Poisson's
ratios v and v are dimensionless, the remaining two dimensionless ratios

among E, E, and G can be taken as '% and '% although other ratios are
possible. To show the effect of anisotropy on the stress concentration
factor 1in the vicinity of a spherical cavity, we consider hypothetical
materials for which one of the four chosen ratios can vary while the
remaining three ratios are kept fixed at values corresponding to an isotro-

pic material whose Poisson's ratio equals 0.25. Therefore, the ratios

have, at isotropy with v = 0,25, the following values

= 0.4 (7.1.1)

t | e
=l

v=v=0.25, 1.0 ,
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Throughout this chapter, we define the stress concentration factor as the
ratio of the maximum principal stress on the surface of the cavity to the
magnitude of the uniform stress field applied at infinity. Positive and
negative signs are used to denote tensile and compressive stresses
respectively,

Numerical results for the stress conceqtration factor are plotted on a
coordinate system in which the abscissa represents the varying ratio and
the ordinate represents the stress concentration factor denmoted by K¢ and
Ke for tension and compression respectively. Negative values of Poisson's
ratios do theoretically exist but they may not be physically attainable.
Thérefore, they are omitted from the plots and discussion. The asterisk
(*) on the plots indicates the upper or lower limit of any of the four
ratios for positive definiteness of the strain energy function (Eq. 2.4.3)
when the other three ratios are fixed. For each value of the varying
ratio, the locations of K; and K. are calculated and shown on a plot in

terms of two angles y and © shown in Fig. 8.

7.2 Uniaxial Tension in the z-Direction

This problem was first investigated by Chen [5] who evaluated the
stress concentration factor for a few transversely isotropic materials. 1In
.this section, we will present more numerical data than has been reported
previously in the literature.

It is well known that the tensile and compressive stress concentration
£ ] . . ] 3(9-5v)

actors for a spherical cavity in an isotropic medium equal ————+

2(7-5v)
= 3(1+5v) respectively. The former occurs on the equatorial 1line and

2(7-5v)

and



85

changes slightly from 1.929 to 2.167 as Poisson's ratio v traverses tﬁe
range O to 0.5 and the latter occurs at the pole and changes from -0.214 to
. -1.116 as v traverses the range 0 to 0.5,

We have calculated the tensile and compressive stress concentration
factors for a wide range of crystalline and wnon-crystalline transversely
isotropic materials including some composite materials possessing high
Young's modulus in the direction of the fibers. Results of the computa-
tions are presented in Table 5 which shows a substantial increase in the
maximum tensile stress for highly anisotropic materials (i.e., Gfaphite
Thornel). Furthermore, the highest tensile and compressive stresses for
all of the anisotropic materials, listed in Table 5, occur at the equatori-
al line and pole respectively. This is a well recognized situation in
isotropic materials but this observation should not lead to a general con-
clusion applicable to other anisotropic materials. To provide further
insight into the influence of anisotropy on the stress concentration
factor, sensitivity analyses for the four ratios mentioned in the preceed-

ing section have been made and will be presented next.

sl

7.2.1 Effect of

Figure 9 shows the wvariation of the highest tensile and compressive

: o . E .
stress factors Ky and K. against the variation of the ratio 4. It is seen

that for values of % <-%_§ 1, K¢ changes slightly and remains close to 2.0

but for %») 1, K¢ increases appreciably as %- increases (i.e., for T = 10
and 100, K¢ = 4,214 and 1l.11). Conversely, the factor K. decreases aS-%
increases and becomes negligible for very large values of (i.e.,'% = 10

and 100, Ke = -0.140 and -0.041).
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In Fig. 10, it is shown that for~% = 0,167 the highest tensile stress

is calculated at vy = 49.8° while the highest compressive stress is calcula-

ted at v = 19.2°, As %-deviates and becomes larger than 0.167, the loca-

tion of the highest temnsile stress starts shifting toward the equatorial

line (Y = 90°) and remains there for-% > 0.5, whereas the location of

highest compressive stress starts shifting toward the pole and remains at

the pole for values of-% > 0.3,

| @l

7.2.2 Effect of

The variation of the tensile and compressive stress concentration

factors with-E are shown in Fig. 11. It can be observed that

E
(i) As the ratio %’rises from 0.01 to 1, Ky decreases from 7.400 to
1.749.

(ii) Neither K¢, for % > 1, nor K., for-% > 0.01, seems to be sensi-

. . . G
tive to the variation of'E.

» K¢ and K. approach the

o]

(iii) For a sufficiently large value of
values 1.913 and -0.633 respectively.

Figure 12 shows that the location of the highest tensile stress is

found to be on the equatorial line (Y = 90°) for values of %'5'0.8. This

location starts shifting toward the pole as increases and deviates from

0.8. When % becomes sufficiently large, the highest tensile stress occurs,

approximately, at vy = 57.3°% It should also be noted that for all values

of =, the highest compressive stress occurs at the pole.

= |l
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7.2.3 Effect of Poisson's Ratios v and v

Figures 13 and 14 show clearly that Poisson's ratios v and v have
little effect on the stress concentration factors Kt and K.. When V trans-
verses the range 0 < v < J/g = 0.612, K¢ changes slightly between 2.028 and
2,160 and K. increases from -0.333 to -0.903. For values of 0 < v <"%
plotted in Fig. 14, K¢ appears to be insensitive to the variation of Vv and
remains close to 2.0 whereas K. increases from =0.45 to -2.80. The loca-
tions of the highest tensile and compressive stress are found to be .at the

equator andApole respectively for all values of V and V.

7.3 Uniaxial Tension in the Direction Perpendicular to the Axis of Elastic
Symmetry (x-Direction)

Obviously, for the case of an isotropic body with a spherical cavity,
the solutions corresponding to tensions in the x—and z-direction are equi-
valent since these two directions are elastically and geometrically
identical.

For transversely isotropic materials, the magnitude of the highest
principal temsile and compressive stresses, Ky and K., are calculated for a
variety of materials. Results of computation are given in Table 6. It is
found that for the majority of these materials, the highest principal
tensile stress occurs at the pole ( Y = 0°). However, for some materials
indicated by an asterisk in Table 6, the highest principal tensile stress
occurs away from the pole. On the other hand, the highest principal

compressive stress for all the materials in Table 6 occurs at 6 = 0° and
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= 90°, The effect of anisotro on on the stress concentration factor on
Y : Py

the stress concentration factor of the problem at hand is discussed next.
7.3.1 Effect of~%

Figure 15 presents the variation of the maximum principal tensile and

compressive stress factors, K¢y and K., on the cavity surface against the

variation of the ratio-%. It is seen that the factor Ki is insensitive to

the variation of %3 changes from a value of slightly above 2.5 to slightly

below 2.0, and approaches a value of 1.946 for fairly large values of

|t |

In contrast, the factor K. is considerably affected by the variation of B

s .. E .
attains its absolute minimum (Kc = 2.022) at-E = 1, and increases monotoni-

cally as increases. The wvariation of the 1location of the maximum

= | )

principal tensile stress when % varies 1s shown in Fig. 16 while the

maximum principal compressive stress occurs at 8 = 0° and Y = 90°,
G
7.3.2 Effect of T
i G
In Fig. 17, K¢ is plotted as a function of the ratio N It is seen

that if %-rises from 0.0l to 0.4, K¢ decreases from 2.923 to 2.022. When'%

changes from 0.4 to 9, Ki changes slightly from 2.022 to 1.893. For values

of-% greater than 9, as-% increases, the magnitude of K¢ increases. The

location at which K¢ is evaluated is shown in the same plot. A similar

plot is made for K. and shown in Fig. 18. It appears that K. is insensi-

= ol

. . G G . . .
tive to the variation of when E-( 10 but it increases as the ratio

E
increases (i.e., -% = 100, K¢ = 5.003 at 6 = 50° and v = 86°, and K.

~4,726 at 5 = 40° and Y = 86°).
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7.3.3 Effect of V and v

Fig. 19 shows that neither K nor K. is sensitive to the variation of
ve The location at which K; is evaluated is shown in Fig. 20 whereas K. is
found to be at 6 = 0° and vy = 90° for all plotted values of V. In Fig. 21
Kt and K. are plotted as a function of V. It is seen that when v changes
from O to 0.875, K¢ rises from 2.002 to 4.017. The location at which K¢ is
evaluated is 6 = 90° and v = 90° for v < 0.25 and is & = 90° and v = 0° for
v > 0.25. In the same plot, K. changes from -0.525 to =1.115; when v

changes from O to 0.875, and occur at & = 0° and Y = 90°.
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Table 5. Stress Concentration Factor on the Surface of Spherical Cavity
Under Uniaxial Tension in the Direction of the Axis of Elastic

Symmetry

Material

Stress Concentration Factor

Tension (K¢)

Compression (K¢)

Beryllium

Bone (fresh phalanx)
Cadmium

Ceramics (BaTiO3)
Cobalt

Ecologite

Graphite

Graphite Thornel 50
Graphite Thornel 75
Hafnium

Ice

Magnesiun

Micha Schist
"Quartz

Rhenium

Silver Aluminum
Titanium

Zinc

Zinc Oxide
Zirconium

Isotropic medium
(v =10.25)

1,980

2.328

1.786

2,048

2,285

2.130

2,753

4.683

5.637

2.107

2.231

2,129

1.980

2,025

2,220

2,210

2.155

1.621

2.196

2.243

2.022

~0.248

—0.654

-1.033

-0.729

-0.532

-0.117

-0.616

-0.664

-0.633

-0.538

-0.491

-0.596

-0.743

-0,704

-1.000

-0.769

-0.677

~0.587
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Table 6. Stress Concentration Factor on the Surface of Spherical Cavity
Under Uniaxial Tension Perpendicular to the Axis of Elastic

Symmetry
Material Stress Concentration Factor
Tension (K¢) Compression (K¢)
Beryllium 1.905 -0,278
Bone (fresh phalanx) 2,127 -0.976
Cadmium 2.316% -0.763
Ceramics (BaTiOq) 2.069%* —0.724
Cobalt 2.262 -0.770
Ecologite 2.476% -0.630
Graphite 2.,918%* -0.946
Graphite Thormel 50 1.935 -2.066
Graphite Thornel 75 1.921 -2.793
Hafnium 2.075 -0.649
Ice 2,142 -0.726
Magnesium 2,105 -0.665
Micha Schist 2,074% -0.518
Quartz 2.021% -0.526
Rhenium 2.146 | -0.566
Silver Aluminum 2.176 -0.812
Titanium 2,177 -0.736
Zinc 2,315 -0.637
Zinc Oxide 2.186 -0.792
Zirconium 2.150 -0.745
Isotropic medium 2,022 -0.587

(v = 0,25
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CHAPTER 8

SUMMARY, CONCLUSION, AND RECOMMENDATION FOR FURTHER STUDY

8.1 Summary and Conclusion

The principal result of this study has been the development of expli-
cit analytical solutions for the (non—axisymmetric) first and second
boundary wvalue problems of elasticity theory for a spheroidal cavity
embedded in a transversely isotropic medium. The analysis is based upon
solutions of the homogeneous displacement equations of equilibrium in terms
of three quasi-harmonic potential functiouns taken in a special combination
of the associated Legendre functions of the first and second kind. Exact
solutions have been obtained for problems involving a region containing a
rigid spheroidal inclusion and a region containing a traction—free cavity
subjected to constant loadings applied at sufficiently long distances from
the cavity. A tractable problem which can be treated in a similar fashion
is the hyperboloidal notch 1in a transversely isotropic wmaterial wunder

arbitrary loadings (see Reference [8]).

8.2 Recommendation for Further Study

The applications of the present approach are by no means exhausted in

this work. Further study should be made of the following:
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Problems which can Be solved directly by the present approach. These
include solutions of spheroidal cavities and inclusions under loading
conditions different from those we have obtained, as well as numerical
investigations including the effect on the stress concentration factors
of the shape ratio of the spheroidal cavity or inclusion and the effect
of anisotropy on the decay of stresses with distance from the cavity or
inclusion.

The mixed and mixed-mixed boundary value problems for a transversely
isotropic medium containing a spheroidal cavity or inclusion.

Problems in which the elastic medium 1is bounded by other geometries

(i.e., the hyperboloidal notch).
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APPENDIX A.1

LEGENDRE ASSOCIATED FUNCTIONS OF FIRST KIND

Po(p) =1
Pl(p) =D
P,(») =3 (3p°-1)
P =D (502
3(p) =5 (5p" - 3)
2, (® =—§; (35p" - 30p% +3)

P_l(p) = _(A-p)

1
0 (1-p")7
-1 _1 . 2k
P, =5 (1-p)
- 1 2.4
P;Kw =5p 1-pH7
- L
P =3 5pP-na-ph)?
Pl =50 (-3 (-0
2
PBZ(P) = —LL:J:%—
2(1-p7)
i} 3_
Plz(P) _(p 3P£F2)
6(1-p")
)
%) - % (1-p)
PPe) = p a-0)

P, (p) = Z%-(l-pz)(7p2-l)
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3 - - iz6p’+8p-3)

1 AT

_ _ 3 4.2

P23(p) _ (8 -15p +1012) B/gp )
120(1-p7)

P20 = & a-ph??

PZB(p) =Zl§ p (1-p2) 3/2
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APPENDIX A.2

LEGENDRE ASSOCIATED FUNCTIONS OF SECOND KIND

_ 1 q+1

-9, 9%l _
Q;(q) =3 In -1t

L a2 g+l 3

=1 2 _ g+l 1 2 _

_ 1 b oo 2 q+1 _ 5 2
Q4(q) =16 (359" -30q"+3) Ln _q-l >z 4 (21q 11)
1 -1
Q) =53

(¢"-1)7

1 1 2 3 +1
Ql(q) = E—(q --l)2 Ln 9 - q

7 L
g-1 (q¢"-17

2
5 -
Q%(q) =%q (-1)% 1a S - (33 21)/2
q-1 (qg"-1)
2
L 3 (542 2 _ & +1 15¢° - 13
Q3(q) =7 (5¢" -1)(q -1)% 1 & _ af q2 1/)
q-1  2(q°-1n*
2 2
¢ -1
2 2
Q (@) = —
qg -1
2
() =2 (q¥-1) 1n L 4+ 26 -390)
q-1 q -1
Qg(q) =—l§5— (¢?-1) 1o L - 15¢% +10 + 22

qg-1 q -1
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2
op(q) = 232D

(q2_1)3/2
Qi(q> = - (—qi%—gg
%@ = - o _81)3/2 |
Qg(q) =1_25 (2= 13? 10 L 150 - 1Es 210q -~ 8q -

q-1 @-nt? (?-13
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APPENDIX B

TRANSFORMATION OF THE STRESS COMPONENTS FROM
CYLINDRICAL TO SPHEROIDAL COORDINATES

Let the spheroidal coordinate system be defined by means of the trans-

formation

1 2 1
ct(q2 -1 31-p9)7

r-_-
z=0aqp (B.1)
6 =6

in which 1t 1s customary to use q = coshn and p = cos 8 where the ranges

of n, ¢, and 6 are

0<n<e , 0<2¢<m , 0<86<2n . (8.2)

and let Mo be the value on the surface of a spheroid whose semi-axes are
a and b. Then, a = o cosh NG b = o sinh Ny s and the components of the
stress tensor along three’orthogonal directions (n, ¢, 6) can be written in
terms of the components of the stress tensor in the cylindrical coordinate

system as follows.

1 2 4 2 2
o= ——— + +
nn r2-+s4 z2 (x Irr s z 922 2s rz Orz]
1 4 2 2 2
o,, = —m—T—— + - .
06 = 2, 47 [s'270 +r0,-2s rzo ] (B.3)
(o} =0

88 86
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