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CHAPTER 1 

INTRODUCTION 

leI Objective and Scope 

Three-dimensional boundary value problems in anisotropic elasticity 

theory are inherently more complex than their isotropic counterparts, -due 

to the presence of more than two elastic constants in the generalized 

Hooke's law .. Despite this added complexity, a large number of technically 

significant problems have been solved for the case of transverse isotropy, 

a type of anisotropy characterized by five elastic constants .. While 

some of these solutions demonstrate the phenomenon of stress concentration, 

in which a uniform stress field in an infinite body is disturbed by a 

single cavity or inclusion [2-9], it appears that the problem of "stress 

interference", or the interaction between multiple perturbing stress 

fields, in an anisotropic medium has not been addressed in the literature. 

The phenomenon of stress interference in isotropic materials has received 

considerable attention (see survey article by Sternberg [39]) .. 

In the present work, a solution is given for the problem of the tor

sion of a transversely isotropic body of revolution containing two sphe-

roidal cavities. The objective of the investigation is twofold: 

1) The solution presented will demonstrate the phenomenon of stress 

interference, and the closely related Principle of Saint-Venant, 

in a three-dimensional anisotropic elasticity problem; 



2 

2) The method utilized in obtaining the solution of the torsion prob

lem may be extended to include other loading cases (tension, 

shear, flexure), other boundary conditions (elastic inclusion), 

or the case in which the body contains more than two cavities. 

1.2 History of Stress Interference Problems 

Stress interference is the interaction between perturbing stress 

fields, due to two or more sources of stress concentration in an elastic 

solid. The stress concentrations may be caused by geometric or material 

discontinuities. The problem of stress interference arises in the inter-

pretation of non-destructive test results for welds, forgings, and 

castings, which show the sizes and locations of material flaws [15]. Con

siderations of this type become critical in the design and quality control 

of pressure vessels and rocket cases, as well as other types of structures 

[35]. Several problems have been solved which illustrate the phenomenon of 

stress interference in a three-dimensional isotropic elastic solid. Those 

results related to interference caused by the presence of multiple cavities 

or inclusions in the body are surveyed below. 

In 1952 Sternberg and Sadowsky [40] solved the problem of two spher

ical cavities in an infinite isotropic elastic solid under axisymmetric 

loading on the cavity surfaces and homogeneous tractions at infinity. They 

developed and employed spherical dipolar harmonics to obtain the solution. 

Shelley and Yu [38] used a similar approach to consider the interference 

between two rigid spherical inclusions when the stress field at infinity is 

uniaxial or hydrostatic tension. In a discussion of [38], Hill [19] 
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presented results for the uniaxial case in which the rigid inclusions are 

of unequal diameter.. Eubanks [12] appears to have been the first to attack 

the stress interference problem for axisymmetric torsion when he considered 

the torsion of an infinite isotropic elastic body containing two spherical 

cavities" He obtained the solution in the form of an explicit series. 

Hill [20] extended the work to the case in which the infinite solid is 

bonded to two rigid spherical inclusions, while Goree and Wilson [14] 

investigated the effect of partially bonded rigid inclusions, upon which 

non-vanishing resultant torques may act. Problems of stress interference 

due to an infinite row of spherical or spheroidal cavities were solved by 

Miyamoto [32], Atsumi [1], and Nisitani [34]. In each case the loading 

considered was uniaxial tension along the line of cavities. Atsumi did not 

res trict his inves tigation to "small" cavi ties, as he considered the cav

ities to lie on the centerline of a cylinder of finite radius" 

While all these solutions are for isotropic bodies, no multiple cavity 

or multiple inclusion problem is known to have been solved for an aniso-

tropic solid .. In the present study a solution is given for the torsion 

problem for an infinite anisotropic elastic body containing two spheroidal 

cavi ties. The particular type of anisotropy considered is that for which 

the Hookean matrix remains invariant under an arbitrary rotation of the 

coordinate system about an axis (the "axis of elastic symmetry" of the 

material)" A material of this type is called "transversely isotropic .... 
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103 Transverse Isotropy 

For a transversely isotropic material, with z-axis the axis of elastic 

symmetry, the generalized Hooke's law in circular cylindrical 

coordinates takes the form [13] 

° 
c
ll 

e
12 

c
13 

0 0 0 E 
rr rr 

°ee 
c

12 cll c
13 

0 0 0 Eee 

° c 13 c 13 
c

33 
0 0 0 E 

zz zz 

°ez 
0 0 0 c

44 
0 0 Yez 

(1.3.1) 

° 0 0 0 0 c 44 
0 Yrz rz 

ore 0 0 0 0 0 c 66 Yre 

where 

(1.3.2) 

and 

E ,E ,eGO are the components of infinitesimal engineering strain 
rr ee 

defined by 



5 

where u r , ue' Uz are the components of the displacement vector. 

Necessary and sufficient conditions for the positive definiteness of 

the strain energy function are the following [13]: 

(1.3.4) 

A material obeying the constitutive relation (1.3.1) will demonstrate 

elastic symmetry in planes perpendicular to the z-axis; i.e., all direc-

tions in the r-e plane are elastically equivalent. For this reason planes 

parallel to the r-e plane are sometimes referred to as "planes of iso-

tropy" " Some materials exhibiting transversely isotropic behavior are 

wood, stratified soil or rock, and materials possessing an hexagonal 
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crystalline structure, such as magnesium, cadmium, and zinc. Graphite is 

highly transversely isotropic, as are unidirectional fiber-reinforced 

composites [17,29] .. Some typical values of the elastic constants for a few 

of these materials are listed " =_ (C44)~ in Table 1.1 [25,29], in which v 
3 c

66 
is the elastic parameter which arises in torsion problems. 

Table 1. 1 Elastic Constants for Some Transversely Isotropic Materials 

Material c
11 

c
33 c44 c12 c13 v3 

Cadmium 110 GPa 46.9 GPa 15.6 GPa 40 .. 4 GPa 38 .. 3 GPa .. 670 

Zinc 161 61 .. 0 38 .. 3 34 .. 2 50 .. 1 .. 777 

Magnesium 59,.7 61 .. 7 16" 4 26 .. 2 21.7 .989 

Modmor II 20 .. 0 237 24 .. 0 9 .. 94 8 .. 37 2 .. 18 
Graphite Fibers 

Modmor II/LY558 
Graphite-Epoxy 
Composite (0 .. 67 14 .. 5 161 7,,10 7.21 6 .. 50 1 .. 40 
Fiber-Volume 
Fraction) 

1.4 Organization of the Study 

The general stress function approach for the torsion of transversely 

isotropic bodies of revolution is derived in Chapter 2 .. The results are 

extended to the case in which the body is unbounded. 

In Chapter 3 the general results of Chapter 2 are applied to the 

specific problem of the torsion of an infinite transversely isotropic body 

of revolution containing two spheroidal cavities, thus resulting in a 

corresponding Dirichlet boundary value problem for the stress function. 
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The introduction of two spheroidal coordinate systems facilitates the 

mathematical description of the problem. 

The method of solution used to obtain the stress function is presented 

in Chapter 4. After reducing the problem to an infinite system of linear 

algebraic equations, various interpretations of the truncated solution are 

discussed. Expressions are given in series form for the stresses, the 

stress concentration factor, and the stress interference factor. 

integral representation for the displacement is also presented. 

A line 

Numerical results, which include plots of the stress concentration' 

factor and stress interference factor along the surfaces of two spherical 

cavities, are presented in Chapter 5. The results are then discussed, with 

particular emphasis on the effect of anisotropy on the stress interference 

and the implications this has regarding the applicability of Saint-Venant's 

principle in a three-dimensional anisotropic elasticity problem. 

In Chapter 6 the results of the study are summarized and recommenda

tions for further study are made. 
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CHAPTER 2 

TORSION OF A TRANSVERSELY ISOTROPIC BODY OF REVOLUTION - GENERAL THEORY 

2.1 General 

The Lekhnitskii stress function approach [31], which is an extension 

of the Michell-Foppl theory [37,41] for the torsion of isotropic bodies of 

revolution, is derived in the pres~nt chapter. This approach guarantees 

the existence of a stress function which generates the stress field in a 

transversely isotropic body of revolution subjected to axisymmetric torsion 

in the absence of body forces. The stress function must satisfy a second-

order linear partial differential equation in the interior of the body, and 

meet boundary conditions of the Dirichlet type on the bounding surface(s). 

At the end of the chapter the approach is extended to include bodies 

occupying an unbounded region. 

2.2 Stress Function Approach 

Let (r, e, z) denote the circular cylindrical coordinates of a point, 

where rand z are dimensionless quantities referring to a scale length a. 

Consider a transversely isotropic body of revolution occupying the region 

B, whose axis of elastic symmetry coincides with its axis of revolution, 

the z-axis 0 (See Fig. 202.1.) Furthermore it is assumed that any trans-

verse section of the body is bounded by at most two concentric circles, 

thus eliminating the possibility of toroidal (ring-like) cavities. (The 

derivation which follows may be modified to include this more general 

geometry.) For definiteness let one end of the body be rigidly fixed, 
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z 

-..... 
'~ 

\ Si , 
I , 
, __ - _~ (i)() 
~ ___ ~T z 

\, j ,/ -B 
\ ,I ,.... -'" 

~----------------~------~ r 

Fig. 2.2.1 Torsion of Body of Revolution 
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while the other is subjected to tangential tractions statically equivalent 

to a torque .. The inner and outer lateral surfaces, Si and So, are acted 

upon by tangential tractions T(i) (z) == T(i) (z)e and 
- 8-e 

T(o) (z) == T(o) (z)e , 
- e-e 

res pect i vely .. (Here e is the unit base vector in the e-direction at the 
-8 

point of interests) In addition all body forces are assumed to vanish. 

The derivation begins with the same underlying assumptions made in the 

Michell-Foppl theory; namely, that the cross sections do not warp and that 

no radial displacements occur: 

Ue ue(r,z). 

(For convenience ue is also dimensionless, scaled by the length unit a .. ) 

By definition, the above displacement field characterizes a state of 

axisymmetric torsions The corresponding components of engineering strain 

are given by 

E Eee E Yrz 
0 

rr zz 

dUe ue 
"fr8 dr r (2.2.1) 

dUe 
"f8z dZ 

while the stress components take the form 
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a °ee a a = 0 
rr zz rz 

dUe u e d 
( 

u e 
) (2.2.2) 

are c 66 Yre c 66 
(--- c 66 r- , 

dr r dr r 

dUe d 
u e 

) 
°ez C44 Yez c44 

c 44 r-
dZ dZ r 

Two of the three equations of equilibrium are satisfied identically, while 

the third equation is the following: 

dare dO ez 20re --+--+-- 0, 
dr dZ r 

or 

o . (2.2.3) 

Equation (2.203) implies that there exists a function ~(r,z) defined in B 

such that 

~= 
dZ 

~=~ 
dr 

or 

2 
r 

2 
r 
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(2.2.4) 

where 

(2.2.5) 

Representation (2.2.4) ensures that the stress equation of equilibrium 

(2.2.3) is satisfied identically. 

From equations (2.2.2) and (2.2.4) one may obtain the differential 

relationship between the "stress function" ttJ and 

~ 3 d 
u e 

) 
dr v3 r 

dZ 
, 

r 

~ 1 3 d 
( 

ue 
) r 

dZ v3 dr r 

Ue 
the angle of twist 

r 

(2.2.6) 

These equations imply a line integral representation for the angle of 

a u e 
twist, while the angle of twist per unit length, ~ (~), may be obtained 

directly from the first of equations (2.2.6). Also, note that the stress 

function is dimensionless. 
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Ue 
Eliminating from equations (2.2.6) will yield the compatibility 

r 

equat ion for 1jJ: 

(2.2.7) 

On the lateral surfaces the following boundary conditions must. be 

satisfied: 

(0) 
Te 

on o 
~i ' 

(2.2.8) 

where n is the cosine of the angle between the a-axis and the outward unit 
a. 

normal n at a point on the surface under consideration. 

At an arbitrary section the transmitted torque is 

R (z) arc
44 If araez dA OJ .l:..~ 2 

M(z) 21T a rdr 
\)3 2 ar 

R. (z) 
r 

1. 

21T c44
a 3 

[1jJ (R (z),z) - 1jJ(R.(z),z)] (2.2.9) 
\)3 0 1. 

where 

Ri(Z) = radius of the inner bounding surface at the section, 

Ro(z) radius of the outer bounding surface at the section. 
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Where the transverse cross-section is a simply-connected two-dimensional 

region, Ri(Z) = O. At the ends, where the applied or reactant torque is 

known, equation (2.2.9) gives the (relaxed) end conditions. 

The torsion problem thus becomes one of finding ~(r,z) satisfying 

equation (2.2.7) in a planar region R consisting of one half of a merid-

ional sect ion of B. (See Fig. 2.2m2.) It will thus be convenient to 

transform the traction boundary conditions on the lateral surfaces (2.2.8) 

to conditions on ~ on the surface generators, Ci and Co. To this end it is 

convenient to define a dimensionless parameter s on the generators which 

measures arc length along Ci and Co, scaled by the length factor au For 

definiteness s is assumed to decrease with increasing Z on Ci , and to 

increase with increasing z on Coe (See Fig. 2.2.2.) Then one may write 

dz 
=-

ds 
dr 
ds 

Using equations (2.2.4) and (2.2.10), conditions (2.2.8) now become 

~= -
\)3 2 T(i) C. r on 

ds c
44 

e 1 

dlJJ \)3 2 T(o) C r on 
ds c

44 
e 0 

or 

(2.2.10) 
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z 

r----------------r------------~ r 

Fig. 2.2.2 Section in Meridional Half-Plane 
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s 
\)3 

J 
T (i) 2 C. 1jJ r ds + c. on 

c44 e l l 

0 
(2.2.11) 

s 
\)3 

f 
T(o) 2 c 1jJ -- r ds + c on 

c44 e 0 0 

0 

where ci and Co are constants. Thus, if the lateral surfaces are traction-

free the stress function must be constant over each surface generator. 

When this is the case, equations (2.2.9) and (2.2.11) imply that the trans-

mitted torque is constant throughout the body and is given by 

M (c - c.) 
o l 

(2.2.12) 

Since the stress field is uniquely defined by the stress function deriva-

tives (equation (2.2@4», a constant stress function may be added to the 

solution without affecting the stress state. This implies that 1/J may 

always be adjusted in such a way that either ci or Co in equation (2.2.11) 

vanishes, thus allowing one of these constants to be taken as zero at the 

outset. 

The problem of the torsion of a transversely isotropic body of revo1u-

tion B can be reduced to that of an isotropic body occupying the 

transformed region B' by the change of variable 

(2.2.13) 
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- d 
By formally making the substitutions ~(r,z) = ~(r,z3) and ds 

dS 3 d 
-- -- in ds dS

3 
equations (2.2.7) and (2.2.11), the boundary value problem for the new 

stress function ~(r,z3) in the transformed space becomes the following: 

o in R' (2.2.14) 

s3 
\)3 

f 
- (i) 2 

C~ ~ Te r dS
3 + c. on 

c44 1. 1. 

0 
(2.2.15) 

s3 

~ 
\)3 

J 
-(0) 2 C' Te r dS

3 + c on 
c44 0 0 

0 

where R', C~, C', and dS3 are the images of R, C., C , and ds in the r-z3 1. 0 1. 0 

half-plane, Ci and Co are constants, and 

- (i) ds T(i) 
Te =--

dS 3 
e 

(2.2.16) 

-(0) ds T(o) Te = --
dS

3 
e 

are tile components of fictitious traction vectors acting on C' and C', 
i 0 

respectivelYe Note that the prescribed tractions on the actual body differ 

in magnitude from the fictitious tractions applied to the transformed body, 

but the forces acting on corresponding surface elements are identical, 
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i .. e .. , Te ds(rde) = Ie dS3 (rde) .. Equations (2.2.14) and (2.2.15) are the 

governing equations of the Michell-Foppl theory for the torsion of an iso

c44 
tropic body of revolution, with shear modulus -v--, occupying the region B', 

3 
-(i) -(i) -(0) -(0) 

and subjected to tangential tractions T = Te ~e and! = Te ~e on 

its lateral surfaces. Thus for 0 < v3 < 00 ,the transversely isotropic 

torsion problem corresponds to an isotropic torsion problem of different 

geometry and boundary conditions .. 

2.3 Extension of Stress Function Approach to Exterior Domains 

For the case in which the region occupied by the transversely iso-

tropic body is an infinite region exterior to a finite number of closed 

regular surfaces, the second of conditions (2 .. 2.8) and .(2 .. 2 .. 11) must be 

replaced by asymptotic conditions at infinity. 

will ensure uniqueness: 

are 

aez 

or 

= 
(0) + OC ~ ) are R2 

a(O) + OC 
I 

ez R2 

t/J- + OCR) 
U 

as 

as R -+ 00 

R -+ 00 

The following conditions 

(2.3.1) 

(2.3.2) 
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where R is the distance from the 
(0) (0) 

origin, ore and 0ez are the components 

of the prescribed stress field defined in the neighborhood of infinity, and 

lJJo the 

field 

corresponding stress function. 
1 

The O( 2") behavior of the stress 
R 

at infinity, along 
1 

with O(R) behavior of the displacements 

(u
e 

= u~O)+ O( ~ )), enables one to extend Kirchhoff's classical uniqueness 

proof [26] to exterior domains, since these are sufficient conditions for 

the pertinent improper surface integrals to vanish. 

In 1961 Gurtin and Sternberg [16] showed that for an isotropic body 

uniqueness is preserved if the regularity conditions (2.3.1) are relaxed' 

to 

ore 
(0) 

ore + 0(1) 

as R -+ 00 (2.3.3) 

°ez 
( 0) 

°ez 
+ 0(1) 

thus eliminating the need to specify the rate of the asymptotic behavior in 

the problem formulation.. Conditions (2.3 .. 3) require only that the stresses 

tend uniformly to their prescribed values at infinity, and the authors 

mentioned have shown that, for isotropy, these relaxed conditions imply the 

O(~) 
R2 

behavior of the stresses at infinity .. In view of the fact that the 

stress function formulation of the torsion problem for a transversely iso-

tropic body of revolution is mathematically equivalent to that for an iso-

tropic torsion problem of different geometry and boundary conditions 

(Section 2 .. 2), and because this correspondence is one-to-one, it would 
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seem reasonable that conditions (2.3.1) for the transversely isotropic 

torsion problem could be relaxed to conditions (2.3.3), implying a corres

ponding relaxation of condition (2.3.2). However, for the present investi

gation conditions (2.3.1) and (2.3.2) will suffice. 
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CHAPTER 3 

MATHEMATICAL FORMULATION OF THE STRESS INTERFERENCE PROBLEM 

3 .. 1 General 

The purpose of the present chapter is to formulate the boundary value 

problem for the particular problem of the torsion of a transversely iso-

tropic solid containing two spheroidal cavities. A pair of spheroidal 

coordinate systems are introduced to facilitate the mathematical descrip- . 

tion of the two cavities .. Expressions are given which relate the coor-

dinate parameters of one system to those of the other. The two systems are 

orthogonal in the (r, e, z3)-space, but not in the "physical" space.. This 

is a desirable characteristic since the field equation governing the stress 

function is in canonical form in the transformed space, i.e., the 

Choosing the systems in this way will enable one to 

obtain a pair of solution aggregates by the method of separation of vari-

abIes .. 

3.2 Geometry and Coordinate Systems 

The region of interest B is the unbounded region in the (r, 6 , z)-

space exterior to the two spheroidal surfaces 

1 , A > K (3.2.1) 
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where rand z are rendered dimensionless by a scale factor a. Thus, equa-

tion (3.201) represents two spheroids with semi-axes of lengths a and Ka in 

the r-and z-directions, respectively, whose centers ·are separated by a 

distance 2Aa along the z-axis. (See Fig. 3.2.1.) The condition A > K 

implies that the cavity surfaces intersect at, at most, one point. 

It is convenient to introduce two spheroidal coordinate systems whose 

origins are loea ted at the centers of the two cavi ties .. ' These systems are 

defined through the following transformations: 

2 !:i 2 ~ 

1 
r = a(l - P1 ) (q1 1) 

z - A = aP1q1 

1 
(3.2.2) 

3 3 

8 8 

2 k 2 k 

1 
r = 0.(1 - P2 ) 2 (q2 _ 1) 2 , 

Z3 + A3 = -ap
2

q2 

J 
(3.2.3) 

8 = 8 

where 

(3.2.4) 



23 

z 

b-________________________ ~--~r 

Aa 

2 + (Z+A) 2 
r 2 =1 

I( 

M 

Fig. 3.2.1 Geometry of the Twin Cavity Problem 
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i 
IK 2_ 1 K3 > 1 , 

3 
a. = (3.2.5) 

-ill ? K < 1 , 
l 

- K
3
-

3 

cos Yj o < y. < "IT , 
J 

(3.2.6) 

1 cosh nj , 
K3 > 1 

qj o < n. < 00 j 1, 2 . (3.2.7) 
J 

i sinh n. , K3 < 1 
J 

The parameter a. has been chosen in such a way that the cavity surfaces 

coincide with two coordinate surfaces, given by 

(3.2.8) 

where 

! 
K3 

II( 2 - 1 K3 > 1 , 
K3 3 

qo = - = (3.2.9) 
a. K3 

l 
i 

11 - K 2 
K3 < 1 . 

3 
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The region of interest B can now be described as the set of points for 

which both I q1 1 ~ I qo I and I q21 ~ I qo I .. 

The transformation from the (p~, q1' e)-system to the (P2' q2' e)-

system and its inverse are obtained by eliminating rand z3 from equations 

(3 .. 2.2) and (3.2.3): 

<l2(P1,q1) 
1 IB 2 - 4 cl )] ~ I 

q2 + [ 2" (B1 ± t 1 

'j (3.2.10) 

P2(P1,Q1) 
C1 

P2 Cl2(P1 ,Q1) 

where 

(3.2.11) 

B 
a 

The inverse is obtained by interchanging subscripts "1" and "2" G Where 

dual signs occur in equation (3.2.10), the upper sign is chosen when 

K3 > 1, the lower sign when K3 < 1.. These choices give the systems a 

desired symmetry; namely that on z = 0, 

P2 
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On q1 == qo (the upper cavity surface), q2' P2' and PI take on the 

following values: 

q2 == qzo -

Pz == PZO -

where 

Bla 
z 

PI 

r == n t"1 vIa t'1''10 

qZ(PI,qO) 

PZ(PI,qO) 

Z - A 
K 

I 
== +[ 2" (BIO ± 

C10 = -
qZ(PI,qO) 

z z 
+ qo + 28p1

qo + 8 

+ S 

1 

IB 2 4Cl~ ) ] ~ , 
10 

(3.2.12) 

(3.2.13) 

1 (3.2.14) 

J 

It is important to realize that the two spheroidal systems employed 

are each orthogonal in the (r, e, z3 )-space 11 but not in the "physical" 

(r, e, z )-spacec In the transformed space these systems are two standard 

spheroidal systems two prolate spheroidal systems (K3 > 1) or two oblate 

spheroidal systems (K
3 

< 1) [33]. The traces of the coordinate surfaces in 

the meridional plane are plotted in Figure 3.2.2 for the case K3 > 1 .. 
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z 

r 

Fig. 3.2.2 Coordinate Surfaces in the Meridional Plane (K
3 

> 1) 
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3.3 Statement of the Boundary Value Problem 

The boundary value problem for the torsion of a transversely isotropic 

solid containing two spheroidal cavities will now be formulated. The 

stress function ~ must satisfy the compatibility equation, 

the boundary conditions, 

~Iq =q 
1 0 

tVlq =q 
2 0 

o 

o 

and the condition at infinity, 

~o + OCR) 

in B (3.3.1) 

(3.3.2) 

as R -l>- 00 • (3.3.3) 

This last condition implies that the elastic state corresponding to ~ 

approaches the Saint-Venant solution for the torsion of a circular 

cylinder, at large distances from the perturbations. Here T denotes the 

angle of twist pe.r unit length .. 

Equations (3.3.1), (3.3.2), and (3.3.3) comprise the mathematical 

formulation of the problem at hand. 
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CHAPTER 4 

SOLUTION OF THE STRESS INTERFERENCE PROBLEM 

4.1 General 

Chapter 4 begins by outlining the method of solution for the boundary 

value problem stated in the previous chapter. Since the problem is shown 

to reduce to the solution of an infinite system of linear algebraic equa-

tions, a trunction of this system is performed to yield an approximate' 

solution. The equivalence of this truncated solution to that obtained 

through a method of weighted residuals or a virtual work formulation is 

shown .. Explicit expressions are given for the corresponding stresses, 

stress concentration factors, and stress interference factors .. 

4 .. 2 Method of Solution 

Let 

(4.2.1) 

Equations (3.2 .. 2), (3.2.3), (3.3.1), and (4.2.1) yield the compatibility 

equation for ~ in the (Pi, qi, e)-system (i = 1,2): 

4'11 
2 

I-p. 
l 

o 

(4.2.2) 
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Separating variables in equation (4.2.2) one obtains the following 

solutions: 

2 2 
P (p.) P (q.) 

n 1. n 1. 

'±' x (4.2.3) 
n 2 2 

Qn (Pi) Q (rt.) 
n 1. 

where P~ (p.) and Q~ (q.) are the associated Legendre functions of degree n 
1. 1. 

and order 2, of the first and second kinds, respectively. Since P; (q.) 
1. 

2 
and Qn (Pi) are singular at points in the body (at Pi = ± 1 and 1i = the 

point at infinity), these solutions must be eliminated. Thus, the aggre-

gate of regular solutions becomes 

2 
Pn(P l ) 

2 
Qn(ql) 

1/1n 
2 n = 2, 3, 4, (4.2.4) r . .. . 

2 2 
Pn (P2) Qn (q2) 

2 
Note that 1/11 vanishes due to the fact that PI (Pi) = O. 

Equation (3.3.1) is therefore satisfied by a solution of the form 

'V
3

'Ta 2 00 

1/1 --r I o 12 n=2 
(4.2.5) 

'V3'Ta 4 
where 1/1

0 
= --4-- r corresponds to the uniform field given by the Saint-

Venant solution for the torsion of a circular cylinder. Therefore, 
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the series portion of solution (4.2.5) represents the superposition of 

singularities (within the cavities) which are needed to remove the residual 

tractions on the cavity surfaces introduced by the uniform field. If it is 

assumed that this series converges uniformly and absolutely for -1 i Pi ~ 1 

and <00 , then solution (4.2.5) satisfies the condition at 

infinity (3.3.3), since 

The problem now becomes one of choosing the superposition parameters An to 

satisfy the boundary conditions (3.3.2). 

Due to the symmetry inherent in the assumed form of solution, sat is-

fying boundary conditions on one cavity guarantees that they are also 

satisfied on the other cavity. Thus, the boundary conditions reduce to 

Using 

2 2 
Ct. (qo - 1) 

o 

equation (4 .. 2 .. 5) and the 

1, equation (4.2.6) becomes 

00 

expressions 
2 

r 

L An{Q~(qo)P~(Pl) +Q~[q2(P1,qO)]P~[P2(Pl,qO)]} 
n=2 

(4.2.6) 

o .(4.2.7) 
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Expanding Q~ [Q2(Pl,qO)] P~[P2(Pl,qO)] in a series of associated Legendre 

functions of order 2, equation (4.2.7) becomes 

or 

where 

(n) 2n+l (n-2)l 
am = -2- (n+2)! 

1 

J 
-1 

o , 

o (4.2.8) 

(3.2.12), and 02 is the ,n 

Kronecker delta. The methods for computing the associated Legendre func-

(n) 
tions are described in the Appendix. Note that am depends on K3 and A3 0 

2 
Setting each coefficient of Pn(Pl) equal to zero in equation (4.2.8), 

one arrives at the following system of linear algebraic equations to deter-

mine the coefficients of superposition An: 

co 

[Q~ (qO) + a~n)] An + I 
m=2 
m#n 

a(n)A 
m m 02 ,n = 2, 3, 4, ... . ,n (4.2.10) 
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Once the An are known, the stress field is found using equations (2.2.4). 

(See Section 4.6 for the explicit expressions.) 

4.3 Alternate Representation for the Case K3 < 1 

When K3 < 1 the spheroidal coordinate systems are oblate in the 

(r,e,z3)-space and a and qj, j = 1,2, take on pure imaginary values. This 

gives pure imaginary values for even ne In 

order to generate a real stress field, the stress function is required to 

be real .. For this to be true, it is clear from equations (4.2.5) that An 

must be imaginary for even n and real for odd no For computational pur-

poses it will be convenient to reformulate equations (4.2.5), (4.2.9), and 

(4.2.10) in terms of real quantities only.. To this end, the following are 

defined when K 3 < 1: 

- vi - K2 a -ia a = 3 

S is S 
2A3 

= --=-
a 

iqO 
K3 

qo qo 11- K2 (4.3.1) 
3 

iq. 2 .n+l Q2 (_ . ) q. = Qn (qj) 1- n qJ J J 

(n) .m+l-(n) 
A 

.n+l 
A a = 1 a 1-

m m n n 
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Thus, all "barred terms" represent real constants, real variables, or real-

valued functions of a real variable. The necessary equations can now be 

written in modified form: 

00 

(_I)n[Q2(Ci
o
)+a:(n)]A + L 

n n n m=2 

min 

The Legendre coefficients a(n) are given by 
m 

where 

-0 2,n 
n=2, 3,4, ... 

(4.3.2) 

.(4.3.3) 

(4.3.4) 

(4.3.5) 
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(4.3.6) 

-2 
The computation of Qm(q), q > 0, is described in the Appendix. 

4.4 Truncated Solution - Method of Weighted Residuals 

(N) - (N) 
Let An and An » n = 2,3, ••• ,N, denote the solution vectors of 

systems (4.2.10) and (4.3.3) truncated after n = N, and ~(N) the corre-

sponding stress function: 

d A- (N) . f h d an n satls y t e truncate systems 

[Q2(q ) +a (n)]A (N) + 
nOn n 

N 

L 
m=2 
m#n 

a(n)A(N) 
m m <5 

2,n 

K <1-
3 ' 

n=2,3, ... ,N; 

(4.4.1) 

(4.4.2) 

(4.4.3) 
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-0 n=2,3, ... ,N. 
2,n 

(4.4.4) 

It will now be shown that the above solution is equivalent to the approx-

imate solution obtained by a method of weighted residualse 

For the case K3 > 1 take the stress function in the form of equation 

(4.4.1), where the A~N) are a finite number of unknown parameters whose 

values will be chosen to given the "best" approximation in some sense.. For 

an exact solution, the stress function must satisfy boundary condition 

(4@2 .. 6), which in this case becomes 

~ (N) 2 2 2 2 
L An [Qn (q 0) P n (p I) + On (q 20) P n (p 20)] } 

n=2 

(4.4.5) 

Since the series in the above equation would most likely have to be infi-

nite in order to satisfy the boundary condition at all points on the cavity 

surfaces, condition (4.4.5) must be satisfied in an approximate fashion. 

One method of doing this is to choose the 

integrals of the residual stress function 

A~N) in such a way that the 

~(N) I _ multiplied by a 
ql-qO 

family of weighting functions over the boundary will vanish: 

1 

J o m=2,3, ••. ,N. (4.4.6) 

-1 
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If the weighting functions are taken as 

(4.4.7) 

where Pm(Pl) is the mth-degree Legendre polynomial and primes denote 

differentation, then the relaxed boundary condition (4 .. 4 .. 6) becomes 

(4.4.8) 

m=2,3, ... ,N. 

Using the orthogonality condition 

and definition (4 .. 2 .. 9), condition (4.4.8) reduces to 

0" ,:.., n 
n=2,3, ..• ,N, 
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which is identical to the truncated system given by equation (4.4.3). In a 

similar way the solution given by equations (4.4.2) and (4.4.4) can be 

shown to be a weighted residuals solution. 

In the next section it is shown that the conditions on the weighted 

stress function residuals can be related to the more intuitive concept of 

residual surface traction and the principle of virtual work. 

4.5 Virtual Work Interpretation of Truncated Solution 

The condition on the residual stress function (equations (4.4.6) and 

(4.4.7», which is implied by the truncation of system (4.2.10) or (4.3.3), 

may be integrated by parts: 

[1jJ(N) I p'Cp )]1 
m 1 -1 q =q 1 0 

0, 

m=2,3, ... ,N. 

Since the stress function vanishes at the poles, this becomes 

o m=2,3, ... ,N . 

(4.5.1) 

(4.5.2) 
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The non-vanishing component of surface traction the residual 

traction, can be shown to depend only on the values of the stress function 

derivative along the boundary: 

Equations (4.5.2) and (4.5.3) imply 

Let 

1 

f T~N) (Pi) {[K
2 + (1- K2)pil!2 P~(Pl)} dP1 = 0, 

-1 

1 
oS P (PI) mm 

(4.5.3) 

m=2,3, ... ,N. (L~.5.4) 

(4.5.5) 

where oSm is small, be the boundary values of a set of virtual displacement 

fields. Then, using the expression dS 

the differential element of surface area on the upper cavity surface, equa-

tion (4.5.4) may be written as 
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If T (N) ou (m) dS = 0 , 
8 8 

m=2,3, ••• ,N, (4.5.6) 

or the virtual work of the residual surface tractions through a finite 

number of virtual boundary displacements vanishes. (Equation (4.5.6) is 

identically satisfied for m = 1, which may be seen by inserting P~(Pl) = 0 

in equation (4.5.1).) It will now be shown that equation (4.5.6) indeed 

expresses the principle of virtual work, where the set of admissible dis-

placement fields is limited to those having the form of equation (4.5.5) on 

the upper cavity, which vanish at infinity, and which are antisymmetric 

about z = 0, in addition to satisfying the necessary smoothness require-

ments. 

Consider the following traction boundary value problem: Let BR denote 

a homogeneous elastic body bounded by M closed regular surfaces Sl' S2, •• e, 

SM, and a spherical surface LR of radius R, which encloses all of the Sme 

LR is assumed to be traction-free, while self-equilibrated tractions ti are 

prescribed on each of the Sme Assume the body force field vanishes. Then 

the principle of virtual work for this problem may be stated as follows: 

ti oUi dS = f 0ij OE ij dV 

BR 

(4.5.7) 

where QUi is a small arbitrary virtual displacement field of sufficient 

smoothness and O£ij the corresponding strain field. 

as R -+00, equation (4 .. 5., 7) becomes 

If the limit is taken 



t. ou. dS 
1 1 

lim 
R-+= 

41 

os,. dV 
lJ 

(4.5.8) 

where the limit is assumed to exist, and oUi is assumed to vanish at infin-

ity, thus eliminating rigid body displacements. For an exact solution aij 

must satisfy equation (4.5.8) for all kinematically admissible oUi. Now, 

if an approximate solution a ~~) is assumed to be a linear combination of N 
lJ 

known equilibrated stress fields, then a~~) can be expected to satisfy 
lJ 

equation (4.5.8) for only N choices of oUi: 

t, ou~n) dS 
1 1 

lim 
R-+<x» 

n=1,2, ... ,N. (4.5.9) 

Multiplying the homogeneous equilibrium equations for a~~) by ou~n) , inte-
lJ l 

grating over BR, and taking the appropriate limits yields the following: 

lim J 
R-+= 

BR 

Equations (4.5.9) and (4.5.10) imply 

~ f ~ (N) ~u(.n)dS I. ( t, - a ., n,) u 
m~l 1 lJ J 1 

Sm 

l ' r (N) 1m (J •• n. 
R-+= J lJ J 

LR 

ou~n)dS 
1 

(4.5.11) 
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If a~~) 
lJ 

1 
o( -) as R -+00, the R .. H .. S .. vanishes to give 

R2 

I f ~ (N) ou(.n)dS 
1 

(t. - t. ) l 
m= l l 

Sm 

0, n=1,2, ... ,N, (4.5.12) 

(N) (N) 
where t. = a .. nJ· .. 

l lJ 

The auxiliary problem related to the stress interference problem for 

torsion is a particular case of the boundary value problem described above. 

(In the auxiliary problem the uniform torsion field is removed.) There-

fore, the principle of virtual work (in the approximate sense) for the 

problem at hand reduces to equation (4.5.11), or 

-2 
If 

T(N)o (n) dS e Ue 1 · f ( (N) lm a e n 
R-+oo r r 

LR 

It can be shown that the approximate (N) d (N) 
stresses are an aez for the auxi-

(N) 
liary problem (deri ved from 1/J - 1/JO) 

1 
are of order "4 at infinity, thus 

R 
causing the limit on the ReHeS. to vanish. As a result, the principle of 

virtual work for the stress interference problem reduces to equation 

(4 .. 5 .. 6) .. Thus, the truncation process performed on the infinite set of 

equations may be viewed as a boundary residual method on the stress func-

tion or on the surface traction, or as a solution technique based on the 

principle of virtual work. 
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4 .. 6 Expressions for the Elastic Field Quantities 

In view of the symmetry of the posed 

expressed in the (PI,ql,8)-system only. 

mations given by equations (3 .. 2 .. 2) and 

(2 .. 2 .. 4) and 

form: 

(N) 
a = r8 

(N) 
a = 

8z 

(4 .. 4 .. 1), the stress field may 

problem, 

By using 

(3 .. 2 .. 3), 

be shown 

the stress field will be 

the coordinate transfor-

as well as equations 

to be of the following 

(4.6.1) 
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where P2 = P2(Pl,ql) and q2 = Q2(Pl,ql) are given by equation (3.2.10), 

r = a(1 - pi)~(qi - 1)~, and o~~) is the stress field corresponding to 

lIJ(N) • 

For computational purposes it will be convenient to write equations 

2 2 
(4.6.1) in terms of Pn(Pi) and ~(qi) only, rather than their derivatives. 

This can be accomplished by employing the following recurrence formulae 

[30 ] : 

d p2 (x) 
1 2 2 n [nxP (x) (n + 2)P n-l (x)] n=2,3, ... 

dx 2 , 
-1 

n x 

(4.6.2) 

d Q2 (x) 
1 2 2 n [nxQ (x) (n + 2) Qn-l (x) ] n=3,4, ... 

dx 2 
-1 

n x 

2 
The second of these formulae is valid for n=2 if Ql (x) is defined by 

2 (4.6.3) 
2 x -1 

2 3 (The usual definition is Q., (x) = -,,-.) 
. -.1 xL.-l 

Using equations (4.6.1)-(4.6.3) 

and evaluating the resulting expressions on ql=qO' one obtains the stress 

field at the upper cavity surface: 



(N) 
are 

c
44

la 
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1 N (N) 
12 I A (n+2) { 

'J 3CL n=2 n 

2 ~ (l-p) [I
I 

N 

I 
n=2 

(4.6.4.a) 

(4.6.4.b) 

where P2 == P2 (PI ,qO) and q2 == &2 (Pl'qO)" 

When K3 < 1, equations (4.6.4) involve imaginary terms on the right-

hand side" To express the boundary stresses in terms of real quantities 

only, equations (4.301) are substituted into equations (406.4) to yield the 

following: 
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(4.6.5.a) 

-
2 q2 2 - -2 -

- (n+2)Pn_l (P2» + -=z- Pn (P2) (nq2~ (q2) 
q2+l 

-2 -
+ (n+2) Qn-l (q2»]}}] (4.6.5.b) 

where P2 = P2 (P l ,QO) and q2 Q2(Pl,qO) are given by equations (4.3.5) and 

A~N) satisfies system (4.4.4). 

Since the maximum shear stress at the cavity surface will occur on 

planes normal to the boundary, and the coordinate surfaces ql = qo and 



47 

PI = constant are not orthogonal, it would be advantageous to obtain stress 

components with respect to an orthogonal spheroidal system. For this pur-

pose a conventional spheroidal coordinate system, centered at z = A, is 

introduced: 

2 k 2 k 

) 
r = CL

O 
(1 - p ) 2 (q _ 1) 2 

(4.6.·6) 

Z - A CLOpq 

If 

K > I 

K < I 

then the upper cavity surface ql qo may also be represented by 

K 
K > 1 

q 

i 
K 

K < I 

The running variable on the cavity surface is identical to that in the non-

orthogonal system: 



p 
Z-A 

PI = -K-

48 

on 

Transformation (4.6.6) implies the following stress transformation on 

the boundary: 

(N) I 
° e p q =q 

I 0 

2 k (N)I + K(l-p ) 2 0
eZ 

_ ] , 

ql-qO 

(4.6.7) 

(N) I ° e q q =q 
I 0 

For a spherical cavity, K = 1, and these expressions reduce to the familiar 

stress transformation from circular cylindrical to spherical components, 

with p = cos 8, where 8 is the azimuthal angle measured from the outer 

pole. 

For an exact solution 

-T e o , 

since the boundary is traction-free. Thus, the ultimate check on the 

accuracy of the truncated solution is that 
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As mentioned in Section 2.2, there exists a line integral representa-

tion for the angle of twist 

r 

This representation will now be derived. Equations. (2 .. 2 .. 6) may be written 

as 

~= 3 Clw 
Clr 

r 
dZ

3 

.l:.l = 3 dW 
dZ 3 

-r 
Clr 

enabling one to write the following: 

3 
r dw dr + ~ dz

3
] 

ClZ
3 

dr +~ 
3r 

Using transformations (3.2.2) and (3.2.3), this may be expressed in terms 

of Pi and qi: 

3 ~(q~ -1) ~ 
r dw = ± 2 

1- p. 
l 

2 

_Cl1jJ ( 1 - Pi)!i Cl1jJ dp - -
Clq. i 2 1 Clp. 

l qi - l 

(4.6.8) 
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where the upper sign is chosen for i = 1, the lower sign for i 

left-hand side of this equation may also be expressed as 

3 
r dw r3 ( dW 

dp. 
l 

d + ~ d ) p. '"'\ q.. 
l oq. l 

l 

From equations (4.6 .. 8) and (4 .. 6.9) it can be concluded that 

dW ± 
1 ~ 

dPi 3 2 2 2 dq. a (q.-l)(l-p.) l 
l l 

i = 1,2 

dW 1 ~ -- + 
dqi 3 222 dp. 

a (l-p.)(q.-l) l 
l l 

2 .. The 

(4.6.9) 

(4.6.10) 

If the stress function ~(N) of equation (4.4.1) is broken up into three 

parts, ~o ' ~l' and ~2' where ~o is the uniform field and 

2 
r 

N 

I 
n=2 

i = 1,2 

and the contributions of each of these functions to the angle of twist are 

designated by wo ' wI' and w2 ' then one may evaluate w in the following 

manner: 

w(F) Taz + J dW1 + J dW 2 
r 1 r2 
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where fl and f2 are paths within the body which begin at any point on the 

plane z = 0, i.e., where the angle of twist vanishes, and terminate at the 

point of interest P. Convenient choices of these paths would be arcs in 

the meridional plane along which a coordinate parameter remains constant, 

as shown in Figure 4.6.1. If the point P corresponds to coordinates (r,z), 

(P1,Ql)' or (P2,Q2)' these paths of integration enable the angle of twist 

to be gi ven by 

PI 
dWl 

P2 

w(P) Taz + f I -- dP1 + r dW I _ - dP2 ' dPI J ap2 
A ql-ql A q2-q 2 

v
3
aQI v3aQ 2 

or 

W(P) 

v 3
aQ1 

(4.6.11) 

P2 
dW2 I 

f 
1 

a 3 (q 2 
- 1) (1 _ p2} aq2 

q2=q2 
dP 2 

2 A 2 
v

3
a Q2 

where relations (4.6.10) have been used. The integrals in equation 

(4.6.11) may be easily evaluated to give a series representation for the 

angle of twist (or angular displacement). 
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4.7 Stress Concentration and Stress Interference Factors 

To examine the perturbing effect of the cavities, the stress concen-

tration factor (SCF) is defined on the upper cavity surface as follows: 

SCF 

where 

(N) (p) 
ope 

2 
K(l-p) 

corresponds to the uniform field, 

(4.7.1) 

(4.7.2) 

Z - A 
and p == -- is the running variable on 

K 

the upper cavity surface. Thus, the SCF is the ratio of the maximum shear 

stress at a point on the cavity surface to the corresponding stress com-

ponent which would exist at that point if the body contained no cavities. 

Since both 0(0) and 
p8 

vanish along the z-axis, the SCF assumes an 

indeterminate form for p == ±1. For these cases the appropriate limits must 

be taken .. Using equations (4.6.4), (4.6.7), (4.7.1), and (4.7.2), and the 

asymptotic expressions [36] 

p2(1-s) ... (n+2)! 
n 4(n-2)! s 

2 
P (-l+s) -

n 
(-1)n(n+2) ! 

4(n-2)! s 

as s -+ 0 (s > 0) , 

, ) 
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a lengthy computation will yield the SCF at the inner (p -1) and outer 

(p = +1) poles of the cavity: 

qo N 
A(N) (-1)n(n+2)! 4K2 2 

lim SCF 1 
- 96K2 I (n-2)! 

{ [Qn (qo) 
p-+-1 n=2 

n qo 

2 
Qn(q2) 1 2 2 (4.7.3) + +-_. [(n-2)qOQn (qO) - (n+2) Qn-l (qO)] 2 2 2 

CI. (q2-l) q -1 

where q2 

lim SCF 
p~+1 

0 

1 

2 (-1) n 4 2 2 
- (n+2)Qn_1(qO)} + 2 2 {[ __ K __ (q2-1) 

CI. (q _1)2 qo 
2 

where q2 = (2)" + K)qO " 

(4.7.4) 

Again, since expressions (4.7.3) and (4.7.4) contain imaginary terms 

when K3 < 1, they are rewritten in terms of real quantities for computa

tional purposes: 
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-? -
q 0 N _ (N) ( n + 2) ! 4 2 - 2 - Q~ ( q 2 ) 

lim SCF = 1 + --2 L An (n-2)! { -!- [Qn (qO) + -2 -2 
p+-l 96K n=2 qo a (q2+l ) 

where q2 

qo N -(N) (n+2)! 
lim SCF = 1 + --2 L An 
p++l 96K n=2 (n-2) ! 

(4.7.5) 

(4.7.6) 

In order to quantify the degree of stress interference between the two 

perturbing fields, the stress interference factor (SIF) is introduced: 

(L~.7.7) 
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where apelA~ corresponds to the single cavity solution which may be 

obtained by using the method of this chapter for a large value of A (cav-

ities far apart), or it may be derived from the stress function given by 

Bose [3]: 

V
3

Ta 

I/J O - --2-
l2Q2(QO) 

(4.7.8) 

For the case of a spherical cavity this stress function generates boundary 

stresses of the form 

I 
(p) 

A~ 

From equation (4.7.7) it can be seen that the SIF represents the percent 

decrease in the maximum shear stress at a point on one of the cavity sur-

faces, due to the presence of the second cavity. 
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CHAPTER 5 

NUMERICAL RESULTS AND DISCUSSION 

5 .. 1 General 

In this chapter numerical results are presented for the case in which 

the two cavities are spherical, i.ee, K = I. The variations of the stress 

concentration factor and the stress interference factor along a cavity sur-

face are plotted for several values of v3 and Ae 

sion formula and series expansions 

Legendre functions 2 2 P (p) and Q (q) 
n n 

invol ved in 

-2 -(or Q (q)) 
n 

A summary of the recur-

computing the associated 

is given in the Appendix .. 

Numerical procedures employed in the solution process included Legendre-

Gaussian quadrature to obtain the coefficients (n) a 
m 

Seidel iteration for computing the superposition constants A(N) n 

and Gauss-

A detailed discussion of these methods is given in [18] .. Tables of roots 

and weights for Legendre-Gaussian quadrature are available in [11]. 

Ninety-sixth order quadrature was used in all computations and boundary 

stresses were calculated at the Gaussian points. Criteria for assessing 

the accuracy of the truncated solution are given in the present chapter, as 

well as a discussion of the numerical results. 

5.2 Accuracy of Truncated Solution 

In view of the rather complicated integral representations for a(n) 
m 

and a(n) (equations (4.2.9) and (4,,3.4)), an analytic proof of convergence 
m 

for systems (4.2.10) and (4.3.3) and their corresponding elastic states, as 
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N -+00, is difficult at best .. However, based on physical considerations 

alone, it seems likely that the solution will converge for A > I. With 

this in mind, the value of N used in the computations was increased until 

the SCF (or cr(N» became stabilized to the desired degree of accuracy. The 
pe 

values of N used were 30, 50, and 70 .. A second check on the accuracy is 

that the magnitude of the residual traction IT~N)(p)l, or more importantly, 

the relative residual traction I Tf:; (p) I ' is "small".. Here T~O) (p) is the 
I Te (p) 

traction on the cavity surface due to the uniform torsion field. For a 

(0) 2 ~ ( spherical surface Te (p) = -c
44 

Tap(l-p ) 2. In the vicinity of the equator 

it is required only that IT(N) I be small, since by its definition the rela
e 

tive residual traction possesses a singularity at p = 0.) Due to the 

nature of the problem, it seems reasonable that the relative residual 

should have a maximum near the inner pole. Indeed, for ail computations 

performed, this conjecture was confirmed. Therefore, an indication of the 

degree of accuracy of each computed solution is given by the value of 

lim 
p-+ -1 

T(N)(p) 
e (5.2.1) 

the solution being more accurate for smaller values of E. Using the second 

of equations (4 .. 6.7), as well as equations (4 .. 6.4), the limit in equation 

(5.,2.,1) may be evaluated to give the following explicit expressions for E: 



59 

1 N () (-1) n (n +2) ! 2 Q~ ( ( 2 ;\ -1) q 0) 
1 - 24 LAN ( n _ 2) ! {Qn (q 0) + 2 2 2 }, 

n=2 n a. [(2;\-1) qo - 1] 

(5.2.2) 

1 N _ 2 _ Q~ ( ( 2;\ -1) q 0 ) 
1 +-24 L A(N) ~n+~~; {Qn(qO) + 2 2 2 }, 

n=2 n n- . ~ [(2;\-1) q +1] 
o 

5.3 Variation of the Stress Concentration Factor 

Figures 5 .. 3 .. 2 - 5 .. 3 .. 6 demonstrate the variation of the SCF along one 

of the cavities. 8 is the angle defined in Figure 5.3.1, and for the case 

of spherical cavities 

p cos 8 .. 

For ;\ > 1, the value of the relative residual traction was quite small 

for all computations, satisfying the following inequality: 

E < .00003 .. 

In view of this small residual, as well as the observed stabilization of 

the SCF for increased N, the numerical results are believed to be accurate 

to at least the second decimal place for A > 1 .. 

For A = 1 (contiguous cavities), accuracy to at least the second dec-

imal place again appears to be obtained when v3 > 1 .. For this range 
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E' < .. 0001 , 

or, in other words, 99.99% of the uniform residual traction has been 

removed from the cavity. For the computations made for v3 < 1, the 

following value was obtained: 

E = .. 004 for .25, .50 G 

The numerical results for these two values of v3 appeared to be stabilized 

only to the first decimal place in the vicinity of the inner pole, while 

for e < 175 0 the values obtained are 
'\ 

believed to be accurate to at least 

the second decimal place. 

The following table summarizes the probable error bounds in the SCF 

values: 

Table 5.1 Error Bounds in SCF Values 

V3 e Error 

> 1 all all ± .. 005 

1 < 1 all ± .005 

1 < 1 < 175 0 ± .005 

1 < 1 175 0 < e < 180 0 ± e05 

The ± .005 error bounds are adequate for the present purpose, while the 

slower convergence of the solution near the inner pole for A 

is reason to consider reformulating the problem for this case in order to 

enhance convergence. This, however, is beyond the scope of the present 

studYe 
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5.4 Variation of the Stress Interference Factor 

In Figures 5.4.1 - 5.4.4 the SIF is plotted along one of the cavity 

surfaces for different values of A. and These results are directly 

related to the SCF values, since equation (4.7.7) defining the SIF may 

alternately be written as 

( 
SCF I A. - SCF ) 

SIF SCFi:+oo x 100% . 

The advantage of plotting the SIF instead of the SCF is that it gives a 

clearer picture of the interaction between the two perturbing fields. The 

numerical computations showed the SIF for all cases to be stabilized to 

within 0 .. 5% 

5 .. 5 Discussion 

From the SCF curves of Figures 5.302 - 5.3.6, it is seen that for each 

value of \>3 all curves are bounded above by the curve corresponding to a 

single cavity (1..-+ 00 ). Therefore, all interference is destructive, in the 

sense that the two perturbing fields tend to cancel each other out. (This 

is also demonstrated in Figures 5.4.1 - 5.4 .. 4, in which the percent inter-

ference is always positive.) Also, if the cavity spacing is decreased, the 

maximum shear stress at the cavity surface, ape' becomes smaller. 

The change in the general shape of the SCF envelope curves (A. -+ co) as 

\>3 varies is interesting to note: 
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1) For \)3 < 1, the maxima occur at the poles (G = 0°, 180°), the mini

mum at the equator (0 = 90°). 

2) 

3) 

For \.>3 1, the envelope curve is constant. 

For v3 > 1, the maximum occurs at the equator, the minima 

poles. 

at the 

Physically, this change in the nature of the curves may be explained by 

considering the equivalent isotropic problems (Section 2.2) corresponding 

to the various values of v3G The geometry for the isotropic problem is 

obtained by transforming the region occupied by the anisotropic body into 

the (r, G, z3)-space, i .. e., by rescaling the z-axis.. For v3 < 1 the z

direction is "stretched" under this transformation, mapping the spherical 

cavities into prolate spheroids. For \.>3 > 1 the z-direction is "short-

ened" , resulting in a pair of oblate spheroidal cavities in the transformed 

space" In the limiting cases the following equivalent isotropic problems 

are encountered: 

1 ) If v 3 -+ 0, the ca vi ties become needle-s haped cracks loca ted along 

the z3-axis .. 

2) If v 3 -+ 00, the ca vi ties become penny-s haped cracks centered on and 

perpendicular to the z3 - axis .. 

For these two problems it is clear that the SCF will take on maximum values 

at the crack tips (points of maximum curvature) and minimum values at the 

points of minimum curvature. Thus for small v3 the peaks should be at the 

poles, while for large v3 the maximum SCF should occur at the equator. 

These qualitative conculsions are indeed confirmed by Figures 5.3 .. 2 -

5 .. 3 .. 6. 
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The plots of the variation of the SIF show that as \)3 increases, the 

interference becomes more pronounced. In other words the perturbations 

decay more slowly for the higher values of \)3"For the idealized case of a 

unidirectional fiber-reinforced composite with inextensible fibers, \)3 

will approach infinity, and the perturbations will propagate throughout the 

medium in the z-direction. In terms of the equivalent isotropic problem, a 

large value of \)3 effecti vely brings the transformed cavi ties closer 

together in the (r, 6, z3)-space (their centers are separated by the dis-

2Aa 
tance 2A3a = --), and it is therefore reasonable that the interference 

\)3 

should increase as \)3 increases. This is an indication that special care 

must be taken in applying Saint-Venant's principle to anisotropic media, as 

was noted by Horgan [22,23] for the two-dimensional case .. 

Another conclusion which may be drawn from Figures 5.4.1 - 5.4.4 is 

that, regardless of the cavity spacing, the interference is most pronounced 

in the range 90° < e < 180°. For the range of \)3 cons ide red (v 3 ~ 4), in 

which most materials fall, the interference does not exceed 10% when 

e ~ 90° (on the outer halves of the two cavities). 

Since the SCF at the inner pole (p = -1) is most affected by the 

interference, some plots of SCF\ _ 1 or SIF\ _ 1 versus A and v3 would pro-
p-- p--

vide insight into the phenomenon of stress interference .. However, each 

point on each graph would require a separate computer run, thus prohibiting 

any detailed investigation of this type. Nevertheless, some interesting 

conclusions may be drawn from the few values of SCFi _ land SIF\ _ 1 given p-- p--

in the previous figures: 

1) The SCF at the inner pole is relatively insensitive to A for 

Its value ranges from 0 to 1 .. 25 as A varies from 1 to 00. 
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On the other hand, for a fixed value of v3 < 1, SCF I p=-l is qui te 

sens iti ve to A. near A. = 1 .. For example, when v3 = .. 25, the value 

of SCFI _ I ranges from 0 at A. = 1 to 16.1 at A. = 1 .. 1, but under
p--

goes little additional change from the latter value as A. -+eo .. 

Thus, the relationship between SCF\ _ I and A. is highly nonlinear p--

for v3 < 1 .. 

2) When A. ::: 1, the SCF at the inner pole appears to vanish for all 

\>3 .. 

3) For v3 ~ .. 5 a spacing of A. ::: 1.25 yields less than 3% interference 

at the inner pole; i .. e., the interaction is negligible .. There-

fore, the perturbations are extremely localized for small v38 

Conclusions concerning the SCF at the equator (p=O) include the 

following: 

1) For \>3 < 4, the spacing of the cavities has little effect on 

SCFlp=o" 

2) The SCF at the equator for the single cavity solution is reI a-

tively insensitive to v3 -- it varies from 1 to 2 .. 5 in the range 

of v3 considered. 

3) As v3 -+0, SCFlp=o -+ 1 (corresponds to torsion of a hollow isotropic 

cylinder) .. 

4) As v -+eo, SCF I -+eo (corresponds to torsion of an isotropic body 
3 p=O 

with a penny-shaped crack). 

The numerical results obtained include as special cases the following 

solutions: 
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1) the single cavity solution -- Bose [2] (A -l-OJ in Figures 5 .. 3 .. 2 -

5 .. 3 .. 6) 

2) the twin cavity solution for isotropy -- Eubanks [12] (Figure 

5.3.4, v3 = 1 in Figures 5.4.1 - 5.4 .. 4) 

3) the single cavi ty solution for isotropy -- Das [10] (A -l- OJ, v3 1 

in Figure 5.3.4). 

University of Illinois 
Metz Reference Room 

BI06 NCEL 
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY 

6.1 Summary of the Investigation 

The torsion problem for a transversely isotropic body containing two 

spheroidal cavities has been solved and numerical results obtained for the 

case of two spherical cavities. The solution demonstrates the phenomenon of 

stress interference in a three-dimensional anisotropic elasticity problem. 

Viewing the problem as an equivalent isotropic problem with different geometry 

provides a convenient means of understanding the qualitative behavior of the 

stress concentration and stress interference factors. The results show that 

in all cases the presence of a second cavity tends to decrease the boundary 

stresses associated with the single cavity solution. Also, for fixed spacing, 

the degree of stress interference between the two cavities was shown to 

increase for increasing v
3

' implying that the perturbations damp out more 

slowly for larger values of v3m This should be an important consideration 

when applying Saint-Venant's principle to anisotropic problems. 

6.2 Recommendations for Further Study 

Some possible extensions of the present work are the following: 

1) The present approach may be modified to solve the torsion problem of 

a transversely isotropic body containing two spheroidal inclusions. 

Rigid or elastic (isotropic or transversely isotropic) inclusions may 

be treated by altering the boundary conditions. 
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2) The method of solution may be generalized to consider more than two 

cavities or cavities of unequal size. 

3) A modification of the present work may enable one to treat different 

loading cases -- pure shear, uniaxial and biaxial tension, and hydro-

static pressure. This would require a formulation in terms of 

two or three displacement potentials [24J, as opposed to the single 

stress function in the case of torsion. As a result, one would need 

to introduce two or three spheroidal coordinate systems at each of 

the cavity centers, which coincide on the cavity surface. This would' 

be an extension of the method employed by Chen [7-9J in solving the 

single cavity problem. The computation involved would obviously be 

more extensive, but the mathematical analysis should present no 

additional difficulties. 

4) The method of solution employed for the torsion problem possessed an 

advantage over the method of spherical dipolar harmonics used for the 

isotropic analog [12], in the sense that it produced results which 

appeared to converge in the case of contiguous cavities. However, 

for v3 < 1, this convergence was extremely slow in the vicinity of 

the inner poles, thus calling for a separate treatment in this case. 

5) A more detailed numerical analysis of the present problem is needed 

to investigate the perturbation necay, not only in the longitudinal 

direction, but also radially. From a theoretical standpoint, it may 

be possible to extend the work of Knowles and Sternberg [28] on 

Saint-Venant's principle and the torsion of isotropic bodies of 

revolution to the transversely isotropic case. 
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APPENDIX 

COMPUTATION OF THE ASSOCIATED LEGENDRE FUNCTIONS 

2 A.l Computation of Pn(p) 

The associated Legendre function of the first kind, of degree nand 

order 2, is defined by 

-1 < p < 1 

where the Legendre polynomial of degree n is given by [21] 

and 

P (p) 
n 

1 
=-

[E. ] 
2 

'L 
j=O 

(-l)j (2n-2j)! n-2j 
j!(n-j)!(n-2j)! p 

n the notation [~] denotes the greatest integer less than or equal to 

n 2 G Using equations (A.l.l) and (A.le2) and performing some algebraic 

manipulation yields the following finite series for P~(p): 

2 
P2m+l (p) 

2 A(m)(l-p) 
m-l 

I 
k=O 

2 
B (m) (1 - p ) 

m-l 
L 

k=O 

2k 
Fk(m) p 

m=1,2, ... 



where 

A.2 

A(l) 3 

A(rn) 
2m+l A(rn-l) 2 (rn-l) 

B(l) 15 

B(rn) 
2m+3 B(rn-l) Z(rn-l) 

FO(m) 1 

Fk(m) = -
(rn-k) (2rn+2k+l) 

k(2k-l) 

GO(m) 1 

Gk(m) 
(m-k) (2rn+2k+3) 

k(2k+l) 

2 
Computation of Qn(q) 
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rn=2,3, ... 

m=2,3, ... 

F
k
_

l 
(rn) 

G
k

_
l 

(rn) 

2 
The two methods to be used in the computation of Qn(q), q real and 

q > 1, are the following: 

1) Recurrence Relation, 

2) Series Expansion. 

Neither method alone is 

ranges of nand q needed. 

2( , adequate for computing Qn q) over the entire 

However, it can be shown that the following 

scheme of computation will guarantee a minimum of. 12-digit accuracy in the 

2 
value of Qn(q): 
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Table A.l Computation Methods for Q~(q) 

~ 2 < n < 10 11 < n < 50 51 < n < 70 - - - - - -

1 < 
3 q <-

-2/2 
Recurrence Recurrence Series* 

3 Recurrence Series Series 12 < q ~ 3 
2 2 

3<q<oo Series Series Series 

* Series is divergent but asymptotic for large n. 

The two methods of computation will now be summarized. For a more detailed 

treatment of the subject, see the treatise by Hobson [21]. 

A.2.1 Recursion Formula for Q~(q) 

3 
2 

q - 1 

Q
2
2 (q) - 3 (q2 -1) In q+l _ 3q + 2q - 2 q-l 2 

q -1 

0, n=3,4, ... 
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A.2.2 Series Expansion for Q~(q) 

where 

Let q cosh~. Then Q~(q) may be represented by the series 

2 Q (cosh ~) 
n 

C(l) 4/2 

C(n) 
2(n+l) 

2n+l 

- (n-¥-1) ~ 
C (n) e 1 

sinh~~ 

C(n-l) 

00 

\' 1 k 
L Bk (n) ( 2 ~) . 

k=O 1- e 

n=2,3, ... , 

(2k+3) (2k-S) 
2k(2k+2n+l) Bk_l(n) , k=1,2,3, .... 

(A.2.2.l) 

The series in equation (A.2.2.1) is convergent for 

useful when 1 < q < 3~ and n is large.. It can 
- 2v2 

3 q > --, but is still 
212 

be shown [21] that the 

remainder after r terms is numerically less than the (r+l)th term, which 

approaches ° as n -+00" Thus, the series is asymptotic for large ns 

A.3 
-2 _ 

Computation of Qn(q) 

The method of computing Q~(q) 

that of series expansion. Let 

1 2(-- .n+l Qn iq), q real and q > 0, will be 
l 
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z 

-2(-Then Qn q) may be represented by the series 

where 

D(l) 32 

D(n) 
2(n+2) 

2n+1 D(n-1) 

00 

1 k I Bk (n) (---=:2) 
k=O 1+z 

n=2,3, .... 

(A.3.1) 

The Bk(n) have been defined in Section A.2.2. The series in equation 

(A.3.l) is convergent for q > O. It can be shown that if the series is 

truncated after k == m, the truncation error Em satisfies the following 

bounding condition: 

E < 
m 

1 
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