UILU-ENG-84-2004

CIVIL ENGINEERING STUDIES

STRUCTURAL RESEARCH SERIES NO. 515

By
MEHRAN KESHAVARZIAN -

and
WILLIAM C. SCHNOBRICH

A Report on a Research Project
Sponsored by

THE NATIONAL SCIENCE FOUNDATION
Research Grant CEE 83-12041

UNIVERSITY OF ILLINOIS
at URBANA-CHAMPAIGN
URBANA, ILLINOIS

MAY 1984







50272 =10}

EPORT DOCUMENTATION |2 REFORT RO, : y
? PAGE UILU-ENG-84-2004

3. Reciplent’s Ascessien Ne.

4. Thie and Subtitie

COMPUTED NONLINEAR SEISMIC RESPONSE OF R/C
WALL~FRAME STRUCTURES

3, Repert Dete
_MAY 1984

&

7. Author(s)
Mehran Keshavarzian and William C. Schnobrich

8. Porformring Orgonlzation Rept. Me.
SRS. No. 515

9, pPerforming Organization Name and Address

Department of Civil Engineering
University of Illinois

208 N. Romine Street

Urbana, IL 61801

10. Project/Task/Werk Unit MNe.

11. Contract(C) or Gram(B) Ne.
[{9)]

(@ NSF CEE 83-12041

12. Sponsering Organizetion Neme and Address

National Science Foundation
Washington, D.C.

18. Type of Roport & Pericd Covered

4.

13, Supplementary Notes

18, Abstract (Limit: 200 words)

This study presents a method of nonlinear analysis for the response of a R/C
coupled shear wall and/or wall-frame structure subjected to strong earthquake motion.
The objective is to maintain relative simplicity in the method itself, yet produce
reasonable reliability in the computed results. The computed responses of one
cantilever column member, two coupled shear wall structures, and one wall-frame
system under dynamic loads and static loads are compared with the available test
results. The effects of moment-axial force interaction of wall members as well as
the effects of pinching action and strength decay of coupling beams on overall computed

responses of the coupled shear wall structures are discussed.

RECEIVED
JUN 4
METZ REFEREHCE ROOM
i7. Document Analysis a. Desecriptors
Structural engineering Reinforced concrete Damping
Dynamic analysis Wall-frame Hysteresis

Analytical model Coupled shear wall

b. identifiers/Open-Ended Terms

University of Iilinois
B108 NCEL

c. COSATI Field/Group 208 N. Romine Strest

Equations of motion

Urbang, 11linoig 61801

8. Avzilability Stetement 19. Security Class (This Report) 21. No. of Pages
UNCLASSIFIED 219
20. Security Class (This Page) 22. Price
UNCLASSIFTED

o0 ANSI=Z39.18)

See instructions on Reverse

OPTIONAL FORR 272 (4~7
(Formerly NTIS-35)
Department of Commers







iii

ACKNOWLEDGEMENT

This report is based on the doctoral thesis of M. Keshavarzian,
submitted in partial fulfillment of the requirements for the Ph.D. in Civil
Engineering at the University of Illinois.

The study was supported by the National Science Foundation under Grant
No. CEE 83—12041. This support is gratefully acknowledged.

The numerical results presented in this report were obtained with the
use of the CDC Cyber‘175 computer system; most of the figures were prepared‘
using the GCS-Zeta plotting device. These facilities are supported by the

Computing Services Office (CSO) of the University of Illinois.






iv

TABLE OF CONTENTS

CHAPTER ‘ Page
1 INTRODUCTION . ¢ o © o o o o s o o s o « o s o o o s o 1
1.1 General . . « s o o s o o o s o o o o o o o o o a 1
1.2 Object and Scope =« s o « « o o s o o o o o o« o o 1

2 FORCE DEFORMATION RELATIONSHIPS
FOR STRUCTURAL ELEMENTS . o ¢ ¢ o s o o o s s o o o & 4

2.1 Introductory Remarks . e e e e e e e e e e 4
2,2 Material Properties e s e e s 6 e o 8 e s o o o 4
2.2.1 Stress-Strain Relationships for

Concrete and Steel . o o o o o o o o o o o 5

2.3 Moment—Curvature Relationship . « ¢ o« o o ¢ o o & 5
2.3.1 Effect of Axial Force on

Moment=Curvature Curve o o o « o « o o o o 5

2.3.2 Axial Force—Moment Interaction . . o « o & 8

2.4 End Moment-End Rotation Relatiomship
Due to Flexure . o o« o o « o o s o o o o o o o o 9
2.5 Derivation of Element Chord
Zone Flexibility . o o o « o o o o s o o o o s o 10
2.5.1 One~Component Model . . o ¢« o o « « .o o 10
2.5.2 General Two=-Component Model . . . o o« o o 12
2.5.2.1 Comparison of the One-
and Two-Component Models . + « « o o o o 15
3 Multiple Spring Model . . o ¢ ¢ o« o o o « 18
4  The Proposed Model o o o o o o o o o o o 21
4.1 Inelastic Zone Length . . ¢ « o ¢« o « o 22
4,2 Effective Section Stiffness
of an Inelastic Zome . o o« o o o o o o o 23
2.5.4.3 Element Flexibility MatrixX . o « o o o o 27
Determination of Shear Rigidity . « « « o « « o o 29
Flexibility Due to Bond Slippage
at the Ends of a Member - ¢« ¢ o « o« ¢ o o o« o o o 31
2.8 Element Flexibility MatriX . o o s o o o o o o o 33
2,9 Summary e s e o o o s s 5 o s o & & o s s o & o 34

NN
®
~ O

3 ANALYTICAL PROCEDURE e o o © a o @ o © © o o © o o o 36

Introductory Remarks =« o o o ¢ o o s o o o o o o« 36
Basic Assumptions . ¢ ¢ ¢ o ¢ o s o s o o o o o 36
Element Stiffness Matrix . ¢« . ¢ ¢ ¢ o o ¢ o o « 38
Structural Tangent Stiffness Matrix . . o « o » o 42
Column Geometric Stiffnmess MatrixXx . . o « o « o « 43
Mass MatriX o ¢ o« o o o o o o o o o s« o s s o o o &b
Damping MatriX . o o 2 ¢ o s 2 s ¢ o o o s s o o &7
Equations of Motiom . o o ¢ o o ¢ o o o o o o o 49
Numerical Solution Scheme of

Equations of Motion . ¢ o o o o o o o s o o o o 49

WWwWwbWbwwwww
-] L] -]
WOONAI S WRN =



3.10 Residual Forces and Overshoot
3.11 Time Interval o o « « ¢ o o &
3.12 Static and Dynamic Analysis .
3.13 Summary . « s ¢ o o o o o o o

HYSTERESIS MODELS . « ¢ o o s o o

1 Introductory Remarks . . . &
2 Hysteresis=l .« ¢« « « o o o
.3 Hysteresis=2 . . o o o o o
4 Definition of Ductility o e

COMPUTED RESULTS & . o ¢« o o o o =
Introductory Remarks . . . &

Experiment by Lybas & Sozen .

5.1
5.2 Experiment by Gilbertsen & Moehle
5.3

°

5.3.1 Static Analysis of Structure-l

"Reduced" Model . . .

vt

Force on Wall Stiffness
5.3.5 Preliminary Remarks of

3.2
3.3 Effect of "Reduced" Model
3.4 Effect of Changing Axial

°

Dynamic Analysis . . « « . &
5.3,6 Linear Dynamic Analysis of

Structure-l . . . o &

°

°

5.3.7 Dynamic Analysis of Structure-l
5.3.8 Effect of Pinch Action and Strength

°

Decay of Coupling Beam . o & « o « =

@

3
3.

wr

0 Comparison of One- and
Two-Component Models .

5.3.11 Effect of Damping Matrix .
5.4 Experiment by Aristizabal-Ochoa & Sozen

5.4.1 Dynamic Analysis of Structure-2

5.4,2 FEffect of Axial Force-
Flexural Interaction .

5.4.3 Effect of "Reduced" Model

5.5 Experiment by Abrams & Sozen

°

°

°

e

°

°

)

5.5.1 Static Analysis of Structure-3

5
5

5.5.4 Preliminary Remarks of

5.2 Effect of M-P Interaction
.5.3 Comparisons of Responses Predicted
by Different Element Models

°

.9 Effect of Changing Axial Force .
1

°

Dynamic Analysis . o o o o o o o o

5.5.7 Effect of Time Step

.5.5 Dynamic Analysis of Structure-3
5.6 Comparison of Responses Calculated
by Different Element Models

e

and Residual Force « « « o & « o &

Page

51
52
53
55

58

58
58
59
62

63

63
63
65
67
68
69

70
72

73
74

77
78

79
79
80
81

85
86
87
88
90
91

94
95

98

101



vi

Page

6 SUMMARY AND CONCLUSIONS . & o« « o « o o o o« s o o o« « 104

SUMMATY o o « s o s o o o o s s s« a o« o« o o o o o 104
Conclusions o o « o o « o « o o« o o a o o o o o o 105
General Observations . o o o o s « s o« « « o o o 109

oSN O
s e
W R =

TABLES o ¢ ¢ o « ¢ s s s s s o o o s o o o a o o a o o o o o o 111

FIGURES ° L e e L] e e @ . e ° ° o e ° o ° L ° e 2 e e o e e e a 1 24

APPENDIX
A CALCULATIONS OF COLUMN SECTION STIFFNESS PROPERTIES . 203
B CALCULATIONS OF COLUMN ELEMENT STIFFNESS MATRIX . . . 210

REFERENCES @ ® ° e ° L e L L L o e ° e e e [ e e e ° L ° e ° o 216






Table

2.1

5.1
5.2

5.3

5.4

5.6

5.7
5.8

5.9

5.10

vii

LIST OF TABLES

Comparison of the Flexural Flexibility Coefficients
of the One~ and the General Two-Component Models

Stiffness Properties of Column Elements . . .
Assumed Material Properties for Structure-l .

Stiffness Properties of Constituent
Elements of Structure-l . . . ¢« ¢« ¢ ¢« o o o &

Comparison of the Mode Shapes of the 6-Story
and "Reduced" Model of Structure-1 . . . . &

Measured and Computed Maximum Responses
of Structure=1l . ¢« o ¢ o o s ¢ o o 5 5 o o s

Assumed Material Properties for Structure-2 .

Stiffness Properties of Constituent
Elements of Structure=2Z . . ¢ « « o o « o o o

Measured and Computed Maximum Responses
Of StruCture_z e e @ © © © ® © © @ © o © @ o

Assumed Material Properties for Structure-3 .

Stiffness Properties of Constituent
Elements of Structure-3 . . . . ¢« « « &« « & =

Measured and Computed Maximum Responses
of Structure=3 . ¢ ¢ ¢ o o o © 5 5 ° o s o o

Page

112
113

114

115

116

116

117

118

119

120

121

123






Figure

5.2
5.3

5.4

viii

LIST OF FIGURES

Idealized Stress—Strain Curve for Concrete .

Idealized Stress—Strain Curve for Steel

Idealized Moment—-Curvature Curve for a Member

Effect of Axial Force on M~-¢ Curve . .
Moment—Axial Force Interaction Diagram .
Calculation of End Moment-End Rotation
Relation for a Cantilever Beam . . o+ «
One-Component Model . . . o ¢« & o o o o
Two—Component Model . . . ¢ « ¢« o o « &
Three Fundamental Cases in Two-Compomnent
Assumed Loading Condition along a member
Multiple Spring Model . . . ¢« ¢ ¢ o« o &
Proposed Model e o s s % s o m s e e v
Incremental Curvature Distribution,
Strain-Hardening Range . . « « o o o« s »
Incremental Curvature Distribution,
Reloading Range . « o o « s o o o o o o
Inelastic Zone Length Discrepancy due to
the Different Actions . « « « « o o« o =
Rotation due to Bond Slip . . o « « o &
Section Stiffness Discrepancy due to

the Shifting of the Inflection Point . .
Treatment of Rigid End Zone . . &+ « « o

Typical Members in Global Coordinates System

Equivalent Lateral Load to Account
for Gravity Effect ¢ ¢ o ¢« o o o« o ¢ s &
Treatment of Residual Forces and

°

e

°

Deformations in the Analysis . « « « o « o o
Hysteresis-l, Takeda Hysteresis Model . . .

Hysteresis-2, Hysteresis Model with Effects

of Pinching Action . .

Hysteresis—2, Hysteresis Model with Effects

of

Pinching Action and Strength Decay

Test Set-up and Section Properties for
the Experiment by Gilbertsen-Moehle . .
Displacement Pattern for the Experiment

e

by Gilbertsen-Moehle . . o o ¢ o o o ¢ o o o o o« o
Experimental and Analytical Force-Displacement 4
Curves for Specimen 4C . ¢« ¢ ¢ « ¢ o o o s s o o o
Experimental and Analytical Force-Displacement

Curves for Specimen 4B . o . 2 o o« o« o o s o o o o

Page

125
125
126
126
127

127
128
128
129
129
130
131
132
133

134
135

135
136
136
137

137
138

139
139
140
140
141

143



ix

Figure Page

5.5 Analytical Models and Section Properties
of 6-Story Coupled Shear Wall . . ¢« « &« ¢ o ¢ o o o o o« 145
5.6 Static Analysis, Loading Information . o o o o « o ¢ o « 146
5.7 Static Analysis of 6-Story

Coupled Shear Wall . « ¢« « ¢ ¢ ¢ o ¢ o « o o o« s« s o o o« 147
5.8 "Reduced" Model Effects,

Maximum Beam Ductilities o o « o o o o o o o o « s « o« o 149
5.9 "Reduced" Model Effects,

Bending Moments, Kip=inl .« & &« o « o o « o o o « o « o« o 150
5.10 Order of Yielding of Structure-l

Under Cyclic Loading . o ¢ « o o o s o s o o s o « o o o 151
5.11 M-P Effects, Bending Moments, Kip=in . « « & ¢« s ¢« o « o 152
5.12 Response Waveforms of Structure-l, Elastic Analysis . . 153
5.13 - Response Waveforms of Structure-l, Run-1 . . . . . . . . 154
5.14 Computed and Measured Response Histories

of Base Moment-Top Displacement Relationship

of Structure=1l . . ¢ & ¢ ¢ ¢ o ¢ o o 6 s s s o o o s s o 157
5.15 Moment—-Curvature Relations at the

Bases of Two Walls o o « o o o o o « o o s« s s o o «.0 o« 158
5.16 Moment-Axial Force Relations at the

Bases of Two Walls o o « o« o o o o o« o o & o o o o o o o 159
5.17 Response Waveforms of Structure-l, Run-2 . . . . . . . . 160
5.18 Envelopes of Maximum Rotation Ductility

Factors of Coupling Beams for Different Runs . . . . . . 161
5.19 Moment-Rotation Relations of the Left-End

Mid-Level Beam Rotational Spring of Structure-l . . . . 162
5.20 Response Waveforms of Structure-l, Run-3 . . . . . . . . 163
5.21 Response Waveforms of Structure-l, Run-4 . . . . . « . . 164
5.22 Response Waveforms of Structure-l, Run-5 . . . . . « . . 165
5.23 Response Waveforms of Structure-l, Run-6 . . . . . . . . 166
5.24 Analytical Models of 10-Story

Coupled Shear Wall . . .« ¢ ¢ ¢ ¢« o ¢ o« o ¢ o o o o o « o 167
5.25 Response Waveforms of Structure-2, Elastic Analysis . . 168
5.26 Response Waveforms of Structure-2, Run-1 . . . . . . . . 169
5.27 Response Waveforms of Structure-2, Run-2 . . . « . - . . 172
5.28 Response Waveforms of Structure~2, Run-3 . . . . . « « . 173
5.29 Computed and Measured Response Histories

of Base Moment-Top Displacement Relationship

of Structure=2 . « « & o s o o o o« s o o o s o o & s o o 174
5.30 TForce-Deformation Relationships of

Two Members of Structure=2 . + o « o o s s o o o o« o « « 175
5.31 Moment-Axial Force Relations at the

Bases of Two Walls . o« o « ¢ o s o o o« o o s o« o o o« &« o 176
5.32 Envelopes of Maximum Rotation Ductility

Factors of Coupling Beams for Different Runs . . . . . « 177
5.33 Order of Yielding of Structure-2

in Run=1 and Run=3 . . ¢ ¢ & o ¢ o o ¢ o o s s s « o« « o 178
5.34 Waveforms of Base Accelerations for Structure-2 . . . . 179



Figure

5.35

5.36

5.37
5.38
5.39
5.40
5.41
5,42
5.43
5,44
5.45

5.46

Analytical Models of 10-Story

Wall-Frame Structure « « ¢« o « o o o o o o s o o
Force-Top Level Displacement Relation

of Structure-3 Under Monotonically

Increasing Load . ¢ ¢ « « o o s o o o s s o o o o
M-P Effects, Force-Top Level Displacement
Relations of Structure~3 . . « ¢ o « o o s ¢ s o o
M-P Effects, Bending Moments of the

First Story Columns . ¢« o o o o o o o a s o « o &
Wall Modeling Effects, Force~Top Level
Displacement Relations of Structure-3 . . . . . .
Wall Modeling Effects, Bending Moment

of the Shear Wall, kKN-m . . o o « o o s o o o o @
Response Waveforms of Structure-3, Run-1 . . . . .
Response Waveforms of Structure-3, Elastic Analysis
Order of Yielding of Structure-=3 . . « ¢« « o o o« =
Envelopes of Maximum Rotation Ductility

Factors of Beams for Different Runs . . « . « . &
Hysteresis Loops of Wall Element

at the Base in Run-1 . . ¢ ¢ ¢« ¢« ¢ o ¢ s o o o o o
Computed Response History of Base Moment-

Top Displacement Relationship of Structure-3 . . .
Maximum Responses of Structure-3, Run-1 . . . . .
Response Waveforms of Structure-3, Run-2 . . . . .
Response Waveforms of Structure-3, Run-3 . . . . .
Response Waveforms of Structure-3, Run-4 . . . . .
Moment—-Flexural Rotation Relations at the

Base of the Wall in Run-3 and Run-4 . . . & « « &
Response Waveforms of Structure-3, Run-lb . . . &
Envelopes of Maximum Rotation Ductility

Factors of Beams for Run-1 and Run-1b . . . . . .
Hysteresis Loops of Wall Element

at the Base in Run=lb . ¢ & ¢« ¢ o o ¢ ¢ o s o o &
Moment—-Rotation Relations of the Left-End
Fifth-Level Beam Rotatiomnal Spring of Structure=3
Primary Curve Hysteresis Loops

of a Column Member Sectionm o o o « o o o o o o o
Evaluation of aM/9n for Hysteresis

Loops of a Column Member Section . o o « o o « o &
Axial Force—Bending Moment-Curvature Relationships
of a Column Member Section . » ¢« o ¢ ¢« s o « o « o«
Member Forces at the End of a Loading Step . . « »
Inelastic Zone Length Discrepancy due to

the Shifting of Inflection Point . « o s « o o o o

Page

180

181
183
184
185
186
187
190
191
192
193
193
194
195
196
197

198
199

200
201
202
208
208

209
215

215






CHAPTER 1

INTRODUCTION

1.1 General

It is well recognized that structures subjected to strong ground motion
will wundergo inelastic deformations at certain critical locations. If the
structure is to survive, the individual structural members must be ductile
enough to develop these deformations without failing. To ascertain these
ductility demands, understanding the nonlinear dynamic response of building
structures becomes a reasonable objective.

Dynamic tests of model structures conducted on a shaking table can
reveal some general information about the structural responses and inertia
forces generated under simulated earthquake motions. However, it is
realized that it 1is very difficult to extract detailed information from
dynamic tests due to complex interaction of wvarious parameters.
Consequently dynamic tests of either real buildings or model test structures
are rather aimed toward obtaining the overall structural responses and also
obtaining source data to test mathematical models for use in nonlinear

analysis.

1.2 Object and Scope

The main purpose of the study reported herein is to analytically
investigate the nonlinear responses of several types of small-scale test
structures for which experimental data are available in the literature.

This study is performed with the following specific objectives in mind:



1---To develop a mnew column element with the following aims:
a) consideration of the axial force~-flexural interaction diagram;
b) allowance for the spread of inelastic flexural rigidity along the
critical regions of an element rather than having it localized at a section;
c) acceptance of almost any form of linear moment distribution along the
member; and, d) development of a reliable yet relatively simple element, as
compared to a multiple spring model;

2---To extend the standard one—component model to comnsider axial
force-flexural interaction in the calculation of the yield moment as well as
for the element stiffness;

3---To discuss significant shortcomings of four element models, namely,
the one-component model, the general two-component model, the multiple
spring model, and the model which is developed in the course of this study.
These element models are used to model wall elements in a multi-story
wall-frame test structure;

4~--To study the sensitivity of response of a structure to parameters
such as damping, P-Delta effect and, axial force-flexural interaction.

In this study, work is domne on developing a method of analysis capable
of performing an inelastic analysis of plane, rectangular wall-frame and/or
coupled shear wall structures. The method uses four different element
models with inelastic member behavior, The results form the basis for
evaluating inelastic structural response. Such a method (computer program)
can then be used to study not omnly the inelastic respomnse of a structure,
but also the effects of different assumed conditions.

The main steps involved in the analysis of a structure are modeling,
computation, and interpretation. In the first step a real structure or a

test structure and its loading are idealized as a mathematical model. In



the computation step the structural response of the mathematical model is
determined from a few well-established routines. In the last step, the
results for the mathematicai model are applied to the real or test
structure., The first and last steps usually require substantial engineering
judgement, especially when simple models are used to represent complex
structures.,

Chapters 2, 3, and 4 aré concerned with modeling and the numerical
procedures used in the computer program. Chapter 5 studies the effects of
using different models of member inelastic behavior and analytical
conditions on response. Furthermore, the computed résults are discussed by
comparison with the test results. Finally, Chapter 6 presents a short
summary and the significant conclusions of this study. Also a critical
review of this research effort is presented so that the results and
conclusions may be perceived in proper scope.

A detailed review of existing anaytical models for general R/C frame
structures 1is given by Keshavarzian and Schnobrich (1983), while a review
directed at coupled shear walls can be found in the report by Aktan and

Bertero (1981).
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CHAPTER 2

FORCE DEFORMATION RELATIONSHIPS FOR STRUCTURAL ELEMENTS

2.1 Introductory Remarks

Computer analysis of a structure requires a proper modeling if reliable
results are to be obtained. Because the behavior of each individual element
is studied in this investigation, structures are modeled by means of line
elements. It is extremely important to specify the properties of these line
elements properly so that both the elastic and any inelastic behavior of the
members can be  simulated accurately. While specification of the
force-deformation relationship for the elastic regions 1is straightforward,
representation of inelastic zones in the element requires special attention.

This chapter discribes procedures to evaluate end moment—end rotation
relationships of a simply supported element based on four analytical models,
a one-component model, a general two—component model, a multiple spring

model, and a new proposed model.

2.2 Material Properties

End moment—end rotation characteristics of structural elements for
montonically increasing loads are calculated based on established material
properties. To simplify such an evaluation a few idealizations, similar to
those of several other analytical studies (Otani, 1972; Takayanagi and
Schnobrich, 1976; Saiidi and Sozen, 1979), have been made. These are

explained in the following section.



2.2,1 Stress—Strain Relationships for Concrete and Steel

A parabola combined with a straight 1line in the form proposed by
Hognestad (1951) and shown in Fig. 2.1 is adopted here to idealize the
stress—strain relationship of concrete.

For steel, a piecewise linear stress—strain relationship is assumed. A
typical example of the assumed curve 1is shown in Fig. 2.2. The
stress—strain relationship of steel is assumed to be symmetric about its

origin.

2.3 Moment—-Curvature Relationship

Based on the Bernoulli-Euler assumption of a linear variation of strain
through the depth of a section , the primary moment-curvature relationship
applicable to a member with a constant axial force and under a progressively
increasing moment can be derived. The calculated moment—curvature curve is
idealized as a bilinear curve with only one breakpoint, Fig. 2.3. Yielding
of the section, which 1is associated with yielding of the tensile
reinforcement, is assumed to occur at that breakpoint on the idealized
curve. Thus, the idealized moment-curvature curve is based on properties
that are only slightly different from the cracked transformed cross-section,
i.e., any initial uncracked section behavior is explicity ignored. In this
study, no final limit on the flexural strength of individual members 1is

considered.

2.3.1 Effect of Axial Force on Moment—=Curvature Curve

5

During the response of a structure to static or dynamic loading, there

can be continual adjustments in the level of axial forces present in the



columns. Thus, there should be smooth shifts between moment-curvature
curves corresponding to these different axial forces. These shifts reflect
either a hardening or a softening of the member due to an increase or
decrease in the axial force, respectively.

The section”s current stiffness of moment-curvature in which the effect
of axial force on that moment-curvature relationship is taken into account,
is calculated based on a procedure which was initially developed by
Takayanagi and Schnobrich (1976). The moment-curvature curve for a section
undér a changing axial load is developed by introducing appropriate shifts
or movements between the family of moment-curvature curves for various
constant axial forces.

For the sake of simplicity, while the bending moment is assumed to be a
function of both curvature and axial force, the axial force is assumed to be

a linear function of only the average axial strain.

m = M(¢,n) (2.1)
n = FA % ¢ * (2.2)

m : Bending moment of a section;

0 ¢ Curvature of a section;

n : Axial force on a section;

M : Bending moment function;

EA : Axial rigidity of a seection;

€ : Average axial strain.

The incremental form of moment can be expressed by differentiating that

function:

M oM 4
Am = -8743 A(b +—é—'[_1- An (2.3)



or
oM , oM , An

= (&8 4o, o1 2.4

Am [8¢ +,8 * A¢] Ad , ( )

The bracket term can be thought of as a current EIi’

Am = EIi * Ad (2.5)
where
EIi=%—%+%*% (2.6)
In this expression
Am ¢ Increment of bending moment;
An : Increment of axial force;
Ap ¢ Increment of curvature.

It is worth mentioning that by rearranging Eq. 2.3, the current flexural
rigidity which was used by Takayanagi and Schnobrich (1976) under constant

axial rigidity can be obtained.

_OM g M -l

on Am) (2.6a)

EIi ——aE

This current section stiffness established from the moment-curvature,

Eq. 2.6, contains two terms. The first term, %%' , is the slope of the

moment-curvature relationship under a comnstant axial force. The second
oM , An
on  Ad °

slope of the moment-curvature. Thus, the flexural rigidity, EIi’ which 1is

term, represents the effect of a change in the axial force on the
the transition slope between two moment—curvature curves with different
axial forces (Fig. 2.4), is calculated on the basis of loading history which
involves the changes of axial force and bending moment on the section.
M . . .
The value of %6- can be established from the idealized moment-curvature

hysteresis loop with the appropriate axial force acting on the section. The



gM-value can be determined from the axial force-moment interaction diagram

appropriate to the section. The details of the procedures for evaluating
oM oM . . .
3% and N, are described in Appendix A,
It should be noted that the basic concept of introducing the effect of
changing axial force 1is only to wupdate the element stiffness for the

subsequent loading increment, based on an axial force calculated from the

current loading increment.

2.3.2 Axial Force—~Moment Interaction

A typical axial force-moment interaction diagram is shown in Fig. 2.5.
Points on the interaction diagram below the balance point correspond to
yielding of the reinforcement, while points above the balance point
correspond to crushing of the concrete. Hence, an increase in the axial
force above the balanced load indicates possible crushing of the concrete
prior to yielding of the reinforcement. During the response of a structure
to static or dynamic loading, axial forces in the columns are expected to
have values below that corresponding to the balanced load, and thus the
relationship between axial force and moment is assumed to be linear, Fig.
2.5,

Cases where crushing of the concrete in the section occurs before
yielding of reinforcement or where the relationship between the axial force
and the moment is not linear are not considered in the models that are
presented in this study.

During analysis, the yield moment of a section, corresponding to the
current axial force, is determined from the moment-axial force interaction
diagram for each loading increment. This yield moment is wused for
calculating both the section stiffness and the inelastic length at each end

of the element.



2.4 End Moment—-End Rotation Relationship Due to Flexure

The end moment-end rotation relationship of a cantilever element 1is
determined from the idealized moment-curvature characteristics, developad
around a constant axial force, as described in Section 2.3. The end

rotation can be described in terms of curvature, as follows:
1
6, =3 (¢ (x)) x dx (2.7)

where the symbols refer to Fig. 2.6 and, ¢(x) 1is the curvature as a
function of the distance from the free end.

Because the variation of the moment along the member is assumed to be
linear; and furthermore, because the skeleton of the moment—cur#ature curve
is assumed to consist of linear segments, the curvature also varies linearly
along the element. Hence, the computation of the end rotation as described
by Eq. 2.7 is reduced to the evalution of the first moment of the area of a
triangular part in the elastic region and a trapezoidal segment in the
yielding portion. Based on the above discussion, the end moment—-end
rotation relationship can be readily calculated, and then normalized to a
unit length cantilever beam.

The primary end moment-end rotation relationship 1s simplified as a
bilinear curve. This means that the primary curve of a typical member
consists of two segments, one representing the elastic range and the other
the post-yield or inelastic range., In arriving at a bilinear idealization
of a particular moment-rotation relationship, a number of approaches can be
used. In this study, fitting a bilinear curve for the calculated end

moment—end rotation relationship over a reasonable range is used,
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This bilinear end moment-end rotation curve is then used for calculation
of the member stiffnesses of the one-component model and the general

two-component model.

2.5 Derivation of Element Chord Zone Flexibility

This section describes the procedures used to develop the end moment-end
rotation relationships for a simply supported member. The 2 by 2
instantaneous flexibility matrix for models such as the one-component model,
the general two—component model, the multiple spring model, and the model
which is presented in this study, are derived based on the force-deformation
relationships of frame elements outlined in Sections 2.3 and 2.4,

A simplified Takeda hysteresis model (Takeda, et al., 1970) is adopted
to describe the force-deformation relationships of all four models. The
axial force-flexure interaction effects on the element flexibility matrix
are included in the multiple spring model and the proposed model as well as
with the one-component model,

For the one-component model and general two-component model, the element
flexibility matrices are derived directly from the end moment-end rotation
relationship, while for the multiple spring model and ‘the proposed model,
the element flexibility matrices are calculated based on moment-curvature

relationships of several sections along the length of the member.

2.5.1 One-Component Model

Each member”s chord zone, 1i.e. clear span, consists of a linearly
elastic element with one equivalent nonlinear rotational spring attached at
each end (Giberson, 1967; Suko and Adams, 1971; Otani, 1972), Fig. 2.7. All

the member”s inelastic deformations are lumped into the rotations of these
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two end springs, The flexibilities of the nonlinear rotational springs at
the two ends are evaluated based on the assumption that the inflection point
occupies a fixed location. Hence, the moment-rotation loading history of
these two nonlinear rotational springs can be uniquely and'independently
specified by hysteresis rules.

The flexibility matrix for the end spring-beam element can be calculated
by simply adding the flexibilities of the nonlinear rotatiomnal springs to
the flexibilities of a linear simply supported beam element. The composite

element flexibility matrix is therefore expressed as:

f1 T
[F1]= (2.8)
f. Iy
with
fll = fSh + fAl (2.8a)
£.=f -2 (2.8b)

12 sh 6EI

f,0 = f4 *+ fp1 (2.8¢c)

and fA1and £ ,are defined as follows:

£, =5 * £(1) (2.84)
£ = o+ £0L) (2.8e)
Bl 3EI
where

f(MA), f(MB) : Flexibilities of the nonlinear rotational springs at ends
A and B, respectivel&, Flexibility of mnonlinear
rotational spring at end A (B) is evaluated based on the
I.P. fixed at a distance ZA (RB) from end A (B);

£ = 1. Flexibility due to shear rigidity.
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It can be seen that this model is based on the assumption that ideal
plastic hinges with zero length, the mnonlinear rotational springs, are
formed at the member ends whenever the bending moment exceeds the yield
moment . Such idealization of flexural members leads to constant post-yield
stiffness coefficients. These coefficients are independent of the previous
yield level in the strain-hardening range. Furthermore, the inelastic
rotation at one end is determined from the appropriate moment uniquely and
independently of the opposite end. This is equivalent to assuming the point
of contraflexure remains at its initial position or arbitrarily at midspan
of the element instead of being allowed to shift along the member as the
current moment distribution would dictate.

It should be noted that the same procedure used to consider fluctuations
of axial force on the moment-curvature curve can be applied to the end
moment—-end rotation relationship. Thus, the stiffness of the nonlinear
rotational spring at each end of the element as well as the elastic element
stiffness can be modified in the same way to consider the effect of changing

axial force.

2.5.2 General Two—Component Model

The concept of the two-component model or the "divided beam” model was

introduced by Clough, et al. (1965) and by Aoyama and Sugano (1968) and then

the makeup of the model has no obvious physical basis, it is a mathematical
way of arriving at engineering results.

The two-component model, which provides only a form of nondegrading
moment resistance for each member, assumes that every member comsists of two

components: a basic elasto-plastic component which develops a plastic hinge
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at either end when the end moment exceeds a specified yield value, and a
second component which remains fully elastic, Fig. 2.8. This is equivalent
to saying that each element is imaginary divided wvertically into two
components: an elastic component with moment of inertia, pI, where "I" is
total moment of inertia or the second moment of the section, and "p" is
strain—-hardening ratio, and an elasto-plastic component with moment of
~inertia (1-p)I.

The general two-component model, which is capable of providing any form
of moment resistance for a member, assumes that at each loading stage, the
total moment of inertia, ;AI, of each member is divided into two components:
an elastic component with moment of inertia, rBI, and an elasto-plastic
component with moment of inertia, (rA—rB)I, (when T, is greater than 1y,

change A and B if rB>rA). Thus, the stiffness matrix for the member can be

obtained as the sum of the stiffnesses of its two components.

K=rBK’+(rA—rB)Kﬁ 1yr, ¥ (2.9a)
= s - " 2 >/ : e
K %AK +(rB rA)KA 1 T ¥, (2.9b)
where
K’,K;,Kg : Stiffnees matrix for three fundamental cases given in
Fig. 2.9.
1 0.5
k- = £ (2.10a)
| 0.5 1
F'O 0-‘
3EI
K; =0 (2.10b)
L0 1]
- o0
I
Ky = 25t (2.10¢)
0 0]
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K : Elastic stiffness matrix for an element with both ends
fixed;
K& (Ké) : Elastic stiffness matrix of an element with end A(B)
hinged;

K : Element stiffness matrix.

and rA and rB are defined as follows:

k k
=8 = _0B
NG T T ST (2.10d,e)
where
k (k. ) : Instantaneous end moment—end rotatiom stiffness at end

A B

A(B) for a unit length cantilever beam.

It is worth noting the assumption that the total moment of inertia is
reduced to rAI(rBI, when rB>rA), when both ends involve inelastic action.
This is based on the assumption of the two-component model that the
reduction 1in stiffness applies along the entire length of the element when
yielding occurs at both ends.

Evaluation of expressions 2.9 for a bilinear nondegrading hysteresis

model, leads to the following values of the stiffness coefficients:

K=K~ ' elastic member, no hinges (rA=rB=l) (2-11a)
K=pK’+(l-p)Ké hinge at end B (rA=l, rB=p) (2-11b)
K=pK’+(l—p)K;» hinge at end A (rB=l, rA=p) (2-11¢)
K=pK~ hinges at both ends (rA=rB=p) (2-114d)

which are the stiffness coefficients for the two-component model as proposed
by Clough and by Aoyama.

Defining f,,and f;,to be 1/k, and 1/kp, respectively, the flexural

A2

element flexibility matrix can be evaluated from Eqs. 2.12,
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3 1 -1
AT VMRS 2 T2 .
K1 = . B2 ~ 'A2 (2.12a)
"2 ) fp2 |
o 1 3
| Ry
K™+ = fpo 2 a0 (2.12b)
L 3¢ 4+l
3 a2 G827 a2

Finally, the flexibility matrix, including shear deformation, 1is expressed

as:

11t |
[F1]= (2.13)
£ g
= 3 1
117tz fap 77 a2
f =f_ - 1c f < f (2.13a)
12 " %sn T2ty B2 < fao .
f99 "fen T fpo
£11 " fan * fao
£ =f -1lg s f (2.13b)
12 " Ten 73 a2 g2 > fao )
_ 3 1
£ " fan Y7 fa2 T 7 fao

2.5.2.1 Comparison of the One~ and Two—Component Models

Because both the one-component and two—-component models are
approximations of the actual inelastic member behavior, it is important to
compare the results from these two models applied to a single beam element
not only to see how closely they match but also to evaluate the

strain-hardening ratio of the general two-component model.
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In the general two-component model, the change of end rotation of a unit
length cantilever beam is related to the change of end moment by the

following equation:

88, = (% £+ % £) a, (2.14a)
where
fA2 : Instantaneous flexibility of the end moment—end rotation
of a wunit length cantilever beam for the general
two—-component model.
f = 1/3EI

From comparison of Eq. 2.l4a and definition of instantaneous flexibility

of an end moment-end rotation curve, the Eq. 2.14b is obtained.

_ 3 1
fy =2 fa T f (2.14b)
where
f : Instantaneous flexibility of end moment-end rotation of a

unit length cantilever beam defined in section 2.4.
Evaluation of the Eq. 2.14b in the strain-hardening yields to the

following expression:

Py = 7, 2 075 7y (2.14¢)

where and p, are the strain-hardening ratio of the end moment-end

Py
rotation relationship of a wunit length cantilever beam for one- and
two-component models, respectively.

Eq. 2.l4c indicates that the strain-bhardening ratio of the primary

moment-rotation curve for the general two-component model should be

approximately 75 7Z of the strain-hardening ratio of moment-rotation curve
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defined in section 2.4 or used for the one-component model.

On the other hand, with the 1loading according to Fig. 2.10, the
following moment-rotation equations under strain-hardening condition are
obtained:

A) One-component model, fixed inflection point (I.P.) at point B.

]

AB

2 11 % (2.15a)
a1 [ +g( )]M% MM

3EI 3p,EL ~ 3EI - 3p EL T A

B) Two-component model:

3. % 1. % (2.15b)
= — - % . °
8,9 [4 " 3p,EI * 3 3EI.} oM,

Substituting for Pé from Eq. 2.1l4c in the Eq. 2.15b:

LY, (2.15¢)

BOpy = 3p,EL T A

Comparison between Eqs. 2.15a and 2.15¢ indicates that under this
loading condition, the results of the one-component model with fixing
I.P. at point B and the general two—component model are identical in the
strain-hardening range. Furthermore, Eq. 2.l4c evaluates strain-hardening
ratio (p2) of the end moment—-end rotation of the general two-component model
based on the I.P. at the other end. Thus, the effect of the position of the
I.P. can be easily considered in the evaluation of P2 in the general
two-component model when one end remains elastic.

Fof antisymmetric loading, the value of p2 can be evaluated by comparing
the moment-rotation relations of these two models under strain-hardening
range.

A) One-component model, fixed I.P, at midspan:

-4 (2.16a)
AeAl QplEI AMA
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B) Two-component model:

%
- 2.16b
A, 69,5 ay ( )

By equating Eqs. 2.16a and 2.16b, the following relation between Pl and Py
is obtained.
P, = Py - (2.16¢)

It is worth mentioning that Giberson (1967) presented an extensive
treatment of the equations describing the one-component model and the
two-component model (non-degrading) for a single beam element and concluded
that the appropriate condition for matching these two models is by equating
the incremental rotations under antisymmetric loading condition.

Table 2.1 compares the flexural flexibility coefficients of  the
éne—component model with those ofvthe general two-component model. These
two models are significantly different in nature that an identical results
from the two models cannot be expected. In the general two-component model,
the reduction of stiffness (based on the minimum reduction of stiffness of
moment-rotation hysteresis at either end) 1is considered over the entire
length of the element. On the other hand, in the one-component mddel, all
the reduction of stiffness is assumed to be localized at the two nonlinear
rotational springs. This difference in composition 1s an outgrowth of the
fact that the one-component model is based on the assumption of three
rotational springs in series. While two rotatiomal springs in parallel is

the basis of the general two-component model.

2.5.3 Multiple Spring Model

For this model, each element is divided into several subelements

represented in the form of a sequence of nonlinear rotational springs



19

attached in series, Fig. 2.11. Therefore, each subelement can be subjected
to different stages of inelastic action. The moment at the centroid of each
of the subelements is used to determine the properties of that subelement.
The properties of each segment are then‘assumed to be constant over the
length of that segment. By dividing the element into several segments, . the
propagation of inelastic _deformations as well as the coupling between
inelastic rotations at both ends can be taken into account.

The flexibility matrix of the simply supported element can be derived by
numerical intergration, over the element length, of the flexibility matrix

of a differential slice.

- .
11 12 L
[F,1 = =f (viT [£] [v] dx (2.17)
£ f9p ] O
_J? 0
GA_ »
[f] = (2.17a)
0 1
X BT ]
- X
_1 1
q [
[vl = (2.17v)
x-L %
R L]
' 1 1 (x—Q,)2
£, = = =+ dx (2.17¢)
' 9 GA ET
0 X X
)
£ ] ‘l‘.v?( o+ 2O ) 4 (2.170)
2 CA EI
0 X X

2 ) |
£ =j L ( L X_,_>dx (2.17e)
22 2 * *

0 L GA EI
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where
[f] : Flexibility matrix of a slice;
[V] : Transformation matrix;
X : Distance from right support;
EIz ,GAZ : Current flexural and shear rigidities.

The flexibility coefficients for the multiple spring element can be
readily evaluated based on Eqs. 2.17, because the flexural rigidity and the
shear rigidity are assumed to be constant over the length of each

subelement.

N Qk b3—a3
=) g+ (2.18a)
11 ca’2?  3etEr”
k=1 %k Y EL
L, 3.3 2 2
fu:ﬁ: }2+b£a*_b a_kg : (2.18b)
k=1 GAkl 3% EIk LQEIk
L 3 3
’ k b-2)"-(a-%
£, =>§ e $ (2.18¢)
o1 GARQ 3% EIk
where
N : Number of subelements;
zk : Length of the k-th subelement;

EIk ,GAk : Current flexural and shear rigidities of the k-=th
subelement;
a : Distance between right end of the k-th subelement and
right end of a simply supported member;

b = 2k+a
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2.5.4 The Proposed Model

In the proposed model, the element chord zone or <clear span 1is
considered to consist of two types of regions, an elastic qentral region
plus the variable length inelastic zones at each end of the member, as shown
in Fig. 2.12. 1Inelastic actions are confined to these element ends in which
the curvature distribution 1is determined with the aid of idealized
moment—-curvature hystereéis rules. In order to represent the joint core
zones at the member ends, rigid end zone links can also be specified.

The cross sectional stiffness properties of the elastic zone are
calculated based on a changing axial force and are therefore not constant.
For the inelastic zones the effective section stiffness properties are
determined from an appropriate moment-curvature hysteresis idealization
which also incorporates the effects of changing axial forces. The effective
section stiffness of each 1inelastic =zone 1is assumed to be constant
throughout the length of that zone.

The length of the inelastic zone is considered to depend on the loading
history and the axial force. The inelastic zone lengths, which may be
different at the two ends of the member, are calculated from the linear
moment diagram and the current value of yield moment. The moments at the
face of the joints are used to determine the stiffness properties as well as
the plastic hinge lengths.

The flexural flexibility of a member chord zone can be readily
formulated once the inelastic zone stiffness and inelastic length at each

end have been established.
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2.5.4.1 Inelastic Zone Length

The inelastic length at each end of the element is determined from Eqs.

2019.
M - M * SNl
7, = A3 % g (2.19a)
1 MA + MB ‘
My - M % SN, _
7 = % (2.19b)
+
2 MA MB
M ,M_ : Moments at ends A and B;
A" B
My : Computed yield moment at current axial force;
9 : Clear span of the element;
Zl ,ZZ Computed inelastic lengths of the element at ends A and

B, respectively.
and SNl(SNz) is defined as the sign of MA(MB)

|n A\. o - |B‘4§l

1 MA’ 2 M

SN (2.19¢,d)

These computed inelastic lengths at both ends of the element are based
on the following assumptions:

1---No loads are applied within the element, thus; the central element
region can be assumed to remain elastic.

2--=The inelastic length is zero when the end moment is in the elastic
range.

3-—~~Changes in the inelastic length are considered only when the end
moment is in the strain-hardening range.

4—~-~The inelastic length is assumed to remain constant and equal to 1its
maximum excursion value when the end moment moves back out of the

strain-hardening zone.
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It should be emphasized here that this model does not pfovide any energy
dissipation mechanism unless the section yields. Therefore, if the load
starts with small amplitude deformations below the yield point, the model
considers the element behavior elastic. In reality some nonlinear behavior
in a reinforced concrete element can bé considered to start immediately

after the section cracks.

2.5.4.2 Effective Section Stiffness of an Inelastic Zone

A simplified Takeda hysteresis model is adopted to prescribe the
moment—curvature relationship of the critical sections of the element under
a constant level of axial force. This critical section stiffness of each
inelastic zone is modified based on Eq. 2.6 to obtain the current section
stiffness. The current section stiffness of moment-curvature, EIi’ is
defined as the slope of the moment-curvature curve at the critical section,
while the effective section stiffness, EI*, is the slope of the
moment-curvature curve of all sections in the inelastic zone of the
corresponding end. Because inelastic actions are limited to the element
énds, the critical sections of an element are defined at the face of the
beams or columns.

At the end of each loading step, the member end moments and axial force
are determined based on the current member displacements and stiffnesses.
These new member end moments and axial force are implemented to evaluate a
new member stiffness matrix for the succeeding loading step. For this
purpose, it is necessary to distinguish between the various branches of the

hysteresis model.
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l--- Loading on the Elastic Stage

Loading on the elastic branch produces a response that follows the same
stiffness, 1if the section”s axial force remains constant. The effective
section stiffness, which is equal to the current section stiffness, 1is
constant along the entire elastic zone of the element

At the end of each loading increment, a new level of axial force and
moment are  computed. The yield moment corresponding to the current axial
force, which is found from the moment-axial force interaction diagram, is
compared with the current moment to check if yielding has occurred at a
given section. It is important to realize that because of the assumptions
made as the basis of the model and mentioned in Appendix A, yielding of a

cross section can be also checked on the primary moment-curvature curve.

2--= Loading on the Inelastic Branches, Yielding Stage

When yielding does occur, loading continues along an inelastic branch.
In this yielding stage, the current section stiffness of the
moment-curvature curve 1s roughly constant throughout the inelastic zone
(not for high strain-hardening ratio of moment-curvature curve). Thus, the
effective section stiffness of an inelastic zone is assumed to be equal to
the current section stiffness appropriate to the moment-curvature curve at
the critical section., For the bilinear moment-curvature relationship, it is
apparent that the section stiffness, under constant axial force, is
independent of the degree of plasticity present in the yielding stage as

shown in Fig. 2.13.
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3--- Loading on the Inelastic Branches, Reloading Stage

With a load reversal, the assumption of a bilinear moment-curvature
relationship may lead to a nonlinear curvature distribution in the inelastic
zone even under a constant axial force. The slope of moment-curvature along
the inelastic zome under constant axial force depends on the inelastic
curvature, Fig. 2.1l4.

In order to simplify the procedure for determining the effective section
stiffness 1in the reloading range, the average of the Maximum and Minimum of
current section flexibilities (shown as solid line in Fig. 2.14 for comstant
axial force) 1is assumed to determine the effective section flexibilaity of

the inelastic zone. This average approximation is:

BT Ly-1

1
- — 2.20
2 (EI + i, | ( )

where
*
EI : Effective section stiffness of M-0;
EIi ¢ Current section stiffness of M-¢:

EIe : Elastic section stiffness of M~¢ at current axial force.

The discrepancy involved with this assumption depends on the loading

history and the length of the inelastic zone. The smaller the inelastic
length, the more accurate will be the assumption.

A hyperbolic variation of flexural rigidity along the inelastic zone was

assumed by Arzoumanidis and Meyer (1981) for the inelastic zone under

reloading conditions.

4=——= Loading on the Inelastic Branches, Unloading Stage

The same procedure employed for the reloading stage does apply to an

unloading stage as well.
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An increase or decrease in axial force is reflected by an wupdating of
the section stiffness at the end of each loading increment. At the end of a
loading increment, a new level of axial force and moment is obtained. The
difference between the axial force at the beginning and that at the end of
the current loading increment causes either a softening or a hardening of
the element. The current section stiffness of the inelastic zomne is given
by the slope of the moment-curvature curve as calculated by Eq. 2.6, The
section stiffness of the central elastic region is also evaluated from Eq.
2.6 based on the loading history of both ends.

The assumption of constant effective section stiffness of each inelastic
zone proceeds from the following logic:

1---It is assumed that all sections of each inelastic zone exhibit a
single action, loading, unloading, or reloading, identical to and determined
from the action at the corresponding element end. In reality, during the
loading history the various sections in the inelastic zone may not be
subjected to the same action as shown in Fig. 2.15. To slighty modify this
assumption in the yielding stage, the equivalent inelastic length is defined

and calculated from the following expression:

. Max (2.21)
Z1 Zl + o (Z1 Zl)
where
Z_ : Length of the inelastic zone which is in the

strain-hardening;

gMax_ 7 Length of the inelastic =zone which 1is still in the

1 1
reloading range;
Max . . . . .
Z1 Maximum inelastic length at this end;
z* Equivalent inelastic length of the member which is
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assumed to be in the strain-hardening;
o : Constant value.

2---A single average effective section stiffness is assumed to represent
the section stiffmess of the entire inelastic zone. This assumption is
justified for elements such as columns and beams for which their 1inelastic
lengths are a relatively smafl portion of the total member length. With a
wall element; however, the éssumption of a single average effective section
stiffness 1s not realistic, because the inelastic length can be as much as
the depth of the wall (Derecho, et al., 1979). However, for a moderate
section stiffness of moment-curvature curve during yielding, when the
inelastic length is large (larger than 1/3 of the element length) the
element stiffness 1is considerably reduced, compared to an entirely elastic
case. Therefore, it 1s believed that the discrepancy caused by this

assumption 1is small, and that discrepancy is assumed to have no significant

contribution on the overall behavior of the element.

2.5.4.3 Element Flexibility Matrix

It can be seen that an element chord zone 1is divided into three

central element segment is assumed to remain elastic while

(¢

segments. Th
the two end segments can undergo plastic deformations. The lengths of the
plastic segments are determined from Egqs. 2,19 and 2.21 based on the moment
diagram and the level of the yield moment at a particular loading step. The
unknown section stiffness of each region is evaluated from Egs. 2.6 and 2.20
based on the loading history of that region. Further details of the
procedures for evaluating the section stiffnesses and inelastic lengths are
given in Appendix B,

With the model parameters (i.e. inelastic lengths  and section

stiffnesses) having been evaluated, the flexibility coefficients can be
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readily formulated from Eqs. 2.18 by replacing the number of subelements by

three:

3 3.3
fll=i; ilc(2+b2a~ks (2.22a)
Flean® 3%
3 % 3 3 2 2
K bo- b2-
£, D DR i e (2.22b)
k=1 GAkQ 32 EIk ZQEIk
2 M pen)3-qamn’
£ o=y Ky a- ' (2.22¢)
2 %2 2 orF
w=1 (GA 8 38° BT,

1

By combining the flexibility coefficients of each segment, the composite

flexibility coefficients are obtained.

' 1
£ =f 4 gg%——[ég-+ (nA—l)3(§L~~l) + ng(;—-—l{] (2.23a)
11 sh ettA A B
f T T [T RO G D Gy 6 D] (2.23)
12 sh 6EIe A B :
v 1 3.1 3,1
£ =f + _,.__[__... + (n,-1) " (— -1) + n,(— ~1)J : (2.23¢)
22 sh 3EIe Ty B Ty A r,
where
n n
1 A B
£ = [ F (en.-n) + ._] (2.23d)
sh GAZR [, AT T
BT BT
= __.]_', . r = _.% AY
T, =T Ty T FI (2.23e)
e e
Gl GA,
r = = r = —= (Also see Eq. 2.25) (2.23£)
A GA B GA
e e
2 Zy (2.23g)



29

r ., r : Ratio of the inelastic section stiffnesses at both ends
to elastic section stiffness;

n : Ratio of inelastic lengths at both ends to clear length
of the element;

EIe : Current elastic flexural rigidity;

GAe : Current elastic shear rigidity.

Evaluation of these expressions for the elastic case, where N =TH3=O.,

and r, = rB=1., leads to the following values of the stiffness coefficients:
f o= = X (2.24a)
11 22 3EI °
T (2.24b)
12 6ET )

which are the familiar elastic stiffness coefficients for a uniform beam.

In this study after yielding of the critical section, a minimum value
for 1inelastic length ratio is set at 2 %Z. Such a minimum limitation on the
inelastic length is an attempt to prevent any numerical problem in the
element stiffness matrix when the strain-hardening ratio is very small.

It should be mentioned here that for constant axial force, the proposed
model 1is' similar to the model which was initially developed by Soleimani
(1978) and later modified and used by some investigators (Arzoumanidis and
Meyer, 1981; Roufaiel and Meyer, 1981; Meyer, et al., 1983; Roufaiel and
Meyer, 1983). The main modifications initiated here in the proposed model
include the effect of changing axial force on the element stiffness as well

as on the yield moment.

2.6 Determination of Shear Rigidity

Calculation of shear rigidity of the section under changing axial force

can be dome in much the same manner as for flexure. If the shear
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force~shear distortion relationship of a  member is known, then
characteristics of the primary shear force-shear distortion curve for the
analytical model can be determined.

To establish the shear rigidity, it is important to specify the loading
history of the shear-shear distortion relationship. In determining the
total element flexibility, clearly the analytical procedure can be greatly
simplified if the assigned hysteretic characteristic of the shear-shear
distortion behavior is identical to that of the element moment-curvature
relation.

Because axial compression will increase-- or conversely, axial tension
will decrease-- the flexural as well as shear capacity of the element, and
also because the shear deformation is considered to be of a secondary effect
to the entire deformation while the flexural deformation is dominant, the
computational effort for the shear 1is more condensed. Therefore, the
inelastic value of shear rigidity is assumed to reduce in direct proportion
to the flexural rigidity. The equation stating this assumption can be

expressed in the form

% EI
o = % (2.25
GA GA, * o7 )
where
3 ES
EI°,GA : Inelastic flexural and shear rigidities;

EIe,GAe: Elastic flexural and shear rigidities.

For the multiple spring model as well as for the proposed model, the
inelastic shear rigidity 1is directly wused in calculating the element
flexibility matrix. For the one-component model and the  general
two—component model the effect of inelastic shear rigidity is not considered

and it is assumed to remain elastic.
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2.7 Flexibility Due to Bond Slippage at the Ends of a Member

Due to the significant contribution of the fixed-end rotation resulting
from reinforcement slippage at the joint to the total element deformation, a
nonlinear rotational spring, as an additional flexibility for an element, is
provided at each end to take into account the bond slip of the longitudinal
bars at the joint.

Bond stress is assumed to be constant over the development length of the
reinforcement. Based on the éssumption that the anchorage length of the
reinforcement is sufficiently long to provide the maximum tensile stress,

the development length is computed from the equilibruim of forces.

L = %’  (2.26a)
s TDu .
where
AS : Area of the tensile reinforcement;
fs : Stress in the tensile reinforcement;
D : Diameter of tensile reinforcement bar;
u : Average bond stress,

As the bond stress is constant dver the development length, the tensile
force from the reinforcement is transmitted into the comncrete in such a way
that the steel stress varies linearly from a maximum value at the face of
joint to =zero with one break point at yield stress as shown in Fig. 2.16.

Therefore, the elongation of the reinforcement is calculated as:

L f
AL = =5 £ o< f (2.26b)
s 2E s — ¥y
S
2
fy B B A (2.26¢)
= - > 2.2
ALS 2f E +a £ )(E + 2E ) Ls fs —'fy ¢

S s S S
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where
E : Young’'s modulus of the reinforcement;
s
Ey : Inelastic modulus of the reinforcement after yielding.

The elongation can be rewritten by subsituting Eqs. 2.26a for Ls in Egs.
2
. "D
2,26b&c and by replacing AS by B

1 D fi
= = % < 2.26d
ALs 8 Esu fs —-fy ( )
D f EZ‘ (fS - f')2
= - > ®
ALS Ia [~E§-(fs 5 ) +~—~—§E;—X—<] fs —_fy (2.26e)

If the compressive reinforcement does not slip and joint concrete is
rigid, the rotation, R, due to the slip can be evaluated by the expression:

AL

R = a:% (2.26f)

where
d : Depth of the tensile reinforcement;
d'" : Depth of the compressive reinforcement.
In order to have a moment-rotation relationship rather than the
stress-rotation omne, the relation between bending moment and stress is

assumed as:

p ;
s M (2.26g)
f M
y y
where
M : Bending moment at the end of a member;
M : Yielding moment at the end of a member;
y
f : Yielding stress of the reinforcement.
y

Then the rotation is related to the moment by the Eqs. 2.26h and 2.26k

(Otani, 1972; Takayanagi and Schnobrich, 1976).
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2
£
1 D y M. 2
“5%84" M < .2
RTE T Ew T ad G M <M (2.26h)
D f’2 .
__y|lir M 1, 1 M .21 1
R 4u [ES (My 3) 7% (My D =T M z M, (2.26k)

The end moment—end rotation due to bond slippage of tensile
reinforcement is idealized by fitting a bilinear curve on the calculated
moment-rotation, rotation due only to bond slip, relationship in the way
that the moment at the breakpoint be equal to yield moment determined in
sections 2.3, 2.4.

It should be noted here that in the multiple spring model as well as the
proposed model, the moment on the primary curve is used to calculate
flexibility due to bond slip. Then this flexibility is assumed to change in
direct ©proportion to the flexural rigidity to consider effect of changing

axial force.

2.8 Element Flexibility Matrix

The total element incremental end rotations for the clear span are given
by adding the fixed-end rotations (rotation due to the bond slip) to the
chord end rotations. Therefore, the total flexibility matrix of the element

chord zone may be expressed by:

ff 0
f1 1o 1
[F] = + (2.27)
f12 f22 0 ff2
where
fll’ f12’ f22 : Flexural flexibility coefficients of the element chord

zone as determined from Egqs. 2.8, 2.13, 2.18, or 2.23;
£ff , ff : Flexibility of nonlinear rotational springs due to bond

slip.
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The 2 by 2 element flexibility matrix then relates the end moments to
end rotations of simply supported member with only one rotational degree of

freedom at each end.

2.9 Summary

The member chord zone (clear span) flexibility matrix of a line element
with only one rotation degree of freedom at each end was derived based on
four analytical models. The rotation due to shear deformation as well as
fixed~end rotation are taken into account in the element flexibility matrix.
The moment-axial force interaction behavior is included in evaluating the
flexibility matrices of all analytical models except the general
two-component model. The inelastic material behavior of all four models 1is
described by a Takeda type Thysteresis model in the form of a
moment-curvature curve or an end moment-end rotation relationship.

The primary purpose of this chapter was mnot to de&elop a matrix
formulation of the flexibility matrix of an element based on these
analytical models, but rather to discuss the basic concepts and assumptions
of each individual element model. The effect of rigid end zomes, and
gravity in the element stiffness matrix will be considered in the next
chapter.

Before closing this chapter, it is worth mentioning that:

l-—-the multiple spring model (with sufficiently large number of
segments and also under cyclic or dynamic loading) does provide the greatest
flexibility and accuracy in calculating the flexural flexibility matrix
among the models which were discussed in this chapter. However, this model

is very expensive in terms of computing time and computer storage.
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2--=-the one- and the general two-component models have the advantage
over the two other models that many different nonlinearities such as
fixed-end rotation, strength decay, pinch action can be incorprated in these
models very easily and without additional computation and computer storage.

3-—-when the interaction diagram is considered, none of the models  are
reliable, if a considerable shifting of I.P. occurs during a loading or a

time step, (Fig. 2.17).
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CHAPTER 3

ANALYTICAL PROCEDURE

3.1 Introductory Remarks

This chapter describes a method of analysis for a R/C wall-frame and/or
coupled shear wall systems subjected to either static load reversals or
dynamic base motions. The method is developed to study the behavior of a
R/C structure in a post-yielding range in which the flexural behavior
dominates.

In order to obtain a solution, the structural system must be suitably

idealized as a mathematical model and numerical techniques must be applied.
Thus, the computed results are for an idealized model. The degree to which
the response of this model represents the response of the test or the actual
structure depends on both the way in which the structural system is

discretized and on the numerical procedures used in the computations.

3.2 Basic Assumptions

In order to simplify the solution procedure several basic assumptions
have to be made with regard to loading, mass, and stiffness of the model.
These assumptions are as follows and, unless otherwise noted, are applicable
for all the analyses described in this study.

l--=Every member in the structure is considered as a massless line
member which can be represented by its centroidal axis.

2--=The analysis is limited to 2-D structures. Out-of?plane action is
ignored. Each mnodal point has three degrees of freedom: a horizontal

translation, a vertical translation, and a rotation.
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3---The mass of the structure is assumed to be lumped at the floor
levels, and the effects of rotatory inertia are neglected in the structural
system.,

4~--The idealized structures are assumed to be fixed to infinitely rigid
foundations.

5--=The inelastic deformation of each constituent member is assumed to
follow the Takeda“s hysteresis model.

6--=Axial deformation of the beams is mneglected. Therefore; only one
horizontal DOF is considered at each story level.

7--=Joint cores at beam~to-column connections are assumed to be
infinitely rigid. .

8--=The possibility of a major geometric nonlinearity is ignored in this
analysis. The deformations are assumed to be sufficiently small so that the
calculation of inelastic response of the structure can be based on its
initial configuration., However, the geometric nonlinearity in the sense of
the "P-Delta effect" is considered in the analysis.

9~--—Base motion is assumed to occur in the plane of the structure in the
horizontal direction only. Any vertical component of the base motion is not
considered in this study.

| 10---The frame members are assumed to have infinite ductility; thus, the

ultimate strength and the deformation capacity of the members are calculated
based on this assumption.

11-—-Any nonlinearities due to concrete cracking and load cycling prior
to yielding are not considered. A constant secant elastic section stiffness
is used as the section stiffness before yielding.

Some of these assumptions are discussed in more detailed in the next

sections.
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3.3 Flement Stiffness Matrix

The element stiffness matrix, in terms of end moments-end rotations
including the rigid end =zones as shown in Fig. 3.1, is obtained by the

appropriate transformations of the element clear-span stiffness as expressed

in Eq. 3.1.
(k’1 = [E]T [F] 7 [E] (3.1)
where
K1 K12
k"] = (3.1a)
K12 K92
( I+h, Ag
[E] = (3.1b)
| 2, 141y
[ £
[F] = (3.1c)
| 19 Eopttt,
in which
[E] : Transformation matrix;
[F] : Flexibility matrix of an element chord zomne;

3 3 ¢ Ratio of the rigid length to the clear length at ends A
and B, respectively.

Because the change in length of the member due to flexural deformations
is ignored, the rotations at both ends of a member have no effect on the
axial force component. Thus to account for the axial displacement in the
member stiffness matrix, it is only necessary to include one additional term
representing the uncoupled axial force-displacement relationship.
Incorporating this additional term into the element stiffness matrix leads

to the following expanded form of Eq. 3.1.
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AM, AD,
1 1
AM b= [K. ] {p0. (3.2a)
3 R
An AS
Kll K12 0 »
K.] = |K K o2
[ 1] 12 29 0 (3.2b)
0 0 K

where
AMi, AMj : Incremental moments at ends i and j;
vAG,, AB : Incremental rotations at ends i and j;
An, A§ : Incremental axial force and axial deformation;
K33 : Constant axial rigidity, (EA/L).

In the development of the element stiffness matrix, Eq. 3.2b, no shear
forces mnor the corresponding vertical displacements at the ends of the
member have been considered. In order to include any such shear forces at

the member ends together with the corresponding lateral displacements in the

element stiffness, the transformation matrix, T, is introduced, Fig. 3.2a.

A IN:
i i
Avi AVi
Aei AMi
Aw, AMi T
A6 8= [TH TV { = [T]1 {AM, (3.3a,b)
J Au, AH, J
AS J J An
Av AV
J J
Aw, AM
\ JJ \ JJ
where
1 1
0 T 1 0 -1 0
- 1 1
[T] =]0 I 0 0 i 1 (3.3¢)
-1 0 0 1 0 0
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in which
[T] : Transformation matrix of the coordinate systems;

Aui, M, : Incremental horizontal displacements and forces at ends i

i

Au, s AH. and j;
J J

Av , AV, : Incremental vertical displacements and forces at ends i
i i .

Avj, ANj and j;

Aw s AMi : Incremental rotations and moments at ends 1 and j,
i

Aw ., AM respectively.,
] J

By combining Egs. 3.3, the element stiffness matrix is obtained and

symbolically expressed as:
T
[k] = [T] [k ] [T] (3.4)

For horizontal elements, the global coordinate system is also adopted as
the 1local coordinate system. Thus the stiffness matrix as given by Eq. 3.4
is directly applicable for beams. For the vertical elements, in order to
get the element stiffness into a global coordinate system, the local
coordinate system should be rotated. The resulting transformation matrix,

T, for vertical element is given by Eq. 3.5, Fig. 3.2b.

[ 1 ]
-7 0 1 T 0 0
=_1 1
[T] = -1 0 0 o 0 1 (3.5)
0 -1 0 0 1 0‘J

Finally, Eqs. 3.6 represent an expression of the nodal forces in terms
of the nodal displacements of a line element with three degrees of freedom
at each end of the member but oriented in the global coordinate system of

the structure.
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r ¢
AH.W Au.1
i i
AV:.L Avi
AMi Ami
4 ¢y = [K] 4 >
AH,
i fo,
AV, Av
J J
AM, Aw,
- JJ L JJ
where
I 0 0 -K 0 0]
33 33
Kl K2 0 -Kl K3
K 0 -K K (For Horizontal Members)
X] = 4 2.
K 0 0 3.6
a3 ‘ (3.6b)
Sym., Kl —K3
! %
[k 0 -k X 0 K|
1 2 1 3
K 0 -K 0
33 0 33
K K 0 K (For Vertical Members)
Kl 0 K3 (3.6¢)
Sym, K
e 33 O
K
A 6]
in which
Kl=(Kll+2K12+K22)/L
K,=(K K )L
K3=(K22+K12)/L (3.6d)
KKy K5=Kqo
K =K__; K. =EA/L

6 22 33
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3.4 Structural Tangent Stiffness Matrix

Since the beam and column or wall element stiffness properties presented
in the previous section are formulated in terms of the nodal degrees of
freedom shown in Fig. 3.2, the tangent stiffness of an entire structure can
be easily formulated by the summing of all the element stiffness matrices at
the appropriate locations. The total structure equilibrium equations can

thus be expressed as:

AH S;1 | Si9]( AU
AP =] o AV ‘ (3.7)
S12. 1 S
m) | A8
where
S11 : Symmetric submatrix of size, N by N;
S12 : Submatrix of size, N by 2J;
522 : Symmetric banded submatrix of size, 2J by 2J;
N : Number of stories;

j : Number of joints (excluding supports);
AH, AU : Incremental story lateral force and displacement vectors,
respectively;
AP, AV : Incremental joint vertical force and displacement vector;
M, A@ : Incremental joint moment and rotation vectors.

In the static loading, all external vertical forces as well as moments
at the joints in the structure are assumed to be zero. Only lateral loads
are considered for that analysis. For the dynamic loading, it 1is also
assumed that the inertia loads corresponding to the vertical displacements

and rotations are negligible and only the lateral modes of vibration are
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considered. Thus static condensation can be used for both the static and
the dynamic loading cases. The structural stiffness matrix of Eq. 3.7 is
condensed to relate the lateral forces directly to just horizontal

displacements.
{or} = 1K1 v} (3.8a)

where

-1 T
] [322} [le] (3.8b)

[K] = [sll] - [s12

The result of the static condensation is that only one degree of freedom

per story is retained explicitly, that being the lateral displacement of the

the effect of all other displacements is

particular story level. However,

retained implicitly. Values of these other displacements can be obtained

from a back substitution process,

w
1" {au} (3.9)

3.5 Column Geometric Stiffness Matrix

The overturning effect of gravity loads acting through the sidesway
displacement 1is commonly called the '"P-Delta" effect. In general, for
relatively small{displacements, the influence of gravity on the respomnse can
be disregarded. However, if an excursion into the plastic range occurs
during the response, and if the inelastic drift continues to grow, it 1is
obvious that gravity will eventually become the dominant force and make the
structure unstable. In this study, the effect of P~Delta on the respomse of

structures 1s considered.
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Because the 'geometric stiffness" 1is believed to be of secondary
significance in comparison with the flexural stiffness of the structural
members, a linear displacement between the column ends 1is assumed. The
P-Delta forces are balanced by a pair of lateral forces at the column ends

as shown in Fig. 3.3 (Clough and Penzien, 1975).

]
. N
j(top) _ "i-1
v = 3 - (3.10a)
i-1 o (g T Y
i-1
yIot) _ _yi(top) (3.10b)
i-1 i-1
where
Ni—l : Axial force in column j;
h. 1 : Height of columns between DOFs i-1 & ij;
l—
ug_gs Uy Lateral displacements at DOFs i-1 & 1i;
vq(EOP), Vj(IOP): A pair of lateral forces at column j caused by
i- i-

P-Delta effect.

For comnstant axial force, the column geometric stiffness matrix is given

by:
od (top) - 1
AVi_l ; +1 -1 Aui—l
N
- 11“1 (3.11)
i1
avd (bot) -1 +1 M.
i-1 L B i

Because at each story only one lateral degree of freedom 1is permitted,
the individual column geometric stiffnesses may be combined into the story

geometric stiffness as expressed by:

top

. +1 -1 Au,

i-1 E:Ni—l i-1
h

gAVbOt i-1

AV
(3.12)

i1 -1 +1 Au:,L
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where
~Au L1 Aui Top agd bottom story incremental lateral
displacements, respectively;
Avtfg, AV bo; Top and bottom story incremental lateral forces due
to gravity effect;
E:Ni-l Story axial force.
It may be noted that in the absence of any gravity load within the
element, the beam shears introduce tension in one column and an equal

compression in the other. These equal tension

columns
change occurs in the story shears.
P-Delta effect on the
horizontal ground motions, it is only necessary

loads present in the columns. In other words,

matrix is constant regardless of the changing axial forces of

This 1is Dbecause the

study, affect only the lateral degrees of freedom, and by

and compression forces in the

produce equal and opposite sidesway shears, with the result that no
Thus, for the purpose of considering the

structural stiffness matrix of frames subjected to

to consider the static dead
the geometric story stiffness

the columns.

column geometric stiffness terms, considered in this

equilibrium, the

sum of the column axial loads acting in a particular story must remain
constant. However, the geometric stiffness of each individual column 1is
dependent on the axial force present in that particular column. The change
of shear force in an individual column due to the gravity effect can be
evaluated as follows:
J J
Ny .- AN~
j(top) _ _i-1 - + L -u (3.13)
byly =g, (e g mdug) ey )
i-1 i-1
Hetz g
ef!
Umvemm o eﬁ?? Roong
BlGs e linoty
Q\J.j . Z?w’!
«J{‘bc‘_ﬁa lll “1ne wil’e@f

tnols  g1ggy
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where

ANi—l : Change of axial force in column j.
In the present study, the member axial forces are considered to remain
constant throughout the response, leading to the inclusion of a constant
geometric stiffness matrix to approximate the P-Delta effect.

The structure geometric stiffness can be determined by combing Eq. 3.12

of all stories. Symbolically, this may be expressed by:

{pe} = [K,1 {aU} (3.14)
where
AQ : Change of shear forces due to P-Delta effect;
KG ¢ Structural geometric stiffness;
AU : Incremental lateral displacements.

It may be mentioned that the structural geometric stiffness 1is a
symmetric banded matrix with contributions from only the two adjacent
stories so the band width is equal to three. Because the consequence of
gravity effect 1is to make the structure softer by reducing its lateral
stiffness, thus, the modified condensed structural stiffness wmatrix which
relates lateral displacements to lateral forces can be obtained from Eq.
3.15,

ala o]

k1™ = &1" - k] (3.15)

3.6 Mass Matrix

Mass in the structure is assumed to be concentrated at the various
floors or framing levels, Mass moment of inertia terms are neglected. This

lumped mass idealization can be written as follows:
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le '1

[M] = (3.16)
o -
m

b n J

M is the diagonal mass matrix, and the elements of the matrix represent
story masses, The diagonal form of the mass matrix is very efficient
because the equations of motion are then wuncoupled in the terms of

accelerations,

3.7 Damping Matrix

The damping matrix is assumed to be represented as a linear combination

of the mass matrix and the stiffness matrix. This relationship has the form
[c] = c_[M] + C_[K] (3.17)
] l[ ] 9

where Cl and 02 are scalar multipliers. Furthermore, the damping ratio, £
as a percent of critical, can be expressed (Clough and Penzien, 1975) in

terms of the scalar multipliers and the modal frequencies,wn , as

C C,w
_ 1 2 n

From this equation the multipliers Cl and C2 can be determined by specifying
a predetermined amount of damping in any two modes of vibration. Once Cl
and C2 are evaluated, the damping in any other mode is defined by Eq. 3.18.
It is apparent from Eq. 3.18 that the stiffness proportional damping tends
to increase the effect of damping in the higher modes, while the mass
proportional damping term has the opposite effect.

Because of the uncertainty in the nature of damping in the inelastic

range, it 1s mnot clear whether the stiffness proportional term, with its



48

constant scalar multipliers, should be based on the tangent or the 1initial
elastic stiffness matrix. In studies (Giberson, 1967; Otani, 1972,
Soleimani, 1978; Saiidi and Sozen, 1979) the stiffness proportional term of
the damping matrix was based on the tangent stiffness. A constant damping
matrix based on the initial stiffness has also been used by a few
investigators (Emori and Schnobrich, 1978; Takayanagi and Schnobrich).
However, if damping is based on the tangent stiffness, there may be a
substantial decrease in the effective damping when many members have
yielded. This is in contradiction to the hysteretic energy dissipation
associated with yielding.

Two types of damping are used in this study. In the first type, a
constant damping matrix represented as a linear combination of the mass and
the initial elastic stiffness is assumed, Eq. 3.17. The constant scalar
multipliers Cl and C2 are determined from specified damping ratios for the
first two elastic frequencies of the structure. Type II mneglects the
effects of the mass matrix and evaluates a damping matrix from the current
stiffness matrix based on a variable scalar multiplier, C2. The scalar
multiplier, CZ’ is calculated from Eqs. 3.19 which are based on the

assumption that the first mode shape of the structure does not change

throughout the analysis.

[c] = c2 K] (3.19a)
where
T 1/2
2¢ oK ¢
c, = 1 = (3.19b)
u)e oK ¢
in which

K : Current condensed structuralystiffness matrix;
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& Damping ratio of the first mode shape;
W : Initial first frequency of the structure;
First mode shape;

K : Elastic initial condensed structural stiffness matrix.

3.8 Equations of Motion

The equations of motion of a structure are expressed by the equilibrium
conditions  existing between the inertia forces, damping forces, and
resisting forces at each story. The incremental form of these equations can

be written in the matrix form as:

M AJ +C AU + K AU = -M Axg (3.20)

where M, C, K are, respectively, the structure mass, damping, and stiffness
matrices; AU | AU , AU are the incremental nodal horizontal displacement,
velocity, and acceleration veétors relative to ground; and Axg is the
incremental ground acéeleration. Equation 3.20 indicates that the effect of
earthquake ground shaking is equivalent to the effect of an iﬁertia loading
-MAXg applied to a structure fixed at the base.

This system of equations of motion is nonlinear, because the stiffness

matrix is dependent on the magnitude of the respomnse.

3.9 Numerical Solution Scheme of Equations of Motion

There are several implicit and explicit numerical integration techniques
capable of solving the equations of motion. Among them, Newmark”s Beta
method is the most efficient and widely used scheme for both linear and
nonlinear dynamic response analysis of structures. Although this scheme,

when based on average accelerations, (Beta=1/4), is unconditionally stable
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for linear systems (Newmark, 1959), it becomes unstable, when large time
steps are used for the analysis of nonlinear problems (Adeli, et al., 1978).

In the present study, the equations of motion are solved by wusing a
step-by-step application of Newmark’s Beta method. In this method, the
incremental velocities and displacements over a short time step are

calculated from the following equatioms.

AT = U At + 1 AU At (3.21a)
n 2
° 1. 2 . 2
AU = U At + 3 Un (A)T + B8 AT (At) (3.21b)
AU, AU, AU : Change of horizontal displacement, velocity, and

acceleration vectors relative to ground between time step
"nll and‘ "n+lll;

U, § : Velocity and acceleration vectors relative to ground at
the end of step "n".

Eq. 3.21b can be solved ‘to calculate the corresponding incremental

acceleration:

A = —L [AU -0 ot - L v (At)z] (3.21¢)

B(At)? 2

Substitution of this result into Eq. 3.21a yields:

5 = 1 _ 7 N 2
M = s [AU § At + (28 - 3) T (4e) ] (3.214)

By substituting Egs. 3.2lc and 3.21d into the equations of motion, the

incremental displacement vector can be expressed as:

{AU}= [A]—l{B}‘ | (3.22)
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in which
M C A
A= + + K (3.22a)
2 T 2BAt
g(ar)? BB
and .
Un 1 .. s C o 1. . A
B=M (~B—A-t— + 28 u - Axg) + 28 (Un - (2B - E) UnAt) (3.22b)

From Eqs. 3.22, the incremental displacement vector can be obtained. Then
the corresponding incremental velocity and acceleration vectors are given by

Eq. 3.21d and Eq. 3.21c.

3.10 Residual Forces and Overshoot

The response calculated using this solution method will not satisfy the
equilibrium requirement exactly, if the coefficients of the matrices
involved in Eq. 3,20 are mnot constant during a step. In general,
nonlinearities such as changes in yield state, column axial force-bending
moment interaction, P-Delta effect, etc., may occur at any time during a
step. Thus the computed incremental displacements and the element internal
forces may not be correct. In this study, all nonlinearities that occur
within the time or loading step are disregarded; hence, the equilibrium
residual forces are not considered. This simplification can be justified in
view of: l---the relatively short time step or loading step used in the
analysis which can minimize the magnitude of these residual forces but can
not éliminate them; 2~--the reduction in computation effort and computer
storage requirements; and, 3---the imprecise nature of the damping forces
present during the dynamic response.

The overshooting problem that occurs as a consequence of changes in
yield state 1is one source of the error which results in a violation of the

equilibrium conditions at the joints. The overshooting problem in the
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force—~deformation curve arises whenever the force passes one of the break
points, Fig. 3.4. This 1is mainly because the fofce—deformation curve
consists of linear segments and the fact that the status of the element is
checked only at the end of the loading stage or time interval.

In the present study, the incremental nodal displacements computed
during a step are assumed to be correct. The resisting forces corresponding
to these displacements must however be corrected, if necessary, to satisfy
the current force-deformation relationships at each step. Due to this
correction, the equilibrium condition is then in turn violated, but no
effort is made to adjust this imbalance or to satisfy thek current
equilibrium condition. These imbalance forces, which are not added to the
external load vector for the next step in order to redistribute them to the
rest of the structure, are accumulated. Furthermore, these residual forces
and deformations do cause slightly different force~deformation
characteristics in some members and may somewhat affect the overall
étructural response. Therefore; these forces must be limited by restricting
the time step duration or loading step to ensure the accuracy of the
computed incremental nodal displacements and forces.

It should be mentioned that when the interaction diagram is considered,
considering residual forces as an external load vector applied during the
next step might cause some problems in evaluating the current section

stiffness from Eq. 2.6.

3.11 Time Interval

The length of the time step used in the analysis must be sufficiently
short so that an accumulation of the errors that have been discussed in the

previous section do not override the computed response. The accuracy of the
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solution normally would improve as the duration of the time step is reduced.
However, computational cost increase correspondingly.

Requirements on the maximum useable time step length depend not only on
the dynamic characteristics of the structural system but also on the
frequently content of the ground motion. There are at least three
criterions which the time interval must satisfy. These three reasons for
keeping the time step interval fairly small in this study are as follows:

1--=The structure is assumed to remain linearly elastic within each time
step interval and the yield conditions of the members are not checked during
that time step. This process obviously introduces some errors but it 1is
believed that by providing the step interval sufficiently small these errors
would not be significant.

2-—=The ground motion is wusually considered as a piecewise linear
function for which the coordinates of the peaks and the relative peaks are
given in digital form. Thus the ground acceleration of each time step can
be obtained by 1linear interpolation of the two coordinate points. Hence
clearly the time increment must be small compared to the time between
coordinate points in order to give adequate representation of the given
ground acceleration function.

3---The stability of the numerical integration scheme (Beta=1/6)
requires a time step on the order of roughly 1/10 of the smallest period of

the structure that has a significant effect on the internal forces.

3.12 Static and Dynamic Analysis

The nonlinear structural response is approximated by the incremental
response of a series of linear structures with varying stiffnesses. Within

each loading or time step, the structure is assumed to behave in a linear
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elastic manner, but the assumed elastic properties of the structure are
changed every loading step or every several time increﬁents as dictated by
the response. Thus the nonlinear response is obtained as sequence of linear
responses of different systems.

The static analysis procedure follows an incremental displacement
formulation that assumes linear behavior during a given increment of load.
The static load applied to the structure can be either a monotonically
increasing load or a cyclic load. However, as mentioned earlier, only
lateral loads at the horizontal DOFs are considered as the external loads on
the structural system in this analysis. In order to facilitate the tracking
of member inelastic formatiomns, the magnitude of lateral 1loads at each
horizontal DOF are given together with the number of times that these
lateral loads will be reduced to evaluate the load increments. This results
in an incremental lateral load with the same distribution over the height as
its total components. The analysis is performed then as many times as
prescribed, taking in each case not only the values of the incremental loads
but alsc superimposing the displacements and the forces of each step on the
ones accumulated at the end of the preceding loading step.

For each time 1interval of the dynamic loading, the displacement,
velocity, and acceleration increments for each story are computed by
integrating the differential equations of motion over the finite time step
interval. By superimposing these incremental values on the ones accumulated
up to the preceding time step, the total displacements velocities, and
accelerations are calculated. These totaled values are then used to
calculate the incremental displacement, velocity, and acceleration of each

horizotal DOF for the next time step.
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Every loading increment or every several time steps, the member forces
are computed using the story displacements, and the appropriate element
stiffness coefficients. These forces are checked against the capacities of
the members and, if yielding has occurred, the stiffneés of the member is
modified according to the ﬁonlinear material properties selected for .the
elements. Once all elemepts have been checked, a new tangent stiffness
matrix is assembled which contains information on the state of yield of the
entire structure at the exact time step. Thus in every several time steps
the constant instantaneous structural stiffness and damping (damping matrix
type IIL) are replaced by'én updated one calculated froﬁ the updated member
stiffnesses. This process is then repeated for the entire loading or time

integration,

3.13 Summary

A special purpose computer program for static and dynamic analyses of
plane rectangular wall-frame and/or coupled shear wall systems has been
developed in this chapter.

Structures are idealized as ;n assemblage of beams, colummns, and rigid
joints, all positioned in the same plane. The structural stiffness matrix
is formulated by the direct stiffness method, with the nodal displacements
as unknowns. The basic source of nonlinearity is considered in the behavior
of the elements which are assumed to follow a bilinear force-deformation
relationship. The program accounts f;r inelastic effects by using omne of
four different element models. The structural elements can be specified to
be any of these four models, namely, one-component model, two-compomnent
model, multiple spring model, and the proposed model. The influence of

geometric nonlinearities (often known as "P-Delta" effect), member thickness
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(rigid zone at the end of the member), flexibility due to bond slip, and
moment-axial force interaction effects are incorporated in the structural
stiffness.

The mass of the structure is assumed to be concentrated at story levels.
Two types of damping are available in the program. In thg first type, a
constant damping matrix as a linear combination of the mass and the elastic
initial structural stiffness matrix is assumed. A wvariable current
stiffness proportional damping matrix based on the constant first mode shape
of fhe structure is considered in the second type.

The program performs an inelastic nonlinear analysis of structures by
updating the structural stiffness matrix every loading step or every several
time steps. The static analysis procedure follows an  incremental
displacement formulation that assumes linear behavior during a given
increment of load. The static load applied to the structure can be either
monotonically increasing lateral loads at the horizontal DOFs or cyclic
loads, The dynamic inelastic response 1is evaluated by numerically
integrating the equations of motion using the Newmark”s Beta method based on
the assumption of a defined response acceleration during each time step.

No iterations are carried out on the element states during or subsequent
to a load increment or a time step, resulting in an equilibrium imbalance of
forces due to the nonlinearities of the structure that develop during the
time step.

Two types of hysteresis models which are available in the program will
be discussed in the mnext chapter. The first type of hysteresis is the
Takeda hysteresis model with a bilinear primary curve, The Takeda
hysteresis rules are modified in the Type Two model to include a pinch

effect and a strength decay.
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It should be mentioned again that four different finite element models
are incorporated in the computer program. They are different only in the
way that nonlinearity is taken into account. Therefore, it is possible that
more than one analytical model of a test structure is produced and analyzed
by the computer program. In each case, it is just that particular model. is
being analyzed. The degrge to which the response of the analytical model
corresponds to the response of the test structure relys not only on the way
that nonlinearity is taken into account but also on the numerical techniques
employed for solving nonlinear equations of motion as well as on the

approximations of material properties,
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CHAPTER 4

HYSTERESIS MODELS

4,1 Introductorv Remarks

The hysteresis models and definition of ductility used in this study are
discussed in this chapter. Two types of hysteresis rules, which are
available in the program, are explained in the first part of this chapter
which is then followed by the definition of ductility. The first hysteresis
model, which is referred to as the Hysteresis-l is the Takeda type
hysteresis model with a bilinear primary curve (Takeda, et al., 1970). 1In
Hysteresis—2, the Takeda hysteresis model is modified l---to include a
pinching effect between unloading and reloading in order to represent bond
deterioration and bar slippage; 2-—-to 1include a strength decay due to

changes in the shear resisting machanism.

4,2 Hysteresis-1

To have a successful analytical solution to a nonlinear problem, a
realistic hysteresis model is essential. Simplifications to the hysteresis
model can be made depending on the load range of primary interest in the
analysis. Because the study emphasis is on the post~yielding behavior, a
simplified Takeda type hysteresis model with a bilinear curve, as
illustrated in Fig. 4.1, is adopted for the force-deformation relationship
of all analytical models. The basic relationship 1is in the form of a
bilinear curve with an 1initial elastic stiffness and a subsequent
strain-hardening stiffness. Also shown in Fig. 4.1 are branches for large

and small deformations. Hysteresis—l consists of eleven possible branches.
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The first branch represents the linearly elastic relationship of the
force-deformation curve. Branches with even numbers represent loading,
while the remaining five branches, odd numbers, are unloading conditions.
The wunloading stiffness depends on the previous maximum deformation. It is

controlled by an input parameter O as expressed in Eq. 4.1.

D .
k =k (I)% 0<ac<0.5 (4.1)
u o D — —
Max
where
k : Elastic stiffness of force-deformation;
o
D : Maximum deformation;
Max
Dy : Yield deformation;
o : Unloading power.

For the one-component and the general two-component models, the
force—deformation curve relates end moment to end rotation for a unit length
cantilever beam. For the proposed model, the force-deformation curve
represents the moment-curvature relationship at the critical section, while
it relates the moment-curvature curve at the center of each segment in a

multiple spring model.

4,3 Hysteresis=2

w1

the simplified Takeda  type

[e]

Two modifications have been made t
hysteresis model, Hysteresis=l, in order to include the pinching effect and
a strength decay which are usually observed in typical reinforced concrete
elements when those elements are loaded deeply into their inelastic zones.
The first modification is the pinch action that results from bond
deterioration and bar slippage between unloading and reloading (Lybas and

Sozen, 1977; Paulay and Santhakumar, 1976). The other modification 1is the
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loss of strength due to change in the shear resisting mechanism (Abrams,
1976; Saatcioglu, et al., 1980). These two modifications are introduced in
the Hysteresis—1 after the force has exceeded the force at the yield point.,

The Hysteresis-2 model incorporates the pinch action by adding
additional flexibility to the hysteresis model whenever the force and
deformation do not have the same sign. In other  words, the
force-deformation relationship during reloading is presented by two straight
lines, Fig. 4.2. The slopes of these two lines are determined from Egs.

4,2, and 4.3, respectively.

kK = G+ 4.2

1 1.,-1
k ., =2GF+— (4.3)
r2 k2 kl
where
k : Slope of the line connecting the point at zero force

level to the maximum deformation point that is of the
same sign as the current force, line AB;

k : Slope of the line connecting point at zero deformation,
i.e. assumed cracked closing point, to the maximum

deformation point at corresponding end, line CB;

krl : First slope of the reloading range;
kr2 : Second slope or stiffening slope of the reloading range;
l/kp : Additional flexibility.

The first slope, k represents the range when the crack in the

rl’
compression zone stays open, mainly due to residual plastic strain in steel,

and the compression force is then resisted solely by the reinforcement.

After the closing of such cracks, assumed at point C, the compression caused
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by force (moment) is resisted by both the compression steel and the
concrete. This causes a significant increase in the reloading slope, kr2'
The value kp can be evaluated based on the reinforcement resistance.

In order to include the loss of strength due to changes in the shear
resisting mechanism, a guide-line is introduced in Hysteresis-2, Fig. 4.3.
After the deformation has expeeded an assuﬁed value of ductility, Uo s the
strength of the section is reduced on subsequent cycles aécording to the
guide~line., For simplicity, the rate of the strength decay is assumed to

depend only on the maximum deformation in the corresponding direction as

expressed in Eqs. 4.4,

= — - > °
1= Gy = (W= m)) ko > Gy (4.4a)
D
L= Max (4.4Db)
D
y
= _F % | b4
AF, = Fy o Fy * € (4.4c)
where
Fﬁax’qnax : Maximum force and deformation which model has experienced
at this end and at the same sign as current force;
Fy’ Dy : Yield force and deformation;
U : Ductility wvalue which indicates starting point of
(o]
strength decay;
C1 : Reduction coefficient;
C ,qn, ¢ Maximum and minimum values of coefficient C, ;
Max in
kg : Slope of strength decay guide~line, absolute value;
AFD : Total amount of loss in strength due to strength decay

and pinch action.
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4.4 Definition of Ductility

As a measure of the relative amount of inelastic deformation of a
member, the concept of ductility ratio 1is widely used. There are many
definitions of ductility which are suitable for a limited type of hysteresis
model, (Giberson, 1967; Shibata and Sozen, 1974; Aziz and Roesset, 1976;
Saatcioglu, et al., 1980). The most widely used definition of the ductility
is based on the ratio of maximum rotation to yield rotation. In order to
estimate yield rotation, an anti-symmetrical deformed shape is normally
assumed.

When considering a typical structure subjected to horizontal components
of earthquake, the anti~symmetric distribution of bending moment is seldom
developed in any columns and in general in beams., It is apparent that the
yield rotation of a typical member is a function of its yield moment,
stiffness properties, deformed shape or the position of inflection point,
etc, The yield rotation has a minimum value based on an anti-symmetric
deformed shape.

Rotation ductility computed in this study is defined as the ratio of
maximum rotation to yield rotation. Maximum rotation is calculated from the
hysteresis model., Anti-symmetric deformed shape is used to calculate yield
rotation, Although this definition may be questionable in a general case,
it will be used in this study only for the beams to compare the results from
using different parameters or element models, but without claiming a true
representation of a real situation. It must be regarded as no more than it
is: an estimation of ductility based on rotation or as a normalized maximum

rotation.
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CHAPTER 5

COMPUTED RESULTS

5.1 Introductory Remarks

The objectives of this chapter are l---to evaluate the goodness of the
model proposed in chapter. 2 when it is used for predicting the nonlinear
behavior of R/C column members. This has been accomplished by analyzing one
column member and two coupled shear wall systems for which experimental
results areyavailable; 2---to compare the results from different element
models such as the one-component model, the general two-component model, the
multiple spring model, and the proposed model with each other and against
test results recorded during experiments‘to emphasize any shortcomings that
maybe present in any of these models. Objective 2 has been achieved by
analyzing one cantilever element and one small-scale 10-Story wall-frame

system,

5.2 Experiment by Gilbertsen & Moehle (1980)

The purpose of these tests was to investigate experimentally the
inelastic response of small-scale R/C column specimens. One of the
variables in these tests was the rate of change in axial load with changes
in the lateral load. A total of 8 specimens were tested in that study.
Four columns were tested with constant axial force. For the remaining four
columns, axial load varied in direct proportion with column shear. Only two
specimens (4B, and 4C) are considered here. These two cantilever columns
had a length of 254 wmm, a cross-sectional area of 38x51 mm, and a

reinforcing ratio of 1.75 %, Fig. 5.1.
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The following table summarizes the relationship between specimens and

test variables.

Specimen Initial Axial Change in Axial Load /
Load, kN Change in Lateral load
4B 5.36 0.0
4C 3.25 4.0

In order to analyze the response of these two simple R/C cantilever
columns, a small computer program has been written. Three of the element
models described in chapter 2 are incorporated in this program. the program
can analyze the response of a R/C cantilever column for a prescribed
displacement history at the end. Hysteresis-l is wused in this program.
This hysteresis is a simplified Takeda hysteresis model which does not
consider either strength decay and pinch action.

The values for the various model parameters used in the analysis are
given in Table 5.1, The loading history of two specimens was a prescribed
displacement history as shown in Fig. 5.2. This history consisted of 11
cycles. Gilbertsen and Moehle (1980) describe the test setup and test
procedures in more detail.

Experimental tip load-deflection curves and base moment-tip deflection
curves of these two specimens appear in Figs. 5.3, and 5.4. Also shown in
these figures are the computed results obtained by using the extended
one-component model, the multiple spring model, and the proposed model.
Base moment included the effect of axial forces acting through lateral
displacements (P-Delta effect). Decrease in the post-yield slope of the tip
load~deflection curves in the compression zone, which can be seen in Fig.

5.3, is due to the P-Delta effects. The computed axial force in specimen 4C
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changed from approximately -1.2 kN temsion to +10. kN compression. The
bounds of measured axial force in this specimen ranged from -0.5 kN to +10.
kN.

It is seen that the agreement between the various analytical models and
experimental curves is quite good. In the proposed model, the discrepancies
due to the average approximation in the evaluation of the section stiffness
in the reloading range canvbe seen in these figures. The model is stiffer
in one direction and more flexible in the other direction as compared to the
multiple spring model in the reloading range. This is mainly due to the
fact that a single average effective section stiffness was assumed to
represent the section stiffness of the entire inelastic zone in the
reloading range.

Comparison of the results from the multiple spring model and the
one-component model shows a good agreement in this cantilever beam in which
the I.P. is fixed and the inelastic length is less than 20 % of the length
of the element. This indicates that the assumption of the concentrated
equivalent nonlinear rotational spring at the end of the cantilever beam in
order to account for inelastic deformations which leads to a constant

post—yield stiffness coefficient is adequate.

5.3 Experiment by Lybas & Sozen (1977)

These sets of tests were designed to study the effect of the strength
and stiffness of the coupling beams on the behavior of a R/C coupled shear
wall structure. A total of six small-scale structures were built and tested
for this purpose. The principal variable in the series was the strength and
stiffness of the connecting beams. Each test structure consisted of two

frames and each frame contained two walls connected by coupling beams at six
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levels, Fig. 5.5. Five structures were subjected to the scaled North-South
component of the base motion measured at El Centro, (specimens 1 to 5).
Only one structure, Sl, was subjected to statically applied lateral loads.
Specimen 81 which was tested under cyclic static loading and specimen D2
which had almost the same material properties as specimen Sl  are
investigated in this study. In further discussion they arevreferred to as
Structure-1,

This experimental work is selected to test the proposed model because
the strength and stiffness of the coupling beams reflect the maximum axial
force as well as the fluctuation of axial force in the walls. Structure D2
from these series is chosen because the flexural stiffness of the coupling
beams is neither too small to obtain insufficient coupling action between
the two walls mnor too large to induce large changes in the wall axial
forces.

Fach wall had a 1 by 7 in. cross section and a height of 54 in. The
reinforcing steel was uniformly distributed over the cross section for a
steel ratio of one percent. The coupling beam had a cross section of 1 by
1.5 in. and a steel ratio of approximately 1.5 percent, Fig. 5.5. Weights
of 2000 1b were placed at the levels of the second, fourth, and sixth story.
This provided a total of 6000 1b of weight on a test structure or 3000 1b on
each single frame.

Material properties assumed for the model are listed in Table 5.2. The
stiffness properties of the coupling beams and walls are calculated by the-
procedure described in chapter 2. These calculated stiffness properties are
listed in Table 5.3.

It should be mentioned that because the reinforcing steel in the wall is

uniformly distributed throughout the depth of the section, yielding will
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changed from approximately -1.2 kN tension to +10. kN compression. The
bounds ©of measured axial force in this specimen ranged from -0.5 kN to +10.
kN. |

It is seen that the agreement between the various analytical models and
experimental curves is quite good. In the proposed model, the discrepancies
due to the average approximation in the evaluation of the section stiffness
in the reloading range canibe seen in these figures. The model is stiffer
in one direction and more flexible in the other direction as compared to the
multiple spring model in the reloading range. This is mainly due to the
fact that a single average effective section stiffness was assumed to
represent the section stiffness of the entire inelastic zone in the
reloading range.

Comparison of the results from the multiple spring model and the
one~component model shows a good agreement in this cantilever beam in which
the I.P. is fixed and the inelastic length is less than 20 7 of the length
of the element. This indicates that the assumption of the concentrated
equivalent nonlinear rotational spring at the end of the cantilever beam in
order to account for inelastic deformations which leads to a constant

post—~yield stiffness coefficient is adequate.

5.3 Experiment by Lybas & Sozen (1977)

These sets of tests were designed to study the effect of the strength
and stiffness of the coupling beams on the behavior of a R/C coupled shear
wall structure. A total of six small-scale structures were built and tested
for this purpose. The principal variable in the series was the strength and
stiffness of the connecting beams. Each test structure consisted of two

frames and each frame contained two walls connected by coupling beams at six
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levels, Fig. 5.5. Five structﬁres were subjected to the scaled North-South
component of the base motion measured at El Centro, (specimens 1 to 5).
Only one structure, Sl, was subjected to statically applied lateral loads,
Specimen S1 which was tested under cyclic static loading and specimen D2
which had almost the same material properties as specimen Sl  are
investigated in this study. In further discussion they are referred to as
Structure-1.

This experimental work is selected to test the proposed model because
the strength and stiffness of the coupling beams reflect the maximum axial
force as well as the fluctuation of axial force in the walls, Structure D2
from these series is chosen because the flexural stiffness of the coupling
beams is neither too small to obtain insufficient coupling action between
the two walls nor too large to induce large changes in the wall axial
forces.,

Fach wall had a 1 by 7 in. cross section and a height of 54 in. The
reinforcing steel was uniformly distributed over the cross section for a
steel ratio of one percent. The coupling beam had a cross section of 1 by
1.5 in., and a steel ratio of approximately 1.5 percent, Fig. 5.5. Weights
of 2000 1b were placed at the levels of the second, fourth, and sixth story.
This provided a total of 6000 1b of weight on a test structure or 3000 1b on
each single frame. 7

Material properties assumed for the model are listed in Table 5.2. The
stiffness properties of the coupling beams and walls are calculated by the
procedure describe& in chapter 2. These calculated stiffness properties are
listed in Table 5.3.

It should be mentioned that because the reinforcing steel in the wall is

uniformly distributed throughout the depth of the section, yielding will
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occur in a gradual sequence starting at the outer layer of the tension
reinforcement and proceed layer by layer to the layer closest to the neutral
axis of the section. Consequenfly the slope of the moment-curvature curve
gradually decreases with increasing moment after yielding of the outer
layer, therefore, there is no well-defined yield point. The moment at the
break point of the idealized moment—curvature curve is defined as the yield

moment in the wall, Fig. 2.3.

5.3.1 Static Analysis of Structure-l

As mentioned earlier, structure Sl was tested under statically applied
lateral loads., The 1loads were applied to the test structure by three
hydraulic rams, one at the level of each test weight. The hydraulic rams
were programmed to maintain a predetermined ratio among the three lateral
loads. The load ratio used corresponds to the calculated first mode shape
of the test structure, Fig. 5.6. The test was conducted by applying certain
predetermined increments of top level deflection. The low and middle rams
simultaneously forced loads in the appropriate ratio to the load in the top
ram. The schedule of top level deflections is shown in Fig. 5.6. Lybas and
Sozen (1977) describe the test setup and test procedures in more detail.

The results of this static analyéis are used not only to obtain some
information about individual elements which can not be determined from only
stress—strain relationships of steel and concrete under monotonically
increasing loads, but also to justify the "Reduced" model which will be
discussed in the next section. This 6-Story coupled shear wall structure
was also investigated by Lybas (1977) under five different hysteresis models

applied to the coupling beams.
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5.3.2 "Reduced" Model

Because of the lack of mass at levels 1, 3, and 5, it is considered
essential to reduce the number of horizontal DOFs. Such a reduction in the
number of stories is essential not only because of possible numerical error
caused by this type of diagonal mass matrix in a dynamic analysis, but also
because of the large number of analyses to be run. This means a reduction
in the number of beams and wall elements and conéequently in the computer
time required for the analysis,

To achieve this objective, the following criteria are considered,
(Saatcioglu, et al., 1980):

1-—- Overall geometry of the structure is maintained. The lever arm is
especially preserved since the fluctuation of axial force is comnsidered in
the determination of the wall’s stiffness.

2--- Fundamental periods and mode shapes, shear force envelope, bending
moment envelope for the model and "Reduced" model should be in close
agreement .,

Reduction of the 6-Story to a 3-Story structure is usually based on the
requirement of preserving relative stiffnesses of beams and walls meeting at
a joint. However, when the contribution of wall stiffness to overall
structural stiffness is far more significant than the contribution of beam
stiffness, overall structural stiffness is dominated by the walls,
Therefore, the beams can be lumped at every other floor without changing the
stiffnesses of the walls. This results in a structure with the same beam
stiffness but a smaller wall stiffness (due to increased height between

coupling beams), and consequently smaller overall structural stiffness.
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5.3.3 Effect of "Reduced"” Model

To verify equivalence between the 6-Story test model and the 3-Story
reduced model wunder cyclic static loading, a comparison is made between
these two models.

The models used for analysis are depicted in Fig. 5.5. The line
elements representing the  beams and walls are connected by rigid links.
Beams are idealized as elastic line elements with inelastic rotational
springs located at member ends, i.e. one-component model. The inflection
point is assumed to be fixed at mid length of the beam. This should result
in negligible error for the Dbeams. For walls, line elements are also
considered to be acceptable. The "proposed model" is wused to model the
walls. The effect of changing axial force in the wall is only considered in
the "Reduced” model Case-1.

The fundamental frequencies and mode shapes of the two models are listed
in Table 5.4. All three periods and mode shapes of the "Reduced" model are
quite consistent with those of the full model. This indicates that the
reduction in the number of stories in the way discussed in the previoué
section has no significant effect on the fundamental periods.

It has to be mentioned that these fundamental frequencies are evaluated
based on the reduced axial rigidity with almost fully cracked section
stiffness properties and should not be considered as the initial frequencies
of the test structure.

Comparison of base overturning moment and coupling moment vs. top level
displacement, beam ductilities, bending moment at maximum displacements, and

yielding sequence for the two models all show good agreement as indicated in

Figs. 5.7 through 5.10.
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5.3.4 Effect of Changing Axial Force on Wall Stiffness

To study the effect of changing axial force on the wall stiffness, the
relationships of base overturning moment and base coupling moment to top
level displacement and also force distributions between the two walls for
different assumed stiffnesses of the wall are compared in this section.

Overturning moment at the base of the structure is calculated as the
algebraic sum of the products of lateral forces and corresponding heights
from the base. The moment due to the P-Delta effect is not included in the
base overturning moment (Lybas and Sozen, 1979). This moment should be
resisted by the bending moments at the base of the first story walls and the
coupling moment due to the change in the axial forces in those walls.

The curve of Case-l 1is obtained by considering the effect of
fluctuations in the axial force in the wall on the wall’s stiffness while
the constant initial axial force is used to evaluate the wall stiffness 1in
Case-2. All other assumed conditions are the same for both cases.

The order of yielding of the elements under the cyclic loading is
presented in Fig. 5.10. Yielding of the beams start at about the same
loading levels for the two cases. However, yielding of the wall occurs at
the base of the tension wall at a base moment of roﬁghly 44 Xip-in followed
by the yielding of the compression wall at a base moment of about 57.5
Kip-in in Case-l. While in Case-2, whose wall element stiffnesses are
calculated from constant initial axial force, the two walls are yielded at
the same loading level which is equal to 55.8 Kip-in.

As shown in Fig. 5.7, there are no significant difﬁerences in the
overturning moment vs. top level displacement curves between the two cases

and also test result. This indicates that the yielding of the tension wall
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in the early stages of Case-l does not change markedly the structure’s gross
lateral stiffness as long as the compression wall remains elastic. However,
yielding of tension wall doeé change the distribution of shear and moment
between the two walls as shown in Fig. 5.7. In early stages of loading the
walls possessed nearly identical properties, however, variation in axial
load between the walls causes the stiffness of one wall to be different from
that of the other, leadihg to the difference of shears in two walls. The
shifting of the base shear from the temsion wall to the compression wall
continues to increase up to the point at which the compression wall also
starts to yield. At this pointAup to 75 Z of the total shear 1is being
carried by the compression wall while only the remaining 25 7 is carried by
the tension wall. Such a large value of shear in the compression wall may
cause shear failure in that wall although its shear strength also increases
with the increasing axial force.

No appreciable difference exists between the coupling moment curves of
the two cases, This means that the behavior of the connecting beams does
not change with the shifting of the shear force from ome wall to another in
this structure.

Moment distribution patterns in the walls when the base shear -equals
+1.32 Kips, and when it is -1.31 Kips are shown in Fig. 5.11. The
concentration of flexural moment on the compression wall at the base is
clearly observed in this figure., These results indicate that maximum
flexural forces in the walls can be affected significantly by the axial
force-flexural interaction. The analysis which ignored the effect of axial
force on flexural strength and stiffness underestimates maximum shear and
moment at the base by as much as 50 %Z. However the average of the base

moments of the two walls in Case-l at any step is roughly equal to the base

ne Streel
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moment of the Case~2, as also obtained by Suharwardy and Pecknold (1978).
The undershooting problem which was mentioned in Section 3.10, can be
seen at maximum positive and negative displacements, Fig. 5.7. The problem
arises because of using an updated structural stiffness matrix at the end of
the loading step for the first step in the unloading stage. In other words,
a very flexible structural stiffness matrix is used for the first step 1in
the unloading. Such an undershooting problem can be avoided by using an
iteration procedure during the step in which unloading occurs or the problem

can be minimized by decreasing the loading step.

5.3.5 Preliminary Remarks of Dynamic Analysis

A series of dynamic analyses are carried out to answer several questions
related to modeling techniques. The original waveforms of input base motion
for the experimental tests were the agceleration signals of the El1 Centro
(1940) NS component. The original time axis was compressed by a factor of 5
and the amplitude of acceleration was modified depending on the purpose of
the experimental work. Only the £first 3 seconds of the recorded based
motion from the model test with run one is used in the calculations. Run
one is considered only because the analysis is based on the assumption of no
damage (yielding) prior to loading.

The damping matrix is assumed to be proportiomal to the stiffness matrix
with the damping factor of 2 % for the first mode shape. The damping matrix
is calculated from the current structural stiffness matrix based on a
variable scalar multiplier, damping matrix type II.

Numerical integration of the equations of motion is carried out with a
time step of 0.001 sec. This time step, which is roughly 4 % of the third

period of the analytical model, requires 3000 steps for the calculation of
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the response history of the structure to the 3 sec. of inmput base motion.
For the integration scheme, the acceleration is assumed to be linear during
the time step, Beta= 1/6. The étructural stiffness matrix is updated at the
end of every step. No iterations are carried out on the element states
either during or subsequent to a time step, Tresulting in equilib;ium
residual forces or imbalances due to any nonlinearities that develop in the
structure during a time étep. These residual forces are ignored in this
study.

To check on the accuracy achieved using this time step, an analysis with
a time step of 0.0005 sec. is made. The results of this second analysis are
compared with the 0.001 sec. time step analysis. The short trial analysis,
i.e. with the time step of 0.0005, indicates very little difference in terms
of displacements, but does show slightly different forces and element
ductilities when compared to those obtained with the 0.001l sec. step.
Hence, the 0.001 sec. time step is selected for use throughout this
investigation of Structure-l. It is important to note that in any case, an
exact match of forces should not be expected because any residual forces
that develop are neglected.

Basic properties of the structure are listed in Tables 5.2, 'and 5.3,

These are used unless otherwise noted.

5.3.6 Linear Dynamic Analysis of Structure-l

Linear analyses are carried out to obtain the elastic response
characteristics of the structure to form a basis for understanding the
inelastic action effects. Linearly elastic analysis is obtained by using
essentialy the same conditions as in the inelastic analysis. However, this

time, Run-0, the initial structural stiffness matrix is used throughout the
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response. Therefore, linear elastic response of the test structure to the
base motion is calculated based on stiffnesses almost equal to the cracked
section stiffnesses of the members by a step-by-step numerical method. The
results of this run are presented in Fig. 5.12,

The linear analysis is useful in showing that extensive inelasticity
should be anticipated in the case of nonlinear analysis of fhis structure.
The 33 % larger maximum top displacement (compare to measured one) observed
’during this elastic analysis should be expected as the structure is
subjected to the base overturning moment that is approximately three times
higher than the measured one. Although the total overturning moments
resisted by the elastic model is 3 times larger than those of the inelastic
model or measured, more than 66 %7 of the maximum overturning moment in the
elastic model is provided by the coupling moment produced by changing of
axial forces in the walls. The maximum overstress ratios (maximum moment /
- yield moment) of the beams and the walls in this run are 6 and 2,

respectively.

5.3.7 Dynamic Analysis of Structure-l

The computed response histories of the structure subjected to the base
motion are shown in Figs. 5.13 through 5.16. The influence of geometric
nonlinearities (P-Delta effect), inelastic shear rigidities, and axial
force-moment interaction when calculating wall stiffness are included in
this computed response, which 1is referred to as Run-l. The measured
iresponse histories of the top 1level displacement, the base overturning
moment, the base shear, and the top level acceleration are also plotted omn

the same axes to make a close comparison of the response possible.
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The response waveforms are quite similar to those recorded for the test
results. The analytical model successfully simulates the response waveforms
except for the elongation of the fundamental period after 1.5 sec. Up to
1.5 sec., where the largest oscillation occurred in the test, the computed
responses are similar to the observed responses, The test structure
oscillated in a period longer than the model after 1.5 sec. In other words,
the analytical model remains stiffer than the test structure. This might be
due to 1l-—the usage of the bilinear moment—curvature relationship even for
this wall with its uniform reinforcement distribution; 2--the usage of the
assumed free parameters ‘in Hysteresis-2 model. Also the way that pinch
action is considered may contribute. Such a difference is also present 1in
the comparison of the computed results around the origin and the test result
under cyclic static loading.

The overall shape of the base overturning moment is very similar to that
of the top level displacement: smooth and almost dominated by the first mode
shape except at time 0.47 sec. where some contributing influence of the
second mode in the computed results is evident. The double peaks of the
computed displacement time history support this observation. The base shear
response contains more higher frequency components than does the overturning
moment. It should be mentioned that the measured base overturning moment as
well as base shear time histories contain more higher mode effects than
those corresponding to the computed responses. This is maybe partially due
to the effect of the "Reduced" model.

The response waveforms of internal forces such as shear force and axial
force at the base of the left wall, the tdtal flexural moment at the base of
the two walls, and the flexural moments of the beam rotational springs at

three levels as recorded in Run-l are also shown in Fig. 5.13. The axial
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force waveform contains the same frequency and shape as the top level
displacement. The distribution of the base shear between two walls is
clearly observed in the base shear of left wall time history. During the
first and second response peaks at 0.7 sec. and 1.2 sec., the left wall
which is subjected to a tensile force does not resist as much shear at the
base as the right wall.

The values of computed base overturning moment and  top level
displacement are plotted against each other in Fig. 5.14 in order to see
overall structural response history during the dynamic motion. The effect
of higher mode shape at time 0.47 sec., in the computed results can be seen.
The measured base overturning moment vs. top level displacement is not as
smooth as the computed one. That is because the measured base overturning
moment contains more higher mode effects than does the computed base
overturning moment.

To provide an assessment of the effect of changing axial force on the
behavior of the individual walls, the moment-axial force relations and
moment-curvature curves at the base of the walls as recorded during Run-l
are presented in Figs., 5.15-16. Also shown in Fig., 5.16, is the assumed
moment-axial force interaction diagram for the wall section. The maximum
quantities of compressive and tensile forces obtained at the base of the
walls were +4.0 Kips and -1.0 Kip, respectively. This maximum compressive
force is roughly 1/4 of the balanced axial force. The yielding of the walls
at the base, the strain-hardening effect of walls, the overshooting problem,
the pinch action and yielding of coupling beams (only in Fig. 5.16) are
clearly observed in these figures. Another observation from these figures
is the effect of axial force in the hysteresis loops of tension and

compression walls. Increase (decrease) in strength, yield moment, and
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stiffness during loading and reloading of compression (tgnsion) wall can be
seen in these figures.,

As mention earlier, yielding of one wall, usually the temsile wall, at
the base does mnot mean that the structural system loses it resistance to
further load. At the time when yielding of the temsion wall occurs Vthe
compression wall is still capable of carrying the additional forces applied
to the structural system with increased section stiffness due to large value

of compression force.

5.3.8 Effect of Pinch Action and Strength Decay of Coupling Beam

The existence of a pinch action and strength decay in the connecting
beams of a coupled shear wall was shown by Abrams (1976) in his experimental
study and in the P.C.A. report (Saatcioglu, et al., 1980). To examine the
consequences of these two phenomena when present in the coupling beams on
overall dynamic response of Structure-l, two analyses are carried out. The
response o0f Run-2 is obtained by using a simplified Takeda hysteresis model
(Hysteresis—1), which does not comsider either pinch action or strength
decay, for all coupling beams., Hysteresis—2 is used for the moment-rotation
curve of all coupling beams in Run-l. In other words, the only difference
between these two runs 1is that the effects of pinch action and strength
decay are considered in Run-l by using a modified Takeda hysteresis loops,
Hysteresis—2, for all coupling beams.

The maximum responses of both runs are listed in Table 5.5. The
response time histories, the beam ductilities, and the moment-rotation curve
of the left—end mid-level beam rotational spring for both rums are shown in
Figs. 5.13, 5.17, 5.18, and 5.19. Although maximum shear force and bending

moment are only slighly altered, maximum horizontal displacements,
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rotational ductilities of the beams, and period of the structure are
increased as a result of pinch action and strength decay as observed by
comparing these figures.

The response time histories of Run-2 are fairly consistent with those of
Run-l up to 0.8 sec. The maximum rotation of the coupling beams before the
first negative peak at time 0.7 sec. 1is less than & tiﬁes the yield
rotation. This indicates the level of deformation at which strength decay
starts. After the first negative peak at 0.7 sec., the period of the
structure of Run-2 1is shorter than those of Run-l and those of the test
results.

The above comparisons indicate that the effects of strength loss and
pinch action in the coupling beams are most noticeable in increased
horizontal displacements, elongation in the period of structure, and

increased coupling beam ductility requirements.

5.3.9 Effect of Changing Axial Force

To study the effect of axial force-flexure interaction on dynamic
response, the structure is analyzed first by neglecting this effect, Run-3,
and then a second time with the effect of axial force~flexure interaction in
evaluating wall stiffness matrix, Run-l. Because the fluctuations of axial
force are not comsidered in Run-3, the structural response to loads is
antisymmetric with respect to the centerline of the frame. For this run,
the yield moments in the walls are assumed to be independent of axial load
and equal to values corresponding to the initial axial force. The results
of these two runs are presented in Figs. 5.13 for Rumn~l and 5.20 for Run-3.
Comparisons of these results indicate that there 1is mno significant
difference between these two rums as far as overall structural response is

concerned.
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5.3.10 Comparison of One- and Two-Component Models

To examine the effect of coupling beam modeling in the response of
Structure~l, another analysis is made using essentially the same conditions
as in Run-3., This time, Run-4, the coupling beams are modeled By means of
the general two-component model. The strain-hardening ratio in the
moment—rotation relationship of the general two-component model is assumed
to be the same as the strain-hardening ratio of the moment-rotation curve
used in the one-component model, Sectiom 2.5.2,

The maximum responses of Run-3 and Run-4 are listed in Table 5.5, All
the maximum responses of Run-4 are quite consistent with those of Run-3.
The response waveforms of Run-4 are also quite similar to those of Run-3 in
this analyticél model in which beams are subjected to exact antisymmetric

bending moment as observed by comparing Figs. 5.20 and 5.21.

5.3.11 Effect of Damping Matrix

There are several ways by which a convenient damping matrix can be

selected. Most of these ways are based on an elastic analysis approach and

they are justified in the inelastic range because they lead to a
mathematical simplification. Therefore, it is desired to investigate the

effect of stiffness proportional damping based on the initial elastic or
tangent stiffness matrix.,

The effects of damping on dynamic response of this structure is
investigated by analyzing it three times: In the first amalysis, Run-3, the
damping matrix is calculated from a tangent stiffness matrix based on the
damping factor of 2 % for the current first frequency. The current first

frequency of the structure is evaluated based on the constant £first mode
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shape of the structure, damping matrix type II. In the second analysis,
Run-5, the constant damping matrix which is based on the initial elastic
stiffness matrix with the damping factor of 2 % for the initial first
frequency is used, damping matrix type I. In the third analysis, Run-6, the
damping matrix is based on the tangent stiffness matrix., In this analysis
the constént scalar multiplier is calculated from a damping féctor of 2 %
for the initial first frequency.

The maximum responses of three analyses are listed in Table 5.5. The
response time histories and the beam ductilities are presented in Figs.
5.20, 5.22, 5.23, and 5.18. Comparison of the responses of the three
analyses are quite similar to each other in this structure, except that the
model which is based on the initial stiffness proportional damping is

slighly stiffer than the other two.

5.4 Experiment by Aristizabal-Ochoa & Sozen (1976)

The second coupled shear wall structure selected to evaluate the
goodness of the proposed model is the small-scale, 10-Story, ome-bay
structure, figure 5.24, which has been tested by Aristizabal-Ochoa and Sozen
(1976). Each test structure consisted of two frames and each frame
contained two walls connected by coupling beams at 10 levels, Cross
sectional dimensions of the walls and the beams were 1 by 7 in. and 1 by 1.5
in. , respectively. Structure weight was simulated by placing a 0.50 Kips
weight at each floor level. The material properties as well as the
stiffness properties of the coupling beams and walls, which are listed in
Tables 5.6, and 5.7, are the same as those used by Takayanagi and Schnobrich

(1976) for roughly a cracked section. Aristizabal-Ochoa (1976) describes

the test setup and test procedures in more detail. In the subsequent
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discussion, this structure is referred to as Structure-2.

Other investigators have also studied this structure (Takayanagi and
Schnobrich, 1977; Takayanagi and Schnobrich, 1976; Saatcioglu, et al.,
1980). In fact, Takayanagi (1976) has analyzed this structure in great
detail, far more than is intended in this study. Influences of many assumed
conditions such as effects of elastic, inelastic, and reduced axial
rigidity, effects of the H—P interaction, effects of the pinch action and
the strength decay, etc., were studied in the dynamic response of this
structure by Takayanagi.

The objectives of restudying this structure here are: l---to test the
analytical model proposed in section 2.5.4 on another coupled shear wall
which has a stronger coupling effect than Structure-l; 2---to assess the
influence of axial force on the overall response of Structure-2; and, 3---to
examine the suitability of the response of this structure if it is modeled

as a 5-Story coupled shear wall.

5.4.1 Dynamic Analysis of Structure—2

The models used for the dynamic analyses are depicted in Fig. 5.24. The
one-component model and the proposed model are used to represent the
coupling beams and the walls, respectively.

A type I1I damping matrix with a damping factor of 2 % for the computed
first mode shape is assumed. Numerical integration of the equatioms of
motion is carried out with the time step of 0.0004 sec. The structural
stiffness matrix is wupdated every 2 steps, i.e. every 0.0008 sec. This
time step, which is roughly 2.5 % of the third period of the analytical
model, requires updating the structural stiffness matrix 3750 times during

the calculation of the response time history of the structure for 3 sec. of
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input base motion. The equations of motion are solved by using the
step-by—-step application of Newmark”s Beta method based on Beta= 1/6.
Hysteresis-2 is wused to model the end moment—end rotation relationships of
the coupling beams. The free parameters of the hysteresis, which are listed
in Table 5.7, are the same as those used by Takayanagi (1976).

The computed response time histories of Structure-2 subjeéted to 3 sec.
of recorded (initial) base motion under three different analytical
conditions as well as elastic analysis are shown in Fig. 5.25 through Fig.
5.28. The response time history of Run-l includes the effect of a changing
axial force on the flexural rigidity of the walls. For the response time
history of Run-2, the yield moment as well as the section stiffness of the
walls are assumed to be independent of the axial force and equal to values
corresponding to the average axial load developed in Run-l. In Run-3, the
structure is modeled in the same manner as the second analysis, however, in
this run the structure is reduced to a 5-Story coupled shear wall, Fig.
5.24., Finally in the elastic analysis, Run-0, the structural stiffness
matrix is not updated throughout the response.

Although the results from Run-2 were obtained earlier by Takayanagi
(1976, Run-3 in this report), they are re~computed in this study so that
results for the three models are obtained from an identical computational
procedure to eliminate any modeling or numerical differences. Careful
comparison of these two analytical studies reveals that the main differences
are in 1---the use of slightly different base motioms, Fig. 5.34, and,
2-—-ignoring the initial cracking moments in the beams and walls for this
study.

In spite of the fact that all three analytical models fail to simulate

the maximum responses, their predictions of the elongations of the
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fundamental period are fairly consistent with those observed in the test.
The maximum responses from these three runs are compared with the
corresponding test values in TaBle 5.8. All three runs predict the maximum
displacements at the same time as the time recorded in the test. However,
the computed maximum displacements and overturning moments are considergbly
smaller than those of the test results, on the order of 20 7 lower. The
smaller maximum moments obsefved during the inelastic analysis should be
expected when the maximum moment from the elastic analysis is almost the
same as the measured one. In addition, all analytical models in this study
not only fail to predict the maximum responses properly, but also are
unsuccessful in simulating all the maximum relative displacements,
overturning moments, and base shear after 1.5 sec. of the response.
However, the elongations of the fundamental period of all three runs are

the same as those of the test showing that all three runs seem to predict
the structural damage properly.

In order to assess the structural damage during the base motion, the
yielding sequences of the structural elements and ductility requirements for
the beams are shown in Fig. 5.33 and Fig. 5.32. Also shown in Fig. 5.32 is
the beam ductilities which were reported by Takayamagi (1976). In Run-2 and
Run-3, the maximum moment in the walls is roughly 32 Kip-in which is less
than  the yield moment. This indicates that the walls remain fully elastic
for those cases. In addition, in those two runs the moments in the walls
above the third level never exceed ome half of the corresponding yield
moment .

Although the analytical models in this study and the analytical model in
the second study by Takayanagi (1976) predict the change of the period for

the structure properly, the response of the coupling beams computed in this
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study corresponds to less damage than was observed in the earlier study,
Fig. 5.32. That might be due to the fact that in this study a constant
section stiffness slightly stiffer than that for a cracked sectiomn is
assumed in the walls before yielding. The force-deformation relations of
the wall elements are mnot idealized as a bilinear curve over an expected
range of forces, but rather an identical primary force-deformétion relation
is assumed for the wall elements from the sixth level to bottom for a
constant axial force, Table 5.7. This may have some effects on the response
of this structure. On the other hand, it should be mentiomed that even when
the analytical model in the first study by Takayanagi and Schnobrich (1977)
failed to simulate the elongations of the fundamental period, the maximum
top level displacement and base overturning moment obtained in that report
were quite consistent with those of the test results.

From the results obtained in Run-1 and Run-0, the following observations
can be made:

1---Based on the stiffness properties of the elements, the fact that the
maximum wmoment obtained in Rum-l is smaller than that of the test is
understandable from the elastic analysis. | In view of the maximum
displacements, however, it is not apparent as to why the analytical model in
Run~1 predicts the change of the fundamental period of the structure, but
fails to simulate the maximum displacements. It is believed that ignoring
the cracking moment in the walls is not the main reason that the analytical
model fails to simulate the maximum responses properly.

2--~The measured base moment vs. top level displacement displays a
pronounced pinching on the hysteresis loop, Fig. 5.29. A significant
portion of this reduction in the structural stiffness around the origin

after 1.2 sec. of the response is believed to be caused by the pinching in
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the coupling beams. Although a pinch action in the coupling beams is
considered in the analytical model, Fig. 5.30, the computed response history
of the base moment vs. top level displacement does mot show any pronounced
pinching.

The hysteresis properties of beams used to couple structural walls can
have a significant influence on overall response of the structure. The
stiffness of the coupling beéms can dictate the extent to which each wall
will act independently or as a coupled unit. The way that pinch action and
strength decay are modeled in this study does not accurately represent the
behavior of a coupling beam (Abrams, 1976). The force-deformation
relationship obtained from the testing of a small-scale coupling beam-wall
subassemblage under cyclic 1loading shows a very large pinching on the
hysteresis loop (Abrams, 1976)ak The large cracks which open wup during
application of loads producing tension in one side of the section (top or
bottom) do not close up immediately at =zero deformation (Abrams, 1976).
What this means in terms of the analytical model, is that the energy
dissipative properties of the coupling beams have been over-estimated. This
is clearly seen in Fig. 5.29.

It is interesting to note that the time step for updating the structural
stiffness matrix must be small, if a very small value is assumed for the
stiffness of the mnonlinear rotational spring around origin. This 1is
necessary mainly because no iterations are carried out to eliminate the

residual forces.

5.4,2 Effect of Axial Force-Flexural Interaction

Comparison of results from Run-l against those of Run-2 indicates that

there 1s no difference between these two runs in so far as the horizontal
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displacement, overturning moment, and shear time histories are concerned.
In Run-1 where axial force-flexural interaction is considered, both walls
yielded when they were in the tension zone, Fig. 5.31. However, in Run-2
both walls remain fully elastic. Increase (decrease) 1in strength and
stiffness during loading and reloading of the compression (temsion) wall due
to considering the effect of changing axial force is clearly seen in Fig.
5.31.

The above comparison indicates that the fluctuations of axial force
change the shear and the corresponding bending moment distribution between
two walls, but with no change in total shear as compare to total shear in
Run-2. In other words, it can be concluded that the M-P interaction does
not have significant effects in overall structural stiffness, and maximum

rotations in the coupling beams.

5.4.3 Effect of "Reduced" Model

The effect of using the "Reduced" model for this structure can be
observed by comparing the results obtained from Run-2 and Run-3, Fig. 5.27,
and Fig. 5.28. 1In Run-3, the 10-Story coupled shear wall was modeled as a
5-Story structure. The mass at each horizontal DOF in this rumn is
calculated based on the constant acceleratidn.

Although the initial frequencies and mode shapes of two models are
almost identical, the analytical model in Run-3 remains stiffer than that of
Run-2. This is believed to be due to the way that mass matrix was

calculated for Run-3.



87

5.5 Experiment by Abrams & Sozen (1979)

The third structure which is studied here is a small-scale 10-Story
wall-frame system which was tested by Abrams (FW2, a structure with the
"weak" wall). The test structure was composed of two frames in parallel
surrounding one centrally-located "slender” wall. The frames and wall were
coupled at each level by a 465 kg mass so that the lateral displacements of
each element at each story would be equal. Story weight at each level was
carried vertically only by the two frames. Thus no dead load was supported
by the wall., Abrams and Sozen (1979) describe the test setup and test
procedures in more detail.

The properties of the beams, columns, and wall are summarized " in Table
5.9, The stiffness properties of the members which are calculated based on
the procedures described in Chapter 2 are listed in Table 5.10. It is worth
mentioning again that the force~deformation relationships of all elements
are bilinearized over an expected range of forces.

The model used for analysis (both static and dynamic) is depicted 1in
Fig. 5.35., The model consists of a frame and a wall connected in parallel
through rigid links at each story level. The dashed lines between frame and
wall indicate that the lateral displacements of the two systems are
identical. Members are represented by line elements which include flexural,
shear, and axial deformations with the exception of the beams which are
axially rigid. The one-component model is used to model all beams and
columns of the frame. The wall is modeled by using the proposed model for
all levels excépt over the first story. First, the multiple spring model is
used to model the wall in Case-l, In Case-2 and Case-3, the proposed model

and the one-component model are used in the modeling of the first story wall
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element, respectively. To account approximately for the effect . of
reinforcement pullout at the base of the wall, a nonlinear rotational spring
is provided at the base of the wall., The flexibility of this additiomal
rotational spring, which is listed in Table 5.10, is calculated from Egs.
2.26 with the aid of some static wall tests (Abrams and Sozen, 1979; Moehle
and Sozen, 1980).

The term "elastic" when used in describing behavior of an element is not
according to standard usage and thus requires definition. Because the
uncracked section stiffness is not comsidered explicitly in this study, the
"elastic" element means that the moment of the element at any section has

not exceeded the yield moment obtained at the corresponding axial force.

5.5.1 Static Analysis of Structure-3

The behavior of Structure-3 as subjected to a monotonically increasing
upper triangular "first mode" lateral load is discussed in this sectiom.
Such a static analysis will be used as background information when the
response of the structure to dynamic loading is presented. Furthermore, the
static analysis also serves as a check on the dynamic analysis. Any strange
phenomenon that seems to occur in the dynamic analysis while that same
behavior does not occur in the static analysis may lead to a source of
problems which may develop during the dynamic analysis,

The respomnse of Structure-3 to the triangular load is illustrated by the
force-displacement curves of Fig. 5.36. The overall respomnse of the
structure is nearly linear up until the time that some of the beams at the
second through fifth levels yield. The slight nonlinearity evident earlier
in the response is due to yielding of the shear wall at the base. The fact

that the stiffness of the structure does not change dramatically after



89

yielding of the wall at the base, even in the one-component model, can be
explained through the use of the first frequency of the structure computed
with and without the shear wall. A reduction of only 20 % in the
fundamental frequency of the structure when the shear wall is completely
ignored supports the observation that the wall provides only a modest
increase in lateral stiffness.

The shear wall, which is.150 times stiffer and 15 times stronger than
any other individual element 1in the structure (Table 5.10) completely
dominates the elastic response of the structure due to its stiffness.
However, the response of the structure after yielding of the wall is not
controlled by rigid body rotation of the wall but rather by the behavior of
the frame. After the shear wall yields at its base, the frame which is
still fully elastic is capable of resisting increased lateral loads.

As expected, the frame picks up a larger percentage of the total force
after yielding of the wall. This percentage even increases as more and more
plastic hinges form in the beams of the frame. Transfering shear force from
the wall to the frame continues until the base of columns yield. At this

"collapse mechanism” 80 % of the shear is carried by

point which is called
frame, Fig. 5.36. The 1load corresponding to this collapse mechanism is
called the "ultimate load". The ultimate base shear and base overturning
moment are vroughly equal to 14 kN and 23 kN-m, respectively. The
corresponding compression axial force at the base of exterior column and top
level displacement are equal to +14.7 kN and 28 mm (1.2 percent’of height).
Beyond this top level displacement of 28 mm, calculated responses beconme
questionable because of l---yielding of columns with large values of axial

force; 2--—assumption of an Inflection Point (I.P.) fixed at mid-height of

the first story columns; and 3-——excessively high forces assumed to be
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resisted by beams. After ultimate load, however, the structural model
maintains 1its resisting system against further load increase due to the

hardening effects present in the members.

5.5.2 Effect of M-P Interaction

The effect of moment-axial force (M-P) interaction of célumns on the
overall response of Structure-3 is studied here. Fmori and Schnobrich
(1978) has also examined this effect on the response of this structure by
using a layered model. The structure in his study was, however, a distorted
model of the actual test structure for considering M-P effects. The
discrepancy stems from the fact that the lever arm of the coupling moment
was not preserved. In that study, the layered model was applied to the
first story exterior column members of the structure. The element stiffness
matrices of these two columns were calculated based on a comstant inelastic
length. The effect of changing axial force on section stiffness was only
considered in this constant inelastic 1length. It was concluded that
moment“axiai force interaction does not have a significant effect on the
overall response of that structure.

In order to restudy this effect, Structure-3 is analyzed by wusing the
extended one-component model in which the effect of axial force-flexure
interaction is considered in evaluating the stiffness matrices and yield
moments of all columns. These results are presented in Fig. 5.37. Also
shown in this figure are the results obtained while neglecting this effect.
When M~P interaction is considered, yielding of columns at the base started
at a base shear of 13.6 kN followed by the yielding of the interior columns
and the compression column at base shears 14.0 kN and 14.4 kN. On the other

hand, when the column stiffness matrices were calculated from a constant
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averaged axial force, the interior columns and exterior columns yielded at
base shears 13.8 kN and 14.2 kN, respectively.

As shown in Fig. 5.37, the fluctuations of axial force do not have an
effect on the overall response of Structure-3. However, it does have
significant effect on the distribution of forces between columns especially

exterior columns at the base as shown in Fig. 5.38.

5.5.3 Comparisons of Responses Predicted by Different Element Models

The purpose of this section and section 5.5.6 is to study the
\ significant shortcomings of these 4 element models, namely, the
one-component model, the general two-component model, the multiple spring
model, and the proposed model, when they are used to model the wall element
in this structure. Special modeling of the wall element is considered only
because wall members are exposed to a more general moment distribution than
are the beams and columns of a mnormal frame. In addition, due to the
significant shift of Inflection Point (I.P.), the inelastic flexural
behavior in the wall can be expected to expand along the length of the
member.

In studies (Hsu, 1974; Takayanagi and Schnobrich, 1976; Emori and
Schnobrich, 1978; Koike, et al., 1980), the multiple spring model was used
to model wall members. The disadvantage of this model is that it =requires
each wall element of the structure to be subdivided into several segments
for analysis, and hence that the computational costs  and storage
requirements are increased. However, the procedure has the advantages that
a) it can accept almost any form of moment distribution; b) each segment
can be subjected to a different stage of inelastic actiom; and, c) the

inelastic flexural behavior can be allowed to expand along the length.
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The one-component model and two-component model (non-degrading) have
also been used for the modeling of a shear wall by some investigators
(Fintel and Ghosh, 1979; Saatcioglu, et al., 1980; Aktan, et al., 1982;
Charney and Bertero, 1982). The simplicity is the main advantage of these
two models. However, these two models have several weaknesses which are
discussed‘ in  chapter 2. It was judged by Otani (1981) that the
representation of inelastic deformations of a member by that member”s end
springs, i.e. omne-component model, to be insufficient.

‘Because the multiple spring model is believed the most realistic model
against the three others, the calculated results using the other analytical
models are studied in this section in relation to the results based on that

Three cases in which different analytical models are wused for the
modeling of the shear wall at the first story of Structure-3 are considered.
In Case-l, the wall element at the first story is modeled by means of - the
multiple spring model. The proposed model and the one-component model are
used for representing the first story wall element in Cases-2 and =3,
respectively. In Case-3, the I.P. of the one-component model is assumed to
be fixed at a distance 0.76 m from the base. All other assumed conditions
are the same for these three cases.

The results of the analyses are shown in Fig. 5.36. From the results
presented in‘this figure, the following observations can be made.

1---The proposed model produces results similar to the multiple spring
model. It is worth mentioning that under monotonically increasing loading,
the results of these two models should be identical, if a large number of
subelements are used for multiple spring model.

2---The fact of constant post-yield stiffness coefficients in the

one-component model can be observed in this figure. The stiffness of the
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wall at the base is suddenly decreased after yielding in the one-component
model. However, in the proposed model and the multiple spring model, the
stiffness of the wall, which is.function of loading history and inelastic
length, is gradually decreased after yielding.

3~-~The fact that the shear wall at the second story in Case-3 was close
to yield at the structure”s ultimate load 1is understandable from the
independence of the two nonlinear rotational springs at both ends of the
first story wall, Eqs. 2.8 (Fig. 5.40). In the other two analytical models,
yielding of the element at one end has some effects (depending on the
inelastic length) on the stiffness of the element at the other end, Egs.
2.18, and Egqs. 2.23. It has to be mentioned that the inelastic length of
wall at wultimate load is lafger than 50 % of the height of the wall in the
first story.

To provide an assessment of the effects of the position of the I.P. imn
the one-component model on the response of Structure~3, two more cases are
compared with Case-3. In these two cases, the one-component model with an
I.P, at the distance 229 mm (height of the first story) from the base and
at the distance 115 mm from the base are used to model the shear wall over
’the first story. As mentioned in chapter 2, the one-component model based
on the I.P. fixed at one end is very similar to the general two-component
model, if the end at which the I.P. resides, remains elastic.

Figure 5.39 indicates the relative importance of this effect, The
position of I.P, affects the analysis in two ways which are clearly observed
in this figure and in Fig. 5.40.

1-=-Evaluation of the wall stiffness matrix based on an I.P, fixed at
mid-height will result in a stiffer wall, and consequently stiffer
structure, when the wall is not subjected to an anti-symmetric bending

moment .
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2-=-FEvaluation of the maximum moment at the base of the wall based on
fixing the 1I.P. at mid-height will result in a larger value than for the
two other assumptions. In other words, the maximum moments at the base of
the wall obtained from the one-component model based on an I.P. fixed at
the mid-height as well as the two-component model overestimate the maximum
value of the moment as compared with Case-3 as well as Case-l. It is
interesting to note that increase in the base overturning moments and base
shears in the cases of the I.P. at 115 mm and at 229 mm are mostly due to

the increase in the base moment and base shear of the shear wall.

5.5.4 Preliminary Remarks of Dynamic Analysis

Nonlinear response time histories of Structure-3 are calculated for the
measured base motion from the first run used in the experimental series.
Only the first 3 seconds of this recorded base motion 1is wused in the
calculation, The first three seconds of the recorded base motion is used
because the maximum responses and most of the damage to the structure are
expected to take place within these 3 seconds. The maximum acceleration of
the recorded base motion is 0.49g.

A type II damping matrix with a damping factor of 2 %7 for the first mode
shape is assumed. Numerical integration of the equations of motion is
carried out with the time step of 0.0005 sec. This time step, which is
roughly 2 % of the third period of the analytical model, requires solving
the equations of motion 6000 times for the calculation of the response time
history of the structure to the 3 sec. of input base motion.

The structural stiffness matrix is updated every 4 steps, 1i.e. every
0.002 sec. In order to save computer costs, the structural stiffness matrix
is not updated for the first 0.82 sec. of the response. This decision is

based on the knowledge that the structure remains elastic during that period
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(Emori and Schnobrich, 1978). For the integration scheme, the acceleration
is assumed to be linear during the time step (Beta=1/6). No effort has been
made to redistribute or eliminaﬁe the residual forces that grow out of any
overshoot in the force-deformation relatiomships. This structure was also

investigated by Emori and Schnobrich (1978) and Saiidi and Sozen (1979).

5.5.5 Dynamic Analysis of Structure=-3

The computed response time histories of Structure-3 subjected to the 3
sec. of recorded base motion are shown in Fig. 5.41. This computed response
is referred to as Run-1. The shear wall at the first story in this run 1is
modeled by means of the proposed model. Several of the waveforms such as,
top level displacement and acceleation as well as base shear and base
overturning moment are compared with the corresponding waveforms from the
test. The measured base shear and base overturning moment in this structure
are calculated from the measured acceleration and the value of the mass at
each level.

Linear elastic analysis of this structure is also carried out to obtain
a better understanding of the effects of imelastic action. The linearly
elastic analysis is pertormed while using the same input conditions as with
the inelastic analysis. However, this time, Run-0, the structural stiffness
matrix is not updated throughout the response. The linear analysis of
Structure-3, Fig. 5.42, shows that large inelasticity should be expected for
the case of a nonlinear analysis. ~ The period of the test structure
elongated after omne second of the response. It is interesting to note that
in the case of elastic analysis, the times when the maximum response of the
top level displacement, the base shear, and the base overturning moment

occur are comparable to the times recorded for the maximum negative top
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level displacement, the maximum base shear, and the maximum negative base
overturning moment in the test. These occur at about 1.3 seconds in elastic
analysis, Run-0, and 1.4 seconds in recorded one.

The overall features of the response time histories of Run-l are similar
to those of the test. The elongations of the fundamental period which are
observed in the response time histories of this run are fairly consistent
with those of the test except in the first 0.85 seconds of the response in
which the period of the computed response is longer than the test result.

In order to assess the damage experienced by the structure during the
base motion, the yielding sequences of the structural elements and ductility
requirements calculated for the béams are shown in Fig., 5.43, and Fig. 5.44.
This hinging pattern 1is very similar to that observed in the static
analysis. The structure remains linearly elastic up to 0.84 sec. at which
time the yielding moment is first reached at the base of the shear wall. It
is observed that the structure has developed a sufficient number of plastic
hinges to form a "collapse mechanism” at times 1.4 sec, and 2.0 sec. which
correspond to the maximum negative (aiso maximum base shear) and maximum
positive displacements. At these two times, the stiffness provided by the
strain-hardening of the plastic hinges provides the only additional force
capacity of the structure. Although the shear wall is extensively damaged
in flexure at its base after 2 seconds of the response , with its inelastic
length being larger than 75 % of the height of the first story, the frame is
still effective in resisting lateral forces.

Figure 5.44 indicates that the beams are also severely damaged at the
maximum positive displacement at time 2 sec., The ductility requirements of
most beams are increased at this maximum point as shown in Fig. 5.44. The

maximum normalized rotation of the first story columns based on an
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anti~-symmetric bending moment is 1.3, indicating that those columns are just
slightly yielded.

As mentioned earlier, the cémputed responses up to 0.84 sec. during
which the structure has remained elastic are of somewhat low quality. This
indicates that when the base motion is not severe, evaluation of the element
stiffness based on a constant elastic section stiffmess is insufficient.
Furthermore, because the moménts in columns at the first story have not
exceeded 1/3 of the yield moment capacity of those columns before yielding
starts in the shear wall at the base, the use of the constant elastic
section stiffness before yielding also has some effects on the shear
distribution between the frame and the wall after yielding of the wall. It
is important to realize, however, that the one-component model based on a
trilinear primary curve also does not represent the damage distribution in
R/C members when the inelastic action is small. This is because flexural
cracking, a major source of member stiffness reduction before yielding, 1is
not concentrated at a member end, but rather spread well into the member
(Otani, 1981). It should be mentioned that although the majority of the
columng did not yield as a result of the base motion, they were loaded well
above their cracking load before completion of one second of the response.

The response waveforms of the base overturning moment and the top level
displacement are smooth and governed almost totally by the first mode shape.
The response waveforms of the base shear and top level acceleration contain
some higher mode components. Furthermore, it 1is observed that none of
yielding beams have larger number of cycles than the shear wall or
structure.

Another observation from Fig. 5.41 regards the relative story

displacement of the top floor during the response. This relative story
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displacement is slightly smaller than the  average relative story
displacement (1/10 of the top level displacement) at times 1.2 sec., 1.4
sec, and 1.8 sec., indicating larger story relative displacements at the
other levels at these times,

The maximum responses from Run-0 and Run-1 are compared with the
corresponding test values in Table 5.11. Also the maximum responses of
Run-1 and those of the test are presented in Fig. 5.47. The maximum
responses for Run-l are fairly consistent with the test results. The times
when the maximum response of the top level displacement (2.0 sec.), the base
moment (1.4 ksece and 2.0 sec.) and the base shear (1.4 sec.) occur are
comparable to the times recorded for the test.

In order to get a more clear picture of the response, the time variable
has been eliminated by plotting the base overturning moment versus the top
story displacement as shown in Fig. 5.46. The dominance of the first mode
component in the makeup of the structural response and also the severely
damage of the structure at time 2 sec. are clearly seen in this figure.
This figure also showns the summations of the energy which was dissipated by

all of the inelastic hinges in all of the elements.

5.5.6 Comparison of Responses Calculated by Different Element Models

The objectives of this section are l---to determine if the widely used
one—component model and two-component model as well as the proposed model
can simulate the dynamic response of a R/C wall-frame structure when they
are used to represent the shear wall; 2---to investigate the effect of
shifting 1I.P. and other assumptions in the one-component model on
calculated response time histories of Structure-3.

It should be mentioned here that because the relative importance of each

element model or mnonlinear effect is dependent on the type of structure,
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some conclusions drawn from these results might not be easily generalized
nor applied directly to other structures. Therefore, the objective here is
only to demonstrate the relativé importance of different analytical models
of Structure-3 with gegards to numerical technique in solving the equations
of motion.

The effect of different modelings of the wall on the computed dynamic
response of Structure-3 ié investigated by analyzing this structure three
times: In the first analysis, Run-2, the wall at the first story is modeled
by means of the multiple spring model. In the second analysis, Run-3, the
one-component model based on the I.P. at a distance 0.76 m from the base is
used to model the wall at the base. In the third analysis, Run—-4, the shear
wall at the first story is modeled in the same manner as the second
analysis, however, in this run, the I.P. is assumed at distance 0.1l15 m
(mid-height of the first story) from the base. All other assumed conditions
are the same and identical to those of Run-l.

The response time histories of three analyses are shown in Figs. 5.48
through 5.50. Comparison of the fesponses of the three models to the base
motion indicates that the response charactristics of the three analyses are
more similar to each other than was true during the static analyses. The
main difference between the responses of the these three runs appears to be
in the maximum moment in the wall at the base. Figs. 5.51 show the
force~deformation relationships of the wall at the base obtained from Run-3
and Run-4.

From the results presented in Fig. 5.41, Fig. 5.45 and Fig. 5.48 through
Fig. 5.51, the following conclusions are made,

l---~The maximum moment at the base of the shear wall obtained from Run-4

is larger than that of Run-3. Furthermore, the maximum hardening moment
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(increase in the yield moment due to the strain-hardening effect) at the
base of the wall obtained in Run-4 is the largest among these four rums. It
should be mentioned that on an element basis, it is the increase 1in moment
beyond the yield moment that determines inelastic length, strength, and
ductility demands of a particular critical zone. Thus, the strain-hardening
ratio of the force-deformation relationship of an element-is an important
factor in obtaining these variables.

2--~Evaluation of the maximum flexural rotation at the base of the wall
computed in Run-4 results in a smaller value than that value for Run-3. 1In
other words, in spite of a larger maximum moment in Run~4, the maximum
flexural rotation at the base of the wall in Run-4 is a smaller than that of
Run-3. This result is mainly the consequence of the maximum flexural
rotations at the base of the shear wall in Rums 3 and 4 being obtained based
on an assumed fixed I.P. at distances 0.76 m and 0.115 m up from the base,
respectively. However, the maximum fixed-end rotation at the base of the
wall (rotation only due to the bond slip) obtained in Run-4 is larger (two
times) than that of Run-3. This 1is Dbecause the fixed-end rotation is
directly related to the moment and the maximum moment at the base of the
wall in Run-4 1is larger than that of Run-3. In Run-3, while the energy
which was dissipated by flexural rotation of the wall at the base is larger
than that of the Run-4, the fixed-end rotation at the base of the wall
(rotation only due to the pull out of the reinforcement from the base)
dissipated more energy in Run—4 than in Run-3. This is maybe one of the
reasons that the results of Run-3 are similar to the results of Run-4.

3-=-The overall responses of the four runs are similar to each other and
also to the observed test results for this structure, except the analytical

model in Run=-4 remains slightly stiffer after the maximum positive peak.
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This indicates that almost identical overall responses will be obtained by
using any of the four elements to model the shear wall. However, this
conclusion can not be generaliied, since the sensitivity of the response of
this structure to the behavior of the wall after yielding with regard to the

residual forces is not known.

5.5.7 Effect of Time Step and Residual Force

Although a detailed study of the effects of numerical errors (numerical
errors due to ignoring residual forces and deformations) on the computed
responses of R/C structures are beyond the scope of this study, it is
essential to study this effect in Structure-3 since a small time step is not
possible, because of the computer cost and number of analyses.

By choosing a large time step for updating structural stiffmess matrix,
it is obvious that some of the response characteristics which are influenced
by the higher modes may not be incorporated in the analyses. Furthermore,
the errors arising from overshooting and undershooting may be significant
enough to affect the post-yield responses. In addition, large time step
causes different force-~deformation characteristics in some members,
especially in the shear wall, and may somewhat affect the overall structural
response.

In order to estimate the effects of time step (time step for wupdating
structural stiffness matrix) and the accumulation of the residual forces,
two aznalyses are carried out, The response of Run-1 is obtained by updating
structural stiffness matrix every 4 steps (i.e. every 0.002 sec.). The
structural stiffness matrix is updated every 8 steps in Run-1b, (i.e. every
0.004 sec.). In the both runs the numerical integration of the equations of

motion are carried out with the time step of 0.0005 sec.
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The maximum responses of these two rums are listed in Table 5.11, The
response time  histories, the beam ductilities, and the corrected
force-deformation relationships of the wall at the base and beam at the
fifth level are shown in Figs. 5.52 vs. 5.41, 5.53, 5.54 vs. 5.45, and 5.55.
Also shown in Fig. 5.54 is the force~deformation relationship of the wall at
the base as obtained in Run-lb.

As mentioned in section 3.10, the computed incremental nodal
displacements which are calculated from the equations of motion are assumed
to be correct. The resisting forces corresponding to these displacements
are calculated from the state of the structure at the beginning of that time
step. These forces are corrected, if necessary, to satisfy the current
force~deformation relationships. Therefore, some residual forces are
created whenever the force passes one of these four break points, Fig. 3.4.
Two forces are preserved at the end of each element. One is the response
force. (the response forces at a time step are calculated as the sum of all
the increments to that time step). The other is the corrected force which
satisfies the force-deformation relationship in the hysteresis rules.

No iterations are carried out on the element states during or subsequent
to a time step, resulting in imbalance forces arising from any change in
properties that occur 1in the structure during that time step. . These
imbalance forces are not applied as residual forces to the structure during
the next time step to eliminate the accumulation of these forces. Due to
the accumulation of these residual forces the position of the zero force
(the position for the changing slope from unloading to reloading) is shifted
by as much as 10 7 of the yield moment in Run-lb, Fig. 5.54. The
irregularities and deviations observed in the moment-curvature relatiomns of

the wall at the base as seen in Fig. 5.54 are caused by these residual
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forces and numerical errors arising from the magnitude of the time step used
in the updating structural stiffness matrix,

The best method to minimize these types of errors is to reduce the time
step. Another method, that still may converge to the wrong results but
usually has been used in the dynamié analysis (Kanaan and Powell, 1974;
Mahin and Bertero, 1975 Luyties, et al., 1976; Emori and Schnobrich, 1978),
is to consider the residual forces as external forces in the next time step.
Another method which normally used in the static analysis, is the procedure
which satisfied equilibrium exactly at the end of each load increment. In
this method, if yielding occurs during a load incremeht, the program backs
up that increment and determines the load increment that just produces
yielding. In this procedure then the load increment is not constant. As
mentioned earlier, the first method is used in this study.

Comparison of the results of these two analyses (Run-1 and Run-1b)
indicates that the analytical model in Run-1b was more flexible than the
analytical model in Run-1 after 1.2 seconds of the response. This is only
because the beams in Run~lb were more damaged tham those in Run-l. At times
1.2 sec., 1.6 sec., and 2.0 sec. while most of the beams in Run-lb were in
the strain-hardening range, the wall remained in the reloading range. In
other words, in the positive displacement direction, the moment iﬁ the wall
at the base was larger than yield moment only at 0.8 Sec., Fig. 5.54. From
these results, it can be said that the energy dissipated through the frame’s
plastic hinges consists of a significant percentage of the total energy
dissipated by the structure. Therefore, if a small portion of the total
energy was dissipated through the wall”s plastic hinge at the base,
different forms of modeling of the shear wall at the base may mnot lead to

significant differences in the dynamic responses of this structure.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

The pﬁrpose of this study is to provide a method of analysis capable of
performing an inelastic analysis of plane, rectangular wall-frame and/or
coupled shear wall structures under static as well as dynamic loads. Such a
method (computer program) is developed to answer two main objectives of this
study. The first objective is to develop a procedure for comsidering axial
force~moment interaction in evaluating the stiffness matrix for a column
element. This objective is achieved by formulating a relatively simple but
refined analytical procedure capable of considering the effect of
fluctuation of the axial force on the element stiffness matrix (Chapter 2).
The second objective is to discuss the influence of the different modeling
of the wall element on the response of a R/C wall-frame structure.

To complete these two tasks, an analytical model 1is developed and
presented in Chapters 2 and 3. The analytical model is based on flexural
line elements representing beéms, columns and walls. Four different finite
element models which take into account inelastic flexural effects are built
into the program., The structural elements can be specified to be any of
these four element models, namely, the one-component model (Sectiom 2.5.1),
the general two-component model (Sectiom 2.5.2), the multiple spring model
(Section 2.5.3) or, the model which is presented in this study (Section
2.5.4). In the first two analytical element models, the member is made up
of a single line element. Member end moments are related directly to member

end rotations. Therefore, the 2 by 2 element stiffness matrix which relates
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the end moments to end rotations 1is <calculated directly from the
force-deformation relations at each end. In the other two analytical
element models, the member is divided longitudinally into subelements. In
each of these subelements the local cross-sectional forces and deformations
are related. The resulting functions are integrated along the element to
give an end moment to end ro;ation relationship.

The analytical prbcedure is developed to study the nonlinear behavior of
wall-frame and/or coupled shear wall systems subjected to static as well as
dynamic loads. This procedure is applied to two coupled shear wall models
and one wall-frame model. These model structures are analyzed for both
static loads as well as dynamic loads and their computed results are
compared with the test results (Chapter 5). The effects of some assumed
analytical conditions on the maximum responses and the response waveforms of

the model structures are also discussed (Chapter 5).
6.2 Conclusions

Based on the results of this study, the following conclusions may be
stated.

l-==The computer program as developed in this study can be wused to
predict static as well as dynamic inelastic behavior of coupled shear wall
and/or wall-frame structures in a post-yielding range with a reasonable
accuracy. Results of three analyses using the program and the corresponding
results established on the basis of experiments are in good agreement. The
analytical models for all\ three structures satisfactorily reproduce the
maximum responses and the response waveforms, especially the elongations of
the periods due to the change of structural stiffness, that were recorded

during the tests. The most significant exception in the high quality of
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reproducation of the experimental results by the analytical models is the

maximum responses of Structure-2.

2-—-The accuracy of the cqlumn element model 1is demonstrated by the
analyses of a one column element and two coupled shear wall structures. The
comparisoﬁ between experimental and analytical results shows very good
agreement, leading to the conclusion that the model is very effective in
predicting the nonlinear behavior of R/C column frame and wall members. The
analytical column element predicts changes in strength and stiffness due to
changing axial force. It is demonstrated that expression 2.6 can
incorporate the effect of axial force variation in the moment—curvature
relationships. Increase (Decrease) in momeni-carrying capacity and
stiffness of a section due to increase (decreasef in the axial force is

successfully reproduced in the force-deformation curve by expression 2.6.

3=-~Fluctuation of axial force in a coupled shear wall as well as in
frame structures plays a major role in establishing maximum forces and
deformations in the individual walls (or individual columns in the frame
structures) . The analysis which ignored the effect of changing axial force
on flexural strength and stiffness underestimated maximum shear and moment
(by as much as 50 %, depending on the degree of coupling) in the individual
members at the lower levels of the structure.

In the coupled shear wall systems, variation in the axial force between
the walls causes not only a shifting of the shear and bending moment from
the tension wall (wall which has axial force smaller than initial axial
force) to the compression wall, but also a changing of the moment-carrying
capacities -of the individual walls due to the axial force-moment

interaction. Therefore, increasing the shear force of the compression wall
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may cause shear failure in that wall although its shear strength also
increases with increasing axial force. Furthermore, decreasing the yield
moment of the tension wall may cause high deformation demand in that wall

although its available ductility increases with decreasing axial force.

4-=—=~Comparative Studies of the overall responses of the two couﬁled
shear wall structures with and without the effects of the changing axial
force on the wall element stiffness matrix reveals that the response
waveforms for the two cases are very similar. The displacements, base
shear, andkbase moment waveforms for the two cases are roughly the same.
Maximum forces and displacements as well as maximum ductilities of the
coupling beams in these two coupled shear wall structures are not sensitive
to the axial force effects in the walls. The major effect of changing axial
forces in the walls is the reduction in the section stiffmess and the vyield
moment of one wall due to the decrease in axial force with the reverse
happening in the other wall. This behavior does mnot however have
significant control on the overall behavior of the coupling beams. In other
words, it 1is demonstrated that although the shear forces and the
corresponding bending moments in the individual walls are significantly
affected by the changing of axial force, the axial forces in the walls

themselves are not greatly affected.

'5-—-The hysteresis relations of the coupling beams exerts a major effect
on the overall hysteresis relation of coupled shear wall structures. The
coupling between the two walls exerts a considerable influence on the
structural stiffness. Pinching action and strength decay of the coupling
beams produce larger displacements due to the decrease in the degree of the

coupling between the two walls.
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6--—Comparison of experimental and analytical results show that the
one-component model is suitable for modeling inelastic behavior of R/C beam
members ., The good agreement  between  experimental and analytical
load-deflection curves indicates that when the I.P. (Inflection Point) is’
fixed, the assumption of a concentrated equivalent nonlinear ’rotational
spring at the end of the cantilever beam in order to accounf for inelastic
deformations is adequate. Shifting of the I.P. in the beams with equal
positive and negative yield moment capacities does not have a significant
effect on the response of a structure. This is because in the beams with
the absence of any gravity load applied to the beams, yielding at one end of
the beam shifts the I.P. away from its elastic position. However, yielding
at one end 1is wusually quickly followed by beam yielding at the other end
thus shifting the I.P. back to nearly its elastic I.P. position. Therefore,
in view of the fact that many different nonlinearities such as bond slip,
pinch action and strength decay can be incorporated in this model very
easily and also with regard to simplicity, the use of one-component model

for the beams of frame structures is believed to be appropriate.

7--=It is shown that the general two—compbnent model has the same
versatility as the one-component model. The results of these two models
when they are used to model the coupling beams in the coupled shear wall

structures are very similar.

8-—-The observations related to the different modelings of the wall in
Structure-3 under static and dynamic loads are presented in Sections 5.5.3
and 5.5.6. The main conclusion among those observations is that in the
multiétory wall-frame structures, evaluation of the wall stiffness matrix

based on the one-component model with an I.P. fixed at mid-height of the
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first story or the two-component model will result in a stiffer wall and
consequency stiffer structure. Therefore, the maximum moments at the base
of the wall as obtained from the one-component model (I.P. at mid-height)
and the two-compomnent model overestimate the maximum value of the moment as
compafed with ihe moment obtained from a more accurate element model
(multiple spring model). The position of the I.P. directly affect the
strain-hardening slope of the nonlimear rotational spring at each end. The
strain-hardening ratio (strain-hardening stiffness over (3EI/L)) of the
nonlinear rotatiomnal springs for the cases of the I.P. at distances 0.115 m,
0.229 m, and 0.760 m up from the base are 6.4 .Z, 3.2 %, and 1.0 Z%,
respectively.

Comparison of the analytical results of the wall-frame structure
obtained from using two different element models, (one-component model with
an I.P, fixed at elastic position and multiple spring model), to represent
the wall element at the base indicates that the response waveforms for the
two analytical models are similar. This means that the shifting of the I.P.
due to yielding of the wall at the base as well as propagation of the
inelastic zome do not have significant effects on the responses of this

structure, a structure with a "weak" wall.

6.3 General Observations

One obvious shortcoming of this study is that a relatively small number
of test structures is considered. One cantilever column member and two
coupled shear wall structures were used to test the accuracy of the proposed
model. Under dynamic loading, these two coupled shear wall structures were
not subjected to very severe earthquake motiomns. In both structures the

walls did not yield when they were under compressive forces. When axial
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force-moment interaction was not considered, the maximum moment in the walls
was less than 95 7 of the yield moment in Structure-l and less than 85 7 of
the yield moment in Structure-2. Only one structure, Structure-3, was used
fo study the effects of the different modelings for the wall element on the
response .of the structure. Therefore, it is believed that this study lays
the foundation upon which further research may provide additional insight

into the computed behavior of coupled shear wall and wall-frame structures.
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TABLES
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Table 2.1 Comparison of the Flexural Flexibility Coefficients
of the One- and the General Two-Component Models

One-Component Model

f11 12 92
; 2 _ 2 2 T oL
Both Ends Elastic 3ET 6E1 3BT Far = 3er T 2 Uan T 3ET
£o= -2 4 (e -1y
Bl 3EI ' ."B' BB  3EI
Not Both Ends in the fAl - E%f fBl If QA = QB = /2
Strain-Hardening (S. H.)
% 1
£ 72 Upp * 357D
. 2 2 2 % 1
Both Ends in the S. H. 3P1EI - BET 3P1EI fB1 =3 (fBB 35T
General Two-Component Model
f f12 £29
, 2 2 2
Both Ends Elastic TET - TEL TET
3 1 fp2 3
£ < f Zf 4> f - = £ £, =2 (£, +£, )
Not Both Ends | D2~ A% |4 A2 4 B2 2 B2 A2 T2 Yiaa T taa
in the Strain-
Hardening £
A2 3 1 %
fpy 2 £ay £ 72 | % fe2 Vg faa| fpo =3 Ugp t fgp)
. 2 2 2
Both Ends in the S. H. 3PZEI - GPZEI 3p2EI

(f ) : Instantaneous end moment-end rotation
AA BB flexibility of unit length cantilever
beam at end A(B).
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Table 5.1 Stiffness Properties of Column Elements

A) SPECIMEN 4B
Axial Force kN 5.36

Moment-Curvature Relationship

First Slope kN-m’ 3.54
Second Slope kN-m’ 0.055

Yield Moment . kN-m : 0.345

Moment-Rotation Relationship

First Slope kN-m 41.81
Second Slope kN-m 2.05
Yield Moment kN-m 0.375

B) SPECIMEN 4C

Axial Force kN 3.25
Change of Yield Moment/
Change of Axial Force m 0.019

Moment-Curvature Relationship

First Slopé kN-m’ 3.20
Second Slope kN-m’ 0.055
Yield Moment kN-m 0.305

Moment-Rotation Relationship

First Slope kN-m 37.80
Second Slope kN~-m 2.05
Yield Moment kN-m 0.325
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Table 5.2 Assumed Material Properties for Structure-l

Properties
CONCRETE
) .

Compressive Strength, fC ksi 5.3
Tensile Strength, ft ksi 0.5
Strain at fé 0.0038

STEEL
Yield Stress ksi 43 .7
Ultimate Stress ksi 53.1
Young“s Modulus ksi 29000.
Strain at Yield 0.0015
Strain at Ultimate 0.066

Strain at Strain-Hardening 0.025
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Table 5.3 Stiffness Properties of Constituent Elements of Structure-l

A)

B)

c)

BEAM (1 No. 11 gage wire per face)

Moment—Rotation Relationship, Unit Length

3EI Kip-in 720.
First Slope Kip-in 310.
Second Slope Kip-in 25,

Yield Moment Kip~in 0.625

BEAM (in "Reduced™ Model)

Moment-Rotation Relationship, Unit Length

3EI Kip~in ' 1440.
First Slope Kip-in 620.
Second Slope Kip-in 50.
Yield Moment Kip-in 1.25

Free Parameters in Hysteresis-2

o =0.4 My =4S Gpo=1.25

Cyyy = 100 k_=0.1 k= 100,

g

WALL (6 No. 11 gage wire, Uniform)

Axial Rigidity Kip 14000.
Shear Rigidity Kip 8200.
Axial Force Kip 1.5
Change of Yield Moment/

Change of Axial Force in 3.0

Moment—-Curvature Relationship

First Slope Kip~in? 16875,
Second Slope Kip-iri2 200.
yield Moment Kip-in , 13.5
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Table 5.4 Comparison of the Mode Shapes of the 6-Story and
"Reduced" Model of Structure-l

First Mode Second Mode Third Mode
Level Whole Reduced Whole Reduced Whole Reduced
6 - 1.28 1.28 -0.36 ~-0.35 0.08 = 0.08
5 1.07 -0.06 -0.15
4 0.83 0.83 0.40 0.39 ~-0.22 -0.22
3 0.56 0.50 0.05
2 0.31 0.31 0.41 0.41 0.28 0.28
1 0.10 0.16 0.15

Frequency, Hz

5.7 5.4 20.7 19.6 41.9 38.6

Table 5.5 Measured and Computed Maximum Responses of Structure-l

Level Measured Run-0 Run-1 Run-2 Run-3 Run-4 Run-5 Run-6

1--DISPLACEMENT (in)

Top 0.46 0.61 0.46 0.42 0.46 0.46 0.44 0.47
Mid 0.30 0.42 0.28 0.26 0.27 0.27 0.27 0.26
Low 0.12 0o.16 0.10 0.09 0.09 0.09 0.09 0.09

2~-~ACCELERATION (g)

Top 0.89 2.29 1.17 1.16 1.18 1.18 1.13 1.24
Mid 0.82 2,26 1.24 1.29 1.24 1.24 1.23 1.35
Low 1.33 1.54 1.36 1.33 1.36 1.36 1.39 1.44

3--OVERTURNING MOMENT (Kip-in)

Top - 41.2 20.2 19.8 20,5 20.5 20.3 21.7
Mid - 88.2 33.2 33.4 34.2 34.2 33.9 35.4
Low 58.0 151.9 51.4 50.2 53.4 53.4 49.7 52.3

4--BASE SHEAR (Kip)

Top - 2.28 1.12 1.09 1.13 1.13 1.12 1.20
Mid —- 3.43 1.28 1.32 1.33 1.33 1.39 1.37
Low 1.54 3.94 1.75 1.68 1.79 1.79 1.70 1.79
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Table 5.6 Assumed Material Properties for Structure-2

Properties

CONCRETE

Compressive Strength, f' ksi 4.5
Tensile Strength, ft € ksi 0.4
Strain at f' 0.003
Strain at fi 0.00013
STEEL

Yield Stress ksi 712,
Ultimate Stress ksi 83.
Young “s Modulus ksi 29000.
Strain at Yield 0.0025
Strain at Ultimate 0.08

Strain at Strain-Hardening 0.01
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Table 5.7 Stiffness Properties of Constituent Elements of Structure-2

A) BEAM (1 No. 8 gage wire per face)

Moment-Rotation Relationship, Unit Length

3EI Kip-in 600.
First Slope Kip-in 270.
Second Slope Kip-in 27,
Yield Moment Kip-in 1.55

Free Parameters in Hysteresis-2

= 0. [ = ° = o
o 5 Uy 1 CMax 0.7
= 0.4 =0.1 = 54,
CMin kg kp
B) Wall (l-st to 6-th level)

Axial Rigidity Kip 12700,
Shear Rigidity Kip 7600.
Change of Yield Moment/
Change of Axial Force in 2.2
Moment-Curvature Relationship

First Slope kip—in: 56000.

Second Slope kip-in 1000.

yield Moment kip-in- 39.

Axial Force Kip 3.

C) Wall (6-th to 10-th level)

Axial Rigidity Kip 12700.
Shear Rigidity Kip 7600 .
Change of Yield Moment/
Change of Axial Force in 2.2
Moment-Curvature Relationship

First Slope kip-in 37000.

Second Slope kip-in 420,

yield Moment kip-in 20.

Axial Force Kip 1.
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Table 5.8 . Measured and Computed Maximum Responses of Structure-2

Level Measured Run-0 Run-1 Run=2 Run-3

1--DISPLACEMENT (in)

10 1.16 0.76 0.92 0.90 0.87
9 1.00 0.68 0.82 0.80
8 0.86 0.60 0.71 0.69 0.68
7 0.71 0.51 0.60 0.58
6 0.58 0.42 0.48 0.47 0.47
5 - 0.33 0.36 0.35
4 - 0.24 0.25 0.25 0.26
3 - 0.15 0.16 0.15
2 - 0.08 0.08 0.08 0.08
1 . 0.02 0.02 0.02
2--ACCELERATION (g)
10 1.66 1.43 1.33 1.34 1.33
9 1.12 1.05 0.96 0.97
8 0.75 0.73 0.71 0.71 0.73
7 0.73 0.75 0.65 0.66
6 0.85 0.78 0.72 0.72 0.73
5 0.86 0.78 0.74 0.74
4 0.82 0.71 0.67 0.67 0.67
3 0.71 0.60 0.57 0.58
2 © 0,57 0.49 0.48 0.48 0.49
1 0.47 0.42 0.42 0.42
3--OVERTURNING MOMENT (Kip-in)
9 7.5 6.4 5.8 5.9
8 19.9 17.5 15.6 15.8 15.9
7 34,6 31.4 28.0 28.3
6 51,5 46 .7 41.7 42.3 42.4
5 69.2 62.2 55.8 56 .5
4 86.0 77.3 69.5 70.5 71.0
3 102.1 92.0 82.7 84,0
2 118.9 107 .4 95.8 97 .4 98.7
1 135.4 130.0 110.2 112.4 :
Base 151.5 154.8 126.9 129.8 131.9
4--BASE SHEAR (Kip)
9 0.83 0.71 0.64 0.65
8 1.37 1.22 1.08 1.10 0.89
7 1.69 1.55 1.39 1.41
6 1.88 1.72 1.57 1.59 1.50
5 1.91 1.81 1.66 1.69
4 1.94 2.00 1.76 1.78 1.75
3 2.12 2.30 1.94 1.98
2 2.15 2.56 2.13 2.17 2.12
1 2.37 2.74 2.36 2,37
Base 2.54 2.86 2.53 2.55 2.54




120

Table 5.9 Assumed Material Properties for Structure-3

Properties

CONCRETE

Compressive Strength, fé MPa

Tensile Strength, ft MPa
Young“s Modulus ' MPa
Shear Modulus MPa

Strain at f'
Strain at Uftimate
Strain at ft

STEEL
Yield Stress MPa
Ultimate Stress MPa
Young“s Modulus MPa

Strain at Yield
Strain at Ultimate
Strain at Strain-Hardening

Beams &
Columns

352,
382.
200000
0.0018
0.07
0.01

42,1

3.5

23000.

13000.

0.003

0.004

0.00011
Wall
338,
400.

. 200000.
0.0017
0.07
0.002
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Table 5.10 Stiffness Properties of Constituent Elements of Structure-3

A) BEAM (2 No. 13 gage wire per face)

Moment—-Rotation Relationship, Unit Length

3EI kN-m 3.6
First Slope kN-m 2.0
Second Slope kN-m 0.07
Yield Moment kN-m 0.09
B) BEAM (3 No. 13 gage wire per face)
Moment—-Rotation Relationship, Unit Length
3EI kN-m 4,65
First Slope kN-m 3.00
Second Slope kN-m 0.09
Yield Moment kN-m 0.13
C) COLUMN (3 No. 13 gage wire per face)
Axial Rigidity kN 40000.
Change of Yield Moment/ ,
Change of Axial Force m 0.02
Moment-Roatation Relatiomship, Unit Length
First Slope kN-m 8.0
Second Slope kN-m , © 0.25
Yield Moment kN-m 0.29
Axial Force kN 5.1
D) COLUMN (2 No. 13 gage wire per face)
Axial Rigidity kN 40000.
Moment-Rotation Relationship, Unit Length
Axial Force kN 0.85 2.0 3.5 5.1
First Slope kN-m 4.5 5.0 6.0 7.0
Second Slope kN-m 0.2 0.2 0.2 0.2
Yield Moment kN-m 0.145 0.17 0.20 0.23
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Table 5.10 (Continued)

E)

F)

WALL (4-th to 10-th level)
Shear Rigidity kN : 50000.

Moment-Curvature Relationship

First Slope KN-u’ . 600.
Second Slope KN-m’ 2.6
Yield Moment kN-m 4,25

WALL (l-st to 3-rd level)
Shear Rigidity kN 50000.

1--Moment-Curvature Relationship

First Slope KN-m 430,
Second Slope KN-m’ 2.6
Yield Moment kN-m 4,25

2--Moment-Rotation Relationship, Unit Length

First Slope kN-m 1290,
Second Slope kN-m 40.
Yield Moment kN-m WA

3--Moment-Fixed End Rotation Relation (Only at the base)

First Slope kN-m 12000.
Second Slope kN-m 1200.
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Measured and Computed Maximum Responses of Structure-3

Table 5.11
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FIGURES
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Fig. 2.1 1Idealized Stress-Strain Curve for Concrete
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Fig. 2.2 1Idealized Stress—Strain Curve for Steel
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Curvature

Fig. 2.3 Idealized Moment-Curvature Curve for a Member
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Fig. 2.4 Effect of Axial Force on M- ¢ Curve
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Fig. 2.5 Moment—-Axial Force Interaction Diagram

1= End Rotation

2- Bending Moment Diagram

3= Curvature Diagram

Fig. 2.6 Calculation of End Moment—-End Rotation
Relation for a Cantilever Beam
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Nonlinear Rotational Springs

M

Elastic Member, EL

@

Fig. 2.7 One-Component Model

Elasto—Plastic Comp.,

AN

(I-p)k

\Elostic Comp., pk

B B

Fig. 2.8 Two~Component Model
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Case-1, Stiffness Matrix K ;* ;
. A B
Case~2, Stiffness Matrix KA £ :
A B
, 4
Case-3, Stiffness Matrix K T L=
B A B

Fig. 2.9 Three Fundamental Cases in Tw0+Component Model

Fig. 2.10 Assumed Loading Condition along a Member
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1- Element Model

2- Bending Moment
Diagram
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K

3~ Section Stiffness
Distribution

Fig. 2,11 Multiple Spring Model



131

._\fl___r_ -
i A 8 }
1- Actual Element A N N, -
L Clear Spon, [ ' .
>

Nonlineor Rototional Spring

k
/"A" [ Liak

' ~ ' - : HofS
] Pr
i Inelastic Zone ' Rigid Zone
2~ Idealized Element ' ;;\\\~ . Elastic Zone —— } /
| U | (1=n-ng) f Y

sy |

3= Incremental Moment
Diagram

k

"a

4= Incremental Curvature
Diagram

5= Element Deformation

Fig. 2.12 Proposed Model
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Fig. 2.15 Inelastic Zone Length Discrepancy due to
the Different Actions
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Rigid Zone

V,V ; ! MA+MB
2

Equilibrium of a
Rigid End Zone

- Global Sign Convension

Fig. 3.1 Treatment of Rigid End Zone

A Horizontal Member

A Vertical Member

Fig. 3.2 Typical Members in Global Coordinates System
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H. DOF "i-1"

H. DOF i

Fig. 3.3 Equivalent Lateral Load to Account for
Gravity Effect

Force g B A
ARE RD/C
C
A Fyn : Force at the Beginning

of Loading Step

Fg ¢ Force at the End of
Loading Step

Fc : Corrected Force

A Deformation
C/ RF : Residual Force
B ;
Zi-RF RD : Residual Deformation

Fig. 3.4 Treatment of Residual Forces and
Deformations in the Analysis
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Fig. 4.1 Hysteresis-1

» Takeda Hysteresis Model
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Fig. 4.3 Hysteresis-2, Hysteresis Model with Effects of Pinching
Action and Strength Decay
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APPENDIX A

CALCULATIONS OF COLUMN SECTION STIFFNESS PROPERTIES

The detailed procedures for evaluating the column section stiffness

properties are discussed in this Appendix. The values, %%- and %%-, which

are employed in Eq. 2.6 of Section 2.3.1 are calculated here based on

several assumptions.

A.l Value of oM
39
The value of %ﬂ is the slope of the moment-curvature curve with a

constant axial force acting on the section. Actually the axial force acting
on the section of a column element does not remain constant but rather 1is
subjected to change during the loading process. Due to this changing of
axial force, the moment-curvature curve can be considered to undergo
continual shifts from one moment—curvature curve to another. Therefore, the
modified section stiffness, which is a transition slope from one M~¢ curve
‘to another, can not be evaluated froﬁ a single hysteresis model. A single
primary force-deformation curve is required in the most available hysteresis
models.,

To overcome this deficiency, a force-deformation curve for a specified
axial force 1is chosen as the basis for the primary curve of the hysteresis
iocop. The initial axial load, or an assumed average axial force, for the
element 1is considered as the specified axial force around which the primary
curve is constructed.

The procedure for calculating the location of a point on the primary
curve associated with the present loading level is illustrated in Fig. A.l.
Let us assume that at the end of a loading stage, point A is obtained. At

point A, the section has specific values of moment, m, axial force, n, and
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curvature, ¢ . However, all points on this moment-curvature curve correspond
to the axial 1load n. To be able to develop curvature ¢ , while under a
different axial force n_, the section should be loaded with moment m which

can be evaluated from the following expression:

oM
m =m~ =— (n-n A.l
o n, (n-n ) (A.1)
m Moment on the primary curve, moment-curvature curve with
axial force n;
m : Moment on the present curve, moment—curvature curve with

axial force n;
oM . .
The value of 3 for an arbitrary moment and axial force can be

established by modifying the slope of primary moment-curvature curve.

oM
A=) (n-n )
oM o7 ol ] (A.2)

oo T
3% - %9 o[l+ bm_

(%% o Slope of primary moment-curvature curve at present
loading stage;
A(gm : Increment of oM at present loading stage;
on on
Amo : Increment of moment at present loading stage on primary
curve.
A.2 Value of oM
- on

oM . .
The value of = is the slope of the moment-axial force (M-P) curve for
a section corresponding to a constant curvature. A series of contours of
equal curvature of M-P relations for a column section are shown in Fig. A.3,

(only a portion of the curves which are around zero axial force are shown in
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Fig. A.3). Each curve defines those combinations of moment and axial force
which will result in a given curvature. There are an infinite number of
such M-P curves corresponding to different values of curvatures.

In order to considerably simplify the task of determining the value of

oM
on °

Furthermore, it is also assumed that the yielding curvature is constant

. . oM . . .
it 1is assumed that 5n 1is only a linear function of moment level.

regardless of the axial force level on the section. Hence, the value of
%%~ at an arbitrary point on the hysteresis loop can be evaluated by
linearly interpolating between the values of %%’ at zero moment and at
yield moment, Fig. A.2. Because the yielding curvature 1is assumed - to be
constant regardless of the axial force level, the value of %%’ at the yield
moment is equal to the slope of M~P interaction diagram, (slope of line AB
in Fig. 2.5). The value of %%- at zero moment is zero. After the yield
level, the value of %%‘ is considered to be constant and equal to the value
at the yield moment.

In this procedure, whether the yield point has been exceeded or not can

be checked either by referring to the hysteresis loop of the primary curve

or by comparing the moment with the current yield moment.

A.3 Summary

Based on the foregoing assumptions, concepts involved in the procedure

. . . M oM
to evaluate the section properties such as; yield moment, ~%5 , and 5 at

an arbitrary moment, m, and axial force, n, take the form described below,

As the value of %%» is considered to be a linear function of moment
level, the yield moment as well as *g% can be evaluated from Eqs. A.3 and
A4 (or A.5).

oM
Moo= 52 (n-n ) = My (14C,) (A.3)
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M oM m
ol _ Y. O m < M » (A.4.1)
on  on Myo o — yo
oM
M _ "y m > M (A.4.2)
on  on o — vo
or
oM
My, m m< M (A.5.1)
on dn My -y
oM ,
M_ ¥y m>M (A.5.2)
on on -y
where

5—1- : Slope of line AB in the yield moment-axial interaction
n

‘diagram as shown in Fig. 2.5;

n : Axial force on the section (compression is positive);

no Axial force for which the primary curve is evaluated;

Myo : -Yield moment of the primary moment-curvature curve;

My : Yield moment of the section at current axial force, n;

m, Corresponding moment on the primary moment-curvature
curve.

and C, is defined as follows:

4
oM n-n_
c =—L = (A.6)
4 on Myo )

The value of moment in the primary moment-curvature curve, m  can be

evaluated from equation A-1 or based on the assumptions in this section from

the following Eqs. A.7:

o ,
= —— < o °
n = Tic m < My (A.7.1)

m=-C * M m>M (A.7.2)

8
]
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Finally, the slope of moment-curvature curve under current axial force,

% , 1s related to the slope of the primary moment-curvature curve, (g—g}l)o, by

the expression:

M M '

3 " (_ad) o, (1) m < My (A.8.1)
M M ‘

5 " (_343 . m > My (A.8.2)
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APPENDIX B

CALCULATIONS OF COLUMN ELEMENT STIFFNESS MATRIX

The purpose of this Appendix is to logically and systematically review
the steps involved in the element stiffness evaluation based on the model
which is presented in the section 2.5.4.

At the end of each loading step, the member end moments and axial force
are determined from the current member displacements based on the element
stiffness matrix at the beginning of that loading step. These new member
end moments and axial force as shown in Fig. B.l are implemented to evaluate
the new element stiffness matrix for the succeeding loading step.

Let us assume that at the end of a loading stage, an element of a
structure has specific values for its forces, Fig. B.l. Also let us assume
that "nb" is the axial force on which the primary moment-curvature curve is

oM

developed, and-7§§ is the slope of the yield moment—axial force interaction

diagram of all sections of the element. Based on these assumptions, the
procedures to determine five unknowns in Eq. 2.23, (EIe,’ Tys Tps Ny s

n. ), are as follows:

B

A) Calculation of the yield moment at the current level of axial force

from moment-axial force interaction diagram.

M =M (1+C ) (B.1)
y yo 4 ,
where the symbols refer to Fig. A.l with C4 defined as:
oM n-n_
=_J %
¢, =5 7 (B.2)
yo

B) Calculation of elastic flexural rigidity, EIee The essential steps
in the determination of the effective elastic section stiffness are as

follows:
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STEP l--Determining the change of moment at mid-length of the element to

evaluate the change of curvature, A¢C.
- Mm ) (B.3)

STEP 2--Determining the value of %ﬁ from Eq. A.5.1.

n
oM m
Mm_ v, _C

where m. is the moment at the mid-~length of the element.

STEP 3--Determining the slope of M-¢ curve under present axial force

from Eq. A.8.1.

oM _ oM
3% - G500 (1+C,) (B.5)

STEP 4--Determining the elastic flexural rigidity at current axial force

from Eq. 2.6,

oM oM , An

EIe N 56- o A¢C
A¢c#0 (B.6.1)
oM . M
0,30*355Elei2.0 3
oM
A¢C=0 El, = 3% (B.6.2)

C) Calculation of the current section stiffness at ends A and B. Based
on the wvalues -of moment at the critical sections , there are two
possibilities:

1---The critical section has not been yielded, and the moment at the
critical section, m , is smaller than the yield moment (m g_My). In
this case the current section stiffness is equal to the elastic section

stiffness, i.e. r=l.
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2--~-The critical section has yielded. The current section stiffness,
EIi=rEIe, is calculated from the following steps:
STEP l1--Transferring moment to the primary M-¢ curve, Figs. A.l, and

A.2,

m
= <
mo=7 C4 m My (B.7.1)

=}
[

m=-C *M m> M (B.7.2)
o 4 yo - Ty

. STEP 2--Based on the value of m and loading history, evaluate the slope

M

of the M-¢,(8¢

)O, and the change in the curvature, (A¢)O.

STEP 3--Evaluation of the slope of the M-¢ curve at current axial force.

oM oM
ot _ oM < M B.8.1
5 390 (1+c,) m< M ( )
oM oM
on et M B.8.2
5 590 m > . ( )
. oM L
STEP 4--Evaluating o at present condition from Eq. A.4.
oM
M _ Yl m< M (B.9.1)
on on My -y
oM
g::—lr\, m > M (B-9¢2)
\ on on -y

EI ~8_¢)+§1; E
(B.10.1)
. oM . oM
0.10 * 2 < EI; ST
- M < Iy 2
BL = 55 |m| <z (B.10.2)
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These 1limitations are necessary to prevent any unrealistic
values for the current section stiffnesses due to the
assumptions which are wused in evaluating the variables in Eq.
2.6.
In this study, the axial force is assumed to remain constant
when the tension or compression wall is in the strain-hardening
zone., This assumption 1s necessary because the effect of
changing axial force is not considered in the strain-hardening
ratio. In other words, in establishing the wvarious
moment-curvature curves, the yield curvature as well as the
strain-hardening ratio for any moment-curvature curve are
assumed to be the same regardless of the axial force level.

D) Calculation of the effective section stiffness, EI". The effective

section stiffness is evaluated from Eq. B.1ll, if moment at the critical

section is in the unloading or feloading range, otherwise from Eq. B.1l2.

1 1 -1
ET T EI.)
e 1

(B.11)
EI = EI (B.12)

E) Calculation of the 1inelastic 1length at both ends. Based on the
values of m, and m s there are two possibilities:

1--1f mA(mB) f_My , and the critical section at this end has not been
yielded. then

- B.13
nA(nB) 0. ( )

2--When the moment at section A (B) is in the strain-hardening range,
the 1inelastic length at end A (B) 1is calculated from Eq. B.l4.l

(B.14.2), otherwise the maximum value of the inelastic length 1s used.
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R S ma1/my) (B.14,1)
ny = T > 0.02
~ A T Mg
B Tl I (L Y04 S R (B.14.2)
B m, + m, -

To prevent possible decreases in the inelastic length when the end
 moment is in the strain-hardening, Fig. B.2, a few restrictions are

applied in the value of the inelastic length.
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AmA
An Amc

B
Loa L
\Ama

Change of Forces

me

Total Forces

Fig. B.l Member Forces at the End of a Loading Step

Q e ~<:--Yield Moment at Current Axial Force

/
Decrease in the Inelastic Length
Inelastic Length at Previous Step

Fig. B.2 Inelastic Zone Length Discrepancy due to

the Shifting of Inflection Point
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