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/ 
CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

Reinforced concrete cooling towers are amongst the largest thin shell 

structures being constructed today. Towers exceeding 160 m (525 ft) have 

already been built, and towers with a height exceeding 200 m (656 ft) or 

more are already under consideration (Zerna and Mungan, 1982). These large 

size cooling towers are required for the dry cooling of high capacity power 

plants .. 

The design of cooling tower shells is invariably governed by wind 

loading, and often by Code of Practice requirements for an adequate factor 

of safety against buckling (BSI BS3445, 1975; ACI-ASCE Committee 334, 1977; 

lASS Working Group No .. 3, 1977).. However, what constitutes an adequate 

factor of safety against buckling, and how to calculate the buckling load 

has not yet been fully resolved.. This can be inferred from the differences 

between the 1977 and draft 1982 versions of the ACI recommendations for the 

design of cooling towers (ACI-ASCE Committee 334, 1977 and 1982). In both 

versions, under the section Practice, the following guidance is given: 

"For wind load, the critical shell buckling pressure may be 

estimated from test results. Alternatively, a buckling analysis 

for wind forces should be made using the theoretical tower 

geometry and boundary conditions, and including the influence of 

dead weight. When made, the analysis should account for the 

influence of any anticipated reductions in stiffness caused by 

hairline cracking in the concrete shell .. " 
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In the commentary to the 1977 version specific reference is made to the 

equations of Der and Fidler (1968), and it is recommended that a factor of 

safety of at least two be used, when accounting for the effects of cracking 

and dead load. No information is given on how to include the effects of 

cracking and dead load. In the draft 1982 version, any specific reference 

to the Der and Fidler equations has been removed and replaced, in part, by a 

reference to review publications (Abel and Gould ,1981; Abel, et al., 1982). 

Unfortunately, there is little agreement in the literature as to buckling 

strength evaluation. 

This study deals with the failure analysis of reinforced concrete 

cooling towers under wind loading, and investigates the effect of cracking 

and yielding of reinforcement on the failure load. The finite element 

method 1S employed, and suitable techniques to model material 

nonlinearities, cracking and geometric nonlinearities are investigated. 

1.2 OBJECTIVE AND SCOPE 

The objectives and scope of this investigation are summarized below: 

1. Investigate the use of degenerated finite elements in reinforced 

concrete material applications, including large displacements. 

Particular attention is given to efficient and economic techniques 

for including material nonlinearities. Suitable corresponding 

geometric nonlinear formulations are investigated. 

2. Develope a compatible eccentric shell stiffening element. 

3. Investigate and extend cracking models for reinforced concrete 

panel, slab and shell systems. 

4. Use the results of the above to investigate the failure of 
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reinforced concrete cooling towers under wind loading. The effects 

of geometric nonlinearities, the cracking strength of the concrete 

and the stabilising influence of tension stiffening of the concrete 

is examined and discussed. 

1.3 REVIEW OF PREVIOUS RESEARCH 

Research into the development of the finite element method (and in 

particular the degenerated shell element), reinforced concrete material 

modeling and cooling towers is far too numerous to even summarize here. 

Only a few references which are directly applicable to this investigation 

are noted below. 

1.3.1 Degenerated finite elements 

The degenerated shell finite element 

Ahmads et al. (1970) for the linear analysis of 

was originally introduced by 

shells. This element 1s 

derived by constraining the 3-dimensional continuum theory 

the 

to a 

finite 2-dimensional theory, simultaneously with its implementation 1n 

element procedure. A review of the development of this element in both 

linear and nonlinear applications can be found in Hughes and Liu (1981) and 

Ramm (1977). 

The degenerated element is simple to formulate and, in general, yields 

excellent results. However this element is expensive to use, in particular 

for nonlinear material applications. Consequently it is desirable to use 

techniques which yield an economic finite element formulation. Substantial 

savings in the computational effort required can be obtained by using 

explicit integration through the shell thickness, which was originally 

introduced for the linear analysis of thin shells by Zienkiewicz, et al. 
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(1971) and has been extended to the stress-resultant concept for material 

nonlinear applications by Parisch (1981). This approach is adopted ~n this 

investigation, and suitable corresponding geometric nonlinear formulations 

are presented. 

The degenerated finite element has been used by Abdel Rahman (1982) and 

Chan (1982) for the analysis of reinforced concrete slab and shell 

structures. Neither reference uses a true stress-resultant constitutive 

approach, although little saving in computational effort would have been 

obtained by Abdel Rahman for slab structures. 

1.3.2 Cracking models for reinforced concrete 

The first finite element model of reinforced concrete to include the 

effect of cracking was developed by Ngo and Scordelis (1967). Cracking was 

modeled as a separation of the element nodes, and requires a redefenition of 

the topology of the structure at succeBsive levels of cracking of the 

structure. 

To overcome the need for automatic generation of cracks without the 

redefenition of the element topology, and to allow for generality in 

possible crack direction the 'smeared' crack was introduced by Rashid 

(1968). In its earliest form, the incremental constitutive matrix for 

singly cracked concrete retained only the modulus of concrete in a direction 

parallel to the crack (Rashid, 1968; Cervenka, 1970; Franklin, 1970; Mikkola 

and Schnobrich, 1970). To prevent numerical instabilities and to model the 

friction existing on a cracked surface, the shear modulus (usually together 

with a reduction factor) was reinstated (Hand, et al., 1972; Lin, 1973; 

Yuzugullu and Schnobrich, 1973). 
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In the smeared crack models discussed above, the direction of the 

initial crack is fixed once it has formed (and while it remains open). The 

direction of subsequent cracking depends on the stress-strain behavior 

assumed subsequent to the formation of the initial crack, and can be either 

orthogonal (Lin, 1973; Darwin and Pecknold, 1974; Kabir, 1976;) or 

nonorthogonal (Hand, et al., 1972; Yuzugullu and Schnobrich, 1973; Abdel 

Rahman, 1982) to the primary crack. However, there are inconsistencies in 

the treatment of subsequent cracking in the literature (ASCE, 1981). 

Alternatively, it can be assumed that the crack orientation is always 

normal to the current direction of the maximum principal concrete stress (or 

strain). This model attempts to account for subsequent cracking of the 

concrete and changes in the average crack direction with increasing load. 

This approach was introduced by Cope, et al. (1977, 1980) as an approximate 

method for the analysis of slab structures, and by Gupta and Habibol1ah 

(1982) for panel sections by recognising that this procedure yields a lower 

bound to the actual failure load. 

investigated in detail in this study. 

The 'rotating crack 

1.3.3 Failure of wind loaded cooling towers 

model' l.S 

Research into the failure of wind loaded cooling towers was, in part, 

st~ulated by the failures of the Ferrybridge and Ardeer cooling towers in 

the U.K. in 1965 and 1973 (CEGB, 1966; ICI, 1974). Since these notable 

failures there have been numerous publications dealing with the failure of 

cooling towers, and in particular buckling of cooling towers. Research into 

the buckling of cooling towers has been summarized by Cole, et al. (1975a) 

and Abel, et al. (1982), and is discussed in more detail in Chapter 5. This 

research deals almost exclusively with elastic buckling and bifurcation. 
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To date there 1s only one reported analytical investigation into the 

failure and buckling of cooling towers which includes the effect of material 

nonlinearities and cracking, namely that by ~~ng, et al. (1983). In the 

present investigation, the work undertaken by Mang, et al. is reexan1ined and 

the effects of cracking, tension stiffening and the tensile strength of the 

concrete on the failure of cooling towers is examined. 
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CHAPTER 2 

DEGENERATED THIN SHELL ISOPARAMETRIC ELEMENTS 

2.1 INTRODUCTION 

The traditional approach to thin shell elements is based on classical 

thin shell theories (Argyris and Scharpf, 1969; Brebbia and Connor, 1969; 

Bergan and Clough, 1973; Thomas 

equations are mostly complicated. 

and Gallagher, 1975) 

In consequence, for 

whose governing 

a compatible 

displacement element, the displacements and some of their first and some 

second derivatives are required as nodal degrees of freedom. An alternative 

concept for developing nonlinear shell elements is to circumvent shell 

theories as the starting point and begin directly with the fundamental 

equations of nonlinear continuum mechanics. This point of view was 

originally adopted in the linear case by Ahmad, et al .. (1970), and has 

subsequently been adopted by several other-investigators (Ramm, et al., 

1977, 1981; Hughes and Liu, 1981; Parisch, 1981; Surana, 1983). This 

technique has been termed the "degenerated shell element procedure" in which 

the 3-dimensional theory is reduced or degenerated to a shell theory 

simultaneously with its ~plementation in the finite element procedure. 

These elements require only C(O)-continuity and originally used the same 

interpolation schemes for all three displacements and two independent 

rotations. 

While the basic concept behind the degenerated element is very simple, 

these elements are generally expensive and their application to material 

nonlinear problems in particular is therefore limited. Substantial savings 

in computational effort can be achieved without significant loss of accuracy 
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by the use of 'thin shell degenerated elements'. This approach has been 

adopted 1n this investigation. These elements are suitable for thin to 

moderately thick shells. Material nonlinearities enter through the use of 

integrated quantities, or stress resultants, by adopting a layer model. 

This has the advantage that when several integration points are required to 

represent the stresses more accurately, only the time required to compute 

the integrated quantities is increased. This time is negligible compared to 

the total computational time at the element level. Geometric nonlinearities 

are accounted for through nonlinear strain terms consistent with thin shell 

assumptions. 

2.2 CHOICE OF ELEMENT 

A detailed review of the development of degenerated finite elements 1n 

both linear and nonlinear applications can be found in, for example, Ramm 

(1977) and Hughes and Liu (1981). As noted previously, these elements 

require only C(O)-continuity of the displacements and independent rotations, 

and originally have the same interpolation scheme for all the nodal degrees 

of freedom- either Serendipity or Lagrangian. 

Investigations have shown that, at best, the Serendipity elements are 

less accurate than their nearest corresponding Lagrangian elements (Hughes, 

et al., 1978). In plane elements, the performance of the quadratic 

Serendipity element declines greatly as corner angles depart from 90 degrees 

and when its sides become curved (Stricklin, et al. 1977; Backlund, 1978; 

Cook and Zhao-Hu, 1982). The element no longer passes the patch test if its 

sides are curved. The 9-node element 1s much less sensitive to shape 

distortion and passes the patch test under all conditions. 
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Excessive stiffness and shear locking of fully integrated degenerated 

finite elements in thin plate and shell applications are well known. This 

phenomenan arises due to numerical difficulties from the extreme ratio of 

the bending stiffness to the shear and membrane stiffnesses if the word 

length of the computer is too short. Shear locking in plates is avoided ~n 

most instances if reduced integration of the shear stiffness is used (Pawsey 

and Clough, 1971; Zinkiewicz, et al., 1971). In curved shell applications, 

however, it has been demonstrated that the poor performance of fully 

integrated elements is due to the extreme ratio of the membrane stiffness to 

the bending stiffness (Parisch, 1979). Either uniform or selective reduced 

integration of the membrane and shear stiffness matrices alleviates this 

problem. In material nonlinear applications, however, difficulties are 

introduced in choosing the best points to sample the strains when different 

integration rules are used to evaluate the bending and membrane 

contributions to the stiffness matrix. 

Possibly the only defect of uniform reduced integration is that it 

produces rank deficiency and associated zero energy modes. Several schemes 

have been proposed to avoid locking and at the same time eliminate zero 

energy modes. This has led to the development of, amongst others, the 

Heterosis (Hughes, et al., 1977) and QUADH (Hughes, et al., 1977, 198la) 

elements. The Heterosis element is formulated using the 9-node Lagrangian 

shape functions for the rotations and the 8-node Serendipity shape functions 

for displacements (although Abdel Rahman (1982) has successfully used the 

Lagrangian shape functions for the inplane displacements in plate elements). 

Reduced integration is applied to the shear stiffness only. The QUADH 

element is a four node isoparametric element in which the shear stiffness is 

improved firstly by applying a special form of reduced integration, and 
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secondly by adjusting the shear modulus according to the actual plate 

thickness. 

The number of zero energy modes for several degenerated shell elements 

using reduced and selective integration is given in Table 2.1. At first 

sight it appears that the uniformly reduced Lagrangian elements fairs very 

poorly, with seven zero energy modes for the 9-node version. However all of 

these modes are prevented if two adjacent nodal values of the same type are 

constrained in at least one element. This condition is achieved 1n almost 

all practical applications, although it may be undesirable to use an element 

which requires special precautions. 

The Heterosis element is the most attractive (its single zero energy 

mode 1s not communicable in a mesh of more than two elements), but its 

success has not yet been fully proven in shell applications. It also 

retains the undesirable characteristic of the Serendipity elements of not 

passing the patch test when its sides are distorted (Abdel Rahman, 1982). 

The QUAHD element is very economical, but its aspect ratio behavior on some 

problems is disappointing (Hughes and Tezduyar, 1981). 

The reduced integrated 9-node Lagrangian element appears to be the best 

alternative and has been used as the primary element in this investigation. 

(The 4-, 8- and 9-node degenerated shell elements have all been implemented 

in FINITE (Lopez, 1977).) When zero energy modes may arise, either 3x3 

integration must be used in at least one of the elements in the mesh, or a 

single fully integrated element with a modulus of elasticity of, say, 10-3 

times that used for the rest of the mesh is laid on top of one element. 

This overlay technique has the advantage in that it does not stiffen the 

other modes nor increase the cost of the solution significantly. (This 

overlay approach does not appear to have received particular mention in the 



11 

literature). This approach has been adopted in Examples 2.5.5 and 4.5.2, 

and in Chapter 5. 

2.3 FINITE ELEMENT DISCRETIZATION 

In this section the finite element formulation is developed for the 

degenerated shell element. The element ~s developed as a thin shell 

element, and consistent nonlinear strain displacement relations are derived. 

These strain displacement relations are discussed further in Appendix A. 

Vector notation and indicial notation are used as appropriate. Where 

indicial notation is used, the summation convention for a repeated indicial 

is implied. Roman subscripts range over 1,2,3 and Greek subscripts 1,2. 

2 .. 3 .. 1 Geometry 

The initial geometry of the element (Fig .. 2 .. 1) ~s expressed in terms of 

the position vector 0 
X of a reference surface, which for convenience ~s. 

taken as the middle surface of the shell, and a position vector which 

defines the 'normal' to the shell based at a point on the reference surface. 

For kinematic considerations ~ 3 should be at least approximately normal to 

the middle surface. 

(2 .. 1) 

where t is the shell thickness at the point under consideration and ~ is the 

isoparametric coordinate 1n the direction of the normal. Note that all 

quantities in Eq. 2.1 are referred to the global (cartesian) basis 1. In 

finite element notation the initial geometry ~s interpolated as 
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(2.2) 

p 
where N (~,n) 1s the shape function associated with the p'th node, and 

summation ~s taken over all the nodes. 

For later use it 1s necessary to construct a local Cartesian reference 

frame at each integration point with a normal strictly perpendicular to the 

reference surface. The frame is defined by the orthonormal basis vectors 

~ 1 , ~ 2 , ~ 3 , which are calculated as follows. (See Fig. 2.1) 

ax 
~1 a~ 

I II :~ II 

ax 
I II 

ax 
II ~3 (~1 X-=-) ~1 X--= 

an an 

~2 (~3 X ~1) I II ~3 X ~1 II (2.3) 

where x denotes the cross product, and II .. II denotes the Euclidian norm. 

The Jacobian associated with transforming from the global to the 

isoparametric coordinate system is also required, and is defined as 

J (2 .. 4) 

It follows from Eq. 2.1 that 

J (2.5) 

where J
0 

1s the Jacobian associated with the midsurface, and R is a matrix 

describing the curvature of the midsurface, 

R = 
t 

2 v 
3,~ 

v 
3,n 

(2.6) 

At this stage the thin shell approximation 1s introduced, namely that 

the shell 1s sufficiently thin so that the variation in the Jacobian (and 
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hence the metric tensor) through the shell thickness is small. The inverse 

of the Jacobian can then~e represented using a power expansion as 

or 

-1 
J 

a .. ( t;;) = a . . + 7; b .. 
lJ lJ lJ 

(2.7a) 

(2.7b) 

It should be noted that the usual assumption made in the literature 1s 

to neglect the variation in the Jacobian (Zienkiewicz, et al., 1971; 

Parisch, 1981), which is similar to Love's first approximation in classical 

shell theory. It will be demonstrated however that the above expansion 1s 

necessary so as to yield no strain under rigid body rotations. 

2.3.2 Kinematics 

The displacement representation is based on the kinematic assumption 

that the normal to the reference surface remains straight and inextensional 

during deformation. On the basis of this assumption an isoparametric 

element solution, in which nodal coordinates and nodal displacements are 

interpolated in the same order, is possible. (Strictly speaking this 1s a 

super-parametric element.) 

An anagolous expression to Eq. 2.1 for the displacements of a point of 

the shell is given by 

(2 .. 8) 

where 
0 

u lS the displacement of the midsurface and nu is the normalized 

displacement of the shell relative to the midsurface. (See Fig. 2.2) 

In finite element notation, Eq. 2.8 is interpolated as 

(2.9) 
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For infinitesimal rotations (ie linear theory) the relative displacement of 

the shell is expressed in terms of two independent rotations (Fig. 2.3) 

6u v 8 
-a. a. 

where v is the transverse vector, defined as 
-a. 

v 
-a. ( ~a. X ~ 3 ) I II ~a. X ~ 311 

where ~l and ~2 are unit vectors, normal 

oth~rwise arbitrarily defined. 

to each 

(2.10) 

(2.11) 

other and to ~3' but 

For finite rotations, due to the non-vectorial nature of rotations and 

the desire to satisfy rigid body rotations, it is necessary to use either a 

trigonometric representation for the rotation of the normal (Ramm, 1977; 

Parisch, 1981), or by the use of the relative displacements on, say, the 

shell top surface together with a suitable updating algorithm (Huhges and 

Liu, 1981) .. 

2.3.3 Strain displacement relations 

A 'Total Lagrangian' formulation, in which stresses and strains are 

referred to the initial undeformed configuration, has been adopted .. With 

reference to the Cartesian coordinate system, the Green strain tensor is 

given by 

2 c:. . == u . . + u . . + uk . uk . 
lJ l 'J J ' l ' l 'J 

(2.12) 

and the variation in the strain tensor is obtained as 

" 
2c.. { u .. + u .. + ~ .~ . + ~k .R .} + 

lJ l,J J, l K,l K,J ,l K,J 

{ ~ -~ . } 
K,l K,J (2.13a) 
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lJ 

·2 + •n2 
£.. £ •. 

lJ lJ 
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(2 .. 13b) 

In Eqs. 2 .. 12 and 2 .. 13 ui is the displacement component ~n the i'th 

·2 ·n2 
cartesian direction and £ .. and e: •• are the linear and nonlinear parts of 

lJ lJ 

the incremental strain tensor, with respect to the incremental displacement. 

Differentiation with respect to the cartesian coordinate x. is denoted by 
l 

the subscripts ',i', while' .. ' denotes an incremental value (eg ou.). 
l 

Equation 2.12 1s simplified by relating derivatives (with respect to 

the isoparametric coordinate system) at a position (~,n,~) within the shell 

thickness to derivatives on the midsurface (~,n,O) using Eq. 2.7. 

Substituting Eq. 2.8 into Eq. 2.12, and transforming derivatives from the 

isoparametric coordinate system to the global cartesian system using Eq .. 2.7 

yields 

2e: .. = { a. v. + a. v. + a. a. vk vk } + 
lJ lp JP Jq lq lp Jq p 'q 

{ - - - - } a. t. + a. ·t. +b. v. + b. v. 1p JP Jq 1'1 1p JP Jq 1q 

+ nonlinear terms in ~' v. and t. 1p 1p 

or £ •• e .. + ~K •• (2 .. 14) 1] 1] 1] 

where the over-bar '-' denotes a derivative of a cartesian component with 

respect to an isoparametric coordinate (eg au./a~.). v .. and t .. represent 
1 J lJ 1] 

the components of the displacement gradient which are, respectively, 

independent of and dependent on ~· 

u .. 
1,] 

v .. + ~ t .. 
1] 1] (2.15) 

Neglecting the additional nonlinear terms 1n Eq.. 2.14 yields an 

expression for the extensional (e .. ) and curvature (K .. ) strain resultants .. 
1] lJ 

Accounting for the nonvectorial nature of the rotations, the expression for 
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the extensional strain resultant yields exact strains on the midsurface. 

The curvature tensor can be identified as being analogous to Koiter's (1959) 

and Sanders' (1963) consistent linear curvature tensor for moderately small 

rotations, or Reissner's (1941) linear curvature tensor. These expressions 

yield no strain under rigid body motions. In contrast, the curvature 

expression suggested by Parisch (1981) does result in straining under rigid 

body rotations. These expressions are discussed further in Appendix A. 

Retaining only the linear terms 1n the curvature expression 1s 

justified 1n problems of "medium bending" (Mushtari and Galimov, 1962). A 

linear curvature tensor 1s common 1n several large displacement shell 

theories, eg Marguerre (Green and Zerna, 1954) and Mushtari (1962). A 

linearization curvature tensor has also been adopted 1n several finite 

element formulations (Bergan and Clough, 1973; Thomas and Gallagher, 1975; 

Pica and Wood, 1980) with excellent results. It is however straight forward 

to include the nonlinear curvature terms (but still linear 1n s). Because 

this inclusion was found in this investigation to improve the convergence of 

the element, the nonlinear curvature terms have been retained. 

The curvature tensor can be further simplified, by neglecting the 

variation of the Jacobian through the shell thickness (b .. =0) .. This 
lJ 

curvature expression does not satisfy rigid body rotation requirements but 

yields acceptable results for a linear, and hence incrementally linear, 

analysis. 

Based on this simplification a consistent definition for the variation 

1n the Green's strain tensor (Eq. 2.12) is obtained as 

·.£ 
2s .. 

lJ 
0 0 

uk,igjk + uk,jgik (2 .. 16) 

0 
In Eq. 2.16 g .. 1s the deformation Jacobian associated with the midsurface. lJ 
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au. 
]_ I 0 .. + " 0 l.J ox. z:;= 
J 

(2.17) 

Equation 2.16 will be used to define the incremental tangent stiffness 

matrix. This equation is consistent with the thin shell assumption of 

neglecting the variation of the Jacobian, and hence the deformation 

Jacobian, through the thickness of the shell. 

Equation 2.14 has been derived specifically for the case of moderate 

rotations, and to satisfy rigid body ro~ation requirements. In many cases 

however prebuckling rotations are small and it is acceptable to define the 

extensional and curvature expressions in terms of the infinitesimal rotation 

formulation (Eq. 2.10). This will however violate rigid body rotation 

requirements. It is therefore also reasonable to neglect the variation of 

the Jacobian through the shell thickness, which results 1n additional 

straining under rigid body rotations. A consistent definition for the total 

strain tensor is then obtained as 

+ 0 ) uk .g ·k 
'J ]_ 

(2.18) 

Without significant loss of accuracy, a linear curvature tensor can be used, 

l.e 

2K .• = a. t . + a. t . 
lJ 1p JP Jq 1q 

(2 .. 19) 

Equation 2.19 does not satisfy rigid body rotation requirements, but 

significantly does approximate Keiter's (1959) and Sanders' (1963) linear 

curvature tensor- as demonstrated in Example 3.5.2 of Chapter 3. (Strictly 

speaking Eq. 2.19 is similar to the Reissner-Love Equations as shown 1.n 

Appendix A .. ) The incremental form of Eq. 2.19 1.s given by Eq. 2.16, by 

neglecting nonlinear curvature terms. 
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The relative accuracy of the different strain formulations given here 

are discussed in more detail ~n Appendix A, and demonstrated ~n the examples 

to follow. It will be demonstrated that for most typical shell 

applications, a nonlinear formulation based on the small rotation 

formulation is satisfactory. 

2.3.4 Stress resultants 

The separation of Eq. 2.14 into extensional and curvature terms allows 

for the convenient use of stress resultants. This has the advantage that 

numerical integration on the element level 1s carried out only on the 

mid-surface, and not at several points through the thickness of the shell 

for material nonlinear behavior. 

The ensuing stress resultants, ~n local element coordinates, are 

defined as; 

extensional 
t 1 

(2 .. 20a) na.S =-J cra.S dr; 
2 -1 

(.!) 2 
1 

flexural ma.S f r; craS dr; (2.20b) 
2 

-1 

transverse shear 
t 1 

(2 .. 20c) q =- f cra.3 dr; 
a. 2 -1 

where cra.S is the 2'nd Piola-Kirchoff stress tensor. 

For compatibility with the material model, it is convenient to work 1n 

terms of the 

2 
( -t q ; y ':l) 

a. a. ..... 

following 

2.3.5 Constitutive matrix 

stress-strain pairs: ( 2 ) ( 4 . t ) -n ;e -
2

m ,-
2

K , 
t aS aS t a.S a.S 

In this investigation small strains are assumed- hypoelasticity ~s not 

considered. Assuming a constitutive relation 
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a . . 
lJ cijki Eki 

(2.21) 

the linearized stress resultant constitutive matrix, D, follows directly 

from the definition of the strain resultants (Eq. 2.20) 

t =-D 
2 -

e 

t 
-K 
2 -

(2.22) 

In deriving the constitutive matrix in the element coordinates the 

following should be noted: 

1. The plane stress hypothesis 1s invoked in the direction 

perpendicular to the middle surface (Eq. 2.3). 

2. For a nonlinear material, the extensional and flexural terms are 

coupled. 

3. A rational theory for including shear correction effects for a 

nonlinear material does not exist and several ad hoc procedures are· 

used in the literature (Hughes and Liu, 1981; Owen and Figueriras, 

1983) .. In the present formulation the simplifying assumption of a 

constant shear correction factor, typically 1.2, has been made. 

2.3.6 Incremental equations of equilibrium 

The incremental equations of equilibrium follow standard finite element 

procedures (Bathe, et al., 1980). The process 1s summarized below. 

Adopting a 'Total Lagrangian' formulation, the virtual work expression 1s 

given by 

f " J" •ni C iJ. kt Ek o o £ 
1
. J. d V + a . . o £ • . d v 

V ;.. V lJ lJ 

oWext- fa .. o~~- dV 
v lJ lJ 

(2.23) 
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where W ~s the external virtual work. 
ext 

The linearized virtual work expression (replacing s .. by s~.) results 
l.J l.J 

1n the incremental equilibrium equation for a single element 

K + K ]d 
-u -g 

R - I (2.24) 

where K ~s the stress independent stiffness matrix, K ~s the geometric or -u -g 

initial stress stiffness matrix, R ~s the vector of the external loads 

obtained from the finite element evaluation of the external work equation, ~ 

0 

1s the vector of internal nodal forces and d 1s the vector of incremental 

nodal displacements. 

Based on the thin shell assumption, the finite element matrices are 

evaluated by expressing the kinematic relations, Eqs. 2.13b and 2.16, 1n 

matrix form with respect to a local coordinate system as 

. 
d 

B' (2 .. 25) 

where A !sxS I s I 
-5x3 (2 .. 26) 

and 
•n.Q, 
£ u " u -,i -,j 

·T 
T ,T 

]A TA = d [H~ H. Ho ci 
-]_ -1.. -j 

f 

H 
-j 

(2 .. 27) 

where B and H are strain displacement matrices. 
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It follows that: 

Tangent Stiffness Matrix 

K 
-u 

Geometric Stiffness Matrix 

T 
K = j [H~ -g -1. 

Ao 

, T 1 T 
H. ] {j cr •• A Ad~} 
-}_ -1 1]- -

Internal Force Vector 

, T 1 T 
B ] {j ~ £ds} dA

0 

-1 

(2.28) 

' H 
-j 

(2.29) 

(2.30a) 

(2.30b) 

The terms within the brackets { } are integrated explicitly and yield, 

respectively, the stress-resultant constitutive matrix, a matrix of 

integrated stress-resultants, and a vector of stress-resultants. Area 

integration is carried out over the initial undeformed midsurface of the 

shell .. In the actual implementation proceedure, the curvatures and moments 

associated with the transverse shear strains ya3 and stresses aa
3 

are not 

included .. This results in a stress-resultant constitutive matrix of order 

8x8, and strain displacement matricies B' and H' of order 3xN. 

2.4 IMPLEMENTATION 

The finite element discretization has been discussed in Section 2.3. 

In this section aspects of the implementation of this prodedure in FINITE 
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(Lopez, 1977) are discussed. The 4-, 8-, and 9-node elements have been 

implemented (BLSHELL, QSSHELL and QLSHELL) 1n FINITE. Both the small 

rotation and moderate rotation formulations have been included. These 

elements are compatible with the reinforced concrete material model RCSHELL 

described in Chapter 4. Further details are given in Appendix C. 

2.4.1 Non-vectorial rotations 

For geometric nonlinear applications, the nodal degrees of freedom 

adopted are the midsurface displacements u
0 

and the normalized displacement 

of the top surface of the shell, relative to the midsurface, ~u. These 

relative displacements define a unit sphere within which the unit normal 

rotates. Only two relative displacements are independent, as they are 

constrained by the condition II !
3 

+ ~~II 1. 

For an infinitesimal displacement increment, the increment 1n the 

relative displacement reduces to the conventional linear form (Eq. 2.10) 

(2.31) 

The finite element matrices of Eqs. 2.28 to 2.30 utilize the definition 

contained in Eqe 2e3le The true increment in the relative displacement can 

then be obtained using the updating procedure of Hughes and Liu (1981), as 

shown in Fig. 2.4. 

~3 (t+ot) = ~3 (t) + ~u(at) 

R­
!3(t) + ~u (at) 

11~3 (t) + ~~R-(ot) II (2 .. 32) 

This approach 1s efficient and avoids the use of trigonometric 

representation for the rotations. In the present investigation, nodal 
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displacements are updated during the stress-strain recovery algorithm. 

As noted, the variation of the Jacobian is not included in the matrices 

B and H of Eqs. 2.28 to 2.30, and is only included in the calculation of the 

total strains (and hence stresses) when using the moderate rotation option, 

using Eq. 2.12. The resulting stresses are then used 1n evaluating the 

internal force vector. This does result 1n an 'inconsistent' formulation 

but still retains the desired characteristic of producing zero strain under 

rigid body rotations. Including the first order expansion of the Jacobian 

in the strain displacement matricies of ~ and H would otherwise result 1n 

equations which are unnecessary complicated. 

A disadvantage of the nodal degrees of freedom adopted (and their 

corresponding nodal loads) is that they are not natural to finite element 

users.. This is demonstrated in Fig. 2 .. 5a for specifying constraints and 1n 

Fig. 2.5b for external applied nodal moments. 

2.4.2 Geometric stiffness matrix 

The Geometric Stiffness matrix defined by Eq. 2.29 is seen to be 

composed of three stress-resultant terms. This 1s seen more clearly by 

examining the strain energy contribution to the Geometric Stiffness matrix. 

It follows from Eqs. 2.13b and 2.15 

auK = f cr • • ~ k · ~ k · d v + f z; cr · • <.; k · i kJ. + v kJ. i k1· g v lJ l J v 1] l 
)dV + 

J 
2 • .. 

+ z; cr •• tk. tkJ. dV 
v lJ 1 

(2.33) 

For a nonlinear material the third term introduces an additional form 

of stress resultant, which is not present 1n linear material applications. 

In Eq. 2.33 it 1s seen that the first term is dependent on the 

nonlinear portion of the extensional strain resultant (vkivkj), and the 
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second and third terms on the nonlinear portion of the curvature strain 

resultant (;kitkj and tkitkj). As can be inferred from the usual assumption 

of adopting a linear curvature tensor (see Section 2.3.3), it is acceptable 

to neglect the nonlinear curvature terms. 

In addition, the geometric stiffness matrix ~s dominated by the 

contribution from the inplane stress resultant, and it ~s usual to neglect 

the normal shear contribution (aa3 ) in the first term (Pica and Wood, 1980). 

This contribution has also been neglected in the present formulation. 

2.5 NUMERICAL EXAMPLES 

In this section several examples are given to demonstrate the accuracy 

and applicability of this element to geometric nonlinear problems. 

(Material nonlinear applications are given in Chapter 4.) 

All the examples considered here use the 9-node element with reduced 

integration. The standard Newton-Raphson solution procedure with a 

convergence tolerance of 1% has been used. The tolerance is defined as the 

ratio of the norm of the residual load to the norm of the applied load. 

2.5.1 Cantilever subject to end load 

This simple problem, shown in Fig. 2.6, was chosen to test the large 

displacement formulation, and in particular differences in using vectorial 

rotations and nonvectorial rotations. Note that for this structure the 

Jacobian does not vary through the thickness. The structure was modeled 

using five 9-node elements. 

An analytical solution ~s given by Shield (1983), assuming that 

stretching of the beam remains negligible ~n comparison with the bending and 
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neglecting shear deformations. 

Parisch (1981). 

This structure has also been analysed by 

In Fig. 2.6a a comparison ~s made using two variations of the small 

rotation formulation, together with the theoretical solution. In the first 

formulation the full nonlinear membrane strain displacement relation is 

used, together with a linear curvature tensor. The second formulation 

retains only the normal displacement contribution to the nonlinear 

extensional strain e
11

, which results in an extensional strain resultant 

similar to that of Von Karman or the Donnell-Vlassov-Mushtari (Sanders, 

1962) equations when applied to plates. It is seen that for this example 

the nonlinear strain terms retained has a significant effect on the 

predicted response. This dependency on the nonlinear strain terms is, 

however, generally not observed ~n statically indeterminate shell 

structures. 

Although the overall results compare poorly with the theoretical 

solution, for PL
2

/D less than about 1.0 satisfactory results are obtained 

for engineering purposes. The inadequacy of this formulation with 

increasing displacement is due to the incorrect representation of the 

rotation of the normal. 

The moderate rotation formulation ~s compared with the theoretical 

solution in Fig. 2.6b. It is seen that excellent results are obtained using 

this formulation. This ability to be able to examine large displacements is 

due to the correct representation of the rotations. 

2.5.2 Buckling of column 

The buckling of a column under a slightly eccentric axial load ~s 

considered in Fig. 2.7. The column is modeled using five elements. 
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As only inplane displacements are considered, this example demonstrates 

the large displacement formulation under plane strain conditions. The 

results are compared with the analytical solution given by Timoshenko and 

Gere (1961), in Fig. 2.7. 

2.5.3 Clamped square plate 

This example has become a 'standard' ~n investigating geometric 

nonlinear thin plate formulations. The analytical thin plate solution is 

gi~en by Levy (Pica and Wood, 1980) by solving Von Karman's plate equation 

us~ng a double Fourier series. 

The load-deflection behavior, obtained using a 2x2 mesh per quarter, is 

shown ~n Fig. 2.8. Almost identical results were obtained using both the 

small and moderate rotation formulations. Good agreement ~s obtained with 

the reference solution. 

2.5.4 Hinged cylindrical shell 

Details of this snap-through problem are given ~n Fig. 2.9. The 

structure was modeled using a 2x2 grid per quarter shell. Comparison of the 

vertical displacement at the apex ~s made with the results obtained by Bathe 

and Bolourchi (1980) using one cubic element and Parisch (1981) using a 4x4 

mesh of QUAD4 elements (MacNeal, 1978). No discernable diference was found 

using the small and moderate rotation formulations. 

obtained with the results of Parisch. 

2.5.5 Wind loaded cylinder 

Good agreement 1s 

The nonlinear snap-through behavior of a wind loaded cantilever 

cylindrical shell under wind loading is examined. This structure has been 
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investigated experimentally by Kundurpi, et al. (1975), and also 

analytically by Brendel and Ramm (1980). Details of the cylinder are given 

1.n Fig. 2.10 .. The Fourier ser1.es expansion for the wind load pressure 

distribution as given by Kundurpi, et al. is used. 

p q I a Cos (n8) o n 
n 

(2.34) 

where a
0

= 0.220, a
1

= 0.338, a
2
= 0.533, a

3
= 0.471, a

4
= 0.166, a

5
= -0.066 and 

a
6 

= -0.055, and q is the dynamic head, assumed to be constant with height. 

Eq. 2.34 includes an internal suction coefficient of 0.607. 

One half of the shell is idealized using 4 elements 1.n the vertical 

direction. In the circumferential direction 5 elements are used 1.n the 

windward quadrant and 3 on the leeward quadrant. The predicted load 

deflection curve 1.s shown in Fig. 2.10 and the deflected profile of the top 

of the cylinder at failure in Fig. 2.11. As with the previous examples the 

results obtained using the small and moderate rotation formulations were 

virtually indistinguishable. The limit load of 1.71 psi. agrees well with 

the experimental value of 1.90 psi., but is significantly lower than the 

limit load of 2.0 psi. obtained by Brendel and Ramm (1980). 

2.6 SUMMARY 

The degenerated finite element formulation using explicit integration 

has been presented in this chapter. Explicit integration has been adopted 

as it results in significant savings in computational effort, in particular 

for nonlinear material applications. The finite element formulation 

includes both geometric and material nonlinearities, using the Total 

Lagrangian formulation. 
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Two kinematic formulations have been presented for the large 

displacement analysis. The first approach uses a valid large rotation 

representation for the respective nodal degrees of freedom. A first order 

expansion of the inverse of the Jacobian ~s included, and the resulting 

strain displacement relations satisfy rigid body rotation requirements. 

This formulation ~s similar to Reissner's classical shell theory. The 

secend formulation ~s a direct extension of the small displacement linear 

formulation to geometric nonlinear applications. The variation of the 

Jacobian through the shell thickness is neglected. This approach is 

suitable only for small rotations, as it results in straining under rigid 

body rotations (as does the corresponding linear formulation). 

approach is similar to the Reissner-Love classical shell theory. 

This 

Several examples have been presented to examine differences ~n the two 

kinemat~c formulations. It has been demonstrated that for most practical 

applications, it is satisfactory to use a small rotation formulation to 

examine the prebuckling behavior of structures. 

A family of degenerated shell elements, consisting of the 4-, 8- and 

9-node versions, have been implemented in FINITE. 
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CHAPTER 3 

ISOPARAMETRIC SHELL STIFFENING ELEMENT 

3.1 INTRODUCTION 

This chapter describes a compatible eccentric shell stiffening element 

for use with the degenerated shell elements described in Chapter 2. Two 

versions of the element are described, namely, a linear elastic version and 

one for material~ .nonlinear applications. Both versions include geometric 

nonlinearities. 

The elastic version is based on an appropriate beam theory and not a 

specialization of the more general thick shell element. Consequently the 

transverse shear and torsional behavior of any compact section 1s properly 

accounted for while still retaining the required displacement compatibility 

with the degenerated shell element. The material nonlinear version 1s 

essentially a specialization of the degenerated ·shell element to a beam, and 

consequently transverse shear and torsion behavior are lost. 

3.2 FINITE ELEMENT DISCRETIZATION 

The development of the elastic beam for &,mall displacements is based on 

the derivation by Bouberg and Jirousek (1980) and Jirousek (19-81) .. 

3 .. 2 .. 1 Geometry 

The initial geometry of the beam element is shown in Fig. 3.1 in which 

the superscripts 
, , 

0 refers to the reference axis (which corresponds to the 

mid-surface of the shell); 'e' refers to the point of contact between the 
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beam and the shell; 'g' refers to the centroidal ax1s of the beam, 's' 

refers to the shear center and 'g-i' defines the major principal axis of the 

beam. For the material nonlinear beam the shear center 1s assumed to 

coincide with the centroid, and the cross-section is limited to rectangular 

shapes. 

The centroidal axis is related to the reference axis as 

0 
x + e + ~ 

(3 .1) 

The geometry of the element 1s interpolated using Lagrangian shape 

functions in the usual manner. 

A 

of the 

axis of 

local 

beam 

the 

~1 

orthogonal reference axis 

as shown in Fig .. 3.2 .. The 

beam as input by the user, 

1 
~1 X ~2 

~3 = 
II 1 
~1 X ~2 II 

~3 X ~1 
!!2 II ~3 X ~1 II 

is constructed on the centroidal axis 

1 . 
the major principal vector ~2 def~nes 

and ~l' ~2 and ~ 3 are obtained as 

(3.2) 

In general the plane defined by ~ and ~ is only approximately normal to the 

centroidal axis. This definition follows a similar philosophy to that for 

the degenerated shell element. (The definition of the reference axis differs 

from that used by Jirousek (1981)). 

3 .. 2.2 Kinematics 

The displacement of the beam is defined in terms of the three global 

displacements and three global rotations associated with the shell element .. 
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The nodal degrees of freedom do not therefore coincide with the centroidal 

axis of the beam, except when used as a stand-alone beam. This formulation 

is restricted to small rotations. 

To meet the requirements of displacement compatibility along the joint 

axis, the displacement of the centroid of the beam 1s obtained by 

transforming the displacements of the shell to the joint axis and then to 

the centroid of the beam (Figs. 3.1 and 3.2). 

ug 0 0 
(~ + g) = u + w X 

0 
Aw

0 
= u + (3.3) 

where 

0 tur3 -/),x 
2 

A= -fxx 
3 0 turl 

/1X2 -llx 
1 0 (3 .. 4) 

The rotation of the centroidal axis is identical to the rotation at the 

shell axis, ie .. 

0 
w 

3.2.3 Stress-strain relations 

(3.5) 

For a curved beam with shear deformations the constitutive equation 

relating the generalized stress a (Fig. 3.3) to the generalized strain £ can 

be approximated with reasonable accuracy by (Jirousek, 1981) 
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N EA 

(J = 

T GJ 

EI (3 .. 6) 

For small displacements the strain displacement relations are given by 

Jirousek (1981). In this study these relations have been extended to 

inciude geometric nonlinear behavior. The following strain displacement 

relations are used. 

Extensional: 

Ag 
+ 

1 Ag ... g 
ell u "' - u A •u "' 

l,x
1 

2 -,x
1 

-,x
1 

(3.7a) 

" "s 
w3 + 

"s " 0 ~1) yl2 = u "' - u "' • (-w 2 ,x
1 

-,x
1 

3 
(3.7b) 

" ... s 
+ w2 "s ( " 0) yl3 u "' + u "' .. w 2 -w 

3,x
1 -,xl 3 

(3.7c) 

Curvature: 

~ w " l,x
1 

{3.8a) 

K2 = w "' 2,x
1 

(3 .. 8b) 

"' 
K3 -w A 

3,x
1 

(3.8c) 

It was demonstrated in Chapter 2 that the strain displacement relations 

given above are satisfactory for most applications. This formulation is, 

however, not capable of predicting torsional buckling which requires a 

nonlinear curvature (twist) relation .. In stiffened shell applications, 
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torsional buckling is generally not possible. 

In Equs. 3.7 and 3.8 ',x
1 

' stands for differentiation with respect to 

the local coordinate directed along the centroidal axis. 

The primed displacements and rotations are associated with the local 

reference frame, and are related to the global components by the orthogonal 

transformation 

u T u (3 .. 9a) -

and T 
,., 

(3.9b) w = w -

where T = [ 
~1 !z a~ ] (3.10) - -,j 

The transformation of rotations is strictly valid only for infinitesimally 

small rotations. 

The local inplane displacements and u; of the shear center are 

obtained as 

(3 .. 11) 

As noted previously, for material nonlinear applications torsion and 

bending about the minor principal axis are not modeled. The resulting 

stress-strain relation is given by 

Nl ell 

(J = Q3 = D yl3 

M2 Kl2 (3.12) 

The constitutive matrix D follows from a similar definition to that used for 

the shell element .. 
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3.2.4 Finite element formulation 

The finite element formulation uses a Total Lagrangian approach, and 

follows the procedure discussed previously for the shell-element (Section 

2.3.6). This procedure is not repeated here. 

3.3 LARGE ROTATION FORMULATION 

The formulation outlined above is restricted to small rotations. It 

was demonstrated previously that for many practical applications there is no 

noticeable difference between a small rotation and a large rotation 

formulation. Furthermore, there is an additional justification in limiting 

the shell stiffener to a small rotation formulation. Shell stiffeners are 

typically used to limit the deformations of the structure, and hence it can 

be expected that prebuckling rotations will be small. (Note that the beam 

element is not compatible with the moderate rotation shell element 

formulation.) 

A large rotation formulation similar to that presented in Chapter 2 is 

possible for the shell stiffener, but requires~ in addition, transforming 

the inplane rotation of the midsurface of the shell to the centroid of the 

beam. 

3.4 IMPLEMENTATION 

Two beam elements have been implemented into FINITE (Lopez, 1977), 

namely a linear element BLBEAM and a quadratic element, QLBEAM. These 

elements include optional geometric nonlinearities, and material 

nonlinearities using the reinforced concrete model RCBEAM. Further details 

are given in Appendix C. 
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C(O)-continuity along the joint axis 1s obtained with the shell 

elements of Chapter 2 when the element 1s joined along a line of constant 

isoparametric shell coordinate (ie ~ constant, or n constant). In this 

regard it is noted that in several of the applications given by Bouberg and 

Jirousek (1980), C(O)-continuity is not obtained. 

3.5 NUMERICAL EXAMPLES 

3.5.1 Curved cantilever 

The curved cantilever beam shown in Fig. 3.4 is analysed to demonstrate 

the small displacement linear elastic formulation. The beam is modeled 

using three quadratic elements. The calculated end displacement of 

0.11585 in. agrees well with the calculated displacement of 0.11589 ~n. 

obtained by Jirousek (1981) and 0.11582 in. by Timoshenko (1941). The 

Timoshenko results are slightly stiffer since they do not consider shear 

deformations. 

3.5.2 Snap-through of a shallow arch 

The snap-through of a shallow arch subject to a concentrated midspan 

load is considered in Fig. 3.5. Only half of the arch has been analysed, 

using four quadratic elements. The solution compares well with that 

obtained by Bathe, et al. (1975) and by Hughes and Liu (1981). 

3.5.3 Bifurcation of a circular arch 

Batoz (1979) draws attention to the necessity of using a consistant 

shell theory when investigating bifurcation of shell and arch structures. 

As an example the bifurcation of a circular arch under constant dead 
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pressure was investigated using finite elements based on the 

Donnell-Mushtari-Vlassov (Sanders, 1963) and the Koiter (1959) - Sanders 

(1963) shell theories. As shown ~n Fig. 3.6 (Batoz, 1979) the DMV relations 

predicted a bifurcation load 22 percent higher than that obtained using the 

KS theory. 

This problem has been analysed using eight curved beam elements and a 

slighty eccentric load to investigate bifurcation. In Fig. 3.6 it is seen 

that the present small rotation formulation, which includes a linear 

curvature relation, correctly approximates the Koiter-Sanders consistant 

strain displacement relations. 

3.6 SUMMARY 

Compatible eccentric shell stiffeners for the shell elements of Chapter 

2 have been presented. Two versions of the element have been included, 

namely a Timoshenko type beam element for linear elastic applications and a 

modified element for nonlinear material applications. 

geometric nonlinearities, using a small rotation 

Both versions include 

formulation. 

geometric nonlinear formulation is similar to that used 1n 

This 

shell 

applications and employs a linear curvature tensor. Torsional and out of 

plane buckling are not accounted for. 

Examples have been presented to demonstrate the application of this 

element to both small and large displacement applications. 

A linear 2-node element and a quadratic 3-node element have been 

implemented in FINITE. 
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CHAPTER 4 

CONSTITUTIVE MODELING OF REINFORCED 
CONCRETE 

In this Chapter the constitutive modeling of reinforced concrete under 

uniaxial and biaxial stress states is described. The modeling of concrete 

and steel properties is first briefly described, followed by a numerical 

algorithm for modeling the behavior of reinforced concrete shell, panel and 

beam type problems. 

This approach is concerned with the 'average' or 'global' behavior of 

the concrete, and adopts the smeared crack approach together with a layered 

material model. 

4.2 MATERIAL PROPERTIES OF CONCRETE AND STEEL 

4.2.1 Stress-strain relations for plain concrete 

Typical stress-strain curves for concrete under biaxial stress 

conditions, as 1s assumed to occur 1n slab and shell structures, are shown 

in Fig. 4.1 (Kupfer and Gerstle, 1975). Figure 4.2 illustrates a typical 

biaxial strength envelope for concrete subject to proportional biaxial 

loading (Kupfer and Gerstle, 1975). 

Figures 4.1 and 4.2 illustrate that under biaxial compression loading, 

concrete exhibits an increased compressive strength, increased 'ductility' 

and increased stiffness. Under biaxial tension concrete exhibits a slightly 

increased tensile strength as compared with that under uniaxial loading. 
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Combinations of tension and compression result 1n noticeably reduced 

strength. 

In the present study Liu's biaxial orthotropic material model (Liu, et 

al. 1972) 1s used, together with a modified form of the failure criteria 

proposed by Darwin and Pecknold (1974) and Rajagopal (1976). This failure 

envelope has been changed to yield maximum principal stresses and strains by 

converting, approximately, equivalent uniaxial strains to principal strains. 

Further details of the model are given in Appendix B. 

4.2.2 Bond between concrete and reinforcement 

Bond between concrete and steel reinforcement 1s of fundamental 

importance to most aspects of localized reinforced concrete behavior. Bond 

slip and degradation affects the stress distribution in the concrete and 

steel and the width and spacing of cracks (Fig. 4.3). 

Based on experimental results, several mathematical formulations have 

been proposed for modeling the bond stress-slip behavior (ASCE, 1981; 

Gerstle, 1981). However in many cases bond stress-slip degradation is only 

of secondary Umportance and may not affect overall structural behavior 

significantly, especially for monotonic loading (Gerstle, 1981) In cases 

such as these it is sufficient to model bond in an averaging approach 

through the concept of tension stiffening, which has been adopted 1n this 

investigation. 

4.2.3 Tension stiffening of cracked concrete 

Cracking 1n reinforced concrete elements occurs at very low stresses 

when compared to the compressive strength of concrete. Cracking results 1n 
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a significant reduction in the stiffness of the concrete element. 

The reduction in the stiffness depends on the average tensile stress ~n 

the concrete between cracks (Fig. 4.3). Under increasing load the average 

tensile stress carried by the concrete decreases as degradation of the bond 

occurs. This can be modeled ~n an average sence by applying a gradual 

unloading to the stress-strain curve of concrete in tension (Lin, 1973), or 

by lumping the tension stiffening into the reinforcement (Gilbert and 

Warner, 1978). Both of these forms of tension stiffening have been 

incorporated· ~n this investigation (see Appendix B). Tension stiffening is 

discussed in more detail in Section 4.3.4. 

4.2.4 Shear transfer in cracked concrete 

The transfer of shear across cracks arises from aggregate interlock, 

frictional forces and dowel action. Aggregate interlock and frictional 

forces (interface shear transfer) are primarily affected by the crack width, 

while dowel action is affected by the concrete cover to the bar, presence of 

stirrups, bar size and tensile strength of the concrete. 

Studies have shown that the overall response of the structure is not 

sensitive to the modeling of the shear transfer mechanism, and it 1s 

generally satisfactory to model shear transfer using either a constant or a 

crack width dependent shear modulus (ASCE, 1981; Gerstle 1981) A constant 

shear retention factor of 0.25 has been used in this investigation. 

4.2.5 Steel reinforcement 

Typical stress-strain curves for steel reinforcing bars loaded 

monotonically in tension are shown in Fig. 4.4 (Abdel Rahman, 1982). The 
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stress-strain curves of the steel are assumed to be identical 1n 

compress1on. 

Steel reinforcement 1s modeled 1n this investigation as an ideal 

elastic-plastic material, with possible strain hardening. 

4.3 NUMERICAL MODEL FOR REINFORCED CONCRETE 

The numerical algorithm used 1n this investigation to model the 

behavior of cracked concrete is based on the 'rotating crack model' by Gupta 

and.Habibollah (1982). This algorithm was derived by Gupta so as to obtain 

failure loads consistent with theoretical 'yield line', or limit, solutions 

for panel sections subjected to inplane loading. This algorithm has been 

extended in this investigation to include flexural behavior. 

It should be noted however that this algorithm has been used 1n the 

literature much earlier, by Cope, et al. (1977, 1980), for the analysis of 

slab sections subject to flexural loading. This model was-introduced as a 

simplification to the solution procedure being used, without recognition of 

the capabilities of the algorithm. 

The model used 1s developed below, by considering the behavior of 

reinforced concrete elements subject to inplane loading. 

4.3.1 Response of cracked concrete to inplane loading 

The behavior of a typical reinforced panel subject to inplane loading 

1s shown 1n Fig. 4.5, 1n which the loading 1s limited to biaxial 

tension-compression (including shear). For the purpose of this discussion 

it 1s assumed that the panel is reinforced with two orthogonal layers of 

reinforcement. 
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Prior to cracking of the concrete the panel behaves essentially 

linearly, but after cracking the response is strongly nonlinear. Depending 

on the loading arrangement as well as on the amount and orientation of the 

reinforcement and the concrete compressive strength, failure can result as 

yielding of the reinforcement, as crushing of the concrete or a combination 

of both .. 

Initially as the load is applied, cracks form approximately normal to 

the direction of maximum principal strain and the amount and orientation of 

the reinforcement has only a negligible effect on both the behavior of the 

panel prior to cracking and on the crack orientation. In nonisotropically 

reinforced panels as the loading is further increased and the reinforcement 

yields, these initially formed cracks become less prominent and new cracks 

are formed due to the ability of the cracks to transfer shear. This change 

in the crack direction, and _the consequential change in direction of the 

maximum panel stiffness, was clearly observed in the experiments of Vecchio 

and Collins (1982). 

A lower bound to the ultimate load of the panel considering failure by 

yielding of both layers of reinforcement (unconstrained or free shear), can 

be obtained from the equilibrium of a cracked element as shown in Fig. 4.6. 

This approach, often referred to as the "Principle of Minimum Resistance" 

(Gupta, 1981), yields, 

and 

N = I(N' - N )(N' 
xy X X y 

N ) 
y 

Tan(e) = N' - N = N 
X X xy 

N 
xy 

N' - N 
y y 

(4 .. la) 

(4 .. lb) 

1n which Nx, NY, and Nxy are the components of the applied inplane loading, 
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N' and N' are the reinforcement capacities ~n the x and y directions 
X y 

respectively and 8 is the crack orientation. In this approach it 1s implied 

that the crack orientation at failure is independent of the initial crack 

orientation. In arriving at Eqs. 4.1, and in Fig. 4.6, it is assumed that 

the crack is normal to the max1mum principal concrete stress and that no 

tension from the concrete exists across the crack. In general the 

orientation of the crack, or yield line, predicted by Eq. 4.lb will not 

coincide with the orientation of the cracks initially formed. 

As noted, failure of reinforced concrete panels subject to biaxial 

tension-compression and/or shear loading is not limited to yielding of both 

layers of reinforcement, but a compressive failure can also occur. 

Considering failure in which the concrete crushes in compression preceded by 

one layer of reinforcement yielding (constrained shear), equilibrium of the 

cracked element in Fig. 4.6 results ~n 

N I(N' - N ){N' - (N' N \\ 
IJ xy X X c X X 

(4.2a) 

Tan( G) = N' N = N 
X X xy 

and N N' (N' N ) 
xy c X X 

(4.2b) 

,where N' 
c 

1s the concrete compressive force at failure, accounting for any 

degradation of the concrete compressive strength. In Eqs. 4.2 it is assumed 

that the x-direction reinforcement yields. Provided that the concrete 

compressive stress at failure is known, Eq. 4.2 ~s a lower bound to the 

actual failure load (Braestrup and Nielsen, 1982). 

A compressive failure such as this ~s characteristic of heavily 

reinforced sections and also nonisotropically reinforced panels in which 

significant distortion of the concrete occurs. However the amount of 
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degradation of the concrete compressive strength which actually occurs 1s as 

yet unresolved. Experiments by Vecchio and Collins (1982), as well as 

earlier experiments by Robinson and Demorieux (1972), showed a significant 

degrading of the concrete strength and stiffness occurring as cracked 

sections are distorted. These results were obtained on specimens heavily 

reinforced in at least one direction, and using closely spaced reinforcement 

together with relatively low concrete strengths. More recent experiments to 

further investigate this degrading effect considering nominally reinforced 

sections, did not however yield significant degrading- a reduction of 

typically less than 10% (Schlaich and Schafer, 1983). 

The suitability of Eq. 4.1 can be judged from Figs. 4.7 and 4.8 1n 

which a compar1son '---­uaz:; ,_- -­ueeu 
__ JI_ 

Wii.Ue 
__ .! .a.."L 

W.LII..Il 
---,-A-.! -- ... a.ua.a..yL.l.{;c.L -- ---~ ...... -ce:su.LL:s 

____ _l._! _...._ _...] 

preU.l.{;ll..t!U by 

Vecchio and Collins (based on their experimental investigations), for panel 

sections loaded in pure shear. From these figures it 1s seen that for 

lightly reinforced sections, together with increasing cylinder strengths, 

failure of the panel occurs by yielding of both layers of reinforcement and 

the failure load is correctly predicted by Eq. 4.1. Conversely for heavily 

reinforced or highly nonisotropically reinforced sections subject to shear 

loading, a compression failure dominates. 

Most shell structures are lightly reinforced and are constructed from 

at least moderately strong concrete (with a cylinder strength in excess of 

30 MPa). In addition, as a result of serviceability criteria to limit crack 

widths (Gupta, 1981), excessive anisotropic deformations prior to failure 

would not be expected to occur. Noting also the uncertainty 1n estimating 

the degradation of the concrete compressive stress, it appears reasonable 

for most shell structures to neglect any degrading effect of the concrete. 



44 

4.3.2 Numerical modeling of cracked reinforced concrete 

Equations 4.1 and 4.2 are lower bound solutions for the ultimate load 

for the cases considered, and were obtained by assuming that at failure the 

crack orientation is normal to the maximum principal concrete stress. It 

can be shown that for certain conditions (Braestrup and Nielsen, 1983), Eqs. 

4.1 and 4.2 yield coinciding upper and lower bounds. 

Hence it appears desirable that any numerical technique should 

approximate the changing crack direction effect observed in nonisotropically 

reinforced sections. However, this has not been accounted for consistently 

1n the literature. With the exception of Cope, et al. (1977, 1980) and 

Gupta (1982), the crack direction is assumed fixed once it forms, and while 

it remains open. Retaining some shear stiffness for singly cracked concrete 

allows for subsequent cracking, but the direction of the second crack is 

limited by the shear stiffness employed for doubly cracked concrete (ASCE, 

1981). 

Analytical methods which do not retain some shear stiffness for doubly 

cracked concrete can still allow for nonorthogonal cracking (Hand, et al., 

1972) although several references restrict secondary cracking to form 

orthogonal to the pr1mary crack (Darwin and Pecknold, 1974; Kabir, 1976). 

This restriction may violate the cracking criterion within the element. 

Retaining some shear stiffness for doubly cracked concrete requires the 

formation of orthogonal cracks (Lin, 1973), unless the material axes are 

reorientated upon formation of the second crack to bisect the crack 

directions (Abdel Rahman, 1982; ASCE, 1981). Using this latter approach it 

is also necessary to limit the formation of subsequent cracks to above a 

specific divergence angle to the primary crack, say 30 degrees (Ivangi, 
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1981), to prevent excessive compressive stresses normal to the new material 

axes .. 

For a fixed crack direction and considering only orthogonal cracking, 

the failure load for the cracked element of Fig. 4.6 is given by 

N 
xy = _!_ {(N' - N 2 X X 

Tan( 8) 

and Tan(28) ~ 2N 
xy 

N - N 
X y 

+ (N' 
y 

where e is the (initial) crack angle. 

(4.3a) 

(4 .. 3b) 

Equation 4 .. 3 has been obtained by assuming the concrete to be linearly 

elastic in compression and using a shear retention factor of 0.25. As 

material failure is no longer checked for arbitary directions of the maximum 

principal concrete stress, Eq. 4.3 will overestimate the failure load. 

Gupta and Habibollah (1982) have developed an algorithm which allows· 

for the changing crack direction effect. The relevent assumption on which 

this algorithm is based is that the crack direction is always normal to the 

direction of the major principal concrete stress. This assumption has also 

been made by Duchon (1972), and also by Vecchio and Collins (1982) 1n 

developing a numerical algorithm consistent with their experimental results. 

Under the simplifying assumption that the directions of principal 

concrete stress and principal strains coincide, it follows that the rotating 

crack algorithm will correctly predict failure loads given by Eqs. 4.1 and 

4.2.. The assumption that the principal concrete stress and strain coincide 

was shown to be at least approximately true in the experiments of Vecchio 

and Collins. 
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This numerical solution therefore has the capability of predicting the 

full nonlinear response of membrane elements subjected to inplane shear and 

normal stresses. 

4.3.3 Cracking model 

The constitutive model used in this investigation 1s based on the 

incrementally linear smeared crack element model, as used by Darwin (1974), 

together with the material model described in Section 4.2 and Appendix B. 

The· material model used predicts that the concrete principal stresses and 

strains coincide. 

Progressive cracking, or changes 1n the crack orientation, are 

accounted for in the cracking model by assuming that the crack direction is 

always normal to the direction of the maximum principal strain. In contrast 

to the model used by Hand, et al. (1972), Lin, (1973), Darwin and Pecknold 

(1974) and Kabir (1976), the material axes are not fixed after formation of 

the initial crack, but its orientation 1s determined as the direction of the 

maximum principal strain at the beginning of each iteration. 

For intact concrete, the concrete contribution to the incremental 

tangent stiffness matrix in the material coordinates is obtained as (Darwin 

and Pecknold, 1974) 

E v/E
1 

E
2 

0 

11a 
1 

v/E
1 

E
2 

0 =--2 E2 
1-v 

0 0 1 2 (E
1 

+E
2 
-2v/E

1 
E

2
) (4 .. 4) 

where ~cr. (i=l,2) is the stress increment 1n the direction of the current 
l 

principal strain, 11E. 1s the corresponding strain increment, E. is the 
l l 

tangent modulus and v 1s Poissons ratio. 



47 

A max1mum principal stress criterion 1s used to determine failure 1n 

tension. The constitutive relation for cracked concrete 1s then obtained by 

setting the tangent modulus, say E , to zero in Eq. 4.4, 

0 0 0 

0 

0 (4.5) 

The shear retention factor 1n Eq. 4.5 is introduced to account for the 

effective shear modulus along the cracks due to shear friction and dowel 

action. Note that although it is implied that there 1s no shear along the 

current crack, this does not exclude the presence of a shear stress on 

previously formed cracks. In fact it 1s this shear stress which will cause 

subsequent cracking and effectively produces changes 1ll the crack 

orientation. 

In developing a numerical algorithm, Gupta (1982) obtained the rotating 

crack tangent stiffness matrix as the sum of the conventional fixed crack 

tangent stiffness matrix (Eq. 4.5), plus a contribution which reflects 

possible changes in the crack direction. This can be obtained as follows, 

acr 
+-= d8 ae 

(K + G) !1.t. (4 .. 6) 

1n which K is given by Eq. 4.5, and G represents the possible changes in the 

crack direction. 

An expression for the rotating crack tangent stiffness matrix assuming 

the concrete to be linearly elastic and neglecting the tensile strength of 

the concrete (and tension stiffening) is given by Gupta (1982), and can 

easily be extended to overcome these limitatioiJs using Eq. 4.6. 
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While Eq. 4.6 is theoretically correct (within the assumptions made), 

1n keeping with the iterative nature of a nonlinear finite element approach 

any suitable incremental tangent stiffness matrix can be used. It l.S 

therefore possible to neglect the rotating crack contribution G, provided 

that the changing crack direction 1.s adequately accounted for 1.n the 

pertinent parts of the solution procedure- in particular in selecting the 

material axes and transforming from the material to the global or element 

axes .. 

In this investigation it was found that neglecting the rotating crack 

stiffness matrix only rarely increased the number of iterations and did not 

introduce any numerical instabilities. 

4.3.4 Tension stiffening 

The inclusion of a realistic tension stiffening model is very important 

when analysing lightly reinforced sections subject to inplane loading, and 

also structures which are endangered by stability failures. An example of 

the significance of tension stiffening when modeling instability problems is 

shown in Fig. 4.9 (Eibl and Kesting, 1978). In Fig. 4.9, the factor B 

characterizes the length of the descending branch of the concrete 

stress-strain curve. (See Appendix B, Fig. B6.) 

Different values of S have been used in the literature: Lin (1973) 

adopted a value of about 6, Gilbert and Warner (1978) used 10, and Abdel 

Rahman (1982) set S equal to 10 to 25. Melhorn (1981) used Se:: equal to 
t 

2.0 vs and Cope, et al .. (1980) set Se::t to 1.5 l-1£. There is however little 

experimental evidence from which S can be determined.. It should also be 

noted that an upper bound to Se::t must be set so that the tension stiffening 
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does not artificially increase the total stress 1n the direction of any 

yielded reinforcement. A conservative proceedure to 1nsure that this does 

not occur is to limit the upper bound of Sst equal to the yield strain of 

the reinforcement. 

Limited experimental results have been obtained from the experiments of 

Vecchio and Collins (1982), a~d these report reasonably high tension 

stiffening effects "even for strains one hundred times greater than the 

cracking strain". Admittedly these results were obtained from relatively 

heavily reinforced specimens, with a reinforcement percentage of 1 .. 875% in 

at least one direction. In Fig. 4.10 the results obtained by Vecchio and 

Collins are reproduced, together with assumed unloading concrete 

stress-strain curves corresponding to Sst equal to 2.0~s (S~20) .. From 

Fig. 4.10 it appears that S=20 is sufficiently conservative. Consequently 

that value has been used as the default value in this investigation. 

An alternative approach has been used by Mang and Floegl (1981, 1982), 

which is based on bond slip. Using a shear-slip relationship together with 

an experimental expression for the bond stress, the additional work done by 

the bond force can be found. This method attempts to take into account the 

angle between the crack and the intersecting reinforcing bar, the crack 

propagation through the thickness and seco~dary cracking between primary 

cracks. However, this proposed model requires that the crack spacing has to 

be specified a priori. This model is referred to again in Chapter 5. 

4.3.5 Comparison with experiments 

The response of panel sections to inplane shear and normal stresses has 

been extensively investigated by Vecchio and Collins (1982). Their 
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experiments covered a wide range of orthogonal reinforcement percentages~ 

but most of the specimens were heavily reinforced in at least one direction. 

Twelve nonisotropically reinforced specimens~ with 1.875% reinforcement ~n 

the strong direction, were tested in pure shear. Most of these specimens 

failed ~n compression, or experienced edge related fa~lures. Five 

isotropically reinforced specimens, with 1.875% reinforcement ~n both 

directions and a yield strength exceeding 420 MPa, were tested under 

combined stress states. As can be expected, all of these specimens failed 

in compression. 

A comparison has been made with selected experimental results to 

evaluate the suitability of the rotating crack model .. This comparison ~s 

directed mainly at failures of panel sections in unconstrained shear. 

Details of the material properties and the loading arrangements for the 

panels selected are given ~n Tables 4.1 and 4.2 respectively. Of the 

nonisotropically reinforced panels, only panel PVll failed by yielding of 

both orthogonal layers of reinforcement. Panels PV18 and PV19 failed 1n 

bond and shear respectively, but yielding of the second layer of 

reinforcement was ~inent, and therefore these specimens have also been 

included. Panels PV16, PV17 and PV25 have also been included, but the 

results for these panels are the same using both the rotating and fixed 

crack models .. 

The comparison of the experimental response and the numerical results 

are shown in Figs. 4.11 to 4.16 while further details are given in Table 

4.3. In general good agreement is obtained using the rotating crack model. 

It should be noted that part of the discrepancy, in both the failure mode 

and the failure laod, between the rotating crack model and the experimental 

results of panels PV18 and PV19 is due to a degradation of the concrete 
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strength. This degradation of the concrete compressive strength LS not 

accounted for in the present model. It is interesting to note from Figs. 

4.14 and 4.15 that the fixed crack model significantly overestimates the 

ultimate load of anisotropically reinforced specimens in which the direction 

of the principal load is at an angle greater than about 45 degrees to the 

principal reinforcement direction_ 

4.3.6 Extension to model flexural behavior 

The algorithm presented previously can be extended to model flexural 

behavior, or combined inplane-flexural behavior, by combining the solution 

algorithm together with the layered material model approach (Hand, et al., 

1972). In this approach the concrete is divided up into a number of 

'layers' through the thickness and each layer is assumed to be in a state of 

plane stress. The rotating crack concept is then applied to each cracked 

layer individually. It will be demonstrated below that this model does give 

yield line orientations and failure loads consistent with experimental 

results and yield line theory. 

The rotating crack model, together with the more conventional fixed 

crack model, have also been compared to the statically determinate specimens 

tested by Cardenas and Sozen (1968). Two groups of specimens with varying 

orientations of reinforcement have been investigated, namely specimens 

subject to uniaxial bending (M2/Ml = 0) and biaxial bending (M2/Ml = -0.14). 

Details of the specimens investigated are given in Table 4.4 and Figs. 

4.17 to 4.19. The predicted response of these specimens are shown Ln Figs. 

4.20 to 4.27 and summarized in Table 4.5. It is seen from these figures 

that the rotating crack model is satisfactory in modeling the behavior of 
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these specimens, not only with regard to the yield moment and ultimate 

moment but also ~n predicting the yield line orientation (and hence the 

curvature distribution) at failure. The deficiency of the fixed crack model 

1n predicting the behavior of anisotropically reinforced specimens with 

respect to the principal load, as seen in Section 4.3.4, can also be seen in 

Figs. 4.25 and 4.26. 

4.4 IMPLEMENTATION 

The layered constitutive material model discussed above has been 

implemented in FINITE (Lopez, 1977). Two models have been written, namely a 

general shell element material model RCSHELL and a simplified beam material 

model RCBEAM. These models are compatible with the degenerated shell and 

beam elements discussed in Chapters 2 and 3. 

The stress resultant constitutive matrix is obtained by integrating Eq. 

4.4 through the shell thickness, and adding the normal shear components. It 

is assumed in this material model that the normal shear does not affect the 

biaxial behavior of the concrete. The normal shear is based on the initial 

modulus of the concrete, and does not depend on the cracking of the element. 

This approach is similar to that implied in most shell elements which do not 

account for shear deformations. 

4.5 NUMERICAL EXAMPLES 

Three examples are given below to demonstrate the application of the 

material model described above in finite element applications. 
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4.5.1 Delft beam 

The first example considered is that of a symmetrically loaded simply 

supported beam (Walraven, 1982). 

properties are given 1n Fig. 4.28. 

Details of the beam and material 

The beam 1s analysed using five 

quadratic beam elements together with the beam element material model. 

A comparison between the measured and predicted response 1s given 1n 

Fig. 4.29. For this simple example excellent agreement has been obtained. 

4.5.2 Duddeck's slabs 

In this example three corner supported slabs tested by Duddeck, et al. 

(1978) are studied. The first slab is isotropically reinforced while the 

latter two have differing degrees of orthotropy of reinforcement. The slabs 

have well defined support conditions with only the transverse deflection at 

the supports restrained. 

Details of these slabs have been taken from Abdel Rahman (1982). The 

material properties are given in Table 4.6 and structural details in Fig. 

4.30. One quarter of the slab has been analysed using nine quadratic shell 

elements, which were evaluated using reduced integration. To prevent 

spurious energy modes (involving the vertical displacement) an additional 

fully integrated element with a modulus of elasticity of 1.0 has been 

superimpo~ed over the central element. 

Only the rotating crack model has been used to investigate these slabs. 

Load-central deflection curves are given in Figs. 4.31 to 4.33 for Slabs Sl, 

S2 and S3 respectively. Also presented are the results obtained by Abdel 

Rahman for 8=25. The experimental and predicted failure loads are 

summarized in Table 4.7. Also included in Table 4.7 are failure loads based 
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on a yield line solution (neglecting the compression reinforcement, Abdel 

Rahman (1983)). Satisfactory agreement has been obtained with the 

experimental results. It should be noted that the results obtained by Abdel 

Rahman were obtained using a fixed crack model and by limiting subsequent 

cracking to occur above a divergence angle of 30 degrees to the pr~mary 

cracks. Crack patterns for the three slabs and status of yield conditions 

in the reinforcement at the integration points are given ~n Figs. 4.34 to 

4.36. 

4.5.3 Bouma's cylindrical shell 

A series of eleven one-eighth scale model cylindrical shells with edge 

beams have been tested by Bouma, et al. (1961). The cylindrical shells were 

constructed of reinforced mortar. Each shell has a rigid end diaphragm 

which is simply supported on the four corners. One of these shells, Shell 

A2, ~s investigated here. This example has also been investigated by 

Arenson (1979) and Abdel Rahman (1982). 

Dimensions of the shell are given in Fig. 4.37 and the reinforcement 

details in Fig. 4.38. The material properties used are given in Table 4.8, 

and have been taken from Arenson (1979). 

The full scale shell was designed for dead load plus 25% to account for 

live load. The 
2 

loading on the model is therefore 2.45 kN/m on the shell 

roof and 0.49 kN/m on the edge beams. This load is increased proportionally 

1n the test. 

Details of the finite element mesh used are given 1n Fig. 4.39. One 

quarter of the shell 1s modeled using eight quadratic shell elements and 

four quadratic beam elements. As discussed ~n Chapter 3, the beam elements 

do not account for torsion or bending about the minor principal axes. 
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In Fig. 4.40 the central deflection of the edge beam is plotted against 

the total load applied to the shell. Two analyses have been undertaken, 

namely including and neglecting geometric nonlinearities. The failure load 

of 44.0 kN obtained for the small displacement analysis is close to the 

ultimate load of 40 kN calculated according to a simple beam-type analysis 

reported by Bouma. Good agrePment with the experimental ultimate load of 

50 kN is obtained by including geometric nonlinearities, but the present 

load-displacement curve appears to be too stiff. The results obtained by 

Arenson are also included in Fig. 4.40. 

The predicted crack pattern for the shell near failure 1s shown in Fig. 

4.41. The shell failed by yielding of the reinforcement 1n the beams and 

yielding of the transverse reinforcement at the top of the shell, near the 

center line of the shell. 

4.6 SUMMARY 

The modeling of cracked reinforced concrete using the 'rotating crack' 

algorithm has been discussed. In this algorithm progressive cracking, or 

changes in the crack orientation, are accounted for by assuming that the 

crack orientation is always normal to the current max1mum principal strain 

direction. It has been demonstrated that this algorithm yields failure 

loads consistent with yield line solutions. 

This algorithm has been implemented together with a nonlinear biaxial 

orthotropic material model. The stress-strain behavior of the concrete is 

described using Liu's material model (1972) and a modified form of the 

failure envelope used by Darwin (1974) and Rajagopal (1976). The material 

model is described rn detail in Appendix B. Full bond 1s assumed between 

the concrete and reinforcement, and tension stiffening is included. 
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This model is primarily restricted to static loading applications, but 

limited unloading capabilities have been included to model unloading which 

can occur in structural instability applications. 
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CHAPTER 5 

FAILURE OF REINFORCED CONCRETE COOLING TOWERS 
UNDER WIND LOADING 

5.1 INTRODUCTION 

The safety of cooling towers under wind loading has been the subject of 

extensive research over the past twenty years or so. Much of this research 

is as a consequence of the failure of the Ferrybridge Towers in 1965 1n the 

U.K. (CEGB, 1976), and the failure of the Ardeer tower in Scotland in 1973 

(ICI, 1974). The collapse of these towers has since been explained as 

resulting from, amongst other contributing factors, an under-estimation of 

the design wind load and due to gross imperfections respectively. In 

addition to these failures a cooling tower collapsed in Northern France 1n 

1979, and more recently a 114m high (375 ft) cooling tower collapsed at 

Fiddler's Ferry Power Station in the U.K. in January 1984 (ENR, 1984). The 

only other report of damage to cooling towers due to wind loading concerns 

the damage which was sustained by the Port Gibson tower in Mississippi USA 

during a tornado. 

To date the safety of cooling towers under wind loading has not been 

satisfactorily resolved, in particular with regard to the buckling safety 

and the effect of cracking on the strenght or stability of the tower. These 

effects are likely to become even more important as the height of these 

towers approaches 200m (565 ft). 

This Chapter investigates the effect of cracking on the failure and 

stability of reinforced concrete cooling towers. These results are then 

examined in the light of present day practice, and 1n particular against 
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methods of design for strength and buckling which are based on an assumed 

elastic behavior of the tower. 

5.2 REVIEW OF PREVIOUS RESEARCH 

5.2.1 Experimental results 

A series of wind tunnel experiments were carried out by Der and Fidler 

(1968) to investigate buckling of cooling towers under wind loading. To 

date these tests remain the basis for judging the buckling safety of cooling 

towers used in most codes of practice (BSI BS3445, 1975; ACI-ASCE Committee 

334, 1977; lASS Working Group No. 3, 1977), and also form the standard 

against which many investigators have evaluated their analytical techniques 

for cooling tower buckling. 

The Der and Fidler tests consisted of investigating PVC and copper 

model towers. The resulting elastic snap-through load was obtained as 

where l.S 

( )
2.3 

q = C E t/R 
c (5.1) 

the dynamic head at which buckling occurs, C is an imperical 

coefficient, E is the modulus of elasticity of the shell, t is the thickness 

of the shell at the throat and R is the radius of the shell parallel circle 

at the throat. 

The mean value of C recorded in the experiments for 15 intact models 

was 0.068, with the lower bound of 0.052 being adopted 1.n most codes of 

practice. 

A recent re-evaluation of these tests (Abel, et al., 1982) has, 

however, indicated possible inaccuracies 1.n the origional experiment, and a 

corrected mean C-value for the PVC models of 0.072 has been put forward. 
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While this has resulted in closer agreement with analytical predictions, a 

re-evaluation of test data some 20 years later is clearly undesirable. The 

results of tests presently being conducted at Bochum University (Zerna and 

Mungan, 1982) and at the Electricity de France (Sageau, 1984) are therefore 

eagerly awaited. 

Equation 5.1 clearly makes no provision for variations ~n the wall 

thickness, height to radius ratio, location of the throat, boundary 

conditions, self-weight of the tower, wind distribution, etc. Furthermore 

this formula ~s limited to elastic buckling and does not account for 

material nonlinearities and cracking. Wind tunnel tests to simulate 

cracking are discussed in Section 5.2.4. 

Although not directly concerned with cooling towers, the wind tunnel 

tests on open ended cylindrical shells reported by Kundurpi, et al. (1975) 

need to also be mentioned. This experiment investigated several different 

height to wall thickness ratios and aspect ratios. The elastic snap-through 

load obtained can be expressed approximately as 

qc = 0.262 E 
2.5 

(t/R) for H/R = 2 

0.060 E (t/R)2.33 H/R = 3 

0.019 E (t/R)2.20 H/R = 4 (5.2) 

The dependency of the empirical coefficient C on the aspect ratio of 

the shell (H/R) is clear from Eq. 5.2. Similar results would be expected to 

apply to toroidal sections, but this has not been investigated 

experimentally. 

An extensive and carefully controlled set of experiments has been 

carried out by Mungan (1976, 1979) to investigate buckling of cylindrical 

and toroidal shells under combined axial and pressure loads. This 
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investigation also included stiffened shells. These tests were conducted on 

epoxy resin models and loaded under water. These experiments led to the 

development of the 'Buckling Stress State' approach (BSS), in which the 

buckling safety of the shell is assessed in terms of a critical combination 

of meridional and circumferential stresses occurring at any point within the 

shell. If the buckling stress state is exceeded, local buckling is assumed 

to occur which generally results ~n failure. The BSS method has been 

adopted in the Recommendations by the lASS Working Group No. 3 (1977) for 

the design of cooling towers. 

The philosophy behind this approach, in which it is assumed that once 

the buckling stress state for a particular shell is known, then the buckling 

safety can be evaluated independently of the loading condition is disputed 

~n several references, in particular by Abel, et al. (1982). The ma~n 

criticism of this method is that the BSS interaction formulae ~s based on 

model studies with much different characterestics from those in an actual 

tower, particularly boundary conditions and loading. Another criticism, not 

referred to by Abel, et al. is that the BSS approach was developed by 

investigating axisymmetric bifurcation of shells whereas failure of cooling 

towers under wind loading is a very nonlinear snap-through phenomenan. 

Zintilis and Croll (1983) also note that in the experiments leading to the 

BSS approach, the critical combination of stresses were recorded at the 

throat of the model tower, and that this is not an optimal choice of 

location. 

Additional experimental investigations include microconcrete model 

tests reported by Rowe (1981) and by Swartz, et al. (1982), and additional 

bifurcation tests on plastic models by Veronda and Weingarten (1973). 
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5.2.2 Bifurcation studies 

Linear bifurcation studies have frequently been used as a basis for 

approximating the nonlinear snap-through phenomenan. Various approaches 

have been used, including Equivalent Axisymmetric Loading (Langhaar, et al., 

1970), Equivalent Axisymmetric Stresses (Cole, 

Nonaxisymmetric Bifurcation (Mang, et al., 1981). 

et al, 1975b) and 

In support of a linear bifurcation approach is the consistency ~n the 

differences between bifurcation and experimental results for the wind loaded 

cylinder tests of Kundurpi, et al. (1975). Good agreement has also been 

obtained with the revised Der and Fidler tests using bifurcation results 

based on the equivalent axisymmetric loading approach (Abel, et al. 1982). 

Analytical studies have shown the linear bifurcation loads to be lower 

than the corresponding analytical nonlinear 

1983). (but significantly higher than 

buckling load 

the origional 

(Mang, 

Der and 

et al. 

Fidler 

experimental results). Linear bifurcation loads based on the actual assumed 

load distribution are also significantly lower than equivalent axisymmetric 

bifurcation loads (Mang, et al., 1983). 

5.2.3 Geometric nonlinear analyses 

Geometric nonlinear analyses have been carried out for elastic towers 

by Chan 

1983). 

and Firman (1970), Yen and Shieh (1973) and Mang," et al. (1977, 

Both Chan and Yen contain errors (Cole, et al., 1975a) but the 

former have been approximately corrected by Ewing (1971) who together with 

the results of Mang, et al. predict nonlinear snap-through loads far 1n 

excess of those obtained by Der and Fidler- the nonlinear snap-through load 

predicted by Mang, et al. (1977) is higher than the uncorrected Der and 

Fidler experimental results by a factor of 2.6. 
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It ~s interesting to note that geometric nonlinear results for 

cylindrical shells show good agreement with experiment (Brendel and Ramm 

(1980) and Fig. 2.10). 

5.2.4 Cracking and material nonlinearities 

The conventional approach to the design of reinforced concrete cooling 

towers to satisfy a minimum strength requirement is based on an elastic 

analyses of the structure. Reinforcement ~s then proportioned so as to 

resist the factored component of the principal membrane forces in the same 

direction (ACI-ASCE Committee 334, 1977). Alternatively the reinforcement 

can be proportioned using a more refined method, which is based on the 

ultimate strength of an isolated section subject to the membrane forces 

(Gupta, 1981). 

In the absence of geometric nonlinear effects the approach used by 

Gupta (1981) will provide a lower bound to the actual ultimate load of the 

tower, but will not yield any information regarding the magnitude of 

displacements at failure, or even above the cracking load. A finite element 

analysis to investigate the post-cracking behavior of cooling towers ~s 

given ~n Mang, et al. (1983), and is also the subject of investigation of 

Section 5.3. 

Concern has also been expressed about the effect of cracking on the 

stability of cooling towers. To investigate any decrease ~n the buckling 

capacity due to cracking, Der and Fidler tested a model with 26 vertical 

slits in the upper rim to simulate cracking. They found that the 'cracks' 

caused a 21% reduction ~n the buckling load. Hayman and Chilver (1971) 

carried out model tests to supplement the Der and Fidler studies by cutting 

the models from top to bottom to represent loss of local circumferential 
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flexural rigidity, and then applied tape to both sides of the shell to 

maintain both meridional stiffness and displacement continuity. Their 

results indicated that five to seven full-height 'cracks' reduced the 

buckling load by about 55%. Cole, et al. (1975b) investigated the effects 

of cracking by using orthotropic properties for the top axisymmetric finite 

element to represent complete loss of circumferential stiffness. This 

resulted in a reduction of the predicted bifurcation load as compared to 

that using an isotropic model by a factor of about 3.4. This latter 

investigation is subject to some question, as it does not account for 

partial closing of cracks in compression (Stallbohm, et al., 1976). This 

argument can also be applied to the wind tunnel tests by Hayman and Chilver 

(1971). 

In the reinforced concrete finite element analysis undertaken,by Mang, 

et al. (1983), geometric nonlinearities were also included to investigate 

buckling. This reference found no evidence of 'buckling' before a complete 

material failure had occurred. It was found that geometric nonlinear 

effects decreased the ultimate load by about 20%. 

further 1n Section 5.3 

5.2.5 Foundation flexibility 

This 1s investigated 

The influence of foundation flexibility on the bifurcation of cooling 

towers under axisymmetric loading has been investigated analytically by 

Langhaar, et al. (1970) and Cole, et al. (1975a). Cole characterizes the 

foundation flexibility by a nondimensional meridional spring stiffness 

obtained by assuming that the meridional membrane stress resultant is 

linearly proportional to the meridional displacement. Both Langhaar and 

Cole found that a decrease 1n the meridional spring stiffness from 1J0 
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(simply supported base) to 1.0 resulted in a decrease in the buckling load 

by a factor of about 1.3, while a decrease ~n the axial spring stiffness 

10 from 10 to 0.1 reduced the buckling load by a factor of approximately 2.1 

to 2.4. Cole estimates that for large cooling towers currently operating 

and being built in the USA, the meridional support stiffness is about 1.0. 

Mang, et al.(l983) reports the results of an investigation (Mehl, 1982) 

which concludes that "the influence of the flexibility of the supports on 

the buckling pressure of (the Port Gibson Tower) is relatively small." 

However, the results obtained by Langhaar and by Cole were obtained for 

the bifurcation of cooling towers under axisymmetric loading, and these 

results are not necessarily representative of snap-through loading. 

The effect of foundation flexibility on the stress distribution within 

the cooling tower has been investigated by Dumitrescu, et al. (1983). 

5.3 NUMERICAL INVESTIGATION 

The tower adopted for this investigated is that of a tall cooling tower 

with the geometry of the Port Gibson Tower, Mississippi. This tower has 

been chosen as it has been the subject of other investigations (Mang, et 

al., 1983; Hayashi and Gould, 1982, 1983), and is typical of a large cooling 

tower in use today. 

The behavior of the tower is investigated under dead load and 

increasing wind load, considering material nonlinearities and combined 

geometric and material nonlinearities. 

5.3.1 Description of the tower 

The geometry of the shell of the tower and the wall profile is given ~n 

Fig. 5.1. The tower stands 150.5 m (494 ft) tall and has a m1n~num wall 
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thickness of 203 mm (8 in). The radius of the tower at the throat is 36.3 rn 

(119 ft) and at the base 59.7 m (196 ft). The shell 1s thickened locally at 

the top and base to form ringbeams. 

Above the throat of the tower the geometry of the meridian curve 1s 

that of a hyperbola, while below the throat the meridian is an elliptical 

segment. The geometry of the shell is given by the second order curve 

~ - 2 -az + bRz + cR + dz + eR + f 0 (5.3) 

where z = z ~ 120.0 m, ie the elevation of the tower measured from the 

throat. The coefficients in Eq. 5.3 are given in Table 5.1. 

5.3.2 Material properties 

The material properties of the concrete and reinforcement are given 1n 

Table 5.2 and Fig. 5.2. These properties are the same as those adopted by 

Mang, et al. (1983), except for the tensile strength of the concrete and the 

reinforcement quantities. A tensile strength for the concrete of 3.0 MPa, 

which 1s slightly less than that used by Mang et al., has been adopted for 

the initial investigation of the cooling tower. Where noted, a tensile 

strength of 1.5 MPa has also been used. The reinforcement quatities have 

been taken from Hayashi and Gould (1983) in which the reinforcement has been 

designed in accordance with the ACI-ASCE recommendations (1977) together 

with the procedure given by Gupta (1981). In the upper one third of the 

tower the meridional reinforcement is controlled by the 0.35% minimum 

requirement, while the circumferential reinforcement 1S controlled 

throughout by the 0.35% minimum. The reinforcement used 1n this 

investigation (and by Hayashi) is slightly less than that used by Mang. 
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5.3.3 Finite element discretization 

The finite element mesh used is shown in Fig. 5.3. The shell has been 

idealized using 90 quadratic Lagrangian shell elements (QLSHELL). Material 

nonlinearities have been included using the material model RCSHELL. The 

geometric nonlinear investigation is based on the small rotation formulation 

of Chapter 2, which has been shown to be adequate for snap-through buckling. 

No mesh convergence study was performed for this investigation. A 

linear analysis was first undertaken, and the results compared with those 

obtained by Hayashi and Gould (1982). Close agreement was obtained with the 

present mesh. A convergence study should include the effects of both 

material and geometric nonlinearities, but the cost of such a study 1s 

prohibitive and was not attempted. 

The simplifying assumption of a hinged base and a rigid foundation has 

been made. The influence of foundation flexibility is beyond the scope of 

this investigation. 

5.3.4 Loading 

The tower has been analyzed for combined dead and wind loading. The 

wind loading used 1s a codified psuedo-static approach in which it is 

assumed that the tower behaves quasi-statically to a particular (design) 

gust load. The vertical and circumferential wind load distribution used is 

taken from Mang, et al. (1983), which is similar to that used in the current 

ACI-ASCE recommendations for exposure C open terrain. 

p(z,8) q H(z) G(8) 
0 

(5.4) 

where H(z) 1s the vertical distribution of the design wind pressure profile 
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H(z) (z/10) 2 / 7 (5.5) 

and z ~s ~n meters. 

G( 8) is the circumferential pressure distribution, including internal 

suction 

G(e) 

n 

A Cos(ne) 
n 

The Fourier coefficients, A , are given in Table 5.3 
n 

q
0 

is the design dynamic head at the reference 10m elevation. 

(5.6) 

A reference 

windspeed of 40.2 m/s (90 mph) (Note that Mang has used a corresponding 

reference wind speed of 42.7 m/s (95 mph).) 

The meridional forces due to dead, reference wind load and combined 

dead plus wind load acting along the windward meridion are shown ~n Fig. 

5.4. Also included ~n Fig. 5.4 is the yield strength of the meridional 

reinforcement A f and the cracking strength of the tower N +N ~n the 
s s ct s 

meridional direction. 

All the results presented in this investigation are expressed in terms 

of a normalized load factor, obtained from the reference wind load 

distribution as 

P (v) 

p (40.2m/s) (5.7) 

5.3.5 Numerical results 

A parameter study consisting of four investigations has been carried 

out for this tower, namely 

TOWER I: Material and geometric nonlinearities included, tension 
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stiffening factor B equal to 20. (See Fig. 5.5.) 

2. TOWER II: Material nonlinearities included but geometrically 

linear, tension stiffening factor equal to 20. 

3. TOWER III: Material and geometric nonlinearities included, but 

tension stiffening factor reduced to 5. (See Fig. 5.5.) 

4. TOWER IV: Material and geometric nonlinearities included, tension 

strength of concrete reduced by half to 1.50 MPa and tension 

stiffening factor 8 reduced to 10. 

Tower I has been adopted as the reference tower for this investigation. 

The load displacement behavior for a point on the tower, at an 

elevation z = 101 m (331 ft) on the windward meridian, is shown in Fig. 5.6. 

An ultimate load factor of approximately 2.10 ~s obtained for Tower I, 2.25 

for Tower II, 1.725 for Tower III and 1.35 for Tower IV. The load factor at 

which cracking occurs is approximately 1.45 for the first three towers, and 

1.0 for Tower IV. 

To keep these numbers ~n perspective, it should be noted that this 

tower has been designed according to the ACI provisions (ACI-ASCE Committee 

334, 1977; Hayashi and Gould 1982) as 

or 

0.9 A f = 0.9 D + 1.30 W s s 

A f s s 1.0 D + 1.44 W 

= 1.44 

(5.8a) 

(5.8b) 

For the reinforcement actually used, an ultimate load factor based on a 

linear analysis of 1.52 is obtained. A load factor of 1.38 is obtained for 

cracking of the concrete by neglecting the contribution from the 

reinforcement and 1.46 by including the effect of reinforcement. 

Examination of the load displacement behavior of Towers I and II in 

Fig. 5.6 shows that geometric nonlinear effects decrease the ultimate load 
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by about 7%, but this reduction is accompanied by significantly increased 

displacements at the same load level. In both cases failure is initiated by 

first yield of the reinforcement, and this Ls followed by a rapidly 

increasing zone of yielding at little increase in load. No attempt was made 

to follow the propagation of yiel~ing through the tower. 

The nonlinearity in the load displacement behavior Ls illustrated Ln 

Fig. 5.7, in which the deflected profile for the windward meridian for Tower 

I is shown for increasing load level. The radial displacement at the level 

of the throat for the reference tower near failure (A=2.075) is shown in 

Fig. 5.8, and the corresponding deflected profile for several meridians 

(where 8 = 0 corresponds to the windward meridion) is shown in Fig. 5.9. 

The crack pattern for the tower at failure is shown in Fig. 5.10. This 

crack pattern clearly identifies the main load carrying mechanism within the 

tower. Changes in the principal strain direction, and hence changes in the 

average crack direction, were generally small but Ln some areas rotations of 

up to 20 degrees were observed. 

A comparison is made with the results obtained by Mang, et al. (1983) 

Ln Fig. 5.11, where the displacement of the windward meridion at an 

elevation of 82 m (269 ft) is plotted against the load factor. The load 

factor by Mang, et al. has been corrected by a factor (95/90)2 to account 

for the different reference wind speed used. The results for Mang, et al. 

include geometric nonlinearities and tension stiffening. 

The difference in the results for Tower I and that obtained by Mang, et 

al. is attributed directly to the tension stiffening used. As noted Ln 

Chapter 4, modeling of instability problems is very sensitive to the amount 

of tension stiffening used- see Fig. 4.9. The tension stiffening used for 
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Tower I ~s relatively high, but as has been shown in Fig. 4.10 it is still 

considerably less than that observed ~n the Vecchio-Collins experiments. 

The tension stiffening used by Mang ~s based on a bond slip model 

developed by Mang and Floegl (1981,1983). There ~s little experience by 

which this model can be judged, but it appears to effectively yield very low 

tension stiffening values. 

In order to evaluate the role of tension stiffening further, Tower III 

was undertaken. For this tower, tension stiffening which was felt to be 

unrealistically low was specifically chosen. The tension stiffening used ~s 

shown in Fig. 5.5. 

The load displacement behavior of Tower III has been included in Figs. 

5.6 and 5.11. It is seen that decreasing the tension stiffening used 

significantly reduces the ultimate load when geometric nonlinearities are 

included. Similar results to those obtained by Mang, et al. (1983) are now 

obtained, as shown in Fig. 5.11. 

The difference in the behavior between Tower I and Tower II can be 

explained with the aid of Fig. 5.12. In this figure the numerical model for 

the uniaxial force-strain relation ~n the meridional direction at an 

elevation of 59.2 m (188 ft) for Towers I and III. This elevation 

corresponds to the 'critical section' at which cracking first occurs. From 

Fig. 5.12b it is seen that subsequent to cracking the total force at the 

critical section ~s released, whereas for Tower I, numerically, the cracked 

section does not release the meridional force immediately after cracking. 

This is clearly seen by examining the variation in the meridional force 

and meridional strain for integration points on the circumference, at the 

level of the critical section. These results are shown ~n Figs. 5.13 to 

5.16 for Towers I and III. The somewhat erratic behavior in Fig. 5.15 ~s 
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due to the fact that the meridional forces are not necessarily recorded 

immediately prior to cracking. However, the general trend in Fig. 5.15 

indicates a rapid redistribution of stresses as cracking occurs, whereas 

Fig. 5.13 indicates a gradual redistribution of stresses. 

It is also interesting to note that first yielding of the reinforcement 

for Towers I and II occurs at the same point at which cracking is initiated 

(z=57.18 m). However, for Tower III, although cracking first occurs at the 

same elevation, first yielding of the reinforcement occurred at an elevation 

of 86.2 m -(283 ft). This is due to the ultimate capacity of the 

reinforcement being substantially less 

section at this elevation (see Fig. 

redistribution of the meridional 

than the cracking strength of the 

5.5), and due to the rapid 

force from the concrete to the 

reinforcement as a result of the low tension stiffening used. 

The inability of Tower III to compensate for the redistribution of the 

meridional force by a shift in the neutral axis can be seen ~n Fig. 5.17. 

In this figure, the distribution of the meridional force and strain along 

the circumference at which yielding first occurs, is shown for increasing 

load. A small change in the neutral axis position is observed for A = 

1.725, but this is clearly not sufficient to prevent failure by excessive 

displacements resulting from straining of the windward meridian. 

The influence of the tension strength on the failure load of the 

cooling tower is also shown in Fig. 5.6. For Tower IV a tensile strength of 

1.5 MPa has been used. In fact, a tensile strength of 1.5 MPa is more 

appropriate in situations such as this, where the stress distribution is 

approximately uniform across the thickness of the section, and accounting 

for the possible effects of creep and shrinkage of the concrete. The 

tensile strength of approximately 3.0 MPa used by Mang, et al. (1983) (and 
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adopted · for Towers I, II and III) is more appropriate of the modulus of 

rupture of concrete which 1s applicable in situations were a high stress 

gradient exists, such as flexural applications. For Tower IV it is seen 

that the required load factor of 1.52 1s not achieved. First yielding of 

the reinforcement occurs at an elevation of 105.2 m, at which the 

reinforcement capacity is less than the tensile capactiy of the concrete, 

and at a maximum displacement exceeding 540 mm. 

5.3.6 Discussion of results 

Before discussing the results obtained in this investigation, it is 

worth s~rizing additional failure loads for this tower, based on various 

sources. These. results are tabulated in Table 5.4. 

The Der and Fidler equation given in the 1977 ACI-ASCE Recommendations 

(1977) gives a factor of safety against elastic buckling of 4.46, while the 

lASS Buckling Stress State approach (1977) gives a factor of safety ~f 3.08 

(see Fig •. 5.16). Note that the ACI-ASCE requires a factor of safety of 2.0, 

whereas the lASS requires a factor of safety of 5.0. 

Elastic bifurcation results based on equivalent axisymmetric stress 

conditions yield a factor of safety of 14.39 and equivalent axisymmetric 

pressure yield a factor of safety of 15.41 (Mang, et al., 1983). An elastic 

nonlinear snap-through analysis undertaken by Mang, et al. (1977) yielded a 

factor of safety of approximately 24. 

Undoubtedly, further research will be done 1n the area of elastic 

buckling of cooling towers so as to explain the discrepency between the 

experimental and analytical results. However, as can be seen from Table 

5.4, failure loads based on assumed elastic behavior are much higher than 

can be expected to occur before cracking of the concrete dominates the 
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solution. The same v~ew 1s held by Hang, et al. (1983). It is expected 

that these conclusions would also hold for very large cooling towers (say, 

200m 1n height). 

The post cracking behavior of the cooling tower was found 1n this 

investigation to be very dependent on the assumptions made which influence 

the load carried by the concrete in tension. Using a relatively high 

tension stiffening model, the results obtained in this investigation differ 

significantly from those obtained by Mang, et al. These results indicate a 

usable reserve of strength above the cracking load of the tower. The 

failure mode observed for Tower I can be regarded as a 'ductile' failure as 

compared to the rapid 'brittle' failure observed for Tower III. Using a low 

tension stiffening model, similar results to Mang, et al. have been 

obtained. The extreme sensitivity of these results on the analytical 

description of tension stiffening contradicts the normally held opinion that 

tension stiffening can change the shape of the load deflection curve but not 

its limiting or ultimate load. The present observations are however 

dependent on the structural form, and the loading. 

Mang, et al. (1983) notes that at present it seems premature to make 

generalizations about the ultimate load based on the available numerical 

evidence. This is not entirely clarified by this investigation but it has 

been shown that it may be premature to make generalizations about the actual 

mode of failure. The results shown in Fig. 5.6 illustrate the range of 

results obtained in the present investigation. While there is some doubt as 

to the validity of the failure mechanism observed by Mang and for Tower III, 

it 1s nevertheless clear that the behavior of the concrete in tension plays 

a dominant role in the failure of reinforced concrete cooling tower shells. 

The results presented here indicate that the ultimate load of cooling 

towers is not solely a function of the reinforcement quantities used as 
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implied ~n Codes of Practice and Recommendations (ACI-ASCE Committee 334, 

1977) The failure load obtained in this study varied from 2.10 to 1.35 

depending on the assumptions made regarding the tension strength and tension 

stiffening. The role of the reinforcement appears to be more concerned with 

crack control (spacing and width) and therefore, effectively, on the tension 

stiffening effect. Due consideration should therefore be given to the 

spacing of reinforcement and bar diameters. At present these effects cannot 

be realistically accounted for using analytical models as there is 

insufficient experimental information available. 

For the present investigation, for Towers I and III it is seen that the 

load factor based on an elastic analysis is a conservative estimate of the 

ultimate strength of the tower. There is therefore some tentative evidence 

that a linear analysis will yield an acceptable factor of safety against 

failure, although caution must be expressed in generalizing this to other 

towers. In particular it has been shown that the ultimate load of the 

cooling tower is dependent on the tension strength of the concrete, and for 

the particular tower investigated the uncracked tower yielded the required 

ultimate load factor (for ft =3 MPa). Towers for which this is not achieved 

would be expected to behave differently, as demonstrated by Tower IV of this 

investigation. A linear elastic analysis will not, however, account for the 

possible large deflections above the cracking load. 

Towers III and IV failed by yielding of the reinforcement ~n the 

vicinity of the throat. The ultimate load of Towers III and IV would 

however have been increased, and the 'ductility' of the structure improved, 

if the reinforcement capacity in the vicinity of the throat of the tower had 

exceeded the intact strength of the concrete. Hayashi and Gould (1983) note 
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that this would be good practice, and the results of this investigation 

support this view. 

Due to the uncertainty 1n the post-cracking behavior of the tower, it 

1s apparent that the cracking load must also be investigated, possibly to 

satisfy a lower factor of safety than that required at ultimate. A 

reasonable approach is to ensure that under working loads, cracking does not 

occur in the cooling tower shell. This requirement would be satisfied for 

the present tower- see Fig. 5.6. In this regard it is noted that 

requirements- "to insure that neither cracking nor deflections are excessive 

under conditions of unfactored loading" (ACI-ASCE Committee 334, 1977) are 

meaningless, as the extent of cracking observed in either Tower I or Tower 

III cannot be predicted by a linear elastic analysis. 

5.4 SUMMARY 

The failur€ of an isolated cooling tower under wind loading has been 

examined. It has been confirmed that cracking and the subsequent 

redistribution of stresses plays a very important role in the post cracking 

behavior and failure of the tower. The results obtained 1n this 

investigation indicate that the ultimate load based on a linear elastic 

analysis is a conservative estimate of the actual failure load, but this 

conclusion is dependent on the tension strength of the concrete. Before 

these results can be generalized, additional investigations involving towers 

of differing height and wall thickness are required. 

At present, as there 1s uncertainty 1n the actual post cracking 

behavior of cooling towers, is seems necessary that the cracking strength of 

the tower must be investigated in the design process. 
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CHAPTER 6 

SUMMAY AND CONCLUSIONS 

6.1 SUMMARY 

The application of the degenerated Lagrangian shell elements in 

reinforced concrete panel, slab and shell applications ~s presented. The 

shell element is derived as a thin shell element using a stress-resultant 

constitutive matrix, which results in significant savings ~n material 

nonlinearities applications. A compatible eccentric shell stiffening 

element is also presented. 

Suitable geometric nonlinear formulations are investigated and 

presented for the shell and beam element. Two kinematic formulations are 

investigated, the first approach uses a valid large rotation representation 

for the respective nodal degrees of freedom, and satisfies rigid body 

rotation. requirements for arbitary large rotations. The second kinematic 

formulation is based on the conventional infinitesimal rotational degrees of 

freedom. This latter formulation results in straining under rigid body 

rotations. 

Intact concrete is modeled using Liu's biaxial orthotropic material 

model (Liu, et al., 1972), together with a modified form of the biaxial 

failure envelope used by Darwin (1974) and Rajagopal (1976). Cracking of 

concrete in tension is modeled using a maximum principal stress criterion. 

The constitutive matrix for cracked concrete is modeled using the 

rotating crack model (Gupta and Habibollah, 1982), in which the direction of 

the crack ~s not fixed after the formation of the crack, but rather it ~s 

assumed that the crack direction is normal to the current direction of the 
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max~mum principal strain. The cracks defined by this model are not cracks 

in the strict sense, but rather notational cracks defineing the average 

crack direction. Comparisons between this model and a conventional fixed 

c~ack model are presented. 

Numerical examples are presented in which the present finite element 

formulation and material model are compared with analytical solutions and 

experimental results for beam, slab and shell structures. 

The failure of reinforced concrete cooling tower shells under wind 

loading is ·then investigated. The wind loading is treated as quasi-static 

loading as used in Codes of Practice and Recommendations. The cooling tower 

investigated is typical of a large cooling tower in use to day, and has been 

designed in accordance with he current ACI-ASCE Recommendations (1977). The 

effects of cracking of the concrete, tension stiffening and the tensile 

strength of the concrete on the failure load of the tower is investigated. 

6 .. 2 CONCLUSIONS 

The examples investigated to examine the differences between a valid 

large rotation and an infinitesimal rotation formulation showed no 

noticeable difference between the two formulations. An exception to this 1£ 

the large displacement analysis of some statically determinate beam type 

problems. As the nodal degrees of freedom used in the infinitesimal 

rotation formulation are more convenient to use, this approach has been 

adopted for the remainder of the investigation for slab and shell type 

structures .. 

It has been demonstrated that the rotating crack algorithm yields 

significantly better results than the conventional fixed crack model. This 

improvement in the predicted stiffness and failure load of panel, slab and 
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shell structures 1s not only restricted to specimens 1n which significant 

distortion of the principal strain axis occurs with increasing load, but 

also specimens in which only small changes in the average crack orientation 

occur. The numerical results have demonstrated that this model correctly 

predicts failure loads and yield line orientations for panel and slab 

sections. 

The investigation into the failure of wind loaded cooling tower has 

shown that cracking and the subsequent redistribution of stresses plays a 

very important role in the post-cracking behavior and failure of the tower. 

The behavior of the tower has been shown to be dependent on the assumptions 

made regarding the tension strength of the concrete and the tension 

stiffening. At present there 1s insufficient data available on tension 

stiffening effects to enable one to make definite conclusions about the 

post-cracking behavior of cooling towers. 

Based on the present investigation, there is tentative evidence to 

suggest that the ultimate load based on a linear analysis is a conservative 

estimate of the actual failure load. A linear analysis will not, however, 

account for possible large displacements above the cracking load. Due to 

the uncertainty 1n the post-cracking behavior of the tower, it is strongly 

suggested that the cracking load of cooling towers be investigated in actual 

designs. 

6.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

Some possible extensions to the present investigation and further 

research needs arising out of this study are included below. 

1. Experimental investigations to measure tension stiffening effects 

1n lightly reinforced panel sections are required. Load cases 
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investigated should include those 1n which the reinforcement 1s 

orientated in the principal load directions. 

2. This study should be extended to investigate towers of differing 

size and shape, as well as stiffened cooling towers, so that design 

criteria can be formulated. 

3. The behavior of cooling towers under asymmetric loading due to the 

group effect of cooling towers should be investigated. 

4. The influence of initial imperfections on the stability and failure 

of cooling towers should be investigated. Of particular importance 

is the effect of gross imperfections. 

5. The rotating crack algorithm should be extended to cyclic loading 

applications. 

6. The implications of the use of a constant shear correction factor 

and the neglect of the nonlinearities associated with the 

transverse shear stress may warrent further investigation. 
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Table 2.1 Zero Energy Modes for Degenerated Shell 
Elements in Excess of Rigid-Body Modes. 

ELEMENT INTEGRATION RULE 
REDUCED SELECTIVE 

S4/L4 7 5 
S8 4 3 

Sl2 0 0 
L9 7 1 

L16 7 not available 
QUADH 0 

HETEROSIS 1 

Table 4.1 Material Properties for Vecchio-Collins Specimens. 

SPECIMEN REINFORCEMENT CONCRETE 
px py f f f' ft £ sx sy c 0 

(%) (%) (MPa) (MPa) (MPa) (MPa) 

PV11 1.785 1.306 235 235 15 .. 6 1.5 0 .. 00260 
PV16 0.740 0.740 255 255 21 .. 7 1 .. 0 0 .. 00200 
PV17 0 .. 740 0 .. 740 255 255 18 .. 6 2 .. 0 0 .. 00200 
PV18 1.785 0.315 431 412 19 .. 5 1 .. 8 0 .. 00220 
PV19 1 .. 785 0 .. 713 458 299 19 .. 0 2 .. 0 0 .. 00215 
PV25 1 .. 785 1 .. 785 466 466 19 .. 2 1.3 0.00180 

E =21000 MPa; E =2f'/s 
s c c 0 



Table 4 .. 2 

SPECIMEN 

PVll 
PV16 
PV17 
PV18 
PV19 
PV25 
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Loading Details for Vecchio-Collins 
Specimens. 

LOADING PATTERN 

pure shear 
pure shear 

uniaxial compression 
pure shear 
pure shear 

shear & biaxial compression 
( a =-0 • 6 7 -r) 

n 

Table 4.3 .Experimental and Numerical Results for Vecchio-Collins 
Specimens .. 

SPECIMEN EXPERIMENTAL ROTATING CRACK FIXED CRACK 

81) 
MODEL 

82) 
MODEL 

83) . FAILURE MODE v FAILURE MODE v v u u u 

(MPa) {deg) (MPa) (deg)(MPa) {deg) 

PVll Yielding 3 .. 56 50 Yielding 3 .. 59 49 3 .. 64 45 
PV16 Yielding 2 .. 14 45 Yielding 1 .. 90 45 1 .. 90 45 
"Dt11., Compression 1 a /, Compression ')1 (\ 21 .. 0 1.. 'II A. I .L;;Te-r &...LeV 

PV18 Bond 3 .. 04 60 Yielding 3 .. 18 68 4 .. 55 46 
PV19 Shear 3.95 57 Yielding 4 .. 30 62 5 .. 20 46 
PV25 Shear 9.12 Compression 9 .. 60 9 .. 60 

Notes: 1) Average orientation of maximum principal 
concrete stress and strain. 

2) Yield line orientation. 
3) Orientation of maximum principal strain .. 
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Table 4.4 ~terial Properties for Cardenas-Sozen Specimens. 

SLAB t f' pl Pz PzfP 1 al f 
c s 

(in) (ps·i) {%) (%) {deg) (ksi) 

B7 4 .. 14 5150 0.790 0.862 1.10 -45 50.0 
B9 4 .. 23 3820 0 .. 774 0.422 0 .. 55 45 50.0 
B11 4 .. 12 4800 0 .. 794 0.433 0 .. 55 -22 .. 5 50.0 
B12 4.12 5170 0 .. 794 0 .. 433 0.55 67 .. 5 47 .. 6 

B27A 4 .. 04 5230 0 .. 810 0.884 1.10 -66 49 .. 9 
B31 4 .. 00 5600 0 .. 818 0 .. 223 0.27 -66 44.8 
B32 4.10 5500 0.798 0 .. 218 0 .. 27 46.5 55 .. 7 
B33 4 .. 07 4930 0 .. 804 0.219 0 .. 27 -21 45.7 

E = 3000 ksi; f =5.5/f'ksi; E =30000 ksi 
c t c s 

Table 4 .. 5 Experimental and Numerical Results for Cardenas-Sozen 
Specimens.. · 

SLAB EXPERIMENTAL ROTATING CRACK FIXED CRACK 

Ml) M2) e3) 
MODEL MODEL 

84) M 8 M 
y u u y u y £ 

(k-in/in) (k-in/in) {deg) (k-in/in) (deg) (k-in/in) {deg) 

B7 5 .. 60 5 .. 85 0 5 .. 78 0 5 .. 78 0 
B9 3.90 4 .. 45 -17 3.98 -17 4 .. 34 -3 
B11 4 .. 50 5 .. 35 19 4 .. 77 14 4.41 3 
B12 2 .. 80 3 .. 82 -10 3 .. 26 -11 3 .. 35 3 

B27A 5 .. 08 5.50 0 4 .. 90 1 4 .. 90 -4 
B31 1 .. 65 2 .. 05 13 1 .. 62 13 1 .. 62 -1 
B32 2 .. 76 3 .. 10 -25 2 .. 82 -24 3 .. 36 -3 
B33 4.18 4 .. 60 26 4 .. 14 26 4 .. 66 5 

Notes: 1) Yield moment. 
2) Ultimate moment .. 
3) Yield line orientation. 
4) Direction of maximum principal strain at bottom of slab. 
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Table 4.6 Material Properties for Duddeck's Slabs. 

SLAB TOP BOTTOM 
f' f E: E f E Px py Px py c t 0 c s s 

(MPa) (MPa) llE: (MPa) (MPa) (MPa) (%) (%) (%) (%) 

Sl 43 2 2.7 16 .. 4xl03 670 20lxl03 .297 .297 .611 .. 611 
S2 43 2 2.7 16.4x103 670 201x103 .. 388 .205 .800 .420 
S3 43 2 2 .. 7 16 .. 4x103 670 201x.l0 3 .435 .. 158 .. 895 .. 326 

Table 4.7 Experimental and Numerical Results for Duddeck's Slabs. 

SLAB 

S1 
S2 
S3 

EXPERIMENTAL 
(kN) 

61 .. 66 
43.46 
34.25 

YIELD LINE 
SOLUTION (kN) 

56 .. 0 
39 .. 0 
31.0 

PRESENT 
(kN) 

60.0 
46.0 
35 .. 5 
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Table 4.8 Material Properties for 
Bouma's Cylindrical Shell. 

-· Concrete 

E 30000 MPa 
c 

f' 30 MPa 
c 

ft 4.5 MPa 

v 0 .. 2 

Reinforcement 

E 210000 MPa 
s 

E 2000 MPa 
sp 

Shell: f 295 MPa 
s 

Beam: f 280 MPa 
s 
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Table 5.1 Coefficients Defining the Geometry of 
the Meridian Curve. 

Coefficient z-120>0 z-120<0 
Hyperbola Ellipse 

a [1] -0.01506 -0.28035 
b [1] 0 0 
c [ 1] 1 .. 0 1 .. 0 
d [m] 0 0 
e [m] -68.46 76.88 
f [m~] 1167.17 -4112.73 

Table 5.2 Material Properties for Cooling Tower. 

Concrete 

E 28268 MPa 4160 ksi 

f' 27.6 MPa 4000 psi 
c 

f 3 .. 0 MPa 435 psi 
t 

v 0.2 0.2 

y 24.25 kN/m3 47.4 lb sec2/ft 4 

Reinforcement 

E 200600 MPa 29000 ksi 
s 

E 10300 MPa 1500 ksi 
sp 

f 413 .. 7 MPa 60 ksi 
s 



SOURCE 

Present 
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Table 5.3 Fourier Coefficients for Wind Load 
Distribution. 

n A n A 
n n 

0 0.38330 7 -0.04474 
1 -0 .. 27918 8 -0.00833 
2 -0.61978 9 -0.00972 
3 -0 .. 50927 10 -0.01356 
4 -0 .. 09167 11 -0.00597 
5 0 .. 11794 12 -0 .. 01667 
6 0 .. 03333 

Table 5 .. 4 Failure Loads for Cooling Tower. 

BASIS 

Cracking 
Ultimate load- linear analysis 
Material nonlinear, geome.tric· linear 
Material & geometric nonlinear 

i) high tension stiffening 
ii) low tension stiffening 

iii) low tension strength 

LOAD FACTOR 

1 .. 45 
1.52 
2 .. 25 

2 .. 10 
1 .. 75 
1 .. 35 

Der & Fidler Elastic snap-through 4 .. 46 

lASS Buckling stress state 3.08 

Mang et al Cracking 1 .. 43 [1 .. 34] 
1 .. 7'1 [1 .. 53] 
1 .. 95 [1 .. 74] 
1 .. 69 [1 .. 49] 

Notes: 

Ultimate load- linear analysis 
Material nonlinear, geometric linear 
Material & geometric nonlinear 
Elastic behavior 

i) Linear bifurcation 
ii) Elastic snap-through 

iii) Equivalent axisymmetric pressure 
iv) Equivalent axisymmetric stress 

5 .. 38 
-24 

15 .. 31 
14 .. 39 

Quantities in brackets refer to load factors based on the 
reference wind speed of 95 mph used in Ref. 76. 
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Figure 2.1 Initial Geometry of Degenerated Shell Elements 

Figure 2.2 Nodal Degrees of Freedom for Moderate Rotations. 
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Figure 2.3 Nodal Degrees of Freedom for Small Rotations. 
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Figure 2.4 Updating of Nodal Degrees of Freedom. 
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Figure 2.5 Nodal Rotation Constraints and Applied Moments. 
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Figure 3.1 Initial Geometry and Kinematics of Beam Element. 

Figure 3.2 Local Reference Frame for Beam Element. 
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Figure 3.3 Generalized Stress Resultants for Beam Element. 
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Figure 3.4 Curved Cantilever Beam. 
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Figure 5.5 Tension Stiffening MOdels for Cooling Tower. 
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APPENDIX A 

DEGENERATED SHELL THEORY 

Al INTRODUCTION 

The strain displacement expressions for the degenerated shell elements 

are written in terms of conventional shell theory notation. This is not 

done so as to arrive at an alternative formulation for degenerated elements, 

but rather to evaluate the underlying degenerated shell theory against 

existing classical shell theories. As a result the degenerated element can 

be judged against so called 'consistent' shell theories, such as the Koiter 

(1959) Sanders (1963) theories, and the implications of the degenerated 

thin shell assumption can be investigated. In particular the que'stion of 

rigid body rotations is addressed. 

The term degenerated shell theory used above may 1n some cases be 

misleading, as all classical shell theories are 1n fact obtained by 

degenerating the equations of equilibrium to a two dimensional continuum. 

As will be shown below the 'degenerated thin shell' finite element 

proceedure results in equations very similar to those which can be obtained 

in classical thin shell theories, although a different (and computationally 

more convenient) starting proceedure is used. This is 1n fact to be 

expected, as many of the assumptions used in the degenerated proceedure are 

identical to those employed in Reissner's classical shell theory (Reissner, 

1941). Reissner's theory, however, does not include shear deformations. 
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A2 PRELIMINARIES 

The degenerated shell theory is examined by transforming the global 

cartesian quantities to an orthogonal curvilinear coordinate system which 

describes the midsurface of the shell. The equations are developed below 

for the particular case of an orthogonal curvilinear coordinate system 

(a1 ,a2,a3), and assumes that the shell normal (~) is strictly normal to the 

midsurface of the shell. These results can however be generalized to a 

non-orthogonal coordinate system, and to elements where the shell normal 1s 

not strictly normal to the midsurface. 

The geometry of the shell, x, is described 1n curvilinear coordinates 

as 

(Al) 

Tbe components of the displacement vector, v, with respect to a 

corresponding local orthogonal coordinate system are denoted as 

v. 
1 

Tbe following definitions will be required: 

1) Base vectors 

a. 
-1 

ax 
= a;-fa =0 

i 3 

ax 0 

= -=- i=l,2 aa. 
1 

= n i=3 

(A2) 

(A3) 



2) Unit direction vectors 

e.=a./A. 
-l -l l 
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where A. is the metric coefficient of the middle surface. 
l 

3) Jacobian 

J 
ax. 

J 
[a a.] 

l 

J o R 
+ a3-

(A4) 

(AS) 

where J 0 is the Jacobian associated with the mid-surface of the shell and 1s 

obtained as 

}T 
~3 

and R is a matrix describing the curvature of the mid-surface 

R 

(A6) 

(A7) 

In Eq .. A7, R. 
l 

is the (principal) curvature of the shell 1n the i'th 

curvilinear coordinate direction. 

4) Inverse of the Jacobian 

A linear approximation to the inverse of the Jacobian is obtained as 

(A8) 

For an orthogonal curvilinear system the following are obtained. 

-1 

Jo { ~1/A1 ~2/A2 ~3 } (A9) 

0 } (AlO) 
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A3 STRAIN DISPLACEMENT RELATIONS 

The strain displacement relations investigated are derived specifically 

for thin shell applications by either neglecting the variation of the 

Jacobian through the shell thickness, or by retaining a first order 

expansion for the Jacobian. The former approach 1s identical to Love's 

first approximation (Reissner, 1941). 

In the global cartesian coordinate syst.em the Green's strain tensor 1s 

obtained in terms of the cartesian components of the displacement vector, ~, 

as 

2£1J. = u. . + u. . + uk . uk . l,J ],1 ,1 ,J 
(All) 

Transforming from global cartesian to the curvilinear coordinate system 

using Eqs. A2, and AS yields 

where, 

and ~ae is the inplane rotation of the normal 

0 2A A ~ = a •v 
a e ae -s -,a 

0 a •V 
-a -,e 

(Al2) 

(Al3) 

(Al4) 

(AlS) 

In Eqs. Al3 and Al4, the superscript 't' denotes the linearized component, 

and ',a' denotes the vector derivative in the curvilinear coordinate system. 

These equations will now be discussed with reference to existing 

classical shell theories. Linearizing the inplane and curvature expressions 
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yields strains which are similar to the Koiter-Sanders consistent linear 

strain expressions, (or Reissner's expressions which are not based on Love's 

first approximation), with the exception of the terms in eiS/R which are 
a a 

discarded in the K-S theories. Neglecting the first order expansion in the 

derivation of the strain expressions results in the terms in eiS/R and ~ a a ~as 

being lost. This results in shell theories similar to those given by, for 

example, Reissner (1941), which are based on Love's first approximate. As 

noted by Koiter (1959), while the terms in i 
e S/R a a 

1n the curvature 

expression are always small, the normal rotation contribution may in some 

instances not be small during inextensional deformation of the midsurface. 

Degenerated thin shell elements based on this formulation would therefore 

not be expected to perform satisfactory in certain applications (for example 

the right helicoidal shell (Reissner, 1941)), but in general this 

formulation gives results which are nearly as accurate as those obtained by 

including the expansion of the Jacobian, and hence ~aS (Sanders, 1963). 

The linearized extensional strain resultant discussed above satisfies 

small (infinitesimal) rigid body rotation requirements. However, only the 

linearized curvature expression which includes the expansion of the Jacobian 

satisfies small rigid body rotation requirements. 

The nonlinear strain relations can also be compared with the K-S and 

additional theories. The K-S theories for moderate rotations use a linear 

curvature tensor, which has been discussed above. The nonlinear 

contribution to the extensional strains used in the K-S expressions can be 

written as 

(A16) 



where 

0 

~3·Y a. 
' 
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(A17) 

It 1s seen that that the degenerated element formulation does not 

contain the normal rotation contribution <Pa.B· The derivatives of the 

inplane displacements are discarded in the K-S theory as they are small. It 

is difficult to asses the importance of the contribution of to the 

extensional strain as there is no information available in the literature. 

However as satisfactory results are obtained with classical shell theories, 

such as Donnell-Mushtari-Vlassov (Sanders, 1963), which do not contain this 

term, it appears that 1n most instances this contribution 1S not 

significant. 

The nonlinear extensional strain expression (Eq. A13) satisfies rigid 

body rotations for arbitrary large rotations. Retaining the first order 

expansion of the Jacobian, both the linearized and the nonlinear curvature 

expression satisfy arbitrary large rigid body rotations .. 

A nonlinear curvature expression for the case in which the first orde.r 

expansion is neglected can be obtained from Eq. A14 by deleting all terms 1n 

1/R • However it is contended that this is not a consistent definition of 
a. 

curvature .. A consistent definition can be obtained by rewriting Green's 

strain tensor in terms of the displacement gradients u. . 
L,J 

and the 

deformation Jacobian g .. = u. . + o .. , as follows 
1] J ,1 1] 

2e: = .!. (u + u ) + .!. (u g + u g ) 
ij 2 i,j j,i 2 k,i jk k,j ik 

(Al8) 

As the variation of the Jacobian through the thickness has been neglected, 

it follows that the variation in the deformation Jacobian should also be 

neglected. This results in 



2s .. 
lJ 
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1 ( ·u + u ) + 1 ( u go + · go ) 
2 i,j j,i 2 k,i jk uk,j ik 

(Al9) 

It can be seen that the nonlinear contribution to the curvature tensor 

differs from that which can be obtained directly from Eq. All by a factor of 

The curvature expression defined by Eq.. Al9 has the additional 

advantage that it yields no strain under arbitrary large rotations in curved 

beam and arch type problems.. However in general shell applications, rigid 

body rotation requirements are not satisfied .. 
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APPENDIX B 

CONSTITUTIVE RELATIONS FOR CONCRETE 

The biaxial stress-strain relation for concrete used this 

investigation is based on an extension to Liu's biaxial orthotropic material 

model (Liu, et al., 1972). The material properties are described 1n terms 

of total strains, in the principal stres~ directions. It should be noted 

that this model predicts that the principal stress and principal strain 

directions coincide, which is not true for concrete in general. However 

this does not appear to limit the usefulness of this model (ASCE, 1981). 

This model is limited to structural applications such as beams, panels and 

thin shells where the stress is predominantly biaxial. Limited unloading 

capabilities have been included. 

Bl BIAXIAL STRESS-STRAIN CURVES 

Liu, et al. (1972), modeled concrete as an orthotropic material under 

biaxial loading. For biaxial compression they proposed a constitutive 

relationship of the form 

cr. 
1 

E E. E 
0 1 f1 + ( 1 ~ - 2) + 21-1 

(1-va.) • L '1-va. E qi qi~ 
1 1 s. 

1 

(Bl) 

where a. and E. are the stress and strain 1n the i'th principal stress 
1 1 

direction; E and E are the initial tangent modulus under uniaxial stress 
0 s. 

1 

and the second modulus at maximum stress ( = a. i a. ) ; a. and E. are the 
1C 1C 1C 1C 

maximum biaxial compressive stress and corresponding strain; a. 1s the 
1 

stress ratio a./a.; q. is the strain ratio £.1£. and v is Poissons ratio. 
J 1 1 l lC 



1~ 

For uniaxial stress (a2=0) Eq. Bl reduces to the stress-strain 

relationship proposed by Saenz (1964). Equation B1 has also been used by 

Darwin and Pecknold (1974), by introducing the concept of equivalent 

uniaxial strain and removing the Poisson effect from the biaxial strain but 

retaining the effects of microcrack confinement. 

Equation B1 has been used in the present investigation, together with a 

constant Poissons ratio of 0.2. 

The tension region of the stress-strain curve is given by 

cr. 
1 

E £. 
0 1 

1-va. 
1 

(B2) 

Expressions for the maximum principal stress and corresponding strain 

are given in Section B2 below. 

In Figs. Bl to B4 a comparison is made using Eqs. B1 and B2 and the 

experimental results of Nelissen (1972) and Kupfer and Gerstle (1973). In 

general good agreement is obtained with the experimental results. 

B2 FAILURE ENVELOPE 

The failure envelope for concrete under biaxial stresses is based on 

the biaxial strength envelope of Kupfer and Gerstle, as shown 1n Fig. BS. 

This envelope is divided into several regions depending on the ratio of 

maximum to minimum principal stress a
2

, and the stress state. The values of 

maximum principal stress the corresponding principal strain are obtained as 

(Darwin and Pecknold, 1974; Rajagopal, 1976): 
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1 .. Biaxial Compression 

1 + 3.65a2 f' a2c 
(l+a2)2 c 

(B3a) 

ale= a.2a2c (B3b) 

£ ::: 
2c 

(B3c) 

£ ::: 
lc 

(B3d) 

where p. = a. /f' 
1. l.C C 

Failure is assumed to occur due to yielding and crushing of the concrete. 

2 .. 0 > <l2 > -0 .. 17 Biaxial Tension Compression 

1 + 3.28a.2 
f' a2c = 

(l+a2)2 c (B4a) 

alt = a2a2c (B4b) 

2 3 
£2c = £cu(l-va2)(4 .. 42-8.38p 2+7 .. 54p 2-2 .. 58p 2) (B4c) 

alt (1-va.l) 
£lt = E 

(B4d) 
0 

Failure is assumed to occur by yielding and crushing of the concrete in the 

compression direction. 

3.. -0 .. 17 > a.2 > -oo Biaxial Tension Compression 

a 2c = 0 .. 65 f~ (B5a) 

(B5b) 
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2 3 
E: CU( l-va.2) ( 4.42-8 .. 38p 2+ 7. 54p 2-2. 58p 2) , ( B5c) 

(B5d) 

Failure 1n this zone is assumed to be due to cracking 1n the tension 

direction .. 

4. Biaxial Tension 

ft 

crit (1-va.i) 

E 
0 

Failure 1s by cracking 1n the principal stress direction. 

B3 CONSTITUTIVE MODEL 

(B6a) 

(B6b) 

Under a biaxial state of stress, the concrete 1s assumed to behave as 

an orthotropic material 1n the two principal stress directions .. 

Differentiating Eq .. 

rearranging yields 

dcr. E 
l 0 

dE:. = 1-va.. 
1 l 

E. 
l 

1-va.. 
l 

Bl with respect 

E 

(1 + (1-~a.. E o 
l s. 

l 

to the principal 

where E 1s the slope of the 'uniaxial stress-strain curve 
i 

strain and 

(B7) 

1n the i'th 
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principal stress direction. This modulus can be considered as the tangent 

modulus of the material in the direction of the current principal stresses. 

Considering these as the directions of orthotropy for the concrete the 

incremental tangent stiffness matrix 1n the existing material axes is g1ven 

by (Darwin and Pecknold, 1974) 

E1 \)~ 0 

h. a 1 viE
1 

E
2 

0 2 E2 11£ (B8) 
1-v 

0 0 ! (E1+E 2-2v~ 
The use of E1 and E2 defined by Eq. B7 in Eq. B8 is not strictly correct, 

but this lack of consistancy is not serious since small errors introduced in 

the stresses will be corrected at each load step based on the total strains. 

The value of Poissons ratio used in this study is assumed to be 

independent of the stress level used, although at a stress level higher than 

0.8f' significant increase in Poissons value is known to occur. 
c 

ratio for concrete has been taken to be 0.20 in this study. 

B4 CRACKING AND TENSION STIFFENING 

Poissons 

A maximum principal stress criteria is used to determine concrete 

failure in tension. When one of the principal stresses exceeds the uniaxial 

tensile strength of the concrete, a crack is assumed to form perpendicular 

to the direction of that stress. 

The constitutive relation for the cracked concrete is then obtained by 

setting the tangent modulus in the direction of the offending principal 

stress, say E1 , to zero in Eq. B8. 
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0 0 0 

!J.a = (B9) 

where S is a shear retention factor, which accounts for the effective shear 
s 

modulus along the crack due to dowel action, friction and aggregate 

interlock. Studies have shown that the solution is insensitive to the value 

of S used (Hand, et al., 1972; Gerstle, 1981), and a constant value of 0.25 
s 

has been adopted in this investigation. 

The formation of a second tension crack is restricted to form 

orthogonal to the first crack. The constitutive relation for doubly cracked 

concrete 1s then given by the null matrix 

!J.a = [ 0 ] 11£ (B10) 

Two forms of tension stiffening have been incorporated into the present 

study, namely a gradual unloading of the concrete stress.;...strain curve 1n 

tension (Lin, 1973) as shown in Fig. B6, and tension stiffening applied to 

the reinforcement (Gilbert and Warner, 1978) shown in Fig. B7. To prevent 

possible numerical instabilities when using the first form, the tangent 

modulus of the concrete is set to zero once a crack has formed, and the 

stresses are released in a stepwise fashion. 

B5 STRAIN SOFTENING BEYOND THE MAXIMUM COMPRESSIVE STRENGTH 

Concrete is a strain softening material and deteriorates with 

increasing strain beyond the maximum compressive level. Experiments 

indicate that the ultimate strain is generally 1.2 to 1.3 times the strain 

corresponding to the peak compressive strength in the major compressive 
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direction. The stress corresponding to the ultimate strain var~es between 

0.8 and 0.9 times the peak compressive stress. Both these paramaters are 

variables in the present study, but typically values of 1.25 and 0.8 

respectively have been used. The strain softening curve is assumed to be 

linear between the peak compressive stress and the stress at the ultimate 

strain. See Fig. BS. 

To prevent numerical instabilities, once yielding has occurred the 

tangent moduli are set to zero, and the unbalanced stresses are released 1n 

a stepwise fashion. 

This formulation adopted here implies an 'unconstrained' flow-rule for 

the unloading part once yielding has begun, and subsequent unloading takes 

place along a path determined by the current unloaded stress corresponding 

to the current total strain. Lin (1973) has shown that in reinforced 

concrete applications there is little difference between an unconstrained 

flow rule and a normality flow rule. 

B6 UNLOADING AND RELOADING 

L~ited unloading and reloading copabilities have been incorporated in 

the present model, as shown in Figs. B6 and B8. Unloading and reloading ~n 

compression is assumed to occur parallel to the initial tangent modulus, 

taking into account the Poisson effect. 

This model is not suitable for modeling hysteretic behavior as observed 

~n dynamic applications, but is satisfactory to model unloading of the 

concrete as would occur during an instability of the structure. 
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Figure BS Biaxial Failure Envelope. 

0.2 q 
f-l'~l 

01t=~ 
_1+3.28a ~, 

ale- (1 + a)2 c 

~0.65f~ 



155 

Figure B6 Concrete Tension Stiffening Model. 

Figure B7 Reinforcement Tension Stiffening Model. 
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Figure B8 Uniaxial Stress-Strain Curve for Concrete. 
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APPENDIX C 

USER INSTRUCTIONS FOR DEGENERATED SHELL AND BEAM ELEMENTS, 
AND REINFORCED CONCRETE MATERIAL MODELS 

Cl ISOPARAMETRIC SHELL ELEMENTS 

Cl.l General 

The development of degenerated shell elements and their use 1n 

geometric and material nonlinear analysis can be found in Ramm, et al. 

(1977, 1981), Hughes and Liu (1981), Parisch (1981) and Surana (1981). The 

degenerated shell elements described here are restricted to thin to 

moderately thick shell applications, as they are formulated using explicit 

integration through the thickness of the shell. Both geometric 

nonlinearities and material nonlinearities (currently the material model 

RCSHELL) are supported by these elements. Three versions are available 

namely the 9-node quadratic Lagrangian element (QLSHELL), the 8-node 

quadratic Serindipity element (QSSHELL) and the bilinear 4-node element 

(BLSHELL) .. 

C1.2 Element geometry 

The geometry of the element is defined by specifying the coordinates of 

the midsurface nodes and additional geometric points on the shell normal, as 

shown in Fig. C1. This normal does not have to be strictly normal to the 

midsurface of the shell. The additional geometry points may be either on 

the top surface of the shell ( =+1, the default option) or can be specified 

as being on the lower surface by including BOTTOM as an element property. 

The geometry of the element is interpolated from the midsurface nodes and 
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geometry points. 

The node numbering system used for the 4-, 8- and 9-node elements are 

included in Fig. Cl. 

Cl.3 Geometric nonlinear options 

Two geometric nonlinear formulations are available, namely a small 

rotation and a moderate rotation formulation. The small rotation 

formulation utilizes a linear curvature tensor and a vectorial definition of 

rotations (ie. infinitesimal rotations or engineering definition). This 

formulation is similar to that used in most geometrically nonlinear finite 

elements. The moderate rotation formulation employs a nonlinear curvature 

tensor and a strict non-vectorial definition of rotations. For most 

practical applications the small rotation formulation is satisfactory. 

The small rotation formulation 1s the default option, while the 

moderate rotation option can be specified (for a geometric nonlinear 

element)_ by including LARGE ROTATION as a element property. 

Cl.4 Nodal degrees of freedom 

For geometric linear or geometric nonlinear analysis using the small 

rotation option, the nodal degrees of freedom apparant to the user are the 

three cartesian displacements of the midsurface of the shell, and the three 

'rotations' of the normal at each node. For the moderate rotation option 

the nodal degrees of freedom are the cartesian midsurface displacements and 

the normalized relative displacement of the top of the shell. These nodal 

degrees of freedom are shown in Fig. C2, with reference to a local cartesian 

coordinate system. 
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The nodal degrees of freedom adopted for the moderate rotation 

formulation are identified in FINITE as UZZ, VZZ and WZZ (or THETAX, THETAY 

and THETAZ), but DO NOT correspond to the usual definition of rotations. 

This formulation must be used with caution, and in particular this option 

should not be used when this element is combined with any other element 1n 

the FINITE element library. 

Cl.5 Stress and strain resultants 

Stress and strain resultants are calculated at each integration point. 

At present these values are not interpolated to the node points. 

stress-strain pairs are given, namely the inplane membrane resultants 

Nxx , Exx Nyy , Eyy Nxy , Eyy 

the transverse shear resultants 

Qx , GAMx Qy , GAMy 

and the flexural resultants 

Mxx , Kxx Myy , Kyy Mxy , Kxy 

Eight 

These stress-strain resultants are referred to a local cartesian 

coordinate system at each integration point, as shown in Fig. C3. The 

strain point numbering is shown in Fig. C4. 

For geometric nonlinear analysis the stress resultants correspond to 

the 2'nd Piola Kirchoff definition, and the strain resultants to the Green's 

strain definition. 
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Cl.6 Element loads 

The degenerate shell elements described here support two types of 

loads, namely 

Cl.6 .. 1 Type BODY: A constant body force/unit volume. The loading is 

described by specifying the load direction (X, Y or Z) and the intensity 

value (W), for example 

1 FORCE X BODY W 22.4 

Cl.6.2 Type DISTRIBUTED: A distributed force/unit area applied to one of 

the six faces of the element ,FACE1, FACE2, , , FACE6, shown in Fig. C5. 

The lo~d may be either nonuniform by specifying the intensity values at each 

node (Wl, W2, W3, , , ) or as a uniform load by specifying a single 

intensity value (W), for example 

or 

5 FORCE X DISTRIBUTED W1 1.0 W2 1.0 W3 2 .. 0 W4 2.0, 

W5 1.5 W6 1.5 W7 1.0 W8 2.0 W9 1.5 FACE6 

5 FORCE X DISTRIBUTED W 1.5 FACE 6 

A normal (pressure type) force can be specified by using the NORMAL option. 

The direction of the load is then strictly normal to the face to which it is 

applied .. 

7 DISTRIBUTED W 1.0 NORMAL FACE2 

If a distributed load is applied to either face 5 or face 6, the element 

treats the load as being applied to the midsurface of the shell. 
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At present moments and temperature loads cannot be applied. 

Cl.7 Element properties 

The available element properties for the degenerate thin shell elements 

are given in Table Cl 

C2 ISOPARAMETRIC ECCENTRIC SHELL STIFFENING ELEMENTS 

C2.1 General 

The eccentric shell stiffening elements are compatible with the 

degenerate shell elements QLSHELL, QSSHELL and BLSHELL. These elements can 

also be used as stand-alone elements. Two elements are available, namely a 

3-node quadratic element QLBEAM and a 2-node linear element BLBEAM. 

These elements support geometric nonlinearities and material 

nonlinearities (currently RCBEAM) In linear material applications the beam 

is essentially a Timoshenko beam (Bouberg and Jirousek, 1980; Jirousek; 

1981) and includes biaxial bending and torsion. In nonlinear material 

applications, out of plane bending and torsion is lost. 

C2.2 Element geometry 

The geometry of the beam is defined by specifying the nodal coordinates 

of the reference axis of the beam (usually the mid-surface of the shell) 

together with the coordinates of an additional four axes. The node 

numbering and coordinate points required are shown in Fig. C6, where 'o' 

refers to the reference axis of the beam, 'e' 1s the joint ax1s along which 

displacement continuity 1s enforced, when using the beam as a shell 

stiffener 1n the default position, 'g' is the centroidal axis of the beam, 
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'g-i' defines a principal axis of the beam, and 
, , 

s is the shear center. In 

material nonlinear applications the shear center 1S omited. The 

displacement of the beam is refered to the reference axis 'o'. 

When the element is used as an eccentric shell stiffener, the default 

position of the beam with respect to the shell is on the same side as the 

geometry points defining the surface of the shell- as shown in Fig. C7. The 

beam can be placed on the opposite side, as in Fig. C7, by the OPPOSITE 

command. The coordinates of the axis 'e' required are then the coordinates 

of the corresponding nodes defining the surface of the shell. The true 

joint axis of the beam is then interpolated by the beam element, using the 

shell normal. 

A suitable configuration for the beam 1n a stand-alone application is 

illustrated in Fig. C8. 

The geometric properties required for the elastic option are specified 

with reference to the local coordinate system shown in Fig. C9. These 

propert~es are assumed to be constant along the axis of the beam. The 

geometric properties required are the area's of the beam, AREAX, AREAY and 

AREAZ, and the second moment of area's with respect to the centroidal axis 

of the beam INERTX, INERTY and INERTZ. 

In nonlinear material applications, the cross section of the beam is 

restricted to being rectangular in shape, but can vary along the axis of the 

beam. In this case the principal axis of the beam is defined by the vector 

'g-i', which must not coincide with the vector 'g-e'. The width of the beam 

at each node is given by Bl, B2, B3, or simply B if the width of the beam is 

constant. 
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C2.3 Geometric and material nonlinearities 

The geometric nonlinear formulation for the beam elements is based on a 

small rotation, linear curvature formulation. This is compatible with the 

small rotation option of the shell elements QLSHELL, QSSHELL and BLSHELL. 

This element should NOT be used when the LARGE ROTATION option has being 

included for the shell element. 

Material nonlinearities are included by using a layered material model. 

The direction of the layers is parallel to the axis 'g-i' as shown ~n Fig.·· 

C9. When the element is defined as material nonlinear, the element property 

LAYER must be included. 

C2.4 Stress and strain resultants 

Stress and strain resultants are calculated at the integration points. 

Six stress-strain resultant pairs are given for the linear material option, 

and three for nonlinear material applications .. These stress-strain 

resultants are shown in Fig. CIO. The strain point numbering is sequential 

in the positive axis direction. 

C2.5 Element loads 

At present this element does not support any loads. 

C2.6 Element properties 

The available element properties are given in Table C2. 
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C3 BIAXIAL REINFORCED CONCRETE MATERIAL MODEL 

C3 .. 1 General· 

The reinforced concrete material model RCSHELL is a biaxial orthotropic 

model suitable for use with the shell elements QLSHELL, QSSHELL and BLSHELL. 

This model is limited to structura} applications where the stress 1s 

predominately biaxial, such as beam, pannel and shell type problems. This 

model considers compression softening and cracking of the concrete, and 

includes tension stiffening .. Reinforcement is modeled as being 

elastoplastic with optional strain hardening. Full bond is assumed between 

the steel and concrete.. Limited unloading capabilities are included in the 

model._ 

C3.2 Constitutive model for concrete 

The constitutive model used for plain concrete is a modified version of 

Liu's biaxial orthotropic model (Liu, et al., 1972). The failure criteria 

used is based on that proposed by Darwin and Pecknold (1974) and modified 

modified by Rajagopal (1976) .. Typical stress strain curves for plain 

concrete in biaxial compression obtained using this model are shown in Fig. 

C11. The failure envelope used is shown in Fig. Cl2. 

The material properties required to specify this model are given in 

Table C3, and in Fig. C13 by considering the uniaxial behavior of concrete. 

A linear elastic-cracking model can be invoked by specifying LINEAR as an 

element property. All nonlinearities, except cracking, are then excluded. 

The number of integration points used through the thickness of the 

element is specified by the element property NLYRC. Generally from 6 to 8 

layers are satisfactory for flexural applications. 
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C3.3 Reinforcment 

Reinforcement is included by superimposing the stress-strain behavior 

of the steel on top of the concrete. Reinforcement layers are smeared, and 

each individual bar is not modeled. Up to five layers of reinforcement can 

be specified (using the NLYRS element property). The properties of the 

reinforcement requir~d are given in Table C3, and include the normalized 

distance from the midsurface of the beam to the i'th reinforcement layer, 

Zi, (Zi= 0.5 corresponds to the top and bottom surface of the shell), the 

the area of the i'th reinforcement layer, ASi, expressed as a percentage of 

the gross concrete area, the orientation of the i'th reinforcement layer, 

DIRi,with respect to the local x-axis of the shell at each integration 

point, and the yield stress of the i'th reinforcement layer, FYi. The 

quantities ASi and Zi must be specified for each layer if uniform over the 

element, or for each layer at each integration point if nonuniform 

properties are used, ie Zij, ASij. 

For example 

NLYRS 2 Zl -.45 Z2 -.42 ASl 0.50 AS2 0.25, 

DIRl 0. DIR2 90. FYI 425 FY2 425. 

specifies and element with two layers of reinforcement with uniform 

properties at each integration point, while 

NLYRS 2 Zll - .. 45 Zl2 - .. 45 Zl3 - .. 40 Zl4 - .. 40, 

Z21 - .. 42 Z22 - .. 42 Z23 - .. 38 Z24 - .. 38, 

ASll 0.50 AS12 0.50 AS13 0 .. 45 AS14 0 .. 45, 

AS21 0.25 AS22 0.25 AS23 0.22 AS24 0 .. 22, 

DIRl o. DIR2 90. FYl 425 .. FY2 220 .. 
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specifies two layers of reinforcement with different properties at the four 

integration points. 

The reinforcement is modeled as ideal elasto-plastic, with optional 

strain hardening. 

C3.4 Cracking and tension stiffening 

Cracking of the concrete can be modeled using either a 'rotating crack' 

model (Gupta and Habibollah, 1982) in which it is assumed that the direction 

of the crack is normal to the current principal strain direction, or using a 

'fixed crack' model (Hand, et al., (1972); Darwin and Pecknold, (1974)) 1n 

which the direction of the crack is fixed once it has formed. The default 

option is the ~rotating crack' model, while 'fixed' cracks' can be invoked 

by specifying NOROT as an element property. The formation of 'secondary 

cracks is restricted to being orthogonal to the primary crack. 

Unloading and closing of cracks is allowed, but once a crack has closed 

no history of this event is kept by the material model. The concrete 1s 

then treated as a previously intact material. If a crack closes a warning 

message is printed by the material .identifying the element, integration 

point and layer. 

Two forms of tension stiffening are available, namely tension 

stiffening applied either to the concrete (Lin, 1973) or lumped to the steel 

reinforcement (Gilbert and Warner, 1978)- see Fig. C14. The default option 

1s no tension stiffening, while the first form is invoked by specifying 

TENSC and the latter by TENSS. Both forms can be used simultaneously. 

C3.5 Output 

A history of events at each cracked integration point can be obtained 

by specifying TRACE as an element property. The form of the output 1s 
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where n=O denotes intact concrete, n=l denotes the formation of one crack, 

n=2 denotes two (orthogonal) cracks; for n=~ or 2 i=l (j=l) denotes that the 

crackwidth of the first (second) crack is increasing, i=O (j=O) denotes that 

the crack width is decreasing, ie unloading. 

direction is shown in Fig. ClS. 

and 

REINFORCEMENT DATA: 

LAYER: 1 

STATE: j 

The definition of the 

The reinforcement state is defined as '0' if no yielding has occurred and +l 

or -1 if the plastic strain is positive or negative respectively. 

The state of the concrete and steel corresponds to the state existing 

at the end of the last iteration for the previous load step. For this 

reason some fluctuations 1n loading or unloading of the cracks may be 

observed. 

C4 UNIAXIAL REINFORCED CONCRETE MATERIAL MODEL 

C4.1 General 

The reinforced concrete material model RCBEAM is a specialization of 

the more general model RCSHELL to uniaxial conditions. This model 1s 
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compatible with the degenerate beam elements QLBEAM and BLBEAM. The model 

considers compression softening and cracking of the concrete, and includes 

tension stiffening. 

strain harden~ng. 

Reinforcement is modeled as ideal elastoplastic, with 

C4.2 Material properties 

The material properties required to describe this material model are 

given in Table C4. They are identical to the material model RCSHELL with 

the exception that reinforcement data at each str~in point must be the same. 

A maximum of five reinforcement layers can be specified. Further details 

can be obtained by refering to the biaxial material model RCSHELL. 

C4.3 Output 

A history of events at each cracked integration point can be obtained 

by specifying TRACE as an element property. The form of the output is the 

same as RCSHELL, except that the crack direction is no longer applicable. 
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Table Cl Element Properties for Shell Elements QLSHELL, QSSHELL 
and BLSHELL .. 

Physical Quantity 

Young's Modulus 
Poisson's Ratio 
Integration Rule {NxN) 
Coordinate Points Defining 

Normal are on Bottom of Shell 
No Artificial Normal Spring 
Normal Spring Stiffness Multiplier 
Moderate Rotation Option 

Keyword 

E 
NU 

NINT 

BOTTOM 
NOSPRINGS 
KSPRINGS 

LARGE ROTATION 

Default Value 

1.0 
0.3 

2 

FALSE 
FALSE 
0 .. 001 
FALSE 

Table C2 Element Properties for Beam Elements QLBEAM and BLBEAM. 

Physical Quantity 

Young's Modulus 
Poisson's Ratio 
Integration Rule 
Beam Element is Placed on 

Opposite Side of Shell Normal 
Cross Section Area 
Y-axis Shear Area 
Z-Axis Shear Area 
Torsional Moment of Inertia 
Y-Axis Moment of Inertia 
Z-Axis Moment of Inertia 
Width of Beam at Node 
Material Nonlinearity Specified 

Keyword 

E 
NU 

NINT 

OPPOSITE 
AREAX 
ARKAY 

" •. AREAZ 
INERTX 
INERTY 
INERTZ 

B or B1,B2,B3 
LAYER 

Default Value 

1 .. 0 
0 .. 3 

2 

FALSE 
1 .. 0 

0 .. 833 
0 .. 833 
0 .. 100 

0 .. 0833 
0 .. 0833 

1 .. 0 
FALSE 
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Table C3 Material Properties for Material Model RCSHELL. 

Physical Quantity 

Concrete Initial Tangent Modulus 
Concrete Cylinder Strength 
Concrete Tensile Strength 
Strain at Maximum Concrete Stress 
·Ultimate Stress Factor 
Ultimate Strain Factor 
Linear Elastic Option 
Fixed Crack Direction Option 
Concrete Tension Stiffening 
Concrete Tension Stiffening Factor 
Number of Concrete Layers 
Reinforcement Tangent Modulus 
Reinforcement Plasitc Modulus 
Reinforcement Tension Stiffening 
Number of Reinforcement Layers 
Depth of Reinft. Layer i 
Area of Reinft. for Layer i (%) 
Direction or Reinft. Layer i 
Yield Stress of Reinforcement 
Output Material History 

Keyword 

ECONC 
FCYL 

FT 
STRNCY 

FCU 
ECU 

LINEAR 
NO ROT 
TENSC 

STRNTS 
NLYRC 

ESTEEL 
ESTEELP 

TENSS 
NLYRS 

Zi or Zij 
ASi or ASij 

DIRi 
FYi 

TRACE 

Default Value 

1 .. 
1. 
1. 

.. 002 
0.8 

1 .. 25 
FALSE 
FALSE 
FALSE 

20. 
1 
1. 
1 .. 

FALSE 
0 
0 .. 
o. 
0 .. 
1 G 

FALSE 
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Table C4 Material Properties f~r Material Model RCREAM. 

Physical Quantity 

Concrete I~itial Tangent MOdulus 
Concrete Cylinder Strength 
Concrete Tensile Strength 
Strain at Maximum Concrete Stress 
Ultimate Stress Factor 
Ultimate Strain Factor 
Linear Elastic Option 
Concrete Tension Stiffening 
Concrete Tension Stiffening Factor 
Number of Concrete Layers 
Reinforcement Tangent Modulus 
Reinforcement Plasitc Modulus 
Reinforcement Tension Stiffening 
Number of Reinforcement Layers 
Depth of Reinft. Layer i 
Area of Reinft. for Layer i (%) 
Yield Stress of Reinforcement 
Output Material History 

Keyword 

ECONC 
FCTI. 
FT 

STRNCY 
FCU 
ECU 

LINEAR 
TENSC 

snurrs 
NLYRC 

ESTEEL 
ESTEELP 

TENSS 
NLYRS 
Zi 
ASi 

FYi 
TRACE 

Default Value 

1 .. 
1. 
1. 

.002 
0 .. 8 

1 .. 25 
FALSE 
FALSE 

20 .. 
1 
1 .. 
1 .. 

FALSE 
0 
o .. 
0 .. 
1 .. 

FALSE 
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Figure Cl Geometry of Degenerated Shell Element. 
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Figure C2 Nodal Degrees of Freedom for Shell Element. 
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Figure CJ Stress Resultants for Shell Element. 
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Figure C4 Strain Point Numbering of Shell Element. 
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Figure C5 Face Numbers for Shell Element. 
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AXIS ELEMENT 
LINEAR QUADRATIC 

'o' Reference 1-2 1-2-3 

'e' Joint 3-4 4-5-6 

'g' Centroidal 5-6 7-8-9 

'i' Principal 7-8 10-11-12 

'S' Shear center 9-10 13-14-15 

Figure C6 Geometry of Beam Element. 
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DEFAULT POSITION 

'OPPOSITE' POSITION 

Figure C7 Positioning of Beam Eleaent as a Shell Stiffener. 

Figure C8 Stand-Alone Configuration for Beam Element. 
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Figure C9 Local Coordinate Frame for Beam Element. 

Figure ClO Stress Resultants for Beam Element. 
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Figure Cl4 Tension Stiffening Models used by RCSHELL. 
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Figure ClS Orientation of Crack. 
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