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CHAPTER 1
INTRODUCTION

Structures with long dimensions (pipes, bridges, dams, tunnels)
located at or near the ground surface may be damaged by large strains
and differential movements caused by body and surface waves during
earthquakes (Kubo, et al., 1979). Theoretical modeling is needed to
estimate the amplitude of strains and differential movements which can
be expected for given ground conditions and earthquake source
parameters. This model may be obtained realistically by using data
from dense instrument arrays (e.g., the SMART-1). The ground strain
and differential movement are the most important factors in the
analysis of 1lifeline earthquake engineering. Most risk analysis of
lifeline systems (e.g., Der-Kiureghian and Ang, 1977) are based on the
criterion that the ground strain exceeds a specified 1imiting value.
Although this type of failure is important in causing possible Tlocal
damage, the failure at the joint of a lifeline due to relative ground
motions has been seldom investigated; such failure may be equally
important. The incoherent (out-of-phase) motion sometimeé may cause
the failure of the system prior to the 1local strain failure. This
report will discuss these two failure modes in the analysis of
l1ifelines. To study the incoherent motion, the SMART-1 array data is
used.

1.1  General Description of SMART-1 Array

The SMART-1 (Strong Motion Array in Taiwan) is located at Lotung in
the northeast corner of Taiwan. It consists of a center element CO0O
and other instruments arranged on three concentric circles (inner I,
middle M, and outer 0), each with 12 strong-motion seismographs having
a common time base and with radii of 200 meters, 1 km, and 2 km,
respectively, see Fig. 1.1. This specially designed array provides
information about the spatial variation of surface ground motions that



is useful for the study of the seismic response of large structures
(Loh, et al., 1982).

1.2 Objectives and Scope of Present Study

The purpose of this study is to investigate the effect of time and
spatial variation of surface ground motion on the reéponse of lifeline
systems, such as buried pipeline, bridges and large structural systems.
Deterministic model is first developed to study the variation of ground
strain and differential movement between two points. A cross-spectrum
model for surface waves is then developed based on the SMART-1 data,
and the influence of spatial variations on the response of lifelines is
investigated. The seismic safety of a lifeline system based on the
potential damage from a strong ground shaking during an earthquake is

also examined.

Chapter 2 presents an analytical method to identify the wave
directions, wave types, and wave velocities. The phase difference
between two stations can be calculated based on the identified wave
velocity, which 1is dmportant  for the mathematical modeling of the
cross-spectral density function between two points. Chapter 3 uses the
SMART-1 data to calculate the ground strain and differential movement,
and also to develop a methematical model to calculate ground strain and
relative displacement. A quasi-static solution of the soil-pipeline
interaction, when subject to longitudinal and transverse seismic waves
propagating along the 1ifeline axis, 1is formulated in Chapter 4,
whereas, Chapter 5 presents a dynamic analysis of the interaction
problem. Both deterministic and non-deterministic cases are studied.
Chapter 6 discusses the sensitivity of lifeline longitudinal response
to earthquakes with changing epicenter direction. Chapter 7 outlines a
procedure for the reliability of lifelines.

Much of the uncertainty in the reliability analysis of 1lifeline
systems is associated with the wave attenuation (Der-Kiureghian and
Ang, 1977; Moghtaderizadeh, et al., 1982; and Taleb-Agha, 1977). This



is especially true when the lifeline system covers a large area and the
wave attenuation is important. For a small area, the coherence of
waves may be more important than the attenuation of waves. The study
includes the response of lifeline systems subjected to waves that may
not be completely coherent.



CHAPTER 2

IDENTIFICATION OF WAVES

2.1 Identification of Wave Types and Directions

Different kinds of waves exist in a strong-motion acceleration
record. Each kind of wave has different wave velocity and propagate in
different directions. An effective analytical method is available (Loh
and Penzien, 1984) for identifying the dominant wave types, directions
and velocity using data of strong earthquake ground accelerations.

For a stationary random process, the power spectral density
function of a ground acceleration in any direction can be represented
as a combination of the motions in the two origina1 orthogonal
directions,

~

xi(t) = xi(t)cos¢ + yi(t)sin¢

as shown in Fig. 2.1. The power spectral density function of ;,(t) is
i

represented as

2 2
Se ~ (w) =S w)cos ¢ + S sin ¢ +
X, X, .( ) ¢ Y.Y.(M) ¢
i iq i7i

ZRefsxiyi(w)]cos¢sin¢ (2.1)

where S; 5 () s the auto-spectral density of ;i(t) and Re[SX y (w)]
is the reé11part of the cross-spectral density of SX (w)l ' The
direction of maximum power spectral density at each freauéncy can be
obtained by maximizing Eq. 2.1, and the dominant direction ¢0 is



defined as the value of ¢ that maximizes S_ _ (w); i.e.,
XX,
asy ; (©)/8 = 0. Then, T

i

2Re[Sx y w1

- 101
¢0(w) 1/2 arctan Sx,x,<w) — ™) (2.2)

i Yi¥i

where ¢o(u0 is the principal direction and the spectrum associated with
this direction is called the major power spectrum; ¢ (w) + m/2 is the
0

minor direction which is orthogonal to the principal direction. The
corresponding spectrum 1is called the minor power spectrum. R(w) is

defined as the ratio of the major power spectral density to the minor
power spectral density; namely,

where 0 < R{(w) < 1 in all frequency bands. When R(w) = 1, there is no
principal direction, whereas when R(w) << 1, a principal direction
exists and the particle motion almost follows a simple harmonic motion
in that direction.

From the SMART-1 array data, especially that of the January 29,
1981 earthquake, the principal direction is close to the epicenter
direction. Figure 2.2 is a plot of the ratio of R(w) with different
moving time windows. For a detailed analysis of the array data, see
Appendix. From R(w) and ¢(w), the wave type may be identified. For
example, from Fig. 2.2, at frequencies 1.17 Hz and 2.85 Hz, there is a
Tow value of R. One is caused by surface waves and the other is caused

by shear waves. Once the wave type and wave direction have been
jdentified, the delay time for the maximum cross correlation between



each station pair can be calculated, from which the wave velocity at
this specific frequency can be estimated.

2.2 Identification of Wave Velocity

In the previous section, the wave velocity is identified at a
frequency band for small values of R(w). This is because at that
specific frequency band, the wave can be regarded as a simple harmonic
wave propagating along a certain direction. For other frequencies
(1arge values of R(yw)), the method cannot be applied.

In this section, a simple method is discussed to identify the wave
number and wave velocity at frequency bands where no definite wave
direction exists (Iyer and Hlaby, 1972).

First, consider the omni-directional wave train of frequency f,
x(t) = A(fexp[27i(ft + a(f))] (2.4)

where x(t) is the horizontal ground motion and o(f) is the phase at
frequency f. Take the Fourier transform

R(f) = A(f)[cos2ma(f) - i sin2ma(f)] (2.5)

where A(f) 1is the amplitude of the wave train at frequency f. Assume
x(t) and y(t) to be the waves recorded at two points in the array. The
cross-spectral density C:y between x and y is represented as

X

2 X
¢ = A° [cos2n(a_ - B ) - sinzn(oa_ - B )] = P y
r r r r r r

Xy _ iQr

r

(2.6)



where P:y and QXy are the real (co-spectrum) and imaginary parts
(quadra-spectrums, respectively, of the cross-spectral density at

frequency r. ar - Br is the phase difference between two stations.

Consider the propagation of waves across an array as shown in Fig.
2.3. The phase difference at some specific frequency between two

instruments along the wave direction is
¢ij = KDcos® | (2.7)

where K is the wave number, and D is the separation between stations i

and j. Then the co-spectrum P*Y can be represented in the form
r

{

pXY = A§COS£2ﬂ¢ij] = AZCOS[ZWKDCOSSJ (2.8)
. r

This equation can be expanded in Bessel function (Iyer and Hlaby, 1972)

n

pxY

- (K)cosZG1 + 2J4(K)cos4ei —— (2.9)

2
AT[Jd (K) -
rE o( ) 2J2

2nKD, and D is the separation.

where K

Now assume the waves arriving at the two stations from several
directions but with the same wave number K at every frequency. The
wave direction 6i may vary from 0 to 27. Since there is no definite
propagation direction, 8, can be assumed to take discrete values, e.g.,
o =0°, 20°, 60°, 90°,-1---=_330°.  Substitute all these different

i
values of ei in Eq. 2.9 and take the summation (because waves are
coming from all directions). After cancelling the J2 and .J4 terms,
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1 Xy 12 2
) P = Y AT[J (2mKD) - J_(2nKD)cos68, + ...] (2.10)
j=1 1 j=1 1 0 6 1

If the higher order Bessel functions can be neglected, Eq. 2.10 becomes

12 12
X 2
5 PY = T AT (2qkD) (2.11)
i=1 1 i=3 7 O
then,
12
7 Py
P
J (2nkD) = 2L (2.12)
0 122 2
A%
i=1 1

where ny is the co-spectrum of two adjacent signals along 6 = 6_ and
r 3
A? is the average power spectral density function of two signa]s.' The
i
summation is with respect to different values of 6,
i

Based on Eq. 2.12, the wave number K can be evaluated at different

frequencies, from which the wave velocity can be determined from

vV o= f/K.
c

Using the SMART-1 array data, the wave velocity is calculated up to
7 Hz except for the frequency range of small values of R(w). From
station pairs M06-006 and I06-112, the wave velocity is plotted in Fig.
2.4. The results are quite similar. It is interesting to note that
the wave velocity increases linearly up to 5.5 km/sec at 3.0 Hz and
remains constant up to 7.0 Hz. This method is valid only when there is
no dominant wave direction and for waves having the same wave number.



_CHAPTER 3
ANALYSIS OF GROUND STRAIN AND DIFFERENTIAL MOVEMENT

The design of a lifeline facility to withstand an earthquake must
permit the joints between its parts to accommodate relative motions as
well as permit the links between two joints to sustain the Tlocal
strains induced by the ground motions. Both the local ground strain
and differential movement between two stations induced by earthquakes
are important factors in the consideration of safety of lifelines.

3.1 Formulation of Ground Strain

The maximum strain in a pipeline may not necessarily occur during
the maximum acceleration of the ground. Following Goto, et al. (1981),

the estimation of ground strain from the passage of surface waves may
be estimated from the relative ground displacement between two points.
Suppose a wave propagates along the x-direction from station i to
station i+l. The phase difference caused by the wave propagation
between two consecutjve stations can be represented as

exp[iK(x + D/2)] - exp[iK(x - D/2)]

where K is the wave number (frequency dependent), and D is the
separation between stations i and i+l. The relative ground
displacement can be written as the inverse Fourier transform of the
relative ground displacement, namely

co

[ F(iw)exp(iut)[exp(ik(x + D/2) - exp(iK(x - D/2))]dw

Au(x,D,t)

©

Zizm F(iw)sin(%§)exp(in - jwt)dw (3.1)
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where F(iw) is the Fourier transform of the ground displacement. The
strain can be estimated as the limit,

. Au(x,D,t) - .

]%})DS—L—D | =g = €(1) (3.2)
Then

e(t) = [m F(iw) « iK + exp(iwt)dw (3.3)

In Eg. 3.3, it is important to note that the wave number K = /V is a
function of the frequency identified in the previous chapter. If there
is only a single dominant wave that exists in a certain frequency band,
Eq. 3.3, applies in that frequency band and the wave number K can be
taken as a constant. From the analysis of the SMART-1 data, Tables 3.1
and 3.2 show the maximum strain, maximum velocity, and maximum
displacement along stations 006 to 012. The maximum ground strain is
proportional to the maximum amplitude of the ground velocity and the
time to maximum value is almost the same. The suggested estimation of
the free-field ground strain can be expressed in the following form
(Shinozuka, et al., 1981),

£ =V /C{w) (3.4)

where Vmax is the maximum ground velocity and C is the ground wave
velocity at frequency wo’ which is the predominant frequency of the
ground acceleration. From the SMART-1 data, it is found that Eq. 3.4
gives good estimation of the maximum ground strain. Under the
assumption that the ground shaking is dominated by surface waves
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propagating along the epicentral direction, the wave velocity C(wo) can
be estimated as indicated in Chapter 2.

To study the ground strain along the axis of a pipeline, two types
of waves are important. From Fig. 3.la, assume the surface wave as a
harmonic wave that propagates in a direction with an angle § from the
x-direction (pipeline axis). The axial partic]e wave velocity along
the x-direction is V

i

I cos@, where U is the ground velocity, and the
Vrc/cose. Then the ground strain is represented

wave velocity 1is C
by,

e_=V/C

"

. 2
u/V__« cos g (3.5a)
g rc

From Fig. 3.1b, it is clear that the shear wave can also propagate
along the same direction as the Rayleigh surface wave. The axial
particle wave velocity due to the S-wave is V = 0 cos6. The ground
strain due to the S-wave is, therefore, g

€, = vV/C = ug/VSc - sinpcose (3.5b)

Equations 3.5a and 3.5b show the contribution of surface waves and
shear waves to the ground strain along the x-direction.

3.2 Formulation of Relative Ground Displacement

From the SMART-1 data of January 29, 1981 earthquake, Figs. 3.2 and
3.3 show the relative displacement between two stations as a function
of separation. It is reasonable to assume that - the Are]ative
displacement increases with the separation distance. It is also clear
that the relative ground dispTacement is sensitive to the phase
difference as the wave propagates through the soil along the lifeline
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axis (Christian, 1976). The relative ground displacement may be
expressed as

v . D
max(wo) v ? ,D LA/
R = ¢ (3.6)
d -
| max dminl ’ D >ar2

where R s the relative displacement; Vmax(wo) is the maximum ground
velocity at the predominant ground frequency wo; vC is the wave
velocity, and D is the separation. d and d ., represent the maximum
and minimum ground displacement. Whegaéhe separation D between the
stations is greater than half the wave length A =V /f R is almost
equal to the absolute vaTue of the difference between tﬁe maximum and
minimum values of the site displacement (this value is about 1.5 times
the maximum ground displacement).

Both ground strain and relative ground displacement are 1important
for the analysis of pipeline response and performance during

earthguakes.
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.CHAPTER 4
SOIL-BURIED PIPELINE INTERACTION (QUASI-STATIC SOLUTION)

The shaking of a pipeline caused by an earthquake has been studied
by several investigators (Kameda and Shinozuka, 1982; Hindy and Novak,
1979, 1980). Using the SMART-1 data, the quasi-static solution of the
interaction between a buried pipeline and the surrounding soil is
examined, for buried pipelines in both the 1lateral and 1longitudinal
directions.

4.1 Axial Response to Longitudinal Traveling Waves

The model of a pipeline is shown in Fig. 4.1. The axial response
of the pipeline is investigated by assuming that the ground
displacement, u (z,t), is in the direction of the pipeline axis. The
equation of motion of the pipeline is

BZuS(z,t) i |
p— u (z,t) - EA
8t2 zZs

azus(z,t)

2

=K u (z,t 4.1
. 24402 ) (4.1)

where u is the mass of the pipe per unit length, G is the shear

modulus, and Kz is the dynamic soil property. The quasi-static
solution for the axial response can be obtained by assuming the ground

acceleration as
iig(z,t) = a exp[i(wt - 2} )] (4.2)

The ground displacement can, therefore, be evaluated through double

integration of Eq. 4.2; yielding Metz Reference Room
University of Illinois
B106 NCEL
208 N. Romine Street
Urbana. I1linnta AIRNT
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oA rie 2T
Ug(zt) = - 7 expli(ut - 5=2)] (4.3)
Now assume that the pipeline displacement is
A . om
us(z,t) = A exp[ifut - 52)] (4.4)

Using Egs. 4.2 and 4.4 in Eq. 4.1, the quasi-static solution for the
amplification A (neglecting the dynamic term) is

-aDL(a,T)

A = 1
= S e

in which a = 2n/AE/K /V, is called the "rigidity ratio period" (Aoki
z

and Hayashi, 1973). o depends on the relative rigidity of the buried

pipe and the soil. ThenvK. 4.4 becomes,

u (z,t) 20 font) [ifut - &1 2)] (4.6)
, = ——— 1 - — i .
(2 (%f)zvz exp[i(w 5 2

The strain and axial load in the pipeline, therefore, are

du aDL(a,T)

e (z,t) = 57 =i (zTn)Z (2{1) exp[i(ut - ZTWZ)]
Bzus

a(z,t) = EA —* = aD (a,T) exp[i(ut - &L 2)] (4.7)
5z L A
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The ratio of the structural strain to the ground strain is

_ 5 1 ‘ |
A R (4.8)

€ Q
g 1+(T

For an arbitrary ground acceleration, Eq. 4.2 can be extended for
all frequency band as,

Ug(z,t) = ganexp[i(wnt - 501 o (8.9)

On this basis, the maximum axial pipeline strain and axial load due to
longitudinal traveling waves are (Penzien),

.
Ty . 2

S_(z,t) = ]rlean—z%DL(a,Tn)exph(mnt -5 Z)]lmax
_ - 2

Sq(z,t) = [%anDL(a,Tn)exp[1(wnt - 3?~z)]]max (4.10)

4.2 Response to Transverse Waves

Consider a horizontal pipeline subject to ground acceleration
ﬁg(z,t). The differential equation of the pipe response is

2 4
d ws(z,t) ) ws(z,t)

W% — + Kw(z,t) + EI —g =KW (z,t) (4.11)
ot XS 9z X g

where w (z,t) is the motion of the soil particles in the direction
perpendiguTar to that of the pipe axis, and K 1is the dynamic soil
X
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property in the x-direction. Assume the structural response and ground
displacement to be in the form

ws(z;t) = B exp[i(ut - ZAIE 2)]
W (zt) = - fz‘ exp[i(uwt - ZA_'" 2)] (4.12)

For quasi-static solution, the amplification factor B is calculated as

~ ‘aDT(d,t)
B = —2-’”_—)—2'\?—- (4.13)
A
where
] on JET
D_(a,T) = ——— , o = &0 JEL (4.14)

On the bases of Eqs. 4.12 and 4.13, the curvature p(z,t), shear force
S(z,t) and lateral soil loading P(z,t) can be expressed as follows:

2

o w_(z,t) -

o(z,t) = ___§_§___ = -(%g)zBexp[i(wt - %g»z)]

3z

3

vw_(z,t) -
S(z,t) = EI —-S-T— = -1(%’1)3EIBexp[i(mt - —Zf— z)] (4.15)

oz A

4

o'w_(z,t) -
P(z,t) = E1 —S "= EI(%E)“Bexp[i(wt - )]

oz
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For an arbitrary ground motion,

W (2,t) = Ta explilut - %—;1 2)]

n

the curvature spectrum, shear force spectrum, and lateral spectrum can
be calculated as,

Sp(z,t) |ganDT(u,Tn)exp[i(w6t - %F z)]] = IVZD(Z,t)l

max max

3

S (z,t) BT oy

S

IV4P!2,t?,
EI

i

S
p(z’t) max

4.3 Case Study

Using the records of station COO as the ground motion, Fig. 4.2
shows the change in the axial strain Sc» axial load S , and curvature

Sp for different values of a. Figure 4.3 shows the time of the maximum
axial strain and axial load as the wave propagates from Station 006 to

012. The value of the axial strain and axial Tload produced by the
January 29, 1981 earthquake are also presented. Because of the site

condition, the values Sg and S change irregularly.
q



18

CHAPTER 5
DYNAMIC ANALYSIS OF LIFELINES

Extended lifeline structures such as bridges, tunnels, and buried
pipelines, interact with the ground at many points along the lifeline
and are subject to spatially varying seismic motions at their supports.
Spatially varying seismic waves have a profound impact on the response
characteristics of these long extended structures. The difference in
ground displacement caused by a phase delay between adjacent foundation
points will be the only source of this non-coherent motion (Esteva, et
al., 1980; Fong and Hu, 1982; Loh, et al., 1982; and Pazargadi, 1980).
The spatial variation of seismic waves and their effects on the
response of lifelines are examined.

5.1 Theoretical Modeling of Cross-Spectral Density Function

The cross-spectral density function between two stations may
contain two important parts: the amplitude and the phase difference.
Traveling waves may be idealized as having no change in wave forms or
amplitude at a given frequency. In reality, even uniform plane waves
involve scattering due to the inhomogeneity of the medium between the
stations; consequently, the loss of correlation of the signals is to be
expected. From Chapter 2, there is a certain kind of predominant wave
at a given frequency band in each seismogram propagating in the
direction of the epicenter direction. The study of correlation and
cross-spectral density at this particular frequency band is important.
Within this predominant frequency band, the cross-spectral density
function can be assumed as

[D. .| D..
S?J.(f) = S:(f)exp[- — - Jexpliznf 141, f-af/2<i<lenf/2 (5.1)
e C
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where Sj(f) is the power spectral density function common to all
stations, Ke is a constant value representing the spatial correlation
of the signals, Di' is the separation between Stations i and j, and
VC js the relevant wave velocity (surface wave or shear wave).
Equation 5.1 is true for a given type of wave propagating in certain
directions within a specific frequency bgnd. The same equation may be
extended to other frequency bands. Ae’ the wave velocity is frequency
dependent. '

From the SMART-1 data, Figs. 5.1 and 5.2 show the coherence yz(f)
versus separation. The 1loss of coherence for surface waves that
propagate along the epicenter direction is faster than that of shear
waves propagating along the same direction. This 1is because the
surface waves propagate at or near the ground surface and the shear
waves are coming directly from the soil layer beneath the array, so the
site condition may have greater influence on the coherence of surface
waves than that of the shear waves. More detajled analysis in the
other frequency bands, is given in the Appendix. From the plot of
R(w), Fig. 2.2, we can easily separate the frequency axis into several
frequency bands according to the value of R(yp). High values of R(w)
mean that no definite waves exist at that frequency that may be used as
a separation point. In each frequency band, the coherence between each
station pair and their phase difference can be evaluated. This makes
it easy to estimate the parameter Ae and the phase part of Eq. 5.1.

The effectiveness of using the cross-spectral density model is
related to the correlation length of the ground acceleration, that is
defined as

® 2
La(fo) = é Yij(fo,r)dr (5.2)

2
where La is the acceleration correlation length, and Yi'(f’r) is the
coherence between stations i and i+l, i.e., defined as
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2
2 lsi‘(f)[
Y. . (f) = ] (5.3)
1] Sii f Sjj f
Substitute Egs. 5.3 and 5.1 into Eq. 5.2; thus,
L(f) = fm;xp(— Lydr = [q;x (-C fglﬂ-)dr =V (5.4)
a'o’ 7} h ) P cf :

where V is the wave velocity, and f is the dominant frequency. The
relation between C and the corre]ationo1ength L of the seismic ground
acceleration is shown 1in Fig. 5.3. From %he SMART-1 data, at the
predominant frequency of f = 1.17 Hz (surface wave), the correlation
length is about 2.8 km (C = 0.83). This means that the seismic waves
for this particular earthquake have a high correlation even though the
separation between stations is 2.8 km apart. The cross-spectrum model
established from stations located within this correlation length is

more meaningful.

5.2 Equation of Motioﬁ and Response Spectrum Analysis

Following Nelson and Weidlinger (1979), consider a segment of a
long pipeline as shown in Fig. 5.4, where L is the finite difference
interval and K is the axial stiffness of the element. The equation of
motion of thisptypical i-th 1ink is given by

mX +C X .-C (X. _-2X +X. _)+K X.- 22X 4X. .)=C 7.+K Z 5.
i g p( i-1 i Xi+l) Kg j Kp(xi—l in i+1) Cg i Kg i (5.5)

where Xi is the absolute motion of the i-th 1ink, and Zi is the
free-field ground displacement at the center of i-th 1link. If the
joint between segments is soft, i.e., K /K +0 and C /C -0, Eq. 5.5 is
completely uncoupled and reduced to the form? P9
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]

v . 2 2 [
X
i * Zubggxi + ngi ubzi + ZnggZi (5.6)

where i is for structural element i. Consider two consecutive elements

and set
AX = X - = - = -
i+l Xi s, A Zi+1 Zi s Ay = A - AZ
Equation 5.6 then transforms to
AY + 28 w Ay + szy = -A7 (5.7)
g9 9

This 1is the equation for a SDF system with out-of-phase component of
the input AZ. From this, the absolute relative displacement between
element 1 and i+l, AX = Ay + AZ, can be calculated. Based on Eq. 5.7,

the displacement response spectrum SD (for maximum displacement) can be
evaluated as a function of the structural period T and the delay time
At due to the incoherent input motion, i.e.,

Sp@sE,0t) = Max|ax(t)]
or (5.8)

5(6,E,2) = Max|ax(t))]

where 2 is the separation. From the SMART-1 data, the response spectra
due to the in-phase and out-of-phase inputs are plotted for different
separations in Figs. 5.5 and 5.6. It is clear that for different
separation ¢, the response  spectrum curves have different
amplification. At the dominant frequency, the out-of-phase motion
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displacement response spectrum S._ increases as the phase difference
increases, as shown in Fig. 5.9. This is due to the phase delay of
wave  propagation. In the case of multiple inputs, this phase
difference between inputs is an important factor to consider in the
study of the response spectrum. When the separation between two
stations reach half the wave length, S will reach a minimum value for
in-phase inputs and a maximum value for out-of-phase inputs.

A simplified method is suggested for calculating the SD' Once the
- wave types and wave velocity have been identified at certain frequency,
the out-of-phase motion inputs can be fep1aced by

Ai=5{i(t) -Sii(t”)_ (5.9)

where 1 is equal to g&/V (V is the wave velocity). The response
spectrum under the input of Eqg. 5.9 is shown in Figs. 5.7 and 5.8.
Because the SMART-1 data of January 29, 1981 -earthquake show a
concentration of energy at frequency 1.17 Hz in the epicenter direction
and the wave velocity and wave type at this particular frequency have
been identified, one can simu1éte the response spectrum using a single
station data with a phase delay, as defined in Eq. 5.9, without 1losing
much accuracy.

5.3 Random Vibration Analysis of Multiple Inputs

From Eq. 5.7, the input-output relation can be represented in the
frequency domain as

S, (@) = [H(@)]°S, () (5.10)
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where lH(m)}2 is the transfer function for the absolute acceleration
output. For multiple inputs, the input spectral density is represented
as

Spz(0) =S, () +5,  (0) + e[S, (u)] (5.11)
i i+l i i+l

where the positive sign is for in-phase inputs and the negative sign
designates out-of-phase inputs. Define the ratio n(w) as

RelS, . (w)]

= i+1
n(w) = 5 ™) L ™) (5.12)
2 Zi+]

Substitute the cross-spectral density model, Eq. 5.1, in Eq. 5.12,

obtaining
S (w) , ID} D..
nlw) = sgras @y Pl ] cosl 4] (5.13)
Z; Zi41 € ¢

The mean square response value is
z

Oix = [:]H(w)lzsA (w)dw (5.14)

Substituting Eqs. 5.10 through 5.12 into Eq. 5.13, giving

2 (o]
Oy = leH(w)lz(Sz.(w) * SZ.+1(w)) (1-2n(w) )duw (5.15)
1 1
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Since So(w) represents the power spectral density common to stations i
and j, it is reasonable to assume So(w) = (S (w) +S (w))/2. Then
zZ, z

Eq. 5.14 reduces to the form ! i+1

2 had 2 .
Oax " [ )] (Sz.(“’) tS, (0))(1 - exp[- TD—]COS(w VD—))d
1 i+l e o

If ke is independent of the frequency and the phase part is also
frequency-independent and concentrated at frequency w , then
. )

2 o]
Opx = (1-exp[- %iJCOS(wO él)) [mIH(w)IZ(SZ.(w)+SZ. (w))dw (5.16)
Y i i+l

where mo is the dominant frequency of the ground motion. This is true
if the dominant wave contains most of the energy in the seismogram.
For mutually uncorrelated inputs, Eq. 5.15 reduces to

2 it -
AX !w]H(w)IZ(SZ'(m)+SZ. (w))dw (5.17)
i i+l

o

The importance of input correlation can be evaluated from The following

equation,
2 ;.
o5y (input correlated) D.. D..
— =1 - exp(- 39)cos(w ¢ (5.18)
OAX(Input uncorrelated) e 0 %o

From the analysis of the January 29, 1981 earthquake data, the ratio of
n{w) dis plotted for different station pairs (different separation).
For small separation, the variation of n(w) with respect to frequency
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is quite smooth, as shown in Fig. 5.10. It is interesting to point out
that the variation of R{(w) with respect to separation at frequency
f =1.17 Hz is a cosine function with an exponentially decaying
amplitude, as shown in Fig. 5.11. Based on Egq. 5.18, the ratio of the
mean square response of correlated input to the uncorrelated input for
different values of w /vc is shown in Fig. 5.12. For the case of
out-of-phase inputs with low values of mo/vc, this ratio increases with
increasing separation.
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CHAPTER 6
SENSITIVITY OF MAXIMUM RESPONSE TO EPICENTER DIRECTION

The emphasis of this investigation was to determine the
significance of coupling between the 1longitudinal motions and
transverse motions of the ground to the response of a 1lifeline
structure. The relative displacement between two adjacent points of a
~ lifeline was studied through the random vibration approach. The design

of a 1lifeline system may be dictated by future earthquakes producing
the maximum response for a given geological condition. This section is
aimed at examining the maximum relative displacement of a lifeline
along the longitudinal direction based on linear elastic analysis; in
particular, the effect of the epicenter direction of an earthquake on
the maximum response is investigated.

6.1 Formulation

Ari, ground motion can be decomposed into two motions, i.e., the
motion in the epicenter direction and that normal to the epicenter
direction. Suppose a 1lifeline structure 1is constructed along the
x-direction making an angle ¢ with respect to the epicenter direction
(x-direction), as shown in Fig. 6.1.

The ground acceleration along the x-direction is represented as

x(t) = x(t)cosp - y(t)sing (6.1)

in which x(t) is the ground acceleration along the 1ifeline direction,
and ¢ is the structural orientation with respect to the epicenter
direction. If the duration of the strong motion part of the earthquake
is much longer than the fundamental period of the ground motion, the
earthquake motions may be modeled as a stationary random process (Yang,



27

et al., 1982). The power spectral density of the ground acceleration
along the x-direction can be represented as

Sxx(w) = Sii(w)cosz¢ + S}}(@)sin2¢ - 2Re[S§y(w)]cos¢sin¢ (6.2)

where x is along the epicenter direction, and y is normal to the
x-direction, and Re[S§~(m)] is the real part of the cross-spectral
density between the X and y motions. Sev(w) and S-~(w) are the
respective power spectral density functions along and normal to the
epicenter direction.

As mentioned in the previous chapter, different kinds of waves may
exist in either of the two directions. This is especially true near
the source and for shallow earthquakes. The frequency contents of the
motions in both directions may be also independent (for example, the
motions in the epicenter direction contain high energy of surface
waves, whereas the motions in the normal direction may be largely shear
waves).

Let the ground motions in the x- and y-directions be stationary
processes that are characterized by the spectral densities S__(w) and
XX

S-~(w), and cross-spectral density S~-(w). The spectral densities of
the ground accelerations may be assuméd to be of the following forms:

1+ 4&?(;“;—)2 (;“’2-)2
Sen(w) =S '
X X [1 - (£)%7% 4 agZ()2 [1 - ()7 + 4g5()?

1 1 2 2

1+ A el
Sox(w) = S 27 . 2,00 2.2 . 2 @2
¥y - GDT e [ G0+ g

Re[S;(}(w)] = q(w) - /s;&(w)sw(w) (6.3)
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where

(6.4)

in  which Sox and SO are two constants, Vs g are characteristic
frequencies, and £ and £_ are characteristic damping. These constants

are dependent on the local geological conditions.

Based on the finite difference model of a 1long 1lifeline, as
mentioned in the previous chapter, the equation of motion of a
structural element is represented as (the same as Eq. 5.7))

Ay + 28 w by + Wby = -0F
nn n

where Ay is the relative displacement of the 1lifeline element. 1In
frequency domain representation,.

S = (w) (6.5)

where Al is the relative motion of ground acceleration between two
adjacent stations along the lifeline axis (x-direction), [H(w)| is the
absolute response transfer function, and AX is the relative
displacement response of two consecutive structural elements. The
spectral density function of the input, Af, can be expressed as the
auto-spectral and cross-spectral density functions of the ground
motions at two adjacent elements, i.e.,
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Equation 6.6 can also be expressed in terms of the power spectral
density of the motion along and normal to the epicenter direction,
i.e.,

S .(w) = (Si.(m) +'Sx. (w).- 2Re[S£ i (w)]c052¢
i i+l i+l

+

2
(S. (w) +S.. (w) - 2Re[S.. .. (w)]sin ¢
Y Yisr 7341

-+

2(Re[S, .. (w)] +Re[S.. .. (w)] - Re[S. .. (w)]
*Yin1 %441 Y5

Re[S.)i . (w)])cos¢sing (6.7)
i+17i+1

Combining Eqs. 6.5 and 6.7, the response spectral density function can
be expressed as a function of the structural orientation with respect
to the epicenter direction.

The mean square structural response follows from

ELax’(t)] = j-':]H(w)IZSA'Z'(w)dw
co 1 1+ (zgn EJ@—)Z
- n. n .S ..(w)d 6.8
Lans (2997 + (2, 29° px (4w (6-8)
n n

The informati

nn w
ANt LA i

g M a response analysis are the
spectral density of the ground acceleration, the frequency response
function, and the angle of structural orientation with respect to the
epicenter direction ¢. This root mean square response 1is useful for

design purposes.
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If the excitation and the response are approximated as a stationary
process, the extreme value of AX(t) over the duration T, can be
expressed as

aY = ‘(Ay(t))max | | (6.9)

~ The mean maximum response can be approximated by using the relation

E[Aym3 = °Ay( V2EnVT + 0.5772/v22n0T) (6.10)

where

co2 co

v o= E;-Imw SAZ(w)dw/f SAZ(w)dw

=00

1 : . (6.11)

Q
1
o=

6.2 Transverse Response

The sensitivity of the transverse response of a 1lifeline to
earthquake with uncertain epicenter direction is also required. From
Fig. 6.1, the ground acceleration along the transverse y direction is

repre.ented as,

y(t) = x(t)sing + F(t)cosp (6.12)
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The power spectral density of the transverse response can be written as
the combination of two original horizontal ground motions

2 2
S = S..(w)sin“¢ + S__(w ¢ + 2Re[S..(w)]sindcosd 6.
yy(w) Xx( Ysin yy(v)cos [ xy( )]sin¢cos (6.13)

The auto-spectral density and cross-spectral density in Eq. 6.13, may
be represented as in Eqs. 6.3 and 6.4. Then the equation of motion of
the structural response is

Ay(t) + 28 w Ay(t) +.m§Ay(t) = -AZ(t)

and (6.14)

AX = - - = -
yi+1 yi , AL Zi+1 Zi s, Ay = AX - Az

The input power spectral density can be expressed as Eq. 6.7

S .. (w) (Si (w) + S; (w) - 2Re[5; 5 (m)])sin2¢

i i+l i i+l

2
+ (S: (w) + S= (w) - 2Re[Sx = (w)])cos ¢
Y5 i+1 Yilie1

+

2(Re[S« = (w)] + Re[S: =  (w)] - Re[S= = (w)]
X_y. X, . Xy.
i%§ i+17i+1 iT i+l

Re[S: »  (w)])cos¢sing (6.15)
Y. X,
i+l
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Following the same model for the auto-spectral and cross-spectral
densities, the mean square response of a structural system due to
changing epicenter direction may be calculated.

6.3 Example

Before calculating the mean square response of a pipeline due to
uncertain epicentral direction of an earthquake, two mathematical
models have to be established. One is the cross-spectral density of
the spatial ground acceleration between two stations along the same
direction; the other model is the cross-spectral density between two
orthogonal directions at one point (i.e., along and normal to
epicentral direction). From the SMART-1 data, the parameters of the
first model have been discussed and estimated. The second model, based
on Eq. 6.4, is given in the Appendix. The shape of q(f) does not
change much from station to station according to the calculations based
on the inner ring data, as shown in Fig. 6.4. Table 6.1 and 6.2 give
the parameters of the power spectral densities along two orthogonal
directions. Their shapes are shown in Figs. 6.3 and 6.4. The
difference between these two .examples is that there is a strong
coupling between the power spectral densities of the motions along and
normal to the epicentral direction. Figures 6.5 and 6.6 show the
change of OAX with respect to the epicenter direction ¢g. For
out-of-phase motions, when the pipeline axis coincides with the
earthquake epicentral direction, the root mean square response (o )
reaches a maximum value. This is true because most of the earthquake
energy is concentrated along the epicentral direction and also the
natural frequency of the structural system coincides with that of the
peak power spectral density of the dnput along the epicentral
direction. As the separation between two inputs increases (i.e., D
increases), for out-of-phase motion, the RMS o will also increase.
For Example 2, the change of o _ is smoother than that in Example 1.
This is due to the strong coupling between the input power spectral
densities along the two directions. If the cross-spectral density
between two inputs is neglected, for out-of-motion, it is conservative
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as shown in Fig. 6.7. The previous discussion is to consider the
effect of the out-of-phase input on the response of a pipeline along
its axis. Figure 6.8 suggests a model to calculate the transverse
motion between two pipeline elements. From Fig. 6.9, the variation of
the RMS T,y With 8 is also shown. Compare these figures with Fig.
6.6, for D = 0.4 km; the longitudinal response is much more important
than the transverse response. The results for the two examples may be
summarized as follows:

(1) The shape of the input power spectral density and the system
natural frequency may have significant influence on the RMS response

(o S
B (2) The coupling of the power spectral densities of the motions
along and normal to the epicenter direction has a great influence on
the calculation of o | especially at 6 = 900.

(3) The separation between two pipeline elements or the phase
difference as a wave propagates from element i to i+l is important to

the out-of-phase response of the pipeline.

Metz Reference Room
University of Illinoias
B106 NCEL
208 N. Romine Street
Urbana, Illincis 61801
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CHAPTER 7

RELIABILITY ANALYSIS OF LIFELINES

7.1 Probability of.Damage of Lifeline

Consider the axial strain of a pipeline caused by -earthquakes.
Assume that the pipe strain can be estimated by multiplying the free
| field ground strain by a factor g (conversion factor) (Shinozuka, et
al., 1981), i.e., '

e =R¢g . (7.1)

where € is the ground strain, and € is the structural strain. For a
straight buried pipe, the evaluation of B8 was discussed in the
previous chapter. To evaluate the probability of failure of a buried
pipeline, the mean value € and standard deviation o_ of the ground
strain have to be evaluated. These values may be different at
different stations because of varying site conditions. The correlation
length of the ground motion, as defined in Chapter 5, is used. Within
this length the variation of the ground strain is not 1large. Of
course, for different earthquakes, the predominant frequency of the
ground motion and wave velocity may be different, thus 1leading to
different correlation lengths. Within a given correlation length, the
mean value of the ground strain e and corresponding standard
deviation o_ can be evaluated as °

n

) €./n

0 i=1] 1

m
1]

Q
]
fo~13

(e. - ¢ )2/(n - 1) (7.2)
1 0

i=1
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where n is the number of points selected to evaluate the ground strain.

The probability of damage of pipeline per unit length may be
defined as

P =p
p = PL(Beg 2 e0) (7.3)

where £ _ is the failure strain and €q is the earthquake-induced ground

strain. If both EG-and'ef are normal variates with N(p ,o0 ) and
€. e
G G
N(u ,o ), then
e e
£ °f

Mg - Bu
€ € .
Pi=l-o(——F 6 (7.4)

/2 2 2
c + B Oe

ef f
where ®(-) is the standard normal distribution.

From the January 29, 1981 earthquake data, the mean value of the
ground strain is calculated as 0.0000463. The probability of damage of
a pipeline of length L may be given as,

) L/1
Pe=1-(1-Pp) (7.5)

where L/1 means the number of unit element within the pipeline 1length
L. Figure 7.1 shows the probability of damage for different values of
the failure strain ef.
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7.2 - Extreme-Value Response Distribution

From Eq. 6.9, the mean and mean square va]uesk of the maximum
relative displacement are estimated. Using the Gumbel Type I
distribution (Wirsching and Yao, 1971) to express the extreme-value

response distribution of AX |
m

F - - - - - .
Axm(AX,T) exp{- exp[ o (aX .Bx)]} (7.6)

where AXm is the maximum relative displacement and o BX are two
constants. Finding an exact distribution function of the maximum value

of a random process within an arbitrary time interval is equivalent to
finding the distribution function of the first passage time. For a
zero-mean, narrow-band process and a high level crossing, the barrier
crossing may be approximated as a Poisson process. The probability of
failure of one structural component i, during a time interval (0,T),
méy then be expressed as (Wirsching and Yao, 1971),

el
0]

- < X
1 - P L]aX | <ax]

1 - exp{- 2v exp[- I/Z(U—AX—)ZT]} (7.7)
0 AXm

where vo is the mean zero crossing rate, egual to

1 2 oo:j
vV o=3- 37— , A, = j uS{w)dw 7.8
0 ZH‘JAO j é (7.8)
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where GAX is the root mean square value of AXm, which is a function of

. m,. . .
epicenter direction and can be evaluated from previous chapters.
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Table 3.1 Maximum Ground Strain, Velocity and Displacement Along
Epicenter Direction. (Surface wave dominant.)

January 29, Strain (x]O—S)* Velocity (cm/sec) Displacement (cm)
Eaéﬁﬁibake Max.  Time for Time for ] Time for

Strain Max. Max. Vel. Max. Max. Disp. Max.

012 5.03 6.48 14.82 6.49 2.09 6.30

M12 4.49 6.22 | 14.74 6.23 2.06 6.03

112 4.02 6.13 12.61 6.14 2.04 5.92

€00 4.60 6.12 13.78 6.13 1.93 5.92

106 4.13 6.09 11.36 6.08 1.86 5.85

M06 5.04 5.80 11.12 5.79 1.98 5.55

006 5.13 5.37 10.42 5.40 1.95 5.09

*
Maximum strain was calculated along calculated epicenter direction
(¢ = 77.36°), with frequency band 0.49 ~ 2.93 Hz. Wave No. = 3.13.
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Table 3.2 Maximum Ground Strain, Velocity and Displacement Normal to
Epicenter Direction. (Shear wave dominant.)

January 29, Strain (x]O-s)* Velocity (cm/sec) Displacement (cm)
012 4.55 6.48 10.01 6.46 1.92 6.33
M12 3.4 6.52 | 7.86 6.21 1.72 6.10
112 4,89 6.36 7.31 6.38 1.34 7.15
Co0 4.56 6.34 6.52 6.35 1.29 5.97
106 4,32 6.26 4,95 6.29 1.42 5.94
MO6 . 1.36 18.37 2.45 6.32 0.64 17.83
006 3.29 "5.62 - 5.86 6.49 1.09 6.36

*Maximum strain was calculated along the normal of epicenter direction
(¢ = -34.0°), with frequency band 0.24 ~ 6.05 Hz.
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Table 6.1 Parameters of Simulated Power Spectral Density
in Example 1
1st Mode 2nd Mode
EXAMPLE 1 .
S f &1 fy 2
station 790. 1.70  0.14 | 2.13  0.13
Epicenter
Direction .
station g .10 0.15 | 2.23  0.15
Station ‘
Normal to j 190. 2.80 0.11 4.40 0.14
Epicen?er :
Direction  Station 140. 2.72  0.09 | 4.3 0.1
Table 6.2 Parameters of Simulated Power Spectral Density
in Example 2
1st Mode 2nd Mode
EXAMPLE 2
3 f &1 fa &
Stagion 740. 1.1 0.14 | 2.20  0.14
Epicenter
Direction Stati
I 940. 1.11 0.15 | 2.3¢ 0.0
Station
Normal to ; 440. 1.14 0.40 2.90 0.11
Epicenter
Direction  Station 870. 1.4 0.45 | 2.94  0.70

i+]
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N

Figure 1.1 Configuration of the SMART-1 Array
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Figure 2.1 Coordinate Transformation of Two
Horizontal Components
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Figure 2.3 Wave Propagation in Direction Si
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APPENDIX

A. Coherence of Ground Accélerations At One Station

The ratio R(f) defined by Eq. 2.3, is plotted in Figs. A-1 and A-2
-with respect to frequency for the stations along 006 to 012 and 003 to
-009. The dominant direction at low values of R(f) (< 0.3) is also

indicated in these figures. As pointed out earlier, certain kind of
wave may exist at low values of R if there is also a peak power
spectral density value at that frequency. On the other hand, if there
is no obvious peak spectral density function and also the value of R is
large, then this particular point may be chosen as the separation point
to differentiate between different kinds of waves along the frequency
axis. Then within each frequency band, one can study the coherence of
the two orthogonal ground motions at one station or the coherence of
the ground motions at two different stations.

When R(fo) = 1 there is no principal direction because the harmonic
motion at frequency f moves along a circular path at constant angular
velocity, Zﬂfo. When g(f ) < 1, principal directions exist with the
motion being along a straight line for R(f ) = 0. It is significant to
note that only for R(fo) = 0 can a pure sigg1e harmonic wave exist.

In most studies of structures under multiple ground excitations,
the two horizontal ground motion components are assumed to be
uncorrelated. From the present study of the SMART-1 data, a certain
level of coherence obviously exists between the motions along and
normal to the epicenter direction at some specific frequency. Figure
A-3 shows the coherence curve and the ratio R(f). The epicenter
direction of the January 29, 1981 earthquake is at ¢ = 76; therefore,
if the dominant wave is not in this direction, it will create a high
coherence at this particular frequency (e.g., at f =2.85 Hz). To
estimate the co-spectrum (real part of cross-spectral density function)
for multiple inputs, the function q(f) as defined in Eq. 6.3 is
calculated from the array data and shown in Fig. A-4 with R(f). Using
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the previously discussed method of separation of frequency axis into
bounds, gq(f) can be assumed to be a constant (the average) within each

frequency band. This is more reasonable than assuming a constant for

all frequencies.

From the January 29, 1981 earthquake data, q(f) may be modeled as

-0.169 0<f < 1,563 Hz
0.186  1.536 < f < 2.344 Hz
-0.361  2.384 < f < 3.320 Hz
-0.220  3.320< f < 4.60 Hz

q(f) =

Note that q(f) may vary from earthquake to earthquake.
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Characteristics of the January 29, 1981 Earthquake

January 29, 1981

Earthquake
(SMART-1)

Ground Motion in
Epicenter Direction

Ground Motion Normal
to Epicenter Direction

- Data Used
Along Stations
006-012

Figure: A-6

Dominant Frequency:

1.17 Hz (Surface Waves)

Obvious phase change and
loss of coherence along
spatial coordinate.

Figure: A-8
Dominant Frequency:

2.98 Hz (Shear Waves)

Obvious phase change
but spatial correlation
is strong in III.

Data Used
Along Stations
003-009

Figure: A-10

Dominant Frequency:
1.17 Hz

No obvious phase change
up to 1 km.

Figure: A-12

Dominant Frequency:
2.93 Hz

No obvious loss of
coherence in III. The
phase change are not
obvious at 2.93 Hz up
to 1 km separation.
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B. Spatial Correlation of Ground Motions Along and Normal

to Epicenter'Direction

The fact that the array stations from 006 to 012 are along the
epicenter direction makes it easy to study the spatial correlation of
seismic waves. By choosing different frequency bands (1:0.0 ~ 1.56 Hz;
11:1.56 ~ 2.54 Hz; I11:2.54 ~ 4.11 Hz), the spatial coherence and phase
difference with respect to station separation are calculated for the
January 29, 1981 earthquake. The result is shown in Table A-1. The
phase change for the dominant waves (surface waves and shear waves) in
the direction of wave propagation is quite obvious. Figures A-5, A-7,
A-9, and A-11 plot the power spectral density functions of the ground
accelerations at different stations. The previously chosen frequency
bandé correspond well with the peaks in the power spectral density.
This means that there exists a certain kind of wave in a particular
frequency band, and thus makes the estimation of coherence more
meaningfui.

For different earthquakes the frequency bands may be different, and
the estimated loss of correlation and phase difference of ground
motions due to spatial separation may also have different values.
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C. Computer Programs

PRO&GRAM TO IDEMTIFY THE DOMINANT DIRECTION

FROGRAM DIRECT ¢ INFUTyQUTFUT > s L2y TAFES=0UTFUT
&y TAFE4=INFUT » TAFE1 0= » TAFE20=02)

DIMENSION X1(2048),X2(2048)COV1(Z2546)sCOV2C258)
DIMENSION COU3(254)C0OV4(258) »EV(256),00(256)

MAX=236

N=2048

READ(10,10) (X1(I)rI=1sN) ORTHC CRIZONTAL GROUAD
READ(205 105 (X2(I) 1 I=1 N> 7 Twoldfc?feiﬁﬁ'uk{ RIEOLTAL

READ(453) ItsIN

FORMAT (1Xs 11HTIME WINDOWr218)

WRITE(6»222) IMsIN

FORMAT (I5)

K=1 ,

00 2 I=IHysIN

X1 (K)=X1(I)

X2(K)=X2(I)

K=K+1

INM=IN-IM+1

00 4 I=INM/N

X1(I)=0.

X2(I1)=0.

FORMAT (5F12

CALL COUF (X1 X1 7Ny COUL s MAX 05 UL)

CALL COVF (X2yX2yN»COVR2sHAK»0»VU2) .

CALL COVF (X1sX2sNsCOVZsMAX 0 UZ)

CALL COVF (X2yX1sNyCOV4sHAX70rU4)

N0 12 I=1,HAX

EV(I)=(COV3(I)+COVA(I)IK0.5

OD(I)=(COV3(I)~COVA(I)IX0.5

COV3(I)=EV(I)

COV4(I)=0D(I)

CALL AUTO(X1,COU3sHMAX»0)

CALL AUTO(X1,COV4sMAXs1) )
CALL AUTO(X1sCOV1rMAX10)

CALL AUTO(X1,COU2:MAXs0)

FI=3.141592453

00 101 I=1,MAX

EVU(I)=2.%COU3(I)

OD(I)=COV1(I)~COVR(T)

D0 8 I=1,MAX '
IF(CEVCT)»GT+04) AN, (ON¢I) GE.0,) ) ANG=ATANCEV(I)/00CI))
IFCCEUCT) oLTo0, ) ANDL (OO CI) o LT.0,3) ANG=-FI+ATANCEV (1) /00CI))
IFCCEVCTI) LT o000 ANDY (OLCI) +GE 00 )) ANG==ATAN(=EV(I) /0T
IF(CEVCT) o GT+04) AN, (OD(I)oLT 043 ) ANG=FI-ATAN(=EVL)/00(I))
X1(I)=(ANG/2.,) .
X2(I)=(ANG/2.)%X180./FI

CONTINUE

WRITE(65333)

FORMAT ¢ 1Xs 1BHIGHINANT DIRECTION)

WRITE(45110) (X2(I)»I=1948)

N0 104 I=1,MAX

AA=COS(X1(I))

BE=SIN(X1(I))
EV(I)= COUl(I)*AA*AA+COU°(I)#RB*HB+ +RCOU3(I)XAAXER

on(Iy= CDUI(I)*BB*BB+POU°(T)XAA*AA—A.*COUofI)#AﬁkﬂB
CONTINUE ‘
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WRITE(4r444)

444 FORMAT(1Xy13HMAX., SPECTRUM)
WRITE(Sy110)(EV(I)vI=1s48)
ng 105 I=1r-MAX

105 X2(I)=0L(I)/EV(I)
WRITE(S9646)

6466 FORMAT(1Xy PHFREQUENCY)

o gnely=0. ’
OF=50./256.
ng 107 I1=2-58

107 ODC(I)=00CI-1)+0F

WRITE(S6s110)(0NCI)»I=1+48)

WRITE(S353)

FORMAT(1XsSHRATIO)

WRITECS»110)(X2(I)+I=1548)

FORMAT(10F10.3)

STOF

END

SURRQUTINE COUF(XsYsNsCrMeNNV)

DIMENSION X(1)sY{(1)sC(1)

ng 25 KK=1-M

RK=KK-1

S=0.

NN1=NN+1

L=N-NN=K

00 15 I=NN1sL

S=8+X(I)XY(I+K)

C(RK)=S/FI.O0AT (L~NN)

CONTINUE

U=C(1)

CONTINUE

RETURN

ENII

SURROUTINE AUTO(XsYsMrIM)

ODIMENSION X(1)»Y(13J

S=0.

0o 10 L=1+M

R=M-L+1

X(2%K)=0.

FI=3.141592653

10 XC¢2¥K-1)=(r{(RK)=SIKO.FK(1 A4LRS(FIRFLOAT(R-L) /FLOAT{M=-1)))

M21=2%M+1 .
M4=4%KM
ng 20 L=H21,M4
20 X(L>=0.
CALL FOURL1(Xy2kiMs~—1)
g 40 L=1sM
40 Y(L)Y=X(2%L-1+IM)
RETURN
ENT

)|
4]
4]

[y
|
<

[y
4y}

N
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PROGRAN TO CALCULATE THE ROOT MEAN SQUARE RESPoVE
oF LIfelVE ELEHENT.

FROGRAM EFPICENCINFUTsQUTFUT »TATA»VUCKs TAFES=0ATAy TAFES=
SOUTPUT » TAFE4=INFUT» TAPE10=VUCX)

DIMENSION SX1(100)ySX2¢(100)s8Y1{100)5Y2(100)»58{100)X{100)
DIMENSION RSX(1002sRSY (100 +A(100) ,QAEXY (100} »FSXY(L00)
DIMENSION VCX{100) yUCY (100 y STAN(IO) v CSXY(10D0) » USXY {1000
DIMENSION VAC(LO0) s XMEANCLIOQ) »UU(100) »8T(100)

REALC(452) Qs0IS»ARXsARY IS = Distane <hedntin twd Ao I drdins
WRITE(&4»13) QsOISsARXsARY -;; . ;gg' ‘ iffe
FORMAT (4F 12,37

READ(10511) (VCXCI) s I=1560) > Wave Velozity aft 2aik fAguened o of = %
FORMAT(SF&.3)

WRITE(Sr11) (VCX(I)yI=1544)

READC(S»3) WGl DAl sWF1s0OFLs51 >Ef‘([‘3)

READ(S,3) WG2,DNA2yWF2,DF2,82 -

FORMAT(F10.4) A

WRITE(6s3) WGLsDAL,WFLyOF1yS1

WRITE(653) WG2yDA2,WF2s0F2,62

CALCULAT SPECTRAUM AT STATION I ALONG X &Y OIRECTION
COLL SPECTR(S1,WGLsUALyWFLsIFLySX1)

CALL SPECTR(S2,WG2y A2, WF2,LFE,8Y1)

WRITE(S720) (SX1(I)sI=1s42)
WRITE(6520)(SYL1(I)sI=1542)

READI(S53) WG3»DA3,WF3,0F3,83

READN(S,3) WB4sDA4sWF4,[IF4yS4

WRITE(&:3) WG3s0A3,WF3sDF3y53

WRITE(67s3) WG4sDA4sWF4s0F4,S4

FORMAT(4F6.3sFé41)

CALCULATE SFECTRUM AT STATION I+1 ALONG X & Y DIREC,

CALL SPECTR(SZ;WEZ,IA3,WF3Z,0F3,S8X2)
CALL SFECTR(S54,WG4,0A4,WF4,DF4+8Y2)
WRITE(6520)(SX2(I)»I=1s42)

WRITE(6520)(SY2C¢I)»I=1+42)

CALCULATE CO-SFECTRUM AT STATION I

CALL REALSF(SX1sSYL»QsFSXY)

CALL REALSF(SX2s5Y2,QyQSXY

WRITE(S»20) (FSXY(I)yI=1+42)

WRITECSr20) (QSXY (L) vI=1,42) .

CALCULATE CROSS SPECTRUM BETWEEN STATION ¥ & I+ls X-AXIS
CALL CROSS(SX1ySX2»0ISsUCKsARX s REX)

CALCULATE CROSS SFECTRUM BETWEEN STATION I4I+1 »Y-aXIs
CALL CROSS(SY1sSY2yIISsVCKsAEY sREY)

CALCULATE CO-SPECTRUM OF XI % YI+i

CALL REALSF(SX1sSY2,QyC8XY)

CALL REAILLSF(SX2,SYLyQs[SKY)

WRITECS920) (CSXY(I)sI=1,42)

WRITE(H920) CHSKY(I) s I=1,42)

FI=3.141392653

AG=0,0

READ(4,2) WGsDAME  ( Stredarl sgctem)

LS



94

o 100 K=1s34

ANG=AGXFI/180.

N0 10 I=1s40 : : '

S5 (I)=(SX1(I)+8X2(I)-2. kREX{I ) )IKCOS(ANG)XCOS(ANG)
84+ (SYL(II+SY2(I ) ~2, kRSY (I )XSINCANG) XSIN(ANG)
S+2 . K (CSXY (I)+DISXY (I)-QSKY (1) =F&XY (1)) KCOS (ARG KSIN(ANG)

SS(I)=(SX1(I)+SX2(I))IKCOS(ANG) KCOS(ANG) +(SYL(I)+EYR(I))
ZASINCANG ) KSIN(ANG)

10 CONTINUE

CALL SYSTEM(WGyDAMFsX)

CALL MULTIF(XsSSsaA)

CALL INTEGR(AsVAsSTsK)

YUK =(STIK) /VACKY Y/ (2 KkFT)

100 AG=AG+5.0
, D0 110 -T=1,36
110 STAN(I)=SRRT(VA(I))

WRITE(6920) (STAN(I) yI=1534)

00 120 I=1:36 B

TEMF=SQRT (2. ¥ALOG (20 . 48%VV(I)))

120 XMEAN(I)Y=STAN(I)X(TENF+05772/TEMF)

WRITE(S6520) (XMEANCI) yI=1736)

20 FORMAT(SF12.4)

STOP

ENI

SURROUTINE SYSTEM(WGyDANF XD

DIMENSION X(1)

FREQ=350./256.

PI=3.141592453

X(1)=0.,

00 10 I=2560

W=FLOAT(I-1)%FRER

=2, XDAMPXUW/WG
CR=1.-C(W/UG)XX2
C=(1.,+A%A)/ (EXEB+AKA)
10 X(IY=C/(2.kFIXW)%¥4

RETURN

END

SURROUTINE MULTIF(XyYsa)

DIMENSIGN X(1)9Y(1YsAlL)

[0 10 I=1,60

10 ACI)=X(I)*Y (D)

RETURN

END

SUBROUTINE INTEGR(SSySTANsSTsK)

DIMENSION SS(1)sSTANC1)sST(L)

FI=3.141592653

IF=50./256,

XUM=0.

SUM=0.

00 100 I=1s60

W=FLOAT(I-1)XDF

XUM=XUM+OFKSS (1) % (WK2 o KFPT ) KK2

100 SUM=SUM+SS (I)KDF

STAN(K)=5UM

ST(K)=XUMt

RETHRN

END
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SUKROUTINE SPECTR(SsWGsIFyWFsIIFySF
DIMENSION SF(1)

FI=3.141592453

FF=30./234&,

0g 100 I=1s50

W=FLOAT(I-1)%FF

A=(1 . 0=~ (W/WG I HK2 kX2

B=4, 0% (OFX(W/WG) I %k2

C=1.,0+ER

D=(W/WF)X%2

_E=(1.0‘(H/NF)#$2)**2+(2¢0*DF$UENF)**E

SF(IY=8X(C/(AtR) IN(D/ED

RETURN

ENID

SUBROUTINE REALSBF(SXs5Y+QySXY)
DIMENSION SX(1)s»8Y{1)s8XY (1)

00 100 I=1s40 )
SXY(I)=RQXSQRT(SX(IIXE8Y{I))
RETURN ‘

ENI

SUBROUTINE CROSS(SX¢SY UIS»VLrARREXY
DIMENSION 8X{L)sBY (L) sREXY (L) »VC(L)
LF=50./2564,

PI=3,141592653
RSXY(1)=0.9%(8X{(1)+8Y (1))

D0 10 I=2+60
W=FLOAT(I-1)XDOFX2.%F1
IF(AR.NE.0.) A=EXF(-0IS/AR)
IF(AR.EQ+0,) A=1.0

IF(ARNE.0O.) EB=COS(WXDIS/VC(I))
IF(AR.EQ.0.) E=1.0
D=0.5kK(SX(I)Y+8Y (1))
RSXY(I)=LXAXR

CONTINUE

RETURNM

END
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PROGRAM TO CALCULATE GROUWD DISPACEMEVT 2
GROUVD STRAIN, &VEW/ (Msr/wr WAVE MUMBER .

 FR § T NEUT s OUTPUT » BI12EWs BI12NS s TAPEA=INF
: *,§295Arou%§ﬁ¥,fﬁﬁg SRR T ARE RS éllzﬁg,“ EA=INFUT
~ CALCULATE GROUND LISPLACEMENT
DIMENSION XA(2048),XXA(4098) s TXU(2048) s XVU(2048)
EQUIVALENCE (TXV(1)sXXAC1)) s (XUCL) yXXAC2049) )

WRITE(&933)
33 FORMAT(1Xs39HWAVE NO., 1 & 2y ANGr FREQUENCY EAND 1-4)
REAL(452) WNOLyWNO2yANG
FORMAT(F&.2)
READ(453) NIsNZ2sN3»N4rKKK
3 FORMAT(IS)
READ(LI0y10)(XA(I)yI= 1!2048)
REALI(2010) (XVU(I)»I=152048)
ANG=ANG*3.141392653/180.
00 11 I=152048
11 XAC(I)=XA(I)XCOS(ANG)+XV(IIXSINCANG?
10 FORMAT(SF12.4)
M=2048 |
IF(KKK.EQ.1) GO TO 777
IF(KKK.EQ.2) GO TO 888
IF(KRK.EQ.3) GO TO 4486
888 NXX=N1
NYY=N2
WRITE(S69444) .
444 FORMAT{1Xy9HFASS BANID
ARC=2,
GO TO 333
666 NXX=N3
NYY=N4
N1=0
N2=0
AEBC=2.0
- G0 TO 333
777 NXX=1
NYY=2048
AEC=1.
WRITE(&9555)
555 FORMAT(1Xs17HFULL. ACCEL.RECORID
GO TO 333 '
333 XV(1)=XA(1)%0.01/2,
SM=XU(1)
Ml=M-1
Do 112 I=1sMi
SH=SM+{(XA(II+XA(I+1)1%0.01/2,
112 XVU(I+1)=SH
CALL LEAST(XVsMsyCOF1sCOF2+s0.01)
WRITE(6+10) COF1,COF2
Do 4 I=1,M
4 XU(I)=XVU(I)-COF1- CUF’*FLOAT(I)*O 01
0 5 I=1-4
5 XA(I)=XV(I)
CALL ORMSBY(XXArXAsNXXsNYY M) .
0 8 I=1sM
8 TXU(I)=XXA(2%XI-1)XARC

8]
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no 92 I=isM,
XA(I)=TXV(I)
caLL SORT(XQ;QO48;AMQX!NX)
WRITE(&y77)
FORMAT (1X»32HGROUND VELOCITY/MAX{CM/SEC) s TIME)
TIME=FLOAT(NX)%0.01
WRITE(4+99) AMAX»TIME
o 302 I=1sM
XA(L)=TXV(I)
XU(1)=0.01%XA(1)/72.0
SUM=XV{1)>
ng 13 I=1sM1
SUM=SUH+(XA(I)+XA(I+1))%0.01/2,
XV(I+1)=5SUM
Do 311 I=1sM
XACI=XV(I)
CaLL ORMSBY(XXAyXArNXXvNYYyH)
DO 15 I=1+M .
TXV(I)=XXA(2%XI-1)XAEC
Do 305 I=1s+M
XA(II=TXV(I)
CAaLL SURT(TXU92u48yQﬁHKyNX)
TIME=FLOAT(NX)>%0.01

WRITE(6y98)
FORMAT (1X» 25HGROUNDDISF . /MAX(CH)!TIME/)

WRITE(6:99) AMAXsTIME
FORMAT(2F15.7)

INVERSE FOURIER TRANSFORM AND CALCULATE GROUND STRAIN

FI=3.14153922633

Do 21 J=1,2048

JJ=2048-J+1

XXA(2%JJ) =0,

XXA(2RJIJ=-1)=XA(JD)

CALL FOURILI(XXA»2048y-1)

ng 31 I=1,300
XACI)=(XXA(2KI-1IKK2+XXA(RKIIKK2) /{2 XFIX20.48)
g 350 I=3,100
XUCI)=(XA(I-2)+XA(I-1)+XA(II+XA(T+1 0 +XACTI+R) 5 /G,
XU(1)=0,333%(XA(1)+XA(2)+XA(3))
KU(2)=0.2XXACLIEXA(2)IK0 . 4+LA(II KO 2+KAL4I X0 2
WRITE(6232)(XV(I)»yI=1+98)
FORMAT(10F1G.3)

D0 22 I=N1sNZ2

T1=XXA(2XI-17

T2=XXA(2KI)

XXA(2%I-1r=-T2XWNO1
XXA(2KkI)=T1xkWNOL

ng 23 I=N3sN4

T1=XXA(2XI-1)

T2=XXA(2XI)

XXA(2XI-1)=~-T2XWNO2
XXAC2XI)=TLXWNO2

NiMl=iN1-1

00 24 I=1sNIML

XXA(2%XI-1)=0.

XXA(2%I)=0,

0 25 T=N2syN3

XXA(2%I-1)=0.

XXA(2XI)=0. < .



98
0 26 I=N4,2048
XXA(2%I-13=0.
26 XXA(2XII=0.
CALL FOURL{(XXA»2048s1)
ng 27 I=1,2048
27 XACD)=XXA(2%XI-1)X2./FLOAT(2048)
CALL SORT(XAvy2048sAMAXNX)
TIME=FLOAT(NX)>%0.01
WRITE(&6y101)
101 FORMAT(1Xy21HMAXIMUM GROUND STRAIN)
WRITE(6y100) AMAXsTIME
100 FORMAT(2F15.3)
STOP
END
SUEROUTINE LEAST(T1sMsCOFL-COF2-0T)
- ——TDIMENSION T1<(1)
SUM=0.
00 10 I=1sM
10 SUM=SUM+T1(I)
XUM=0.
0o 15 I=1sM
19 XUM=XUM+FLOAT(I)XT1<¢I)
COF1=(2,. % (2. %FLOAT (M) +1.)XSUM=&,%XUM) /(FLOAT (M) kFLOAT(M-1))
COF2=(12.,%XUM~6 ., XFLOAT(M+1)%SUM) /(OTXFLOAT (M) ¥FLOAT (M-1)
XKFLOAT(M+1))
RETURN
END
SUERRJUTINE ORMSEY (XXArArKyIJsM)
ODIMENSION XXa(l)s ACL)
N=2048
Ml=M+1
D0 3 I=MI1sN
3 A(I)=0.
: Do 4 J=1sN
JJ=N=-J+1
XXA(2%JJr=0.
XXA(2xJJ-1)=A(JI)
4 CONTINUE
FI=3,141592653
TOF=FLOAT(N)X0.01
Do 100 I=1sN
T=0.01%FLOAT(I)
IF(T-TOF/10.,) 80s60560
60 IF(T-9.0%TOF/10.) 1005100-80
80 THETA=S.X%FIXT/TOF
XXA(2KI-1)=XXA(2KI-12% (1., ~(COS{THETH) ) XXK2)
100 CONTINUE
CALL FOUR1(XXAsNsr—1)
50 K2=KxX2
0o 6 I=1,K2
XXA(I)=0.

6 CONTINUE
XXAC(2KK+1)=0,SKkXXA(2%XkRK+1)
XXA(2XR+2) =0, TKXXA(2KK+2)
ITJ1=2%IJ+1
N2=NX2
0o 7 I=IJisN2
XXACI)=0,

g
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CALL FOUR1(XXAsNsL1)

N2=NX2

00 8 I=1sN2
XXA(II=XXA(I)/FLOAT(ND
RETURN

ENID

SUBROUTINE SORT(YsNrAMAXNO)
DIMENSION Y(1)

00 10 I=1yN

Y(I)=aBS(Y(I)>

NM1=N-1

D0 20 I=1sNMl-
IF(Y(I+1).6T+r¢I)) GO TO 6
YR=Y(I+1)

Y(I+1)=Y(I)

Y(I)=YK

GO 10 7

NO=I+1

AMAX=Y(I+1)

CONTINUE

RETURN

ENL

SURRDOUTINE FOUR1(DATAsNN»ISIGN)
DIMENSION HATA(L1)

N=2XNN

J=1

00 S5 I=1sNs2

IF(I-J) 19292
TEMFR=0ATA(J)
TEMFI=DATA(J+1)?

ODATA(D) =DATA(I)
DATAC(J+1)=DATA(IT+1)
DATACI) =TEMFR
DATAC(I+1)=TEMFI

M=N/2

IF(J=M) Sr394

J=J-H

M=M/2

IF(M—=2) 59393

J=J+M

MMAX=2

IF(MMAX~N) 79929
ISTEF=2&%MMAX

D0 8 HM=1sMMAX,2
THETA=3,141592853%FLOATCISIGNK(M—1) ) /FLOAT CMMAX)
WR=COS(THETA)
WI=SIN(THETA)

00 8 I=MsyNs ISTEF

J=I+MMax

TEMFR=WREDATACD) -WIXDATA(I+1)
TEMFI=WR¥DATA(J+1IFRIKIIATACT)
OATA(JI=DATA(I)-TEHMFR
DATACJH+1)=DATA(I+1)-TEMPI
DATACIY=UATA(I)+TEMFR
DATACI+1)=DATA(I+1)+TEMFI
CONTINUE

MMAX=ISTEF

GO TO &

RETURN

ENID
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PROGRAM TO CALCULATE THE COHERENCE OF TWO ST&rAALS

FROGRAM COHERCINFUT
&y TAPEA=INFUTTAFELQ

!
0=1il

QUTPUT s D1yD2y I3y 045 TAFES=0UTFUT
y TAFER0=12» TAFE30=03y TAFE4C0=04)

DIMEMSION X1{2048)yX2(2048)00VI(2E8),C0V2(256)

OIMENSION X3 (”048)yn4k2048)rXq(”OAS)vXé(#O?G)
DIMENSION COVU3(254)COVA(256) yEV(RTE) yIIN(LI4)

EQUIVALENCE (XS(1)sX&(20492)
MAaX=234

N=2048

READCI010Y(XZ(I)pI=1sN)
REALD(20s10) (X4{I) s I=1sN)
READ{(30s10Y{XSCI)sI=1sN2
READNCAOy10) (X&(I) s T=1sND)
REALIC4y 1) ANG

FORMAT(F&.2)

READC4,2) IIvJdJ

FORMAT(IS)

FI=3,1415928653

AG=ANGXFI/180.

D0 S I=lenN
X1(IY=X3¢I)XCOS{AGI+X4{(TIXSINCAG)
no 6 I=1isN
X2{I)=X5(II¥COS(AGI+XA6CIIXSINCALY
CALL TRANSF(X1sXosNzIIv )

CALL TRANSF(X2yXé6sNeIIrJJ)
FORMAT(SF12.4)

N=2044

CALL COUF(X1sX1sNsCOVLsHaXy0ryV1)
FORMAT(10F8.2)

CALL COVF(XR2+X2sNsCOV2sMAXyO»V2)
CALL COVF(X1sX2sNsCOVUIsMAX»OyVU3)

CALL COUF<A29x1yN,coua-nax,o,v4J
TEMF=U3/SART(VLXVU2)
WRITE(6s10) TEMF

ng 12 I=1ismMax
EU(II=(COV3(II+COVA(I)IIX0.G
QL(II=(COV3(I)~COVA(II)IX0.5
COV3(II=EV(I)

COv4(I)=0ndIy

CALL AUTO(X1yCOVU3yHMAX»0)
CALL AUTOXL.COV4sMAXy1)
CALL AUTO(XL1,COV1yMAX» GO
CALL AUTO(X1,COV2yHAXyO)
WRITE(6s15)(COVI(IYsI=1ls472)
WRITE(S6y15) (COV2(TI) »I=15422
00 13 I=1yMAX

EV(I)=(COVICIIRX24COV4E (I kk2) /(COVICTIXCOVECIN)

WRITECSs20) (EV(I)»I=1s42)
00 14 I=1sMAX

IF{(COV3(I).GE.Q+)+AND. (COVAC(TI).GELOQ+)).

&COV3(IN)
IF((COVSCI)WLELO) +AND. (COVA(I) +GEL04))

&(I)/COV3ICIN)

IF((COV3(I).GE.O.) AND,(COVA(I)LE.Q.))

&/7C0OV3(I))

IF(COV3(I)LE.O.)+AND.{COY4(I)LE.QW)

2/C0OV3IN

FH=ATAN(COVA(T)/
FH=FI-ATaN(-COVA4
FH=-ATAN(=COV4(I)

FH=-FI+ATAN(COVA4{ 1)
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WRITE(&»202¢00CT) v I=1y42)
FORMAT(SF12.3)

STOR

END

SUBROQUTINE TRANSF(X1sX&sNsIIrJdJy
DIMENSION X1(1)X&6(1)

g 3 I=1sN
X&(2%T~1)=X1{1>
X&6(2%11=0.

CALL FOUR1(X&sNy»y-12
ITi=II~-1

g 4 I=1+111

X6(2%I-13=0,

XE&C(2%T r=0.

SJdi=dJ+1

g s I=Jdi+2048
X&6(IXK2-11=0,

X6 (2%I)=0.

CALL FOUR1(X6sNs1)

00 7 I=1¢N
X1(I) =2, kX6(2%I-1)

RETURN

END

SUBRQUTINE COVUF(XyYsNyCrMrNNyV)
THIMENSION X(1)sY{(1)C(1)
00 25 KK=1sM

K=KK~-1

8=0.

NN1=NN+1

L=N~NN-K

00 15 I=NiNl»sL
S=S+X(IIXY(I+KD '
C(RR)=S/FLOAT (L—NN)>
CONTINUE

V=C(1)

CONTINUE

RETURN

ENT

SUBROUTINE AUTOC(K» Y sids T
ODIMENSION X(1)s7 (L)

S=0., -
0o 10 L=1isM
K=M=-L+1

X (2%K) =0,
FI=3,141592653

X (2%K=1)= (7 (K)~5) K0 5K (1, +COS{FTRFLOAT(K~1 ) /FLOAT (M=127)
M21=2%M+1 _

M4=4%i4

[0 20 L=M21sM4

X(L)=0.

CALL FOURL(Xy2%kMr=1)

[0 40 L=1,#

TCLY=X(2KL-1+IM)

RETURN

ENT!
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PROGRAH T0 CALCULATE ROUT MEAN SQUARE RESPONSE BY USEuer
THE ACTURAL EARTHRUAKE DATA

FROGRAM EFTXXX(INFUTOUTFUT 01,02y 0304 TAFES=0UTFUT
Ly TAFE4=INFPUT » TAFELO=01 s TAFE20=02y TAFPE30=03y TAFE4O0=114)
OIMENSION X1<¢2048):X2(2048)yCOV3(2T6)»COV4(2048)
DIMENSION X3(2048):X4(2043)yX5(2048)sX46(20483)
OIMENSION SX1(258)sSXR2(2586)53Y1{258) v 8Y2(258) yFEXY (2567
DIMENSION QASXY(258)yLCOXY (258 yUSXY(258) yREX(256) »RSY(236)
EQUIVALENCE (X2¢1)s8X1(1)) s (X2(257198X2(1L) v (X2(7693¢8Y1{12)
EQUIVALENCE (X2(¢(1281)sFSXY (1)) s (X2¢(1025)8Y2(1))
EQUIVALENCE (X2¢1537)sUSKXY (L)) » (X2(T13)sCEXY (1))
MAX=236 .
N=2048 -

READCLIOy 103 (XL{I) s I=1sN)
REAL(20: 103 (X2(I)sI=1sN)

FI=3,1415924653

ANG=77.36%F1/180.

AG=—34.,0%XFI/180.,

010 S I=1sN

XS¢I)=X1(I)XCOSTAG)+X2(IIXSINCAG)
XI(I=X1(I)XCOSCANG)Y+X2(I)XSINC(ANG)
REAL(30s10) (X1 (1) rI=1sND
REAL(A0s10)(X2(I) s I=1+N)

ngo & I=1isnN

X6 (I )=X1(IIXCOSCAGI+X2(IIASINCAGY:

XA4(II=X1 (I YXCOS{ANGI+X2(IXSINCANG)
FORMAT(SF12.4)

CALL CCUF(X3sX3sN»SX1sMAXOsVU1l)

CALL AUTO(X1:5X1+MAXs0O)
WRITEC(Sy10)(SX1(I)sI=1+42}

CALL COVUF(X4sX4sNsSX2:MAX»0sV2)

CALL AUTO(X1SX2yMAX»0)
WRITE(6y10)(SX2(I)»I=1y42)

CALL COVUF(X5sXSsNsySY1yMAX2»0rV3)

CALL AUTO(X1sSY1syMAX»O)
WRITEC(&y10Y(SY1(I)sI=1942)

CALLL COUF(X&6sXb&eNsSY2rMAKsOrV4)

CALL AUTO(X1sS5Y2syMAX70)
WRITE(Ly10)(SY2(I) v I=1,42)

CALL COUF(X3sX4yNyLDYIsMHAX20sVU3)

CALL COUF(X4yX3sNsCOVAyMAXsOsV4)

0o 12 I=1sMaX

RSX(I)=(COVUIC(T)HY+COVA(IIIXO.3

CALL AUTO(X1,RSXsMAX»0O)

WRITE(Sy10)Y (REX(I)»I=1y422

CALL COVUF{XS5sX&sNsCOVIsMAX0»VU3)

CALL COVF (X&sX5sMsCOVAyMAXyOvU4)

o 13 I=1-MAX

RSY(I)=(COV3CI+COVACI 1 I%0.5

CALL AUTO (X1sRSYyMAXyO)
WRITE(SOs10Y(RSY(I)»I=1442)

CALL COUF(X3y X6y NyCOVIYMAXs0U3)

CALL COVUF (X&ésX3sMNsCOVAyMAKYGoV4)

Do 14 I=1sMAX

CSXY(I)=(COU3{IY+COVA(IIIX0,5

CALL«AUTO(X1 »CSXY s HAX Q)
WRITE(Ssy 10 (CSXY(I)»I=1v42)
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CALL COVUF(XSsX4sNsCOVIMAX202U3)
CALL COVF(X4,XSsNyCOV4»MAX»QsV4)
g 15 I=1sMaX

15 OSXY(I)=(COU3(I)+COV4(I)IX0.5
caLl QUTO(X]. yHSXY s MAX YD)
WRITEC(Sy10X(OSXY (I T=1v42)

CALL COVUF(X3yXTsN»COVUIyMAX»O»V3)
CALL COVUF (XS X3sNsCOVArMAX» O U4
0o 16 I=1sMax :

14 FSXY(I)=(COU3(I)+COVA(I))IX0.5
CALL AUTO(X1sPSXYsMAXr»0)
WRITEC(S»10)C(FSXY(I)sI=1+42)

CALL COVF (X4sX6sNsCOU3»MAXPD»V3)
CALL COUF(X&9X4sNsCOVAyMAXsOsVU4)
no 17 I=irmMax

17 @SXY(I>=(COV3(I)+COVA(I)I%0.3

- CALL AUTO(X1sQ8XYsMAXsOQ)
WRITEC(S»10)Y(ASXY(I)»rI=1942)
AG=0.
REALNC452) WGs LAMF
FORMAT(F12.4)
00 100 K=1,34
ANG=AGXFI/180.
00 90 I=1s60 ‘
X1¢I)=(SX1¢I)+SX2(I)~-2 . XkRSX(I))IXCOS{ANG)XCOS(ANG)
EH(SYL(IVYHEY2(I)-2 . XREY(I)IKSINCANGI XEIN(ANG)
242 . K(COXY(IV+OSXY(I)-ASXY (I)~FSXY (I )XCOS(ANG)XSIN(ANG)
20 CONTINUE
CALL SYSTEM(WG»LAMF»COV3)
CALL MULTIF(COV3»X1sC0V4)
CALL INTEGR(COV4,X3sK)
100 AG=4G+3.0
o 110 I=1,36
110 X3{(I)=8ART(X3(I))
WRITE(S210)(X3(I)yI=1+36)
STOF
END
SURROUTINE SYSTEM(WGyDAMF v X2
ODIMENSION X(1)
FREQ=50.,/234.
FI=3.,141592653
X(1)=0.
00 10 I=2+460
W=FLOAT(I-1)%FREQ
A=2 . KDAMFPXW/ WG
B=1,-(W/WG)XX2
C=(1.+A%A)/ (BXE+A%4)
10 X(I)=C/ (2 XFIXW)%ks
RETURN
END
SUBROUTINE MULTIF(XsYrA)
ODIMENSION X(1)sY(1)sA(l)
00 10 I=1+60
10 ACIY=X(IXXY(I)
RETURN
END

g%}



104

SURROUTINE INTEGR(SSsSTANIK)
DIMENSION S$8(1)»STANCL)
IF=50./258,
SUM=0.
00 100 I=1+40
100 SUM=SUM+SS(I)KIF
STAN(K)=8UM
RETURN
END '
SUBROUTINE COUF(XsYsNsCrMyNNsU)
" DIMENSION X(1)s7{(1)sCC1)
DD 25 KK=1yM
=KK=-1
. S=Oo
' NNI=NN+1
L=N-NN-K
00 15 I=NN1sL
S=S+X(IIRY(T+K)Y .
C(KK)Y=8/FLOAT (L.-NN?
CONTINUE
y=C(1)
CONTINUE
RETURN
END
SURROUTINE AUTO(XsYsrMrIM)
DIMENSION X(1)sY(1)
S=0 S
00 10 L=1sM
K=M-l_+1
X(2%K)=0.,
PI=3,141592653
10 X(2XRK-1)=(Y(K)=-5)X0.5%(1.+COSC(FIXFLOAT(K~1)/FLOAT(M-1)))
M21=2%M+1
Ma=4%M
00 20 L=M21sM4
20 X(L)=0.
CALL FOUR1(Xs2Xis—-1)
[0 40 L=1rsM
40 Y(LY=X(2%L-1+IM)
RETURN
EMI )
SURKROUTINE FOURL(DATAsMMN» ISIGN)
DIMENSION DATACL)
N=2KNN
J=1
[0 S I=1sNs2
IF(I-J) 15292

TEMFR=DATAD

TEMPI=DATA(JI+1)
DATAC(D)=DATA(I)
DATA(J+1)=0ATA{I+1)
DATAC(I)=TEMFR
DATACI+1)=TEMFI
M=N/2

IF{J~-M) S+5+4
J=J-M

M=M/2

TE(M=2) 59393

[y
i

rJ
&)

[y

O
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MMAX=2

IF(MMAX-N) 7+9+9

ISTEF=2%MMAX

g0 8 M=1s,MMAX»2 _
THETA=3,141592453kFLOAT(ISIGNX(M~1)) /FLOAT (MMAX
WR=COS(THETA)

WI=SIN(THETA)

DO 8 I=MsNsISTEF

J=I+MMAX
TEMPR=WRXDATA{(J)-WIXDATA(JI+]1)
TEMPI=WRXDATA(J+1)+WIXDATA(I)
DATA(D) =DIATA(I)-TEMFR
DATACJH1)=NATACI+1)-TEHMFI
DATACI)=DATACIY+TEMFR
DATAC(I+1)=DATACI+1)+TEMPI

CONTINUE .

MMAX=ISTEF

GO TO 6

RETURN

END
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