
fA UllU ... ENG-81 ... 2012 

3 ~3 
CIVIL £NGINEERIN STUDIES 
STRUCTURAL RESEARCH SERIES NO. 493 

RECEIVED 

peT 8 1981 

INFLUENCE STIRRUP-TIE SHAPE N INELASTIC 
CYCLIC RESP SE F FLA GED REINF RCED 

C NCRETE FLEXURAL EBERS 

By 
DALE R. WILHELM 
and 
CHARLES F. SCRIBNER 

UNIVERSITY OF ILLINOIS 

at URBANA-CHAMPAIGN 

URBANA, ILLINOIS 

AUGUST 1981 

Metz Referenoe Room 
Uni V8l"Sl -i:y c;~~' Illinois 

208 N. Romina Street 
Uroana, Illinois 61801 





INFLUENCE OF STIRRUp ... TIE SHAPE ON INELASTIC CYCLIC 
RESPONSE OF FLANGED REINFORCED CONCRETE "FLEXURAL MEMBERS 

by 

Dale R. Wilhelm 

and 

Charles F. Scribner 

University of Illinpis 
at Urbana-Champaign 
Urbana, Illinois 

August, 1981 





50212 -101 

REPORT DOCUMENTAnON l.l .. k,REPORT NO. . 

PAGE UILU-ENG-8l-20l2 
4. Title and Subtitle 

Influence of Stirrup-Tie Shape on Inelastic Cyclic Response 
of Flanged Reinforced Concrete Flexural Members 

,L R.poit Da!Jto 

August 1981 

7. Author(s) 
------------.,;.--"·t-----------~ 

Dale R. Wilhelm and Charles F. Scribner 
9. Performl,.. O .... nlZlllltion Name and Addrnl 

University of Illinois at Urbana-Champaign 
Urbana, IL 61801 

I. Performl. OllPnlutlon Rapt. No. 

SRS No. 493 

u. Contmct(C) or Grant(G) No. 

(C) 

(G) 

University of Illinois Engineering "Experiment Station 

Urbana, I L 61801 

15. Supplementary NotH 

·16. Abstract (limit: 200 words) 

Three reinforced concrete flanged sections (T-sections) having different 
shapes of shear reinforcement were subjected to cyclic inelastic flexure representative 
of what framed structure members might-be forced to endure during a severe earthquake. 
The different types of shear reinforcement consisted of closed hoops and two types of 
U-shaped stirrups, nei-ther having been suppl~mented with cap ties. This report documents 
the experimental work, presents data obtained during tests (including energy dissipation 
capacities) and discusses the implications of test results on possible changes in 
reinforcement details for frame structures in seismic regions. 

Confinement, cyclic loading, earthquake response, flexure, framed structures, lateral 
reinforcement, shear strength, stirrups, T-sections. 

b. BdE!llntlfilltl''lS/Open-lEnded Terms 

c. COSATI field/Group 

11. Availability Statement 

Release Unlimited 

(See ANSI-139.18) 

19. s.curity ClaN (This Report) 

UNCLASSIFIED 
:21. No. of PaSH 

78 
~--------------~---------------

20. s.curlty Class (ThIs PaSGD) 

UNCLASSIFIED 
22. Price 

OPTIONAL mRM V2 (4-71) 
(Formerly NTIS-35) 
Department of Commerce 





CHAPTER 

1 

2 

3 

4 

iv 

TABLE OF CONTENTS 

INTRODUCTION "0 

1 • 1 Object and Scope · · " · · · · · · · · 1 .2 Previous Investigations · · · · · 

OUTLINE OF EXPERIMENTAL PROGRAM · · · 
2. 1 Description of Specimens · · · · · · · · 2.2 Description of Transverse Reinforcement 
2.3 Fabrication and Material Properties · 2.4 Description of Test Setup · 2.5 Testing Procedure · · · · · · · · · · 2.6 Instrumentation · · · · · · · · 
OBSERVED BEHAVIOR . " · · · · · 
3. 1 Introduction " · " · · · · · · · 3.2 Load-Displacement Curves · · · · · · " 
3.3 Energy Dissipation Measurements · · 3.4 Steel Strain Relationships 
3.5 Ram Load and Load Point 

Displacement vs. Beam Rotation · · · · · 3.6 Crack Patterns · · · · · · · · 3.7 Failure Modes . · · · · · · · 3.8 Discussion of Observed Behavior. · · · · 
SUMMARY AND CONCLUSIONS · · · · · · · · 
4.1 Summary of Research ..... 
4.2 Summary of Observed Behavior ... . 
4.3 Conclusions ............... . 
4.4 Recommendations for Future Research . 

SELECTED REFERENCES 

· 

· · · · 
· · 
· · · · 

· · · 

· · · · 
· · · · 
· · · · 

· 

Page 

1 

1 
1 

3 

3 
4 
4 
6 
7 
8 

10 

10 
10 
11 
11 

13 
14 
15 
16 

22 

22 
23 
24 
24 

26 





Table 

2.1 

2.2 

2.3 

3.1 

v 

LIST OF TABLES 

Measured Dimensions of Specimens . 

Measured Concrete Strengths and 
Age at Testing . . . . . .. 

Measured Steel Properties 

Measured Energy Dissipation 

Page 

. . . . . . . . . 27 

27 

28 

29 





Figure 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

2. 10 

2.11 

2. 12 

2. 13 

2.14 

3.1 a 

3.1 b 

3.1c 

3.2a 

3.2b 

3.2c 

3.3b 

3.3c 

vi 

LIST OF FIGURES 

Plan and Side Views of Specimen .... 

Support Conditions and Load Application . 

Typical Cross Section of Specimen .. 

Typical Cross Section of Crossbeam 

Stirrup Configurations 

Spacing of Shear Reinforcement 

Fonnwork in Position for Casting 

,Formwork with Reinforcement in Place 

Concrete Stress-Strain Relationships 

Steel Stress-Strain Relationships 

Specimens in Position on Supports 
Showing Load Ram and Frame 

Displacement Pattern 

LVDT Locations 

Strain Gage Locations . 

Load vs. Displacement Relationship--Specimen 1 

Load vs. Displacement Relationship--Specimen 2 

Load vs. Displacement Relationship--Specimen 3 

Ram Load vs. Strain in Top Steel--Specimen 1 

Ram Load vs. Strain in Top Steel--Specimen 2 

Ram Load vs~ Strain in Top Steel--Specimen 3 

Ram Load vs. Strain in Bottom Steel--Specimen 1 

Ram Load vs. Strain in Bottom Steel--Specimen 2 . 

Ram Load vs. Strain in Bottom Steel--Specimen 3 . 

3.4a Center Displacement' vs. Strain in 

Page 

30 

31 

32 

33 

34 

• • • • • 3'5 

36 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

Stirrup--Gage 1, Specimen 1 ............... 52 



Figure 

3.4b 

3.4c 

3.5a 

3.5b 

3.5c 

3.6a 

3.6b 

3.6c 

3.7a 

3.7b 

3.7c 

3.8a 

3.8b 

3.8c 

3.9 

3.10 

3.11 

3.12 

3.13 

3.14 

vii 

Center Displacement vs. Strain in 
Stirrup--Gage 1, Specimen 2 ... 

Center Displacement vs. Strain in 
Stirrup--Gage 1, Specimen 3 ... 

Center Displacement vs. Strain in 
Stirrup--Gage 2, Specimen 1 ... 

Center Displacement vs. Strain in 
Stirrup--Gage 2, Specimen 2 ... 

Center Displacement vs. Strain in 
Stirrup--Gage 2, Specimen 3 ... 

Center Displacement vs. Flange 
Lateral Strain--Specimen 1 

Center Displacement vs. Flange 
Lateral Strain--Specimen 2 

Center Displacement vs. Flange 
Lateral Strain--Specimen 3 

• • • .. • '0 , • • • • • 

Ram Load vs. Beam Rotation--Specimen 1 

Ram Load vs. Beam Rotation--Specimen 2 

Ram Load vs. Beam Rotation--Specimen 3 

Center Displacement vs. Beam Rotation--Specimen 1 . 

Center Displacement vs. Beam Rotation--Specimen 2 . 

Center Displacement vs. Beam Rotation--Specimen 3 .. 

Crack Patterns in Specimen 2 

Crack Patterns in Specimen 2 

Flange Crack Patterns at Failure 

Specimen 1 at Failure 

Specimens 1 and 2 at Failure 

Views of Specimen 3 at Failure 

Page 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 



1.1 Object and Scope 

CHAPTER 1 

INTRODUCTION 

The object of this test series was to examine the influence of stirrup

tie configurations on the behavior of reinforced concrete T-beams~ubjected to 

repeated reversed inelastic flexure. Three different tie shapes were used 

in construction of the three specimens tested. They were: (1) one-piece 

closed hoops conforming to current ACI Building Code (Ref. 1) seismic 

criteria, (2) U-shaped stirrups with vertical legs terminating in 180 degree 

standard hooks and with no cap ties, and (3) intentionally unconservative 

U-shaped stirrups in which vertical legs terminated in standard 90 degree 

hooks bent outward, or away from the beam core. These tests were designed 

to determine the possibility of using tie configurations which allow easy 

steel placement during construction of flanged sections or beams cast 

monolithically with slabs, but which do not decrease the seismic safety of 

these members. 

Dimensions and longitudinal reinforcement ratios of the beams were 

chosen to Droduce maximum qross shear stresses of approximately 4-5~ psi . - . . - \.. -

(O.33-0.42~ MPa) in all beams. Evaluation of specimen behavior was 

based on measurements of loads and deflections, steel strains, member energy 

dissipation, and general observations of crack patterns and concrete damage 

during testing. 

1.2 Previous Investigations 

Past research investigating the behavior of T-sections and the 

influence of differing stirrup-tie configurations on the behavior of 

reinforced concrete beams under repeated reversed loading has been limited. 
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Ma, Bertero, and Popov (2) did extensive studies on the behavior of 

reinforced concrete rectangular and T-shaped beams under repeated 

reversed loading, using one-piece closed ties in all their specimens. 

Among other considerations, they tested the effect of providing supplemen

tary cross ties to suppor.t main longitudinal reinforcement not restrained 

by the corners of ties. Cross ties delayed the buckling of bars pre

viously unrestrained by the corners of ties, improving beam core 

confinement and increasing beam shear resisting capacity. 

Investigating the effects of varying stirrup configurations, Behera 

and Rajagopalan (3) used two-piece U-stirrups in one rectangular 

beam and in two L-shaped beams subjected to flexure, shear, and torsion 

(L-shaped beams only). They compared the behavior of these three beams 

with that of beams containing shear reinforcement consisting of one-piece 

closed hoops. Their results indicated that beams containing two-piece 

stirrups performed adequately under monotonic loading, but gave no 

prediction of expected performance of such beams under repeated reversed 

loading. 
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CHAPTER 2 

OUTLINE OF EXPERIMENTAL PROGRAM 

2. 1 Description of Specimens 

Three specimens were constructed for this investigation. Each specimen 

consisted of two flanged, or T-beam, portions joined to a central·crossbeam 

section intended to represent the support conditions which might exist in 

an actual frame structure. The specimen chosen was not intended to model 

any particular prototype structure. Spec.imen plan and side views are 

shown in Fig. 2.1. The conditions of load application and support are 

idealized in Fig. 2.2. The positive sense of load and load point dis

placement was assumed to be upward, as shown in· this figure. 

Overall specimen dimensions and arrangement of longitudinal steel 

reinforcement were the same for all specimens. Longitudinal reinforcement 

consisted of #4, #7, and #9 bars, while shear reinforcement consisted of 

ties and stirrups bent from #3 bars. Temperature and shrinkage reinforcement, 

as required by the current ACI Building Code, consisted of #3 bars placed 

in the flange of the specimens at right angles to the longitudinal reinforce

ment. A typical beam cross section is shown in Fig. 2.3. 

A typical section of the" center crossbeam portion of the specimens is 

shown in Fig. 2.4. Crossbeam longitudinal reinforcement consisted of #9 

bars while vertical ·reinforcement consisted of #3 stirrup-ties. The top 

longitudinal reinforcement of the crossbeam section was placed perpendicular 

to and below the longitudinal reinforcement in the flange of Specimen 1. 

The top longitudinal reinforcement of the crossbeam section was placed 

perpendicular to and above the longitudinal reinforcement in the flanges 

of Specimens 2 and 3. 
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2.2 Description of Transverse Reinforcement 

The configuration of beam transverse reinforcement was the only test 

variable. The three tie configurations used in this investigation are 

shown in Fig. 2.5. Each of the three beams tested contained only one type 

of shear reinforcement in the regions of the beams which underwent inelastic 

flexure. Type I stirrups (used in Specimen 1) were closed hoops conforming 

to current ACI Building Code seismic criteria. Type IV stirrups (used in 

Specimen 2) were U-shaped. Vertical legs terminated in standard 180 ~egree 

hooks with 2 1/2 in. (64mm) extensions past the bends. Type V stirrups (used in 

Specimen 3) were intentionally unconservative U-shaped stirrups in which the 

vertical legs terminated in 90 degree hooks bent outward,or away from the beam 

core,with ten bar diameter (3.75 in., 95mm) extensions past the hooks. No cap 

ties were used in conjunction with Type IV or Type V stirrups. Stirrup spacing, 

which was the same for all three specimens and which. conformed to ACI Building 

Code criteria for stirrups to be used in seismic zones, is shown in Fig. 2.6. 

Original plans for testing had included an examination of the behavior 

of beams containing two additional shear reinforcement configurations which 

had been designated as"Types II and III. The stirrups which had been intended 

for use in those beams were identical to the Type IV stirrups used in Specimen 2. 

These stirrups would have been supplemented with cap ties of two types. The 

performance of Specimen 2 was so nearly similar to that of Specimen 1, however, 

that testing of the influence of the two cap tie configurations was considered 

superfluous. 

2.3 Fabrication and Material Properties 

The wooden formwork used for the casting of the test specimens is shown 

in Fig. 2.7. Shear reinforcement and temperature steel were tied to the 
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longitudinal steel with 19 gauge wires. After the formwork had been oiled, 

the assembled steel reinforcement was placed on small concrete blocks in 

the forms. These blocks helped maintain the position of the reinforcement 

during the placement of the concrete. Steel tubes were used to form holes 

for the later attachment of the loading ram to the specimen. The formwork 

and steel cage for Specimen 2 prior to placement of concrete are shown in 

Fig. 2.8. A mechanical vibrator was used to consolidate concrete during 

placement. Standard 6 in. by 12 in. (152 mm by 305 mm) concrete cylinders 

were cast along with each test specimen. 

Specimens and cylinders were cured under wet burlap and plastic sheeting 

for seven days, at which time the forms were removed. The specimens and 

cylinders were then cured uncovered in the laboratory until testing. 

Specimen and cylinder ages at testing are presented in Table 2.2. 

A single concrete mix design was used in the construction of all 

specimens. The mix proportions, by dry weight, were 1.0:3.7:3.8 (cement: 

sand: 3/4 in. limestone). Type I cement was used with a water to cement 

ratio of 0.6:1.0. 

Two batches of concrete were required for each specimen cast. All 

concrete was mixed in a Koehring Model 170 Cyclo-Mixer 1/2 cubic yard (0.38 m3) 

capacity mixer. The first batch was placed in the region near the crossbeam 

section. The second batch was placed in the regions near the end supports. 

Measured compressive strengths, splitting strengths, and cylinder ages at 

the time of testing are presented in Table 2.2. Stress-strain relationships 

were measured for all concrete batches. Typical stress-strain curves are 

shown in Fig. 2.9. 

Typical measured stress-strain relations for the four sizes of rein

forcing steel used in the construction of each specimen are shown in 
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Fig. 2.10. Measured properties of all steels are summarized in 

Table 2.3. 

2.4 Description of Test Setup 

All specimens were attached to the Structural Laboratory floor at 

their end supports by high strength bolts and loaded with a servo-controlled, 

double-acting hydraulic ram which was supported by a separate frame. The 

supports of the specimen, consisting of 3 1/2 in. (89mm) diameter pipes cast 

integrally with the specimen, were held by steel yokes welded to steel 

W-sections. The W-sections were in turn bolted to the laboratory floor. 

The east holding yoke was slotted to allow for longitudinal expansion of 

the specimen during the test. The test apparatus, with Specimen 1 in 

position, is shown in Fig. 2.l1a. 

For the testing ~f Specimen 1, the W-sections and holding yokes were 

bolted directly to the laboratory floor, as shown in Fig. 2.lla, and load 

point deflections were measured with respect to the floor. Deflections 

measured in this way included support motions, which were measured 

separately using dial gages. Details of support motion measurement are 

contained in the section of this report dealing with instrumentation. 

For the testing of Specimens 2 and 3, concrete blocks were used to 

elevate the specimens and holding yokes. This allowed easier inspection 

of the specimens' ventral surface during the test. Load point deflections 

of Specimens 2 and 3 were measured with respect to the supports by using 

a measuring frame which was hung from the supports, as shown in Fig. 2.llb. 

A 100 kip (445 kN) capacit~ hydraulic ram, visible in Fig. 2.11, was 

used to apply a vertical load to the specimen at the center of the crossbeam 

section. Because the ram was attached to both an external frame and to 
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the specimen by greased spherical connections, it was considered to impart 

no moment to the specimen at its point of attachme.nt. 

2.5 Testing Procedure 

The intended pattern of deflection for all three specimens is shown 

in Fig. 2.12. Because the scope of the investigation was confined to 

examining the influence of stirrup shape on flanged section behavior, no 

attempt was made to subject the specimens to a load history corresponding 

to an actual earthquake, but rather to subject all specimens to approx

imately the same load history. 

During the first eight cycles of loading, load point displacements 

varied from 1.5 to 3 percent of the beam shear span (measured from the face of 

the crossbeam section to the center of pin supports, shear span of each half 

of the total specimen was 50 in., 1270 mm),or from 0.75 to 1.5 in.(19 to 38mm). 

The ninth cycle of deflection was intended to determine member small

displacement stiffness remaining at this stage of testing, and deflection 

was limited to 1 percent of the shear span (0.5 in., l3:mm). Following applica-

tion of the ninth load cycle, successively larger maximum displacements were 

imposed cyclically until the members failed. 

The rationale for the load history was based on previous research and 

on the current beliefs of some members of the engineering community. 

Gosain, Brown, and Jirsa (4) have suggested that a "hinging region 

will provide adequate energy absorption if it can withstand five load cycles 

at five times the yield deflection,1I assuming capacity in each cycle of 

load remains as high as 75% of yield capacity. In addition, recent informal 

surveys of practicing engineers and designers indicate that maximum acceptable 

story drift during earthquakes should be limited to less than 3% of story 
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height. The load history chosen for the specimens discussed herein was 

believed to reasonably satisfy both these criteria, with the first eight 

cycles of load representing an upper bound of deformat"ion requirement that 

could be realistically expected for a frame member during severe earth

quake loading. 

2.6 Instrumentation 

Quantities measured at discrete intervals during each test were 

applied load, load point displacement, steel strains, and beam flexural rota

tion measured over an 8 in.(203 mm) section adjacent to crossbeam west face. 

Applied load was measured with a 100 kip capacity load cell connected 

between the load ram and the specimen load point (the center of the 

crossbeam). Load point displacement and beam flexural rotation were 

measured with the LVDTls whose position is shown in Fig. 2.13. 

The progress of each test was monitored by plotting applied load vs. 

load point displacement on an X-V plotter. At selected times during 

the -test, loading was temporarily halted to allow recording of measure

ments of ram load, LVDT positions, and strain gage and dial gage 

During the test of Specimen 1, load point displacement was measured 

with respect to the laboratory floor. The displacements measured in this 

manner included displacement due to support pin motion. To determine 

support displacement relative to the laboratory floor, four mechanical dial 

gages were positioned beneath the support pins as shown in Fig. 2.lla. 

Average support displacements measured at each cessation of loading were 

subtracted from load point displacement measurements to obtain true load 

point displacement with respect to the pin supports. 
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During the tests of Specimens 2 and 3, load point displacement with 

respect to the supports was measured directly by connecting LVDT #1 between 

the beam load point and the measuring frame as described previously_ 

A mechanical dial gage was used in each test to' verify the load point dis

placement as measured by LVDT #1. 

The location of the strain gages used on selected longitudinal and 

transverse reinforcement is shown in Fig. 2.14. Strain gage #3 was used 

to measure transverse strain in the beam flange. It was attached to the 

top leg of the second stirrup-tie west of the crossbeam in Specimen 1 and 

to the side of the temperature steel at approximately the same location in 

Specimens 2 and 3. 

Electrical impulses from the load cell, LVDT1s, and strain gages were 

measured by a Vidar data acquisition system and recorded on paper tape for 

later processing and analysis by digital computer. 
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CHAPTER 3 

OBSERVED BEHAVIOR 

Evaluation of specimen behavior was based on measurements of loads 

and displacements, member energy dissipation, steel strains, beam rota

tions, and general observations of crack patterns and concrete damage. 

These measurements and observations are presented and discussed in this 

chapter. 

3.2 Load-Displacement Curves 

Ram load vs. load point displacement relationships are shown in 

Fig. 3.1. Load vs. displacement curves for Specimen 1 have been corrected 

for support movements as described in the section of this report dealing 

with instrumentation. Positive load and positive displacement refer to 

negative beam curvature (hogging), or 10ad ram tension. 

Characteristics of specimen behavior evicent i~ the load-displacement 

curves are as follows: 

1) Initial elastic flexural stiffness of the specimens containing 

Type IV and Type V stirrups (Specimens 2 and 3) was slightly larger than the 

corresponding stiffness of the specimen containing Type I ties (Specimen 1). 

This was considered to result from the higher strength concrete in Specimens 

2 and 3 as compared to that in Specimen 1, and from factors other than the 

type of shear reinforcement being used. 

2) The overall flexural stiffness (slope of a line drawn between 

points of maximum positive and negative load on the load-displacement curve) 

of a member during a given load cycle was less than the corresponding 

stiffness during the previous load cycle. Specimen 3 was softened by the 
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large maximum displacement imposed during its first cycle of positive 

displacement and as a result its flexural stiffness during positive 

displacement was less than that of Specimens 1 and 2 for load cycles 

2 through 6. 

3) During all load cycles except the first, each specimen suffered 

loss of shear stiffness at small displacements from the original unloaded 

beam position, shown as "pinchingll of the load-displacement curves. The 

pinching became more pronounced as loading progressed, indicating that 

beam cracking and deterioration were resulting in progressive loss of 

shear strength. 

3.3 Energy Dissipation Measurements 

The ability of the beams to dissipate energy during cyclic loading was 

considered to be a good indication of the durability of the specimens. 

Areas enclosed by the load-displacement curves (Fig. 3.1) were measured 

to determine the energy dissipation capacities of the members. Energy 

dissipation values for the three specimens, including total energy 

dissipation during the first eight load cycles and total energy dissipated 

by each specimen prior to failure, are presented in Table 3.1. 

3.4 Steel ?train Relationships 

In this section various relationships between ram load, load point 

displacement, and steel strains are presented. Positive strain refers to 

tens{le strain in the steel. 

Strain in longitudinal steel was measured by strain gages 4, 5, 6, 

and 7, the positions of which have been previously shown in Fig. 2.14. 
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Relationships between ram load and average strain measured in top and bottom 

longitudinal steel are shown in Figs. "3.2 and 3.3. 

The relationships between load point displacement and steel strains 

in the vertical stirrup legs as measured by strain gages 1 and 2 are shown 

in Figs. 3.4 and 3.5. The location of these strain gages has been pre

viously shown in Fig. 2.14. As indicated by strains measured by gage 2 

in Specimen 3, strain in the vertical legs of this stirrup exceeded yield 

strain during the first loading cycle of Specimen 3. This resulted from 

the large positive load point displacement which was accidentally imposed 

on Specimen 3 during its first load cycle and not necessarily from the shape 

of the stirrup being used. 

Relationships between load point displacement and transverse strain 

in the fl ange of the specimens as measured by strain gage 3 are presented in 

Fig. 3.6. The location of strain gage 3 has been previously discussed and 

is illustrated in Fig. 2.14. It was hoped that it would be possible to 

qualitatively relate transverse strain to the loss of confinement of the 

beam core. Observatio~regarding the character of transverse strains 

measured in the individual beams are as follows: 

1) During any load cycle, the transverse strains measured during 

positive load point displacement were similar in magnitude to those measured 

during negative displacement for Specimens 1 and 2. 

2) Transverse strains measured in Specimen 2 never reached the trans

verse steel yield strain and were generally less than those measured in 

Specimen 1. 

3) Transverse strains accompanying positive beam curvature (sagging) 

were generally greater in Specimen 3 than in Specimen 2. Transverse strains 
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accompanying negative curvature (hogging) were similar in magnitude in 

Specimens 2 and 3. 

4) The largest measured transverse strain was seen in Specimen 3 

during positive curvature in the beam's tenth load cycle, indicating that 

the concrete flange was expanding laterally and losing its ability to provide 

lateral confinement to the top portion of the beam at that stage of loading. 

3.5 Ram Load and Load Point Displacement v~. ~eam RotatiGn 

As previously described, the flexural rotation over an 8 in. (203 mm) 

length of the beam immediately west of the center crossbeam was measured by 

LVDT's 2 and 4. The quantitative utility of this measurement is not excep

tional, as it is necessary to estimate a curvature distribution in order to 

compare actual and theoretical relationships of moment to curvature. The 

measurement is qualitatively useful, however, in determining the contribu

tion of flexure and shear to total deformation during cyclic loading. 

The relationships of ram load and load point displacement to the 

flexural rotation measured for the first eight cycles of loading are 

presented in Figs. 3.7 and 3.B. The dashed line representing the behavior 

of Specimen 3 in Fig. 3.7(c) was arrived at by estimation because of the 

previously discussed problem of load ram control during the test of that 

specimen. The following characteristics of member behavior are evident in 

these relationships. 

(1) Maximum flexural rotations remained essentially constant for all 

members during all cycles having the same maximum displacements. 

(2) The contribution of flexural rotation to total member deformation 

remained essentially constant for all deformation levels during the first 

eight cycles of loading of each member. 
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(3) The ratio of flexural rotation to total deformation was essential

ly constant for all members tested. 

It may be inferred from these observations that because the contribu

tion of flexure to total deformation remained constant, the contribution 

of shear strain to total deformation, both within and outside of the 

plastic hinging regions of the members remained essentially constant. 

3.6 Crack Patterns 

Crack patterns and deterioration of concrete along cracks were 

important indicators of damage. All specimens suffered major deterioration 

in the form of cracking and crushing of concrete in the beam plastic hing

ing zones, which included the sections of the main beams adjacent to the 

crossbeam with lengths along the beams approximately equal to overall beam 

depth. Many cracks formed in the beam stem and flange outside the hinging 

zones but, except for the cracks accompanying the final punching failure 

in the crossbeams of Specimens land 2, the opening of cracks and degradation 

and crushing of concrete along cracks outside the hinging zones were not 

major contributors to specimen strength loss during cyclic loading. 

The pattern of cracks which developed during the first cycle of load

ing of Specimen 2, shown in Fig. 3.9, may be considered typical for all 

specimens tested. During the first half-cycle of loading, flexural and 

flexure-shear cracks formed at uniform .intervals and at varying slopes 

along the beam. A vertical crack formed at the face of the crossbeam in 

all specimens. During the second half-cycle of loading, cracks extended 

from the bottom face of the beam stem and intersected the cracks formed 

previously. 
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Cracks which formed during the first cycle of loading constituted 

the majority 'of all cracks which formed during the life of each specimen. 

During the second and subsequent cycles of loading, these cracks opened 

and closed as the member was deformed. Few new cracks formed. When large 

deformations were applied to the specimens (after Cycle 9), crushing and 

spalling of concrete occurred primarily in the beam hinging zones. 

Fig. 3.10 illustrates the nature of deterioration which had taken place 
@ 

in Specimen 2 by the fourth load cycle and at failure. 

Crack patterns in the flanges of the specimens were indicative of 

the ability of shear reinforcement to confine the beam and flange laterally. 

Fig. 3.ll{a) illustrates the cracks which occurred in the flange of 

Specimen 2. Crack patterns which developed in Specimen 1 were essentially 

identical to those shown in this figure. The majority of cracks formed at 

right angles to the beam axis. Longitudinal cracks, indicative of flange 

and beam lateral expansion, were small and few in number. 

Cracking in the flange of Specimen 3, shown in Fig. 3.11{b), was much 

more severe than in either·of the other two specimens. Longitudinal cracking 

was extensive, particularly in the plastic hinging regions. It is clear 

that the reinforcement used in Specimen 3 did not provide lateral confine

ment as effectively as that used in Specimens 1 and 2. 

3.7 Failure Modes 

The failure modes of the three specimens are discussed in this section. 

Specimens 1 and 2 suffered compression shear failures near the center 

crossbeam section during the 14th arid 13th load cycles respectively. Each 

failed during the negative displacement portion of the load cycle. 
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The appearance of Specimens 1 and 2 at failure are shown in Figs. 3.12 

and 3.13. Both failures consisted of the II punching through" of the center 

load ram attachment fixture, crushing of the concrete flange near the 

center crossbeam, and the separation of the flange from the web section 

of the center crossbeam. At failure, the cores of the beams of Specimen 

were well segmented and crushed in the zones of inelastic hinging, as shown 

in Fig. 3.12(a). The cores of the longitudinal beams in Specimen 2 were not 

severely segmented or crushed at failure. 

The. appearance of both Specimens 1 and 2 at the conclusion of testing 

are shown in Fig. 3.13. Note that in Fig. 3.13(a) crushed concrete has 

been removed from the hinging zone immediately left of the crossbeam. 

Also note that the top longitudinal reinforcement of Specimen 1 was severely 

bent at failure. This appeared to result from the punching failure of the 

specimen and the large resulting local deformation rather than from buckling 

of the longitudinal bars. 

Specimen 3 failed during the positive load portion of the lOth load 

cycle as a result of shear deterioration and loss of anchorage of stirrups 

in the portion of the beam west of the ram attachment point. Failure 

appeared to have been initiated by loss of anchorage of the stirrup hooks 

in the beam flange. The failure also comprised deterioration of the beam 

core just west of the center crossbeam and loss of lateral and vertical 

confinement of the beam flange. The appearance of Specimen 3 at failure 

is shown in Fig. 3.14. 

3.8 Discussion of Observed Behavior 

Previous sections of this report have presented examples of the types 

of measurements which were performed during the test of each specimen in 
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this investigation. Because the objective of the investigation was to 

determine the effect of stirrup-tie shape on behavior of the members tested, 

the collected data will be discussed in this section with that objective 

in mind. 

(a) Load-Displacement Curves, Energy Dissipation 

Energy dissipation measured for a particular member and the load vs. 

displacement curve for that member may best be considered together, as 

the two are interdependent and collectively provide a qualitative and 

quantitative measure· of member performance. 

An overall view of individual member behavior and differences in 

behavior among the three members tested may be obtained by examining the 

member load vs. displacement curves (Fig. 3.1). It must be noted that, 

although it had been intended that displacement history be uniform for 

the three specimens, actual displacement history for each specimen was 

unique due to differences in measurement of displacement at the point of 

loading and to difficulties in controlling load ram position. 

If the displacement history of Specimen 2 is taken as a standard, the 

displacement histories used for the other specimens contain two major 

deviations from that standard. First, the displacement applied to Specimen 

1 was based on displacement measured by an LVDT contained in the load ram. 

Displacements measured in this way ignored specimen support motion and 

elastic deformation of the load ram and the frame which supported the load ram. 

The load-displacement curve for Speci~en 1 (Fig. 3. la) has been corrected 

to eliminate these effects. During the tests of Specimens 2 and 3, an 

independent LVDT and measuring frame were used to obtain actual member 

deformations, which were in turn used as a basis for load application. 
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Second, a very large positive displacement was applied during the first 

cycle of loading of Specimen 3 as a result of failure of the ram control 

circuit. This was a one-time occurrence during which 'time the load ram 

moved continuously between a point of small displacement and the maximum 

first cycle displacement. This prevented the reading of the strain gages 

and LVDT's except at the two load points bounding this large excursion. 

Reading of load and displacement was not affected, as those values were 

plotted continuously as loading progressed. 

The effect of these differences in displacement history can be 

determined by examining the energy dissipation values listed in Table 3.1. 

Again using the behavior of Specimen 2 as a standard, it is evident that 

Specimen 1 dissipated a smaller amount of energy per cycle than did 

Specimen 2. The major part of this difference must be attributed to the 

difference in displacement history between the two specimens. Because 

Specimen 1 dissipated a larger amount of energy than did Specimen 2 prior 

to failure, it is reasonable to speculate that Specimens 1 and 2 would have 

dissipated essentially identical amounts of energy during the first eight 

load cycles if their displacement histories had been identical. 

Similar speculation is possible with regard to the probable energy 

dissipation capacity of Specimen 3 during a displacement history similar 

to that experienced by Specimen 2. It is clear that Specimen 3 dissipated 

much more energy than did Specimen 2 during the first eight cycles of load 

as a result of their differing displacements during load cycle 1. It is 

not clear exactly how their capacities would have compared under identical 

load histories. Two factors must be considered. First, the amount of 

energy dissipated by Specimen 3 during the first load cycle would have 
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been greatly reduced by limiting positive displacement to 0.75 in. (19 mm) 

during that load cycle. Second, it is possible that Specimen 3 would have 

dissipated slightly more energy and would have endured more cycles of 

load if it had not been softened and extensively cracked by its initial 

large deflection. It is important to note that all three specimens 

tested dissipated comparable amounts of energy during load cycles 2-8. 

It is logical to predict that all three would have performed comparably 

during load cycles 1-8 if they had been deflected comparably. 

(b) Relationship of Steel Strains to Load and Displacement 

The relationships between various steel strains and load and 

displacement, shown in Fig. 3.2 through 3.6, are remarkable primarily in 

that the relationships remain essentially uniform for all specimens tested. 

This is particularly true for the first eight cycles of loading, the 

portion of the displacement history which had been intended to simulate the 

total demands which might arise from severe earthquake loading. 

The uniformity of the relationship of strain in top longitudinal rein

forcement to load for the three specimens can be seen in Fig. 3.2. 

In Figs. 3.2(a) and 3.2(b), the load point at which steel yield was 

suggested by specimen load-d~flection behavior is indicated as point A. 

Because this point occurs at the bar yield strain, the behavior of the 

material is confirmed by behavior of the specimen. In the case of Specimen 

3, loading could not be stopped when steel yield was suspected. An 

estimated relationship of load to steel strain during Load Cycle 1 has 

been shown as a dashed line in the plot for Specimen 3, Fig. 3.2(c). 

The gradual increase in tensile strain of both top and bottom longitu

dinal steel during cyclic loading, evident in Figs. 3.2 and 3.3, is a 
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characteristic of steel strain conditions in members subject to repeated 

inelastic flexure. It has been speculated that this behavior is caused 

by the inability of cracks to. close completely after having been opened 

by plastic hi.nging· deformations because of small amounts of offset 

along the crack and because small chips of concrete may lodge in the cracks 

as the member deteriorates. This causes the member to increase in length 

during cyclic loading, a behavior that had been anticipated and one which 

was seen in these tests, as each member increased in length by slightly 

over 1 in. (25 mm) during loading. 

The relationship of load point displacement to strain in the vertical 

legs of two stirrups of each specimen is shown in Figs. 3.4 and 3.5. 

The magnitudes of measured strains in each stirrup during any given cycle 

of load were comparable for all specimens. It is interesting to note 

that yield strains were developed during the eighth cycle of loading in 

the stirrup to which gage 2 had been attached in Specimen 3. This indicates 

that anchorage of those stirrup legs was still acceptable at that time. 

The character of the relationships of beam load point displacement to 

flange transverse strain as measured by gage 3 has been considered pre

viously. The most important point to note here is that the magnitude of 

strains measured by this gage was comparable for all specimens during the 

first eight cycles of loading. During the tenth and succeeding cycles of 

loading the lateral strains measured in Specimen 3 were larger than those 

measured in the other specimens, indicating that lateral confinement 

provided by the flange for the top portion of Specimen 3 was decreasing. 

This was visually confirmed by the large amounts of longitudinal cracking 

which took place in Specimen 3. The other two specimens suffered neither 

this degree of loss of confinement nor such extensive longitudinal cracking. 
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(c) Failure Modes 

The failure modes of Specimen 1 and 2 cannot be related to stirrup-tie 

shape. It is doubtful that the punch-through of the center load ram 

support could have been prevented by any practical changes in beam shear 

reinforcement. Because the final failures of Specimens 1 and 2 occurred 

only after very large displacements (6% of shear span) had been imposed, 

and because the test apparatus produced symmetric bending at the point of 

load application as opposed to the unsymmetric bending that would take 

place in an actual structure during earthquake loading, the failure modes 

of Specimens 1 and 2 almost certainly would not occur in an actual structure. 

The failure mode of Specimen 3 was directly attributable to stirrup-tie 

shape, as had been the intent during design. Although this design is not 

proposed for use, it performed much better than had been anticipated. 

As strain gage readings indicated, the lateral flange strain in Specimen 3 

was not appreciably greater than that in the other two specimens. This 

indicates that the floor slab (beam flange) provided much better lateral 

confinement to the beam core during inelastic cyclic loading than had 

been predicted previously. 

It should also be noted that longitudinal beam steel in Specimen 3 

was arranged so that no bar was located at the inside of the stirrup legs 

top bends. While it may be presumed that member behavior would have been 

improved if ACI code recommendations in this regard had been followed, 

it is impossible to predict accurately how much improvement would have 

resulted. 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

The objective of the research was to determine the influence of 

stirrup-tie shape on the behavior of reinforced concrete flanged members 

(T-beams) subjected to repeated reversed inelastic flexure. Three 

double cantilever flanged beams were subjected to static cyclic load. 

The only test variable was the shape of the stirrups or ties used as beam 

shear reinforcement. 

A single style of stirrup or tie was used in the zones of inelastic 

flexure in each of the three specimens. The types of ties used were: 

(1) closed hoops conforming to the requirements of Appendix A of the 

American Concrete Institute Building Code (Retl),(2) U-shaped stirrups in 

which the tops of the vertical legs terminated in 180 degree standard 

hooks, and (3) U-shaped stirrups in which the tops of the vertical legs 

terminated in 90 degree hooks bent outward, or away from the beam core. 

The spacing of shear reinforcement was the same for all members, and 

longitudinal steel proportions and locations were the same for all 

members. 

Specimens were supported near their ends by pins intended to simulate 

simple supports and vertical loads were applied to the center of the 

specimen by a double-acting hydraulic ram. Static cyclic loads were applied 

to produce deflections of the center of the specimens of between 0.75 in. 

and 3 in. (19 and 76 mm), or 1.5 percent and 6 percent of the beam shear 

spans. Maximum deflection during the first eight cycles of loading was 

three percent of beam shear span (1.5 in., 38 mm). 
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Evaluation of specimen behavior was based on visual observations of 

concrete cracking and deterioration, load vs. displacement relationships, 

and measurements of steel strains and beam flexural rotations. 

4.2 Summary of Observed Behavior 

(1) The specimens having shear reinforcement consisting of closed 

hoops or stirrups with 180 degree hooks (Specimens 1 and 2) endured 

large displacements without severe strength or stiffness decay. Final 

failure of these specimens consisted of a punching failure of the specimen 

flange in the region of the point of load ram attachment. It was concluded 

that this type of failure would be very unlikely in an actual structure 

during an earthquake because of the inherently different loading conditions 

and support conditions which would exist in a real structure as opposed to 

those present in the test situation. 

(2) The specimen whose shear reinforcement consisted of stirrups 

with 90 degree hooks bent away from the beam core (Specimen 3) failed as 

a result of loss of anchorage of stirrups which terminated in the flange 

of the specimen. It was concluded that this type of failure could occur 

in a real structure under deflection conditions similar to those exper

ienced by the test specimen. 

(3) Lateral strains in the flange of the specimens as measured by 

strain gages placed on the stirrups and on lateral temperature steel were 

comparable for all specimens. 

(4) All specimens were able to endure eight cycles of inelastic 

flexure with maximum displacements of between 1.5 percent and 3.0 percent 

of beam shear span. All specimens dissipated approximately equal amounts 

of energy during the second through eighth load cycles. Overall specimen 

behavior indicated that approximately equal amounts of energy would have 
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been dissipated by the specimens during the first eight load cycles if 

identical displacement histories had been used for all specimens during 

those load cycles. 

4.3 Conclusions 

On the basis of the test results previously discussed, the following 

conclusions can be drawn: 

(1) There was no significant difference in cyclic behavior between 

the specimens containing closed-hoop shear reinforcement (Specimen 1) 

and the specimen containing shear reinforcement consisting of U-shaped 

stirrups with vertical legs terminating in 180 degree hooks (Specimen 2). 

(2) The flange of the beams provided a significant amount of lateral 

confinement to the upper portion of the beam core in the region of plastic 

hinging. 

(3) There is reason to believe that, for flanged sections or beams 

cast monolithically with slabs, present recommendations requiring closed 

hoops as shear reinforcement may be too conservative and may cause 

difficulty in construction which could be avoided by using U-shaped 

stirrups with 180 degree standard hooks. 

4.4 Recommendations for Future Research 

The influence of stirrup-tie shape on cyclic inelastic response of 

reinforced concrete flexural members has been considered only briefly in 

this investigation. The following topics are logical extensions of the 

work begun here: 

(1) The behavior of a beam similar in proportion to Specimen 3 but 

having a longitudinal bar located inside the bends of the stirrup leg 

hooks should be considered. 
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(2) The behavior of beams with a flange on only one side of the beam 

stems (spandrel beams) and having various tie shapes should be considered. 

(3) Work should be done to consider the effect of lateral compressive 

stiffness of the beam flange on confinement of the beam core. This could 

be done by providing lateral reinforcement larger than that required for 

temperature and shrinkage to more accurately simulate the magnitude of 

lateral flange compressive stiffness which would be present in an actual 

structure. 
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TABLE 2.1 Measured Dimensions of Specimens 

Specimen d, in d I, in h, in b, in bw' In t f , in a, in A . 2 A I • 2 . A . 2 
s' 1 n s ' ln v' ln 

No. (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm2) (mm2) (mm2) 

1 11 .6 2.6 14.0 32.0 8.0 4. 1 50.0· 2.0 2.0 0.22 
(295) (66) (356) (813) (203) (104 ) (1270) (1290 ) (1290) ( 142) 

2 11 .6 2.5 14.0 32.0 8.0 4.0 50.0 2.0 2.0 0.22 
(295) (64 ) (356) (813) (203) (102) (1270) (1290) (1290) ( 142) 

3 11.6 2.4 14.0 32.0 8.0 4. 1 50.0 2.0 2.0 0.22 
(295) (61) (356) (813) (203) (104 ) (1270) (1290) (1290) ( 142) 

N 
""'-J 

TABLE 2.2 Measured Concrete Strengths and Age at Testing 

Specimen Compressive Strength, Splitting Strength, Cylinder Age, 
No. ps i (r·1Pa) psi (MPa) days 

Batch 1 Batch 2 
1 3710 (25.6) 3740 (25.8) 257 (1.8) 48 

2 4370 (30.1) 4310 (29.7) 363 (2.5) 44 

3 4400 (30.3) 4330 (29.8) 350 (2.4) 45 
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TABLE 2.3 Measured Steel Properties 

Bar f y,ksi f u' ks i Es,ksi Esh,ksi E;sh E:u 
Size (MPa) (~1Pa) (MPa) (MPa) 

#3 69 103 29,000 1120 0.012 0.10 
(475) (710) (200,000) (7720) 

#4 71 110 30,000 1330 0.0075 0.0098 
(489) (758) (207,000) (9160) 

#7 68 112 30,000 1440 0.0039 0.096 
(468) (772) (207,000) (9920) 

#9 63 97 29,500 1210 0.0066 0.097 
(434) . (668) (203,000) (8340) 
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TABLE 3.1 Measured Energy Dissipation 

Load Energy Dissipated, in-K (N-m) 
Cycle Specimen 1 Specimen 2 Specimen 3 

32.7 (3690) 50.8 (5740) 99.0 (11 ~ 180) 

2 20.3 (2290) 33.8 (3820) 31 .7 (3580) 

3 22.3 (2520) 28.8 (3250) 24.9 (2810) 

4 50.2 (5670) 55.0 (6210) 49.1 (5550) 

5 39.8 (4500) 50.7 (5730) 49.4 (5580) 

6 37.5 (4240) 44.6 (5040) 46.4 (5240) 

7 110 (12,430) 112 (12,650) 108 (12,200) 

8 112 (12,650) 107 (12,090) 108 (12,200) 

9 18 (2030) 14.3 (1620 ) 13. 1 (1480 ) 

10 150 (16,950) 157 (17,740) 161 (18, 190) 

11 201 (22,710) 200 (22,600) 

12 254 (28,700) 209 (23,610) 

13 232 (26,21q) 266 (30,050) 

14 173 (19,550) 

TOTAL, 
CYCLES 1-8 425 (47,990) 483 (54,530) 517 (58,340) 

TOTAL 1450 (164, 140) 1330 (150,150) 691 (78,010) 
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Fig .. 2.7 Formwork in Position for Casting 

Fig. 2.8 Formwork with Reinforcement in Place 
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(a) Specimem 1 (b) Typical Setup for Specimens 2 and 3 

Fig. 2.11 Specimens in Position on Supports Showing Load Ram and Frame 

W 
\.0 



3.0 
.::.-
c 
- 2.0 
+-
c 
Q) 

E 
Q) 
u 
c 
c.. 
en 
o 

~ -1.0 
o a.. 
-g -2.0 
o 

...J 

l I I I I I I I I I I I I 

o 2 3 4 5 6 7 8 9 10 II 12 13 

Cycle Number 

Fig. 2.12 Displacement Pattern 

75 

-
50 E 

E -+-

25 
c 
Q) 

E 
Q) 

• ... e -,0 
U 
0 
0-
W ~ 

-25 l5 0 

+-c 

-50 
& 
"C 
0 
0 

-75 ...J 



Cross
Beam 

Section 

CD 

® 

@ 

@ 

Holding Bracket 

G) - Number O;f LVOT 

Laboratory Floor (Spec. I ) 
Measuring Frame (Spec. 2 And 3 ) 

® 

1-3/481 

r.-1 

@ 

® 

Holding Bracket 
For LVOT #4 

(0) View 'From North Side (b) View From West Side 

Fig. 2.13 LVDr Locations 

.g:::" 



( 

I 

I 

A 
~ 
~ 

-~ -

42 

T t \empera ure 

F-----
--

i 
I 
I 
I 
I 
I 
I 
I 

·1 
I 
I 
I 
I 
I 
I 
I 

.., 
I 
I 

I \~ I 
I 
I 
I 
I 
I 
I 

I"' -I"' -- -
@ @ • 
1- - ~ 

I---- ~ 

I cD ® 
I 
I . 
I 
I 
I 
I 
I 

(b) View From North Side 

Fig. 2.14 Strain Gage Locations 

I 

( 
) 

Steel 

N 

! 
d 

~ 

Strain Gage 3 
Beam I: Top of Stirrup 
Beams 2 a 3: Temperature 

Steel Side 



en 
a.. 

<Po 

C 

8 
....J 

:E « 
0::: 

12 

60 
,+P,8 

L.. -" J 14 
~ ,.,.,. 

30 

01 :»<-- 7.c: 7<: r AI5<f 16$' ~ 7~t:rrrr: 

-30 

-60 

12 
-3 

SPECIMEN I 
TYPE I ST IRRUPS 

I 0 0 'Do . 0 oj 

o 0 

-2 -I 0 I 2 3 

CENTER DISPLACEMENT, INCHES 

3.la Load vs. Displacement Relationship--Specimen 1 

~ 
w 



60 

I 

I 
30 

en 
Q.. 

~ 

QIo 

c 
01 77<+= Je f'~1 JJJI' ~#~~< I ~ 8 7 1 

~ 

....J 

~ l / II/lillY SPECIMEN 2 
TYPE 12: STIRRUPS 

.... 30 I 0 ·0· o I 

-60 

13 

-3 -2 -I o 2 3 

CENTER DISPLACEMEt~T t INCHES 

3.lb load vs. Displacement Relationship--Specimen 2 



U) 
Q. -~ 

GIl> 

C 

S 
..J 

:e « 
0:: 

60 
t+P,8 

~ J( ;;a! 

30 

01 :::> ,.e: ~ 

SPECIMEN 3 (TYPE V STIRRlPS) 

.... 30 ·U· 
-60 

-3 -2 -I 0 I 2 3 

CENTER DISPLACEMENT 1P INCHES 

30lc Load vs. Displacement Relationship~~Specimen 3 

~ 
01 



75.SS~~---------------r--~ __ ' ________ -r ______________ ~ ______________ ~ ______________ ~ 

ss."" 

25.mB 

·B. BBI T Y. W J.,. :" T fI ." If I T l JJ 

" 0.... 
t-t -25.BB 
~ v 

c 
< o 
...J 
~ -SS.BB 

< 
0:; 

SPECIMEN 1 

l YIELD STRAIN 

12 

-7~D~ , m I , , 

-D. al s. sa s. SI S. S2 S. sa S. S4 
STRAIN MEASURED BY STRAIN GAGES 4+5 <IN. lIN. > 

Fig. 3.2a Ram Load vs. Strain in Top Steel--Specimen 1 

..a:::
m 



75.BBa~~----------~-~----------~----__ ~ ________________________________ ~ 

5B.BB 

25.BB 

B. BB. • .. w 

" 0... 
~ .... 25 ... 
v 

c 
< o 

I 
I 
I 
I 

-11'1 fII!.. 

2 

....J 
~ -5B.BB SPECIMEN 2 ~[I a: 
< n:: 

.... -1 CJ) 

ell _J 
lJ.J 

>-1 -75. BBI I I II , 

.... B. Bl B. BSI B. Bl B. B2 B. B3 
STRAIN MEASURED BY STRAIN GAGES 4+5 (IN. lIN.) 

Fig. 3.2b Ram Load VS. Strain in Top Steel--Specimen 2 

B. B4 

~ 
........ 



758mmF-----------~_r------~r_--~-----_r----------~--------~ 

JEST~A2E~ 
/- 4 

7 

5amaa / 

25.11 

I. IS - I ?tIT, til T J// ~ 

I 00 

~ -25.1/J1/J~ 
I 
I 
I 

c zl < 
0 

Cil ...J 41' Y1 t SPECIMEN 3 :E .... 51.11 
~I < a:: 
~I 
)-

-75. II, ' p , ' , 

.... 1. 11 II, II I. 11 L 12 I. 13 Ie 14 
STRAIN MEASURED BY STRAIN GAGES 4+5 (IN. lIN.) 

Fig. 3.2c Ram Load vs. Strain in Top Steel--Specimen 3 



7~BlF'-------------?--T---------'-T------------~------~----~------------~ 

58 •• ~ ~I 2mN\ \ \ \~ '" ~ SPECIMEN 1 

I 
) 

t:-- ... 
I 
I 
I 

25. ilL W -II \ \\ \, 'll \,\"- \\ ," " 
, £1 I 

1.11. .. 'ii '., 

" Q.. 
~ .... 25.11 
v 

c 
< o 
.J 
~ -51.11 
< a:: 

-73. II, , ' , , 
.... 1.11 I. II I. 11 1.12 I. 13 

STRAIN MEASURED BY STRAIN GAGES 6+7 (IN./IN.> 
Fig. 3.3a Ram Load vs. Strain in Bottom Steel--Specimen 1 

:J 
r----J 
I 
I 
I -- 1 

It 

I 

1.14 

~ 
~ 



7~aul~i-------------r~r---------II------------Ir------------'-------------' 

51. rIB SPECIMEN 2 

25.. 

fL III. ... ¥t 

" Q.. 
.......... 25.. 
~ v 

~ 
o 
...J 
:E -58.. 
< a: 

-73. .' , , ' , 
-II. Bl L 8B B.ll B.12 I. B3 

STRAIN MEASURED BY STRAIN GAGES 6+7 (IN./IN.> 
Fig. 3.3b Ram Load vs. Strain in Bottom Steel--Specimen 2 

LI4 

01 
o 



'( 
I 
t, 
C 
I 

15.mm~.------------~~----------r-----------~~----------~-------------

sm.mm SPECIMEN 3 

25.BB 

B.BB. • 

'" Q.. 
;2 -25CDII 
v 

c 
< o 
....J 
:I: -5B.BB 
< 
Q: 

.... 75. BB· . . . · 
-B. 11 ra.IB B.11 I. ra2 1.la 

STRAIN MEASURED BY STRAIN GAGES 6+7 (IN. lIN.) 
Fig. 3.3c Ram Load vs. Strain in Bottom Steel--Specimen 3 

B.14 

(J"1 

--' 



a.III~4----------------r---------------~----------------~----~--------~ 

2.111 

" Z 1..111 
...... 
v 

I
Z 
W 

" 

I 
I 

... --, 
I 
I 
I 
I 

l 

I 
! 
II 

rl-- i-- -~ 
I • I 
I 
I 

II 
! T 

~ I.BII. • • ~ 
U 
< 
..J a... 
en 
...... 
o -1.111 
I-z ..... 
o a... 
o .... 2.IBI 
< o 
..J 

-3.111· e', 

I 
I 

SPECIMEN 1 
I 

zl 
<tl 
~I 
01 
~I 

-1.111 1.811 1.111 1.112 
STRAIN MEASURED BY STRAIN GAGE 1 <IN./IN.) 

Fig. 3.4a Center Displacement vs. Strain in Stirrup--Gage 1, Specimen 1 

111113 

U"I 
N 



aBlSir-----------------~----------------_r------------------~-------~---------___ 

2. III 

~ Z 1.111 
...... 
v 

I
Z 
W 

A 

I 
J 

1---, 
I 
I 
I 
I 

L-------, 

1 
« 

,-1-- 1--- --' 

I 

-
I 
I 
R 

II 

: 

~ II. MUDI f sf -)¢?9 
u 
< 
..J a.. 
U) 
...... 
c -1.111 
Iz ...... 
o a.. 
C .... 2. 8mm 
< o 
..J 

..... 3. 811. ' , . 

I 
I 

SPECIMEN 2 
I 

I 
zl 
~I 
til 
cll 

-fJCI II 1 Ie mal I. 0flJ 1 B. 182 
STRAIN MEASURED BY STRAIN GAGE 1 <IN./IN.) 

Fig. 3.4b Center Displacement vs. Strain in Stirrup--Gage 1, Specimen 2 

LBB3 

U"1 
W 



" 

a.mmmrm----------------,-----------------T----------------~----__ ----------

2.rarara 

,.... 
Z I.. raara 
H 
v 

i
Z 
W 

!I. 

I 
r 
1--- -, 

I 
I 
I 
I 

I I 

I 
( 

rl-- -- --l 

I 
I I I 
I 

A 
! I 

~ mummm R • ~~ 
U 
< 
...J 
fl.. 
U) 
H 

o -1.Bl2Ja 
i-
Z 
H 

o 
fl.. 

c -2.B0ra 
< o 
...J 

I 
I 

SPECIMEN 3 
I 

I 
zl 
~I 
~I 
~I 

-3uraB0~. __________________ ~ ________________ ~ ____________________ ~ _____ ~ _________ ~ 

01 
+:::0 

-ra.0ral m.sss B.Bral ra.rara2 ra.rlIrlI3 
STRAIN MEASURED BY STRAIN GAGE 1 (IN./IN.> 

Fig. 3.4c Center Displacement vs. Strain in Stirrup--Gage 1, Specimen 3 



3D~~~~.--------m----____ -r ________________ ~ ________________________ ~ ________ __ 

2.BmB 

" Z 1.000 
...... 
v 

A 

I 
I 

f-- - ., 
I 
I 
I 
I 

l I 

I 
{ 

rt-- -- -~ 
I 

-
I 
I 
I 

/I 

~ 

I-

~ B.BBBL---~---------1~~~~~~~~~~~~~::~~~~~--------1 ~ I I 
~ I 
CJ -1. BBB SPECIMEN 1 
I- I 
~ I 
o Zl ~ -
~ -2.BBB ~I 
o 001 
~ c 

ii11 
>-

-3.B0B~' ~----------~~~------------~~~-----------____ ~~ ____ L-~ ______ ~ -0.001 0.BB3 

Fig. 3.5a Center Displacement vs. Strain in Stirrup~-Gage 2, Specimen 1 

01 
U1 



aB~~~F.---------------------'---------------------~------------------~r-------r-------------' 

Z. ""8 

" Z lID""" 
~ 
V 

....... 
Z 
W 

It. 

r 
J 

... --, 
I 
I 
I 
I 

l I 

I 
rl-- i--

I 
I 
I 
I 

1 

-~ 

-
J 

1I 

I 
~I 
~I 

~ g.DDDB .~ 
W 
U 

91 

~I 

< 
...J 
Q.. 
U) 
~ 

C .... 1.88" 
....... 
z 
~ 

o 
11.. 

C -2. gram 
< o 
..J 

I 
I 

SPECIMEN 2 
I 

I 
I 

-alii uuu, " , II , 

-B. 9S 1 Bill IS" I. 811 e. 882 g. gga 
STRAIN MEASURED BY STRAIN GAGE 2 (IN. lIN.) 

Fig. 3.5b Center Displacement vs. Strain in Stirrup--Gage 2, Specimen 2 

0"1 
m 



a.BBBr_ --------------~---------------,----------~----~----~---------

2. BOO 

" Z 1.BBB 
...... 
v 

...... 
Z 
W 

II 

l 
I 

1--- -, 
I 
I 
I 
I 

( I 

I 
I 

r"'- -- --I 

I 

-I 
I 
I 

6 

: 

~ B. BBBI T \1'1' ...,. 
u 
< 
-.J 
(L 
(J) ..... 
C -l.BBB 
I-
Z ...... 
o 
n.. 
c ..... 2. BBB 
< o 
..J 

\. 

I 
I 

SPECIMEN 3 
I 

I 
zl 
~I 
~I 
o 

. ii11 
>-

-3.BBB. f 

-B.aBl B.BBB B.BBI B.12I02 8B3 
STRAIN MEASURED BY STRAIN GAGE 2 <IN./IN.> 

Fig. 3.5c Center Displacement vs. Strain in Stirrup--Gage 2, Specimen 3 

01 
'-J 



3·~~~i~----------------'------------------T----------------~------~--------~ 

2. raflJl{J 

" Z 1. aaa 
....... 
v 

....... 
Z w 

-1-------
I I 
I I 

I : 

ffi Bm BBBI ... .. 
U 
< 
....J 
0... 
U) 
H 

C .... l.BBa 
....... 
·z 

&-t 

o a.. 
~ -2.BBf(J 
o 
....J 

I 
J 

I 
I 
I 

SPECIMEN 1 
I 
I I . 

I 
I 
I 
I 
I r-YIELD 
V STRAIN 

I 
I 
I 

-3.BB0. I , I I 
-0.001 B.BBB· B.BBl B.BB2 B.BBa 

STRAIN MEASURED BY STRAIN GAGE a <IN. lIN.) 
Fig. 3.6a Center Displacement vs. Flange Lateral Strain--Specimen 1 

c.n 
ex> 



3mlll~.----------------T---------------~-----------------r----~--------~ 

2.111 

" Z le UUUi-o 

..... 
V 

....... 
Z 
IJJ 

I I 
I 

I I 
I I 

~-+--!-- ---
i l I 

I--t--..l-I--_~ 
I I 
I I 
I I 
I ! 

j 

I 
I 
I 
I 
I 

SPECIMEN 2 
I 
I 
I 

:E I. UUUI .. 
IJJ 
U 
< 
....J a.. en ...... 
c -1. IIUIIUIIU r-
....... z ...... 
o a.. 
c -2.0. 
< o 
....J 

I 
I 
I 

~I 
~I en
l 

~I 
>-1 

-3. uu&u' ' , II , 

-I. III m. III L Iml I • .. 2 lED .3 
STRAIN MEASURED BY STRAIN GAGE 3 <IN./IN.> 

Fig. 3.6b Center Displacement vs. Flange Lateral Strain--Specimen 2 

()'1 
U) 



3.l2JflJrtJ 

I I 
I 

2. ramaL .Jr I 
zl 
gl 

~ 1. 000r AiffJl 
. en I 
dl 
)-1 

l- I Y Il~ z I w 

r I 
I I 
I I 

f--L--!-_ ----; 
, : • I 

f-- .... -...!.- ---I I 

I : j 
I I 
I I 

SPECIMEN 3 

~ B.BBB 
U 

,~~ I < 
....J 
a.. I U') 
...... 
Cl -l.t2JaB 
I-z ...... 
0 
Q.. 

~ -2.00B 
0 
....J 

-all BBm, , , , I , 

0"1 
o 

-B. Bra 1 ra.l2Jram a.raml m.Bra2 m.mma a.mm4 
STRAIN MEASURED BY STRAIN GAGE 3 <IN./IN.) 
Fig. 3.6c Center Displacement vs. Flange Lateral Strain--Specimen 3 



75DBB~D------------~--------------~------------~-------------r------------~ 

SfiJ.fiJfiJ SPECIMEN 1 

25.fiJl2J 

121.. III III I >9"" IIf#C • H .. ,.. :;1'7' :::;alP ...c== 

'" U) 
a... 
~ -25. III 121 
v 

o 
< o 
-1 
~ -5flJ.flJflJ 

< 
Ck: 

-75 .. l2JflJ~· ____________ ~~----------~------------~------------~------------~ 
-Ill. III 3 -flJ.flJ2 -e.el flJ.flJflJ flJ .. 1211 l2I .. flJ2 

BEAM ROTATION (RADIANS) 

Fig. 3.7a Ram Load vs. Beam Rotation--Specimen 1 

en 
--' 



7510 1~0 ______ ---r-------r--------'------1 

5 Jlj 10 1(1 Jlj SPECIMEN 2 

25. 12J0 

0&1 12J12J f-- > .... 1fII"" f!JIT 

,....., 
(J) 
a.. 
.-e -25.I2JJlJ 
~ 
~ 

o 
< o 
..J 
~ -512J .. 1eJ12I 

< 
~ 

• >'51' ~ ::::;:aas=:> 

-75.IeJI2I~k __________________ ~ __________________ ~ __________________ ~ __________________ ~ 
-121 .. ~2 -121.1211 0.121121 121. 1211 121101212 

BEAM ROTATION (RADIANS) 

Fig. 3.7b Ram Load vs. Beam Rotation--Specimen 2 

0'\ 
N 



75.BB_.------------~----------,_,------------_r------~----~----------_, 

SrlI.rlIrlI SPECIMEN 3 

2S.rlJrlJ 

-12110 rlJrlJ. 97 -

I""'t. 
(J) 
a... 
...... -25.rlJrlJ 
~ 
V 

o 
< o 
-l 
~ -5f2J.flIfl1 
< 
~ 

-75.flIrlJl I . 
-rlJ.f2J3 -rlJ.flI2 -flI.f2Jl 

BEAM ROTATION (RADIANS) 
B. flIrlJ 

I 
I 

/' 

" 

" -
" 

21. f2J 1 

Fig. 3.7c Ram Load vs. Beam Rotation--Specimen 3 

121.212 

0'\ 
W 



2.mmr, -----------.------------r-----------,-----------~------------

SPECIMEN 1 

L.0m 

" III 
Z ...... 
v 

I-
Z 
W 

m 
~ 

:i: 0.00 

~~I 
w 

I u 
< 
...J 
Q.. 
(I) 
...... 
0 

I-
Z 
...... -- L. 00 
0 
Q.. 

0 
< 
0 
...J 

-2.00· · · 
-0.03 -0.02 -0.01 B.BB B. 01 0.B2 

BEAM ROTATION (RADIANS) 

Fig. 3.8a Center Displacement vs. Beam Rotation--Specimen 1 



2.BB~.-----------------r----------------~------------~---T----------------~ 

SPECIMEN 2 

1. BB 

" III 
Z ...... ......, 

f-
Z 
W 
~ 
W 

BID 
U ~ ,1 0'\ 

< 01 

...J a... 
(J) 
...... 
0 

f-
Z o -1 .. Ba 
a... 
0 
< 
0 
...J 

-2.~~8 ' p 

-a.B2 -B.al a.am a .. al a.a2 
BEAM ROTATION (RADIANS) 

Fig. 3.8b Center Displacement vs. Beam Rotation--Specimen 2 



2.BB_.------------~~-------------__ ------------~--------------~--------------__ 

SPECIMEN 3 

1. BB 

" III 
Z 
~ 
v 

~ 
Z 
W 

0"1 
0"1 

~ B.BB 
A 

W 
I u 

< 
...J a... 
U) 
~ 

0 

~ z 
~ -I.. BB 
0 a... 
0 
< 
0 
-l 

-2.BB_· ______________________________ ~ ______________ ~ ________________ ~ ________________ ~ 
-B.Ba -B.B2 -B.Bl B.BB B. B 1 B.B2 

BEAM ROTATION (RADIANS) 

Fig~ 3.8c Center Displacement vs. Beam Rotation--Specimen 3 



67 

(a) Duri.ng First Half-Cycle 

(b) Duri.ng Second Half-Cycle 

Fig. 3.9 Crack Patterns in Specimen 2 
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(a) Following Fourth Load Cycle 

(b) At Failure 

Fig. 3.10 Crack Patterns in Specimen 2 
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(a) Specimen 2 

(b) Specimen 3 

Fig. 3.11 Flange Crack Patterns at Failure 
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(a) Southwest side of Crossbeam 

(b) Southeast Side 

Fig. 3.12 Specimen 1 at Failure 
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(a) Specimen 1 - Loose Concrete Removed 
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~ig~ 3.13 Specimens 1 and 2 at Failure 
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(a) During Cycle 10 

(b) View Showing Stirrup Loss of Anchorage 

Fig. 3.14 Views of Specimen 3 at Failure 


