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I. INTRODUCTION

Recént]y, largely due to stringent safety requirements for important
structures in extfeme environments such as nuclear power plants and offshore
platforms, there has been a fast growing interest in_the risk analysis of
low-probability and large-consequence events such as combination of a number
of unfavorable loading conditions producing catastrophic consequences.
Significant progress has been made in the last few years in the modeling
and combination of stochastic loadings that the research findings are be-
ginning to be used in the formulation of design requirements in building
codes. However, so far, efforts have been concentrating on the combination
of independent loadings i.e. the time of load occurrence, intensity and dura-
tion given load occurrence are assumed to be statistically independent of
one another in each occurrence, from occurrence to occurrence and from
loading to loading in each loading. In reality, these variables may be
correlated. For example, a single severe storm may produce extreme wind,
wave, snow, surge and temperature loads, earthquakes may cause direct dynamic
force, indirect fire load and in a nuclear structure, Toss-of-coolant accident
(LOCA) loadings because of pipe break, etc. What would be the effect of such
dependencies on the probability of combined load and Tlifetime reliability
estimate of structures?

The purpose of this study is to develop stochastic models for correlated
load processes and examine the effects of load dependencies on the probability
of combined Toad and reliability of structures under such loadings.

Based on a pulse load model, the occurrence (time) dependencies are
introduced using multi-variate Poisson delayed point process and point process
of the Bartlett-Lewis type; the intensity dependencies are introduced using

an imbedded Gauss-Markov sequence and "conditional" correlation function matrix;



2
and the duration-intensity dependencies are introduced using multi-variate
distribution. The load coincidence method previously proposed (11,12,13)
for independent Toading is generalized for the combination ana]yéis of de-
pendent loads. Approximate analytical results are obtained in simple,
closed form. The accuracies of the analytical so]utions'are verified by

extensive Monte-Carlo simulations. (Details of simulation given in Appendix D).

1.1 The Load Model

Because of the randomness in their occurrence time, intensity. and
duration, time varying loadings need to be modeled as random processés. If
the loading fluctuation over the structure's lifetime can be modeled as
stationary Gaussian processes, the dependences between load can be properly
accounted for by the cross-correlation functions and linear combination of
the Toadings can be handled without difficulty. One can take advantage of
the fact that the combined process is again Gaussian and for which many use-
ful results such as upcrossing rate and first-passage probability have been
obtained and can be directly used in the evaluation of probability of com-
bined Toad and structural reliability. Unfortunately, for many 10ading$,
(such as those caused by storms and earthquakes), this is not the case because
of their transient and intermittent nature.

A simple and flexible model for the macro-time fluctuation of loadings
is the pulse process in which the occurrence time is modeled by a point
-process, and the duration and intensity given occurrence by random variab]es.
For example, the Poisson renewal pulse process is widely used for transient
lToads characterized by a mean occurrence rate A, a mean load duration Mo
a specified pulse shape (rectangular, triangular, etc.) and a random intensity
(7,11,12). In most previous studies load parameter independences have been

assumed; herein, such restriction is relaxed (i.e. the duration may be dependent
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on the intensity, the occurrence may not be a simple Poisson proéess, etc.).
Such models, although being rather crude and idealized, do capture the essen-
tial macro-scale properties of time-varying loads and allow tractable analyti-
cal solutions, therefore insights to be gained into this complex problem.
~Sample functions of rectangular pulse load processes are shown in Fig. 1.
For a Poisson renewal pulse process, the load changes occur according to a
Poisson process with a mean rate of 1/ud. Given the change there is a proba-
bility of T that the load has a non-zero intensity. Therefore, the non-zero
part of the process has an arrival rate of A and durations governed by an
exponential distribution with a mean value of Hy- In other words, at a given
arbitrary instant of time the load intensity density function has a discrete
mass of (1—Aud) at zero, indicating the fraction of the time the load is
"off." When Aud=1, the load is always "on" (Fig. 1b), i.e. a Poisson square
wave; when Aud<1, the load may be "off" from time to time (Fig. la). Most
transient loads have a auy < 0.015 (9). More details are available in

Larrabee (7).

1.2 Method of Load-Coincidence

The general problem of lifetime reliability of structure under multiple
time-varying loadings is extremely complex. A rigorous formulation requires
a first-excursion time probability analysis of a vector process (loadings)
out of a general nonlinear safe domain (1imit state). An approximate solution
can be obtained based on the consideration that survival of the structure
(1imit state not being reached in the structure's lifetime) requires survival
under individual Toadings as well as coincidence of two or more loadings.
Therefore, for independent loadings modeled as Poisson pulse processes the

structural reliability is (11,12,13)
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Fig. 1T Poisson Renewal Pulse Process
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mean rate of occurrence of load Si(t) only, coincidence of load Sj(t) and

Sj(t) only and coincidence of Si(t), Sj(t), and Sk(t) only, etc. PT, P?j

m
and Pij

reached) given the occurrence and coincidence of loads, respectively. The

g are the conditional probability of failure (mth 1imit state being

above formulation is generally conservative, applicable to linear, nonlinear,
static and dynamic systems and its accuracy has been verified by extensive
Monte-Carlo simulations. Details are available in Refs. 11, 12, and 13.
In the following, the method is extended to the combination of dependent
loadings.

Other methods, such as those based on an upcrossing rate analysis have
been developed for linear combination of independent load processes (7,8),
however, extension of these methods to dependent loadings appears to be diffi-
cult.

For simplicity, only the linear combination (summation) of rectangular
pulse processes is considered. The 1limit state is a given threshold level r
being exceeded. Therefore, Eq.1.1 gives the probability that such level is

not exceeded in (0,t) Pm, P

m m * *
i» Pij» and Py reduce to 6x(r), Gij(r)’ and G.jk(r),

3
the conditional probabilities of r being exceeded given the occurrence and
coincidence of loads, respectively. To isolate the effect of each dependence,
when the dependence involving certain load parameters is considéred other
parameters are assumed to be statistically independent. The dependencies

are categorized into those which are primarily within-load or between-load.



II. WITHIN-LOAD DEPENDENCES

Loads under combination are assumed to be statistically independent
of one another, however, occurrence, intensity and duration within each

load may be correlated.

2.1 Dependence between Intensity and Duration

For example, storms with longer duration usually have higher intensity,
therefore, these two parameters may be correlated within each load. The
occurrence times are assumed to be statistically independent, i.e. they can
be modeled by Poisson processes. The contribution to the lifetime combined
maximum from individual load will not be affected by this dependence since it
does not involve duration i.e. the single summation terms in Eq. (1.1) remains
the same. However, the coincidence term would be affected since the con-
dition of coincidence implies higher chance of longer duration, hence, higher
intensities and probability of threshold being exceeded. The coincidence
term for the combination of two loads is derived as follows.

Let R be the combined load, X_i be the intensity given the occurrence
of load Si(t). The probability that two loads coincide and R exceeds a given

threshold level r in a given time interval (t,t+at) is

P=PR>r]| E]) P(E]) +P(R > r| EZ) P(Ez) (2.1)

I

in which E; = that S(t) and S,(t) coincide and S;(t) is "on" first

E, = that S,(t) and S,(t) coincide and S,(t) is "on" first
and
p(E]) = A] At Az ud]
(2.2)
P(E,) = A5 At Ay my

2



The above is true since the load occurrences are modeled by independent

Poisson processes.

P(R>r|E) = [ P(Xy#X, > r | Dy=d;) f. (dy)dd, (2.3)
D |
in which 61 = duration of S](t) given E].
d]fD1(d])
fo(dy) = —1 : (2.4)
p ! Mg

1
where D] = duration of S](t), an exponential variate with a mean=ud].

Intuitively, given the event E] (that is, the duration of S](t) covers the
occurrence time of Sz(t)), the duration D] would be more 1ikely to be longer,
the well-known waiting time paradox (4). The relation given by Eq. 2.4 can

be found in Ref. 3. Therefore, .
d1fD (d])

o r
_ 1
fm f r d1
=1 - — Fy (r-xq) fy p (xq,d;) dx,.dd (2.5)
00 “d] X2 1 X],D] 1°71 1 1

in which fX 0. - Joint density function of X] and D1. Similarly,
1°71
P(R>r[E2) can be obtained. The mean rate of threshold level r being exceeded

due to the coincidence is therefore,

o r d
1
P/at = Aqxp uy [1- [ [ — Fy (r-x;) f (Xxq,dy) dx,dd,] +
12 d-l o0 ud] X2 1 X]D] 1°71 1771
0- 172 (v ( ]
Aqro U 1- — Fy (r-x,) f X,,d,) dx,dd (2.6)
1%2 Mg, I

Note that when the duration and intensity are independent the above coincidence

term reduces to

A]AZ (Ud] + Udz) []‘ FX]Z(Y‘)] (27)



in which X]2 = X]+X2. Eq. 2.7 agrees with the coincidence term in Eq. 1.1.

If Xi and Di are jointly normal, the double integration in Eq. 2.6

can be reduced to

a 4 4ox K
[ F, (r-x;) fy, (x.) [ 1+ op. ( - ) dx. (2.8)
o Xj 1 Xi i g Oxi udi udi 1]
in which By = E[Xij, oy = standard deviation of Xi and o4, = standard
i i i

deviation of Di' Py = correlation coefficient between Xi and Di‘ Eq. 2.8
can be used as an approximation when Xi and Di are not jointly Gaussian.

To see the effect of the dependence, the ratio of Eq. 2.6 to the coinci-
dence term for independent Xi and Di are plotted for o= 0.5 and 1.0 in Fig. 2
for Xi and Di jointly normal and jointly gamma. “x1=“d1= 1.0, oxi=odi=0.3.
It is seen that the ratio increases with the threshold level, reaching a
factor about 2 for very high level. This corresponds approximately to the
error factor that the risk would be underestimated since at such levels, the
coincidence term dominates the distribution. Note that in this case the
difference in threshold levels for a ffxed risk of being exceeded would be

small. Similar results based on a point crossing rate method have been found

in Ref. 7.

2.2 Occurrence Dependence (Clustering) .

A common phenomenon of occurrence dependence is clustering; examples
are main and after shocks of earthquake, a large number of tornadoes spawned
by a single storm, etc. Such dependence is modeled by a point process of
the Bartless-Lewis (1) type shown in Fig. 3. The load occurs in clusters
which are modeled as a Poisson renewal process with a mean rate of occurrence
»_ and a mean cluster length (duration) o - Within each cluster, the

i i
loading is a Poisson renewal pulse process with a mean duration Uy and
.i



ERROR FACTOR

ERROR FACTOR

2.5 r .
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px =pg =10 )
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| l

3 4
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Fig. 2 Effect of Load Duration-Intensity
Dependence
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S (1) :
A Occurrence Clustering

U ]

- J —
"

Cluster (pu¢,n) Cluster

X
]

Bartlett-Lewis Cluster Process

Mean Cluster Duration

Mean No. of Occurrences/Cluster

=]
]

Fig. 3 Bartlett-Lewis Type (Clustered)
Pulse Process
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an occurrence rate ni/“c in which n; = the mean number of occurrence per
, i
cluster. The occurrence rate of loading over the lifetime is therefore

Ay T AL Ms. Duration and intensity are assumed to be independent of each
i

other and also independent of the occurrence time.

Because of the clustering, the counting of the load occurrences in the
lifetime of the structure is no longer governed by a Poisson distribution,
i.e. it follows approximately a negative binomial distribution. As a result,
Eq. 1.1 will be modified. Let R; be the lifetime maximum value of Si(t),
the probability distribution of Ri can be derived as follows. Consider load
Si(t).
P(R].i r) = kgo P(R<r)] NC = k) P(NC = k) (2.9)
in which NC = number of-clusters. Since within each cluster, the load is still

a Poisson renewal process, given Nc=k'and the total duration of the "on" time

of the clusters, to

'n]/uc1 []-FX](r)] tO

PRy < r) [N =k,t) = e (2.10)

in which to = t]+t2+...tk, ti=the duration of the ith cluster.

(t1,t2...tk) is a subset of (ti,té...tﬁ) n > k uniformly distributed
n
z

for t: < T and zero otherwise. As an approximation, if the condition Nc=k

1
i=1 ' 7
is disregarded, ti are independently exponential distribution and to is a gamma

variate with a density function

R
UC ﬂc -t /UC .
fr(tg) = ———— e * (2.1
0 (k=1)1
therefore
PRy <rIN=k)z [P(R<r[N=kt)) fr (t)) dt

1 0 o
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) ["1[1-Fx1(rﬂ+1]k (2.12)
Substituting Eq. 2.12 into Eq. 2.9 one obtains
o 1 k (Xc]t)k —AC]T
P(R] <r) = kzo {niI7-Fx](r)]+1} a e
n]Fi](r)
= exp{-AC1T [-———(—5-n]F§] Syl (2.13)
in which F;](r) = 1—FX](r). Similarly, probability distribution of-the

Tifetime maximum of Sz(t), R,. can be obtained.
Since the clusters are modeled as Poisson renewal processes, the coin-
cidence of clusters is also Poissonian with a mean rate of (11)
)\(]:22 Mo Ao (ug tug ) (2.14)
1 2 ~1 ~2
Within each overlap of clusters, the load coincidence is again a Poisson
process with a mean rate of

Aqp = (u
12 uou d
€1 2

]+ud2) - (2.15)

Let R12 be the Tifetime maximum of the coincidence part of the combined

process

P(Ryy < 1) = EOP(Rlzw | N.=k) P(N_=k) | (2.16)

k
in which NCC = number of cluster coincidences. With the total duration of
cluster overlaps approximated by a gamma variate one obtains, similar to

Eq. 2.12,

1 k

S CINEAE.
127 X2

in which X]2 = X1+X2, the combined intensity given the load coincidence.

(2.17)

P(Rig < T Ne7k) = I3

12¥¢ X



13

Therefore,
More. F%. . (n)

" ]E 1%r)ﬂ]} (2.18)
1275 Xqp

. c
P(R]2 <r)= exp{-ij, t [A

Let Rm = the Tifetime combined maximum

A
=
~
i

= P(R]f_r N Ro< r N Ry <r)
PRy < 1) P(Ry <) P(Ryp < 1) (2.19)

N

R1 is independent of R2; however, R]2 strictly speaking, is positively
correlated to R] and R2, therefore, the above approximation is on the

conservative side. Substituting Eqs. 2.13 and 2.18 into 2.19, one obtains

N -

FR (r,T) = exp {—AlT FX (r) -—;—£———— -AZTF; (r) ~—~;£————

m A 1 anX (r)+1 2 n2FX(r)+l
2

1 L

-ALT oo (x) 1 } (2.20)
12 X 2 M. +u :
' n.n, ( dl dz)F* (r)+1
r
172 He. THe X12°
1 2 ]

in which xy, * Aq2,(n, +u, ). Comparison with the independent loading case
12 172 d1 d2
shows that the effect of the clustering is accounted for by the terms in the

. is large and the threshold level

square bracket which is important when n;

r is Tow. In Fig. 4, FR for the clustered and unclustered cases are com-
m

pared. The loading parameters are M=Ap= A = 6/year. We THe ® 0.01 yr

' 1 -2
(= 3 days), pd]=ud2= 0.001 yr (= 8 hrs). X1 and X2 are normal with “X]=“X2=
1.0 and gy =9y =0.3. The rest are indicated in the figure. Monte-Carlo

: 1 72
simulation results are also shown; they agree very well with the analytical

solutions. It is seen that as threhold level increases, the effect of
clustering on the distribution function diminishes. This is what one

would expect since crossings tend to be sparse and independent at high
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threshold levels even for clustered load process. The overall effect of
clustering can be described as only moderate and give lower lifetime com-

bined maximum compared with the independent Toadings case.

2.3 Intensity Dependence

The Gauss-Markov sequence is a simple and flexible model to include
dependence, for example such model has been used in-a study of effect
of intensity correlation on structural safety (5). 1In this study, this
is done by imbedding such a sequencé in a Poisson renewal pulse process

(see Fig. 5). 1In other words, the intensities given occurrence are re1ated

by

X = p X, + V1l-p Z

k+1 k k (2.21)

in which Xi = intensity at ith occurrence. Zk = independent normal variate

with w, = Y({1-0)/{T%p) Hys and 070y - The intensity correlation is

°x. x = o3kl | (2.22)
5%

in which oy . % is the correlation coefficient between the intensities
3’7k
at the jth and kth occurrence.
Following the notations used in Section 2.2

P(R] <r)= x P(R]jrl N1=k) P(N]=k) (2.23)
N k=0

in which N] = number of occurrences.

PRy < r{ny=k) = P[x{T) < v PR (L PR

P < rx{D) < rprexdT) < r [ x{1) vy L

ceixdt < n
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S (1) Correlated Load Intensity

- J
M ? i+2
N R

L S5 L

L]

Gauss-Markov Sequence

x
1]

Poisson Process

Fig. 5 Poisson Renewal Pulse Process with
Imbedded Gauss-Markov Intensity
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[H](r,o])]k-1 P(Xsl) < r) for k>l

1 for k=0 (2.24)

in which H,(r,p;) = conditional probability that the intensity Xg) r given

the intensity at the previous occurrence X&Z] <r.
The above is true because of the Markov property of the sequence Xg]).

Substituting Eq. 2.24 into Eq. 2.23 one obtains,

FX](r) -A]THT(r,pT) AT T
P(R] <r)s= H] ro; {e - e } + e (2.25)
. 3 *
in which H] = 1-H1.
The function H](r,p]) is given by

Hy(raop) = POAT) < r (1) <)
X

rp(dt < xl) <)

£ (s) ds (2.26)

1
in which P(x{1) < v [ x{1) = 5)

i-1 —
Fp [ (- pys)]
]-p]
Therefore, " :
£ FZ E7Tt;? (r‘O]S)] fxg1) (s) ds
Hy(raeq) = (2.27)

FX§]) (r)

Consider now the lifetime maximum due to the load coindiéence. The coincidence
part has intensity variation which is the sum of parts of two independent

Markov sequences. It can be shown that the sum of two stationary Gauss-Markov
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sequences is again.Markovian when the one-step correlation coefficients
are equal; otherwise, the sum sequence is strictly no longer Markovian,
however, with a correlation structure very close to that in a Markov se-
quence (Appendix A). Therefore, the coincidence intensity sequence can
be treated approximately as being Markovian.

= X(]) + X(z) , etc. be the intensity

= (1) 4 y(2)
Let Yp = X + Xj . Y vk j+e

i pt+1
sequence. It can be easily shown that

Pp,ptl = (OEF 0)2((-!) + Dg 0)2((2) )/ (0)2((-1) + Oi(z) ) (2.28)
Therefore, the correlation coefficient between two adjacent intensitites
in the sum sequence is no longer constant. As an approximation, an equiva-
Tent constant value for the one-step correlation coefficient is used.
M2, M2,
1 (1) T P2 °y(2)

P12 ~ 7 2
RORRNG

(2.29)

in which A1/A]2 = A]/[A]Az(ud1+pd2)], the mean number of load occurrences
in S](t) between two adjacent coincidences. AZ/A12 is similarly defined.
Following a procedure similar to that which lead to Eq. 2.25, one obtains

the distribution function for R]2 as

Fy (r)
X “Aq,TH*, (r,p45) “AqnT “AqnT
. 12 1277772 712 12 12
P(R]2 <r)= R G {e - e } + e (2.30)
in which
r 1
FZ12[__ (r-pq55)] fx]2 (s) ds
° /1-07,
Hya(rseg) (2.31)
Fy. (r)
12
. _ (1) (2) . . . _ .
with X, = X + X , the combined intensity, 212 = npormal variate

12 '

with UZ = ’/(]“912)/(]4’9]2) UX]Z and OZ]Z = GX

12
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The overall Tifetime combined maximum therefore has the following approxi-

mate distribution:

FRm(r,T) = P(R-l <r) P(RZ <r) P(R]z <r) (2.32)

Terms e R and e are usually small and can be neglected. If

1> Py and P1p = 0, the dependencies disappear; Eq. 2.32 reduces to Eq. 1.1.

If o1s P2 and P12 = 1; Eq. 2.32 reduces to

-}\]T —X1T -)\ZT —AZT

Fr (r,7T) = {Fx(l)(r) [1-e l+e } {FX(Z)(r) [1-e J+e }

m

—A]ZT
{F, (r) [1-e 1+ e } (2.33)

%12
which can be also obtained from the fact that as 3 and Py => 1, the intensity
remains constant throughout the 1ifetime.

FR for different combination of Toad parameters are compared in
Fig. 6.m P17P=P t=20 yr, ud]=ud2=0.005 yr, x]=A2=A . X(]) and X(Z) are
normal with uX(])= ux(2)= 1.0, OX(])z ox(2)=0.3. The rest are indicated
in the figure. Monte-Carlo simulation results are shown for the case
0=0.95; they compared well with analytical solution. Again, it is observed
that unless the correlation is almost perfect (i.e. p=1.0), the effect of

correlation is quite moderate and only significant in the medium range and

Tower tail of the distribution.
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i

ITI. BETWEEN-LOAD DEPENDENCIES

Loads under combination may be correlated in occurrence time and

intensity.

3.1 Occurrence Clustering Among Loads

Examples are extreme wind, wave, snow, rain-on-snow load and loads
causing "common-mode" failure in nuclear structures. These loadings may
have different arrivél times, intensities, but may be clustered around a'
common point in time that there is a much higher chance of coincidence.
Such occurrence clusters are taken into consideration by using a multi-
variate point process. Individually, the occurrence of each load is a
| simple Poisson point process, however, collectively, there is a clustering
among loads to reflect the physical processes by which these loadings are
generated. In Fig. 7 two such correlated processes are described. The
parent point process is indicated byAa "0", a simple Poisson process with an
occurrence rate p. The load may occur (with a probability pi) at a random
delay time Ti and indicated by a "A". For example, if the parent process
represents strong motion earthquakes and the delayed process LOCA loadings,
the latter does not always occur after each earthquake and also, the exact
time of occurrence may vary. To make the process more general, an indepen-
dent (noise) Poisson process with occurrence rate Pis is superimposed and
indicated by an "x". The addition of the noise process is to accommodate the
situation that the loading can be caused by other sources than the parent
process under consideration, e.g. LOCA Toadings can be caused by events other
than earthquakes such as equipment malfunctions or human errors. "A" and "x"
together form the occurrence time for the process Si(t) which can be shown (2)

to be a simple Poisson process with an occurrence rate Aj=p;tops; - The dura-
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tion and intensity given the occurrence are modeled by random variables

such that Si(t) is a Poisson renewal pulse process with the mean duration

being uy and intensity distribution function Fy (Xi)‘ One can make one of
; .

;
S.(t) a generating process by setting the delay time equal to zero (it

;
coincides with the parent process) to represent the intensity variation within
each occurrence, e.g. local wind storms.

3.1.1 Conditional Occurrence Rate Function (COR)

For two correlated processes, the occurrence of one process strongly
influences the probability of occurrence of the other. The occurrence
correlation of a bivariate point process can be specified in a number of
ways. The one that is most convenient for load combination analysis is
through the use of conditional occurrence rate (COR) functions defined in
the following. (Throughout this paper emphasis is on engineering applica-
tion rather than mathematical rigor. Readers are referred to Ref. 2 for

more rigorous definitions and derivations.)
@ gy = Jim L b B, teat) 5 115 (2) is "on” at t=0} (3.1)

in which h](z)(t) = the COR function of Sz(t) given 51(t) js "on" at
t=0, N(Z) = number of occurrences of Sz(t), and t=0 is chosen at the
time S](t) is "on". In Ref. 2 h](z)(t) is called "cross-intensity."
To avoid confusion with the load intensity, COR is used here instead.
From Eq. 3.1 one cansee that h1(2)(t) is similar in concept to the
hazard function commonly used in system reliability. hz(])(t) is
simi1ar1y defined by switching the indices 1 and 2. As te= , ‘the in-
fluence of the other process vanishes, h1(2)(t) >, and h2(1)(t) >3

also by definition h](z)(t)xl - h(z)z(-t)xz and
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ahy Be) = 4, (B () + | (3.2)

in which y](z)(t) is the covariance intensity function

(2) _ Tim COV{N(])(O,A't)N(z)(t,t+A"t)}
v () = 0,400 ATtATt (3.3)
In the above bivariate point process, all points, except the pair
generated by the parent process, are statistically independent. The
only contirubtion to y](z)(t) is from this pair. It can be shown
that
NP = b frg (0 (3.4)
in which sz-T1 = probability density function of the difference of
the delay time TZ'T]’ therefore (from Eqs. 3.2 and 3.4)
n D (e) - p1ifp sz-T](t) Pa, (3.5)

hz(])(t) js similariy obtained by switching indices 1 and 2. One can
obtain a closed form sz-T1 by using convenient delay time distributions,
e.g., one-parameter exponential, Erlang and uniform distribution, two-
parameter norma], gamma distribution, etc. The function fTZ-T1(t) for some
of the distributions are given in Table 1. " The de1ayt1mesT] and T2 are
assumed to be independent; dependence can be introduced by using bivariate
distributions. The behavior of h§2)(t) for these delay times is shown in
Fig. 8 for a,=a, and a,=2a; where ai=E(Ti)‘ The strong dependence of Sz(t)
on 51(t) can be seen by the sharp increase as |t| = 0, however, this

dependence vanishes (independent) as |[t| >« ; also, when parameters being

comparable h (z)(t) is not particularly sensitive to the distribution type.
1
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TABLE 1 Function f

T - T
Delay Time Distribution ' fTZ - T](T)
Exponential /a
‘ 1 - 2
- e fort >0
E(T]) = al a.|+a2
E(T,) = a t/a
2 2 l e 1 for t <0
(C.0.V. 6; =1) 31792
i
Erlang -2t/a
4e 2 a3,
E(T,) = a 5 [t+ 1 for >0
L . (ay+ay) (ay+ay)
(C.0.V. 6. = .707) > [+ ] for 1<0
Ty (a%a,) (a,+a,)
Uniform for >y
= 232+T
E(T,) = q T, O ~2a;<t<0
E(T2) = a, :
(50 = .577) | LE for 0<r<2(a2-a])
T ~ | 2
2a2-T
Taa for 2(&2-31)<T<232
172
0 otherwise
for ay>a, switch indices 1 & 2
Normal
E(T-I) = a] [ 1 [T'(az'a])]z
exp[- =
_ - 2 2 2
E(TZ) ) /?F\/ci +0T 0T.I+OT2
o . 1 2
T
Standard Deviation
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The dependence on distribution parameters should be obvious, i.e. the peak
shifts with E(T,) - E(T;) and the concentration is governed by w%Ti + OTE _
Alternatively, if information is available on the delay time difference ’
T2—T], one can use such information directly without having first to model
individual delay times.

3.1.2 Two-Load Coincidence Rate Analysis

Coincidence of processes S1(t) and Sz(t) can happen in two mutually

exclusive ways, i.e. S](t) is "on" at t = t and Sz(t) is "on" in (T,T+d1),
or Sz(t) is "on" at t = T and S](t) is "on" 1in (T,T+d2) in which d; and

d, are the durations of the two processes given occurrences. Therefore

2
P(coincidence | d],dz)

- p InN® (e evd)) > 1] 57(1) s on" dn «,chat]

P [Sl(t) is "on" in t,T+At] + P[N(])(T,'ﬁdz) > 1] sz(t) is "on" 1in
r,erat) > 11 PLS,(t) is "on" in ,trat]

= gz(d]) X1At + g](dz) szt (3.6)

in which 9, and 91 indicate the conditional probabilities. Taking expecta-
tion with respect to d1 and d2, dividing by At and letting At - 0, one
obtains the mean rate of coincidence

_ lim P _ '
M2 = a0 Bt T Ed9{dN * Egley(d) Dy

(3.7)

in which Ed[ ] = expectation W.R.T. durations. A convenient first-order

approximation is

A]Z = gz(ud]) X] + 9](ud2) AZ (3.8)

in which Hy.» Mg are the mean load durations.
1 2
Using the COR function, one can show that
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P[N(z)(r,r+x) > 1| S](t) is "on" at ]

gz(x)

X

1 - exp[ -f h](z)(r)dr] (3.9)
0

The function g, for the COR functions given in Tgble 1 are obtained in
closed form and given in Table 2. gy can be similarly obtained. Ap-

proximations for 9o under the condition that load durations are small,
<< 1 and My /a2 << 1 are also indicated by éz in Table 2.

1 1
To check the accuracies of the approximations in Eq. 3.8 and Table 2.

i.e. Azud

Ed[92] is evaluated numerically in Which an exponential distribution is
used for d] (since the process is a Poisson renewal pulse process).
Comparison of results (see Table 3) indicates that Eq. 3.8 is generally
satisfactory, and éz in Table 2 is satisfactory for small “d] and

can be used at least as an order-of-magnitude type of estimate for
large “d]' Also, the results are not very sensitive to the delay

time distribution. The same is true of course for 9y For example,

if the delay times can be modeled by exponential distributions and the
durations are small, from Eq.3.8 and the approximations gy and gp for

9 and g, one obtains the coincidence rate

( TR S LA (3.10)
A T AqA u + u .

If Py Oor p, = 0, i.e. at least one of the two load processes is not
generated by the parent process, namely, the clustering no longer exists

and S](t) and Sz(t) are statistically independent, Eq. 3.10 reduces to the

result previously obtained (6).



TABLE 2 Function 92(ud

)
1

Distribution -
(see Tablel) 92(“.1]) gz(ud])
PiPoo -ug./a P.Poo
E tial —exp[- A A AR Y WP L 172 ]
xponentia 1-exp[ )‘Z“d] i (a]+a2)(] e )] [\Z + » T_—“)'a]*‘az ]“d]
PPo “2ud;/2 -
12 2 1772
T-exp {-Au, ~ ———— [a; (1-e )
27dy )\](a]+62)2 2 (4 4P1P 0 a3, )
Erlang 2 M (a;*ay) 4
2a -2uy4./a -2u,. /a
2 dy’ %2 . dy/ %2
* Ta7ayy U8 ) - Zagug € )
- - 2
Ppo  Md,~(3-3y) (a,-a,)
T-exp{-Apu, - ——2 [o(— ) PRP  -1/2 -2
2%, © [y, + 2f 2l ]
Normal o+ a o) 12 Y4
ay-a, T2 Zn(o]wz) 1
-6 (—)]
oy*op
for a,>a, (switch the indices 1 and 2 for az<a])
o A, 4 —=-7
Uniform 2 2 T“laz dl

1 v
T-exp {-dou, - 53— u, )} foru, < 2(a,-a,)
‘2 dl 2)\]32 d] d‘ 2%

) P]Pzp

1-exp (-Azud] " (1~a]/2a2)}for ud]>2a2

‘ PPoo
1-exp {-kzud] . —)‘]-‘— [(l-a]/az) + ]/4“/32"'

2ap-ug
7a_al) (ud -2a2+2a])]} otherwise
172 1

62
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TABLE 3 Comparison of 92(13 ) éz(ud )
1° 1
with E[gz(d1)]

a, ) Ud1 /%2
™ Dist. ] . Func.
1 1 5 1.0 5.0
E[gzj .920-2 .334-1 .501-1 .882-1
Exp. 9o .966-2 .395-1 .631-1 .103
9o .102-1 .510-1 .102 .510
E[QE] .981-2 .373-1 .553-1 .913-1
1 JErlang 9o .100-1 .447-1 .721-1 .104
9o .102-1 .510-1 .102 .510
Elg,] | .959-2 -375-1 -564-1 -924-1
Uniform 95 .990-2 .437-1 .741-1 .104
95 .102-1 .510-1 .102 .510
E[gZJ .345-2 .158-1 .289-1 .874-1
Exp. 9o .349-2 .167-1 .316-1 .108
9o .353-2 .176-1 .353-1 .176
E[92] 217-2 .123-1 .258-1 .952-1
5 (1Erlang 95 .212-2 J17-1 .254-1 .124
@2 - .205-2 .103-1 .205-1 .103
Efgz] .219-2 .108-1 .214-1 .868-1
Uniform 92 .219-2 .109-1 .217-1 .104
9, .220-2 .110-1 .220-1 .110
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To examine the sensitivity of increase in coincidence rate to the
clustering, consider the combination of two load processes in which

by =0 (no noise processes), A = Xy =p=1/yr, mean delay times
-3

°

a; =a, =10 yr ( 8 hrs.), mean durations pu, = yu, = 10—4 yr (50 min.)
1 2 d] d2

and Py = Py = 1 (the loadings always occur after the parent process). An

independence assumption would give a coincidence rate of 2 x 10'4/yr, while

after including clustering effect, it increases to (from Eq. 3.10) 10']/yr,

a factor of 5 x 102. Of course, in this case the fact that the mean
delay times are equal and the uncertainties {coefficient of variation

1.7 1.0) are large also contribute to the high coincidence rate.

1 2

If 3y # a, and GT and GT are much smaller, the coincidence rate would
1. 2

be reduced somewhat. For example, if a; = ]O'Byr, a, = 2.0 x 10"3yr,

T. = GT = 0.3 and all other parameters remain the same, assuming the
1 2

delay times to be normal, from Eq. 3.8 and Table 2 one obtains a coinci-

8

dence rate of 3.9 x 10-2/yr.

3.1.3 Occurrence Dependence Among Three Loads

The above method of modeling and analysis can be extended to the
case of combination of more than two loads. Generally speaking, there
may be more than one parent process and different ways of clustering
which may require different treatments. Consider the simple case of
combination of three loads with possible clustering around a common parent
point process by adding one more Poisson renewal pulse process to the
foregoing two-load model. It consists of a clustering part (with delay

time T3, probability of being "on" given the occurrence of the parent



.32

process P3)anda nojse part (with occurrence rate p3). The mean duration =

My and intensity distribution=F The analysis of correlation and

; A X3(x3).
coincidence rate between any two load processes is no different from that in
the preceding sections. However, when all three loads are considered, the
dependence of one load process on the occurrences of the other two needs to
be taken into consideration. For this purpose, a two-time COR function is

defined as follows:

(3) (t,g') = im 1 pin(3) (¢, t4at) 5 1 S,(t) is “"on" at t=0

At»0 At
and S,(t) is "on" at t=t'] (3.11)
in which t=0 is chosen at the time S, (t) is "on"; h%g) is the conditional

o) L(2)

occurrence rate of S3(t), those of S](t), 535 and 32( ), 13 are similar-
1y defined. Some asymtotic properties of the function h(3) (t,t') are

as follows: as |t] , and |t-t'] == | S3(t) would be free of the influence

of S,(t) and S,(t), therefore hgz) A3; also as [t[== but [t-t'| remains finite,

53(t) would be dependent only on Sz(t), therefore, h§§) = h£3). Following

a procedure similar to that for the two-load case one can show that

(derivation given in Appendix B)
A

(t,t') 2
(3) by L 123 (3) py_s (3) (41
- D] + g (3.12)

in which yq,5(tst') = opyPoPy é sz(t'+T) fT3(t+r) fT](r)dT

and the delay times T1, T2 and T3 are assumed to be independent. For

example, if the delay times follow exponential distributions it can be

shown
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(3) (4 1) = 1 P1PoP5 ~(t'/ay+t/ay)
Mz ) e, e | ° ’
[ p (a;*a,) € ] (a]a2+a2a3+a]a3)

T%;%g) ‘Gﬁjggy 3 fort>t | (3.13)
and for t < t', —(t't')/a3 in Eq. 3.13 is replaced by(t—t')/az. Similarly,
one can obtain hég) and h%g) by rotating the indices. Note also, that Eq. 3.13
satisfies all the asymtotic properties required for the two-time COR
function. The behavior of the conditional occurrence rate function of
(3) . . . B B _ _ _
33(t), h]2 , is shown in Fig. 9 for the case p; = p, = p3 = 1, a; = a, =

a, = a (equal mean delay times) and Py = Py =p3=0 (no noise processes).

3
The surface described by the two-time COR function isa two-dimensional version
of the one-time COR function. The sharp ridge at t = t' indicates the. strong
influence of the occurrence of Sz(t), even when t is large (i.e. influence

of S](t) already vanishes). The maximum is at t = t' = 0, the time when

both S1(t) and Sz(t) are "on". Different delay time distributions may

cause slightly different behavior, for example if all three delay times

are modeled by Erlang distributions, the surface would be similar except

the ridge would be smooth.

3.1.4 Three-Load Coincidence Rate Analysis

Coincidence of three loads can occur in 3! = 6 mutually exclusive
ways according to the order of the "on" times of the three processes. For
example (see Fig.10), if processes S](t), Sz(t), and S3(t) are "on"

according to the order 1, 2 and 3 and S](t) is "on" at t = t_, then

coincidence of three levels occurs if Sz(t) is "on" at t = t', where
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t <t'<t +d; and SB(t) is "on" at t=t", where t'<t"<min(t0+d],t'+d2).
Following a procedure similar to that given in Eqs. 3.6 and 3.7, it can be
shown that contribution to the coincidence rate from this occurrence se-
quence is

Ay Egleyp3(dy.d;)] 2 *19123(“d]’“d2) (3.14)
in which 9123(d];d2) is the conditional probability that Sz(t) and 53(t)
are "on" according to the manner described above given the durations of
S](t) and Sz(t) being d; and d, and that 31(t) has occurred. Ed[ ] is

the expectation w.r.t. the durations for which a first-order approxima-
tion can be used. Using the conditional occurrence rate functions, the
mean number of joint occurrences of Sz(t) and Ss(t) in the time intervals

as described is
d min(d],t'+d2)

3 = IICON;

/ hgg)(t,t')dt dt" ~(3.15)

in which S1(t) is assumed to be "on" at t=0. Therefore,

9123(d],d2) 21 - exp [- uy,l

> o3 for Hpg << 1 (3.16)

Similarly gijk for other sequence of occurrence of the Toads can be
obtained by rotating indices in Eqs. 3.15 and 3.16.
The overall coincidence rate regardless of the order of "on" times

is therefore the sum (since they are mutually exclusive) given by

Moz T M Eql123(dy o dp) + 9q35(dy 5 dg) T+ 3, Eglapysldy 5 dp) +

) 923](d2 9 d3)] + >‘3 Ed[93-32(d3 s d1) + 932-]((13 s d2)] (317)
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in which approximations given by Eqs. 3.74 and 3.16 can be used. Integration
in Eq. 3.175 can be carried out in closed form for some delay time distri-
butions (see Appendix C). A further approximation can be used when the

load durations are small, i.e. ”d./aj << 1 and Ajug << 1,

d] min(d],t'+d2)

9123(d128) = G155 = 112(0) 1{2)(0,0) of t[ dt dt’

n{)(0) n{$)(0,0) /2 for dy < d,

n{2)(0) h n{3)(0,0) [dd,- a2 for ¢ > d, (3.18)

in which, for example, if delay times are exponential variates, from Eqs. 3.13,

3.5, and Table 1

P»P AoP+P
(2) (3) _ P P1PoP3 MPaP3 oP1P 3
h:“/(0) h 0,0) =+— [ +
1 12 ( Ay (a]a2+a2 3*taa 3) (a +a3) (a]+a3)
AapqP
3F1re
+ T+ 201 - (3.19)
(a1+a2$ 273

An interesting 1imiting case is when at least two among the three Pi's
are zero, i.e. the clustering around the parent process no longer

exists and 51(t), Sz(t), and'S3(t) become statistically independent.
Substituting Egs. 3.18 and 3.19 into Eq. 3.17, knowing that for this case

h]z)(o) h]3)(0 0) = Aprgs etc. one obtains

3.20)
A T Adohqlug ug Fuguy Fougug ) (
123 17273 d] d2 d2 d3 d] d3

Metz Ref nce Room
Civil Engins ering Denartment
B106 C.Z. Bullding
University of Iilincis

Urbana, Iilinois 61803
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the result previously obtained (11).

The accuracies of the approximations in Eqs. 3.14 and 3.18 are examined
by comparison of results with Ed[9123] from numerical integration in which
the duration distributfons are exponential. The results are shown in
Table 4, It is seen that 9123(“d]’“d2) is generally satisfactory and so
is 9123 for small durations.

The increase in the coincidence rate due to clustering is examined
by the following numerical éxamp]e. P] = P2 = P3 =1, ay =3, =az=a-r

10_3(:8 hrs.) and Py =Py =pg3 =10 (no noise processes), p = 1/yr., and

“d3 g 107 (350 min.). An independence assumption would
give (fromEq. 3.20) a coincidence rate of Moz T 3 x 10'8/yr., whereas in-
cluding clustering one obtains from Eqs. 3.17, 3.18, and 3.19

- 2 r3p 1 32 _ 1p-2
}\]23 ~3Q Ud [2’5+ 3a—2] + 39 ud 10 /)"” : (3'2])

an increase by a factor of 3.3 x ]05.

Theoretically, the method can be extended to the analysis of four or
more loadings. However, as can be seen the C.0.R. function and the algebra
required for the evaluation of the coincidence rate would become extremely

complicated, therefore it is not pursued any further in this study.

3.1.5 Probability of Lifetime Maximum and
Comparison with Simulation ResuTts

The probability distribution function of the lifetime combined maxi-

mum of the sum of such clustering processes is (from Eq. 1.1),

Fr (r,T) = expl- 2 A,TFE (r) -5 2 AT FE (r) -2z sa. TF  (r) ...]
R it iz Ky 257k KXy
(3.22)
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TABLE 4

Comparison of g,,4, §123 with E[6y55]

M, ELg5] 9123 9123
.0001 .00133 .00152 .00168
.0005 0165 0257 0420
Ud /Ud =]
194 001 0364 0653 168
.005 106 159 4.2
.0003 .00438 .00628 00841
.0015 0337 0594 2102
g /ud =3
1 dp .003 .0603 102 840
015 131 169 21.0
P-I = ‘l, p = a-l = a2 = a3 = 0.00]

1
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in which ki and Aijk are the coincidence rates given by Egs. 3.7 and 3.17;

J
Xij= Xi + Xj’ Xijk= Xi + Xj + Xk’ etc.

In the above approximation the clustering effect on the individual
load contribution is neglected since in Section 2.2 it has been shown that
such an effect is quite moderate and tends to give lower value of Rm'

To demonstrate the validity of the proposed method, Monte-Carlo
simulations are carried out to verify the accuracies of (1) coincidence
rates as given by Egs. 3.7 and 3.17 and (2) the probability of combined
maximum as given by Eq. 3.22. Three load processes with possible cluster-
ing as previously described are generated by digital computer.

Sample statistics and probability estimates based on a sample size
of n=100 are computed and compared with the theoretical values. According
to the analysis the coincidences of loads are Poisson processes with mean
rates given by Egs. 3.7 and 3.17. The comparisons of the coincidence
rates for two sets of process parameters are shown in Table 5 (column 1,
2, 6 and 7). The slight difference can be attributed to sampling errors (due
to finite sample size). The goodness-of-fit tests of the Poisson distri-
bution are also satisfactory and the results are shown in Table 5.

FRm(r,T) given by Eq. 3.22 is compared.with simulation results in Figs.
11 and 12. Load intensities given occurrence are assumed to be independent
normal variates with “x]= uX2= px3=1.0, ox]= oX2= ox3=0.3. The other parameters
remain the same as given in Table 5. As expected, at high threshold (low
risk) levels, Eq. 3.22 gives very good estimates since the distribution is
dominated by the coincidence terms; at low level the Poisson assumption
used causes slightly conservative results. Results based on an assumption
that the loading occurrences are independent are also shown by dashed lines.

As expected, such assumption lead to quite serious underestimates of the risk

of combination of loadings.



TABLE 5 Coincidence Statistics

Two-Load Coincidence

Three-Load Coincidence

2 2
M2 x~ test M3 X~ test
(1) (2) (3) (4) (7) (8) (9) (10)
. 5% Most . 5% Most
Theory S1mu1a- Sample Signif. L1ke]y Theory Slmu1a- Sample Signif. | Likely
tion 2 tion 2 9 2
X G X X X
P]=P2=P3=1
.890 .895 10.85 22.4 .187 8.80 14.6 4.0
. p]= pz= p3=0
P1 P2 P3 .5
.352 .351 5.66 14.1 .0412 .0474 2.86 5.99 1.0
o= fy” py=2/
P T P .005 yr, ay=a,=ag" .02 yr, p= 4/yr, T= 20 yrs, Sample Size n=100

Ly
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3.2 Intensity Dependence Between Loads

For example, storm-spawned loadings such as wind, wave and surge may
have high correlation in the intensities. Such dependencies would lead to
much higher probabilities of combined load Tevel being exceeded.

The effect of such dependence is investigated using the model shown in
Fig. 13. The occurrence times and load durations of the two processes are
independent as in two independent Poisson renewal processes described in
Section 1.1. However, intensity correlation is introduced by the condition-
al auto- and cross-correlation functions given that process S1(t) and Sz(t)
are "on" at the respective times. In other words, the intensity given
occurrence is "sampled" from a fictitious vector continuous process (indicated

by dashed 1ines) with a correlation matrix

Ryq(x) R12(7)
Roq () Ryp(7)

(3.23)

Therefore, the conditional correlation matrix of the pulse process is also
described by Eq. 3.23, e.g. given that processes S](t) and Sz(t) are "on"

at t1=tk and t2=tj, respectively,

in which T=tk-tj; the difference between the "on" times. Note that the
compatibility conditions require that load processes having between-load
intensity correlation have to have within-Toad intensity correlation.

Since the within-load dependence has only moderate effect on the life-
time combined maximum (Section 2.3), it is accounted for approximately using
the Gauss-Markov result previously obtained with an equivalent

o5 [Ri1<1/xi)—E2(x1)]/o§1 » (3.25)
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Therefore, the lifetime maximum due to individual loading has the following
approximate probability distribution:

in (r) )
FRi(r,T) :'H;TFTE;Y exp[-vitH (r,pi)] (3.26)
Since the intensities are correlated between the loads, so are their lifetime
maximum values. The combined maximum with no coincidence can be evaluated
approximately from the Gumbel's type B bivariate extreme value distribution (6)

m m /m

FR]RZ(r],rz,t) = exP[~{(—anR](r],t) +(-2nFR2(r2,t)) ¥ (3.27)
in which m is a parameter specifying the correlation between the two extreme
values (e.g. m=1 (p=0), m== (p=1)).

Since the load occurrence time and duration are assumed to be indepen-
dent, the coincidence rate A2 is the same as that in Eq. 1.1. However, the
conditional probability of threshold level being exceeded is strongly dependent
on the intensity correlation between the two loads. The combined intensity
depends on the time lag t (difference in occurrence times). Since the occur-
rence times are Poissonian and independent, tr varies from —d2 to d] (or —d] to

d2) with a uniform probability density function, where d1 and d2 are the

load durations.
d

1
P(R>r|d;.dy) = _é PLS(t) + Sy(t+e) > r] #@ dr (3.28)
2

As a first-order approximation, the condition on d] and d2 are removed

by substituting the mean values of d] and d2 into the above equation
u
d
1

1 .
1 PIS, (£)+S,(t+c)>F] dr  (3.29)
G ‘Lbf e

P(R>r|coincidence) = G:Z(r)
2

For example, if the intensities are normal variates, so is their sum.
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r-(uy tuy )
PLS;(t) + Sy(t+c) > r] = 1 - of L ¢ ] (3.30)

2 2
Yoy oy +2(Ry,(T)-uy uy )
X1 XZ 12 X] X2

Furthermore, if the load durations are much smaller than the cross-correlation
time, i.e. Mg, and wy << AT = f R]Z(r) dt, R12(T) can be approximated by

1 2 0
R]Z(O) and Eq. 3.29 can be approximated by

% r'(llx +UX )
6y,(r) =1 - o 12 ] (3.31)

2 2

Voy + oy +2(Ri,(0)-ny ny )

X1 X2 12 X1 X2
The Tifetime maximum due to coincidence is therefore governed by the probability
distribution

*

FR]Z(r,T) = P(R]2<r,T) S exp[—x12 T G]Z(r)] (3.32)

and the overall lifetime combined maximum has the following approximate proba-

bility distribution function

(r,T) (3.33)

FR (r,T) = F (r,r,T) F
12

~ "R4R

m 172 R

To see the significance of the correlation, numerical examples based

on the following correlation functions are calculated

2
Rll(T) = oXl eXP[-(T/Cll)Z] + uil
R22(T) = 0§2 exp[-(r/czz)z] + uiz
() 5 (3.34)
R ) = R,, (1) = 0, o, p expl-(1/C.,)°] +
12 21 x, X, 12 “xl“xz

The conditional auto-correlations are therefore governed by Cii and the cross-
correlation governed by p and C]2 (Note o and C]2 have to satisfy certain

compatibility conditions involving CH and C22). Cases with parameters My =
1
]=0X2=0.3, C]]=C22=C]2=C, A1=A2=A and “d]=“d2=“d and p=0.9 are

=1.0, ¢

2 X

HX
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compared with independent loading results in Fig. 14. It is seen that at
Tower tail where individual loading contributions dominate, the correlation
causes a lower lifetime combined maximum which agrees with findings in
Section 2.3. However, as threshold level. increases, the coincidence term
becomes dominant and the trend is reversed, i.e., the positive correlation
between the intensity causes a much higher probability of exceedance. Monte-
Carlo simulations are also carried out in which a vector process is generated
according to Eq. 3.34 and the method by Shinozuka and Jan (10). The compari-

sons are again satisfactory.
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IV. GENERAL CASE

In general, more than one dependence can exist in the processes under
combination. For example, both within-Toad and between-load clusterings
can happen, also, the intensities of clustered, storm-spawn loadings may
well be correlated. To treat such dependencies, one can properly combine
the models in Sections 2 and 3. For instance, one can extend the Poisson
delayed model by allowing a cluster of océurrences of load within each "on"
time, (see Fig. 15). Therefore, marginally each process is of the Bartlett-
Lewis type clustering process, and jointly there is a clustering of the
clusters in each }oad around the parent point process. Thus, both within-
and between-load dependencies are included.

If the intensities and duration are assumed to be statistically inde-
pendent as in the foregoing, an analysis similar to those given in Sections
2 and 3 would give an approximate distribution of the lifetime combined maxi-

mum

m

- 1 1
FR (r,T) = eXP{X]T Fi](r) [7§F§—(;7173 + AZT F§2<r) [7€?i?773:jﬂ +
1 2

”]”2(“d]+“d2) : ‘

c N .

o T 1, IR
172 uc]+“c2 X12

in which A%Z is the mean coincidence rate of the clusters. For example, if
the delay times for the cluster are modeled by exponential distribution with

mean values aj and CP the coincidence term in Eq. 4.1 reduces to

P-Pop
gl Fug M+ =5 L3R (0 [ - 1 (4.2)
1 Y2 ATA a,ta 12 Ls TR
"2 37 1 9.
n]nz('—;—)FX (Y‘)'*‘]
e THe 12

1 "2
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in which A%,Ag are occurrence rates of clusters. n = mean number of Toad
occurrences in each cluster. Compared with Eq. 1.1 for the independent
loadings, the two square brackets account for respectively the effects of
between-load and within-load occurrence clusterings.

Similarly, when Toads are correlated both in intensity and occurrences,
one can combine the results given in Section 3 without difficulty, i.e. in
Eq. 3.32, the coincidence rate can be replaced by that given in Eq. 3.7.

It can be seen that compared with the result for independent loadings,
both the coincidence rate and the conditional probability of exceedance in
this case increase considerably due to the dependencies, causing a much
higher probability of exceedance at the high threshold Tevels. Comparisons
are made in Fig. 16. The load parameters are the same as those given in
Section 3.2. The additional occurrence dependence parameters are:

Case (I), A]=AZ=;\=1/yr, p=2/yr, p]=p2=0.5 (i.e. p]=p2=0) and a]=a2=0.02 yr;
Case (II), A=Ao= A =4/yr, p=8/yr, p;p,=0.5 (p]=p2=0) and a]=a2=.02 yr. The
probability distribytions of 1ifetime (20 yrs) maximum combined load for the
independent loads case are the same as those given in Fig. 14. As expected,
the additional occurrence dependence gives much higher exceedance probability

at the high levels.
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V. ANALYSIS OF LOAD COINCIDENCE DURATION

When combining load effect processes using the load coincidence
method, the duration of the coincidence can be an important factor; for
example, when dynamic effects are considered or when structural strength
deteriorates significantly with time. For loads with duration which varies
from occurrence to occurrence, the load coincidence duration is also a
random quantity. Experience indicates that using the mean value generally
accounts satisfactorily for its variability. In the following, approximate
solutions of the mean coincidence duration are obtained for the foregoing

Toad processes.

5.1 Independent Loadings

It has been shown (11) that the coincidence rate for two loads is
Ma * MPalug ug ) (5.1)
The probability that the process Si(t) is "on" at a given time is approxi-
mately Kiud . Since occurrences are independent, the probability that both
i

processes are "on" at a given time is

P (5.2)

= AqAy U4 M
12 172 d] d2
Let the mean duration of coincidence be M. - It has been shown that
12
the coincidence time is also approximately a Poisson process, therefore the

probability that the coincidence process is "on" at a given time is

P (5.3)

T Aqou
12 12 d]2

Substituting Eq. 5.1 into Eq. 5.3 and comparing with Eq. 5.2 one

obtains
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Uy U
d, "d
1 "2 :
A T —= (5.4)
d uy tu
12 d] d2

Similarly, one can show that the mean duration of coincidence of three

Toads is

Hd.Hd, Hd '

A 2 123 (5.5)

N2 d,Ma, M, Ma, M, My
The result given in Eq. 5.4 can be derived from a dif%erent approach.
Given the durations being d] and d2, the duration of the overlap DO is a
function of the difference in occurrence times 1t (see Fig, 17). Since the

occurrence times of S](t) and Sz(t) are Poisson and independent, T is uni-

formly distributed between -d] and d2 is therefore,

E[D,|d;.d,] =

|
—
les)
o
—
-~
~—
-—h
—
i
g
oo
3

L 12 (<)
= D (t) dt
d1+d2 -d] o}
dqd,
= d]+d2 for d2 > d1 (5.6)

The same result can be obtained for d2 < d].
Using the first order approximation
ud1 Udz
E[Do] M. T T (5.7)

u, tu
12 d] d2

5.2 Dependent Loadings

The overlap duration would be affected by the dependence only if the
dependences are in the occurrence times and durations. Consider first the

case of within-Toad occurrence clustering. Coincidence of loadings happens
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only when there is a coincidence of the clusters and within the clusters,
the loadings occur according to Poisson processes. Since the two Toading
processes are independent, the analysis of the duration of the coincidence
would be the same as the unclustered case except that the difference in
occurrence time t may not be exactly a uniformly distributed random variable
because of the clustering. However, from Eq. 5.6 one can see that E[Dold],dZ]
is not very sensitive to a slight change in the density function of r. There-
fore, one has reason to believe Eq. 5.7 can be used as a good approximation;
this point will be further supported by the following analysis.

When between-Toad occurrence clustering exists the mean coincidence
duration would be affected by the dependences. For example, one would
expect that Eq. 5.4 can still beusedas a good approximation when the de-
pendence is weak, and the mean duration would be much longer when the de-
pendence is strong. Following an analysis similar to that given in Egs.
5.1 to 5.4, the mean duration is obtained as follows.

Given the durations d.| and d2, the process S](t) is "on" at a given
time t=t_ if (see Fig. 18) 0 < & < dy. Similarly, Sz(t) is "on" at t=t|

if 0 <& §_d2. The probability that both loads are "on" at t=t0 is
P]2 = P(0 < &y f_d] no <& §_d2) (5.8)

Since the occurrence times are now correlated, so are 51 and

£y The joint density function of & and £o is
f =f f (5.9)
E18p  ElE7 g
M5
in which f_ = A] e since marginally, the occurrence time of S](t)

3
follows a Poisson distribution (Section 3.1). Making use of the conditional

Metz Reference Room
Civil Engineering Departmend
B106 C.E. Building
University of Iliinois
Urbana, Illinois 61801
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occurrence rate function (C.0.R.) defined in Eq. 3.1

81782
- h§2)(r) dr
d [ °
f =—[1-e ]
Eyleq  dg,
.-
1 =2
- f h%z)(r) dt
© (2)
= e h, (E]—Ez) (5.10)
Therefore,
dy dy
P]2 = é é fggli] fﬁ] dgz dg] (5.11)

If Aidj<<] (transient loads) the two exponential functions in Eq. 5.11
are approximately equal to unity
d
Pz [ N G (5.12)
12~ 1M 7 (8nEp) d&qdEy :
0 0
dp 4

f [ f (g,-£,) dg, de
2 P P T I

AqAi,d,d, + pP,P

1727172 1

The conditions on d1 and d2 can be removed by using the mean values My and
1
g in Eq. 5.12 as an approximation.
2
In Section 3.1 it has been shown that the coincidence is also a Poisson

process with a mean occurrence rate A]Z given by Eq. 3.7. Let g be the
12
mean duration of coincidence, the probability that the coincidence process

is "on" at a given time is

P., A U
12 12 d12

Comparing with Eq. 5.12, one obtains
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i Ud ud
2 1
1
u 2 —— [Aqhp uyuy +poPP, [ f F (g1-&,) dg; de&,] (5.13)
If P] or P2=O, the clustering disappears ny reduces to that in Eq. 5.4
12
as it should. The sensitivity of increase in My due to occurrence cluster-
12

ing as compared with Eq. 5.4 is shown in Table 6 for the case p=A]=A2=2/yr
(p]=p2=0, P]=P2=1), ud]=ud2=ud=0.001 yr (8 hrs) and exponential delay times
with mean values 3 =a,7a. It is seen that if the ratio of mean duration

to mean delay time ud/a is small, Eq. 5.4 can be used as a good approxima-
tion. Similarly, one can show that the mean duration of coincidence of three

lToads with possible between-load occurrence clustering is

u H u
4, Yd, M4

c g T e e e 0D (e pe,) deqde,de ]
Mdipg Mgy TV o2 4 4Tz 8178328778/ Ny T 18ym8y) dE3dE,dEy

(5.14)

in which 223 is given by Eq. 3.17.
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TABLE 6 Mean Coincidence Duration

“d/a Eq. 5.4 Eg. 5.13
. .0005 yr .000513 yr-
.5 .0005 yr .000645 yr
1.0 .0005 yr .000732 yr
5.0 .0005 yr .000926 yr
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VI. SUMMARY AND CONCLUSION

Because of the transient and intermittent nature of most environmental
loadings on structures, general treatment of the stochastic dependence
in Toad combination analysis is difficult. In this study, models based
on pulse load processes are developed in which load occurrence time, inten-
sity and duration may be correlated within each process and between processes.
The occurrence time dependence is modeled by multi-variate clustering
point process and intensity and duration dependence by Gauss-Markov sequence,
conditional correlation functions and multi-variate distributions. The
effect of dependencies are investigated in the context of the lifetime
maximum of the summation of two load processes. The load coincidence method
previously proposed for combination of independent loading is generalized
for dependent loadings and approximate solutions are obtained in simple,
closed form and verified by Monte-Carlo simulations. It is found that com-
pared with results for independent loadings:

(1) Within-load duration-intensity correlation causes a slight in-
crease in the exceedance probability for lifetime combined maximum at fhe
high threshold level;

(2) Within-load intensity dependence and occurrence clustering cause a
moderate decrease in such probability in the lower tail and have little
~effect at the high threshold level;

(3) Load coincidence rate is extremely sensitive to the between-load
occurrence clustering, increases of several orders of mganitude could re-
sult giving much higher probability of exceedance at the high threshold level;

(4) Between-Toad intensity correlation is important at the high threshold

level; and
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(5) When both intensity and occurrence dependences exist between
loads, the effects are multiplicative causing an extremely high probability
of exceedance at the high threshold level.

The above conclusions hold for linear combination of load effect
processes which can be reasonably represented by pulse processes, such
as static or equivalent static load effects. For nonlinear and dynamic
systems, the coincidence rate and cluster analysis remain valid, however,
the analysis of conditional probability of failure becomes more involved
requiring more detail modeling of the excitation given occurrence and
structural response behavior, such as reliability and random vibration
analyses (12). This is currently under investigation. Findings will be

given in a subsequent report.
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Appendix A: Sum of Two Independent Gauss-Markov Processes

Let {x} = X5, X ,Xn and {y} = Y]’YZ""’Yn be two independent

12 Xosens
stationary Gauss-Markov sequences with one-step correlation coefficients
Py and Pys respectively. Let {S} = S], 32,...,Sn be the sum process. It

can'be shown that the correlation coefficient between Si and Sk is

2 |k-i] , 2 k-1
oxPX + oypy

°s.s, = 77 (A-1)
i“k oy + ay
From Ref. 4 {S} is a Gauss-Markov sequence if and only if
- k-] (A-2)

PSS 7S
in which pg = one-step correlation coefficient.

It is seen that Eq. A-1 reduces to Eq. A-2 only when oy = Py~ However,
comparison of Eqs. A-1 and A-2 shows that (Fig. 19) even when

Py # Py the difference is not very large; therefore, the Markov Process can

be used as an approximation.
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Appendix B: Derivation of Function hgg)(t,t')
(2)
1

Define a 3-D extension of ¥y in Eq.

Yip3(tat') = tim — 1 __eno,a) - BN (1))g
A't,A"t, A" ES0 A'tA"tAME

N2 e ety - e @) (e erame) - ey (B-1)

Expanding the product within the expectation one obtains:

(t,t') = Tim 1 {E(N“)N(Z)N(‘g)) _ E(N(])N(Z))
Alt,A||t5A"|t+O AltA".tA"lt

ey e @)y gy C e DNG)y gn@)) 4 21y g(n(2))

Y123

E(N(3))} (B-2)

Using the definition of COR functions and A

2 (tyare w3 (e, )ame

Tim 1 (
1 12

(t,t') = {A]A't h

%
]23 Alt,Ant’Alll t_‘)o AltAlltAlll.t

] (2) i n 1} " (3> 1] [} ] 1 (3) 113 "
- Aot hy (t')a thga™t - A0"t hy (t-t')a taa't - aqatt by (t)a taa"t
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The time increments cancel with denominator. Solve for h%S)(t,t'),
one obtains Eq.

From the definition of y;,5 it is clear that components in S](t),
Sz(t) and 53(t) which are statistically independent have no contribution
to yqyp3- Since all the "noise" parts of the processes are statistically
independent and independent of the parent and delayed processes, unless

all three points have the same cluster center, at least one point is in-

dependent of the other two and the contribution to Y123 would be zero.
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Therefore, an extension of Eq.

1im . . , .
ALQA"t,A“'t*O OP]A t P[t <T2-T1<t +A t,

"
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t <T,-T

3 ]<t+A“'t] P2P3 / A'ta"ta'Mt
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Appendix C: Integration of Eq. 3.15

For exponential delay time distributions, substituting Eqs. 3.5 and 3.12

into Eq. 3.15 gives

%?1 for d1 f.dz
U =

P1P,P, 3,25 dy (- + -dy/ag

C, =2 | a,[ (1-e V3 33y 50
1 A (a]a2+a2a3+a]a3) 3 (a2+a3) 2
-d,/a A, P,P -d,/a
1772 12 3 173
(] - e )] + —(—3?3_3)— a3[d1 - a3(1 - e )]
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2'1 3 173 312 17 %2
* (5;;557~a3[a3 - (ag+dy) e 1+ 15;1557-a2[d] - a,(1 - e )1}
¢ |
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Appendix D: Monte~Carlo Simulation and Combination of
Dependent Pulse Processes

In order to demonstrate the method of simulating the loads on a
structure over its lifetime, the general technique of the Monte-Carlo
simulation is first described. The specific methods used when considering

dependencies within and between loads are considered thereafter.

General Simulation Methods

The computer is capable of performing thousands of operations each
second. Therefore, if we are able to accurately model an experiment or
series of events on the computer, we can obtain sufficient data, in a short
time, to enable us to analyze the statistics of the experiment.

One of the most important tools for this type of simulation is a
random number generator. The basic one which is sure to be found on all
computers is that which generates random number uniformly distributed
between 0. and 1. However, we may require random variables in the simula-
tion which have distributions other than uniform. To obtain these variates
we use a well known technique.

An example is given to illustrate the technique for exponentially
distributed random variables {Xi} whose distribution function is given by
F(X) = 1 - exp(-aX).

A set of random variates {Ui} uniformly distributed between 0. and 1.
is generated. The {Xi} are obtained from the inverse of the distribution

function
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Poisson Renewal Pulse Process

This study requires the simulation of load processes such as those
shown in Fig. 1. The occurrence of the loads is a Poisson process which
means that the times between occurrences are exponentially distributed.
These occurrence times {ti} may therefore be easily simulated by first
. simulating the times between loads {di} .

Starting condition; no load at t=0

ot
i

K time of occurrence at kth load

(a8
1]

time between occurrence of i-1 and ith load

=

= t, = I d.
k j=1 1
The duration of the loads is also taken to be exponentially distributed.

They may be simulated in two ways.

i) Having obtained the occurrence times of the loads, the simulated
durations are merely added to each of the starting times. This
method has the disadvantage of producing a probability (although
small) of overlap of two loads.

ii) Rather than simulating occurrence times of the loads, generate
many points whose mean interval is the same as the mean load duration.
There is then a probability of these new "loads" having zero inten-
sity. This probability is given by

P(O) =1 - Xud
where A = mean rate of arrival of loads
LH= mean load duration.

To choose those Toads which will have a non-zero intensity,
generate uniformrandom numbers between 0. and 1. each being desig-
nated to a Toad occurrence. Those Toads whose designated radnom
variate is Tess than or equal to Auy will be considered the real
loads on the structure. They will %aVe a mean arrival rate of A
and a mean duration of Hy-

Thus far, the start- and end-times of each load occurrence of a
particular load-type are stored in the computer. For each occurrence
it is then an easy matter to generate a load intensity from knowledge
of its probability distribution.
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Present interest is in the combined occurrence of at least two load
types as described above. It is therefore necessary to generate and store
two statistically independent loads occurring over the lifetime of the
structure. Once this is done, the values needed for the statistics are
obtained by counting the number of times overlaps (or coincidences) occur
between the two load types and searching for the maximum combined load on
the structure during its Tife.

The procedure as described above is repeated, with new independent
load processes, until enough observations have been obtained to give reliable

statistics.

Within-Load Dependencies

1. Occurrence Clustering. This is a simple extension of the above simula-

tion procedure. The process to be generated is shown in Fig. 3.

The start- and end-times of the clusters are generated in similar
fashion to those of the loads described above. Then all that is required is
for the individual loads to be generated within each cluster, given the mean
number per cluster and the mean Toad_duration.

2. Intensity Dependence. The generation of the times of occurrence of

loads is the same as that of the Poisson renewal pulse process. The only
difference now is that fhelihtensities of the Toads are not independent
within each load case.

The intensities are generated as a dependent sequence, the details of

which are given on page 15.

Between-Load Dependencies

1. Occurrence Clustering among Loads. Such processes are illustrated in

Fig. 7. There are now two processes being superimposed to form the one

lToad case. The first is termed a delayed point process and the second an
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independently and superimposed on the above.
To obviate any overlapping of loads within each Toad case, a new process

is generated with mean occurrence rate

— - Px -

U4 = mean Toad duration

P = probability of occurrence of delayed process
XA = occurrence rate of parent process
v = occurrence rate of noise process

The end-times of the load occurrences are then given by the new process
after each load occurrence time, for both noise and delayed loads.

2. Intensity Dependence Between Loads. The load occurrences and durations

are independent and are generated as for the Poisson renewal pulse process.
As described in page 44, the intensities of the correlated processes are
obtained by "sampling" a fictitious continuous vector process at the times
of occurrence of the individual Tloads.

The correlation matrix for the vector process must be given. Details
of the procedure used to simulate the vector process may be found in the

paper by Shinozuka and Jan (10).






