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NOTATION
Ag - carcked surface area of concrete
A - cross section area of tensile reinforcement
s
A; - cross section area of compressive reinforcement
Asp - cross section area of spiral reinforcement
Av - cross section area of vertical reinforcement
A h cross section area of horizontal reinforcement
v
a - shear span length
b" - width of confined core, measured to outside of hoops

bw - width of beam web

C - compressive force

D - nominal diameter of longitudinal reinforcing bars

DC - diameter of confined core in spiral column

d - beam effective depth

d" - nominal diameter of lateral reinforcing bars
ES - elastic modulus for steel
E - elastic modulus for concrete, tangent modulus



xi

F - force

f - stress

th
!

concrete stress

f' - concrete compressive strength, uniaxial
c

fS - tensile reinforcement stress

fé - compressive reinforcement stress

fr - concrete rupture stress

fu - ultimate stress for steel bars

fy - yield stress for main reinforcement

f; - yield stress for transverse reinforcement

h - beam total depth
h" - the average of the sides of the rectangular compressive zone, measured

to the outside of the steel hoops.

jd - lever arm for moment calculation in beam

K - constant to define maximum concrete stress

K. - constants to define stress-strain curve for concrete

K 2’ 73

1r K
kd - depth of neutral axis

kud - depth of neutral axis at ultimate loading stage

£ - clear span length
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M - moment
Mu - ultimate moment
Mfjl - ultimate flexural moment

Mm - ultimate moment with axial load

N - axial load, or clamping force

Nu - axial force associated with ultimate moment capacity

P, - characteristic points that define the shape of the shear

influence model

S - spacing of transverse reinforcement

Sh - spacing of hoops, or spacing of horizontal web reinforcement

T - tensile force

T - tensile force in truss mechanism
u

V - vertical reaction force, or total shear force

Va - sum of vertical components of interlocking shear forces
Vc - shear force across the compressive zone

Vd - dowel force

Vu - shear force associated with ultimate moment

v - shear strength of plain concrete
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v, o~ shear strength of web reinforcement
vy~ ultimate shear strength of a structural member
v - shear resistance across a crack

uf

X - distance, or coordinate along the beam axis

7 - constant to define the stress-strain curve for confined concrete

Z' - lever arm for moment calculations in deep beams

a - crack inclination angle

B - inclination of web reinforcement

Y - constant, relates lateral confining pressure to axial strength of concrete
€ - strain

EO -~ concrete strain associated with maximum concrete strength

Ec - concrete strain

Ecu - ultimate concrete strain

ES - steel strain

€ strain at which strain hardening begins

esu - ultimate steel strain

€ - strain at extreme concrete fiber in compression
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€ - concrete strain at which concrete strength is reduced to 0.3

0.3K

of maximum strength

A - constant, defines the tensile strength of plain concrete
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Py percentage of transverse reinforcement
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p.. - percentage of web reinforcement
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pi,pg — factored values of p"

0 - stress

¢ - curvature






1. INTRODUCTION

1.1 Objectives of the Investigation

The design of protective structures to resist blast forces and ground
shock arising from a nuclear detonation, must consider the large destructive
capacity of modern nuclear weapons. The magnitude of the forces and ground
shock resulting from a nuclear detonation can be evaluated both theoretically
and experimentally. However, the force system that may act upon a protective
structure is determined by various factors some of which are a matter of
probability. A designer has only a limited amount of control on the expected
force system, and therefore can only assure a c¢ertain level of survival prob-
ability for the structure under consideration. One has to consider the pos-
sibility that the acting forces may reach, or even exceed the upper limit
of the expected force system for which the structure is designed.

The uncertainty involved in the design of protective structufes, as a
direct result of the nature of the expected force system, may require that
the structure be designed to provide its full resistance if necessary. Any
structural element failing to perform as expected under the given loading
conditions may reduce the probability of survival of the entire structure.
The desiéner is required to study various failure possibilities of the
structure due to the expected loading conditions, and to propose a design
which provides the desired degree of protection. It is also necessary to
try to eliminate any possible brittle types of failure. The high inten-
sity of the expected loads, and the necessity of maximum performance re-
quire the designer to employ accurate and reliable analytical methods by

which the performance of the structure can be evaluated.



The design philosophies, and recommended analytical procedures employed
to design protective structures are summarized and discussed in Appendix A.
The general design procedure consists of three major design steps, as follows.

1. Preliminary design of the protective structure for equivalent static
conditions. As a result preliminary dimensions and detailing of
the structure are obtained.

2. Bnalysis of the structure and structural elements to determine if
a dynamic analysis is necessary.

3. In the event that a dynamic analysis of the structure is necessary,
to evaluate the resistance of the structural elements from the
dynamic analysis and redesign the structure.

A dynamic analysis may not be necessary if the duration of the positive
phase of the applied load is significantly longer than the natural period of
the structural elements under consideration. - In cases where dynamic analysis is
not necessary the preliminary design can be employed to provide the detail-
ing of the structure. A detonation of a nuclear weapon in the megaton
range of yields usually results in a force system that may ﬁot require a
dynamic analysis.

Dynamic loading conditions usually increase the strength of structural
materials, as discussed in Appendix A. The improved material properties
can be employed by the designer if justified by the expected rate of loading.

This study 1s limited to cases for which an equivalent static design
is sufficient, and a dynamic analysis is not necessary. The objectives

of the present study are the following.



1. To study and summarize the existing theories and design methods for
simply supported reinforced concrete beams under static loading
conditions. Evaluate the efficiency and accuracy of these meth-
ods when compared to experimental data, as reported in the lit-
erature.

2. To develop modified and improved design procedures that can be
employed to analyze simply supported reinforced concrete beams,
and which apply to the following cases.

Slender and deep beams containing various amounts of
longitudinal and transverse reinforcement under the
influence of flexure, shear, axial loads, or any
combination of these effects.
The design procedures should be capable of determining the in-
fluence of shear reinforcement on the moment capacity and
behavior of the beams under consideration, and

3. To evaluate the efficiency and accuracy of the proposed method com-
pared to experimental data. Compare the analyﬁical results with
the behavior of protective structures and structural components,

as reported in the literature.

1.2 Scope of the Investigation

The results of this study along with the procedures by which they were
obtained are presented in the following chapters.
The concept of an "equivalent static design" for certain protective

structures is presented in Appendix A. The present study is concerned only



with reinforced concrete protective structures subjected to blast loading
from nuclear weapons in the,mggaton range of yields.

Chapter 2 contains a summary of the current theories and design pro-
cedures for reinforced concrete beams. The behavior of reinforced concrete
beams under the influence of flexure, shear, axial loads, and a combination
of these effects is presented. A modified analytical method is developed
that can be applied to various types of reinforced concrete beams under the
loading conditions previously mentioned. The results of parameter studies
concerning the influence of shear reinforcement are presented in Appendix B.

In Chapter 3 the application of the proposed method to analyze rein-
forced concrete beams is demonstrated. The beams analyzed in this study
were tested by other investigators, and the analytical results are compared
to the experimental data. Three types of beams are analyzed in the present
study and they are the following.

1. Simply supported reinforced concrete slender beams under the

combined influence of flexure and shear.

2. Simply supported reinforced concrete slender beams.under the

effect of flexure, shear and axial loads.
3. Simply supported deep reinforced concrete beams under the
combined effect of flexure and shear.
Experimental data from previous studies by other investigators on these beams;
material and dimensions of the beams are presented in Appendix B. The numeri-
cal procedures are illustrated by flow-diagrams in Appendix C.
Chapter 4 contains a brief summary of existing theories and design recommen-

dations for reinforced concrete structural joints. The behavior of certain



protective structures and structural elements is described, and some obser-
vations are made in the light of the results from this study.

In the last chapter,kgeneral conclusions resulting from the present
study are presented. Recommendations for future studies are also presented
in that chapter.

A detailed numerical example is provided in Appendix D to further

illustrate the proposed analytical procedures.



2. MODELS FOR CONCRETE, STEEL, AND REINFORCED CONCRETE

2.1 Introduction

Analytical methods to study the behavior of reinforced concrete struc-
tures rely on models that describe the behavior of the materials from which
reinforced concrete is made. These models have to include the influence of
material properties, geometrical shape, and the internal discontinuities on
the behavior of structural members. The behavior of a loaded structure is
determined by the interaction between the applied loads and the structural
properties. Given a structure at equilibrium under a certain loading con-
dition when the load is changed, the structure deforms until a new state
of equilibrium is reached. The deformation of the structure induces strains
in the structural members. From the assumed stress-strain relationships of
the structural materials, one can calculate the stresses that result from
the induced strains. The internal forces in the structural members are
calculated by integrating the stresses over the corresponding cross sections.
If the assumed stress-strain relationships for the structural materials
closely simulate the actual stress-strain curves, it is possible to obtain
.approximately correct values for the stresses and forces in the member.
Therefore, it is necessary to have accurate stress-strain relationships for
the structural materials. Furthermore, it ié necessary to have reliable
numerical procedures to perform the analysis. Any improvement in the ex-
isting stress-strain relationships and the numerical procedures generally
will result in a betggr approximation of the structural behavior.

Various empirical models for plain concrete, steel, and reinforced

concrete have been proposed in the literature. The models are described



and discussed in this study. The influence of steel reinforcement on the
behavior of structural members is also discussed. From the study of the
previous models it was found that none of the models could describe the
behavior of structural members in a wide range of loading conditions, be-
tween zero external load to ultimate load capacity. Furthermore, none of
the previous models considered the direct influence of shear stresses on
the structural behavior. The present study combines empirical results
that were reported by other investigators with new assumptions about the
behavior of structural members. As a result, an improved model for the
analysis of reinforced concrete structures is proposed.

The experimental results reported in the literature clearly indicate
that the behavior of plain concrete is different from the behavior of re-
inforced concrete. Indeed, the type and amount of reinforcement
determine the shape of the stress-strain curve. The experimental data is
carefully evaluated in the following sections. In addition models are
developed to represent the influence of material properties and geometry
of the cross section on beam behavior. The proposed st?ess—strain relation-
ship for reinforced concrete takes into consideration internal changes in
the cross sections of structural members. These changes result from the
variations in both the location of the neutral axis and in the strain dis-
tribution over the cross section. The proposed model is continuously modi-
fied during the analysis to reflect the internal changes.

A low shear resistance of the structural members usually results in
brittle modes of failure, reduction in rotational capacity, reduction in

ductility, and reduction in ultimate load capacity. The introduction of



shear reinforcement into the member can significantly improve the behavior.
The evaluation of the amount pf sheaf reinforcement required by the ACI Code
relies on the expected shear resistance of the concrete. However, experimen-
tal data discussed in the following sections indicate that the shear resis-
tance of the concrete is unpredictable. Therefore, the amount of shear
reinforcement evaluated by the ACI method may not be the necessary amount.
Nevertheless, no procedure has been proposed in the literature that can ac-
curately predict the ultimate moment capacity as a function of the amount

of shear reinforcement.

The influence of shear reinforcement on the behavior of beams reported
in the literature is studied and discussed. A model proposed by other inves-
tigators to describe the influence of shear on simply supported beams with
only tensile reinforcement is adopted. This model is modified to describe
the behavior of simply supported beams with tensile, compressive, and.shear
reinforcement. The proposed procedure can evaluate the reduction in the
ultimate moment capacity and the inclination of the cracks in the beam as
a function of material properties and the detailing of the beam. The ap-
plication of this method to design makes it possible to check if the amount
of shear reinforcement, as calculated by any recommended procedure, is
sufficient to overcome the undesirable influence of shear.

This study also is concerned with the behavior of deep beams. The
behavior of deep beams is discussed, and various methods to analyze deep
beams as presented in the literature, are described. The experimental and
theoretical studies by other investigators clearly show that the behavior

of deep beams is different from the behavior of slender beams. The models



to evaluate the flexural capacity and shear influence for slender beams are
considered for the analysis of deep beams. Only the procedure for the in-
fluence of shear is modified while the method to calculate the flexural
capacity is found to be applicable for deep beams too.
The behavior of reinforced concrete beams with axial loads also is studied.
The results of this study show that the proposed models for flexural moment
capacity and for shear influence can be used to analyze such members. Fur-
thermore, it is confirmed that axial loads improve the shear resistance of
flexural members.
The analytical procedures proposed in this chapter have been developed
in several stages as follows:
1. Determine the behavior of plain concrete and the influence of
various types of transverse reinforcement on that behavior.
Discuss the stress-strain relationships of concrete confined
by rectangular hoops and determine the influence of various
parameters on the relationships.
2. Discuss stress-strain relationships of reinforéing steel bars
and determine a relationship to be used in the present study.
3. Develop a modified stress-strain relationship for concrete
confined by rectangular hoops to be used in the present study.
4. Discuss and describe the numerical procedure to calculate
the flexural moment capacity of slender beams. Describe
the procedure to obtain a moment-curvature (M-¢) diagram

for slender flexural members.
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5. Discuss the influence of shear on the behavior of beams with
or without shear reinforcemént.

6. Develop a procedure to evaluate the influence of shear rein-
forcement on the flexural moment capacity, and the crack angles.

7. Discuss the behavior of flexural members under the combined effects
of bending and axial loads. Decide on the numerical procedure to
analyze these members.

8. Study the behavior of simply supported and continuous deep beams.
Evaluate the efficieﬁcy of the proposed methods to analyze slender
beams and their application for the analysis of deep beams.

9. Further develop the numerical procedure to account for the in-
fluence of shear on the behavior of beams so that it can be applied
to deep beam analysis.

As a result of this study, a numerical procedure is proposed to anglyze
the behavior of beams. The procedure can be applied to slender or deep
beams with or without axial loads. The proposed procedure makes it possible
to describe the continuous behavior of such members under vafious loading
conditions, as can be expected to act on structural members. The proposed
procedure is both simple to use and reliable as will be demonstrated in
Chapter 3.

This study introduces two significant improvements into existing ana-
lytical procedures to study the behavior of reinforced concrete structural
members.

1. It determines the stress-strain relationship for reinforced and

confined concrete in compression as a function of the part
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of the cross section which is in compression. The result is
a variable stress-strain relationship that depends on the
location of the neutral axis, and the amount of confinement.

2. It evaluates the influence of shear reinforcement on the flexural

moment capacity and crack inclination for beams.

2.2 Plain Concrete

Typical stress-~strain curves for plain concrete can be found in the
literature on reinforced concrete design. 1In general,.plain concrete can
resist a maximum stress fé and will crush ét a strain Ecu‘ The numerical
value of fé defines the concrete strength, and is determined by standard
laboratory tests on plain concrete specimens. From the same tests it was
found that the values for Ecu are usually in the strain range from 0.0028
to 0.004, when fé is in the range of 3000 psi to 5000 psi.

In reinforced concrete structures some confinement is almost always
present. Therefore, the values of fé and ecu have to be considered only
as basic properties of plain concrete, and reevaluated with the influence
of confinement. The basic value Ecu influences only the behavior of the
concrete cover, which 1s the concrete that is not confined by the reinforce-

ment. The benhavicr of the concrete cover is discussed in Section 2.5.1.

2.3 Confined Toncrete

2.3.1 Introduction -- Richart et al. [1] found that concrete under a

triaxial compression will exhibit a significant increase in strength and

ot

ductility. Based upon these results, it was proposed that the followin

relationship can be used to describe this behavior.
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f1 = fé + Yy * f2 (2.3.1)
where:
Yy = 4.1
fl = axial compressive strength of the confined specimen
f2 = lateral confining pressure
fé = uniaxial compressive strength of the unconfined specimen

The coefficient Y actually may vary between 4.5 to 7.0 with an average
of 5.6 at low lateral pressures. This result was found by Balmer [74], after
Eg. (2.3.1) had been proposed.

In a structural member, one cannot find an exact situation as in the
experiments by Richart et al. However, a triaxial state of stress is present
at advanced stages of loading when the concrete is compressed against the
steel reinforcement. All types of reinforcement (longitudinal and trans-
verse) provide confinement by the same general mechanism. At low levéls
of stress the concrete is able to resist the axial compression due to the
deformation of the member under the loads. At higher stresses when the
unconfined compressive strength (fé) of the concrete is reached, internal
cracking and crushing of the concrete will reduce its stiffness, and the
concrete will bulk and be "pushed" against the reinforcement. This inter-
action between the confined concrete and the reinforcement results in a
confining pressure that improves the overall behavior of the member. The
confining pressure is a function of the type and amount of reinforcement,
the geometrical configuration of concrete and steel, and the material properties

of the concrete and steel. It was shown, both theoretically and experimentally

that better confinement will result in a better performance of the concrete.
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2.3.2 Concrete Confined by Circular Spirals -- The effectiveness of

spiral reinforcement was investigated by Iyengar et al. [2], and the general
analysis of a specimen with spiral reinforcement can be found in books on
reinforced concrete, as for example Park and Paulay [3]. From a free body
diagram of a cross section of the specimen one can obtain the following
equations, as illustrated in Fig. 2.1. (The Figures in this chapter are

presented at the end of the chapter.)

2 * A * f =D * g * f (2.3.2)
sp s c r

If strain hardening is not considered for the reinforcement,

- sp Yy
(fr)max B D * S (2.3.3)
c
and when introduced into Eg. (2.3.1), where,

f, = (£) (2.3.4)

one obtains the axial compressive strength of a spiral reinforced specimen

as follows.

£ o= f' +g.2 %22 __ Y (2.3.5)
c D

where:

= cross section area of spiral reinforcement

sp

fs = average stress on the cross section Asp
fy = yield stress of spiral material

Dc = diameter of concrete core

S = spacing of spiral

f_ = lateral pressure on concrete core
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2.3.3 Concrete confined by rectangular hoops -- Various models (i.e.,

stress—strain curves) for concrete confined by rectangular hoops are pre-
sented in the literature. Park and Paulay [3], describe some of these models,
and compare them. Based upon such models and further experimental evidence
Kent and Park [4] proposed a modified stress-strain curve for concrete con-
fined by rectangular hoops as illustrated in Fig. 2.2 and described

below.

The stress-strain curve is composed of three parts. The first is a
parabola, for the region of concrete strain smaller than 0.002. This is
based on the assumption that the maximum stress of the concrete is reached
at a strain of 0.002. 1In this region there is an increase in concrete
stress as the strain increases from zero to 0.002. The behavior in this
region is described by the following equation:

2*¢g €
C

C 2 .
= L 3 -—
fc £l [0.002 (0.002)] (2.3.6)
where:
fc = concrete stress
EC = concrete strailn
fé = concrete compressive strength (uniaxial)

The second part 1s a straight line, that shows a decrease in concrete
stress as the strain increases beyond 0.002. The lowest stress is assumed

to be 0.2 * fé. This line is described by Eg. (2.3.7).

f =f'" * [1 -2 * (¢_ - 0.002)] (2.3.7)
c c c
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where:
0.5
zZ = - (2.3-8)
+ - 0.
€50u 850h 0.002 _
3 + 0.002 * fé
“sou = F7 - 1000 (2-3-9)
=3 x * \|£’L
ESOh 2 ps 3 (2.3.10)
h
b" = width of confined core, measured to outside of hoops
Sh = spacing of hoops
o = volume of transverse reinforcement

s volume of concrete core, measured to outside of hoops

The third part is for strains larger than 820c' (€20c is the strain at
which the concrete stress has been reduced to 0.2 * fé). Here, the assumption

is that the concrete maintains its strength at:

fc = 0.2 * fé (2.3.11)

Vallenas et al. [5] have also studied the stress-strain relationship
for confined concrete, and compared their findings to models that had pre-
viously been proposed in the literature. They found that none of the methods
approximated the experimental results obtained by them. Based upon the re-
sults obtained from columns tested under axial loads, Vallenas et al. pro-
posed the following model: The parabolic part, for strains in the range
from zero to €. (€. is the strain at which the concrete reaches the maximum

0 0
stress) is described by Eq. (2.3.12).
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c O*(E__)_K*(C_)z
fé 80 EO
= LI -~
fc f c Ec Eo - (2.3.12)
- * —
L+ e - 21 * ()
c 0
The straight line for strains larger then €0, but up to 60.3K (€0.3K

is the strain at which the concrete stress has been reduced to fc = 0.3K *

fé), is described by Eq. (2.3.13).

€
= T ox K * - * * —— -
fE = fL*R*[1-2%e * (—-1) (2.3.13)
0
where:
pll * fn
%*
€, = 0-0024 + 0.005 * (1 - 0‘733 Sy Y (2.3.14)
‘ 1]
fc
s " + L % 0y * g0 (2.3.15)
K=1+ 0.0091 * (1 - 0.245 * E;Q * D y
‘fl
C
g < 0.5
3 n" . 3+ 0.002 * £'
= *x p" * —_— c\ N
4 s ( £ 1000 0.002 (2.3.16)

The third part of the curve, for strains larger than €0 P

f =0.3*K * f' (2.3.17)
c c

The stress-strain curve that was proposed in Ref. [5], is illustrated

in Fig. 2.3.

EC = "Elastic" modulus of concrete (tangent modulus), [psi]
h" = core dimensions of square tied column, [in]
p" = volume of confining steel

volume of confined core

p = percentage of longitudinal reinforcement
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f; = yield stress of hoops, [psi].
S = spacing of hoops, [in].
d" = nominal diameter of lateral reinforcing bars, {(in].

D = nominal diameter of longitudinal reinforcing bars, [in].

The values for‘maximum stress of the concrete and the influence of the
longitudinal reinforcement on the stress-strain curvewere investigated by
Sargin [6,7]. Sargin found that the change in maximumvstress in the concrete
is a function of the following parameters,

a. spacing of the transverse reinforcement.

b. amount and strength (i.e., yield stress) of the transverse

reinforcement.

c. ‘loading duration, and load type.

d. strain gradient;

e. size of the specimen.

Sargin also noticed that the tangent modulus EC, of the concrete, was
not the same for the confined and unconfined specimens. - The value of Ec
decreased as more steel was present in the specimen, and caused more dis-
continuities in the concrete mass. These findings were confirmed by Vallenas
et al. [5].

The results reported by Vallenas et al. [5], clearly show that the pro-
posed model represents the beha?ior quite accurately, but some modifications
are necessary to obtain a better representation of the experimental data.

The modification is required for the region defined by strains larger than

€O (i.e., the straight line range, after maximum stress has been reached).
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2.3.4 Confinement Effectiveness -- The mechanism of confinement, and

the influence on the behavior of columns and flexural members has been studied
quite extensively. Nevertheless, the exact effectiveness, and the resulting
stresses induced in the confined zones of a member are still not completely
understood. Vallenas et al. [5] stated that they could not find a consistent
method with which to compute the lateral pressure on the confined concrete,
and the effectiveness of various confinement geometries.

Base and Read [8], and McDonald [9] also studied the influence of con-
finement on the behavior of reinforced concrete members. The results of
these studies show clearly that when confinement is increased, the behavior
of beams becomes more ductile. There is a significant increase in rotation
capacity even close to the ultimate moment. All types of transverse rein-
forcement cause improved behavior. They include spirals, rectangular
hoops, ties, stirrups, and wire meshes. The spirals and wire meshes have
been found to be most effective [9].

Sheikh [73] performed experiments similar to those reported in Ref.
[S]. He also proposed a method to describe the confined c§re of a column,
in such a way that the confinement effectiveness can be calculated. The
stress-strain curve that is proposed in that analysis has many elements
that have been described previously. Despite the good results reported
by Sheikh, his model does not improve the understanding of the behavior
in the strain range beyond EO' where the concrete stress decreases with
an increase in strain.

The influence of the concrete cover on the behavior was studied by

Vallenas et al. [5], and Sheikh [74]. They also describe previous studies
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on this subject and their results. From these studies it is clear that the
concrete cover reduces the effectiveness of the confinement, as a result of
the reduction in core area when the cover spalls off, and removes chunks of
the core between hoops. This spalling results in the increase in arching
action between lateral reinfofcing bars.

The results of all investigations that have been discussed in this
chapter, clearly show that the longitudinal reinforcement provides supporﬁ
for the transverse reinforcement. When the longitudinal bars buckle or
rupture that support is lost, and usually a significant decrease in the
performance of the members is noticed, which may ultimately cause a complete

loss of resistance to the applied load.

2.3.5 Modulus of Elasticity of Concrete —-- The modulus of elasticity

for concrete, which is the initial slope of the stress-strain curve, has
been studied by several investigators. Some of the proposed equations to

calculate Ec, are given below. Ec and fé are in psi units.

ACL: E_ = 57000 * {f_c : (2.3.18.a)
Blume et al. [11]: E_ = 41574 * {£! (2.3.18.b)
Kent and Park [4]: Ec = 66030 * {;Z (2.3.18.¢c)
sargin 16,7]: E_ = 72000 * \[f_c (2.3.18.4)
experiments [5] : E_ = 45963 * WFC (2.3.18.e)

The ACl1l method, Eq. (2.3.18.a), is very close to the average of the

other methods.



20

2.4 Reinforcing Steel Bars

The stress-strain curves for steel reinforcing bars frequently used in
the analysis of reinforced concrete members are of three types, in general.
In the first, the elasto-plastic model, elastic behavior is assumed up to
the yield point and from there on the behavior is perfectly plastic, as il-
lustrated in Fig. 2.4. In the second, the same elastic part exists as before,
with a plastic part after yield, but from a certain strain esh (strain at
which strain hardening in the material is noticed to begin) any increase in
strain will result in a linear increase in stress. This model is composed
of two inclined lines connected by a horizontal line. The slopes of the
inclined lines represent the elastic modulus E, and the strain hardening
constant. In the third model, the behavior is modelled the same as in the
second, up to the strain Esh; from there on the increase in stress due to
hardening is not linear but a polynomial of the second degree.

In order to obtain a realistic analytical method for reinforced con-
crete members, one has to consider the influence of strain hardening. The
assumption of a linear strain hardening cqefficient will not be considered
because it represents only a special case. Two general methods are commonly
employed to describe the strain hardening part of the stress-strain curve.

The first was proposed by Burns and Siess [12] and is as follows.

112 * (¢ - € ) + 2 (e - € ) £
. h S sh u
£o= £ *— e + — * (— - 1.7)1  (2.4.1)
S y 60 (es esh) + 2 (esu esh) fy

where:
Es = strain at which the stress fs is to be evaluated

€hn = strain at which strain hardening begins
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¢ = ultimate strain

su
f = yield stress

Y

Eu = ultimate stress

The sccond model was proposed by Park and Paulay [3] as follows.

(¢ - ¢ + . * _
c _ ot [m (zS Lsh) 2 . (cs &sh) (60 m)] 2.4.9)
s y 60 * (¢. - € ) + 2 2 % (30 *r + 1)2 T
s sh
where:
£ 2
(—f-‘-‘-)*(30*r+1)—60*r—1
4
m 5 2 (2.4.2a)
r=4. - (2.4.2b)

su sh

The stress-strain relationship described by Egs. (2.4.2) is of a more
general form than the relationship described by Eqg. (2.4.1). Egs. (2.4.1)
and (2.4.2) may be compared as follows. The same strain parameters ob-
tained experimentally (see Ref. [12]) and presented in Table B2 of Appendix
B, are introduced into these equations. The following relationships are

found for tensile bars in beam J-2.

at 1 percent strain: (fs) 1.025 * (fs)
Eq. (2.4.2) Eg. (2.4.1)

at 10 percent strain: (fs) 1.05 * (fs)
Eg. (2.4.2) Eqg. (2.4.1)

Similar results are obtained for strains from other bars.
These results and preliminary evaluations of the numerical procedure

described in the following sections indicate that Eg. (2.4.2) should be
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preferred for the analysis of reinforced concrete beams. However, the ac-
curacy of the numerical procedure does not depend only upon the stress-strain
relationship for the steel bars, as will be discussed in the following sec-

tions.

2.5 Modified Model for Confined Concrete

In section 2.3 various stress-strain curves for confined concrete have
been described, and discussed. After these methods for describing the be-
havior of confined concrete were compared especially to experimental data
as presented in the literature, the model proposed by Vallenas et al. [5]
was chosen as a basic method, in which some modifications would have to be
made in orxrder to apply it to the present research.

The first modification, that has later been justified by the numerical
results, was to rotate the stress-strain curve upward in the region defined by
EO < ec< 60.3K' The axis of rotation was the point of maximum stress on the
stress-strain curve, as illustrated in Fig. 2.5. This change caused the
stress-strain curve to approach the experimental results, even at strains
larger than EO. The equations that describe the stress-strain curve are

the following.

Part 1: for the strain range defined by 0 < € £ 80-

The behavior in this region is described by Eg. (2.3.12) as follows.

Ec * E0 € £ .2
—_— * (E—O— K * (=)

c 0 0

(2.5.1)

€

- 2] * (=)
€
0
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Part 2: for the strain range defined by 80 < e < €O 3K

The behavior in this region is as follows.

£f =f' *KXK * [1 -0.8%* 2 *¢

€
c c o ¥ g7 - 1] (2.5.2)

0]
The rotation, as explained earlier, is obtained by the introduction of

the coefficient 0.8 into Eg. (2.3.13).

Part 3: for the strain range defined by € > 80 3K"

The behavior in this region is described by Eg. (2.3.17) as follows.

£ =0.3 *K* f! (2.5.3)
c c

The equations to calculate the parameters eo, K, 2 are the same as

Egs. (2.3.14), (2.3.15), (2.3.16), respectively.

pu * f£n
*
€, = 0.0024 + 0.005 * (1 - O'7r3ﬁ S) « 4 (2:5.4)
\l ]
fC
, s r e wp g
K =1+ 0.0091 * (1 - 0.245 * =) * 4 (2.5.5)

Vi

1
C

z = 0.5 (2.5.6)

F 3 +0.002 * £
- , L ] — -
¢ s T £7 - 1000 ) - 0.002

The model that was proposed by Vallenas et al. [5], and described in

&)

Section 2.3.3, is based upon the behavior of axially loaded columns. The
various variables in the equations, as defined in Section 2.3, are related
to column geometry and behavior. Before this model can be applied to the
analysis of beams the variables have to be redefined in terms of beam

geometry and behavior.
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The stress-strain relationship that has been described here, is for
confined concrete under compression. Therefore, in the case of flexural
members, only the concrete in the compressive zone (i.e., in general a cross
section of a flexural member is divided into two zones by the neutral axis,
one zone is in compression while the other is in tension) should be con-
sidered when this stress—-strain relationship is to be applied. The state
of stress in the tensile zone will be discussed later in this section.

Based upon this assumption, the following changes in the definition of

the variables have been made (see Section 2.3.3, for definitions).

p" = only part of the transverse reinforcement that acts to confine the
compressive zone. Therefore, only this volume of steel,
and the volume of concrete, defined by the compressive zone
and the spacing of the transverse reinforcement, should be
considered to calculate this variable.

p = only the steel bars in the compressive zone (i.e., compressive

reinforcement) should be considered.

h" = beams usually do not have a square compressive zone. Therefore,

h" has to represent the average dimension of this zone, as

follows.
hn - i * (h" + hn) (2 5 7)
2 1 2 T

where h; and hg are the two sides of the rectangle that describes the com-
pressive zone, measured to the outside of the steel hoops.

All variables and parameters are also described and defined in the

Notation section. Also, see application of the procedure in Appendix D.
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All the other variables in the equations that describe the stress-strain
curve for confined concrete in compression have the same definition as in
Section 2.3.

It is clear that for flexural members the stress-strain curve for con-
crete will not have a fixed shape. Any shift in the location of the neutral

axis will cause changes in the values of & K, 2 (due to changing the

0’
values of the variables in the expressions that define these parameters),
and therefore, the values of the concrete stress calculated from any of the
Egs. (2.5.1), (2.5.2), (2.5.3) will also change. That means that one does
not have a stress-strain curve for the concrete, but a family of curves.
The curve to be used for each stage of the analysis depends on the location
of the neutral axis at that particular stage, as illustrated in Fig. 2.6.
The changes in the definitions of the variables p", p, h" are such that
when a column is considered, they resume their original definitionAas pre-

sented in Ref. [5]. Therefore, it is possible to analyze beams and columns

by the same general model for reinforced concrete.

2.5.1 The Concrete Cover —-- Some observations about the behavior of

the concrete cover have been made in the previous section. Several assump-
tions are made here to provide a base for a consistent description of the
behavior of the concrete cover, and the contribution of the concrete cover
to the behavior of a flexural member, as follows.
. in
a. The concrete cover crushes at a strain of 0.004 in
b. The concrete cover may continue to resist compressive stresses
even after crushing, as long as the cover has not spalled off.

But, spalling is assumed to occur when the compressive bars

reach a strain of 0.004.
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c. At strains smaller than 0.004 %ﬁ-the concrete cover behaves as
the confined concrete, and the same stress-strain relationships
describe the behavior. At strains larger than 0.004 %% the
concrete cover exhibits a behavior different from that of the
confined concrete. This assumption was proposed by Blume et
al. [11], and by Baker and Amarakone [10].

d. Concrete cover located at an elevation higher than the bottom
of the compressive reinforcement, spalls off at strains which
exceeds 0.004 %ﬁu However, concrete cover located between the
bottom of the compressive reinforcement and the neutral axis
may remain on the member even at strains larger than 0.004 %gu

e. The concrete cover remaining on the member at strains which
exceed 0.004 %E resists compressive stresses in the range

between 0.5 fé to 0.85 fé. This assumption is justified by

the numerical results presented in Chapter 3.

2.5.2 Concrete in Tension -- The behavior of concrete. in tension is

assumed to be linear up to a stress fr' at which tensile cracks will cause a
complete loss of resistance. The slope of the line that describes this
behavior is EC, the same as for early stages in compression. Park and
Paulay [3] recommend the following expression for the ultimate tensile

stress fr' as illustrated in Fig. 2.7.

£ = A ¢ {;L (2.5.8)

r

where A is in the range of 7 to 13.

A = 7.5 is assumed to define a lower bound for fr.
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The contribution of the concrete in tension is not considered in the
analysis because the present stuay concentrates on the behavior beyond the
yield stage of the tensile reinforcement, and up to ultimate loading condi-
tions. At such advanced stages of loading the concrete in the tensile zone
is cracked and the contribution of this zone to the in-plane force system is
negligible. The only parameter from the tensile zone which is considered
in a later section is the inclination of cracks and their influencé on the

behavior of a member.

2.5.3 The Stress—-Strain Curve -- Based upon the discussion in this

chapter the general shape of the stress-strain curve for confined concrete
is illustrated in Fig. 2.7. This study will consider only the contribution
of concrete in compression to the behavior of reinforced concrete members.
The shape of the stress—-strain curve in compression is influenced by the
parameters K, and EO. These parameters depend upon the location of the

neutral axis at each loading stage. Therefore, each loading stage requires

the use of a different stress-strain curve, as will be demonstrated later.

2.6 The Numerical Procedure for the Analysis of Flexural Members

The method used to analyze reinforced concrete flexural members in
this study is similar to the procedure developed by Xent and Park [4], and
described by Park and Paulay [3]. However, some changes are introduced into
the general procedure in order to make the analysis conform with the real
geometry of the members under consideration, and with the stress-strain

relationships for steel and concrete that have been discussed earlier.

Metz Reference Room
University of Illincis
B106 NCET,

208 N. Romire Strast

Urbana, Iliinois 22371
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Before the method is described in detail, it shiould be clear that the
influence of shear is not considered at this stage. The influence of shear
is discussed in a later section of this study, where a method to account for
this influence is developed.

The basic procedure used to analyze reinforced concrete flexural mem-—
bers, as presented in the literature, is quite straight forward. First a
strain distribution is assumed for the cross section under consideration.
Then, from stress-strain relationships for concrete and steel, the stresses
are calculated. Next, one calculates the forces due to these stresses, and
sums all tensile forces, and separately the compressive forces. If the sum
of the compressive forces equals the sum of the tensile forces, the cross
section is in equilibrium and the moments and curvatures corresponding to
this situation are calculated. In this type of analysis usually a linear
strain distribution is assumed. This assumption of "plane sections before
bending remain plane after bending" 1is a basic assumption in reinforced
concrete analysis and design. However, this assumption may not be correct
locally near cracks in the tensile zone, which indicates loéal bond failure.
Furthermore, when deep beams are considered, or regions of high shear stresses
are present in the member, this assumption is not valid. If these cases are
excluded, the assumption is known to hold reasonably well for all stages of
loading, up to flexural failure.

In order to obtain a numerical procedure which is simple for applica-
tion, the cross section under consideration is divided into layers, parallel

to the neutral axis. As mentioned earlier only the compressive zone needs
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to be considered because the contribution, of the concrete in the tensile zone
at advanced stages of loading is neglected.

The first stage of the analysis is to assume a depth (i.e., location)
of the neutral axis. Then a linear strain distribution is imposed on the
cross section. Usually this can be done either by assuming a strain at the
tensile steel level, or at the extreme concrete fiber that is in compression.
The strains of each layer of concrete, or steel bars, is found by simple
geometrical consideration. The results are values of éci' and Esj' where:

strain at layer i of the concrete

€ .
cl

Il

esj strain of steel bar j (or of steel bars at elevation j from
the neutral axis)

From the corresponding stress-strain relationships for steel and con-
crete one can calculate the stresses at each layer and in each bar. The
stress—-strain curve for the concrete has to be evaluated for each shift of

the neutral axis, as explained in Section 2.5.

The forces acting on the cross section are calculated as follows.

st = fsj * Asj (2.6.1)
Fai T fai T Pos - (282
where:

st = force in steel bar(s) j (tensile or compressive)

Asj = area of steel bar(s) j

fSj = stress in steel bar(s) j

Fci = force in concrete layer i

fci = stress in concrete layer i

A . = area of concrete layer i

cl
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When the cross section is in equilibrium the sum of all forces is zero.

The forces are summed as follows.
P=LF .+ L F . (2.6.3)
Jj 1

If P # 0 a new assumption for the neutral axis location (kd) has to be
made, and all the previous stages have to be repeated until a kd value is
found for which P = 0. (kd is the distance of the neutral axis from the
extreme concrete fiber.)

When P = 0, moments of all forces are summed with respect to a specific

point (usually all moment are summed with respect to the tensile steel level).

M= }i:(Fci * Yi) + §(C;j * Yj) (2.6.4)
where:
Yi = distance from concrete layer i to tensile steel level
Yj = distance from compression bar j to tensile steel level
Céj = compressive force in steel bar j

The curvature is defined by:

E

(2.6.5)

where:

strain at top compressive fiber

m
1l

kd = depth of neutral axis from top of the member

Variation of the linear strain distribution over the cross section, and

repetition of all these calculations, will result in a set of M-¢ values.
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These values when plotted comprise a moment-curvature diagram that describes
the behavior of the member under consideration at various stages of loading
(from yield to ultimate in this study).

In this study, three types of forces on the cross section are considered.

a. Forces in the longitudinal reinforcement bars. These steel

bars are considered in their exact location on the cross
section.

b. Forces in the concrete that is confined by the reinforcement.

c. Forces in the concrete cover.

An illustration of the method is presented in Appendix C.

Norton [13], and Park and Sampson [14], employed the same general pro-
cedure in their studies. The difference between their approach and the
present procedure is the following. Here, the longitudinal reinforcing bars
are considered at the exact location in the cross section, while the same
bars have been "distributed" into an equivalent steel tube in Refs. [13]
and [14]. This approach of distributing discrete bars into a continuous
tube could be justified for columns and, even then, only Qhen the entire
cross section is in compression. When a flexural member is analyzed,
usually not the entire cross section is in compression, and the location
of the tensile and compressive forces is important, especially when these

forces are actually acting on a small area, relative to the cross section.

2.7 The Influence of Shear on the Behavior of Slender Beams

2.7.1 Introduction —-— The influence of shear stresses on the behavior

of reinforced concrete beams has been studied quite extensively in the last
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twenty years. Despite the large amount of information about the influence of
shear and the better understanding of the shear mechanisms, there exists no
rational theory yet that can describe mathematically the influence of shear
on the behavior of reinforced concrete members. The nature of failures in-
fluenced by shear is brittle and therefore it is of great importance to avoid
such results by minimizing the influence of shear. The evaluation of the
shear strength of a member is based upon elastié theory and empirical for-
mulations. In order to understand the problems concerning shear in reinforced
concrete members one should first try to evaluate the behavior when no shear
reinforcement is present. Theoretical and experimental resuits concerning
the shear influence on reinforced concrete members are found in the report of

ACI-ASCE Joint Committee 426 [15], and other sources, as discussed later.

2.7.2 Slender Beams Without Web Reinforcement -- In the general case

of an elastic isotropic homogeneous beam, the combination of flexure and shear
results in a biaxial state of stress. The necessity for the presence of shear
stresses in a beam when the applied loading conditions cause the beam to bend is
discussed in books ©on strength of materials. This biaxial state of

stress can be illustrated by drawing the trajectories of the principal

stresses (tensile and compressive) on a vertical plane parallel to the
longitudinal axis of the beam (Fig. 2.8). In the case of a concrete member,
flexural cracks are formed at the bottom of the beam, when the tensile

stresses exceed the tensile strength of the concrete. However, because

the orientation of the principal tensile stresses varies at points higher

up towards the top of the beam, the cracks that are initiated as vertical
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near the bottom of the beam follow the general orientation of the principal
tensile stress lines; hence inclined cracks are formed. 1In certain cases
inclined cracks will form in the webs of T or I beams, without being exten-
sions of flexural cracks at the bottom of the members, as a result of high
shear stresses in the web.

In the case of reinforced concrete beams without web reinforcement, the
load to cause flexural and shear influenced cracks could be lower than for
the theoretical case previously described. Lower loads to cause shear crack-
ing are a result of the discontinuities in the members, and the associéted stress
concentrations. (Some of these include the concrete aggregate, the interface
between steel and concrete, cracks due to shrinkage of the concrete, and
flexural cracks at the bottom of the beam.)

If one examines the equilibrium force system of a free body diagram for

a part of a beam, as illustrated in Fig. 2.9, the following equation is ob-

tained.
V=V +V +V (2.7.1)
c a d
where:
V = vertical reaction over the support

VC = shear force across the compressive zone

Va = sum of vertical component of interlocking shear forces

Vd = dowel force across the crack transmitted by the main reinforcement

The moment for this case is given by

M=x*V=3d* (T + Vd * cot W) (2.7.2)
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where:
jd = vertical distance between the tension T and the resultant com-

pression C

T = tensile force in the main (tensile) reinforcement
o = inclination of the crack to horizontal
X:

horizontal distance between V and Vc

In design, the force Vd is usually ignored and Eq. (2.7.2) becomes a

simpler expression.
M=3jd * 7T (2.7.3)

At present, it is assumed that two types of mechanisms are involved in
the resistance to the shear stresses. It is necessary to identify these
mechanisms and describe their action in order to understand the behavior of
a member under various loading conditions. An extensive discussion of the
subject can be found in the book by Park and Paulay [3]. Here, only a
brief review is given.

From basic principles of mechanics the following relationship is assumed.

V = — (2~7°4)

where:
V = shear force
M = moment
X = coordinate along the beam axis
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When Eg. (2.7.3) is introduced into Eq. (2.7.4) the following result is

obtained.

dMm . dar 4(jd)
V=== * — + * .7.
3d ax T dx (2 3)

Noting that

d ,.
dX(Jd) =0 (2.7.6)
Therefore:
. dT
= *
v jd ax (2.7.7)

This mechanism is only Jjustified if the shear flow, or bond force %%,
can be efficiently transferred between the longitudinal reinforcement and
the surrounding concrete. This mechanism is referred to in the literature
as the "beam action" mechanism, and is largely affected by the presence of
bond between steel and concrete.

If the bond between steel and concrete along the tensile reinforcement
is destroyed over a finite length of the shear span then %§ = 0, and the "beam
mechanism" is no longer valid. In such case the resistance to shear is ob-
tained by inclined compression. While -the contributions made by aggregate inter-

lock and dowel forces may assist in general they are ignored at present.

This mechanism is known as "arch action", and is described by Eq. (2.7.8).

fe! . d .
V=T* X (ja@) = ¢C * I (3d) (2.7.8)

C = sum of compressive forces, that is equal to T, in the cross section of

the beam, without axial load.
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In general, it is assumed that both mechanisms resist the shear stresses
simultaneously. The contribution of.each mechanism depends upon the amount
of cracking and bond in the member.

In the case of "beam action", the cracks in the tensile zone of the mem-
ber create concrete blocks that are separated from each other by the cracks.
These blocks are acting like concrete cantilevers, where one end is "built
in" into the compressive zone of the beam, and the other is acted upon by
the tensile reinforcement. There are several forces that should also be
considered in this case:

1. Variation in tensile forces between cracks, AT

2. Shear from aggregate interlock, along cracks

3. Dowel forces across the longitudinal reinforcement

4. "Built in reactions" at the base of the cantilever
Fenwick and Paulay [16], and Leonhardt and Walther [17] have found experi-
mentally that up to 20% of the bond force could be resisted by flexure at
the "built in" end of the concrete blocks. The dowel action is governed by
the tensile strength of the concrete, and is reduced when sélitting of the
concrete, near the tensile reinforcement, takes place. However, dowel ac-
tion has been found to contribute only about 25% to the cantilever resis-
tance, [16,18]. Dowel action can be increased by the use of web reinforce-
ment that supports the longitudinal bars. The contribution of dowel forces
to resist shear, has been studied by Taylor [18], Bauman and Rusch [19],
and O'Leary [20]. This behavior of the dowel forces is most applicable
near a plastic hinge, after the main reinforcement bars have yielded or

along joints where shear-sliding occurs.
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Aggregate interlock in beams without web reinforcement has been found
to resist 50% to 70% of the bond force acting on a "concrete cantilever" [16,
21], and up to 1000 psi of shear stress [27].

Leonhardt and Walther [17], found that only 25% to 40% of the shear
resistance is contributed by the portion of the beam above the neutral axis.
Therefore, most of the resistance to shear takes place below the neutral
axis.

The "arch action” mechanism is illustrated in Fig. 2.10. The forces
acting on the inclined compressive zone are a vertical reaction at the sup-
ports, a horizontal tensile force from the tensile reinforcement, and a
horizontal compressive force in the upper part of the beam. Tensile cracks
can form only outside the area in compression, and compatibility in dis-
placements of steel and concrete is obtained by slipping of concrete over
the steel bars of the tensile reinforcement. For arch action the following
conditions are necessary, as presented in Ref. [3].

1. Arch action is present only if no bond, between tensile reinforce-

ment and concrete 1influence the slip mechanism.

2. Near load points the neutral axis is higher than elsewhere in the

beam, and the location of the neutral axis cannot be calculated
by the same methods employed for other areas of the member.

3. Relative displacements between steel bars and concrete is

largest under the load points.

The use of deformed bars reduces the amount of arch action, and only after
the bond between steel and concrete is destroyed does arch action become ef-

fective. Another variable that controls the amount of arch action is the
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resistance to compressive stresses in the inclined compressive zone and in
the compressive zone above the neutral axis. It was found that the com-

. . . a
pressive stresses are a function of the shear span to depth ratio (a).

This ratio may be described by following variables.

]
<<
*

M
*

v 3 (2.7.9)

WY
e

There are three types of failures associated with arch action:

1. Shear compression failure - when shear cracks reduce the size
of the compressive zone, and the compressive stresses exceed
the compressive strength of the concrete. The result is
crushing of the concrete in the compressive zone.

2. Flexural tension - when the thurst of the arch is eccentric,
crushing may occur along that line.

3. Diagonal compression - this is for beams that have a shear span
to depth ratio §-< 2 (i.e., deep beams). The result is a reduc-
tion of flexural capacity.

Leonhardt and wWalther [17] also found that the beams could be classified

by the i-ratio that influences the behavior as follows.

d
a . .
1. 3 < a-< 7: the arch mechanism cannot resist the load.
a
2. 2 < 3 < 3: shear compression or flexural tension failure.
a
3. a—< 2.5: failure by crushing or splitting of concrete

Another type of failure is due to beam action. When the inclined cracks
propagate towards the compressive zone, they reduce the area of the "built

in" end of the concrete cantilevers. This causes an increased rotation at
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the other end of the cantilever. The result, a decrease of dowel forces due
to increased cracking near the tehsile reinforcement, and decrease of aggre-
gate interlock. The increased deformation iqcreases the tensile stresses at
the base of the cantilever, which in return causes further cracking. This
type of failure is referred to as "diagonal tension”.

Based upon the results obtained by Leonhardt and Walther [17], it is
clear that the influence of shear on the behavior of a beam is in the fol-
lowing g-range: 1.5 < % < 7. Actually the flexural moment capacity of a
beam has been found to be a function of the ratio %-and the amount of longi-
tudinal tensile reinforcement, as illustrated in Figs. 2.11 through 2.17.
These results have been confirmed by Kani [22].

For design purposes the following procedure is recommended by the AC1

318-77 code to evaluate the shear strength of concrete in a beam without

shear reinforcement.

vc Vﬁ * 4
= — = * ' * *
Ve * B3 1.9 E + 2500 * p_ H <35 s ff_c (2.7.10)
where:
As
pw = b_——*__d— . (2-7.10-a)
w
Vu * d
<1 (2.7.10.b)
M
u
. . .2
AS = area of tensile reinforcement, [in ]
bw = width of beam, [in]
d = effective depth of beam, [in]
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The accuracy of these eguations is illustrated in Fig. 2.18. Based upon
dimensional analysis and statistical methods, Zsutty [23] proposed the use

of the following expression.

£ * *
p, ¥ da

v =59 % (=¥ ,1/3 (2.7.11)
c a
and for beams where %—S 2.5 he proposed the following change.
f' * p * g
v =59 % (S ¥ 313, 559 - (2.7.12)
c a a
2.7.3 Beams With Web Reinforcement -- When web reinforcement is in-

troduced into the beam construction the behavior of the member may improve
as a result of the following contributions.
1. Support of the longitudinal bars, and therefore increased dowel
action.
2. Support of the concrete cantilevers which resist tensile strésses
across cracks.
3. Improvement of the compressive strength of the confined concrete.
4. Restraint of crack opening and sﬁpport of aggregate interlock.
5. Support of bond forces between tensile reinforcement and concrete,
and delay in the splitting of concrete along these bars.
It has been shown previously, when the flexural properties of beams
were discussed, that web reinforcement confines the concrete in the com-
pressive zone, and improves the flexural moment capacity and rotational

capacity of the members.
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One of the analytical methods for calculating the amount of shear re-
inforcement is the "truss mechaniém" analogy. In that method it is assumed
that a beam acts like a truss, composed of concrete compressive members and
steel tensile members. The static analysis of the equivalent truss yields
the forces in the truss members, from which the amount of shear reinforcement
can be evaluated. That method is discussed in books on reinforced concrete
design, for example see Park and Paulay [3].

There are two major design philosophies concerning the amount of web
reinforcement to resist shear. In the first, as recommended by the ACl Code,
it is assumed that both the concrete and web reinforcement resist the shear
stresses. Therefore, the amount of shear reinforcement can be calculated

from the following expression.

V.S Vs + v (2.7.13)
where:
V.S ultimate shear strength of a member.
vS = shear strength contribution by web reinforcemeﬁt
vC = shear strength contribution by concrete, from Eg. (2.7.10) or
equivalent

Because of the relatively large possible error in evaluating the magni-
tude of VC there are safety requirements that may cause the design to become
conservative.

The second philosophy of evaluating the required amount of shear rein-

forcement is used in Europe [24], where the web reinforcement is regquired to
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resist the total shear stress, and the contribution of the concrete is ne-
glected. Here too, in some cases the design may become conservative. One
major advantage of the second method is that one does not have to try to
evaluate the shear resistance of the concrete.

One of the results from the "truss mechanism" analysis is that when
cracks are formed in a beam, the tensile forces increase. This result is

presented in Ref. [3], and is illustrated by the following equation.

Mu ev
T = —+ — V 7.
u ja 3 u (2.7.14)
where:
e, n
ral cot o - 5—* (cot o + cot R) (2.7.14.a)
when no cracks form: eV n
—_— = - — % -
3 > cot B (2.7.14 b)
Vq vS
n==== (2.7.14.c)
u u

inclination of the cracks to the horizontal

Q
It

inclination of the stirrups to the horizontal (opposed to Q)

w
Il

This increase requires better anchorage of the web reinforcement to
prevent premature failure.

The influence of axial loads on the behavior is discussed in a later
section.

The deformations of slender members are not affected significantly by
shear; however, such is not the case for deep beams. The effect of shear on

the behavior of deep beams is discussed in a separate section.
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2.7.4 Aggregate Interlock and Dowel Action -- The mechanisms of aggre-
gate interlock and dowel action have been mentioned before, in this chapter.
Nevertheless, it is important to describe these mechanisms before the model
for shear resistance is presented.

Basically these two mechanisms transfer shear stresses, from one part of
the member to another. Dowel action transfers shear stresses across a crack
in the member. Aggregate interlock is present before cracking, and even
after cracking as long as aggregate particles are in contact.

Mattock and Hawkins [25] studied these mechanisms; When the specimen was
uncracked the principal stresses could be evaluated by the use of a failure
envelope of the type proposed by Bresler and Pister [26], from which one can
find the stage at which a crack will form and its orientation. After the
formation of the crack the transverse reinforcement had to develop a clamping
force that prevented sliding along the shear plane parallel to the shear
crack. When the shear reinforcement yielded the clamping force was greatly
reduced, and the cracks propagated.

When precracked specimens were used an initial dispiacement was required
in order to bring aggregate from both sides of the crack into full contact,
at which the shear resistance was activated. This displacement was larger
than the displacement in the uncracked specimen for the same amount of shear
resistance. As the initial width of the cracks for the precracked specimens
was increased the initial displacement also increased, and the ultimate
shear resistance decreased (aggregate size was kept constant).

Paulay and Loeber [27] also studied this problem but used external

clamping mechanisms to replace the shear reinforcement by which a constant
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crack width was maintained. They found an increase in shear stress, as the
shear displacement increased, and in general this relationship was bilinear,
for stresses up to 1000 psi. Aggregate size in the range of gﬁ to %ﬁ (9 mm
to 19 mm) had no influence on the results.

Dowel action is obtained when steel bars resist the relative displace-
ments across a crack. This resistance could develop due to three types of
imposed deformations on the bars: flexure, shear, and kinking. Paulay et
al. [28] found that kinking is probably the major mechanism in dowel action,
particularly when small diameter bars are concerned. The mechanisms of flex-
ure and shear should be considered as upper case results. In these studies
[28] aggregate interlock was minimized by smooth and waxed surfaces in the
cracks. However, when results were compared to those from aggregate inter-
lock experiments it was found that the dowel stresses are smaller, and less
important.

The calculation of shear resistance across a crack is based upon a
simple frictional model, as follows.

A * £
= *—\Lf———l. * *
Vg u Ag H*op,e fy (2.7.15)

where:

Vuf = ghear stress transferred across a crack

U = coefficient of friction; from ACI code 318-77:
U = 1.4 if member monolithically cast
U= 1.0 if concrete placed a

= ¢

concrete
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Afv = area of reinforcing bars that clamp the concrete
fy = yield stress.of bars
Ag = cracked surface area of concrete

Mattock and Hawkins [25] proposed the following expression.

N
= + 0.8 * * + -——) < 0.3 * f! i < 7.
vuf 200 0.8 (pvf fy g) 0.3 fC [psil] (2.7.16)

N = externally applied clamping force, normal to the boundary. If

N is tension, consider as a negative number.

Based upon the experimental results that have been discussed, it is
quite clear that web reinforcement constitutes an important component in a
reinforced concrete member. The increase in the concrete compressive strength
due to confinement, and the increase in shear resistance due to aggregate
interlock and dowel action, are a direct result of the introduction of

shear reinforcement into the member.

2.8 A Modified Method to Evaluate the Influence of Shear on Slender Beams

2.8.1 Introduction -- At present the design procedures that are employed

in the U.S. and Europe require one to evaluate the amount of shear reinforce-
ment that is necessary to minimize the influence of shear on the performance
of a member. These methods have been discussed in the previous sections.
However, none of these methods state that a certain level of moment capacity
is associated with a certain amount of shear reinforcement. The artificial
separation between shear resistance and moment capacity of a member could
result in a design that may have the minimum amount of shear reinforcement,

but will not be able to reach the desired moment capacity. Therefore, it is
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reasonable to expect that if a method could be developed to predict the moment
capacity as a function of the shear influence one could evaluate the optimum
amount of shear reinforcement that will assure full moment capacity of the
member. Furthermore, the incorporation of that method into the numerical
procedure to evaluate the moment capacity, and rotation of a beam (see Sec-
tion 2.6) will result in an improved method to evaluate the performance of

reinforced concrete beams.

2.8.2 Beams Without Web Reinforcement -- Based upon results obtained

by Leonhardt and Walther [17,29], and Kani [22], the moment capacity of a
beam is a function of two variables. In the case of beams without web re-

inforcement, only the ratio g-(shear span to effective depth ratio), and p

(percentage of tensile reinforcement) have been found to influence the moment
capacity. This relationship is described by Figs. 2.11 through 2.17. From
these results the following observations are made.

a. The minimum moment capacity is found to fall in the range:

2<%

=<
£33

. a . . .
b. For slender beams (i.e., a—> 3) no moment reduction is observed

for %—values larger than 7.

. a . .
c. For deep beams (i.e., a-< 3) no moment reduction is observed for

%»values smaller than 1.

d. The behavior of the moment capacity is almost linear with respect
to %‘on both sides of the minimum moment capacity.

e. The value of the minimum (see observation a) is a function of p
only. There is no indication that the ratio g-has any signifi-

cant influence on this minimum, except to define its location

. a .
with respect to the a-ax1s.
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Based upon these observations one can formulate the dependence of the
X . a . . .
ultimate moment as a function of a-and p. This function is expected to

have the following form.

M
u a .
T f(au p) (2.8.1)
£fQ
Mu = ultimate moment with shear influence
Mfz = ultimate flexural moment without shear influence
2.8.3 Minimum Moment Capacity as a Function of p -- The first stage is

to define the line that describes the deepest location in the moment reduc-
tion valley (Fig. 2.17). This line is constructed of three straight line
segments, for three ranges of p. These segments are illustrated in Fig.

2.19, and defined as follows.

M .
p < 0.65% (=) = 1.0 (2.8.2.a)
- M m
£9 <
M
0.65% < p < 1.88% (=2 =1 -0.366 * (p - 0.65%) (2.8.2.b)
M m
£4
M
1.88% < p < 2.8% = =o0.6 (2.8.2.c)
Mf,Q, m

These equations have been cbtained from Fig. 2.13 by numerical eval-

uation and are not given in the literature.

2.8.4 The Relationship Between Moment Capacity and a/d - Slender Beams --

. . a .
The minimum moment capacity of slender beams with respect to the a-ratlo is

found in the following range.
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A
IA
w

This observation was made in Section 2.8.2. Furthermore, assume that the 2

d
value at minimum is P2, and the ratio of moment capacity with respect to full
. . . M a . .
moment capacity is defined by (u )m. At a-= 7 the ratio of the moment capacity
M
f
2 Mu
with respect to the full moment capacity is M 1.
£2

Two points have been defined on the curve that describes the relationship

. M . a . . c s
between the ratio u and the ratio —. The first point represents minimum

3
Meg
moment capacity at g-= P2, and the second point represents full moment capacity
a a
atd~7 (Ord—PB).

Assume a straight line relationship between the two points that have

been defined. This line is described by the following equation.

- 7.0

M M a
Moo lo0+ (=% -1.01 * &— (2.8.3)
M_.'m ) Pp. - 7.0 T

1 fL 2

Eqg. (2.8.3) describes the moment capacity of a slender beam without

. a . .
web reinforcement. The parameter a—has direct influence on the moment

capacity, while the parameter p has an indirect influence through the para-

meter (Mu ) as described by Eg. (2.8.2).
Mf£ m

As a next stage, Eg. (2.8.3) has to be modified to include the influence

of the shear reinforcement.
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2.8.5 The Influence of Shear Reinforcement on Slender Beams -- The

influence of the shear reinforcement on the moment capacity of a slender beam
has been found to be indirect, as far as the mathematical formulation .is con-
cerned. The shear reinforcement has an influence on the inclination of cracks
in the member. When the inclination is incorporated into the empirical for-
mulation that was obtained previously, as described by Eg. (2.8.3), a modi-
fied equation that takes into account the contribution of the shear reinforce-
ment is obtained.

Based upon the "truss mechanism" from which the shear reinforcement is
usually calculated, the highest shear resistance that the shear reinforcement
can contribute is given by Egq. (2.8.4).

Av*sinB*(cotOL+cot,8)*f‘§',

(vs)max - S *b (2.8.4)
w
where:
Av = area of shear reinforcing bars in the cross section
£ = 1inclination of shear reinforcement to the horizontal

a = anjle of compression struts (cracks), measured from horizontal
S = spacing of shear reinforcement

b = wel width of beam

for vertical shear reinforcement (i.e., B = 90°), Eg. (2.8.4) becomes

Av * ' * cot O
(v ) = 4 (2.8.5)

max S *b
w

(Ve

Eg. (2.8.5) indicates that both the amount of shear reinforcement and

the angle ¢ determine the shear resistance of a beam. Furthermore, it could
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be possible that the amount of shear reinforcement influences the angle a.

In design it is assumed that the crack inclination angle is 45 degrees. How-
ever, experimental data indicate that a wide range of crack inclinations is
possible. Therefore, a nominal parameter is defined with cot o = 1, as
follows.

A, * £
Vslgse = 5w b (2.8.6)

The percentage of shear reinforcement is defined as follows.
" = s - (2.8.7)

When Eg. (2.8.7) is compared to Eg. (2.8.6), the following is found.

(Vs)45
pn = - (2~8-8)
f
Y

f; = yield stress of shear reinforcement.

The following parameters are defined.

fll
N
* = LU - i
py = F T : (2.8.9.a)
C
f"
93 = p" Y (2.8.9.b)

\

From experimental results by Burns and Siess [12], it is possible to
calculate values of Di, and p;, and plot them as a function of the inclina-
tion of cracks, that have been measured. Four types of relationships are

studied.
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p{ * g. vs. @ (Fig. B3 in Appendix B)
p; * %. vs. o | (Fig. B4 in Appendix B)
px * % 'vs. tan a (Fig. B5 in Appendix B)
p; * g. vs. tan o (Fig. B6 in Appendix B)

From these relationships it is obvious that the inclination of the cracks

is a function of the amount of shear reinforcement. Only the linear relation-

ships are considered in this study.

The first corresponds to item 1, as follows.

o = -261.3 * (p% * %) + 109.0 (2.8.10)

The second corresponds to item 2, as follows.

0 = -3.68 * (p} * §> + 107.46 (2.8.11)

From each of these equations, one can evaluate the expected crack in-

clination o for the beam under consideration at ultimate moment conditions.

The influence of the shear reinforcement is illustrated in Fig. 2.20,

and evaluated as follows.

1.

Locate points 2 and 3 as defined in Section 2.8.4. Point 2

represents the minimum moment capacity for a beam without shear

. a . .
reinforcement at 3" P2. Point 3 represents full moment
capacity at 2= P

apacity 3 3

Draw a straight line between points 2 and 3, as defined by Eq.

(2.8.3).
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Calculate a new minimum moment capacity that includes the in-
fluence of the shear reinforcement. The shear reinforcement

is represented by the crack angle o, and the new value (Mu )

Mf,?, m
as given by Eg. (2.8.12). This value is illustrated as point
4 in Fig. 2.20. The angle a is found from Eg. (2.8.10), or
Eq. (2.8.11).

M M M

(_u_)' = (L) + [1 - (_E_.
Meg ™M  Mgp'm Meg

)m] * cot o < 1.0 (2.8.12)
Define a new linear relationship illustrated by a straight line

between point 4 and point 3 in Fig. 2.20 and described by the

following equation.

M M 2_ 7.0
Mo j0+ (S 1.0 xS (2.8.13)
Mfﬂ Mf2 m P2 - 7.0
M , M
Eq. (2.8.13) is obtained by substituting (=29 ' for (=)
Mo m Mo'm

in Eq. (2.8.3).

An increase in the amount of shear reinforcement results in a

M
point 5 which is closer to £ - 1 than point 4, and the beam
£2

has a higher moment capacity than before.
a . . . . .

When the 3 ratio of the beam under consideration 1is introduced
into Eqg. (2.8.13),one can evaluate the expected moment capacity
as a function of the following parameters.

a. Amount of tensile reinforcement.

b. Amount of shear reinforcement.

a .
c. The a-ratlo.

d. Material properties of the beam.
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The relationship between shear reinforcement and ultimate moment capac-

ity for slender beams as presented herein, is characterized as follows.

a.

The ultimate moment capacity of slender beams without shear
reinforcement is a function of the longitudinal steel content
p, and the shear span to depth ratio %u This relationship is
described by the straight line passing through points 2 and

3 in Fig. 2.20.

The influence of the shear reinforcement is represented by the
parameter cot o. The crack inclination angle o is related to

the shear reinforcement as discussed in Section B2 of Appendix

B. The properties of the shear reinforcement represented by

a

7 and p} * 2, as defined by Egs. (2.8.9.a),

the parameters pi * 3’

(2.8.9.b) determine the magnitude of the crack inclination

angle a.

As the magnitude of the parameters pi * g-and p; * g-increase,

the angle o decreases. Large amounts of shear reinforcement

(assuming that the material properties of steei and concrete

remain unchanged) result in low angled cracks, and high values

of cot a.

When the crack inclination angle is in the following range,
45° < o < 90°

an increase in the amount of shear reinforcement results in

a decrease of crack inclination angles 0. Therefore, higher

. X - M .
values of cot &, which increase the magnitude of (‘u )' in Eqg.

Mg

(2.8.12), result in higher ultimate moment capacity, as

defined by Eg. (2.8.13).



54

e. For crack angles smaller than 45 degrees, it is assumed that no
further increase in ultimate moment capacity can be obtained,
and the slender beam can reach its full flexural moment capacity.
f. There is no indication that excessive amounts of shear reinforce-
ment may cause a reduction in the ultimate moment capacity of

slender beams.

2.9 Flexure and Axial ILoads

2.9.1 Introduction -- The combined behavior of a beam when flexure and

axial loads are considered to act simultaneously is reflected in the "inter-
action diagram" for a member. The interaction diagram is the graphical repre-
sentation of points (M, P) for various combinations of ultimate moment and
axial load. Each combination represents a failure situation. There are
several methods to construct such diagrams, and one can find the theoretical
and practical explanations for such methods in books on reinforced concrete
design, for example Park and Paulay [3]. However, these methods are dis-
cussed briefly before the proposed procedure is explained.

The conventional method, as recommended in the literature, calls for
the calculation of three representative points that show the behavior at three
special stages of loading, and several more points in between. The three
points that actually define the shape of the diagram are the following:
ultimate axial force without bending, balanced failure, and ultimate flex-
ural moment without axial load. The first point is calculated by assuming
that the cross section of the member is under compression, with the concrete
and steel having reached the highest possible stress (for design purposes,

the concrete stress is 0.85 * fé, and the steel stress is fy). The balance
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point is calculated by assuming a linear strain distribution, where the ten-
sile reinforcement is at the yield stress while the top concrete fiber in
compression is at a strain of 0.003. The third point is calculated as for

a beam in flexure at ultimate moment capacity. The points that are needed
to complete the diagram are obtained by assuming various linear strain dis-
tributions, where the strain at the top concrete compression fiber is not
greater than 0.003. For each stage, the strains imposed on the cross section
result in stresses, from which the forces are evaluated. The difference
between tensile and compressive forces is the axial load, and from moment
considerations the moment on the cross section is calculated. The moment
can be calculated as for a beam, or around the plastic centroid of the cross
section. The plastic centroid is the location of the resultant force on the
cross section, if the concrete is compressed to a stress 0.85 * fé and the
steel is compressed to fy. For design purposes the ACI rectangular stress
block can be used, or any other equivalent method. The strain hardening of

the steel bars is usually not considered.

2.9.2 The Proposed Method —-- The method that has been adopted in this

study is based upon the results from the analysis of beams in flexure with-
out axial loads, and proceeds generally as follows. A linear strain dis-
tribution is assumed over the cross section of the member. The procedure
to calculate stresses, as proposed for beams without axial loads, is employed,
and the distribution of the stresses over the cross section is evaluated.
The tensile or compressive forces are calculated by integrating the stresses

over the corresponding areas. The difference between the sum of compressive
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forces and the sum of tensile forces defines the axial load. The moment is
calculated with respect to the plastic centroid. The numerical'values of

the axial load P, and the moment M, define a point on the interaction diagram.
When a sufficient number of points have been calculated, ihe diagram can be
plotted by a curved line passing through the given points.

In this study it is assumed that the crushing strain of plain concrete
is 0.004. The members that are analyzed in Chapter 3 have been tested by
Yamashiro and Siess [38]. Here, as in the case of beams without axial loads,
the concrete strain may exceed the crushing strain and still provide some

resistance, as will be demonstrated.

2.10 The Effect of Axial Loads on Members with Flexure and Shear

When axial loads are acting on a member some modifications are needed
in order to consider the changes in the behavior. Based upon the report by
ACI-ASCE Committee 326 [37], the following equation describes the modified

ultimate moment to be considered:

M =M - (_4_}_1.__d) * N (2.10.1)
m u 8 u

where:
M = factored moment at se¢étion (may not be section capacity)
= total depth of member
d = effective depth of member
N = axial force (+ for compression, - for tension)

Introducing Eg. (2.10.1) into Eg. (2.7.10), the new value for concrete

shear resistance becomes:



57

v . *4d
u

M
m

v =1.9 * {Ez +2500 *p % [psi] (2.10.2)

Cc

The ACl 318-71 code allows the use of the following egquation instead of

Eq. (2.10.2).

N
u .
= * + . *x * ' i . .
vc 2 (1 0.0005 Ag) fc [psil (2.10.3)

but the following restriction is required

N

v_£3.5% ng * {1 + 0.002 * XE' [psi] (2.10.4)
g
A = gross concrete area of cross section.

g

(These equations do not apply to prestressed members.)

It was found experimentally that axial compression reduces the angle
between the diagonal cracks and the horizontal (i.e., cracks are closer to
horizontal). These angles are usually smaller than 45°. Therefore, the
design assumption of cracks at 45° may result in a solution which is con-
sidered as conservative.

Based upon the theoretical results that have been discussed in Section
2.8, where 1t was found that an increase in the amount of shear reinforcement
will result 1in flatter cracks, it is clear that axial loads and shear rein-
forcement have the same type of influence on the behavior of a member, and

represented by the crack angle o.

2.11 Deep Beams

2.11.1 Introduction -- Beams are defined as "deep" when the ratio of shear

span to effective depth g-is below a certain value. Simply supported beams
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. a . .
are classified as deep when 5-15 smaller than 2, while continuous beams have

a

3 values smaller than 2.5 in order to be classified as deep. There

to reach
is one major factor that separates deep beams from slender beams. The tra-
ditional,assumptions for the strain distributions over the cross section of
the beam are no longer valid in the case of deep beams. Linear strain dis-
tributions could be justified only at initial stages of loading, but as the
loading increases considerable deviations from the Bernoulli-Navier theory
are found. These deviations from the slender beam behavior increase even
more as the %—ratio decreases. This behavior has been verified by Leonhardt
and Walther [29], and discussed by Park and Paulay [3].

Deep beams are sensitive to boundary conditions such as, type of loading,
area of loading, type and geometry of supports, and the relative geometry of
the member with respect to the adjoining members. Despite numerous experi-
mental results, the ACI 318-77 code has only some provisions concerning deep

beams. However, one can obtain more information from the European Concrete

Committee [30].

2.11.2 Simply Supported Deep Beams -- Simply supported deep beams have

been studied quite extensively, and there is more information about this

type of deep beam than about the continuous deep beam. The study by

de Paiva and Siess [31] showed that deep beams without web reinforcement
could sustain loads larger than required for inclined cracking. Vertical

and inclined stirrups had no major influence on crack formation and ultimate
strength, for beams failing in flexure on shear. However, vertical rein-
forcement reduced the deflection at ultimate load. Based upon these findings

the authors proposed the following equations to evaluate the behavior:
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v =-—= 200+ 0.188 * fé + 21300 Py (2.11.1)

AS * (1 + sin o)

p, = 5D (2.11.1.3a)
P'=2 *vy * b * D (2.11.2)
S s
Fs x
_—_ = * - *x =
Pé 0.80 (1 0.6 D) (2.11.3)

where:
V = shear force, [lbs]
vS = nominal shear stress, [psi]
b = beam width, [in]
D = beam total depth, [in]
A_* (1 + sin 0) = total steel area crossing a vertical section, [in2]

0 = inclination of reinforcement to beam axis, [deg.]
Pé = load at failure due to shear, [1lbs]
P; = computed shear strength, [lbs]

X = clear shear span between load blocks, [in]

Kani [32], investigated the safety of large reinforced concrete beams,
and proposed a method to evaluate the relative strength of such beams when
failure is governed by shear. The relative strength is a function of beam

parameters and is given by:

0.215 x 8

ol d d
u * * Jenii
100 p (im)

< 1.0 (2.11.4)
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where:
A
o=
bd
%-= shear span to effective depth ratio
The error of Eg. (2.11.4) compared to experimental data is *10%.

The relative strength is defined by:

r, = VI (2.11.5)
£2
Mu = actual ultimate moment
Mfﬂ = ultimate flexural moment = T * jd = p * b * 4 * fy * jd

Another study by Ramakrishnan and Ananthanarayana [33], proposed the

following equation for the ultimate load PC.

P =f*K* f *pb*H (2.11.0)
C t :
where:
B = shear span coefficient
K = concrete strength coefficient
1.57 for cylinder split test
K = 1.363 for diagonal cube split test (2.11.7)
1.112 lower bound value
Maximum splitting force
f = - — (2.11.8)
t K * Area to resist the splitting force
b = beam thickness

H = beam total depth
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Several cases of single point load, two point load, and uniformly dis-

tributed

load have been .studied.

Kong et al. [34] studied the behavior of deep beams made of regular

concrete.

1.

Their findings were as follows.
For low %-ratios (span to depth ratio), only horizontal web
reinforcement near the bottom of the beam is needed. Vertical
web reinforcement is useful only for %-> 1.5, and for %-= 3
vertical reinforcement is better than horizontal reinforcement.
The primary cause of failure was diagonal cracking, while bearing
failure was secondary.
Formulation to calculate ultimate loads could be either Egs.
(2.11.1) through (2.11.3), or Eg. (2.11.6). However, the
first set of equations was recommended for very low %-ratios,

at areas close to the longitudinal reinforcement.

A second study by Kong et al. [35], for lightweight concrete deep beams

resulted

1.

in the following conclusions.
Inclined web reinforcement was most effective for all ranges

L .
of However, for low B-values, horizontal bars near the

e

bottor of the members, gave also good results.

The pri:mary cause of failure was diagonal cracking. However,
inciined web reinforcement prevented this mode of failure, and
the failure was caused by either beam splitting above the sup-
ports, or concrete crushing at the bearing blocks.

The methods proposed in Refs. [31,33] and described by Eg.
(2.11.1) through Eg. (2.11.3), or by Eqg. (2.11.6) are not

valid for these cases.



4. The provisions for deep beams in the ACI 318-71 code, are quite

conservative.

Crist [36,39] investigated the static and dvnamic behaviors of deep
beams. He found that web reinforcement could prevent shear failures, and
influence the crack patterns. Closely spaced light web reinforcement caused
the cracks to form uniformly over the entire beam.

At a critical section located at X, = 0.2 * L the following analysis
is rrorosed; (xC ~ d).

the total shear capacity:

Vo=V o+ vV (2.11.9)
u uc v
Vuc 1s the ultimate shear resistance contributed by the concrete, and is
evaluated from Ec. (Z2.11.10).
N 4 M 1 \%
uc P
= [3.8 « = % () x =] * L9 x [ * o~ ok (= * g
joled [ 3 (V d} (1.2 {;; 2500 ' (M)c ]
(2.11.10)
vV is the shear resistance cf the vertical reinforcement evaluated as follows.
a A
- v 1 L vh 1 L
Vo= 1.3 4+ f % § ox (2 k = % (] + =) 4+ * —— x (1] - =
v v (5 TRy s, SR 3!
(2.11.11)
wnere:
3 = area oI vertical web reinforcement, [in‘]

v

= area of norizcntal web reinforcement, [in ]

ue
{

oI web reinforcement along the beam axis, [in]

79
1
n
r(]
fu
(@]
}o
]
\Q

5. = sracing cf norizontal web reinforcement, [in]
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The moment capacity of deep beams is given by the following equation
when only the tensile reinforcement is-allowed to be in the strain hardening

region but all other reinforcing bars cannot exceed the yield stress £ .

S
= * * * - *
Mu As fs d [1 Kl * . ( )] (2.11.13)

The stress of the tensile reinforcement fs evaluated from the strain
distribution over the beam depth, and the stress strain curve for the steel

bars is described by the following equations.

Hh
I

s - f(g)) (2.11.12.a)

e (2.11.12.b)
€ + €

it was assumed that € = 0.003 iﬁ
cu i
The error of this method has been evaluated with respect to experi-
mental data, and found to be in the range of *10 percent.
Based upon studies by Leonhardt and Walther [29], it is concluded that
the internal lever arm of the forces acting on the cross section of a deep

beam, can be calculated by the following equations.

Zl

0.2 * (2 + 2h) 1< %-< 2 (2.11.13.a)

zZ' = 0.6 * &

O
A
=

(2.11.13.Db)

% = span length

jag
Il

beam depth

N
Il

lever arm
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Furthermore, the same studies show that for deep beams the depth of the
tensile zone is only about 0.25 * h from the bottom of the beam. Therefore,
the tensile reinforcement should be placed in that region. However, the amount
of tensile reinforcement, based upon this type of analysis should not be smaller
than the amount of tensile reinforcement from slender beam type analysis.

The span length £ should be the smaller value of the following.

L

n

center to center distance between supports

or L 1.15 * clear span

The European Code [30], also recommends that the flexural reinforcement
should be placed in a region located not higher than 0.25H to 0.05%, from the
bottom of the beam (h < %).

It is assumed that in the case of deep beams loads are transferred to
the supports by arch action. Therefore, it is recommended in Ref. [30] that
at the inner face of the supports the anchorage should be able to deve;op

not less than 80% of the calculated steel force. Furthermore, only small

diameter bars should be used, or mechanical anchorage should be provided.

2.11.3 Contiruous Deep Beams -—- The discussion on continuous deep beams

is based on results that have been obtained in Europe [29,30]. Here, the
deviation from linear cstrain distribution is even larger than for simply
supported deep beams. As the span to depth ratio decreases towards 1.0,
the internal lever arm Z also decreases. However, after cracking the lever
arm will increase 1in both the negative ane positive moment zones, and this
behavior is magnified after the yielding of the flexural reinforcement.

It is recommended in Ref. [30] that the internal lever arm be calculated

in the following way.
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z"

0.2 * (2 + 1.5 * h) 1.0 £ %‘S 2.5 (2.11.14.a)

b 0.5 * § ‘ i%—< 1.0 (2.11.14.b)

The combination of shear stresses and the vertical compression over the
supports results in steeply inclined principal compression stresses. This
state of stress indicates that arch action is a major mechanism to transfer
forces to the supports.

The bending moment can be evaluated as for a slender continuous beam,
wl?

1§—~0ver the supports, and

wi2

54 at midspan (this is for a case of a uniformly

distributed load w, and span £). However, in the case of a cracked beam the
lever armbecomes smaller at the supports and larger at midspan; the moment
will also change correspondingly. This behavior was verified by Leonhardt
and Walther [29].
The placing of the longitudinal reinforcement for continuous deep beams
should be as follows.
At positive moment zones, just as for simply supported deep beams.
Special attention to anchoring of thé reinforcement is required.
At negative moment zones the reinforcement should be divided into
two equal parts. One part should extend over the full length
of the adjacent spans, while the othe; part can be cut off at a
distance of 0.4 *  or 0.4 * h (whichever smaller) from the
edge of the supports. Furthermore, the negative moment rein-
forcement should be placed in two uniform bands, as illustrated

in Fig. 2.21.
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The upper band should be 0.2 * h deep, from the top of the member, and have

the following reinforcement area.

L
= * —_ - *
Asl 0.5 (h 1) AS (2.11.15a)

The lower band should be just under the first band, 0.6 * h deep, and have

the following reinforcement area.

A =A - A . . .
52 s s1 (2.11.15.b)

In all cases, only beam depths that are not larger than the span should
be considered. Furthermore, in order to assure satisfactory behavior the

maximum shear should be limited as follows.

Vmax <0.08 * ¢ * bw * h * fé (2.11.16)
where:
¢ = 0.85
h = beam depth (h < £), [in]
bw = beam width, [in]
fé = compressive strength of concrete, [psi]
2.11.4 Web Reinforcement in Deep Beams -- In general, deep beams require

less web reinforcement than slender beams, as a result of the higher stiffness
associated with concrete mass. Furthermore, the main force transfer mechanism
in deep beams is arch action, and larger parts of the beam are in compression.

The ACI 318-77 code has some provisions for simply supported deep beams,
based upon an ASCE-AC report [15].

The shear resistance of the concrete is given by the following equation.
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Mu Vu * 4
= - * 2y % * 1 * * 2 '
v, = (3.5 - 2.5 * o—=) % (1.9 £1 + 2500 * p ) S 6 *@E;
u v u
(psi units) (2.11.17)

The first term in Eg. (2.11.17), represents the deep beam contribution,

and should comply with the following restriction.
3.5 - 2.5 * v+ g < 2.5 (2.11.17.a)

The resistance to shear due to the web reinforcement is as follows.

AV A g AVh 2 fy
= - = * — —_—— %k — —— b J—
Ve TV T Ve T g A o s (11 - g
h w
(2.11.18)
where:
v
v = L
uw_ b *d
w

Eg. (2.11.18) is similar to Eqg. (2.11.11). Furthermore, this procedure
is restricted by several conditions that are described in the ACI 318-77 code.

When this procedure is compared to the European method [30], as presented
in Eq. (2.11.16), it is found that the ACl restrictions ére about twice as
high as the European restrictions for maximum allowable shear stresses, as

discussed in Ref. [3].

2.12 A Modified Method to Evaluate the Influence of Shear on Deep Beams

2.12.1 Introduction -- The general behavior, as reported in the liter-

ature, and some design considerations for deep beams have been discussed in
Section 2.11. It was noted in Section 2.11 that shear reinforcement in deep

beams should be placed in a different way than for slender beams. However,
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the basic assumption that if the amount of shear reinforcement is adequate

the beam can reach the desired ultimate performance should also be valid

for deep beams. Therefore, it is necessary to develop a method to evaluate
the expected ultimate moment capacity as a function of the beam parameters,
including the shear reinforcement. This method should not consider explicitly
the shear resistance of the concrete because this property of the concrete is
quite unpredictable, as discussed in Section 2.7. The procedure of developing
a method that can consider the influence of shear reinforcement on the be-
havior of deep beams is similar to the one employed for slender beams,

described in Section 2.8, and follows next.

2.12.2 Deep Beams Without Web Reinforcement -- The experimental results

that were reported by Leonhardt and Walther [17,39], and Kani [22,32], clearly
demonstrate that the reduction in the ultimate flexural moment due to shear,
in beams that contain only tensile reinforcement, is a function of the fol-
lowing parameters, as discussed in Sections 2.7 and 2.8.

a. The amount of tensile reinforcement, p.

. a
b. The shear span to depth ratio, —.

d
The minimum moment capacity (fE—O is a function of p and is located in
Mf,Q, m
the range 2 SS—S 3, as discussed in Section 2.8. The numerical value of
M
(ﬁig)m can be obtained from Egs. (2.8.2),as illustrated in Fig. 2.19. 1In

Section 2.8 it was observed that the reduction in moment capacity due to

. L. a . . . M
shear is negligible when a—< 1. Assume a linear variation Qf u , as
Meg
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. a . . . .o .
a function of I This assumption can be justified by the experimental data,

as illustrated in Figs. 2.11, and 2.13 through 2.17.

Two points have been identified, as follows.

M
1. at 2 =p, where P. = 1.0, -2 =1.0
El 1 1 M
£2
a Mu Mu
2. At —=7P_, where 2 < P_ < 3, —= (=)
d 2 2 Meg Mg m

The general relationship can be defined by these points, and formulated as

follows.

=

Mu
= [(z/)_ - 1.0] * (
£9 Meg @ 2 " P

E

) (2.12.1)

=

This relationship is illustrated in Fig. 2.22, and is considered as a lower
bound for the model that described the behavior of deep beams with shear

reinforcement.

2.12.3 Deep Beams With Shear Reinforcement —-- The influence of the shear

reinforcement on the moment capacity of deep beams is evaluated by the same
procedure as employed for slender beams. The shear reinforcement influences
the inclination of the cracks that develop in the beams resulting from the
loading conditions as will be discussed later. The crack inclination o is
a variable in the "truss mechanism" that influences the total shear resis-
tance of the beam. Therefore, it is necessary to obtain a model that de-
scribes the relationship between the amount of shear reinforcement and the

crack inclination.
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The general procedure and definitions of the various parameters are de-
scribed in Section 2.8.5. Experimental data reported by Crist [36,39] is
used to obtain the necessary relationships. The experimental data and the
possible relationships are presented in Appendix B. Two linear relationships

are proposed, as follows.

1. 1log (pi * g) vs. log a (see Fig. B7 in Appendix B) (2.12.2a)
2. 1log (DE * %) vs. log o (see Fig. B8 in Appendix B) (2.12.2.b)

The equations for the proposed models obtained from geometrical consid-
erations are as follows.

From Fig. B7 the following equation is obtained.

log & = 0.039396 * log (p¥ * %) + 1.97558 (2.12.3)
From Fig. B8 the following equation is obtained.

log o = 0.042 * log (pf * %) + 1.903 | (2.12.4)

The crack inclination & can be evaluated from either one of these
expressions.

When the crack angle 0 is known, one can modify Eg. (2.12.1) to include
the influence of shear reinforcement. The procedure employed to modify Eg.
(2.12.1) is identical to that used for slender beams, as described in Sec-
tion 2.8.5. The following steps are performed, as illustrated in Fig. 2.22.

1. Points 1 and 2 have been defined in Section 2.12.2, and the

straight line through these points, as defined by Eg. (2.12.1),
describes the moment capacity of deep beams without shear re-

inforcement.
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2. If shear reinforcement is included in the member, evaluate the

crack inclination o, from Eq. (2.12.3) or Eg. (2.12.4).

3. Calculate a new minimum moment capacity (Mu )' for the wvalue §>= P
Mfz m
Employ Eg. (2.8.12) to perform this step, as follows.
Mu Mu Mu
() = () _+ [1 - (7/)_1 * cot a < 1.0 (2.8.12)
Meg ™ Mg ™ Mep ™
The values Mu
(—)' and P, define a point 4 in Fig. 2.22.
M m 2
£2
4. Obtain the eguation for the straight line that connects points 4
and 1 by substituting in Eg. (2.12.1) (Mu X for (Mu y as follows.
Mf,Q, m MfQ, m
a
M M - - P
' d 2
rl M (2.12.5)
£2 £2 2 1

5. The expected moment capacity of a deep beam can be evaluated
when the g'ratio of the beam under consideration is introduced
into Eg. (2.12.5). The following parameters are considered in
the present model.
a. Amount of tensile reinforcement.
b. Amount of shear reinforcement
c. The % ratio.
d. Material properties of the beam.
The relationship between the amount of shear reinforcement and the ul-

timate moment capacity for deep beams as presented herein is characterized

as follows.
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The ultimate moment capacity of deep beams without shear rein-
forcement is a function of tﬁe longitudinal steel content, p,
and the shear span to depth ratio,gu This relationship is
described by the straight line passing through points 1 and 2
in Fig. 2.22.
The influence of the shear reinforcement is represented by the
parameter cot a. The crack inclination 0 is related to the
shear reinforcement as defined by Egs. (2.12.3), (2.12.4) and
discussed in Section B3 of Appendix B.
An increase in the magnitude of the parameters pi * %-and

p; * %~results in the increase of the crack inclination angle
o. Larger amounts of shear reinforcement (assuming that the
material properties of steel and concrete remain unchanged)
result in steeper crack angles, and lower values of cot a.
When the crack angle o is in the following range:

45° < o < 90°

an increase in the amount of shear reinforcement deéreases
the value of cot 0 which results in a reduction of the ratio

M

(EE—)A. This influence of the shear reinforcement is illustrated
£

in Fig. 2.22 as follows. Point 4 represents the minimum flexural

moment capacity corresponding to a certain amount of shear rein-
forcement. When the amount of shear reinforcement is increased
the minimum moment capacity decreases, as illustrated by point

6 in Fig. 2.22. The ultimate moment capacity of the beam under

consideration is defined by the straight line passing through
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points 6 and 1 and the g-ratio for the beam, or described alge-
braically by Eqg. (2.12.5); The downward rotation of the straight
line around point 1 indicates that an increase in the amount of
shear reinforcement results in a reduced ultimate moment capacity
of deep beams. This behavior of the model implies that deep beams
are sensitive to excessive amounts of shear reinforcement. There-
fore, it is desirable to avoid any unnecessary web reinforcement.
e. The optimum amount of shear reinforcement evaluated from the pro-
posed model corresponds to expected crack inclination angles of
45 degrees. The corresponding amount of shear reinforcement is
calculated from Egs. (2.12.3) or (2.12.4). When the optimum
amount of shear reinforcement is provided the deep beam is

expected to develop the full ultimate flexural moment as il-

lustrated by the horizontal line through point 1 in Fig. 2.22
M

(i.e., = 1.0).

Meg

At present the proposed model accounting for the influence of shear
reinforcement cannct describe the behavior of deep beams with low amounts
of shear reinforcement. When the amount of shear reinforcement corresponds
to crack inclination angles smaller than 45 degrees the present model im-
plies that the moment capacity increases beyond the full ultimate moment
capacity, which 1s not physically possible. Therefore, the present model
should not be employed to analyze deep beams having light shear reinforcement.
Furthermore, the apparent discontinuity in the model at 45 degrees implies
that the behavior of deep beams is not fully understood. However, the ex-

perimental data reported in Refs. [36,39] clearly demonstrate that all crack
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angles measured on seventeen deep beams were in the following range 50° < g <
90°. (These beams are analyzed in Chapter 3 and the results are compared to
experimental data.) Therefore, the present model is employed to analyze these
beams despite the discontinuous behavior at 45 degrees.

The basic mechanism associated with deep beam behavior may provide some
explanation about the observed difficulties to describe the influence of low
amounts of shear reinforcement on these members. Arching action is the major
mechanism responsible for the load resisting capacity of deep beams. As a
result large zones in the deep beams sustain compressive stresses which also
contribute to improve the shear resistance of the concrete. Furthermore, it
is possible that the shear reinforcement in deep beams has a different type
of influence on the behavior than the influence associated with slender beams.
This problem should be investigated further in the future.

The procedure to consider the influence of shear reinforcement on the
ultimate moment capacity of deep beams is combined with the corresponding
procedure for slender beams, as presented in Section 2.8.5. The resulting
generalized method can be employed to evaluate the influenCé of shear rein-
forcement on the ultimate moment capacity of slender or deep beams. A com-
puter program TKSH4 is developed to perform the analysis, as described by

the flow diagram in Fig. C2 of Appendix C and illustrated in Fig. 2.23.

2.13 Summary of the Proposed Analytical Method

2.13.1 Introduction -- The analytical method to analyze the behavior

of reinforced concrete beams that is developed in this study, is composed of
two major parts. In the first part only the flexural moment capacity is

evaluated without the influence of shear. This step is described in Section
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2.6. 1In the second part the influence of shear is introduced into the solu-
tion. This step separates the behaviocr of slender beams from the behavior
of deep beams, as discussed in Sections 2.8 and 2.12. The method that is
proposed as a result of this study can be applied to analyze slender or deep
beams, with or without shear reinforcement. Furthermore, the method can be

applied to analyze such beams even when axial loads act on the members.

2.13.2 Flexural Analysis =-- The method to evaluate the flexural moment

capacity, and the rotational capacity of beams is described in Section 2.6.
In general terms, the method employs the concept of a variable stress-strain
curve for reinforced and confined concrete, as discussed in Section 2.5, and
the experimental stress-strain curves for steel bars. The variable stress-
strain curve for reinforced and confined concrete is developed in this study
from a model for reinforced concrete columns that was reported in the liter-
ature by other investigators. The numerical procedure is described in Sec-
tion 2.6, and illustrated by a flow-diagram in Appendix C. Examples’that
demonstrate the application of the method to analyze flexural members are
presented in Chapter 3.

The behavior of beams with axial loads is discussed in Sections 2.9 and
2.10. The method to analyze beams without axial loads is proposed for the
analysis of flexural members under the combined effect of bending and axial

load. The numerical procedure is demonstrated in Chapter 3.

2.13.3 The Influences of Shear and Shear Reinforcement -- The influence

of shear on the behavior of slender beams is discussed in Section 2.7, and the

behavior of deep beams is described in Section 2.11. The method employed for
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evaluating the influence of shear reinforcement on the behavior of slender and
deep beams developed in this study is Based on experimental and analytical
results reported by other investigators. The procedure for slender beams 1is
developed in Section 2.8, and for deep beams in Section 2.12. These separate
procedures are combined in this study into a generalized method by-which one
can evaluate the influence of shear reinforcement on the behavior of both
slender and deep beams. The analysis is performed by a computer program
that has been developed in this study. The program TKSH4 is described by
the flow diagram in Appendix C, and illustrated in Fig. 2.23.

The proposed procedure to account for the influence of shear reinforce-
ment 1s based on a small amount of data. It is clear the influence of shear

is not fully understood, and further study is necessary to complete the model.

2.13.4 The Combined Procedure —-- The analytical procedures for flexure

and shear are combined 1in this study to analyze various types of beéms.
The beams under consideration were studied before, both experimentally and
theoretically by other investigators. The numerical results presented in
Chapter 2 are comj-ared to the experimental results in order to evaluate the
nature and gual:*y of the proposed method.

The procedure developed in this study does not consider the effects of

bond failure between the concrete and tensile reinforcement.
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FIG. 2.3 New analytical curve and experimental results
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Eq. 2.5.2

FIG. 2.5 Modified stress strain curve for confined concrete compared
to model from Ref. [5].
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FIG. 2.8 Trajectories of principal stresses in a homogeneous
isotropic beam. Source Ref. [3]
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FIG. 2.22 The influence of shear reinforcement on the flexural
moment capacity of deep beams.
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FIG. 2.23 The influence of shear reinforcement on the flexural
moment capacity of slender and deep beams.
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3. ANALYSIS

3.1 Introduction

The theoretical models developed in Chapter 2 for the analysis of rein-
forced concrete beams are employed in Chapter 3 to analyze several cases.

The beams analyzed herein had been studied both experimentally and analytically
by other investigators. The results obtained from the present analysis are
compared to the previous experimental and analytical data, as presented in

the literature.

Three groups of members are considered in this study. 1In the first are
beams in flexure without axial loads that had been studied previously by Burns
and Siess [12]. 1In the second are beams under flexural and axial loads that
had been studied previously by Yamashiro and Siess {[38]. 1In the third are
deep beams that had been studied by Crist [36,39]. All the members are ana-
lyzed by the methods presented in Chapter 2. The analysis is performed‘in
two steps. In the first step only the flexural behavior is considered, while
in the second step the influence of shear is incorpcrated into the analysis.
The numerical results are illustrated by moment-curvature diagrams (M-¢), for
slender beams without axial loads, and by interaction diagrams (P-M), for
flexural members with axial loads. The results are compared to the experi-
mental data reported by other investigators, and to analytical results based
upon other recommended methods, as described in the literature; The deep
beams are analyzed only for ultimate moment conditions. The results obtained
for deep beams are compared to the experimental and analytical data, as
reported by Crist [36,39], and to data obtained by employing the ACI recom-

mended procedure for the analysis.
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3.2 Flexural Members Without Axial Loads

3.2.1 Introduction -- The members that are analyzed in this section, had

been studied by Burns and Siess [12]. The geometrical and material properties
of the members are presented in Appendix B, Section Bl.

In order to démonstrate the application of the proposed method, and the
accuracy of the numerical results, three beams have been chosen for which a
detailed analysis is presented. A fourth beam is analyzed only for ultimate
moment conditions. These beams represent each of the three groups (classified
by the %-ratio) that had been studied in Ref. [12]. Furthermore, the beams
that are analyzed herein are those for which the largest differences between
the experimental and the analytical results had been reported in Ref. [12].
The accuracy of the proposed method is demonstrated by the significant de-
crease in the differences between experimental and analytical results.

The analysis of each of the three beams (J-2, J-14, J-22) is for loading

conditions between the yielding of the tensile reinforcement and ultimate

moment. Beam J-20 is analyzed for ultimate moment only.

3.2.2 The Numerical Procedure -- The numerical procedure has been

presented and discussed in Section 2.6, and illustrated by a flow diagram
in Appendix C. Each loading stage is represented by the numerical values of
strains, stresses, and forces at each layer. A scaled drawing of the cross
section on which the locations of the neutral axis, and the layers is also
presented for the last iteration (i.e., equilibrium) of each loading stage.
The moment and curvature are calculated, and the point representing the
moment (M), and the curvature (¢) is plotted on the M-¢ diagram that is

enclosed at the end of the analysis for each member.
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The numerical procedure is explained in detail for the first case, the
beginning of the analysis. The same procedure is employed for all other

cases discussed in this chapter.

Beam J-2

Fig. 3.2.1 illustrates the cross section of beam J-2 at the ultimate
moment condition. The following steps are performed during the analysis,
as illustrated in Fig. 3.2.1.

l. Assume a location for the neutral axis, and a numerical value of
the strain at a certain location on the cross section. For ultimate moment
condition of beam J-2 it is assumed that the strain at the tensile reinforce-
ment level is 0.044 %ﬁ-, and the neutral axis is located at a distance of
4.5 in. from the top of the beam. Several attempts are made until the "right"
combination is found, as explained in the following steps.

2. Find the location at which the concrete in compression reaches a
strain 0.004 %%-by assuming a linear strain distribution over the cross
section. If this location is below the bottom of the compressive reinforce-
ment assume that the unconfined concrete cover located.above the bottom of
the compressive reinforcement has spalled off. However, if the strain
0.004 %g—is located between the bottom of the compressive reinforcement and
the top of the cross section, all the concrete cover which is subjected to
strains larger than 0.004 %ﬁ-may spall off. These assumptiéns increase
the accuracy of the proposed method.

3. Divide the compression zone of the cross section into horizontal

layers. For the present case the following layers are obtained.
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a. ‘The concrete at the compressi&e reinforcement level. This
layer is asthick as ﬁhe diameter of the reinforcing bars,
and its length is defined by the distance between the in-
ternal vertical lines of the rectangular hoop.

b. The cdncrete between the neutral axis and the line that
corresponds to the strain 0.004 %ﬁz The length of this
layer is defined by the beam width.

c. The confined concrete located between the bottom of the
steel bars and the location of the strain 0.004 %ﬁ-is
divided into three equal layers. The length of each layer
is defined by the distance between the external vertical
lines of the rectangular hoop. The number of layers may
vary for each case.

d. The concrete cover located between the bottom of the steel

in
in

bars, and the line at which the concrete strain is 0.004
is considered as a single and separate layer. The width of

this layer is defined by the distance betweén the external
vertical line of the rectangular hoop and the external

vertical line of the beam cross section.

4. For each layer, except the concrete cover defined in step 2.4d.,
calculate the strain at the mid-height horizontal plane. The strains are
calculated corresponding to the linear strain distribution assumed previously
in step 2.

5. Employ Egs. (2.5.4), (2.5.5), (2.5.6) to calculate the parameters

of the stress strain curve for the confined concrete.
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6. Employ Eg. (2.5.1) to calculate the stress at a layer if the strain
is smaller than EO' as defined by Eg. (2.5.4). If the strain at a layer is

in the range defined by eo <egeg 80 3K’ calculate the stress from Eqg. (2.5.2).

If the strain is larger than € employ Eg. (2.5.3) to calculate the stress.

0.3K

7. Assume that the stress on the concrete cover defined in step 2.d.
is between 0.5 * fé and 0.85 * fé. This assumption increases the accuracy
of the results, as demonstrated in the following cases.

8. Calculate the area of each layer from the layer dimensions, as
defined in step 2.

9. Calculate the stress in the steel bars by introducing the steel
strains into Eg. (2.4.2). The parameters of the stress strain curves for
the steel bars are presented in Table B2 of Appendix B.

10. Calculate the force at each layer; multiply the stress of the layer
by the area of the layer. Caiculate the force in the steel bars; multiply
the stress in the bars by the area of the bars. The concrete layer defined
in step 2.b. is considered as a uniform layer. The concrete cover is at a
strain smaller than 0.004 %ﬁ-énd is assumed to behave as confined concrete.
This assumption is discussed in Section 2.5.1.

11. Sum all compressive forces and compare to the sum of all tensile
forces. Here it is assumed that if the difference between tensile and com-
pressive forces is less than 1%, the cross section is in equilibrium. How-
ever, if that difference is larger than 1% one has to assume a new location
for the neutral axis and return to step 1.

12. when the cross section is in equilibrium calculate the moment as
follows. Multiply the force in each compressive layer, or bar by the vertical

distance from the center of the layer to the center of the tensile reinforcement.
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Sum all moments corresponding to the compressive forces with respect to the
tensile reinforcement. |

13. Calculate the curvature of the member in equilibrium as follows.
Divide the strain at any point on the cross section by the vertical distance
from that point to the neutral axis. Usually the strain and location of the
tensile reinforcement, or the top concrete fiber in compression are used to
calculate the curvature. |

14. For ultimate loading conditions, apply the procedure to correct the
moment due to the influence of shear and shear reinforcement. Use program
TKSH4 to calculate the shear reduction factor (SRF). Multiply the ultimate
moment (step 125 by the SRF to obtain the modified ultimate moment.

15. The numerical values of the moment M, and the curvature ¢ define a
point on the moment-curvature diagram.

16. locate the following points on the moment-curvature diagram.

a. Ultimate moment condition, as discussed in the precéding steps.

b. VYielding of tensile reinforcement. Assume the tensile rein-
forcement yielded (thé strains are presentea in Appendix B,
Table B2), and perform the procedure as described in steps
1l through 13.

c. Calculate several points by assuming strain values for the
tensile reinforcement which are between the ultimate moment
strain and the yield strain.

17. Plot the moment~curvature diagram by passing a curved line through
all points.
The number of layers as defined in Item 3 may change for other cases

under consideration. A detailed numerical example is provided in Appendix D.
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Ultimate Moment Capacity

The geometrical representation of the cross section, for this loading

stage is shown in Fig. 3.2.1.

sented in the following tabulation.

The numerical values for equilibrium are pre-

Equilibrium is obtained when the neutral

axis shifted to kud = 4.5 in, and the strain of the tensile reinforcement is

0.044 ==,
in

layer step 4 steps 5,6,7,9 step 8 step 10
€ f Area F
[psi] [in2] [1bs]
1 0.015 3014.5 3.19 9616.25
2 0.0106 3619.5 3.19 11546.2
3 0.0062 4224.5 3.19 13476.15
4 0.002 4241.5 4.0 16966.0
concrete at
comp. rein. .0.02 2327.1 2.89 6722.4
level
cover >0.004 2468.0 3.795 13161.0
comp. rein. 0.02 56235.0 0.88 49486.8
ten. rein. 0.044 76268.2 1.58 120503.7
c _ . o
T = 1.004 difference = 0.4% (step 11)
step 12: The moment with respect to the tensile reinforcement
M = 877.0 - K.
step 13: The curvature
_0.02 _ rad.
¢ = 2.5 0.008 in.

step 11
ZC = 120974.8 1bs
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The measured moment: Mm = 919 in. - K. From the analysis for shear;

no significant reduction due to shear because 25 7.0.

d
Mcal M al
M = 0.9543 difference = 1 - Mc = 4.57%
m m

Case 2:

Yielding of Tensile Reinforcement

The same procedure is applied to this case. Here, thg strain at the
tensile reinforcement level is known from Table Bl. The cross section is
illustrated in Fig. 3.2.2, and the results are presented in the following
tabulation. The procedure follows the steps described previously for ul-
timate moment conditions.

The solution converges to equilibrium for kd = 4.1 in. In this case all

in

% , and there is no spalling of

compressive strains are smaller than 0.004 in

concrete cover. Therefore the compression zone is divided into layers of
the type defined in step 2.b. For layers that contain steel bars the area

of the steel is subtracted from the area of concrete when forces are cal-

culated.
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layer step 4 steps 5,6,7,9 step 8 step 10

£ £ Area F
[psi] [in?] [1bs]
1 ‘ 0.00108 3645.87 4.0 14583.5
2 0.000939 3140.42 4.0 12561.7
3 0.000799 2967.69 4.0 10565.0
4 0.000659 2149.74 ~ 3.56 7653.1
5 0.000519 1570.5 3.56 5590.9
6 0.000379 1283.0 : 4.0 - 5132.2
7 0.000238 739.35 4.0 2957.4
8 0.000084 255.33 4.8 . 1225.6
: step 11

comp. rein. 0.000589 17082.95 0.88 15033.0 ZC = 75302.4 1lbs
ten. rein. 0.001655 48000.0 1.58 75840.0

zc .

= 0.9929 difference = 0.7% (step 11)

The moment, with respect to the tensile reinforcement: (step 12)

M = 643.0 in. - K

measured [12]: Moo= 685.0 in. - K
Hcal
v = (.939 difference = 6.1%
m )

It is assumed that the measured moment is not exactly for the vield
condition, because the loading had to be higher than to cause yielding of
the tensile reinforcement in order to detect this situation.

The curvature for this stage: (step 13)

_ 0.001655 _ rad.
¢ = =g~ = 0.00028 T—=
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FIG. 3.2.2 Beam J-2 cross section at yielding stage (Case 2).
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Case 3:

This case describes the following state of equilibrium as illustrated

in Fig. 3.2.3.

€ )

S

. < <
0.002 (Ey €s Esh

kad

4.15 in.

The numerical results are presented in the following tabulation.

layer € £ Area - F
[psil [in?] [1bs]

1 0.00133 3074.3 4.0 12297.2
2 0.00116 2778.1 4.0 11112.4
3 0.0009%9° 2454.9 4.0 9819.6
4 0.00082 2103.8 3.56 7489.5
5 0.00065 1724.5 3.56 6139.2
6 0.00048 1316.0 4.0 5264.0
7 0.000307 869.9 4.0 3479.6
8 0.000136 397.9 4.0 1591.6
9 0.000026  77.6 1.2 93.12
comp. rein. 0.000735 21315.0 0.88 18757.2 IC = 76043.5 1bs
tent. rein. 0.002 48000.0 1.58 75840.0

Ic .

T = 1.0027 difference = 0.27%

Moment with respect to the tensile reinforcement:

M 640.1 in. - K

Curvature:

_ 0.002 _ rad.
¢ = cge— = 0.000342 T —
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3.2.3 Beam J-2 cross section for Case 3.
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Case 4:
This case represents the following strain distribution, as illustrated

in Fig. 3.2.4.

€ 0.009% = £ _, from Table B2

[ sh

kd 2.7 in.

The numerical results are presented in the following tabulation.

layer € f Area F
[psil [in?] [1bs]

1 0.00322 3539.4 4.0 14157.6
2 0.00256 3235.9 4.0 12943.6
3 0.0019 2824.3 4.0 11297.2
4 0.00125 2246.7 3.56 7998.2
5 0.00059 1345.5 3.56 4790.0
6 0.00013 364.7 1.6 583.5
comp. rein. 0.00092 26680.0  0.88 23478.4 IC = 75248.5 1bs
ten. rein. 0.0096 48000.0  1.58 75840.0

e e

o = 0.9922 difference = 0.77%

Moment with respect to the tensile reinforcement:

M = 651.9 in. - K.
Curvature:
0.0096 rad.
¢ = 73 = 0.001315 in.
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FIG. 3.2.4 Beam J-2 cross section for Case 4.
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Case 5:
This case represents the following strain distribution, as illustrated
in Fig. 3.2.5.

€ = 0.02 (e >¢€ )
s s

sh
Equilibrium was obtained for kd = 3.1 in.

The numerical results are presented in the following tabulation.

layer € f Area F
[psi] [in?] [1bs]

1 0.00652 2040.0 13.0 26520.0

2 0.00101 1979.2 5.6 11083.5

concrete at

comp. steel 0.003188 3595.2 2.87 10318.2
level
coverl 0.00304 3514.2 2.1 7379.8
cover2 0.00413 2040.0 0.285 581.4
comp. rein. 0.003188 48600.0 0.88 42768.0 ZC = 98651.0 1lbs
ten. rein. 0.02 62500.9 1.58 98751.4
Ic .
T = 0.9989 Difference = 0.1%

Moment with respect to the tensile reinforcement:

M

811.8 in. - K.

Curvature:

0.02 _ rad-
¢ = e o - 0.002898 In.
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Case 6:
This case represents the following strain distribution, as illustrated
in Fig. 3.2.6.
. - 0. N
es 0.03 Esh

Equilibrium is obtained for kd = 4.3 in, and the numerical results are

presented in the following tabulation.

layer € £ Area F
[psi] [in2] [1bs]’
1 0.008684 3915.2 3.42 13397.8
2 0.005394 4355.5 3.42 14904.5
3 0.002368 4566.0 3.42 15624.8
4 0.002 4249.5 1.4 5949.3

concrete at

comp. steel 0.0121 3458.1 2.87 9924.7
level
cover >0.004 2284.0 4.028 9200.0
comp. rein. 0.0121 48600.0 0.88 42768.0 LC = 111769.1 1lbs
ten. rein. 0.03 70777.0 1.58 111827.0
zc .
T = 0.999 difference = 0.05%

Moment with respect to the tensile reinforcement:
M = 831.7 in. - K.

The curvature:

0.03 rad.
¢ = 5.5 =0.005263 in.
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FIG. 3.2.6 Beam J-2 cross section for Case 6.
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Case 7;
This case represents the following strain distribution, as illustrated
in Fig. 3.2.7.

€ = 0.006 (e <ege <e.)
s y s s

h

Equilibrium is obtained for kd = 3.1 in, and the numerical results are

presented in the following tabulation.

layer € £ Area F
[psi] [in?] [1bs]’

1 0.002478 3252.5 4.0 13010.0
2 0.00204 2946.8 4.0 11787.2
3 0.001609 2626.7 4.0 10506.8
4 0.001174 2188.4 3.56 7790.7
5 0.00074 1607.2 3.56 5721.6
6 0.00026 688.0 4.8 3302.4
comp. rein. 0.0009565 27738.5 0.88 24409.9 IC = 76528.6 1lbs
ten. rein. 0.006 48000.0 1.58 75840.0

pYe i

E—-= 1.009 difference = 0.9%

Moment with respect to the tensile reinforcement:
M = 655.5 in. -~ K.

The curvature:

0.006 rad.
¢ = e o - 0.0008695 in.

T o 2 S
etz 2sferznce D22

T e T ~'

jisd

Tl £ o e K
LrniTersivy o7
e e
L€ oo

EC N, Prpien Shvans

NP - « I S 2=

Urbsna, Iilinsis <122
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FIG. 3.2.7 Beam J-2 cross section for Case 7.
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The results that have been obtained for beam J-2, are used to plot the
M-¢ curve. The numerical values of the points for this curve are presented

in the following tabulation

case M ¢

[in. - K.] [ggg.]

in.

yield 643.0 0.00028
3 640.1 0.000342
7 655.5 0.0008695
4 651.9 0.001315
5 811.8 0.002898
6 831.7 0.005263
ultimate 877.0 0.008

The M-¢ curve is illustrated in Fig. 3.2.8.

The analysis of the following cases does not include illustrations of
the cross sections under consideration. The procedure to obtain such illus-
trations 1s 1identical to the method described previouslf and applied for the
analysis of beam -2. The parameters and dimensions of the beams under con-

sideration are ;resented in Appendix B.



[in.

800

M
- K.]

600

400

200

O analysis w/o shear influence
e experimental data

+ analysis w. shear influence

1 1 -
6

FIG. 3.2.8 Moment-curvature diagram for Beam J-2.

10

[

rad.

]1*10

ZTT



113

Beam J-14
Case 1:

Ultimate Moment Capacity

The procedure for the analysis is exactly the same as for the previous
beam. Equilibrium is obtained for kud = 4 in and Es = 0.075 Iﬁu The numeri-

cal values are presented in the following tabulation.

layer € £ Area F .
[psi] [in?] [1bs]
1 0.01425 4809.01 2.51 12070.6
2 0.006375 4975.9 2.51 12489.5
3 0.00225 3477.7 4.0 13910.8
cover >0.004 3825.0 2.975 11379.4

concrete at

comp. rein. 0.015 4712.7 2.87 13525.4
level
comp. rein. 0.015 53263.6 0.88 46872.0 ZC = 110247.7 1bs
ten. rein. 0.075 70306.0 1.58 111083.5
zc .
E—-= 0.9925 difference = 0.75%

Moment with respect to the tensile reinforcement:
M = 1268.0 in. - K.

The measured moment: Mm = 1296.0 in. - K.

EEEE = 0.9784 difference = 2.16%
m
From shear analysis; S—= 5.14, no significant shear influence.

Curvature:

0.075 _ o5 Lad:
in.




114

Case 2:

Yielding of Tensile Reinforcement

The yield strain of the tensile reinforcement is 0.001624, and the
neutral axis is located at kd = 5.19 in. The numerical values are presented

in the following tabulation.

layer € £ Area F
[psi] [in?] [1bs]
1 0.000855 2651.5 8.0 21212.0
2 0.000671 2080.1 7.56 15725.5
3 0.000487 1508.6 7.56 11405.0
4 0.000302 937.2 8.0 7497.6
5 0.0001097 340.0 9.52 3236.8
comp. rein. 0.000588 17641.0 0.88 15524.1 IC = 74501.0 1bs
ten. rein. 0.001624 47100.0 1.58 74418.0
ZC .
T - 1.0025% difference = 0.25%

The moment with respect to the tensile reinforcement:

M= 929.5% 1n. - XK.
The measured moment : Mm = 956.0 in. - K.
Mcal
v = (3.9%] difference = 4.9%
™

Here too the experiment was loaded, probably, beyond the yield stage, and
therefore the measured moment is larger than the calculated moment.

The curvature:

0.001624

¢ =351

= 0.0001843 I,

rad.
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Case 3:
This case represents a loading stage at which the tensile reinforcement
has reached a strain of ES = 0.01 %ﬁ-and kd = 2.95 in. The numerical values

of the analysis are presented in the following tabulation. At this stage

v S sh
layer € £ Area F
[psi] [in?] [1bs]
1 0.002305 3230.9 6.8 21970.1
2 0.001535 2619.3 6.8 17811.2
3 0.000284 744.5 4.0 2978.0
concrete at
comp. Steel 0.000861 1808.8 5.12 9261.0
level
comp. rein. 0.000861 24969.0 0.88 21972.7 ZC = 73993.1 1lbs
ten. rein. 0.01 47100.0 1.58 74418.0
)Xo .
T = 0.9943 difference = 0.57%

The moment with respect to the tensile reinforcement:
M = 935.5 in. - K.

The curvature:

(@)

) .01 rad.
¢ = = —
¢ 11.05 0.000905 in.
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Case 4:
This case represents a loading stage at which the tensile reinforcement

reached strain hardening (i.e., ES = esh = 0.0175). Equilibrium is obtained

li

when the neutral axis shifts to kd 2.5 in. The numerical values are pre-

sented in the following tabulation.

layer € £ Area F
[psi] [in?] [1bs]

1 0.00327 3731.5 6.0 22389.0

2 0.00281 3513.0 6.0 21078.0

concrete at

comp. steel 0.00076 1€54.1 7.12 11777.2
level
comp. rein. 0.00076 22040.0 0.88 19395.2 ZC = 47639.4 1lbs
ten. rein. 0.0175 47100.0 1.58 74418.0
)Xo .
— = 1.0029 difference = 0.29%

The moment with respect to the tensile reinforcement:
M = 950.5 in. - K.
The curvature:

0.0175 rad.
¢ = 1.5 - 0.00152 .
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Case 5:
This case represents a loading stage at which the tensile reinforcement
. in A . . .
reaches a strain gs = 0.03 Iin Equilibrium is obtained when the neutral axis

shifts to kd = 2.6 in. The numerical values are presented in the following

tabulation.
layer € £ Area F
[psi] [in?] [1bs]
1 >0.004 2250.0 8.6 19350.0
2 0.00329 3792.3 4.4 16686.1
3 0.00039 983.4 1.8 1770.1
concrete at
comp. steel 0.00158 2577.4 5.12 13196.3
level
comp. rein. 0.00158 45820.0 0.88 40321.6 IC = 91324.1 1bs
ten. rein. 0.03 57953.9 1.58 91567.2
ZC .
T = 0.9974 difference = 0.26%

The moment with respect to the tensile reinforcement:
M = 1132.3 in. - K.
The curvature:

¢ = 1.2 ~ 0.00263 .
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A summary of the points that have been calculated for the M-¢ curve is

presented in the following tabulation.

Case M 0]
[in. - K.] [rad]
in
yield 909.5 0.000184
3 935.5 0.000905
4 950.5 0.00152
5 1132.3 ' 0.00263
ultimate 1268.0 ' 0.0075

The M-¢ curve is shown in Fig. 2.3.9.

Beam J-22
Case 1:

Ultimate Moment Capacity

This case represents the values of moment and curvature when the beam
reached its ultimate load. Equilibrium is obtained when the tensile rein-
forcement reached a strain Es = 0.15 %ﬁ-, énd the neutral axis shifts to
kud = 3.5 in. The numerical values are presented in the following tabula-

tion.



1200

1000

800F

600F

O analysis w/o shear

. experimental
400}

4+ analysis w. shear

200}

N o
N
[0}

FIG. 3.2.9 Moment-curvature diagram for Beam J-14.

o

rad.

in.

1%10°

6TT



120

layer € £ Area F
[psil] [in2] [1bs]

1 0.0072 4745.1 3.33 15801.2

2 0.002 3266.3 3.097 10102.0

concrete at

comp. steel 0.0155 3331.6 3.44 11477.4
level
cover >0.004 3750.0 1.53 5750.6
comp. rein. 0.0155 46400.0 1.58 73312.0 ZC = 116443.2 lbs
ten. rein. 0.15 73400.0 1.58 115272.0
N6 .
Eﬁ'= 1.0040 difference = 0.4%

The moment with respect to the tensile reinforcement:

M = 1829.5 in. - K.
cal

This beam has a shear span to depth ratio % = 4.0, and #2 hoops at a 6
in. spacing. When this information is used to calculate the moment reduction

factor, as proposed in Chapter 2 (program TKSH4), the following value is

obtained:
Mu
E__ = 0.889
£
from which:
(M = 1829.5 * 0.889 = 1626.4 in. - K.

cal)modified
The measured moment:

M = 1650.0 in. - K.
m

cal

M
m

= 0.986 difference = 1.4%

The curvature:

0.15 _ rad.
¢ = T, = 0.010345 —
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Case 2:

Yielding of Tensile Reinforcement

This case represents a loading stage at which the tensile reinforcement
reached a strain e, = 0.00181. Equilibrium is obtained when the neutral axis

shifts to kd = 5.6 in. The numerical values are presented in the following

tabulation.
layer € £ Area F
[psi] [in?] [1bs]
1 0.000744 2022.2‘ 8.0 16177.6
2 0.000598 1660.2 7.21 11970.0
3 0.000452 1280.5 7.21 9232.4
4 0.000306 883.8 8.0 7070.4
5 0.00016 458.3 8.0 3666.4
6 0.0000438 130.7 4.8 627.4
comp. rein. 0.0005255 15239.5 1.58 24078.4 LC = 72822.6 1bs
ten. rein. 0.00181 46200.0 1.58 72996.0_
ICc _ .
T 0.9976 difference = 0.24%

The moment with respect to the tensile reinforcement:
M = 1169 in. - K.

The measured moment:

M
M_ = 1204 in. - K. Mcal- = 0.971 difference = 2.9%
m
The curvature:

0.00181 rad.
¢ = 5.4 0.000146 in.
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Case 3:
This case represents a loading stage at which the tensile reinforcement
. in oy iy . .
reaches a strain ES = 0.009 in’ Equilibrium is obtained when the neutral

axis shifts to kd = 3.1 in. The numerical results are presented in the fol-

lowing tabulation.

layer € £ Area F
[psil [in?] [1bs]

1 0.00157 2717.6 8.0 21740.8
2 0.000966 . 2000.8 7.21 14425.8
3 0.000332 863.7 8.01 6918.2
comp. rein. 0.000664 19268.4 1.58 30444.1 ZC = 73528.9 lbs
ten. rein. 0.009 46200.0 1.58 72996.0

e .

T = 1.0073 difference = 0.73%

The moment with respect to the «tensile reinforcement:
M = 1212.5 in. - K.

The curvature:

0.009 _ 4 000604 E29-

¢ =129 in.

Case 4:
This case represents a loading stage at which the tensile reinforcement
. i e 3 X
reaches a strain Es = 0.0168 1§-= Esh' Equilibrium is obtained when the

neutral axis shifts to kd = 2.575 in. The numerical values are presented

in the following tabulation.



layer

comp. rein.

ten. rein.

IC

— = 0

T

Moment with

M

I

0.00226

0.00117

0.000313

0.000625

0.0168

.9962
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£
[psi]

3140.7
2195.85

808.7
18151.35

46200.0

difference

Area
[in

8.0

3.81

= 0.38%

F
[1bs]

25125.6

15832.1

3081.1

28679.1

72996.0

respect to the tensile reinforcement:

The curvature:

¢=

Case 5:

This case represents a loading stage at which the tensile reinforcement

0.0168
15.425

1208.2 in.

- XK.

rad.

= 0.001089 —
in.

ZC

72717.9 1bs

in co . . . .
reaches a strain of CS = 0.1 in’ Equilibrium is obtained when the neutral

axis shifts

to kd =

lowing tabulat:ion.

layer

1

2

concrete at
comp. steel
level

cover

comp. rein.

ten. rein.

C

[
()
wn
[

(@]
(&
(&7
[ )

0.0096

>0.004

0.0096

0.1

3.4 in.

f
[psi]

4574.3

3216.2

4893.0

2210.0
46400.0

72650.5

Area
[in2]

1.754

4.572

3.445

0.809
1.58

1.58

F
[1bs)

8022.4

15026.1
16856.4

1787.9
73312.0

114787.8

C

The numerical values are presented in the fol-

115004.8 1bs
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%9 = 1.0019 difference = 0.19%

Moment with respect to the tensile reinforcement:
M = 1817.0 in. - K.
The curvature:
0.1 rad.

¢ = 75¢ = 0-00685 =~

A summary of the points obtained from the analysis of Beam J-22 is

presented in the following tabulation.

M | ¢

[in. - K.] [rad.]
in.
vield 1169.0 0.000146
3 1212.5 0.000604
4 1208.2 0.001089
5 1817.0 0.00685
ultimate 1829.5 (w/o shear 0.010345
influence)

1626.4 (w. shear
influence)

The M-¢ curve is illustrated in Fig. 3.2.10.

The behavior of the beams that have been analyzed previously is pre-
sented in Fig. 3.2.11. The results demonstrate that the analytical behavior
is close to the experimental data. Unfortunately only the behavior at the
yvield and ultimate stages can be compared to the experimental data. The
corrections due to the shear influence at ultimate shows a significant
improvement. However, there is no experimental data to evaluate the in-

fluence of shear at intermediate loading stages.
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FIG. 3.2.10 Moment-curvature diagram for Beam J-22.
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FIG. 3.2.11 Moment-curvature diagrams.
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Beam J-20

In order to demonstrate once more the effectiveness of the proposed
method to analyze reinforced concrete beams, another case is examined. Beam
J~20 was tested and analyzed by Burns and Siess [12]; the analytical results
are different by more than 9.5% from the experimental (when only the ultimate
moment stage is considered).

Here, the ultimate moment capacity is evaluated, and the influence of
shear is taken into consideration. Equilibrium is obtained when the tensile
reinforcement reaches a strain ES = 0.14 %%-, and the neutral axis shifts to

kud = 3.5 in. The numerical results are presented in the following tabulation.

layer € hij Area F
[psil [in?] [1bs]

1 0.00867 4759.7 3.9 18562.8

2 0.002 3268.9 2.4 7845.4

cover >0.004 2190.2 3.445 7545.2

concrete at

comp. steel 0.02 . 2190.0 1.75 3832.5
level
comp. rein. 0.02 48960.0 1.58 77357.3 ZC = 115143.2 1lbs
ten. rein. 0.14 71673.6 1.58 113244.3
Cc _ . _
T 1.016 difference = 1.6%

A small reduction in the value of kd should bring the system to a better
equilibrium condition, however for demonstration this system is used to
evaluate the ultimate moment.

M = 1352.0 in. = K.
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The measured moment:
M = 1238.0 in. - K.
m
The moment that was calculated in Ref. [12]: M = 1356 in. - K.
Now, the influence of shear is considered.
Beam J-20 has a shear span to depth ratio: %-= 5.14.

Shear reinforcement: #2 bars at a 6.0 in spacing.

When this information is used as explained in Chapter 2 (program TKSH4),

M
the moment reduction factor is ﬁE' = 0.9, therefore:
£2 ‘
M = 1352.0 * 0.9 = 1216.8 in. - K.
cal

Mcal _1216.8

Mm T 1238.0 0.983 difference = 1.7%

Here again the calculated moment is quite close to the experimental value,
and as in the cases that have been discussed previously the analytical result
is smaller than the experimental result (i.e., the analysis is quite accurate,

but still on the safe side).

3.2.3 General Remarks and Observations -- The results obtained in the

previous section illustrate quite clearly that the analysis, based on the
proposed model, makes it possible to obtain numerical solutions which are
within 5% of thevexperimental data.

The results that had been obtained by Burns and Siess [12] for ultimate
moment conditions, when corrected by the shear reduction factor (SRF) as
presented in Table 3.2.3, come somewhat closer to the experimental data.

When the results obtained in the previous section are considered it is clear
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M)

u cal

™) becomes narrower than for the
u'm

that even the range of the ratio

uncorrected results. Based on the results from the proposed analysis this
range should be 0.95 to 1.05. The narrowing of the range, in which the ana-
lytical results fall, is illustrated in Fig. 3.2.12.

The results presented in Table 3.2.3 clearly indicate that the shear
reduction factor (SRF) alone cén change therresults only by a small amount.
Therefore, the combined contribution of the methods developed in this study

should be considered.



beam

J-1
J-11
J-2
3-8
J-17
J-18

J-10
J-14
J-13
J-19
J-20

J-21
J-22

(M)

Ref.
[in -

739
617
919
878
892
876

943
1296
1392

937
1238

1488
1356
1800
1740
1363
1650

Table 3.2.3:

(M)

u cal

[12] Ref.
K] [in -

688
595
829
894
896
879

938
1294
1391

942
1356

1511
1493
1781
1845
1469
1856

[12]
K]

mean:

range:

Numerical results from Ref.

(Mu)cal

(M)
u

Ref. [12]
0.93
0.96
0.9
1.02
1.0

1.0

0.99
1.0
1.0,
1.0
1.09

1.01
1.10
0.99
1.06
1.08
1.12

1.015

0.9 to 1.12

S.R.F.
present

u%orrected

Ref. [1

2]

[in - K]

688
595
829
894
896
879

938
1294
1391

942
1220.4

1480.8
1448.2
1745.4
1734.3
1307.4
1651.8

mean:

range:

M)

__ucal

M)

0.93
0.96
0.9
1.02
1.0
. 1.0

0.99
1.0
1.0
1.0
0.986

0.99
1.07
0.97
1.0
0.96
1.0

0.987

[12], and their modification.

(M)

u cal
present
[in - K]

877.0

1268.0

1216.8

1626.4

0.9 to 1.07

(M)

u cal

L

0.954

0.978

0.983

0.986

O€T
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FIG. 3.2.12 Plot of measured versus computer ultimate moments.
Source Ref. [12]



132

3.3 Analysis by the ACI Method

It is interesting to compare the results obtained by the proposed method

with results obtained by the ACI rectangular stress block method.

Beam J-2

The linear strain distribution, and the forces are illustrated in Fig.

3.3.1.
o 0.85 fé
~ 0.003"
cl
| oA k d ®s a -
L s u c
o
o
o
A - *
o S o 5 T AS fS
s
8.0
Fig. 3.3.1: The ACI method
.2
A = 1.58 in.
S
A' = 0.88 in?
S

When equilibrium is reached the following values are obtained.

f = f = 48000 psi

S Y
kud = 2.595 in. ZC = 75403.3 1bs
Eé = 0.000688 < E; T = 75840.0 1lbs
4 . IC : -
fé = 1.99433 * 10 psi = = 0.994 difference = 0.6%
a

= * -_ — ' * - ' = 1 -— .

Mu CC (d 2) + Cs (d a') 631.6 in. K
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a=f8 *kd=0.846 *kx d
u u

1
80
= - * =
Bl 0.85 0.05 1000 0.846
The measured moment: Mh = 919 in. - K.
Yacr  631.6
= — = 0.687 difference = 31.3%

M © 919
m
Compared to a difference of 4.6% based upoﬁ the proposed method.
(M = 877.0 in. - K.)
Similarly, the other three beams have also been analyzed by the ACI method,

and the wvalues that were obtained are presented in the following table.

Table 3.3.1: Comparison of results from flexural analysis

Beam Experimental MACI ACI M Present
moment [12] [in. - X.] difference present difference
[in. - K.] ) . [%] [in. - K.] - [#]

J-2 919.0 631.6 31.3 877.0 4.6

J-14 1296.0 901.6 30.4 1268.0 2.16

J-20 1238.0 916.4 26.0 1216.8 1.7

J-22 1650.0 1216.4 26.3 1626.4 1.4

In general, the ACI method results in significantly lower values, while
the proposed method shows results which are significantly closer to the

experimental data.
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3.4 Analysis of Members with Axial lLoads

3.4.1 Introduction -- The method employed to analyze reinforced concrete

members, as presented in Chapter 2, and demonstrated in the previous sections
of this chapter, is applied herein to flexural members with axial loads.~ Ex—
perimental, and analytical data from Yamashiro and Siess [38] is employed to
evaluate the effectiveness of the proposed method.

Four beams (J-28, J-29, J-30, J-31) that had the same geometrical proper-
ties, and varied only by the magnitude of the axial load, are analyzed. The
variation in the concrete comprgssive strength (fé), was small for these mem~
bers, and therefore a value for fé is assumed that represents the entire group.
Beam J-29 (fé = 4410 psi) has been chosen as a group representative. Beam
J-28 had the largest difference in concrete compressive strength (fé = 5020
psi), and therefore this beam is analyzed separately to show that the ana-
lytical results are accurate.

The beam properties, and the geometrical configurations of the specimens

and cross sections, are presented in Appendix B, Section B4.

3.4.2 The Numerical Procedure —- The numerical procedure has been dis-

cussed in Chapter 2, and is identical to the procedure used in the previous
sections in this chapter. The major difference, however, is that for members
with axial loads the compressive forces are not equal tc the tensile forces.
The difference between the two is the axial force. The procedure is demon-

strated in the following examples.
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Beams J—-28 - J-31
Case 1:

Ultimate Moment, No Axial Load

This case represents a loading stage at which the ultimate moment is
reached without the application of axial loads. Equilibrium is obtained
when the tensile reinforcement reaches a strain Es = 0.082 %g'and the neutral
axis shifts to kud = 3.6 in. The numeric;l values are presented in the fol-

lowing tabulation. (These results are for beam J-28.)

layer € £ Area F
[psi] [in?] [1bs]

1 0.02402 = 5834.35 1.01 5892.7

2 0.01634 6075.0 1.01 6135.7

3 0.00833 5614.7 3.48 19539.1

4 0.002 3434.7 1.87 6422.9

cover >0.004 2321.0 0.91 2112.1

concrete

around ' 0.0205 5954.7 0.54 3239.3

comp. rein.

comp. rein. C.0205 51276.0 2.0 102552.0 IC = 145893.9 1lbs

ten. rein. L.082 73083.9 2.0 146167.8
%E = 1.0019 difference = 0.19%

The moment with respect to the tensile reinforcement:
M = 1094.5 in. - K.
The measured moment for beam J-28:

M = 1030.0 in. - K.
m
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If the shear reduction factor is considered by introducing the beam

properties into program TKSH4, the following is obtained.

M
u_

= 0.94
Meo

from which:

M

1094.5 * 0.94 = 1050.7 in. - K.
cal

Mea1 _ 1050.7 _
M_ 1030.0

1.02 difference = 2.0%

When the same procedure is applied to beam J-29, the result for the ulti-
mate moment, after the correction due to shear:

M = 1079.9 in. - K.
cal

which is gquite close to the result obtained for beam J-28.
The curvature:
0.082 rad-.

¢ = 1p-3.¢ = 0-0128 T~

Case 2:

Ultimate Axial Load Capacity

This case represents the behavior of the member when no flexural moment
is present, and only an axial load is acting on the cross section. At this
stage the concrete cover is assumed to have spalled off. The axial strain
is assumed to be EO and this strain is applied uniformly on the cross sec-

tion. The parameters that have been calculated for this stage are the fol-

lowing. (These parameters have been defined in Section 2.5.)
€ = 0.0186
XK =1.16

48.07

N
It
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The numerical results are presented in the following tabulation.

€ f Area F
[psi] [in?] [1bs]
concrete 0.0186 5115.6 - 44.0 225086.4
steel 0.0186 53745.2 4.0 214980.8 '

PO = XC = 440067.2 1lbs or PO = 440 K.

Using the ACl procedure:

P =0.85*f' * A + f * A = 449.3 K.
0 c c b s

which is remarkably close.
Assume:
PO = 440.0 K.

The curvature:

b =0

Case 3:

Balance Condition

A loading stage is defined as balanced if the failure of the member is
caused when the tensile reinforcement yields and the extreme concrete fiber
in compression crushes. Both the yielding of the tensile reinforcement, and

the crushing of the concrete are simultaneous. Here, the crushing strain of
. in . . . .
concrete is taken as 0.004 in ' and the yield strain of the tensile reinforce-

ment (beam J-29) is 0.0018 %E-as reported in Ref. [38]. The numerical values

are presented in the following tabulation.
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layer € £ Area F
[psi] [in2] [1bs]

1 0.00377 4954.0 4.35 21549.9
2 0.00333 5027.3 4.35 21868.7
3 0.00209 4680.0 6.0 28080.0
4 0.00151 3777.9 6.0 22667.4
5 0.00088 2433.9 6.0 14603.4
6 0.00028 831.5 5.55 4614.8

concrete at

comp. rein. 0.00277 5114.7 4.77 24386.9

level

comp. rein. 0.00277 48600.0 2.0 97200.0 ZC = 234971.1 1lbs
ten. rein. 0.0018 48800.0 2.0 97600.0

P=2Z2C~-T = 137371.1 1lbs (or 137.4 K.)
The moment with respect to the "plastic centroid", which for this cross

section coincides with the center of the beam:

The curvature:

) 0.031€ rad.
= e——— = g, —
¢ e 000514 n.

The ultimate moment in flexure is obtained for a neutral axis location
kd = 3.5 in., the balanced moment for kd = 6.5 in. In order to obtain more
points between these two, the neutral axis has to shift between the values
3.5 in and 6.5 in. The problem is to estimate the strain at the extreme
concrete compressive fiber, as a function of the location of the neutral

axis. By trial and error the following relationship is obtained.

€u = 0.046 - 0.004667 * (kd - 3.5)2 (3.4.1)
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Egq. (3.4.1) describes the variation of the strain Ecu with respect to

the shifting of the neutral axis.

5 in

Case 4:
kd =
From Eqg.
€cu

(3.

4.1)

0.0355 =
in

and the numerical values are presented in the following tabulation.

layer

cover

concrete at
comp. rein.
level

comp. rein.

ten. rein.

>0

£ £
[psi]

.01384 3615.5
.0071 4650.2
.002 4388.8
.004 3748.0
.0213 2472.0
.0213 55196.1
.0355 65156.4

46838.6 lbs

Areg F
[in“] [1bs]
4.44 16052.8
4.44 20646.9
3.38 14385.9
2.4 9013.9
2.51 6209.7
2.0 110392.2
2.0 130312.8

(or 46.8 K.)

The moment with respect to the plastic centroid:

M

1117.9 in.

The curvature:

¢ =

0.0355

5

- X.

= 0.0071 %3
in

c

177151.4 1bs
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Application of the ACI Method

When the ACI rectangular stress block is used to calculate the interaction

diagram, the following values are obtained:

Case P M 0
[Kips] [in. - K.]

2 449.3 . 0.0 0.0

3 (balanced) 120.75 1153.2 0.00058

4 66.73 1073.16 0.001

5 85.4 1115.5 | 0.0008

1 (ultimate) 0.0 797.4 0.0015

Modification of the ACI Method

The ACI method assumes that the ultimate strength of the concrete is

0.85 * fé. However, based upon the theoretical results that were discussed

in Chapter 2, the maximum stress of the concrete is K * fé, where K is a

function of geometry and the beam parameters. Therefore, the maximum stress

that should be used is 0.85 * (K * fé). Based on this assumption, the fol-

lowing values are obtained.

Case P M ¢
[Kips] [in. = K.]

1 139.4 1211.0 0.00058

2 77.12 1118.6 0.001

3 66.22 1087.0 0.0011

98.7 1167.4 0.008
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The results obtained by the proposed method are combined to form the
interaction diagram in PFig. 3.4.1. On the same diagram are shown the results
based on the ACI method, the modified ACI method, and the experimental re-
sults from Ref. [38]. There are no experimental results in Ref. [38] for
the behavior of the beams under axial loads that are higher than the balance
condition. Therefore the balance point and the maximum axial load point are
connected by a straight line.

The analytical results from the propésed method are much closer to the
observed behavior than the results from any of the other methods that have
been previously discussed. Furthermore, the "modifiéd ACI method" developed
and proposed in this study, results in better numerical values than the ACI
method, as illustrated in Fig. 3.4.1. However, the results from the modified
ACI method approach the results for the ACI method as the magnitude of the

axial load is reduced.

3.5 Deep Beams

3.5.1 Introduction —-- The analysis of deep beams is based on the ana-

lytical and experimental results reported by Crist [36,39]. The analytical
results reported in Ref. [36,39] have an average error of 2% (see Table
3.5.1). Furthermore, the strain distribution for deep beams is not completely
predictable, as discussed in Section 2.11. Therefore, the flexural analysis
of deep beams is not performed in the same way as for slender beams. Here,
the numerical results that were obtained by Crist [36,39] for ultimate moment
conditions are used and modified by the moment reduction factor due to the

influence of shear. The modified results as presented in Table 3.5.1, are
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somewhat closer to the experimental data. The important result of the present
study on deep beams is that the ACI method of analysis for singly reinforced
beams gives an average error smaller than any of the previous methods, as

illustrated in Table 3.5.2.

3.5.2 Numerical Results -- The numerical results based on the studies

by Crist [36,39], and the modification of these results by the proposed shear
analysis are presented in Table 3.5.1. The results based on the ACI method
are presented in Table 3.5.2. The beam properties. and the geometrical con-
figurations of the experimental specimens are presented in Appendix B, Sec-
tion B4.

The results for deep beams are based on a very small number of beams
that have been tested. Furthermore, only beams with a shear span to depth
ratio less than 3.0 were considered as deep. The results in Table 3.5.1
show clearly that except beams S-6, and 2S1.6-3C all other beams béhaved
nearly as predicted. The application of the shear reduction factor (SRF)
improves the average accuracy of the analysis. When the beams S-6 (no
shear reinforcement), and 2S1.6-3C (identical to beam 2S1.6-3 but héd a
significantly lower moment capacity) are excluded from the analysis the
following accuracy is obtained:

1. Prediction of ultimate moment:

-5% < difference < +5%
M)

difference = g cal _ 1.0
M)
u'm

(for all beams -10.7% < difference < +7.8%)



Table 3.5.1: Numerical results for deep beams.

beam a (Mu)m (Mu)cal (Mu)cal S.R.F. (a)m (a)cal (Mu)cal (Mu)cal (a)cal
no a f[in. - K.] [in. - K.] M) [deg]  [deg] [in. = K.] (M) (@
S6 2.67 6289.0 5734.0 0.91 no 0.979 63.0 60.0 5613.6 0.893 0.952

shear

rein.
S8 2.67 6849.0 6649.0 0.97 0.982 84.0 82.8 6529.3 0.953 0.986
s9 2.67 6248.0 6688.0 1.07 0.981 84.0 85.3 6560.9 1.05 1.015
251.6-1 1.6 7879.0 8152.0 1.035 1.0 80.0 83.7 8152.0 1.035 1.046
281.6-2a 1.6 8479.0 8589.0 1.013 1.0 83.0 82.5 8589.0 1.013 0.99%4
251.6-2B 1.6 7726.0 8116.0 1.05 1.0 87.0 82.9 8116.0 1.05 0.953
251.6-3 1.6 7838.0  8163.0 1.041 1.0 80.0 82.0 8163.0 1.041 1.02
251.6-3C 1.6 7566.0 8158.0 1.078 1.0 88.0 83.1 8158.0 1.078 0.944

average 1.0209 average 1.014 0.989

difference range: -9% to +7.8% moment difference range: -10.7% to +7.8%

angle difference range: -5.6% to +4.6%

144"



145

Table 3.5.2: Numerical results from the ACI method.

beam fé As fs (kud)cal acal Mcal Mcal
[psi]  [in.2]  [psi] [in.] [in.] [in. - K] 'm

2581.6-1 4160 2.37 61468 6.11 5.15 8074.3 1.025
251.6-2A 4373 " 64770 6.2 5.16 8507.0 1.003
2S1.6-2B 3829 " 61138 6.54 5.56 8000.8 1.035
251.6-3 5023 o 61400 5.13 4.26 8130.0 1.037
251.6-3C 3586 " 61623 7.04 5.99 8033.3 1.062
S-6 4129 3.81 46100 7.42 6.25 5774.2 0.92
S-8 3796 " 51732 8.98 7.64 6343 0.93
$-9 3521 " 52559 9.84  8.36 6371.5 1.02

average 1.004

moment difference range: =-8% to +6.2%



beam

2s8l1.6-1

251.6-2A

251.6-2B

251.6-3

251.6-3C
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Table 3.5.3: Neutral axis location.

(k d)
u m
[36,39]
[in]

3.9

(kud)cal

ACI
[in]
6.11
6.2
6.54
5.13
7.04

7.42
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2. Prediction of crack inclination:

-1.5% < difference < +5% difference = YET___'— 1.0
m

(for all beams -5.6% < difference < +4.6%)
However, when the ACI rectangular stress block method is used, the

results for the ultimate moment are more accurate.

-8% < difference < +6.2% (for all beams)
~-7% < difference < +3.5% " (without S-6, 2S1.6-3C)
(M)
u cal
difference = ——— - 1.0
e C ™)
u m

Nevertheless, the differences in the results are not significant, and

the range of differences is almost the same for all methods.

3.6 Summary and Discussion of the Analytical Results

3.6.1 Introduction —-- The analytical procedure that was presented in

Chapter 2 has been applied to the analysis of structural members. The ana-
lytical results have been compared»to experimental data,_and the accuracy of
the method has been evaluaﬁed. Some observations have been made during the
analytical procedure. However, the analytical results must be studied and
evaluated with regard to the behavior of all the members that have been ana-
lyzed. Three types of structural members have been analyzed by the proposed
method. The results are discussed separately for each type, and then the
method is evaluated in terms of applicability to the design of structural

members in general.

3.6.2 Slender Beams without Axial Loads —-- The analytical method that

had been proposed in Chapter 2 was applied to analyze three beams in detail,
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and a fourth beam for ultimate moment capacity only. The numerical results
have been given in Sections 3.2, and 3.3. The behavior of three beams has
been illustrated in Figs. 2.3.8, 3.2.9, 3.2.10, and 3.2.11. The procedure
to evaluate the flexural behavior without the influence of shear results in
moment-curvature diagrams do compare well with the expected behavior. All
three cases show a significant increase in moment capacity when the strains
in the longitudinal reinforcements enter the strain hardening region on the
steel stress-strain cufves.

The analytical results fo; the yield stage of the tensile reinforcement
are in the range of 2.9 percent to 6.1 percent from the measured values. How-
ever, the higher measured values can be explained by a load higher than needed
to cause yielding of the tensile reinforcement. It is possible that in order
to detect the yield stage the investigator had to load slightly higher than
required to cause the steel to yield. If this assumption is correct then the
analytical results are closer to the real yield moment. In any case, the
accuracy of the results for the yield stage is quite good.

The results for the ultiﬁate stage show that the proposed method is quite
consistent and accurate. The incorporation of the procedure to account for
the shear influence into the flexural analysis, brings the results within 5
percent from the experimental data. The results for the ultimate moment
capacity obtained by Burns [12], when corrected by the shear reduction fac-
tor, as presented in Table 3.2.3, also show a significant improvement. The
coﬂvergence of the analytical results to the experimental data is illustrated
in Fig. 3.2.12, which is a graphical representation of Table 3.2.3, and the

corrected values for the beams that have been analyzed in this chapter.
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The beams that have been analyzed by the proposed method have also been
analyzed by the ACI rectangular stress block method. The results are presented
in Table 3.3.1, and show very clearly that the ACI method considerably
underestimates the ultimate moment capacity.

The results obtained for slender beams in this study show that the
proposed method is accurate and reliable. The moment-curvature diagrams have
the expected shape, and the numerical values for the yield and ultimate
stages represent quite accurately the experimental daﬁa.

As a result of these findings the assumptions that have been made in
Chapter 2, on which the proposed method is based, appear Jjustified. Furthermore,
the numerical procedure of the analysis is relatively simple and only few

iterations are needed in order to obtain an acceptable solution.

3.6.3 Slender Beams with Axial Loads -- The method that was used to
analyze slender beams without axial loads has been applied to the énalysis
of beams with axial loads. The numerical procedure is demonstrated in Sec-
tion 3.4, and the results are presented graphically in Fig. 3.4.1.

The analytical results clearly show that the accuracy of the method is
quite high. This 1s the only method that could approximate the experimental
data so well. The ACI method, the modified ACI method, and the procedure
that was used in Ref. [38], have been found less accurate.

The correction of the numerical results by the shear reduction factor
was performed only for the ultimate moment stage without axial loads. 1In
other loading stages the axial force improved the shear resistance of the

members, and the full moment capacity was reached. This result confirms
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the observation at the end of Section 2.8 that axial loads tend to influence
the behavior of slender structural members similarly to the influence by
shear reinforcement.

Unfortunately, the experiments that are reported in Ref. [38] do not
give information about the behavior of the members for axial loads that are
larger than %Pb (one half of the axial load at the balance condition).

The assumption that the strain at the extreme concrete fiber in compres-
sion has a parabolic variation between the pure flexural mode and the balance
mode has been found to be correct. This behavior is described by Eg. (3.4.1),
and should be evaluated for other structural members under similar loading
conditions.

The proposed method is effective and quite simple to apply. The numeri-

cal results are accurate, and the analytical behavior of the members represents

the experimental data quite well.

3.6.4 Deep Beams -- The proposed method was applied to analyze the ulti-
mate moment capacity of deep beams. The numerical results which are quite close
to the results that have been reported by Crist [36,39], and therefore they
have not been presented in Table 3.5.1. 1In general, the results that have
been reported by Crist [36,39] are within 10 percent of the experimental
data. The results show a small average improvement when corrected by the
shear reduction factor, but the error range shows almost no change.

The ACI method shows somewhat better results, the error range is nar-
rower by about 2.5 percent and the average is less than 0.5 percent.

The numerical results from all three methods are quite close. The pro-

posed method and the method that was used in Ref. [36,39], are almost identical
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in terms of accuracy, while the ACI method gives slightly improved results.
The average result of all three methods is within 2 percent of the experi-
mental values, which is quite good for engineering purposes. However, results
for individual members could be within 10 percent from the experimental data.

These findings indicate that the strain distribution across the depth
of deep structural members is not completely understood. Without a good
approximation of the strains, the calculated stresses are not accurate, and
the resulting moments less accurate and less consistenﬁ than for the case of
slender beams. The numerical values for the neutral axis location (kud) show
significant differences when calculated by the wvarious methods. This too
confirms the observation that the strain distribution is not yet understood.
(see Table 3.5.3.).

The prediction of the crack inclination is quite accurate, and all the
results are within 5 percent or less of the experimental values.

In general the proposed method is capable of analyzing deep members. For
most cases the results are within 5 percent from the experimental data, and
for only a few cases the results are within 10 percent from the experimental
data. The influence of shear reinforcement is accountable, and the results

for the crack angles are within 5 percent from the experimental data.

3.6.5 General Remarks -- The results that were obtained by the proposed

method, and discussed in this chapter, confirm the basic assumption on which
the proposed method is founded. The stress-strain curves for reinforced and
confined concrete, depend on the geometry of the confined area and the ma-
terial properties of concrete and steel. The changes in the stress-~strain

curves, as a function of the loading stage, and the location of the neutral

Motz Reference Room
tniversity of Illinois

S B106 NCEL

268 N. Romine Street



152

axis have been found to contribute to the improvement of the results. The
method has shown that it is applicable for the analysis of slender beams,
with or without axial loads, and deep beams. |

The influence of shear on the behavior can be evaluated from the model
that accounts for the reduction in flexural capacity due to shear at the
ultimate moment conditions. Furthermore, the method makes it possible to
. evaluate the effectiveness of the shear reinforcement, and to predict the
inclination of cracks at the ultimate moment conditions. The evaluation
of the effectiveness of the shear reinforcement, without relying on the
unpredictable shear strength of the concrete, will hopefully result in

safer design procedures.
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4. OBSERVATIONS FROM STRUCTURAL B3EHAVIOR

4.1 Introduction

The theoretical and analytical study that was conducted in the pre-
vious chapters considered the behavior of isolated structural elements.
When such elements are combined to form a complete structure their behavior is
no longer independent. The interaction between adjoining members may cause
a change in the behavior of individual members. Furthermore, a weak joint
between structural members may prevent the structure from performing as expected.
Therefore, it is important to discuss the requirements for the design of
joints between structural members. Here, only connections between beams
are discussed in detail. However, information about other types of connec-
tions can be found in the references that are mentioned during the discus-
sion.

The present chapter contains a discussion of two subjects. The first
topic discussed concerns the design of structural connections, as reported
in the literature. The second topic discussed concerns the behavior of
structures, and structural elements, as presented in the literature, and

relates to the design of protective structures.

4.2 Structural Connections

4.2.1 Introduction -- A reinforced concrete structure is composed of

many structural elements (i.e., beams, columns, walls, slabs). Individual
elements are connected to become a structural frame. When a frame is ana-
lyzed, the joints are assumed to be "rigid". The analysis determines the

detailing of individual members, and of the Jjoints between members. In the
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past, the detailing of the joint was determined by the requirements for the
anchorage of the reinforcement in thé members forming the joint, which could
be quite unsafe in many cases. It is very important to ensure that the Jjoints
will not become "weak links" in the frame. In general, joints have to per-
form under the same loading conditions as the adjoining members. Therefore,
the problems of strength and serviceability should be considered. It is
~important to prevent the joints from governing the behavior of the frame;
this way the structural elements forming the joint can reach their ultimate
capacity. Joints should fit the nature of thé expected loads (i.e., static,
loading in one or more directions, reversal, etc.). An important factor in
the design of joints, is simplicity. A complicated design may cause problems
during construction. !

The present discussion will concentrate on knee joints and beam column
connections, and is based on studies by other investigators, as reported in

the literature. An extensive discussion on structural connections is found

in Ref. [3].

4.2.2 Knee Joints Under Closing Loads -- There are several ways to

design a knee joint under closing loads. In all cases, there are two loca-
tions for possible splitting or crushing of the concrete, which may reduce
the load capacity of a joint. The first location is the outer corner of
the joint, where concrete may split. If this splitting can be avoided, no
major problems should be expected, because anchorage is almost always en-
sured. At the inner corner, the concrete may crush, but the biaxial state

of stress at this location improves the behavior of the concrete. Mayfield
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et al. [40], found that the corner detailing is unimportant in the case of
closing loads.

From a free body diagram, Fig. 4.2.1, the splitting stress of the con-

crete in the corner, can be calculated as follows.

'=T_=_s______¥.—_- * jod * N .
ftt " ba bd prE =6 “?C [psi] (4.2.1)

where:
T = magnitude of tensile force
b = width of joint
d = depth of joint
A = area of bars in tension

f = yield strength of bars in tension

Swann [41] found that to avoid splitting of the joint, the percentage

of steel content should be limited by the following equation.

p<l1.2 * ra ‘ (4.2.2)

Y
A more conservative value is given by Park and Paulay [3].
fl

t

< —
p < 3 (4.2.3)

Y

A recommended detailing of a joint under closing loads is presented in
Ref. [3], as illustrated in Fig. 4.2.2.

Park and Paulay [3], also recommended the following:

1. Provide continuous tension steel around the corner, without lapping

in the joint.
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2. Bend bars in sufficient radius, and support the reinforcement,
if possible, as shown in Fié. 4.2.1g, to improve behavior.

3. Limit the amount of steel in a joint according to Eg. (4.2.3).

4. Provide confinement to the concrete in the joint, as illustrated

by Fig. 4.2.2, which will also prevent crack growth.

4.2.3 Knee Joints Under Opening Loads -- When the loads, acting on a

" knee joint, tend to open the joint, the generated stresses cause splitting
of the concrete at the inner corner, and spalling of the concrete at the
outer corner. The detailing of opening joints 1is very important, in order
to ensure the full capacity of the adjoining members.

Nilsson [42] studied the behavior of joints, and recommended a pro-
cedure for the detailing of opening knee joints, as illustrated in Fig.
4.2.3. Based on the results from Ref. [42], Park and Paulay [3] calculate
the amount of radial hoops, to prevent the diégonal tension crack, across

the joint, by the following equation.

£ h. A
a.=1=2 {1+ H2 8L . (4.2.4)
sJ £ . h n
Y] 2
where:
s = cross section area of one radial hoop
fyj = yield stress of radial hoop
n = pnumber of radial hoop legs (see Fig. 4.2.3)
h_,h, = total depth of adjoining members
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A better performance is obtained when the loop of the main reinforce-
ment is continuous. In this case, radial hoops are required only if the
flexural steel content exceeds 0.5%, and calculated from Eg. (4.2.4), mul-

tiplied by the following parameter.

p- 0.005

5 (4.2.5)

p* =

where the flexural steel content is defined as follows.
Bg
p = (BEO (for member 1)

The cross section area of the diagonal bar across the inner corner of
the joint, should be at least one half of the wvalue Asl'

The introduction of a haunch at the inner corner, will improve the be-
havior. This recommendation was confirmed by Conner and Kaar [43].

Hanson [44] recommended a similar approach, but used rectangular ties
instead of radial hoops, and did not use a diagonal bar across the inner
corner.

Balint and Taylor [45] proposed to use a mesh reinforcement instead of
rectangular ties, or radial hoops.

The methods proposed in Refs. [42,44,45] ensure that the joint will not
prevent the adjoining members to reach their full flexural capacity.

Further recommendations, regarding the design of joints are found in
the report by the ACI-ASCE Committee 352 [46].

All three methods, that are recommended for the design of joints, pro-

vide reinforcement that increases the confinement of the concrete in the
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joint, and resists the shear stress due to the deformation of the frame.
The amount of shear reinforcement in a joint, should be sufficient to resist

the shear stresses, without relying on the contribution of the concrete.

4.2.4 Summary -- The experimental results for knee joints that have
been discussed previously, and further studies on the behavior of T joints
and column-slab joints that are discussed in Refs. [42,47], provide infor-
mation on the required design of joints. It is recommended that reinforcing
bars acting in tension should be continuous in order to avoid crack initi-
ation at the cut-off or lapping zones. Anchorage of the steel bars ensures
that the reinforcement will act in the whole loading range, and will not be
pulled-out to weaken the joint.

Special attention should be given to the shear reinforcement. It is
recommended to provide enough shear reinforcement so that the entire shear
is resisted by the reinforcement, and neglect the contribution of the con-
crete. An upper limit should be placed on the joint shear, to avoid exces-
sive diagonal compression. Park and Paulay [3] recommend that this limit
should be in the range 10\&_'; to 11.5Y£, in psi units.

The confinement of the concrete in the joints is as important as in
the adjoining members. The shear reinforcement alone may not be able to
provide the required confinement, and additional reinforcement should be
provided in the form of wire meshes, or rectangular hoops at right angles,
as described in Refs. [44,45].

Careful design and detailing of joints ensures that the adjoining
members can develop their ultimate capacity, and behave as the experimental

isolated members under similar loading conditions.
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4.3 Structures Designed for Large Load Capacity

4.3.1 Introduction -- The information from analytical and experimental

studies on the behavior of structures under dynamic high intensity loads

is usually not available in the literature. Some information can be found

in the literature that is discussed in Appendix A. However, most of the
information includes design recommendations and not many details on the .
behavior. Therefore, this discussion of the behavior of structures under

high intensity loads is restricted to only two cases, for which the informa-

tion was published. The first structure ié a missile silo closure, and

the second is a thick-walled multiple opening conduit.

4.3.2 Missile Silo Closure Systems —-- The discussion of the behavior

of missile silo closure systems is based on the studies of Iten [48], and
Gamble et al. [49].

Itan [48] studied the behavior éf closure slabs to resist impéct loads
in the range of 1000 psi to 2000 psi. Two types of slabs were investigated.
The first type was a bar reinforced slab, which was a concrete slab rein-
forced by steel bars. The second type was a plate reinforced slab, which
was a concrete slab with a steel plate bottom. Both types had a circular
geometry.

The results of the study showed that both types provided the required
resistance. When shear reinforcement was included the behavior became
more ductile. The plate reinforced slab could be used with or without
shear reinforcement, while the bar reinforced slab required shear reinforce-

ment to provide similar results. A significant improvement in the capacity
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of the slabs was obtained by providing lateral confinement for the concrete
in the form of steel rings .or steel hoops. The lateral confinement im-
proved the bearing capacity, the shear strength, and the flexural resistance
of the slabs. The failure of the slabs at loads higher than the operational
range was governed by shear or bearing stresses.

Gamble et al. [49] studied the behavior of launch facility closures.
(The study by Iten [48] was part of the study by Gamble et al. [49].) The
specimens were of the same types, as in the previous study. It was found
that the plate reinforced slab had a better performance than the bar rein-
forced slab, and that shear reinforcement improved the ductility but not
the load capacity. The friction induced compressive forces at the sup-
ports improved the flexural strength of the slabs. Unreinforced slabs
could reach almost the same load capacity as the reinforced slabs, but had
a brittle mode of failure and very little ductility.

A recommendation for the analysis of such slabs, was to separate the
analysis into two parts. In the first part, to include the effect of the
compressive forces at the sup@orts, while in the second part these forces
are ignored. The two parts of the analysis consider the case where the
slabs maintain contact with the supports, and also the case where the con-
tact is lost due to the vibration of the slab.

These studies show quite clearly that the confinement of the concrete
and the shear reinforcement are two major factors that determine the be-

havior of the slabs.



lel

4.3.4 Thick-Walled Multiple Opening Conduits —-- Studies of thick-walled

multiple opening conduits, at the University of Illinois [50,51,52,53], pro-
vide valuable information about the behavior of massive reinforced concrete

structures. The scaled models of the structures were designed to resist a

uniform distributed load equivalent to 250 psi, which is in the load range

designated for certain protective structures.

The results of the experimental and numerical studies indicated that
the deep beams which are parts of the fréme are very sensitive to shear.
The models that were designed to resist thé equivalent load of 250 psi
actually were loaded up to an equivalent load of 1050 psi. The shear
strength of the members governed the behavior, and a lower bound for the
shear strength was proposed.

Gamble [53] applied the results of the studies to design procedures.

He showed that conventional methods for frame analysis, when modified to
comply with the experimental results, would give reasonable design parameters.

The behavior of these structural models indicate that it is quite dif-
ficult to evaluate the actual resistance of a structure.‘ Again, the shear
strength governed the behavior, and an improved method to evaluate the

amount of shear strength was needed.

4.4 Conclusion

The experimental data on the behavior of structures, discussed in this
chapter, indicate that the behavior could be evaluated by analytical methods.
The behavior is governed by the "weak 1link" concept, which means that the

structure will not be able to perform as required if the resistance of
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individual structural members is lost. The design should ensure that all
structural members and joints are able to perform under the expected
loading conditions. It is clear that joints have to be designed carefully
in order to prevent them from becoming the cause of failure.

It is important to use reliable analytical methods to evaluate the per-
formance of the individual members. All the results show that the confine-
ment of the concrete and the shear resistance of the members are critical
parameters that govern the behavior. The shear resistance of concrete is
too unpredictable. Therefore it is recommended that shear reinforcement be
provided in critical members aﬁd critical locations in the structure, so
that shear can be resisted by the shear reinforcement alone. This approach
for the requirements of shear reinforcement complies with the European design
methods that have been discussed in Chapter 2.

The analytical method for the analysis of reinforced concrete members
that has been proposed in Chapter 2 and demonstrated in Chapter 3 provides
the capability to account for the confinement of concrete, and to evaluate the
influence of shear on the behavior of structural members. This study demon-
strates the importance of confinement provided by the transverse reinforce-
ment in beams. The combined contribution of the transverse reinforcement
confining the concrete and resisting shear stresses intuitively explains
the improved behavior of structural joints when such reinforcement is in-
troduced. However, further study is required to develop an analytical
procedure to describe the behavior of a j§int and the influence of trans-

verse reinforcement on the behavior.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The conclusions drawn in this study are summarized herein under several
general categories. The first category relates to the general behavior of
structures, and structural members under high intensity dynamic loading con-
ditions. The second category felates to the nature of the stress-strain
curves of reinforced and confined concrete, and the numerical procedure to
analyze flexural reinforced concrete members. The third category relates
to the influence of shear on the behavior and moment capacity of reinforced
concrete beams. It also relates to the influence of shear reinforcement on
the behavior of flexural members, and the procedure to evaluate the efficiency
of shear reinforcement in terms of ultimate moment capacity and crack inclina-

tion angles.

5.1.1 Structural Behavior Under High Intensity Loading Conditions -- This

study is concerned with a specific range of dynamic loading conditions. These
loading conditions correspond to the detonation of nucleér weapons in the
megaton range of yields. The loading function applied to the structure under
consideration usually has a time duration considerably longer than the natu-
ral period of the structure and structural elements. Therefore, in most cases
of this type only a static analysis is necessary to determine the proportions
and detailing of the structure. Furthermore, the design procedure, as pre-
sented in Appendix A, calls for a preliminary static design from which it is
determined if a dynamic analysis is necessary. The experimental and theoreti-

cal evidence presented and discussed in Appendix A indicate that a static
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analysis of protective structures should always be performed as a preliminary
step. In the event.that the structufe has to resist the loading from large
nuclear weapons, usually no dynamic modification is necessary. Therefore,

as a result of these recommendations only the static aspect of the behavior
is considered in this study. However, the material properties for the "equiv-
alent static analysis" are not the same as for static conditions. The re-
sults presented in Appendix A indicate that the performance of concrete and
steel under the expeéted dynamic loads improves by as much as between 20
percent to 30 percent. Therefore the materiai prbperties should be modified
accordingly for the equivalent.static analysis, and the design procedure
should follow the general steps, as presented in Appendix A. However, the
increase in strength and improved performance of p;otective structures re-
ported in the literature cannot be explained by only the improved material
properties under dynamic loading conditions. Other factors, unidentified

at present, contribute to the apparent "overdesigned" performance.

5.1.2 The Analysis of Flexural Behavior -- As a result of the present
study the following conclusions are drawn about the analytical procedure to
analyze reinforced concrete beams in flexure.

1. The stress-strain curves for reinforced and confined concrete

are studied in Section 2.3. As a result of the discussion in

that section a modified model is proposed in Section 2.5. The

new model developed in the present study is characterized as

follows.

a. The stress-strain curve of reinforced and confined concrete
applies only to that portion of the cross section which is

in compression.
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b. Because the neutral axis shifts during the loading process
and causes -the compressive zone of the member to change its
geometry, the shape of the stress-strain curve changes ac-
cordingly.

Therefore, a family of stress-strain curves describe the stress-

strain relationship in a flexural member, as illustrated in

Fig. 2.6.

The numerical procedure to evaluate the flexural behavior of

beams is presented in Section 2.6, and applied successfully

in Chapter 3. The numerical results indicate that the numerical

method and the proposed stress-strain relationships for rein-

forced concrete and steel can approximate the behavior of beams
with or without the presence of axial loads.

The assumptions about the behavior of the concrete cover, as

presented in Sections 2.5.1 and 3.2.2, increase the accuracy

of the numerical results. This study concentrates on the

effects of monotonic high intensity loads on reinforced con-

crete beams. This load system closely simulates the loading
conditions generated by the detonation of nuclear weapons in
the megaton range of yields. Under these loading conditions
the effect of reversal loading and rebound can be disregarded
without affecting the design procedure. Therefore, the be-
havior of the concrete cover, as presented in this study
indicates that parts of the concrete cover do sustain com-
pressive stresses even though the concrete strain is larger

than 0.004 ==,
in
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4. fhe application of the method developed in this study to analyze
deep reinforced concrete beams is presented in Section 3.5. The
analytical results indicate that the procedure is less effective
in this case. Nevertheless, the degree of accuracy of the pro-
posed method is virtually equal to the accuracy obtained by other
recommended procedures, as discussed in Sections 3.5 and 3.6.
The major problem that affects the analysis of deep beams is
the differeht type of strain distribution across‘the depth of
these beams. Experimental results indicate that the strain
distribution in deep‘beams is not linear. However, the lack
of accurate experimental data on the strain distribu-
tion introduces impractical strain values into the analysis,
and as a result the analytical procedure becomes less rational.
The relatively high accuracy, despite the impractical strain
values; indicates that better results can be expected when ac-

curate experimental data is used.

5.1.3 The Influence of Shear and Shear Reinforcement -- The influence

of shear on the behavior of slender beams is presented in Section 2.7, and
the influence of shear on the behavior of deep beams is presented in Section
2.11. A procedure is developed in this study to account for the influence
of shear on the ultimate moment capacity, and the contribution from shear
reinforcement. The procedure is presented in Section 2.8 for slender beams,
and in Section 2.12 for deep beams. The procedure is applied to the analysis
of slender and deep beams in Chapter 3. As a result of the present study,

the following conclusions are drawn:
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The proposed method to account for the influence of shear on

the behavior of flexurai mémbers improves significantly the
accuracy of the numerical procedure to analyze beams in flexure.
The analytical values for the ultimate moment are within 5
percent of the experimental data.

The proposed method can be applied to predict the crack inclina-
ation angles, and the results are quite close to the experimental
data.

It is possible to evaluate the efficiency of shear reinforcement
by applying the proposed method to analyze slender or deep beams.
Here the shear resistance of the concrete is considered in a dif-
ferent way than recommended by other procedures, and the results
are considerably improved. The evaluation of the efficiency of
shear reinforcement makes it possible to calculate the optimum
amount of shear reinforcement to ensure a desired performance

of the members under consideration.

In slender beams an increase in the amount of érovided shear
reinforcement results generally in an improved moment capacity.
Deep beams however, show a decrease in moment capacity when

the amount of shear reinforcement is increased beyond an

optimum quantity, which implies that deep beams are gquite
sensitive to excessive amount of shear reinforcement.

The procedures to consider the effects of shear reinforcement

on the behavior and performance of beams as presented in this
study are based on a limited amount of experimental data.

These procedures should be further studied and modified before

they become reliable design methods.
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5.1.4. General —-- The combined numerical procedure that considers both
flexure and shear, as presented and evaluated in this study, improves the
results obtained from the analysis of beams. The improvement of the results
confirms the assumptions about the stress-strain relationships for reinforced
concrete and steel, and the influence of shear reinforcement on beam behavior.

It is expected that the proposed procedure will be applicable to the
analysis of reinforced concrete members other than beams. However, it is
possible that some modificationkof the procedure will be necessary before
it can be employed for such purposes.

The procedure developed aﬁd demonstrated in this study is quite simple
to apply. Almost all numerical steps, as discussed in Chapters 2 and 3,
can be performed without a computer and do not require complicated calcula-
tions. Nevertheless, the use of a digital computer for all, or part of the
analysis, is recommended if many similar structural members have to be_analyzed.

The flow diagrams of the programs are presented in Appendix C.

5.2 Recommendations for Future Studies

The procedure developed in this study has been applied successfully to
the analysis of reinforced concrete beams. The presence of axial loads and
shear reinforcement does not alter the procedure, nor does it influence the
accuracy of the results. However, several questions concerning basic assump-
tions employed in this study still remain unanswered. Therefore, it is
recommended that the following topics be studied to improve the understanding
of reinforced concrete structures, and develop reliable design methods.

1. The general procedure to account for the shear influence, and

the contribution of shear reinforcement to the performance of
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reinforced concrete structural members, as developed and pre-
sented in this. study, defines three characteristic points, as

illustrated in Fig. 2.23.

point 1 is located in the range 1.0 < %-S 1.5
point 2 is located in the range 2.0 € %-5 3.0
point 3 is located in the range %-2 5.0

These locations were determined experimentally by other investi-
gators. The following questions.have not been answered yet,
and the problems should be investigated in the future.
a. What determines the locations of the characteristic points?
It is clear that an error in defining the locations of
these points may result in significant differences between
experimental and analytical results.
b. In the analysis of deep beams, what is the influence'of
shear reinforcement if the corresponding crack angles
are smaller than 45 degrees?
c. When both slender and deep beams are concefned, the
influence of the shear reinforcement on the moment
capacity when the applied loads are smaller than the
ultimate load is unclear. Further studies are neces-
sary to provide the answers for this problem.
The strain distribution across the depth of deep beams is impor-
tant for the analytical procedure developed in the present study.
Therefore, better experimental data is necessary in order to

improve the approximate strain values used in the analysis.
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The general procedure developed in this study may improve the
results obtained from finite element programs. The stress-
strain relationships for reinforced concrete, as presented
herein, provide a better way to account for the influence of
the internal geometry of reinforced concrete members on the
state of stress and the performance under various loading
conditions. A flow diagram of a combined procedure is pre-
sented in Fig. C3 of Appendix C.

Many structures are subjected to dynamic loading conditions
that cannot be simulafed by equivalent static force systems.
Therefore, the procedure proposed in this study, including
the finite element analysis mentioned in item 3, should be
modified to high frequency loading conditions. When pro-
tective structures are considered these loading conditions

may result from the detonation of conventional explosives.
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Appendix A: Dynamic Behavior and Static Design

Introduction

Dynamic loading conditions could be a result of various sources, for example:
earthquakes, winds, vibrations related to machines and transportation systems,
conventional or nuclear explosives. In this study, only one source of dynamic
loads 1is considered, namely dynamic loads from nuclear detonations. Unfor-
tunately, the information of which this study is based is limited to unclas-
sified material only. Furthermore, some results that have been studied were
obtained by simulating nuclear detonations in a laboratory, and therefore some
inaccuracy could be involved.

The experimental and theoretical research in the effects of nuclear deto-
nations on structures is quite extensive. Nevertheless, some related problems
have not been solved yet, while other problems have only empirical solutions.

One of the questions that has to be answered, before designing a.struc-
ture to resist dynamic loads, is if the structure has to be analyzed, dynamic-
ally, or if static design procedures could satisfy the requirements. The
results from previous studies by other investigators, as reported in the
literature, show that in certain cases, a static analysis will give the
required results. Some of the studies concerning this problem are dis-

cussed in the following section.

Results of Previous Studies

Newmark [56] presented a design approach, based upon simplified assump-
tions, concerning nuclear blast and structural behavior. The dynamic behavior

was transformed into a statically equivalent behavior, thus simplifying the
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design procedure. The statically equivalent loads depended on the natural
period of vibration of the structural eleménts, £h; permissible deflections,
and the duration of the applied load.

Merritt and Newmark [57] studied the effect of a nuciear blast on under-
ground structures, and recommended a design procedure for such structures.
A static design for the peak values of thg expected logds‘i§ the f;;gt step
in the procedure. Based on the preliminary design one could proportion the
structural members.' The next step was to estimate the natural period of each
member, and to compare these values to the rise time of the applied load.

If the ratio of the rise time to the natural period was greater than é, the
structural member need not to be redesigned. . However, if the ratio was

smaller than 2, a dynamic design method was required. The dynamic analysis can be
performed by applying a triangular pulse to simulate the load, to a single

degree of freedom (SDF) system simulating the structure. From the dynamic
analysis the resistance of the members was evaluated, and compared to the
resistance of the proportioned members, from the preliminary design. The
procedure is iterative, until the analytical values and the values for the
proportioned members are reasonably close. It also was recommended to elimi-

nate structural components that have a brittle influence by limiting the percentage
of the main reinforcement (p) to between 0.25% to 1.5%, and the percentage of

web reinforcement (pw) to not less than 0.5%. The use of high strength

steel was not recommended. It also was recommended to assume a 25% increase

in steel strength under blast loading, but no increase in concrete strength
because of the relatively large range of concrete quality. For flexural

members where flexure dominates the behavior, it was recommended to neglect
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the influence of axial loads and to provide a minimum of 0.25p for compres-
sive reinforcement. For members where axial loads have a relatively large
influence, the amount of compressive reinforcement should equal the amount
of tensile reinforcement.

Newmark et al. [58] studied the various aspects of protective structure
design. That report was written as a handbook for design of pro-
tective structures. The loads for which the structure was designed had been
evaluated from the amount of protection that was required. The transforma-
tion of the dynamic loading conditions to equivalent static conditions was
performed by a method similar to the one in Ref. [57]. In general, when the
duration of the positive overpressure phase was long compared to the natural
period of vibration of the structural elements, a static design was justified.
Only small errors were expected for weapons in the 1 MT range, and for smaller
weapons the design was expected to be conservative. As for the material
properties under dynamic loading conditions, an increase of about 25% was recom-
mended for both the yield strength of steel and compressive strength of
concrete.

Keenan [59] investigated the behavior of reinforced concrete beams under
blast loading. His findings supported the recommendations in the previous
studies. The ratic of the duration of the load (Te) to the natural period
(Tn) effected the ultimate deflection of the beam, and the degree of damage.

T

This ratio alsc affected the amount of rebound that was observed. Large ES

n
ratios, and high damping, decreased the amount of rebound. An important

result was that a beam could absorb approximately the same amount of energy

regardless of how many times it had been loaded, as long as the loading
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conditions had not been close to ;ausing a complete collapse.  Damping was found
to be between 10% to 28% for reinforced concrete beams, and only 11% for pre-
stressed beams.

Newmark [60] discussed the problems related to the design of protective
structures. It was recommended to increase the yield strength of structural
carbon steel (A-7) by about 30%, but only by 10% for high strength steel. It
was also recommended to increase the compressive strength of concrete by about
25%. The theoretical background was based on previous studies (that have been
discussed in this section). |

Fuss [61] confirmed the recommendations for higher compressive strength
of concrete under dynamic loads. He found an average increase of 26%. Simi-
lar results were reported by Cowell [62].

Seabold [63], and Fuss [65] found that the increase in the shear strength
of concrete was considerably smaller than the compressive strength.

Iten [48], and Gamble et al. [49] found that deep slabs under dynamic
locading conditions behaved as if under static loads when the duration of
the impulse was longer than the natural period of the slab.

Furlong et al. [65] investigated the shear strength of reinforced con-
crete beams, and the bond between the reinforcing bars and the concrete
under impact loads. When the mode of failure was flexure the beams showed
an increase of 27% to 30% in their strength. However, when shear governed
the behavior the increase in strength was in the range of 5% to 86% (37%
on the average). Furthermore, they found no indication that the bond between
the steel bars and the concrete was influenced by the nature of the loading.

Keenan [66] found that an increase of about 40% in the strength of

slabs under dynamic loads.
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Seabold [67] found that the strength of reinforced concrete beams in-
creased under dynamic loading conditions. This increase could be explained
by an average increase in material strength of 20% for concrete, and 30% for
steel. It also was found that low strength materials showed a larger increase
than high strength materials.

Criswell [47] found an increase of 18% in the strength of reinforced
concrete specimens. failing in flexure, and an increase of 26% in strength
when failure was governed by shear. These increases were contributed to an
increase in material strength under dynamic lcads.

Brown and Black [68] found that slabs tested under dynamic conditions
were 23.7% to 24.6% stronger than slabs tested under static conditions. The
deflections measured under dynamic conditions were larger, and the cracking
patterns of these slabs had a better similarity to the cracking patterns
based upon the yield line theory.

Watt [69] investigated the behavior of slabs with a span to thickness
ratio of 4.12, under dynamic loading conditions. He found an increase of
about 35%, compared to slabs fested under static conditions.

Keenan [70] studied the behavior of one-way slabs under static and
dynamic conditions. He found that the behavior was determined by the dynamic
properties of the load, and the members. Furthermore, the increase in strength
due to the dynamic conditions, determined the mode of failure.

The result of these studies clearly show that under dynamic loading
conditions an increase in material properties is noticed. This increase
is in the range of 20% to 30%. Another important finding is that for loads of

long durations compared to the neutral period of the structural members,
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a dynamic design procedure is usually not required. However, the dynamic
material properties should be considered in the design. In the cases where
a dynamic analysis is required, a single degree of freedom (SDF) model of
the structural member will give reasonably good results. The values of

mass, stiffness, and damping are obtained by empirical formulation.

Design Procedures

The design procedures of protective structures are based on results that
have been obtained by extensive research. A representing part of these results
have been discussed in the previous section. The basic approach. is very sim-
ilar to the procedures that were described by Newmark [56,60], Newmark et al.
[57,58]. 1In general, there are two principal stages in the design. In the
first stage certain assumptions must be made concerning the following para-
meters: required probability of survival of the structure and its content,
required ductility, type of structure, expected loading conditions; etc.

These assumptions and the information from design manuals [54,55,71,72],
result in an "equivalent static condition", for which a preliminary design
is made. From the dimensions of the structure, and the structural elements,
an approximate value of the natural periods (Tn), is obtained, as described
in Refs. [54,57,58,60]. The natural period is then compared to the duration
of the positive phase of the load function (Te). It is recommended, in Ref.
T
[54], that if the ratio Eg > 3, no dynamic analysis is required, and the
n T
preliminary design is used for the structures. However, 1f the ratio 59'5 3,
a dynamic analysis of the structure is recommended. §

The dynamic analysis of structural members is usually performed by ap-

plying the load function to a SDF system. In many cases, the shape of the
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load function (which is the variation of the pressure, as a function of time,
at the location of the structure due to the passing of the shock wave) is
simplified to a triangle. However, in some cases it ié recommended to use
a bi-linear behavior for the part of the function that describes the decline
in pressure. The actual load function shape, as described in Refs. [55,561,
is used only for exact solutions, and theoretical studies. The use of multi-
degree of freedom systems (MDF), is recommended only if it will better repre-
sent the behavior of the structure under consideration. The resistances of
the structural members are calqulated by the dynamic analysis, and used to
modify the proportioning of these members. The procedure is repeated until
convergence of the results is obtained.

Detailing of protective structures are discussed in Swiss Codes [71,72].
When the information from Refs. [54,55,71,72] is applied to the design the
results will be compatible with current understanding of nuclear weapons

effects.
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EXPERIMENTAL RESULTS AND DATA
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B.1l Properties and Experimental Data for Slender Beams Without Axial Loads

The beams that are analyzed in this study are illustrated in Fig. Bl.
The dimensions of the cross sections are described by Fig. B2. The material
properties, and the type of reinforcement are presented in Table Bl. The
experimental results that describe the properties of the longitudinal rein-

forcement are presented in Table B2.

B.2 Shear Reinforcement and the Angles of Cracks - Slender Beams

The relationship between the amount of shear reinforcement and the angle
of cracks 0, has been developed -based upon the experimental results of Burns
and Siess [12]. The angles of cracks were measured on pictures of four beams,
that have been taken during the experiments. Because no more data was avail-
able, the equations that result from this empirical study should be reevaluated
when more data is available.

The parameters employed for the analysis are defined in Section 2.8,

and their numerical values are presented in the following tabulation.

beam b d a S Av fc f; p; * a tan o
[in] [in] 4 lin) [in?] [psi] [psi] [deg]

Qo
©
D%
*

|

J-13 8.0 14.0 5.14 6.0 0.22 4800.0 50000.0 0.2454 17.0 45.0 1.0
J-20 8.0 14.0 5.14 6.0 0.1 4380.0 50000.0 0.1222 8.088 71.9 3.059
J-6 8.0 18.0 4.0 6.0 0.22 5160.0 50000.0 0.1776 12.76 61.8 1.865

J-22 8.0 18.0 4.0 6.0 0.1 4420.0 50000.0 0.9424 6.266 84.5 10.385

These results have been plotted in the following figures:

vs. 0O (Fig. B3)

o

1. pJ’:*

vs. a (Fig. B4)

ol
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3. prox %- vs. tan a (Fig. B5)
4. px % §~ vs. tan a (Fig. B6)

The linear relationships, corresponding to the first two cases, are the

following:
1. o =-261.3 * (pf * 3) + 109.1
3
2. o =-3.68 * (p% * %0 + 107.46

B.3 Shear Reinforcement and the Angles of Cracks - Deep Beams

The beams that had been tested by Crist [36,39], have been used to develop
the relationship between the crack angle 0, and the beam parameters. The vari-
ables p{ , and p; have been defined in Section 2.8. The numerical wvalues of
the parameters are presented in Table B3. Various possible relationships have
been considered, and finally the following two equations are proposed to de-

scribe the linear relationships.

from Fig. B7:

log o = 0.039396 * log(pt * go + 1.97558

from Fig. B8:

log & = 0.042 * log(p} * 3) + 1.903

B.4 Properties of Beams With Axial Loads

The properties of the beams that were tested by Yamashiro and Siess [38]
are presented as follows.
The dimensions of the beams and material properties are presented in

Table B4.
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The beams geometry is illustrated in Fig. B9.

The properties of the stress-strain curve for reinforcing bars are pre-

sented in Table B5.

B.5 Properties of Deep Beams from Refs. [36,39]

The deep beams analyzed in this study are described in Refs. [36,39].
The geometry of the specimens is illustrated in Figs. B10, B1l1l, B1l2. The
numerical values of beam properties are presented in Tables B6, B7, B9.

Experimental results are presented in Tables B8, B9.
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TABLE Bl
PROPERTIES OF BEAMS FROM THE CURRENT TEST PROGRAM.
Source Ref. [12]

(b = 8 in. for all beams except as noted)

Cylinder Reinforcement Yield Point of

Beam Strength Quantity and Size Reinforcement (ksi) d da' Stirrup Size
Number f[ (psi) Tens. Comp . Tens . Comp . in. in. and Spacing
J-1 4930 2-48 -- 47.6 -- 10.0 2.0 #3 at 6 in.
J-11 4110 2-#8 -- 46.9 -- 10.0 2.0 #3 at 6 in.
J-2 4080 -2-#8 2-#6 48.0 418.6 10.0 2.0 #3 at 6 in.
J-3 400 2-#8 2-#8 48,3 48.0 10.0 2.0 #3 at 6 in.
J-8 L680 2-#8 2-#8 bs. 4 45.5 10.0 2.0 #3 at 6 in.
J-17 3900 2-#8 2-#8 46.9 46.8 10.0 2.0 #3 at 6 in.
J-18% Lkh1o 2-#8 2-#8 us. k4 47.1 10.0 2.0 #3 at 6 in.
‘J-2h* 5000 24l 244 L85 47.8 10.0 2.0 #3 at 6 in.
J-10 3590 2-#8 - 45.1 - 14.0 2.0 #3 at 6 in.
J-14 4500 2-#8 2-#6 ¥7.1  50.0 14.0 2.0 #3 at 6 in.
J-13 L8O 2-48 248  145.6 . 46.0 14.0 2.0 #3 at 6 in.
J-19 3900 2-#8 - 45.8 -- 14.0 2.0 #2U at 6 in.
J-20 4380 2-48 248 45.8 46.5 14.0 2.0 #2 at 6 in.
J-4 4820 2-#8' -- 4.9 - 18.00 2.0 #3 at 6 in.
J-9 4190 2-#8 -- 47.0 -- 18.0 2.0 #3 at 6 in.
J-5 5000 2-#8 2-#6 45.1 48.9 ‘ 18.0 2.0 #3 at 6 in.
J-12 4550 248 2-#6 45.1 49.7 18.0 2.0 #3 at 6 1in.
J-6 5160 2-#8 2-#8 46.2 L.l 18.0 2.0 #3 at 6 in.
J-7 4Ls50 2-#8 2-#8 46.5 L6.3 18.0 2.0 #3 at 6 in.
J-21 4350 2-#8 - 47.6 - 18.0 2.0 #2U at 6 in.
J-22 4420 2-#8 2-#8 46.2 L65.4 18.0 2.0 #2 at 6 in.

¥ = 6 in.
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TABLE B2
PROPERTIES OF REINFORCING BARS
SOURCE REF. [12]

(#8 Bars Except as Noted)

Tension Reinforcement

Beam ,
No. fy esy €sh fult Sult fi‘ract €fract.
ksi % % ksi % % %
J-1 47.6 0.172 0.77 - 87.6 12.5 84.1 -
J-2 48.0 0.181 0.96 87.3 - 84.5 -
J-3 48.3 0.170 0.75 88.5 12.5 87.1 --
J-4 Lh.9 0.152 1.86 71.0 15.0 64.5 20.0
J-5 4s.1 0.195 1.77 73.7 16.3 69.2 19.5
J-6 W6.2 0.178 1.84 73.6 15.0 68.5 18.7
J-7 46.5 0.182 1.71 4.0 15.0 68.6 18.1
J-8 45.4 0.178 1.92 72.1 16.3 67.0 18.8
J-9 47.0 0.175 - 1.66 4.0 15.0 69.3 19.5
J-10 45.1 0.195 1.79 73.0 15.0- 68.0 18.5
J—ll_ 46.9 0.188 1.57 75.4 15.0 70.5 18.8
J-12 5.1 0.174 1.86 71.8 15.0 66.7 18.8
J-13 45.6 0.188 1.61 73.3 15.0 69.2 18.8
J-1L b7.1 0.183 1.75 4.0 15.0 69.2 17.5
J-17 6.9 0.188 1.69 73.6 15.0 70.5 18.8
J-18 4s.h 0.191 1.58 73.2 . 15.0 69.2 17.5
J-19 45.8 0.178 1.85 72.0 16.3 65.4 18.8
J-20 45.8 0.185 1.76 71.8 16.3 65.4 18.3
J-21 7.6 0.186 1.80 72.1 15.0 66.7 18.8
J-22 k6.2 0.1861- 1.68 3.4 15.0 69.2 17.5
J-24% 48.5 0.180 1.90 77.8 16.0 68.1 ok.1

* #4 bars.
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TABLE B2 (Continued)

(#8 Bars Except as Noted)

SOURCE REF.

[12]

Tension Reinforcement

Beam
No. ty sy €sh Tat Cult Teract fract
ksi % % ksi % % %

J-o% 4L8.6 0.180 1.33 78.6 13.8 67.5 17.8
J-3 48.0 0.165 0.73 89.5 12.5 86.0 --
J-5% 48.9 0.170 1.22 82.6 12.5 78. 4 13.8
J-6 L. L 0.192 1.7% 75.0 15.0 69.3 19.5
J-7 L6.3 0.186 1.57 75.1 13.8 70.5 18.0
J-8 45.5 0.162 1.73% 72.3 15.0 66.6 18.8
J-12% L9.7 0.180 1.45 82.3 12.5 79. 4 14.0
J-13 L6.0 0.173 1.98 71.8 15.0 66.7 18.8
J-1h* 50.0 0.170 1.22 8L.2 12.5 Th. b -
J-17 L6.8 0.188 1.55 74.9 15.0 70.5 18.8
J-18 47.1 0.191 1.68 .7 15.0 70.5 17.5
J-20 L6.s 0.180 1.7h 73.7 15.0 69.2 18.8
J-22 LE. L 0.161 1.83 72.3 15.0 66.6 17.5
J -2l L7.8 0.180 1.55° 76.9 16.0 65.2 22.8

¥ #6 bars.

> #4 vars.
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Beam
No.
sl
s2
s3
sS4
S5
$6
s7

s8

s9

s10

2S51.6-1

251.6-2A

a/d,L/d

1.66

1.66

1.66

1.66

1.66

2.67

2.67

2.67

2.67

2.67

8.0

8.0

"

8.0

8.0

Table B3:
A, 0
(in?)
312 0.006724
312 0.006724
3.12 ' 0.006724
3.12 0.006724
3.12 0.006724
3.8 0.0133
3.81  0.0133
3.81 0.0133

" “
3.8 0.0133
3.81  0.0133
2.37  0.00511

" "
2.37  0.00511

"

A
v
[in?]

S
tin]

NN OONN

24.0

f'
c
[psi)

3339
3341

3260
3097

3468
3392

3647
3607

2287
2637

4129
4018

3449
3263

3796

3605

3521
3388

3940
3874

4160

4021

4373

4742

fll
Y
[psi]

NN NN

51846

51846

NN NN

0.01713
0.01751

0.04887
0.04941

0.07793
0.06758

/
/

/
/

0.0415
0.0209
0.02184
0.0437

0.0447
0.0465

0.040
0.0407

0.0274
0.0178
0.0284
0.0185

0.0188
0.00942
0.0174
0.0087

Influence of deep beam properties on crack inclinations

NN NN

1.00878
1.020

2.9511
2.9675

3.7267
3.4706

/
/

/
/

2.5563
1.2781
1.3116
2.6231

2.654
2.706

2.512
2.533

1.771
1.151
1.801
1.171

1.245
0.6227
1.196
0.0598

84.0

63.0

53.0

p}(a/d)

NN NN

0.02844
0.02907

0.08112
0.08202

0.12935
0.1122

/
/

/
/

0.11078
0.0558
0.0583
0.1166

0.1194
0.124

0.1068
0.1087

0.0439
0.0286
0.0454
0.0295

0.0301
0.0151
0.0278
0.0139

pg(a/d)

NN NN

1.6746
1.6932

4.8989
4.9260

6.1863
5.7612

/
/

/
/

6.8253
3.413
3.502
7.004

7.087
7.224

'6.707

6.763

2.834
1.842
2.882
1.873

1.993
0.996
1.914
0.957

€61



Beam
no.

251.6-2B

251.6-3

281.6-3C

281.6~5

252.6-1

a/d,L/d

1.6

1.6

2.7

d
{in]

58.0

58.0

35.1
"

3.12

"

4.34

0.00511

0.00511

"

0.00511

0.00672

0.01546

0.1

NN NN

{in]

18.0
36.0
18.0
36.0

Table B3 (continued)

£
C

[psi]
3829

4069

5023
4903

3586
3801

3248
3697

3840
3966

£
Y

[psi]

53337

53670

"

52925

NN NN

*
1

0.0215
0.0107
0.0202
0.0101

0.0167
0.0171

0.0231
0.0217

/
/
/
/

1.329
0.665
1.29

0.645

1.183
1.197

1.381
1.341

NN OONN

Di(a/d)

0.0344
0.172

0.0323
0.01e62

0.0267

0.0274

0.0369
0.0348

/
/
/
/

pg(a/d)

2.127
1.063
2.063
1.031

1.893
1.916

2.21
2.146

/
/
/
/

Vel
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TABLE B4

PROPERTIES OF SPECIMENS TESTED IN THIS PROGRAM

SOURCE REF. [38]
Nom. Cylinder Reinforcement

Mark %zigl Strength Amt. and Ratio Column Yield Stress

Size Tens. and Ratio Tens. Comp.
. Comp.

P ) fé \ Each p=p' pg €y4 f;

kips psi Face % % ksi ~ ksi
J-2h 0 5060 2-#4 0.67 1.11 48.5 47.8
J-25 25 5050 2-#4 0.67 1.11  49.2 49.2
J-26 50 4600 2-#4 0.67 1.11 49.9 49.0
J-27 75 4920 2-#4 0.67 1.11 50.0 50.1
J-3h* 75 4520 2-#u 0.67 1.11  48.8 50.3
J-16%% 25 4550 . 2-48 1.98 3.29 L45.9 L.
J-15%% 56 LL400 2-#8 1.98 3.29 L6.9 47.3
J-28 0 5020 - 2-49 3.33 5.55 U46.9 6.7
J-29 25 4410 2-#9 3.33 5.55 L48.8 48.6
J-30 50 4500 2-#9 3.33 5.55 47.0 L7.2
J-31 5 4280 2-#9 3.33 5.55 48.3 47.9

* Tie spacing 3 in.; all others 6 in.; see Fig. 2.2.
*#% b = 8 in.; all others 6 in.;
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TABLE B5
PROPERTIES OF REINFORCING BARS

SOURCE REF. [38]

Work

Yield Yield Ult. Ult. Rupt. Rupt. Young's
Mark Size Stress Strain gard. Stress Strain Stress Strain Modulus
train ] . . . .
‘ -3
Sy ey €1 fsu esu EsxlO
ksi % % ksi % ksi % ksi

Tenéion Reinforcement

J-24  #4° L48.5 0.180 1.61 77.8 16.0 68.1 24.1 27.0
J-25  #h4 k9.2 0.175 1.8 78.8 17.0 73.5 19.5 28.1
J-26  #k 49.9 0.175 1.h4 81.9 16.0 71.9 17.4 28.5
J-27  #k4 50.0 0.175 1.50 80.1 15.5 68.5 19.9 28.6
J-34  #4 48.8 0.175 1.Lo0 81.2 14.0 73.5 17.0 27.9
J-15 #8 46.9 0.170 1.57 75.3 14.5 71.8 17.5 27.6
J-16 #8 45.9 0.150 1.68 72.8 15.0 67.9 18.8 30.6
J-28 #9 L6.9 0.160 1.53 77-6  17.0 76.0 19.9 29.3%
J-29 #9 43.8 0.180 1.36 80.2 16.0 75.8 24.3 27.1
J-30 #9 L7.0 0.150 1.62 77.5 16.0 75.0 17.9 31.3
J-31  #9 L8.3 0.145 1.39 78.3 18.0 T4.5 24.3 33.3
Compression Reinforcement
J-24  #4 47.8 0.175 1.55 76.9 17.5 65.2 22.8 7.4
J-25  #k4 Lg.2 0.175 1.77 78.0 15.5 68.0 22.3 28.1
J-26  #L 49.0 0.170 1.k42 8.3 . 16.0 69.0 20.6 28.8
J-27 #h 50.1 0.175 1..48 81.3 18.0 69.7 21.4 28.6
J-34  #4 50.3 0.175 1.40 81.9. 16.0 Th4.0 20.4 28.7
J-15  #8  47.3  0.160 1.57 75.3 15.0 71.8  18.1 29.6
J-16 #8 L. 7 0.150 1.69 1.4 15.0 67.9 18.8 29.8
J-28 #9 L6.7. 0.170 1.62 T7-6 17.5 75.0 23.4 27.5
J-29 #9 48.6 0.160 1.50 80.4 15.6 76.2 25.0 30.4
J-30 #9 47.2 0.145 1.00 80.2 15.8 75.0 24.1 32.5
J-31  #9 47.9 0.160 1.4%4 80.2 18.7 5.5 24.5 29.9

=
o
o
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TABLE B6

BEAM DIMENSIONS AND CONCRETE STRENGTH PARAMETERS. SOURCE REF. [39]
Flexure Shear Tensile splitting
; : Test :
L/d Cast f, Number feo Number £ Number age, Method
Beam series orientation b, d, flcxﬁre, specimens c shear, specimens| ¢ sp, specimens c days of cure
in, in. psi v psi v psi v
S-1 1.66 Side 8 S8 3,339 3 4.37 3,341 6 3.04 257 4 19.80 7 Roan'
S-2 1.66 Side 8 S8 3,260 ] 1.72 3,097 8 5.05 263 12 12.50 8 Room
S-3 1.66 Side 8 S8 3,468 1 7.18 3,392 8 5.31 301 12 14,60 7 Room
S-4 1.66 Side 8 S8 3,647 3 4.94 3,607 6 3.33 371 12 4,50 6 Room
S-5 1.66 Side 8 58 2,287 3 0.48 2,637 6 12.05 284 12 12,90 7 Roam
S-6 2,67 Side 8 36 4,129 3 4.03 4,018 6 4,04 | 323 12 14.37 14 Room
S-7 2.67 Vertical 8 36 3,449 3 5.00 3,263 6 7.59 | 364 12 7.67 15 Room a
S-8 2.67 Vertical 8 36 3,796 3 3.84 3,605 6 5.52 | 347 12 7.18 15 Moist R,
S-9 2.67 Side 8 36 3,521 3 3.86 3,388 6 6.79 | 340 12 9.06 13 Room
S-10 2.67 Side 8 36 3,940 3 9.01 3,874 6 6.99 | 333 6 8.86 31 Room
S-11 3.62 Side 8 26.5 2,419t 3 4.08 3,681 3 4,08 | 329 "7 7.38 52 Room
S-12 3.62 Side 8 26.5 4,191 3 2.94 4,191 3 2,94 | 380 6 13.91 50 Room
5-13 3.62 . Side 8 26.5 3,787 3 3.25 3,787 3 3.25-| 308 10 8.24 47 Room
"
Cured at approximately 70°F., 50% relative humidity.
" s ° .
Cured at approximately 70 F., 100% relative humidity.
1'(Jancrete in compression region from second batch of this beam.only for L/d = 3.62 series.
TABLE B7
ULTIMATE MOMENTS--BASED ON MEASURED fs ’ kud. SOURCE REF. [39]
Measured at Ultimate . _
[
Beam L/d As’ d fc flex,. €s? fs' l\ad' K.k k %)calc’ mu)meas’ %)meas' CM\J)meas
»
sq in. in. psi win./in. psi in, 13 2 in.-kips kips in.-kips “u’calc
S-6 2.67 3.81 .01322 36 4129 1,712 46,100 8.0 0.665 .42 5734 444.9 6289 1.10
S-8 2.67 3.81 01322 36 3796 14,471 51,732 7.8 0.832 42 6649 484.5 6849 1.03
S-9 2.67 3.81 .01322 36 3521 15,534 52,559 6.2 1.147 .42 6688 442.0 6248 0.93
5-12 3.62 3.00 .01415 26.5 4191 16,677 62,850 4,3 1.308 .42 4656 298.9 4225 0.91
5-13 3.62 3.00 .01415 26.5 3787 17,675 51,000 5.8 0.871 .42 3682 282.3 3991 1.08
Ave 3885 0.965 1.01

74014



TABLE B8

PROPERTIES OF REINFORCING STEEL, STATIC BEAMS. SOURCE REF. [39]

Longitudinal reinforcement Web reinforcement
Bars
Agr P [y' furer E Bar A Py fy' furer s, Orien-
Beam L/d No. Size sq. in. psi pst ksi size sq. in. psi psi in. tation
S-1 1.66 2 11 3.12 .00672 | 46,721 76,914 30,209 -- - -- -- -- -, -
§-2 1.66 2 11 3.12 .00672 | 46,151 76,442 28,414 -- - -- -- -- -- --
S-3 1.66 2 11 3.2 .00672 46,70) 77,067 29,501 3 .22 ,0011 51,846 75,409 24 - v
S-4 1.66 2 11 3.12 .00672 48,651 82,596 28,022 3 .22 .0034 51,846 75,409 8 v
S-5 1.66 2 11 3.12 .00672 50,481 -- 30,543 3 W22 .0034 51,846 75,409 8 v
S-6 2.67 3 10 3.81 .01322 46,109 76,654 28,820 -- -- -- -- -- -- --
S§-7 2.67 3 10 3.81 .01322 49,607 79,606 29,000 L . -- -- == == --
S-8 2.67 3 10 3.81 .01322 | 44,646 75,354 28,804.* 3 .22 .0031 51,545 74,545 9 v
S-9 2.67 3 10 3.81 .01322 | 45,945 | 76,575 29,000 3 .22 L0031 51,545 | 74,545 9 Ht
$-10 2.67 3 10 3.81 .01322 | 46,600 | 76,600 29,000** 3 .22 .0031 51,600 | 75,200 9 H
S-11 3.62 3 9 3.00 .01415 53,857 85,350 29,000:: -- -- -- -- -- -- --
S-12 3.62 3 9 3.00 .01415 51,450 84,300 29,000 3 .22 .0055 54,545 77,727 S \
S-13 3.62 3 9 3.00 .01415 50,259 82,200 29,550 3 .22 .0034 55,295 82,057 8 A
“'V = vertical. '
®
Assumed modulus.
4 = horizontal.
TABLE B9
CALCULATED AND MEASURED ULTIMATE MOMENTS FOR UNIFORMLY LOADED BEAMS
FAILING IN FLEXURE (STATIC TESTS). SOURCE REF. [36]
Bemn Properties Calculated Mcasured .
™)
Bem Reference | =, | A, P £, Kk Fe, OO t‘_‘i_{’r‘; G | e ] Megr | ®uenr | TS
in. in.? psi | eq. (47) | eq. (104) Vs e psi | in.-kips kips in.-kips ueale
251.6-1 | This Report | S8.0| 2.37 | 0.00511| 4160 0.9 0.003 | 0.42 0.965 61,468 | 8152 578 7879 0.97
291.6-24 | This Report | 58.01 2.37 | 0.00511) 4373 0.9 0.003 | 0.42 0.965 64,770 | 8589 . 622 8479 0.99
251.6-2B | This Report | $8.0| 2.37 | 0.00511| 3829 1:0 0.003 | 0.42 0.966 .| 61,138 | 8116 566 7716 0.55
251.6-3 | This Report | $8.0{ 2.37 | 0.00S11{ 5023 0.8 0.003 | 0.42 0.967 61,400 | 8163 515 7838 0.96
251.6-3C | This Report | $8.0 | 2.37 | 0.00511| 3586 1.0 0.003 | 0.42 0.963 61,623 8158 555 - 7566 0.93
5-6 14 3.0 | 3.81 | 0.01322| 4129 0.9 0.003 | 0.42 0.925 50,371 | 6390 s 6066 0.95
s-8 1 36.0 | 3.81 | 0.01322] 3796 1.0 0.003 | 0.42 0.928 49,050 | 6246 485 6605 1.06
s-9 14 36.0 | 3.81 | 0.01322| 3521 1.0 0.003 | 0.42 0.922 49,468 | 6257 a2 6025 0.9¢
$-12 - 14 26.5] 3.00 | 0.01415| 4191 0.9 0.003 | 0.42 0.914 54,382 | 3953 299 4075 1.03
s-13 u 26.5 | 3.00 | 0.01415| 3787 1.0 0.003 | 0.42 0.920 50,919 | 3725 22 3858 1.03
Avg 0.93

1014
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APPENDIX C

THE NUMERICAL METHOD FLOW-CHARTS
AND COMPUTER PROGRAMS
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Input beam properties, geometrical and material
include 0-€ curve of steel reinforcements
1

F

Assume value for Es
E 2 €
S Y

{
—

Assume value for kd

Evaluate 0-£ curve for concrete
using the proposed model for
confined concrete

Divide compression zone into layers
while steel remains in exact location

l

Calculate layer strain

Calculate layer stress

Calculate layer force
Do the same for As and Aé

l

Calculate ZC =
Calculate IT

[
H 0

No

Calculate M, ¢
Include "shear reduction":

No

Fig. Cl: Moment-curvature in flexure, w/o shear influence

Metz Reference Room
University of Illinois
B106 NCEL
208 N. Romine Sireet
Urbana, Illinois 61301
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Input: Beam properties, geometrical
and material

Calculate main reinforcement ratio

il

Calculate max. reduction w/o shear
reinforcement

Yes

inclination?2

Calculate crack inclination

slender check for
deep beam

deep

Moment reduction factor for deep
beams w and w/o shear reinforce-
ment

1

Moment reduction factor for
slender beams w and w/o shear
reinforcement

1

Out-put and comments

Another case Yes

Fig. C2: Moment reduction factor due to shear
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Input for F.E. program + parameter of
geometry and material properties of member

Assume: kd = kd

Calculate 0-€ curves of confined and .
unconfined concrete, use proposed method

Run F.E. program, and use the
0-£ curves obtained previously,
and from input information

Calculate "Effective Neutral Axis"
(kd) pe, = Ay

Print results for this load strip

Yes

Another load step

Fig. C3: Proposed finite element procedure
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FROGKAM

10
20
21
22
30
40
So
40
70
80
%0
100
110
120
130
140
150
160
170
180
200
201
202
203
204
210
211
220
225
226
230
240
250
260
270
280
281
283
284
285
287
288
289
290
291
292
293
294
2935
296
297
298
300
310
320
330
334
333
340
350
355
400
410
420
430
440
500
3350
400
610
620
430
440
700

REM - THIS FROGRAM EUAL UATES
REM - FUNCTION OF

08.54.21.

TKPR2

210

REM - MATEKRIAL FKROFERTIES
DY ELC 1000 )

PRINT * EFAM WIDTH, [IN.3
FRINT ° KEAM EFFECTIVE DEFTHy [IN.3
FRINT * THICKNESS OF CONCRFTE COVERs CIN.]
FRINT * WIDTH OF CONFINUDL COREe CIN.]
PRINT * DCFTH TO COMFRESSTON REINFORCEMENTs CIN.3
FRINT * SFACING OF STEEL HODOFS» CIN.3
FRINT * YIFELD STRESS OF HOOFSs [FPSI)
FRINT * COMFRESSIVE STRENRTH OF CONCRETEs [FPSI]
FRINT * DIAMETIER OF COFPRESSIVE RARe CIN.]
FRINT * ARCA OF COMFRESSIVE RAKs, CSOR. IN.D
FRINT * NUMRER OF COMFRESSIVE FARS» CINTGEJ
FRINT * DIANETER OF HOGF RAK»s CIN.]
FRINT * AREA QF HOOF EARy [SQR. IN.]
FRINT * INITIAL LEFTH OF MEUTRAL AXISs, CIN.J
FRINT * FINAL UEFTH OF MEUTRAL AXISs CIN.3
FRINT * STEF SIZE OF DEPTH CHANGE FOR NEUTRAL AXISs CIN,3
AS = N1 % Al
Y1 = SOR ¢ F3 )
J= CH=-L)Y /N
E1(1) = 1.0
J1 = g 42
FOR I = 2 TO J1 STEP 1
C=L 4 (I -2)%N
Rl =A5 / (C X R
H1 = C =T
H2 = Bi
X1 =2 % A2 x ( H1 + B1 )
X2 = ( Hl x B1 - A5 ) * 8
R2 = X1 / X2
H3 = 0.5 % ( H1 + H2 )
X3 = R2 &« F2 / Y1
X4 = ( R2 + R1 x D3 7/ D2 ) & F2 /Y1
Y2 = § / H3
YS = 1 - 0,734 % Y2
IF Y5 >= 0 THEN 287
G0 TO 288 -
Y5 = YS - 1
Yé = ABRSC YS )
F9 = 0.005 % Y6 % X3
E1¢( I ) = 0.0024 + F9
IF E1C I ) < 0.0028 THEN 293
GO 10 293
E1C 1 ) = 0.0028
GO TO 300
IF E1¢ 1) > E1CTI -1) THEN 297
GO 10 300
E1C 1 ) » 0.75 £ E1( I - 1)
G0 TO 291
N1l ¢ 0.0091 % ( 1 - 0,245 X Y2 ) & X4
XS » 3 ¢4 0.002 % F3
Xé = £3 - 1000.0
X7 = XS / Xé
vl = § 7 Y2
YI » SOR ( Vi
X8 = 0.75 ¢ R2 % Y3 + X7 - 0.002

Z = 0.5/ x8
FRINT * THf DEFTH OF THE COMPRESSION ZONE IS *» C
FRINT®
FRINT °*
PRINT *
FRINT *
FPRINY °
1F C

FRINT
FRINT
FEINT
IF 0 =
IF Q =

END

NEXT 1

E0 **+E1(
=% K

1 =% 2
RO =*, R1
ROY =*» R2

I

m THEN 600

FOK YES TYPE - 1 ¢
FOR NO TYFE - 0 *
DO YOU WANT TD FPERFORM CHANGES» AND RUN AGAIN ?

0 THEN 700
1 THEN- 30

Fig. C4: Program TKPR2

THE CHANGES IN THE FARAMETERS AS A
THE. GEFOMETRY OF THE CKROSS SECTIUNY AND THE

B="y INFUT
D=*» INPUT
T=*y INFUT
B1=*y INPUT
Ni=*y INFUT
§=%s INFUT
F2=*y INFUT
F3="» INFUT
n2=*y INFUT
Al=®y INFUT
N1="» INPUT
D3=*y INFUT
A2=*» INPUT
L=y INFUT
H="s INPUT
N=', INFUT
INFUT Q

B
J
T
R1
0t
S
F2
F3
n2
Al
N1
n3
A2
L
M
N
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79/05/29. 0B.56.23.
FROGRANM TKSH4

00010 REM~THIS FROGRAM CALCULATES THE REDUCTION IN FLEXURAL MOWFNT TUE TO SHEAR
00011 REM XXKXXXAREXKARRXKRXXIKRARKRRKRKRRRFKRNKLF RAKAXKERNKKRK R KMKKKKRKKRXKKKE

00012 REM ~—mmmmr e mrm e e e e e s e e e e m e m e e — -
00100 REM - INFUT DATA )

00101 REN =<----memr e m e r e e e et e m e — e ———— m e e -
00200 FRINT "EEAM EFFCCTIVE DEFTHy C IN. 3 *SINPUT D
00300 PKRINT °*HEANM WINTHs [IN.] *» INPUT R
00400 FPRINT “*AREA OF TENSILE REINFORCING BARy CSQR. IN.] "y INPUT At
00500 FRINT C*NUMKEFR OF TENSILE REINFORCING KARSy [INTGR.] *s INPUT N
00600 PRINT *[0 YOU KNOW THE CRACK INCLINATION ? 1=YESs 0=NO *»INFUT M1
00610 IF M1 = 1 THEN 425

00620 IF M1 = 1 THEN 700

00625 PRINT *1S THERE SHEAR REINFORCEMENT IN THE MEMEER ? NO = 0y YES = 1°,INPUT H2
006246 IF H2 = 1 THEN 630

00627 1F H2 = 0 THEN 670

006830 FRINT *"AREA OF SHEAR REINFORCING EARs LSQR. IN,] "y INPUT A3
00440 PRINT °*NUMEER OF SHEAR REINFORCING KARS IN SECTIONs CINTGR.1I®,INFUT N1
00450 FRINT °*SFACING OF SHEAR REINFORCEMENTs LCIN.I] "+ INFUT S
00650 PRINT °*YIELD STRESS OF SHEAR REINFORCEMENT, [PSI] s INPUT F2
00670 FRINT *CONCRETE COMFRESSION STRENGTHs, [FSI] *» INFUT F3
00680 GO TO 800 . .

00700 PRINT "INCLINATION OF CRACK TO THE HORIZONTAL» CDEG.J *» INPUT AS
00800 FRINT °*SHEAR SFANs» OR CLEAR SFAN LENGTH LIN.] *yINFUT A
00900 FRINT *A/D VALUE FOR MAX. MOMENT REDUCTION, 2.0 < A/D < 3.0 *"»INPUT P2
01000 FRINT *A/D VALUE FOR REDUCTION START» 1.0 < A/D < 1.5 "y INPUT P1
02000 F = 3.141592654 .

02100 A2 = N x A1l

02200 X1 = B ¥ D

02300 X2 = A/ D

02400 K1 = ( A2 / X1 ) x 100

02500 IF R1 <= 0.45 THEN 2530

02510 IF Rt <= 1,88 THEN 2550

02520 IF R1 <= 2.8 THEN 2570

02525 IF R1 > 2.8 THEN 2545

02530 Y1 = 1.0

02540 GO TO 2400

02550 Y1 = §,0 - 0.386 x ( Rl - 0.45 )

02560 GO TO 2600 -

02%546% PRINT *RO > 2.8Xs ASSUME EEMAVIOUR AS FOR RO = 2.8X°

02570 YiI = 0.6

02380 BC TO 2400

02600 IF M1 « 0 THEN 2905

02410 IF m1 = 1 THEN 2990

02899 REM ~ccecrvomcmmcncanea— e m e m—ene—m e e ce—ee— s ———————-
02900 REM- CALCULATE CRACK INCLINATION FROM REAM PROFERTIES

02901 REM =-----em oo e e e e
02903 IF WX « ¢ THEN 2907

02906 GO C 2910

02907 1F xJ <= F2> THEN 2966

02908 IF x2 P> THEN 2980

02910 A4 » w] 8 A

02920 RS » as / ( P ® S )

02930 Fe » K 8 F2 / F3

0293% 1fF 17 « #2  THEN 2960

02940 A% » -"&1.1 8 R3 ¢ X2 + 109.1

02941 If as 32.0 THEN 2943

02942 GO TC Jeeo

02941 AS » 32,0

02944 GO YC 990

029460 T1 = k& & 17

02961 T2 = (S 11 )

07942 TY o ©.C1%a 8 T2 & 1.9754

02963 AT & 10 - ')

02944 IF A% « %0.0 THEN 2964

‘02965 GO 10 e

02946 AS = 30.0

02967 GO TC 2990

02980 AS = 90.0

02981 GO TO 2990

02990 A6 = ( AS 7 3460.0 ) ¥ 2 3 P

02995 22 = COT ( Ab )

Fig. C5: Program TKSH4



Q2ve 7
a9y
029w e
03000
0410
03v20
03030
03999
04000
04001
04100
04200
04300
04400
04500
04600
04700
04800
04850
04860
04900
05000
05100
05200
05300
05400
05500
05999
06000
06001
06100
046200
046300
06400
06500
06600
06700
06800
046850
06860
Q04900
07000
07100
07200
07300
C7400
073500
0899%
09000
09001
09100
09200
09300
09350
" 09400
09500
09600
09700
09750
09800
10000
10010
10020
10030
10100
10200
10500
10510
10511
10520
104600
10619
104620
11000
11100
11200
12000

KlmM -
Rt H
Ir x2
1F x2
Ir x2 <
1IF X2
REM

REM-
REM
Vi

V2

THEN
THEN
THEN
THEN

4100
10020

MOHENT REnUICTIuN FOR DEEP REAMS

P2 - Pt

1.0 + V1 %
V4 > 1.0 THEN
T0 4850
1.0
TO 4850
H2 = 0
TO 4900
Y1 + ¢ 1.0
Y2 - 1.0
1.0 + VI x U5 / V3
U6 > 1.0 THEN 5400
TO 9100

v2 7/ V3
4700

THEN 10500

- Y1) x 22

nan n

Y1
X2
P2
= 1.0 +
wa > 1.0
TO 6850
= 1.0

T0 6850
H2 = 0
TO 6900
Y1 + (

= Y2 1.
= 1.0 + U
Wé » 1.0

T0 9500

X W2 / W3
THEN 6700

THEN 10600

£0 - Y1 ) % Z2

1
- 1.0
2 ¥ us / u3
THEN 7400

Wwé
GO
REM
REM- OUT-FUT OF RESULTS AND
REM
PRINT *

COMMENTS

THIS IS A LEEF EREAM» A/ D < "y F2
FRINT °*ULT. HDOMENT REDUCTION COEFFICIENT, W/0
FRINT *ULT. MOMENT REDUCTION COEFFICIENT W,
FPRINT °EXFECTED CRACK ANGLE TO CAUSE FAILURE»
GO TO 11000

FRINT * THIS 1S A SLENDER REAM» A / D
FRINT *ULT. MOMENT REDUCTTION COEFFICIENT,
PRINT *ULT. MOMENT REDUCTION COEFFICIENT W,
PRINT °*IXFECTEL CRACK ANGLE TO CAUSE FAILURE:
G0 70O 11000
FRINT * a /7 D
GO TO 10100
FRINT * A/ D
GO TO 10100
FRINT * NEGLIGAKLE MOMENT REDUCTION FOR THIS CASE °*
GO TO 11000
PRINT *THIS
FRINT “ULT.
FRINT *EXFECTED
GO TO 11000
FRINT °*THIS 14 A SLENTER REAM W/0 SHEAR REINFDRCEMENT®
FRINT *ULT, MOMENT REDUCTION COEFFICIENT FOR THIS CASE
GN TO 11000

FRINT °DQ YQOU UANT TO CONSIDER ANOTHER CASE ? YES
IF C = 0 THEN 12000

IF C = 1 THEN 200

END

SHEAR REINFORCEME
SHEAR REINFORCEME
L DEG. 1 AL

>y P2

C DEG. 1]

= ®
{i= ’

P1

=

7.0 °

IS A DEEF KEAM W/0 SHEAR REINFORCEMENT®
MOMENT REDUCTION COFFFICIENT FOR THIS CASE
CRACN ANGLE TG CAUSE FATLURE. [ DEG. 1

1y NO = 0%,

Fig. C5: (Continued)

NT =°,V4
NT =*,Vé
FA ="sA5

W/0 SHEAR REINFORCEMENT =°,U4
SHEAR REINFORCEMENT =",Ué
ALFA ="5A5

] 1)

INFUT C
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APPENDIX D

A NUMERICAL EXAMPLE
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The following example is provided in order to demonstrate the pro-
cedure by which the’compressive zone properties of a reinforced concrete
beam are considered for the calculation of the moment-curvature relation-
ship of such members.

Here, the application of the proposed stress-strain curve for reinforced
concrete to the analysis of Beam J-2 is demonstrated. At advanced stages
of loading the concrete located below the neutral axis is disregarded.

In the compressive zone of a concrete beam as illustrated in
Fig. D.1l, the concrete core is assumed to be confined by the transverse
reinforcement from all four sides. This assumption requires the intro-
duction of an imaginary steel bar, as an integral part of the rectangular
hoop, along the neutral axis.

The percentage of the transverse reinforcement is calculated as

follows.
v Asx {[(kd - t) + b']*2} (0.1)
[(kd - t)*' - Aé]*S ’
where:
A”S = cross section area of hoop
kd = depth of neutral axis
t = thickness of concrete cover to outside of hoop
b' = width of confined core to outside of hoop
Aé = area of compressive reinforcement
S = spacing of hoops along beam axis
The percentage of compressive reinforcement
A'
~ = S 9N
Y \U.2)

kd*b
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kd

t q!
D
n.a.—— 1 | beee——— - — - — -
e e ——- —
dll
bl
b
Fig. D.1l: Geometrical parameters of the compressive zone

for a reinforced concrete beam.
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where:
b - width of beam

The two sides of the rectangular confined core are the following:

h; =kd - t (b.3)

hy = b’ , (D.4)

The average dimension of the confined core is given by the following

equation
" = 1/2 (] + hY) (0.5)

These parameters and dimensions are introduced into Egqs. (2.5.4)
through (2.5.6) to obtain the parameters €y K, Z that are used to calculate
the stresses in the concrete layers. These parameters can be obtained
from program TKPR1 or TKPR2 (see Appendix C). An example of how to employ
programs TKPR1 or TKPR2Z and the format of the results is demonstrated in
Fig. D.2.

The application of the numerical procedure in the present investigation
is demonstrated in the following example.

Beam J-2: Ultimate Loading Condition

A cross section of Beam J-2 is presented in Fig. 3.2.1. The dimensions
of the cross section, as provided for program TKPR2, are presented in
Fig. D.2. Additional information is presented in Tables B1l, B2, and

Fig. B.2, of Appendix B.



77705721
FROGRAM

BEAM WIDTH:

THICKNESS
WIDTH OF
DEFTH
SFACTNG
YIELTL STR

COMPRESGIVE STRENGTH
OF COPREDGTUE BAR

COMPRE
OF POﬁFREeuIUF RARS »
HOOF BARy
AREA OQF HOOF LAR»
DEFTH
OF NEUTRAL AXIEGs

DIAMETER
AREA OF
NUMBER
DIAMETER

INITIAL

E&

0

S

r

FINAL TEPTH

STER

THE DETTH
E0
K

>
L.

RO
ROz =

THE DREFTIH
EO
K
Z
N
Ra2 =

THE DEFTH
EO
K
Z
RO
RG2 =

THE DERTH

i

ioH

i

o

SIZE OF DEFTH

ar

oF

oF

Fig, D.2:
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CIN.]
BEAM EFFECTIVE DEFTHs
OF CONCRETE COVER.
CONFTINED
TQ COMFRESSION REINFORCEMENT.
OF STEEL

CIN.]

COREy CINMN.]
HOORSy LCIML]
OF HOOFSy LRSI :
OF CONCRETE »
CINGT
SIVE BRARs

CING]
CORR. IN.D
OF NEUTRAL AXIG

CHANGE FOR

THE COMPRESSION ZONE
L5784 7E-2 '
1,37%&%

12.5081
«CE3
HeP2123E-2

THE COMPMRESSTON ZONE
7.88477E-2
1.343224
14.1895
L052281
4 02058E~2

THE COMPRESSTION ZONE
0661089
1.2154%

}5.7767
<05
5.34557E-2
THE Cnm:ﬁr ST N ZONE

CINGI

CEAR. IN.
CINTGE]

LFrEI]

1

CIN.]
CINGI
NEUTRAL

~
¥}

IG

G

E= T 8.0
D= ? 10,0
= T 1,25

Bi= T 5.8

o= 72,0

= 7 4.0

2= ? 50000.0
Fa= T 4080
ne= F Q.75
al= T 044
M= 72
3= 7 0,375
A= P 0.1

L= ? 2.0

H= T o4O

[IN.] N= ? 0.

2.1

3
3

53]

*J

Reinforced concrete parameters, Program TKPR2,
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The results from progrém TKPR2 for the case where the neutral axis is

at Kud = 4.5 in. are the following:

e = 0.0028

o
K = 1.148 (use 1.15)
Z = 36.63

The strain at the tensile reinforcement level is assumed to be

e, = 0.044., The following strains are obtained for the various concrete

and steel layers. (See Fig. 3.2.1 for details).

€1 = 0.015 » > e, , use Eq. (2.5.2) for stress calculation
€y = 0.0106 » > €, , use Eq. (2.5.2) for stress calculation
€4 = 0.0062 s > e, » use Eq. (2.5.2) for stress calculation
€, = 0.002 , < e, » use Eq. (2.5.1) for stress calculation
E; = 0.02 » > &, , useEq. (2.5.2) for stress calculation
e = 0.044

s

The stresses for the concrete are calculated as follows.

0.015
= - * * 0 nno]
£ = 4080 * 1.15 * [1 - 0.8 * 36.63 * 0.0028 * (T 5555 - DI

0.0106
= * - * ‘0.0028
£, = 4080 * 1.15 * [1-0.8* 36.63 * 0.0028 G 0028 1]
0.0062
£, = 4080 * 1.15 * [1 - 0.8 * 36.63 * 0.0028 * Gz goyg — DI
6*
3210 2 0:002 _ 5 35 300257
f4 - 4080 * - - = 4241.5 psi
1+ [2 10 *0.0028 _ 55 (0.002
1.15 * 4080 0.0028

3014.5 psi

= 3619.5 psi

= 4224.5 psi

For the concrete at the level of the compressive reinforcement the

stress is the following:

= 4080 * 1.15 * [1 - 0.8 * 36.63 * 0.0028 * (0'02

F 0.0028

E'
S

- 1)] = 2327.1 psi
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The concrete cover is at a strain greater than 0.004 therefore, the

stress is assumed as follows:

f = 0.605 * 4080 = 2468 psi
cover )

The stresses in the longitudinal reinforcing bar can be obtained by
employing either Eq. (2.4.1), or Egs. (2.4.2). The parameters needed for
the calculation are presented in Table B2 of Appendix B.

For this case Eqs. (2.4.2) are employed as follows:

Compressive reinforcement:

£ = 48.6 ksi
y
esh = 1.33%
£ = 78.6 ksi
u
e = 13.8%
su
r=e¢ -e_ =0.138 - 0.0133 = 0.1247
su sh
(Zg'g) & (30 % 0.1247 + 1)° - 60 * 0.1247 - 1
L o 48 » = 119.48

15 % 0.12472

£' = 48.6 * [119-48 * (0.02 - 0.0133) + 2 (0.02 - 0.0133) (60 - 119.48)] _
s 60 * (0.02 - 0.0133) + 2 2 % (30 % 0.1247 + 1)>

= 56.235 ksi

Tensile reinforcement:

£f = 48 ksi
y
€ = 0.96%
£f = 87.3 kis
u
€ = 15% (average value from Table B2)

su
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0.15 - 0.0096 = 0.1404

H
I

(%%Q) £ (30 * 0.1404 + 1)° - 60 * 0.1404 - 1
m = 2 = 135.2
15 * 0.1404
f =48 % .[135_2 * (0.044 - 0.0096) + 2 + (0.044 - 0.0096) (60 — 135.2)] _
* -
s 60 * (0.044 - 0.0096) + 2 2 % (30 * 0.1404 + 1)2

76.2682 ksi

The area of the concrete layers, and steel bars is the following.

(See Fig. 3.2.1).

Layer Area‘[in,z]

1 3.19

2 3.19

3 3.19

4 4.0
Concrete at comp.

rein. level 2.89
Cover 3.795
Comp. Rein. 0.88
Ten. Rein. 1.58

The forces in the layers and the longitudinal reinforcement is obtained

by multiplying the stress in a layer by the area of the layer.

Layer Force [1bs.]
1 3014.5 * 3.19 = 9616.25
2 3619.5 * 3.19 = 11546.2
3 4224.5 * 3,19 = 13476.15

4 4241.5 * 4.0 = 16966.0
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Concrete at

Comp. Rein. Level 2327.1 * 2,89 - 6722.4
Cover ‘ 2468.0 * 3.795 = 13161.0
Comp. Rein. 56235.0 * 0.88 = 49486.8
Ten. Rein. 76268.2 * 1.58 = 120503.7

The cross section is checked for equilibrium by comparing the sum of
compressive forces to the sum (in this case only one force) of tensile

forces.

Il

IC = 9616.25 + 11546.2 + 13476.15 + 16966.0 + 6722.4 + 13161.0 +
+ 49486.8 = 120974.8 1bs.
£t = 120503.7

I
T

1.004 difference = 0.47%

Assume equilibrium, and calculate the associated moment and curvature.

The moment is obtained by the following procedure:

1. Calculate the moment of each compressive force with respect to the
tensile reinforcement (i.e., multiply each compressive force by its
distance from the tensile reinforcement).

2. Sum all moments.

Comp. Force [1lbs.] Lever Arm [in.] Moment [in.-K]

9616.25 7.45 71.6
11546.2 6.85 79.1
13476.15 6.6 88.9
16966.0 5.75 97.5
6722.4 8.0 53.8
13161.0 6.85 90.1
49486.8 8.0 395.9

Sum: 877.0
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The curvature is obtained by dividing the strain at the compressive

reinforcement level by the distance of that strain from the neutral axis:

- 0.02 - rad.
¢ 2.5 0.008 in.

The influence of shear is evaluated by employing program TKPR4
(see Appendix C). The required data and the result of the computation is
illustrated in Fig. D3. As a result of the analysis for shear it is found
that no reduction in the flexural moment capacity is detected by the analysis.

The following results were obtained for this case:

M = 877.0 in.-K
cal.

Mm = 919.0 in.-K (from Ref. [12])

M
cal. _ 877.0 _ = 9
Mm = 5190 0.9543 difference 4.57%

The moment and curvature conditions at this stage (ultimate moment
capacity) are represented on the moment-curvature diagram (M - @) by a single
point. Additional points are calculated by the same procedure, in the loading
range between the yielding of the tensile reinforcement and ultimate moment
capacity. As a result the complete moment-—curvature diagram is obtained,

as illustrated in Fig. 3.2.8.
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