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ABSTRACT 

An evaluation of the axial fatigue behavior of plain plates and ful 1 

penetration weldments in HY-lOO steel is presented. Transverse butt-welded speci

mens welded with the MIL-l 1018 electrodes were found to contain minute internal 

weld flaws which often serve as critical locations for fatigue crack initiation. 

The weld flaws, al though not detected by usual radiographic inspection, were 

successfully located with the use of ul trasonic detection equipment. The ultra

sonic equipment was used also to study the initiation and propagation of fatigue 

cracks in several test weldments, A prel iminary investigation of the axial fa

tigue behavior of HY-l30/l50 steel plain plates is reported. 
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I. INTRODUCTION 

I, 1 Object of Study 

The principal purpose of the investigation reported herein was to evalu

ate the fatigue behavior of plain plates and welded joints of 3/4 in. thick HY-IOO 

steel. The tests were conducted using axially-loaded fatigue specimens, In ad

dition, both radiographic and ultrasonic examinations were made on several trans

verse butt-welded specimens to obtain an indication of the relative sensitivity 

of the two techniques in determining weld qual ity, The ultrasonic detection 

equipment was also used to study the initiation of fatigue cracks at internal weld 

flaws. 

The fatigue cracks in a number of the transverse butt-welded joints 

welded with the MIL-lIOI8 electrode were found to initiate at small internal flaws 

rather than at changes in external geometry. As a resul t, several mod if i cat ions 

were made in the welding procedures and specimens prepared by these modified pro

cedures were subjected to metal lographic examination to determine their suit-

abil ity for use with the HY-IOO base metal. Members prepared with two of the 

experimental procedures were subsequently subjected to cycl ic loadings and the 

results compared with the fatigue behavior of specimens welded using the standard 

procedure, 

A prel iminary investigation of the fatigue behavior of HY-130/150 plate 

has been included also, Resul ts are reported for fatigue tests of 1/2 in, thick 

plain plate specimens, 

1,2 Scope of Investigation 

The studies reported herein were conducted on 3/4 in. thick HY-IOO plain 

plates and transverse welded joints using stress cycles of zero-to-tension and 

complete-reversal. The prel iminary study of the HY-130/150 material consisted of 
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fatigue tests performed using a zero-to-tension stress cycle. The report covers 

tests conducted during the period from August 1964 to September 1965. 

Several types of welded joints using the HY-100 base metal have been 

tested, These include transverse butt-welded specimens (as-welded and with rein

forcement removed), specimens with full penetration transverse attachments 

(attachment on one and two sides of main member), and full penetration tee joints. 

A total of four welding procedures were used in the fatigue evaluation of the 

transverse butt-welded specimens. In addition, specimens were fabricated with in

tentional weld porosity to further examine the effect of internal defects on 

fatigue 1 ife. 

1.3 Acknowledgments 

The tests reported in this study are the result of an investigation con

ducted in the Civil Engineering Department of the University of Illinois. The 

program was carried out with funds provided by the Bureau of Ships, U. S. Navy, 

under Contract 92226, Project Serial No. SR-007-0l-01, Task 855. 

The investigation constitutes a part of the structural research program 

of the Department of Civil Engineering, of which Dr. N. M. Newmark is the Head. 

The program is under the general direction of W. H. Munse, Professor of Civil 

Engineering; the fatigue research was conducted by J. B. Radziminski and J. W. 

Leibold, Research Assistants in Civil Engineering, and the metallurgical studies 

were conducted by R. W. Hinton, Research Assistant in Metallurgical Engineering, 

under the direction of W. H. Bruckner, Professor of Metallurgical Engineering. 

The authors wish to express their appreciation to the many people on the 

staff of the University who so ably assisted in the investigation. 
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I I. DESCRIPTION OF TEST PROGRAM 

2. 1 Ma te ria 1 s 

The main emphasis of the program was on the fatigue behavior of welded 

joints fabricated from HY-100 steel of 3/4 in. thickness. A 1 imited number of 

prel iminary fatigue tests were also conducted on 1/2 in. thick HY-130/150 plain 

plates. The physical and chemical properties of the two materials are presented 

in Tables 2.1 and 2.2, respectively. 

The majority of the HY-100 welded joints were fabricated using electrodes 

of MIL-l 1018 grade. The electrodes were conditioned in accordance with require

ments of the current Navy Specifications;(5)* the procedure is fully defined in 

Ref, (2), Exploratory tests were also initiated using MIL-12018 grade electrodes 

wit h the H Y - 1 00 bas e me tal . 

2.2 Fabrication of Specimens 

Details of the test specimens are presented in Figs. 2.1 and 2.2. In 

general, the fabrication process was similar for all specimens except for the 

differences in welding procedure. Specimen blanks, 9 in. by 48 in. were flame cut 

from larger plates of 3/4 in. thick HY-100 and 1/2 in. thick HY-130/150 steel. 

For the transverse butt-welded specimens, the blanks were saw cut in 

half (9 in. x 24 in.) and the edges beveled to provide a double "VII groove with 

a 60 0 included angle for welding, All welding was performed in the flat position 

with the specimens clamped in a special jig which could be rotated about a hori-

zontal axis (the longitudinal axis of the weld). The standard welding procedure 

for the butt joints in HY-100 steel is presented in Fig. 2.3, A stringer bead 

technique was employed which insures that the deposition of successive passes 

causes a tempering of the preceding passes. A series of butt-welded fatigue speci-

mens was also prepared using the modified procedures illustrated in Figs. 2.4 

Numbers in parentheses refer to corresponding entries in bib1 iography. 
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and 2.5 (MIL-l 1018 electrode), and Fig. 2.9 (MIL-12018 electrode). The base plate 

preparation for these special we1dments was the same as that described above for 

the standard welding procedure. 

Details for the specimens with transverse attachments on one and two sides 

are shown in Figs. 2.2a and b; the corresponding welding procedures are presented 

in Figs. 2.6 and 2.7, respectively. No special preparation of the main member was 

necessary for welding other than grinding the surface clean. 

The fabrication of specimens with full penetration tee joints was similar 

to that of specimens with attachments. The specimen geometry is illustrated in 

Fig. 2.2c and the welding procedure is presented in Fig. 2.8. 

After the welding was completed, holes were drilled in the ends of the 

specimens as shown in Figs. 2.1 and 2.2. The test section was then saw cut and 

milled down to a 5 in. long straight section in the center, No material in the 

region of the test section was removed by flame-cutting. The width of this test 

section was governed by the test load range and the capacity of the fatigue machine; 

the width being made as large as possible within the machine capacity. 

As a final stage in fabrication, the edges of the specimens in the test 

section were filed and ground smooth. For those butt joints which had the rein

forcement removed, the specimen face was given a final pol ish with a bel t sander 

in a direction parallel to the direction of subsequent loading. 

2.3 Test Equipment 

All fatigue tests were conducted using the University of Illinois' 250,000 

lb. lever-type fatigue machines. The speeds of the machines used were 100 and 

160 cpm. 

The essential features of the fatigue machines are shown schematica11y in 

Fig. 2.10. The lever system provides a force mul tipl ication ratio of approximately 

15 to 1. The load range is adj usted th rough the th row of the eccentr i c, wh i 1 e the 
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maximum load is controlled by the adjustable turnbuckle mounted just below the 

dynamome te r. 

2,4 Testing Procedure 

The testing procedure was similar for a1 1 specimens. After the load had 

been set and the machine started, an automatic microswitch was set so that the 

machine would shut off when a crack had propagated partially through the specimen, 

The load was maintained within 1 imits of ±05 ksi by periodic checks and adjustments 

when necessary. Fatigue failure was assumed to have occurred when the microswitch 

shut off the machine; the crack had normally propagated through about 3/4 of the 

specimen at this stage. eyc1 ing was then continued until complete fracture oc

curred so that the fracture surface could be examined and photographed, 

2.5 Radiographic and Ultrasonic Studies 

Al 1 transverse butt-welded specimens were subjected to radiographic ex

amination prior to testing, Except for those,with intentional defects, all speci

mens were classified as "sound" welds with no internal flaws visible on the radio

graphs (1 to 2 percent sensitivity), 

A number of the transverse butt-welded specimens (with weld reinforcement 

removed) were also examined ultrasonically, The u1 trasonic equipment detected 

numerous minute flaws, a number of which were verified when the fatigue fractures 

initiated at or passed through the flaws. 

In addition, ul trasonic readings were taken at various stages in the 

1 ives of a 1 imited number of specimens to study crack initiation and propagation. 

2,6 Metal lurgical Studies 

Metallurgical studies were undertaken in an attempt to develop welding 

procedures for butt joints of HY-lOO steel that would provide improved fatigue re

sistance. In addition, a number of butt-welded specimens were sectioned and 
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examined metallographical ly to verify the location of flaws predicted in the ul tra

sonic studies, 

A pre] iminary study was made also to relate fatigue crack initiation and 

propagation to the associated microstructure observed in the HY-100 weldments, 
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I I I. FATIGUE TESTS OF 3/4 INCH HY-]OO MATERIAL 

3,1 I ntroductory Remarks 

Several series of tests were conducted on a variety of specimens fabri-

cated from 3/4 in, HY-lOO steel to evaluate the fatigue behavior of different 

HY-100 weldments, Specimens were tested using both complete-reversal and zero-to~ 

tension stress cycles, The fatigue strength of the plain plate specimens was de-

termined and later used as a base of reference for computing the reduction in fa-

tigue strength resulting from the various welded joints. The S-N relationship for 

the particular tests corresponding to each type of we1dment was plotted where 

feasible and the fatigue resistance then compared to that of similar specimens 

fabricated using HY-80 steel (reported in previous studies). 

3,2 Tests of Plain Plate Specimens 

The fatigue test results for plain plate specimens on a zero-to-tension 

stress cycle are tabulated in Table 3.1 and plotted in Fig, 3,1, The S-N curve 

for these data, and for the other fatigue data presented in the report, were calcu-

lated using the procedure detailed in Ref, (2). For comparison the S-N relation

ship for 3/4 in. HY-80 plain plates is also presented in the figure, (3) As ob

served previously, (4) the S-N curve for the HY-100 steel exhibits a somewhat 

steeper slope than the curve for the HY-80 material. For the range of lives ex-

amined, however, both materials had similar fatigue strengths. 

Five plain plate specimens were tested on a complete-reversal stress 

cycle. Test results are summarized in Table 3.2 and are plotted in Fig. 3.2. Two 

of the specimens, HY-21 and HY-22, initially failed in the pull-head as a result 

of fretting. New pull-heads were welded on and testing was continued with both 

specimens eventually failing in the radius of the test section. All other speci-

mens failed either at the radius of the test section or near the radius. Also 
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shown in the figure is the S-N curve for similar tests of HY-80 material, (3) Com

paring the curves, it is apparent that the HY-100 material has a sl ightly higher 

fatigue strength than the HY-80 base material for the complete-reversal stress 

levels studied. 

A photograph of a typical fracture surface for a specimen which failed 

near the radius (initiation on the mill scale surface) of the test section is shown 

in Fig, 3,3, 

3,3 Tests of As-Welded Butt Joints 

A total of 14 transverse butt-welded specimens were tested in the as

welded condition, The specimen details and welding procedure (P100-l1018-J) are 

presented in Figs, 2,lb and 2,3, respectively, Further information concerning the 

welding procedure is presented in Sect. 3.4, A typical microstructure of the heat 

affected zone (HAZ) of these weldments is compared to that of the HY-100 base metal 

in Fig, 3.40 The microstructure of the base metal shows the effect of the hot 

rolling and then the quenching and tempering treatment provided by the mill, The 

prior austenite grain size of this structure was small and the grains were elongated 

in the roll ing direction, In the heat affected zone of the weld, where the maximum 

temperature was near the mel ting point for a short time, the prior austenite grain 

size was larger and the martensite platelets were larger than those in the micro

structure of the original base metal. The martensitic structure in the austenitized 

part of the heat affected zone may have been only partially tempered and, there

fore, of a higher hardness than the base metal, The full y tempered heat affected 

zone resul ts when a successive weld bead is placed next to the deposited bead and 

provides a tempering heat treatment. 

Six specimens were tested using a complete-reversal stress cycle. The 

fatigue data are summarized in Table 303 and the corresponding S-N curve is plotted 

in Fig. 3.50 Also presented in the figure is the S-N relationship for similar 
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joints of HY-80 steel, which were tested in a previous study. (3) Comparison of the 

S-N curves for the two materials shows that the fatigue resistance of the HY-100 

butt-welded joints is lower than that of the HY-80 material at the complete-re

versal stress levels studied. All of the HY-100 specimens failed at the stress 

concentrations at the edge of the weld reinforcement. However, one specimen, HY-26, 

also exhibited a small fatigue crack in the weld which initiated at a minute in

ternal weld flaw not detected by radiography. 

The fatigue data for the as-welded HY-100 butt joints tested on a zero

to-tension stress cycle are tabulated in Table 3.4 and plotted in Fig. 3.6. These 

tests were reported previously in Ref. (4). In a number of cases, specimens tested 

at the zero-to-tension stress cycle failed within the weld at small defects. These 

defects were not visible on the radiographs taken prior to testing. Photographs of 

the fracture surface of a specimen which failed at the toe of the weld reinforcement 

and of one in which failure initiated internally are presented in Fig. 3.7. It is 

apparent that, for the butt joints of HY-100 steel tested on a zero-to-tension 

stress cycle, the internal weld flaws had a greater effect on fatigue resistance 

than did the external weld geometry, especially at the higher nominal stress levels. 

The tendency for fatigue failures to initiate at small flaws within the weld metal 

becomes even more pronounced in specimens where the weld reinforcement has been re

moved (see Sect. 3.4). Possible reasons for this behavior are discussed in the 

following section. 

The percentage reduction in fatigue strength of a plain plate due to the 

inclusion of a transverse butt weld in the as-welded condition is presented in 

Fig. 3.8 for both the zero-to-tension and complete-reversal stress cycles. Here 

it may be seen that the percentage reduction increases as the 1 ife increases and 

that the rate of change in this reduction is greater for the tests in complete

reversal than for those under a zero-to-tension cycle. Furthermore, complete-
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reversal produces a more severe fatigue condition than zero-to-tension cycles at 

the longer 1 i ves. 

3.4 Tests of Butt Joints with Reinforcement Removed 

3.4.1 Standard Welding Procedure 

The standard welding procedure used for most transverse butt welds in 

HY-IOO consisted of a six pass weld using a MIL-l 1018 electrode with a maximum heat 

input of 40,000 joules per inch. This procedure, P100-l1018-J, is presented in 

Fig. 2.3. Microhardness traces for a weld prepared with this procedure are shown 

in Fig. 3,12, The "near-surface" trace is 1,25 mm from the rol led surface and the 

" mid-thickness" trace is through the center transverse section of the weldment. In 

the HAZ near the surface the hardness is as high as 410 DPH; however at mid-thick-

ness the corresponding values are only about 325 DPH. Thus, the tempering effect 

of the weld passes is readily evident as the peak hardnesses are significantly 

reduced in the mid-thickness HAZ. 

Six transverse butt joints welded with the standard procedure and with 

the reinforcement removed were tested on a zero-to-tension stress cycle. Specimen 

details are shown in Fig. 2.lb; the fatigue data are presented in Table 3.5 and 

plotted in Fig, 3.9. The dashed line S-N relationship in Fig. 3.9 is for similar 

('n""''''''menc r"\f '1//1 '1'"1 th,ir.,'< ,I-l,V,-R()v c;;tpp.l,. (3) ::> I-'C '-' I " I I .;:> V I ..., I -,- " " ~ _, _ ~ ~ __ Although six out of seven of the HY-80 

specimens failed away from the weld region, fatigue cracks in all but one of the 

HY-IOO specimens initiated at a minute pore(s) in the weld metal. Photographs of 

the fracture surface of two typical specimens are shown in Fig. 3,10. 

It is significant that no defects were visible in the radiographs of any 

of the HY-IOO weldments. However, the fatigue initiating flaws, as well as others, 

were usually detected by ultrasonic inspection in those specimens which were sub-

jected to that detection technique (see Sect. IV). The wide scatter in fatigue 

lives of the HY-lOO specimens (i .e, from 57,900 to 1,108,600 cycles at 0 to 
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+50,0 ksi), together with the fact that all but one specimen failed at internal 

weld flaws, precluded the construction ofa meaningful S-N curve that could be com-

pared effectively with the curve for the joints of HY-80 steel, 

In an attempt to decrease the porosity in the HY-100 we1dments, one of 

the six butt joints fabricated with the standard we1qing procedure was prepared 

with an extra effort made to keep al I surfaces clean between passes. The double "V" 

groove was machined in the standard manner, the preheat was app1 ied with an oxy-

acetylene torch, and a chipping hammer was used to remove the slag fo1 lowing each 

weld pass. In addition, an abrasive wheel was used to grind the "V" groove after 

each pass in order to remove spattered weld metal which had adhered to the exposed 

edges of the beveled base plates. Compressed air was then used to clean the weld 

area of loose particles. 

This specially cleaned specimen, HY-60, was tested at a 0 to +50.0 ksi 

stress cycle. It had a life of only 57,900 cycles, the shortest of those tested at 

o to +50.0 ksi. A photograph of the fracture surface is presented in Fig, 3.10. 

Fatigue cracking is seen to have initiated at three separate pores, indicating that 

the special weld preparation techniques were not sufficient to el iminate porosity 

in the HY-]OO joint when welded with the MIL-lIOl8 electrode. 

Six butt-welded specimens with reinforcement removed were tested using a 

cyc] ic load ing of complete-reversal. The resul ts of the tests are presented in 

Table 3,6 and are plotted in Fig. 3.11 together with the S-N curve of similar speci

mens of HY-80 material. (3) Al though all of the HY-IOO specimens were judged as 

"sound!! weldments on the basis of radiographic examination, they all failed in the 

weld at small flaws. The wide scatter in the fatigue 1 ives and the location of 

the fatigue fractures again prevents the construction of a suitable S-N relationship. 

Overall examination of the series of fatigue tests of butt joints with 

reinforcement removed leads to the fol lowing observations. First, welding the 

HY-100 steel with the standard welding procedure used in this program (Fig. 2.3) 
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and the MIL-l 1018 electrode will produce welds with minute flaws within the weld. 

Although these defects may be of such a size as to escape radiographic detection, 

they are nevertheless points at which the initiation of fatigue cracking can take 

place. In view of the large amount of scatter obtained in the fatigue tests, im

provements in the fatigue resistance of the members should be possible through im

proved weld qual ity and a better understanding of how the fractures initiate, 

A second observation is that the use of an undermatching electrode, 

MIL-l 1018, with the HY-100 base metal appears to force the critical location for 

crack initiation into the weld at internal flaws rather than at the geometrical 

stress raiser at the radius of the test section. Especially at the higher stress 

levels, it appears that the combination of high stress concentration at internal 

weld defects and the close match of weld strength to base metal strength may be the 

cause of the very low fatigue 1 ives obtained in some instances. It also may be 

recal led that, even in those HY=100 specimens tested in the as-welded condition, 

failure initiated internally in tests conducted at a 0 to +80,0 ksi stress cycle, 

3,4.2 Experimental Welding Procedures 

In an attempt to improve the fatigue resistance of HY-lOO butt-welded 

joints, three modifications in the standard welding procedure were examined and 

compared, Each of the experimental procedures used the MIL-1 1018 electrode; the 

al tered parameter was the energy input per un it 1 ength of we 1 d meta 1. The first 

sample (1) was welded with the standard welding procedure of the current program, 

Higher and lower values of energy input, as compared to the standard procedure,were 

used to make samples 2 and 3, Sample 2 was fabricated with a higher energy 6 pass 

weld and sample 3 with a lower energy 12 pass weld. Sample 4 was identical to 

sample 1 except that a higher interpass and a higher preheat temperature was used 

for the weldment. Details of the welding procedures for the four samples are 

1 is ted in Ta b 1 e 3, 7 . 



-13-

Each of the four weldments was initially evaluated on the basis of micro

hardness traces located in the linear surface" and "mid-thickness" positions de

scribed previously (Sect. 3.4.1). These two traces provide the micro-hardness of 

the tempered weld metal and heat affected zone (limid-thickness" trace), and the 

single bead (untempered) weld metal and heat affected zone (linear-surface" trace). 

The microhardness traces of the four samples are presented in Figs. 3.12 to 3.15. 

The microhardness survey from sample (normal energy input) shows weld metal and 

base metal hardnesses that are approximately equal. The "near-surf.;3ce" trace shows 

a h i g h h a r d n e s s (r e 1 a t i vet 0 t hat 0 f the bas e me tal) i n par t 0 f th e he a t a f f e c ted 

zone, and in the over-tempered region of the HAl a hardness that was no lower than 

the minimum base metal hardness. However, at the "mid-thickness" the tempered HAl 

shows some indication of an over-tempering and a hardness lower than that of the 

base metal. In sample 2 (high energy input) a microhardness trace similar to that 

of sample 1 was obtained as shown in Figs. 3.13 and 3.12, respectively, except 

that the maximum hardness in the HAl of the single bead or "near-surface" trace 

was greater in sample 2. The lower energy weldment shown in Fig. 3.14 (sample 3) 

has a HAl similar to that of the standard weldment, but the weld metal appears 

sl ightly harder in the "near-surface" trace. Use of a normal energy input with a 

higher preheat and interpass temperature (sample 4) resulted in a weldment with 

the hardness variation shown in Fig. 3.15. The hardness of the HAl was lowered 

s1 ightly in the untempered region of the "near-surface" trace; the weld metal hard

ness was also low in comparison to the other welding procedures used. Frequently, 

a softer region of hardness was observed in the weld metal adjacent to the fusion 

1 ine, but this hardness value was not below the minimum hardness of the base metal. 

A center-l ine hardness trace was then taken for each of the four samples 

through the thickness of the weldment to provide a representative average weld 

metal hardness and an indication of hardness variation. Average values of the 

hardness data for all weld sample traces are presented in Table 3.7. The hardness 
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values in the HAZ for each of the we1dments 1 isted in Table 3.7 represent average 

hardnesses for the untempered region of the HAZ. The standard deviation for a 

number of readings of the same indentation, made by three experienced investigators, 

was ±6 Diamond Pyramid Hardness. The heterogeneity of the microstructure is indi

cated by the large standard deviation of a number of hardness indentations in a 

region of similar microstructure. In samp1 es 2 and 3 the untempered bead or Ilnear-

surface" trace had a sl ight1y higher average weld metal hardness than the "mid

thickness" or tempered bead trace; the reverse was observed in samples 1 and 4. 

The hardnesses shown by the mid-thickness traces were dependent upon the exact 

location of the trace. When the tempered root pass was located in the path of the 

trace, which was taken at the geometrical mid-thickness of the joint, the lower 

hardness values were obtained (samples 2 and 3). However, when the untempered part 

of the second pass was located in the path of the trace, a higher hardness value 

was obtained (samples 1 and 4). 

The center-l ine hardness trace through the weld metal, for which readings 

were taken at one millimeter intervals, gives a measure of the weld metal hardness 

in a variety of conditions; the average weld metal hardness is shown in Table 3.7. 

Note that the standard deviation for a center-l ine trace is greater than that of 

the other traces because the hardness of the tempered and untempered beads are 

averaged. The results of this center-line trace show that on the average the weld 

metal hardness is not appreciably changed by the energy input or the preheat used 

in th is in ve s t i ga t ion. 

Macrographs of the weldments of samples 1, 2 and 3 are shown in Fig. 

3,16. The macrographs show the increased size and penetration of the higher energy 

and lower energy weldments compared to that of the standard weldment, The ad

ditional amount of weld metal used in the we1dments having a higher or lower energy 



-15-

input, is in part, a function of the welding procedure and in part a function of 

the root opening employed. 

It should be noted also that each of the four weld samples described 

above were found to be radiographically sound, 

In order to study the fatigue resistance of the experimental welds, four 

transverse butt-welded specimens with the reinforcement removed were fabricated 

using the procedures employed for samples 2 and 3 (Figs. 2.5 and 2.4). The pro

cedure used for sample 4 was e1 iminated from this phase of the program since it pro

duced weld metal hardnesses which were low in comparison to the other samples, 

Table 3.7, and would be expected to give a lower fatigue strength. Two of the fa

tigue specimens, HY-56 and HY-57, were tested on a stress cycle of 0 to +50,0 ksi. 

The other two specimens, HY-52 and HY-53, were tested on a stress cycle of +10.0 ksi 

to +60.0 ksi, The purpose of testing at a minimum stress level of +10.0 ks1 was to 

protect the fracture surface from pounding during the latter stages of crack 

propagation. 

Three of the experimental weld specimens failed within the weld. The 

flaws which initiated the fatigue fractures were again small flaws which were not 

detected by radiographic examination. The fatigue fracture of the other specimen 

initiated at a small weld undercut which remained after the reinforcement had been 

removed. The test resul ts are presented in Table 3.8 and are plotted in Fig. 3.17. 

Also plotted in the figure are the test results of similar specimens welded with 

the standard welding procedure. 

As with the previous studies of butt-welded specimens with the rein

forcement removed, the modified weld procedure specimens exhibited a wide scatter 

in fatigue 1 ives. The results appear to indicate that the modifications in the 

welding procedure provide no improvement over the standard procedure which has 

been used to date, 
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As a resul t of a study made at the Naval Appl ied Science Laboratory(6) on 

the use of higher strength electrodes for welding HY-IOO material, a MIL-120l8 

electrode was selected for further evaluation of the axial fatigue resistance of 

transverse butt-welded joints. A sample weldment using the MIL-120l8 electrode was 

prepared fol lowing the standard welding procedure. This procedure includes an 

800 0 F bake-out of the electrodes for one hour and then the use of a 250 0 F holding 

temperature until the electrodes are used for welding. As shown in Table 3.7, the 

hardness of this weldment was increased considerably except at the center of the 

weld. A comparison of the microstructures of deposited weld metal using the 

MIL-l1018 and MIL-120l8 electrodes is presented in Figs. 3. l8a and 3.l8b, re

spectively. The grain structures are quite similar in both weld metals. 

To obtain an indication of the comparative fatigue resistance of weldments 

made with the MIL-12018 electrode, one transverse butt-welded specimen with the re

inforcement removed was tested on a 0 to +50.0 ksi stress cycle. The welding pro

cedure (PIOO-12018-A) is shown in Fig. 2.9; it varies from the standard procedure 

only in the electrode used. The specimen, HY-61, had a fatigue life of 607,600 

cycles and fracture initiated at a small single flaw within the weld which was not 

detected by radiography. The fatigue I ife is plotted in Fig, 3,17 along with the 

results of similar HY-]OO specimens (MIL-1 1018 electrode~ tested at the same stress 

range, Al though the I ife of specimen HY-6l is above the average of the other 

specimens in the figure, these are not sufficient data to draw any sound con

clusions. The greatest 1 ife of any specimen welded with the standard procedure 

was I, 1 08 , 600 c Y c 1 e san d the s h 0 r t est 1 i few as 57, 900 c Y c 1 e s for the s a me s t res s 

cycle as that used for HY-6l, Nonetheless, it is anticipated that the use of the 

MIL-12018 electrode will improve the fatigue resistance of weldments in HY-IOO 

steel, Further fatigue studies in this area are planned to val idate these pre-

1 iminary predictions. 



-17-

It should be noted also that the use of inert gas welding of HY-100 steel 

was investigated; however, the weldments contained porosity and the study has been 

discontinued for the present. 

3.5 Tests of Butt Joints Fabricated with Intentional Weld Porosity 

Two transverse butt-welded specimens containing intentional weld porosity 

were tested at a stress cycle of 0 to +50.0 ksi, The standard welding procedure 

(Fig. 2.3) was used. The porosity was produced by removing a 3/8 in. length of 

electrode coating so that subsequent welding with this defective electrode produced 

the desired porosity cluster in the center of the 6 in. length of weld, The po-

rosity was placed in the third weld pass, On the basis of radiographic examination, 

the amount of porosity, i ,e., flaw area relative to total cross-sectional area, was 

approximately 0.1 percent for both specimens. Although this percentage area re

duction is within the allowable 1 imits of present Navy Specifications, (5) the welds 

would nevertheless be classified as unacceptable as a resul t of an excessive number 

of fine pores (>8) in the cluster, 

Both specimens were tested with the weld reinforcement removed, The test 

data are presented in Table 3.9. It should be noted that the fatigue failures of 

both specimens initiated at small single flaws which were not part of the in-

tentional porosity and were not visible on the radiographs. Evidently the shape, 

location and orientation of these flaws forced the critical location for crack 

initiation to develop away from the larger intentionally placed porosity cluster. 

The resul ts of these tests of defect specimens are plotted in Fig. 3.19 and are 

compared to the resul ts of tests of radiographical 1y sound specimens reported in 

Sect, 3.4,1. The wide spread in fatigue lives of both the Iisound il and the porosity 

specimens, and the fact that the cracks in both porosity specimens initiated at 

defects not associated with the porosity cluster preclude a sound evaluation of 

the relative effect of such porosity clusters on fatigue resistance, 
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3.6 Tests of Plates with Transverse Attachments 

3.6.1 Full Penetration Transverse Attachments on One Side 

The welding procedure developed for joints with a full penetration trans-

verse attachment on one side is shown in Fig. 2.6 and the fatigue specimen details 

are presented in Fig. 2.2b. Four welded joints of this type were tested in fatigue 

at a complete-reversal stress cycle. The two specimens tested at a stress level of 

±20.0 ksi had similar fractures that initiated at the toe of the weld on the main 

member. This is the usual location of fatigue crack initiation for specimens with 

attachments. However, the fractures of both specimens tested at ±40.0 ksi appeared 

to have initiated on the mill scale surface of the plate behind the attachment and 

to have then propagated toward the weld. Photographs showing both types of fracture 

are presented in Fig. 3.20. 

The test data for this series of tests are presented in Table 3.10. The 

S-N curve for the data is plotted in Fig. 3.21 along with the S-N relationship for 

similar tests of 1-1/2 in. thick HY-SO steel. (1) The HY-100 joints exhibited 

sl ightly higher fatigue 1 ives at both stress levels studied. 

3.6,2 Full Penetration Transverse Attachments on Two Sides 

Four specimens wi th full penetration transverse attachments on two sides 

of the main member were tested at a stress cycle of complete-reversal. The specimen 

details and welding procedure are shown in Figs. 2.2a and 2.7, respectively. The 

failures of all the specimens were similar and initiated at the toe of the weld on 

the main member. A photograph of a typical fracture surface is shown in Fig. 3.22. 

The fat i 9 u e t est res u ] t 5 are pre 5 e n ted i n Tab 1 e 3. 1 1; the 5 lope 0 f the 

log-log S-N curve is computed as K = 0.405. The S-N relationship for the member 

with attachments on two sides is plotted in Fig, 3.23 and is compared to similar 

members of 1-1/2 in. thick HY-SO material. (1) The S-N curves for the two materi-

als have the same slope, although the HY-lOO joints show sl ightly better fatigue 

behav i or, 
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The HY-l00 plates with attachments on two sides had lower fatigue 1 ives 

than the plates with attachments on one side when tested at the higher stress level. 

However, both specimen types had simi 1 ar 1 ives at the lower stress 1 evel (longer 

1 ives). Thus, the effect of the different attachments upon the fatigue resistance 

of the member appears to depend upon the loading conditions to which the member is 

subjected. It should be noted, however, that these observations are based on a very 

1 i mit e d a mo u n t 0 f t est d a t a ' 

3.6.3 Full Penetration Tee Joints 

The specimen details and welding procedure for ful I penetration tee joints 

are presented in Figs. 2,2c and 2,8, respectively. Four such specimens were tested 

us i ng a cycl i c load i ng of compl ete-reversa 1. The test resul ts are presented in 

Table 3,12, The fractures of all specimens initiated at the toe of the weld on the 

main member. A typical fracture surface is presented in the photograph in Fig, 

3,24, The fatigue 1 ives of these joints were comparable to the 1 ives of the HY-IOO 

specimens with attachments on two sides (Sect. 3.6.2), The S-N relationship for 

the tee joints is plotted in Fig. 3.25 (K = 0.383) and is compared to the curve 

for similar joints of 1-1/2 in, thick HY-80 material. (1) The HY-IOO joints ex-

hibited better fatigue behavior at the higher stress level but were inferior to 

the HY-80 joints at the lower stress level studied (longer lives). 

The percent reduction in fatigue strength of the plain plate specimens 

due to each of the three types of transverse attachments studied is presented in 

Fig. 3.26, The plots for specimens with tee joints and attachments on two sides 

are very similar, in fact, almost identical. The specimens with attachments on 

one side showed a much lower reduction in strength than did the other joints at 

the higher stress level s (short I ives); the reverse was true for fatigue lives 

beyond approximately 200,000 cycles. Thus, it appears that several factors must 

affect the behavior of these members, The stress concentration at the toe of 

the weld provides a local effect for all three types of members. However, In the 
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case of the members with attachments on one side only, other factors, such as the 

bending resul ting from eccentricity in the specimen, probably causes a further 

change in the stress condition in the member. This is borne out in part by the 

fact that two of the members with attachments on one side had failures which 

initiated on the side of the member away from the attachment. 
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IV, ULTRASONIC FLAW DETECTION STUDIES 

4.1 Introductory Remarks 

With the advent of high strength steel weldments and their greater notch 

sensitivity, increasing importance must be placed upon the detection and elimi-

nation of small internal flaws, Radiographic examination has often failed to de-

tect these small flaws because of the flaw size, geometry, orientation and density, 

Fortunately, however, ul trasonic equipment, with its high sensitivity, often per-

mits rapid location and evaluation of such small defects. 

Ul trasonic examinations were first employed in the program to study the 

initiation and propagation of fatigue cracks in specimens containing large in

tentional defects in HY-80 steel. (4) The initial attempts to employ ul trasonics 

were part i all y successful, al though some d i ff i cul ties were encowntered wi th the 

relatively new techniques used in the testing. During the current program progress 

has been made in improving the testing apparatus and detection procedures. With 

these improvements the ul trasonic studies have been continued on the detection of 

internal weld flaws and of the initiation and propagation of fatigue cracks. 

Ul trasonic readings were recorded for a number of transverse butt-welded 

specimens both before and during cycl ic testing, and the resul ts of the predicted 

flaw locations compared with the flaw locations observed on the fracture surfaces. 

These comparisons are shown in Figs, 4,3 through 4.8, 

A description of the ultrasonic equipment and testing procedure used in 

the flaw detection study is presented in the following paragraphs. In addition, a 

critical evaluation of the detection technique is given at the end of this section. 

4.2 Test Equipment and Testing Procedure 

The major equipment employed consisted of a Krautkramer Ultrasonic Flaw 

Detector Type US IP 10 and auxi 1 iary accessories as shown in Fig. 4.1 a· The probe 

used was a 5 megacycle/sec. miniature 450 angle ~robe. A special unit was 
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constructed to hold and manipulate the probe across a fatigue specimen surface in a 

consistent and highly reproducible manner. The probe support consists of a movable 

table which supports the probe in a special housing, and permits mechanically con

trol led horizontal and vertical movement across the face of a specimen. The probe 

itself is held against the specimen from behind by a spring which presses it flush 

against the specimen with a constant pressure and thus insures reproducibi1 ity in 

readings. Linear transducers are attached to the travel ing table of the probe sup

port; the transducers are connected in turn to an X-V recorder. The detector screen 

is suitably scaled so that the position of a flaw echo indicates directly the depth 

of the flaw within the weld. Once a flaw echo is located on the oscilloscope 

screen, the position of the echo together with the output of the transducers enable 

the operator to record on the X-V plotter the horizontal and vertical location of 

the flaw in a plane paral leI to the specimen surface. 

Figure 4. 1b shows the ul trasonic equipment in position for testing with 

the probe support secured to the lower pu11head of the fatigue machine and the probe 

bearing against the test surface. The support device can be clamped to the pull

head on either side of the specimen. 

The ultrasonic examinations were performed in the fatigue machine with 

the test specimen under full static tension. All specimens examined contained 

transverse butt welds with the reinforcement removed. The specimen face was 

pol ished smooth to prevent excessive wear on the probe and to improve the sensi

tivity of the test. Light machine oil was used as an acoustic coup1ant between the 

probe and the specimen surface. As shown in Fig. 4.2, the weld area (including the 

heat affected zone) was scanned by traversing horizontal 1y across the specimen face 

below the weld in 1/8 in. vertical increments until one-hal f of the weld area had 

been scanned. The probe was then placed on the opposite side of the specimen to 

scan the other half of the weld. An appropriate test range scale was selected and 

the detector screen adjusted so that the echo trace between the first reflection 
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from the rear surface and the second reflection from the front surface was visible 

(see Fig, 4,2). 

Oscilloscope readings which exceeded a preselected minimum response level 

were assumed to indicate defects. Once a flaw (usually a small, isolated pore) was 

detected, its location was pinpointed by moving the probe both horizontally and 

vertical 1y until the maximum echo height was seen on the detector screen. The pro

jected position of the flaw on a plane parallel to the face of the specimen was 

then automatically plotted on the X-V recorder. The depth of the flaw beneath the 

surface was determined from the position of the flaw echo on the oscilloscope 

screen and was manually recorded together with the height of the echo, Once the 

position of the peak response had been located, the probe was again moved hori

zontally and vertically until the height of the echo fell beneath the selected mini

mum response rejection level, These 1 imits were indicated on the X-V plots by 

crosses extending from the peak response in directions parallel and transverse to 

the long axis of the test specimen. 

4,3 Flaw Detection Results 

A number of transverse butt-welded specimens with the reinforcement re

moved were examined ultrasonically using the procedure outl ined above. All speci

mens (except the intentional weld defect specimens) had been previously radio

graphed with no evidence of internal flaws. Ultrasonic readings were taken before 

cycl ic loading was begun, After the specimen had failed, those flaws visible on 

the fracture surface were compared with the location and magnitude of the ultra

sonic responses. The results of these comparisons are presented in Figs. 4.3 to 

4,8 inclusive, These plots represent the projection of all the ultrasonic re

sponses onto a cross-sectional plane through the weld perpendicular to the longi

tudinal axis of the fatigue specimen. The crosses indicate the projected 1 imits 

of probe scan for which the echo ampl itude remained above a selected minimum 
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rejection level, Since all of the flaws which were detected did not 1 ie in the 

same plane, a letter designation is used to indicate the vertical position of the 

flaw with respect to the longitudinal axis of the specimen. The sketches of the 

fracture surfaces, shown in Figs, 4.3 through 4,B, represent a projection of the 

flaws visible on the fracture surface onto a similar plane perpendicular to the 

longitudinal axis of the specimen, The approximate sizes of those flaws which in

itiated the fatigue failures are presented with the corresponding specimen 1 ives 

in Tables 3.5, 3.6, 3.B, and 3,9. 

In general, the ultrasonic equipment did prove capable of detecting very 

small defects which had escaped radiographic detection. Furthermore, the plots show 

that most flaws seen on the fracture surface were picked up by the ultrasonic 

equipment, The predicted locations of the flaws as projected onto the face of the 

specimen were sometimes somewhat in error due to sl ight misal ignments inherent in 

the design of the mechanical traversing equipment. The magnitude of the flaw echo 

on the detector screen was in itself not always a good indication of the actual 

flaw size, since a response will depend on the distance from probe to flaw, flaw 

geometry, test frequency, size and penetration power of probe, etc. However, when 

success i ve read i ngs were taken dur i ng the 1 i fe of a spec imen, the in it i at i on of 

fatigue cracking at a defect was indicated by a rise in the peak of the ultrasonic 

response corresponding to that particular defect. This is clearly shown in Fig. 

4.B for specimen HY-35, which was tested at ±30.0 ksi. The responses from the 

regions of the weld in which fatigue fracture initiated continued to increase in 

magnitude with the number of cycles while the other responses remained fai rly 

constant, It can also be seen that there are several ul trasonic responses which 

do not correspond to defects visible on the fracture surface, indicating that 

there may be simi lar flaws in other planes beneath the surface. 

Another transverse butt-welded specimen, HY-34, tested at a stress cycle 

of +10,0 to +60,0 ksi, was similarly subjected to periodic ultrasonic examination. 
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Readings were taken at zero cycles, 116,000 cycles, 209,000 cycles, and finally at 

263,000 cycles. At 263,000 cycles the ul trasonic data indicated that the magnitude 

of one response had grown considerably since the previous reading, while the other 

responses remained at about the same level as the initial (zero cycles) reading. 

Initiation of a fatigue crack was suspected and the specimen was removed from the 

testing machine. At this time no cracks were visible on the surface. 

In an attempt to find the suspected crack and verify the other ul trasonic 

responses, metal lographic sections of specimen HY-34 were prepared at the positions 

shown in Fig. 4,9. Radiographs were taken of each of the eight sections. Only 

three of the sections showed flaws as indicated in Fig. 4.9. An example of the 

observed porosity is shown in the photomicrograph of Fig. 4.10; the pore is located 

in a region of coarse grain size. However, in the other porous areas, a normal 

grain size was observed around the flaws, 

Section 5 (Fig, 4.9) produced the u1 trasonic indication which was inter

preted as a fatigue crack since it did not appear until after the 116,000 cycle 

reading, When subjected to radiography, however, this section did not reveal the 

presence of the suspected fatigue crack, At this point, a microsaw with a 0.020 

in, thick blade was used to cut 0.015 in. thick sl ices from the section in the po

sitions shown in Fig. 4.11. When the s1 ices were pol ished and etched the fatigue 

crack was found; it had been progressing inward from the surface at the HAZ as 

shown in Fig. 4.11, This was an unexpected position for the fatigue crack in view 

of the fact that most we1dments tested with the reinforcement removed had cracks 

which initiated at internal weld defects, 

The ultrasonically located fatigue crack was still quite small, even 

though at least 50,000 cycles of stress were app1 ied to the specimen after the 

crack was first observed on the detector screen. The crack had extended into the 

HAZ in a roughly semicircular manner. The length of the crack along the longitudinal 

axis of the weld varied from 0.09 in. to 0.12 in" with the greatest length being 
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found a short distance beneath the specimen surface. The maximum observed depth 

of the crack was approximately 0.04 in. 

As a final note it should be mentioned that the ultrasonic equipment had 

accurately located the position of the crack in the vicinity of the pol ished 

surface of specimen HY-34. However, the predicted crack position in the longi

tudinal direction of the weld, as plotted on the X-V recorder, was in error by ap

proximately 1/4 in, This positioning error was a result of the inaccuracies of the 

traveling probe support and not of the ultrasonic detector itself. It is antici

pated that such errors will be el iminated by the use of a new probe support device 

currently under development, 

4,4 Evaluation of Equipment and Detection Technique 

The use of the ultrasonic equipment is still relatively new as a means of 

detecting the initiation of fatigue cracking in welded joints. However, based on 

the results obtained thus far, it is apparent that the ultrasonic equipment is 

capable of accurately detecting minute internal weld flaws, In this respect the 

ultrasonic equipment was found superior to radiography, Furthermore, by comparing 

successive ultrasonic readings taken at different intervals during the cyclic 

loading of a specimen, the equipment has shown the abil ity of detecting the 

initiation and early growth of fatigue cracks, 

As noted earl ier, the travel ing probe support has been a source of me

chanical error in pinpointing and permanently recording the exact three dimensional 

location of the detected small internal weld flaws, A number of improvements in 

the design of this equipment are currently under way to minimize the mechanical 

positioning errors in future tests. 

The interpretation of the ultrasonic responses with regard to the size 

and type of small flaws encountered to date provides a more difficult problem, A 

series of experimental weldments are being prepared which are to contain various 
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shapes and sizes of intentional internal flaws. It is hoped that the ultrasonic 

examination of these flaws with known dimensions will resul t in the development of 

sui tab 1 e cal i bra t ion s tan dar d s t hat can be use din sub seq u en t stu die s, at 1 e as t 

where the same test material and specimen thicknesses are concerned. 

Should these procedures prove feasible, it is anticipated that the ul tra

sonic equipment will prove a valuable mechanism in detecting, locating, and evalu

ating minute weld flaws, and in the identification and evaluation of fatigue crack 

initiation and propagation, 
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V, CRACI<. INITIATION AND PROPAGATION 

5, I Introductory Remarks 

The HY-IOO weldments were tested in fatigue in two conditions with respect 

to weld geometry, either in the as-welded condition or with the weld reinforcement 

removed. When the reinforcement was left on, the fatigue cracks often initiated at 

the edge of the reinforcement, propagated through the heat affected zone (HAZ) in a 

direction perpendicular to the direction of stress, and then progressed through the 

base metal, With the reinforcement removed the fatigue cracks were found to initi

ate in the weld metal at internal flaws (with two exceptions, specimens HY-34 and 

H Y - 57, w her e the c r a c k 0 rig ina ted a tor n ear the po lis he d s pe c i me n sur face) . 

Internal fatigue crack initiation is important because failure in the 

weld metal apparently can occur at any weak point in the structure of the weld, and 

a fatigue crack so formed may remain undetected until fairly late in the course of 

propagation, Few of the internal defects that initiated fatigue cracks were large 

enough to be detected by radiographing the 3/4 in. thick weldment with its rein

forcement removed, However, the diameter of the flaws visible in the plane of the 

specimen fracture surface was usually larger than the radiographic sensitivity 

(2 percent of specimen thickness) indicated by the penetrameter. The disagreement 

between actual flaw size and radiographic sensitivity suggests that the flaw 

shape in the fa i I ures was i rregul ar rather than spher i cal. Metall ograph i c exami

nations of the flaws verified this supposition; the resul ts of these examinations 

are detailed in the following section, 

5.2 Test Results 

A typical example of the location and appearance of a flaw that caused 

the nucleation of a fatigue crack is shown on the fractured surface in Fig. 5. I. 

This fracture surface is from specimen HY-43, which was tested at a s.tress cycle 

of 0 to +50.0 ksi. Immediately after failure the fracture surfaces of the specimen 
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were preserved with a C
a

C1 2 dessicant, thus preventing corrosion of the exposed 

surfaces. The pore shown in Fig. 5.1 was located in the weld metal near the fusion 

1 ine. The fatigue crack propagated through the weld metal and then through the 

HAZ; the fracture surface resulting from this stage of propagation is observed in 

the figure as the smooth circular region around the crack initiating pore. When 

the radially propagating crack intersected the surface of the test specimen, the 

smooth fracture was replaced by a more rapidly propagating, coarser crack as the 

remaining net section was reduced and the stresses increased. The final stage in 

the failure sequence was evidenced by a Iishear-type ll crack which extended at ap-

o 
proximately 45 to the dir~~tion of loading (right half of fracture surface, 

Fig. 5.1). 

As frequently observed in other fractures, a weld metal finger protruded 

into the critical pore of specimen HY-43, resulting in a doughnut-shaped flaw when 

viewed in profile. This flaw, at the center of the circular fracture surface in 

Fig. 5.1, is shown at a higher magnification in Fig. 5.2. Dark field illumination 

of th i s pore on the fracture surface reveal s a br i ght Ilas-castil appearance. No 

noticeable difference in fracture texture was observed between the fracture surface 

at the edge of this flaw and the fatigue fracture surface at a distance from it. 

Attempts at rep1 ication of the pore1s edge for observation with an electron micro-

scope to obtain better resolution have failed to date. 

The surface condition of the fatigue fracture in the weld metal adjacent 

to the flaw is shown in Fig. 5.3 to 6,400X magnification. Transgranular fracture 

surfaces are evident with hard spherical particles on these surfaces. Between 

grains large steps that appear to fol low grain boundaries are observed. Although 

the two stage repl ication technique used made it difficult to maintain the orien-

tation of crack propagation, the direction of shadowing was used as a guide and 

the direction of fatigue crack propagation is roughly from the upper left to the 

lower right corner of the print. A single stage repl ication technique will be 
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attempted in the future in order to maintain a known orientation with respect to 

the microstructure and to the direction of crack propagation. 

Another fatigue specimen, HY-25, was tested at a stress cycle from 0 to 

+50.0 ksi and the test was stopped soon after the fatigue crack reached the surface 

of the specimen. The end of the fatigue crack was exposed by sectioning the speci

men. The fracture was next coated with an electroless nickel deposit and the 

section metal10graphically pol ished in the area of interest. A sketch of the fa

tigue crack near its origin is shown in Fig. 5.4. The tendency for the fatigue 

crack to fol low the fusion 1 ine is shown in the sketch which can be used to orient 

the micrographs of Figs. 5.5a and 5.5b. Small particles which result from numer

ous crack paths in the region of lower hardness and smaller prior austenite grain 

size in the HAZ were observed in a branch of the fatigue crack located in the heat 

affected zone. Such particles are normally lost when complete separation takes 

place upon fracture. Prior austenite grain boundaries appear to provide the pre

ferred paths of crack propagation in the higher hardness region of the HAZ as shown 

in Fig. 5,5a. The fatigue crack shown in Fig. 5.5b propagated through the weld 

metal. The precise origin of the fatigue crack is unknown, but it is bel ieved to 

have initiated below the surface of the weldment. 

The initiation and propagation of a fatigue crack in a third test speci

men, HY-34, was observed by ultrasonic inspection as described in Sect. 4.3. This 

specimen was tested at a stress cycle of +10,0 to +60.0 ksi, the minimum stress of 

+10,0 ksi being maintained to prevent deformation of the fatigue cracked surface 

during the course of propagation. The ultrasonic response indicated that a crack 

began to grow between a 1 ife of 116,000 cycles and 209,000 cycles. The approximate 

position of the suspected crack was in section (5) illustrated in Fig. 4.9. The 

precise position of the crack, determined by thin sectioning of section 5 and by 

subsequent metallographic observation, is sketched in Fig. 4.11. The metallographic 

samples were prepared as described earl ier by pol ishing and etching eight transverse 
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sl ices cut from the region containing the suspected fatigue crack. The surface of 

sl ice 6 west, Fig. 4.11, which contained the crack at its maximum observed depth, 

is shown in Figs. 5,6 (lOOX magnification) and 5.7 (200X magnification). 

The right hand side of the fatigue crack shown in Fig. 5.6 is observed to 

have propagated around prior austenite grain boundaries. This is in the region of 

maximum hardness of the HAl where sulfide wetting of austenite grain boundaries 

frequently occurs, The region of lower hardness and lower maximum temperature in 

the HAl contains the end of the fatigue crack, shown in Fig. 5.7 at a point where 

the crack branched out and propagated along martensite boundaries rather than prior 

austenite boundaries. The other sl ices cut from section 5 of the specimen have 

cracks that are only 0.02 in. deep or less compared to the 0.04 in. maximum depth. 

The less penetrating branches of the crack are almost entirely in the part of the 

HAl with the highest hardness. These branches propagated around prior austenite 

grain boundaries, and in some cases stopped before reaching the specimen surface 

when the edge of the weld metal was in their path. It appears, then, that the fa

tigue crack at the stage in which the fatigue test was stopped was confined to the 

HAl, even though the reinforcement was removed. The reason for nucleation of this 

crack in the HAl is not certain, but, it is probably not related to a geometrical 

surface stress raiser of any size. In the absence of such a stress raiser, it is 

most 1 ikely that the nucleation is associated with the metallurgical structure of 

the HAZ. Once initiated, the crack prefers to propagate around prior austenite 

boundaries; it is also possible that these grain boundaries could be the site of 

nucleation. 



-32-

VI. INITIAL FATIGUE TESTS OF 1/2 INCH HY-130/150 MATERIAL 

6.1 Introductory Remarks 

Prel iminary studies were conducted to evaluate the fatigue behavior of 

HY-130/150 steel. All specimens were 1/2 in. thick plain p1areswhich were tested 

on a zero-to-tension stress cycle. The specimen details are presented in Fig. 2.1. 

6.2 Tests of Plain Plate Specimens 

A photomicrograph of the HY-130/150 base metal is presented in Fig. 6.1a. 

It was noted also that the HY-130/l50 plates had a thin exterior mill scale surface 

which easily flaked off, as shown in Fig. 6.1b. Beneath this thin layer was a 

rough, oxidized surface. The thin, outer mill scale layer (that was observed to 

flake off during fatigue testing of the HY-130/150 metal) was not present on the 

HY-80 and HY-100 plates which were tested previously. 

The HY-130/l50 plain plates were tested at three stress levels. The fa

tigue data are presented in Table 6.1. The data are plotted in Fig. 6.2 together 

with the results of similar tests for 3/4 in. HY-100 plain pl ates. All specimens 

tested at the two higher stress levels failed either in the test section or at the 

radius. Photographs showing a typical fracture surface of a specimen which failed 

at the mill scale surface and one which failed at the test radius are presented 

in Fig. 6.3. 

Five specimens were tested at the lower stress level of 0 to +50.0 ksi. 

Two of the specimens had fretting failures in the pul lheads at the ends of the 

specimens. Another specimen, NA-4, fractured in the test section, but the fatigue 

1 ife is uncertain due to a mechanical malfunction of the cycle counter on the fa

tigue machine. Fatigue failure is known to have occurred, however, between 

484,000 and 627,000 cycles; an average value of 555,000 cycles has been reported 

as the fatigue 1 ife. The remaining two specimens fractured in the test section 

but had fatigue 1 ives which were low in comparison to the other three. The results 
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of all five of these specimens were used in computing the S-N relationship for the 

plain plates. Since the fatigue 1 ives of two of the specimens, NA-6 and NA-10, 

represent minimum values, the computed slope, K, is a maximum value. 

The results shown in Fig. 6.1 indicate that the HY-130/l50 plain plates 

exhibit sl ightly better fatigue resistance than the HY-100 plates at the lower 

stress level studied; however, the fatigue 1 ives for the two materials are approxi

matelyequal at higher stress levels. A summary of all the fatigue tests of both 

the HY-130/l50 and HY-100 materials which were conducted during the course of this 

study is presented in Table 6.2. 
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VI I. SUMMARY AND CONCLUSIONS 

The following is a summary of the results of the tests conducted in this 

study. It should be recognized that many of the reported evaluations are based on 

a minimal amount of data, and must be viewed accordingly. However, there are a 

number of basic observations which are considered significant; these are briefly 

summarized in the following paragraphs. 

7. 1 Fatigue Behavior of HY-IOO Steel 

Fatigue tests of 3/4 in. plain plates and transverse, full penetration 

weldments of HY-IOO steel have indicated that: 

1. The axial fatigue strength of the HY-IOO steel base plate was similar 

to that of the HY-80 base material when evaluated on the basis of both zero-to

tension and complete-reversal stress cycles. 

20 Transverse butt-welded joints of HY-IOO in the as-welded condition 

had somewhat lower fatigue strengths than comparable joints of HY-80 steel at both 

the zero=to-tension and complete-reversal stress cycles. With the weld rein

forcement removed, fatigue failure in the HY-IOO material almost invariably oc

curred at small internal weld flaws. The resultant fatigue lives of the HY-IOO 

specimens with reinforcement removed were usually lower than corresponding 1 ives 

for similar HY-80 specimens and exhibited so wide a scatter at both stress cycles 

examined that appropriate S-N relationships could not be constructed. 

30 A number of modifications in the welding procedures using the 

M!L-II018 electrodes were found to be unsuccessful in el iminating the small internal 

defects which proved critical in fatigue crack initiation for specimens tested with 

the reinforcement removed. A single HY-IOO test weldment, using the MIL-J20l8 

electrode, exhibited a fatigue I ife greater than all but one of the MIL-l 1018 

electrode welded joints tested at the same stress level. Although failure in this 

weldment also initiated at an internal flaw, it is bel ieved that use of the 
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MIL-12018 electrode may improve the fatigue behavior and reduce the scatter in test 

data of HY-100 steel weldments, especially in tests conducted with the weld rein

forcement removed, Further studies in this direction are scheduled, 

4, The fatigue strengths of HY-100 plates with attachments welded on 

either one or two sides were s1 ightly higher than comparable joints of HY-80 steel 

tested at the same complete-reversal stress cycle, HY-100 welded tee joints showed 

sl ightly greater fatigue resistance than tee joints of HY-80 at the higher stress 

level studied; the reverse was true at the lower stress level. These tests were 

also conducted on a complete-reversal stress cycle, Failure in most of the speci

mens with attachments and in the tee weldments initiated at the toe of the weld on 

the stressed member, 

7,2 Ultrasonic Flaw Detection Studies 

Ul trasonic equipment provides a highly sensitive non-destructive testing 

technique for the detection of undesirable irregularities in the base materials and 

welded connections, An ul trasonic detector and auxil iary equipment was used in the 

present study: (1) to detect and geometrically locate the position of small flaws 

invariably found to exist in the HY-lOO weldments tested; and (2) to determine the 

location and time to initiation of internal fatigue cracks in specimens subjected 

to cyclic loading, As a result of these investigations, it has been determined 

that: 

1. The ultrasonic equipment was quite successful in detecting the 

presence of very small weld defects which, due to size, shape, and/or orientation, 

were not found with the use of standard radiographic inspection techniques, The 

existence of many of the flaws indicated by the ul trasonic detector was verified 

by examination of fracture surfaces of fatigue tested specimens, or by metallo

graphic examination of thin sections cut from welded joints which contained the 

suspected flaws, It is anticipated that ultrasonic detection techniques of this 
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type wil I gain further widespread acceptance in the future as a replacement for or 

supplement to radiography for inspection of field connections. The most restrictive 

drawback at present to ul trasonic testing however, is the relative difficulty of 

correlating the magnitude and appearance of response to actual flaw shape, size, 

and type (i,e., porosity, slag, single voids, etc.). It is desirable that investi

gations be continued in this area to obtain, if possible, a reliable quantitative 

relationship between ul trasonic response and defect severity. 

2. Ultrasonic weld inspection, when performed at various intervals during 

the cycl ic testing of welded specimens, was capable of determining the approximate 

time to initiation of an internal fatigue crack. Two fatigue specimens (HY-34 and 

HY-35) were subjected to this type of continuous inspection, which indicated that 

cracking had begun at approximately one-half of the total test I ifetime in each 

case, 

7.3 Crack Initiation and Propagation 

Based on the observations of crack initiation and propagation in the weld

ments of 3/4 in, thick HY-IOO steel the fol lowing remarks and conclusions may be 

made: 

1, Most fatigue cracks nucleated at a pore in the weld metal in speci

mens tested with the weld reinforcement removed. Sma] I flaws, undetected by radio

graphic procedures, may provide serious internal stress raisers when the geometry 

of the flaws is such as to form disc~l ike cavities. The most severe internal stress 

raising condition occurs when the plane of the disc-like cavity is perpendicular to 

the direction of principal stress, Furthermore, these flaws appear to become in

creasingly more critical as points of fatigue crack initiation as the strength of 

the welded materials increases. 

2. Following nucleation,atransgranular fatigue crack usually propagated 

in the weld metal (specimens welded with MIL-l 1018 electrodes and weld reinforcement 

removed) , 
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3. Fatigue crack propagation in the heat affected zone of higher hard-

ness was found to take place along prior austenitic grain boundaries; some parallel 

cracks were found in the heat affected zone of lower hardness. 

7.4 Initial Fatigue Study of HY-130/150 Steel 

Fatigue tests conducted on 1/2 in. HY-130/150 plain plates indicate that 

there may be some improvement in fatigue strength relative to comparable specimens 

of both HY-80 and HY-100 steels. The fatigue strengths obtained from tests at a 

zero-to-tension stress cycle are compared for the three materials in the table 

below. 

Steel Thickness Fatigue Strength, ksi (Zero-to-Tension) 
( in. ) 

F50 ,000 F100,000 F200 ,000 F500 ,000 

HY -80,';- 3/4 75,6 65.6 57.1 47.4 

H Y - 8 0,'>";''' 1-1/2 78.5 67.9 60.9 54.5 

HY-100 3/4 84,5 68,6 55,7 42.9 

HY-130/150 1/2 83,8 70.8 60,3 51.4 

.. /~ Resul ts reported in Ref, 3. 

"'/\/1~ Resu 1 ts reported in Ref, ,.., 
L., 
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Heat Designation Thickness 
Number (inches) 

N15423 HY(HY-100) 3/4 

3P0074 NA (HY- 130/150) 1/2 

?', 
0.2 percent offset 

... I_V ... 

"" (a) @ - 120 0 F 
( b) @ O°F 

TABLE 2.1 

PHYSICAL PROPERTIES OF BASE METAL 
(Data Supplied by Manufacturer) 

Properties in the Longitudinal Di rection 

Yield Tensi le Elong. Reduction 
St rength'" Strength in 2 inches in area 

(ks i) (ks i) (percent) (percent) 

110.0 127.5 23.0 71.1 

138.0 144.0 20.0 69.8 

Charpy V-Notch 
"":t'~dV; 

ft-lbs 

I 
w 

83 (a) 
ill 
I 

102 (b) 
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TABLE 2.2 

CHEMICAL COMPOSITION OF BASE METAL 
(Data Supplied by Manufacturer) 

Chemical Composition Heat Number 
(percent) 

Base Metal Designation 

C 
Mn 
p 
S 
Si 
Ni 
Cr 
Mo 
Cu 
V 
Al-;;\' 

N 
o 

acid soluble 

total 

N15423 3P0074 

HY-100 

0.20 
0.30 
0.010 
0.014 
0.21 
3.00 
1. 67 
0.50 
O. 11 

HY-130/150 

0.110 
0.78 
0.008 
0.006 
0.29 
5.03 
0.56 
0.42 

0.05 
0.008 
0.015 
0.011 
0.0029 



TABLE 3.1 
~ 

RESULTS OF FATIGUE TESTS OF HY-IOO PLAIN PLATE SPECIMENS
A 

(Zero-to-Tension) 

Specimen Stress Li fe Location Computed Fatigue Strength, ks i -;,'"k 

Number Cycle (cycles) of 
(ks i) F ra ct u re-k-/r--,', 

F50 ,00O F100,OOO F200 ,000 

HY-7 o to +76.5 81,200 f 88.4 71.7 58.4 
HY-6 o to +80.0 57,100 f 83. 1 67.6 54.8 
HY-4 o to +80.0 46,400 a 78.3 63.5 51.7 

HY-5 o to +50.0 546,300 a 102.5 83.2 67.5 
HY-2 o to +50.0 253,100 a 81.1 66. 1 53.6 
HY-3 o to +50.0 180,100 f 73.5 59.7 48.4 

Average 84.5 68.6 55.7 

,'., 
Results initially reported in Ref. 4 

'I'n', 
K = 0.301 

-;"4',,', 

a: fai lure initiated at radius of test section 
b: fai lure initiated at mi 11 scale surface near radius of test section 

F500 ,00O 

I 
+::-

51.3 
40.7 
36.8 

42.9 



TABLE 3.2 

RESULTS OF FATIGUE TESTS OF HY-100 PLAIN PLATE SPECIMENS 
(Complete Reversal) 

Specimen 
Number 

Stress 
Cycle 

Life 
(cycles) 

Location 
of 

Computed Fatigue Strength, ksi 

4', 

HY-20 
HY-23 
HY-24 

HY-21 
HY-22 

(ks i) 

±4905 
±5000 
±50.0 

±3000 
±30.0 

K = O. 187 

"l~?', 

118,000 
106,100 
67,100 

1,837,700 
1,077,200 

F ractu re,b', 
F50 ,000 

a 58.2 
f 57.6 
a 52.8 

a 
f 

Average 56.2 

a: fai lure initiated at radius of test section 

F100,000 F200 ,000 

51.1 44.9 
50.6 44.4 
46.4 40.8 

49.4 43.4 

f: fai lure initiated at mi 11 scale surface near radius of test section 

F500 ,000 

37.8 
37.4 

38.2 
34.7 

37.0 

~'\ 

F I 

2,000,000 ~ 
IV 
I 

29.5 
26.7 

28.1 



TABLE 3.3 

RESULTS OF FATIGUE TESTS OF HY-l00 TRANSVERSE BUTT WELDS IN 
THE AS-WELDED CONDITION 

(Complete Reversal) 

4': 
Specimen Stress Life Location Computed Fatigue Strength, ksi 

Number Cycle (cycles) of '";'n', 
(ks i) Fracture F20 ,000 F50 ,000 F100 ,000 F200 ,000 

HY-27 ±50.0 30,300 b 57.8 42.1 33.1 
HY-26 ±50.0 30, 100 b,c 57.6 42.0 33.0 

I 
..j::::. 

HY-19 ±50 .0 24,300 b 53.5 38.9 30.6 
w 
I 

HY-18 ±30.0 123,500 b 41.0 32.3 25.4 
HY-17 ±30.0 122,800 b 40.9 32.2 25.3 
HY-16 ±30.0 114,200 b 39.9 31.4 24.7 

Average 56.3 40.8 32.1 25.1 

.;':; K = 0.346 

,~n~ 

b: at €dge of weld reinforcement 
c: initiation in weld at small defect(s) not detected by radiography 



TABLE 3.4 

RESULTS OF FATIGUE TESTS OF HY-100 TRANSVERSE BUTT WELDS IN THE AS-WELDED CONDITION* 

(Zero-to-Tensio~ 

Specimen 
Number 

Stress Life 
(cycles) 

Location Computed Fatigue Strength, ksi"k,', 
Cycle of 
(ks i) F ractu re,b'ddr 

<>;', 

,I,~I, 

HY-IO 
HY-8 
HY-9 

HY-12 
HY-l1 
HY-13 

HY-15 
HY-14 

o to +80.0 
o to +80.0 
o to +80.0 

o to +50.0 
o to +50.0 
o to +50.0 

o to +30.0 
o to +30.0 

8,200 
5,400 
4,700 

61,800 
61,500 
24,100 

240,600 
212,500 

Results initially reported in Ref. 4 

K = 0.394 
~1",t, .. }, 

c 
C 

C 

b 
b 
c 

b 
b 

Average 

F20 ,000 

( 56 3) ~'~~I~~'~ G 4' ~ ... J't" 

( 47 7) ~.~~,~~,~ 
" d''\,d''\''''' 

( 45 1 ) ~,~,~~,~ 
• " .... !'t •• fl. 

77.9 
77.7 

(53 8) ~'~~'-'~ • "'\"""'1. 

77.8 

~)~"dl,';,', 

Not included in average; strengths calculated only for sound welds 

b: at edge of weld reinforcement 

F50 ,000 

54.4 
54.3 

55.2 
53.1 

54.2 

c: initiation in weld at small defect(s) not detected by radiography 

F100,000 

41.4 
41.3 

42.4 
40.4 

41.4 

F200 ,000 

i 
-J::>. 
-J::>. 
I 

31.5 
31.4 

32.2 
30.8 

31.5 



TABLE 3.5 

RESULTS OF FATIGUE TESTS OF HY-l00 TRANSVERSE BUTT WELDS WITH 
WELD REINFORCEMENT REMOVED* 

(Zero-to-Tension) 

Specimen Welding Stress Life "), .. /:: 
Number Procedure Cycle (cycles) Location of Fracture 

(see Fig. 2.3) (ks i) 

HY-41 P 100 - 110 1 8- J o to +80.0 14,800 i n we 1 d - i nit i at ion at sin g 1 e flaw, < o. 0 11 I d i a . 
HY-42 Pl00-11018-J o to +80.0 13,700 i n we 1 d - i nit i at ion a t sin g 1 e flaw, o. 03 1 I d i a . 

HY-25 P 100 - 110 18- J o to +50.0 1,108,600 in we 1 d 
HY-43 P100-ll018-J o to +50.0 198,100 in weld-initiation at single flaw, 0.04" diaD 
HY-39 PIOO-ll018-J o to +50.0 88,100 in weld-initiation at single flaw, 0.04" diaD 
HY-60 P 100 - 1 10 18-J o to +50.0 57,900 in weld-initiation at 3 separate flaws, 

2 @ 0.0211 diaD 1 @ 0.04" diaD 

HY-34 P 1 00 - 1 1 0 1 8- J +10.0 to +60.0 263,400"::--k"'" initiation at or beneath polished specimen 
surface in HAZ 

,1\ 

S-N curves not constructed since all specimens fai led at internal weld flaws 

"-}\,j', 
Weld flaws not detected by radiography 

J';-;',-;', 
Specimen not tested to fai lure-removed for metallurgical examination following 
ultrasonic indication of crack initiation 

I 
.j::>. 
U1 
I 



Specimen 
Number 

HY-29 
HY-30 
HY-31 

Welding 

TABLE 3.6 

RESULTS OF FATIGUE TESTS OF HY-100 TRANSVERSE BUTT WELDS WITH 
WELD REINFORCEMENT REMOVED* 

(Complete Reversal) 

St ress •• .0 ....... 0-, 

Procedure Cycle 
Life 

(cycles) Location of Fracture
nn 

(see Fig. 2.3) (ks i) 

P 100- 1 1018- J ± 50.0 70,900 in weld-initiation at single flaw, 
PI00-ll018-J ± 50.0 53,500 in weld-initiation at single flaw, 
PlOO-l1018-J ± 50.0 28,800 in weld-initiation at single flaw, 

0.03 1 ! dia. 
0.04" dia. 
< 0.01" dia. 

HY-35 P 100 - 1 10 1 8- J ± 30.0 403,100 in weld-initiation at 2 separate flaws, 

<>;'; 

i',iTl~ 

HY-28 
HY-33 

P100-ll0l8-J 
PIOO-IlO18-J 

± 30.0 
± 30.0 

0.03 11 dia. 
220,700 in weld-initiation at 
43,900 in weld-initiation at 

S-N curves not constructed since all specimens fai led at internal weld flaws 

Weld flaws not detected by radiography 

single flaw, o .05 1 U d i a. 
single flaw, 0.05" dia. 

I 
+::> 
(J) 
I 



TABLE 3.7 

M!CROHARDNESS SURVEY OF THE WELD METAL FOR HY-100 SPECIMENS 
PREPARED WITH VAR!OUS WELDING PROCEDURES* 

Sample Welding Number Avg. Energy Input Avg. HAZ A v era g eWe 1 d Ha r d n e s s, D P Hd'd, 

2. 

3 

4 

5 

~fJ{; 

?V~'';/~ 

"'/'4',-.,t~ 

( a) 

( b) 

Procedure of During Each Pass Hardness, Parallel to plate Center-line of weld 
Passes (j ou 1 e sl in.) DPHd'd, thickness through thickness 

M . T . ,',;,',·k N. S. ,'dd, 

P 100 - 1 10 1 8- J 6 40,000 409±7(a) 286± 1 1 (a) 274±8(a) 283±12(b) 

P 100 - 1 10 1 8- J 50 6 50,000 463±12 2 76± 1 1 300±12 280± 12 

P 100- 110 18-J30 12 30,000 416±15 2.76±10 285± 11 278±15 

Pl00-11018-JH 6 40,000 390± 11 2.70±7 259± 10 274±12 

Pl00-12.018-A 6 40,000 """' .... """' ......... -- 284±10 314±7 302.±17 

Minimum preheat and interpass temperatures for all samples except No.4 were 150°F and 200°F, respectively. 
Temperatures for sample 4 were 300°F preheat and 400°F interpass. 
The average base metal hardness obtained from a large number of determinations was 270DPH. 

The Diamond Pyramid Hardness values were obtained with a 1 kg. load. 

M.T. refers to lumid-thickness'l; N.S. refers to linear-surface ll (1.2.5 mm beneath rolled surface) 

Standard deviation for a minimum of six hardness indentations 

Standard deviation for a minimum of sixteen hardness indentations 

I 
~ 
-.....J 
I 



Specimen 
Number 

HY-S7 

HY-S2 

HY-S3 

HY-S6 

HY-61 

-;', 

Welding 
Procedure 

TABLE 3.8 

RESULTS OF FATIGUE TESTS OF EXPERIMENTAL HY-100 
TRANSVERSE BUTT WELDS WiTH WELD RE~NFORCEMENT REMOVED 

~ 

Li fe 
(cycles) 

Location of Fracture
A 

(see Figs. 2.4, 

Stress 
Cycle 
(ks i) 

2.S, 2.9) 

Pl00-110l8-J30 o to +SO. 0 412,300 at weld undercut 

P 100-110 l8-J30 +10.0 to +60.0 8S,400 in weld-initiation at single flaw, 

P 100-110 18-JSO +10.0 to +60.0 318,600 in weld-initiation at single flaw, 

P 1 00- 1 1 0 1 8 - J SO o to +SO. 0 137,900 in weld-initiation at single flaw, 

P100-12018-A o to +SO.O 607,600 in weld-initiation at single flaw. 

Weld flaws not detected by radiography 

.03 'i di a. I 
..j:::. 
OJ 
I 

.03 ' ! di a. 

0.04'1 dia. 

0.02'1 di a. 



Specimen St ress 
Number Cycle 

(ks i) 

HY-54 o to +50.0 

HY-55 o to +50.0 

TABLE 3.9 

RESULTS OF FATIGUE TESTS OF HY-l00 TRANSVERSE BUTT WELDS WITH 
INTENTIONAL POROSITY IN WELD 

Life Percent Defect Area Radiographic 
(cycles) (Based on Radiography) Rat i ng4', 

134,700 0.12 F 

32,200 0.11 F 

,', 
Based on radiographic requi rements of Navy Specifications(~ 

-1.~I" 
Fatigue fai lure initiated at single pore located away from porosity cluster 

Description 
of 

Defect s"0', 

one porosity cluster + 
single pore 0.0211 dia. 

I 

one porosity cluster + ~ 
1O 

sing 1 e po re 0.05 11 d i a. I 



TABLE 3.10 

RESULTS OF FATIGUE TESTS OF HY-100 PLATES WITH A 
FULL PENETRATION TRANSVERSE ATTACHMENT ON ONE SIDE 

(Complete Reversal) 

Specimen Welding Stress Life Location Computed Fatigue Strength, 
Number Procedure Cycle (cycles) of 

(see Fig. 2.6) (ks i) F ra ctu re,"'"' F20 ,000 F50 ,000 F100,000 

HY-46 Pl00-11018-L ±40.0 63,800 e 83.2 46.6 30.1 
HY-47 P 100- 1 1018- L ±40.0 38,900 e 61.0 34.1 22.0 

HY-45 P 100 - 1 10 1 8- L ±20 .0 175,000 d 44.2 28.5 
HY-44 P100-11018-L ±20.0 121,800 d 34.1 22.7 

Average 72.1 40.0 25.8 

-;'r 
K = 0.632 

;'n'r 
d: initiation at toe of weld on main member 
e: initiation at mi 11 scale surface on plain plate side 

ksi-k 

F200 ,000 

19.4 
14.2 

I 

18.4 (J1 

0 

14.6 I 

16.7 



Specimen Welding 
Number Procedure 

( see Fig. 2. 7) 

HY-37 P 100-110 18-K 
HY-38 P 100 - 1 10 18- K 

HY-32 P 100-110 18-K 
HY-36 P 100 - 1 10 1 8- K 

,', 
K = 0.405 

,'~··l, 

TABLE 3. 11 

RESULTS OF FATIGUE TESTS OF HY-100 PLATES WITH 
FULL PENETRATION TRANSVERSE ATTACHMENTS ON TWO SIDES 

(Complete Reversal) 

Stress Life Location Computed Fatigue Strength, ksi* 
Cycle (cycles) of 

(k.si) F ract u red'd, F20 ,000 F50 ,000 F100,000 F200 ,000 

±38.5 28,500 d 44.4 30.6 23.2 
±40.0 23,400 d 42.5 29.4 22.2 

±20.0 154,500 d 31.6 23.9 18.1 
±20.0 125,000 d 29.0 21.9 16.6 

Average 43.4 30.2 22.8 17.3 

d: initiation at toe of weld on main member 

I 
(.J1 



Specimen Welding 
Number Procedure 

(see Fig. 2.8) 

HY-48 P100-11018-M 
HY-Sl P 100 - 1 10 1 8-M 

HY-SO P100-11018-M 
HY-49 P 100 - 110 1 8- M 

it, 

K = 0.383 
-;,,",;', 

TABLE 3.12 

RESULTS OF FATIGUE TESTS OF HY-100 PLATES WITH A 
FULL PENETRATION TEE JOINT 

(Complete Reversal) 

Stress Life Location Computed Fatigue Strength, ksi* 
Cycle (cyc 1 es) of 

(ks i) F ractu re","", F20 ,000 FSO,OOO F100 ,000 F200 ,000 

±40.0 25,200 d 43.7 30.8 23.6 
±40.0 19,600 d 40.0 27.9 

±20.0 lS7,SOO d 31.0 23.8 18.3 
±20.0 118,200 d 28.0 21.3 16.4 

j\verage 41.9 29.4 22.9 17.3 

d: initiation at toe of weld on main member 

I 
U1 
N 
I 



Specimen 
Number 

NA-8 
NA-7 

NA-l 
NA-2 
NA-5 

NA-9 
NA-3 
NA-10 
NA-6 
NA-4 

7,', 
(1) 
( 2) 

'";',71', 

TABLE 6.1 

RESULTS OF FATIGUE TESTS OF HY-130/150 PLAIN PLATE SPECIMENS 
(Zero-to-Tension) 

St res s Li fe'''' Location Computed Fatigue Strength, 
Cycle (cycles) of 

(ks i) F r act u r ed'd,,', 
F50 ,000 F100,000 F200 ,000 F500,000 

o to +100.0 26,800 g 87.3 74.8 
o to +100.0 21 ,000 g 82.7 70.9 

o to +80.0 64,200 a 84.5 72.6 62.2 
o to +80.0 60,900 g 83.8 71.7 61.6 
o to +80.0 51,100 h 80.6 69.0 59.4 

o to +50.0 354,500 g 65.5 56.7 46.3 
o to +50.0 280,900 a 62.8 53.8 44.1 
o to +50.0 1 , 247,800+( 1) j 61.3 
o to +50.0 712,000+( 1) j 77.0 66.1 54.0 
o to +50.0 555, OOO± (2) g 72.8 62.6 51.2 

Average 83.8 70.8 60.3 51.4 

Specimen fai led in pull-head 
Cycle counter on fatigue machine broke during test-fai lure occurred between 484,000 and 
627,000 cycles 

K = 0.22 
-;,'n'(-;', 

a: failure initiated at radius of test section 
g: fai lure initiated at mi 1 1 scale surface in specimen test section 
h: fai lure initiated at polished edge of specimen test section 
j : fai lure in pull-head 

ks i ,'n', 

F 2,000,000 

I 
U1 

34.2 w 
I 

45.1 
39.8 
37.7 

39.2 



TABLE 6.2 

SUMMARY OF FATIGUE TESTS OF HY-100 AND HY=130/150 MATERIAL 

Computed Fatigue Strength, ksi 

Specimen Type Surface Condition K 
F20~000 F50 ,000 F100 ,000 F200 ,000 F500 ,000 

(a) 1/2 !n. Thick HY-130/150 Material (Zero-to-Tension) 

Plain Plate As=Received 0.22 102.3 83.8 70.8 60.3 51.4 

(b) 3/4 In. Thick HY-l00 Material (Zero=to-Tension)* 

Plain Plate As-Received 0.301 84.5 68.6 55.7 42.9 
I 

Transverse Butt Weld As-Welded 0.394 77.8 54.2 41.4 31.5 
(J1 

+::-
I 

( c) 3/4 In. Thick HY-I00 Material (Complete Reversal) 

Plain Plate As-Received 0.187 56.2 49.4 43.4 37.0 

Transverse Butt Weld As-Welded 0.346 56.3 40.8 32.1 25.1 

Transverse Attachment As-Welded 0.632 (72.1)-;!,."'4';.- 40.0 25.8 16.7 
(one side) 

Transverse Attachment As-Welded 0.405 43.4 30.2 22.8 17.3 
(two sides) 

Tee Joint As-Welded 0.383 41.9 29.4 22.9 17.3 

--/, 
Results reported in Ref. 4 

;'i::iV~ 

Questionable 



~
~ -

I" . 3" 3"· 3" 
'"2 .. ~ '!Pi.'" .. ,,,-~ 

I I I I 
'I I i I 

4'- 0" 

r 5"1\ ... 7/1 Rod 

3" 
o 0 0 0 000 0 

----:r 
------- 4" 

000 000 0 

I" 
I i6 Dio Holes 

(0) Plain Plate (HY-IOO Material) 

5" 

000 0 000 0 
~ 

4" -.---......~~---+-~

000 0 
__ ----JI,;~ __ ---L 

o o ·0 0 

(b) Transverse Butt Weld (HY -100 - Material) 

5" 

000 0 o 00 0 

--~i-" 
0,0 0 0 o 0 0 0 

(cY Plain Plate (HY-130/150 Matenal) 

2.1 DETAILS OF TEST SPECiMENS. 

g" 

t 
~ I II 

2 



4'-0" 

[ 5" ~ 
..... 1iIIi>. 7\1 Rod. 

o 0 0 0 0.0 0 0 

3' 3 ----1~f__+_l~R___++- 0- -----:i~-- 4' - e -+=-:a--~~+_-
3" 

°
1
,,°,° ~ ° 

116 010. Holes 3'CY it" 000 

t~_ .. 
<4 

(0) Ful J Penetration Transverse Attachments 

o 0 0 0 

--~+-~-H-& ----~---

o 0 0 0 

I" 
"8 t .!" 

4 

(b) Full Penetration Transverse Attachment 

5" 

7" Rod. 

0 0 0 0 0 0 0 0 

cr 3-0-
0 0 0 0 3 " 0 0 0 0 

~411 t 6" 

900~O t 

:--J~ t 3" 
4" 

8 

(c) Full Penetration Tee Joint 

FIG. 2.2 ILS S S CI ENS. 



Pass 

I 

2 

-::z 
..J 

4 

5 

6 

I_ 4" Test Section _I 

I I 
I : ...... T I 3 

I 

2 ! I 
I 

~ I 
I 

I 

: I -r 6 

~ 6" Continuous Weld Posses .1 
Root Opening 1/8" Arrows indicate direction of welding. 

Surface of plate adjacent to weld cleaned by grinding before welding. 

Electrode size 1 in. 

~ 

5/32 

5/32 

3/16 

3/16 

3/16 

3/16 

Voltage: 21 Volts 

Polarity: DC Reversed 

Preheat: 150°F 

Electrode: MIL iiOi8 

Current, amps. 

130 

140 

?:r.1l 
'-vV 

220 

210 

210 

Interpass Temperature: 200° F ( Maximum) 

Heat Input: 40,000 Jouleslin (Maximum) 

A II welding in f lot position 

Rate 

Underside of pass I ground before placing pass 2 

of travel, in./min. 

5 

5 

8 

7 

7 

7 

FIG.2.3 WELDING PROCEDURE PIOO-IIOI8-J 
(Transverse Butt Welds in HY-IOO) 

5 

4 



3/4" 

/4 4" Test Section __ I 

9 

5 

3 

7 

II 

..... 

..... 

.l I 
I I 
I I 
I , 
I I 

: I 

I 
I I 

I I 
I I 

I I 
I I 

I 

I I 
I 

I I 

6
11 

Continuous Weld Posses 

Root Opening 3/16 
Arrows indicate direction of welding. 

Surface of plate adjacent to weld cleaned by grinding before welding. 

Pass 

I 

2- 12 

Electrode Size, in. Current, amps 

1/8 110 

5/32 175 

Voltage: 21 volts 
Po I or i ty: D. C. Reversed 
Preheat: 150 0 F 
Electrode; MIL 11018 
Interpass Temperature: 100 0 F (Maximum) 

Heat Input; 30,000 Joules/in. (Maximum) 
All welding in flat position. 

Rate 

Underside of pass I ground before placing poss 2. 

of Travel, 

4 

8 

FIG.2.4 WELDING PROCEDURE PIOO -11018 -J30 
(Transverse Butt Welds In HY-IOO) 

in.lmin. 

.'" 

10 

6 

2 

4 

8 

12 



3/4" 

Pass 

I 

2 

3 

4 

5 

6 

I' 4" Test Section _I 

I I 
I I 

3 I I 
~ 1 

2 
I : I 

I I 
I 1 
I I 
I I 

I 6 

~ 6" Cant inuous Weld Posses ~ I 
Root Opening 1/8" Arrows indicate direction of welding. 

Surface of plate adjacent to weld cleaned by grinding before welding. 

Electrode size, in. 

I 

5/32 

5/32 

3/16 

3/16 

3/16 

3/16 

Voltage: 21 Volts 

Polarity: 0 C Reversed 

Preheat: 150°F 

Electrode: MIL 11018 

Current, amps. 

150 

150 

220 

220 

220 

220 

Interpass Temperature: 200° F ( Maximum) 

Heat Input: 50,000 Joules/in. (Maximum) 

All welding in flat position 

Rate 

Un d ers id e of pass I ground before p lac ing pass 2 

of travel, 

5 

5 

6 

6 

6 

6 

FIG.2.5 WELDING PROCEDURE PIOO -II 018-J5 
(Transverse Butt Welds in HY-IOO) 

in./min. 

5 

4 



Pass Electrode size, in. 

I 5 
32 

2-14 5 
32 

Voltage: 21 Volts 

Main Member 

Current, amps. Rate of 

140 

175 

Preheat: 200 0 F 

Electrode: MIL 11018 

travel, in./min. 

4.5 

5.5 

Polarity: D. C. Reversed 

Interpass Temp: 200 0 F (Max.) Heat Imput: 40,000 Joules lin. (Max.) 

Surfaces cleaned by grinding before welding. 

All welding in flat position 

Underside of pass I ground before placing pass 2, 4. 

FIG.2.6 WELDING PROCEDURE PIOO -11018 - L 
(Full Pen ticn Transverse Attach 



r 

Moin 

3
11 

in, Current 1 amps. of in./min. 

1,3 140 

5.5 

'UIn;lIWnlli9: 21 Vans F 

: D. C. M 8 

Heat . "" ... ".",,, ... lin. 

of poss I, 3 ground before placing pass 2, 4. 



6 

I f It 

1-112" 
I I \I 

1-11-
2 

Pass Electrode Size j in. Current, amps. Rate of Travel ~ in./min. 

I, 3 
5 
32 

2,4- 28 5 
32 

Voltage: 21 Volts 

Polarity; D.C. Reversed 

Interpass Temp: 200 0 F (Max.) 

FIG.2.8 

Surfaces cleaned by grinding 
All welding in flat position. 
Underside of pass I J 3 ground 

( 
01 
II tration 

140 

175 

Preheat: 200 (I F 

Electrode: MIL 11018 

4.5 

5.5 

Heat I : 40,000 Joules / in. (Max.) 

before welding. 

before placing pass ? .... , 4. 

PI -II 
Joi ) 



3/4
11 

Pass 

I 

2 

3 

4 

5 

6 

60° 

I I 
I I 

3 I ! 
2 ! : 

: I 
I 

I I 
I I 

I 6 

6
11 

Cant inuous Weld 

Root Opening Arrows indicate direction of weld 

Surface of plate adjacent to weld cleaned 

Electrode size, in. 

-
5/32 

5/32 

3/16 

3/16 

3/16 

3/16 

Voltage: 2! Volts 

Polarity: 

Pre heat: 

Electrode: 

o C Reversed 

150°F 

MIL 12018 

Current, amps. 

130 

140 

230 

220 

210 

210 

Interpass Temperature: 200° F ( Maximum) 

Heat Input: 40,000 Joules/in. (Maximum) 

A II. welding in f lot position 

nd 

Rate 

Underside of pass I ground before placing pass 2 

FIG.2 ELDING PR CEDURE PI 

before welding. 

of t ra ve I in./min. 

5 
--

5 

8 

7 

7 

7 

(Transve e Butt Ids in HY-I 

5 



o 0 

o 0 

o 0 

"'
<J.) 
+-
(!.) 

E 
o 
E 
o 
c 
>. 

Q 

c: 
<P 
E 
o 
<P 
a. 
(f) 

u 
« 

w 

....J 

o 
N 



100 
. 

;;:. ~ .......... N ~ - .... '--- -... 
80 

1-

60 

40 
c.n 
.¥ 

en 
en 
w .... -en 
E 2'0 
::J 

E 
)I( 

0 
~ 

10 
/- Stress Cycle; Zero-fo- Tension 
F- a 3" 

HY-IOO 4 
8 

I-
3" 

~~-=-'111- 4" HY- 80 
l-'6 

I I j J I i 
20 40 60 80 

J F 

(Z 

-.~~ 

I 

1)0 

SI 

~ 

~ 
V- f-k = 0.20 

1--- / 
~ 

1"""'- __ -- .. V 
~ 

~~ /=0 .... 

r--........ """,,, l- t--... 

k:: 0.30~ 
......... r-... - -... 

200 4 )0 soo 800 1000 

Failure ll In Thousa 

TES 

). 

y-

-' 

, 
'--

r--. -.. Q 

f-

2000 4000 6000 

IN ENS 



. --~-----..,..-- 1----.. -- . - -- ------ •.. ---->------_. --- . =l -

•• _0. r-- - . -- f--- -- --

100 

80 
t 

.• - -- - --~-'1 
- ---- --

""""--- ---- --r----r-- ~ r---...... --I-.... ,i"\. 1-------r- ... 1"--
~ ~.r-- ' -- i'- ' V- k = 0.187 I'-~ __ ~ !.. r--_____ .. 

....... r- ! -- K 1- ___ I---
r---

' -- t--r--r--
: ~ -~-- ~ 

i i~ - ''-'' ..... ~ 

i---I -""' ... ~ 
! k= 0.206 --.. 

-- -I-

60 

40 
fji 

.3C 

tJ.) 

(.II 

Q) 
!... --(f) 

~. 
-, 

i E 20 
::J 
E 
')i 
0 

::!! 
I 

10 
, Ii 

I- Stress Cycle: Complete Rev~rsol 
i 

P- 2.-
14 1 

a HY - 100 I 

P- 4 I 

8 

- ----- t HY- eo 
P-6 

5. j I I I I I 1, 

20 40 60 sb 100 200 4CJO 6 
. 

6000 

eye as To FClilure, In The 

FIG. 2 SUL TS OF TES S OF 
I 

VED H o IN PL 

E L). 



FIG. 3.3 

NOTE: FAILURE INITIATED L SCALE 

FRACTURE SURFACE OF AS-RECEIVED 
PLAIN PLATE SPECIME 

100 



a) Base Metal (200X) 

b) Heat Affected Zone (750X) 
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a) Failure Initiated At ill Scale Surface 

F oi re t d At Radius 
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