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NOTATION 

A the cross-·sectional area of a member 

A-net 
the area of the net section of a tension member 

B 

b, 
-l 

b, 
l 

C 
C 

= 

the boundary of the feasible region, R 

a lower bound for the i th design variable 

an upper bound for the ith design variable 

the effective .slenderness ratio, kL/r.9 above which a column 
buckles elastically 

C = amultiplier 
m 

E = Euclidian· n-dimensional space 
n 

F·.S. 

F 
a 

F max 

= -w(i)/w = the current value of the objective function 
o 

= the factor of safety for axial compression 

the allowable· stress in axial compression 

= the allowablestress'in bending 

= the~ela-stic·buckling stress for an axially loaded column 

the optimum value of the objective function 

. F t = the allowable stress' in tension· on the net· section 

F = the yield st~ess 
y 

f = the computed axial compressive stress 
a 

fb the computed bending stress 

G 

G. 
l 

= 

= 

the intersection of the hyper-surfaces G
l
,. a a ·)G 
'Cl 

the hypersurface in E defined by cp. (~). = 0 
n 'l 

ieX') =w(~) = the gradient of the objective function at x 

H.(X) = the supporting hyperplane to G. at x 
l..:. 0 l 0 

I = a moment of inertia; also, the identity matrix 

i a positive inte~er 
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.... x-

a positive· integer 

an upper bOillld on the number of steps reCIuired to reach x max-

·k = a positive integer; also, a multiplier 

kL the effective length of a compression member 

L the maximum length of R; also, the length of.a member; also, 
the illlbraced length of a compression member in a pin-jointed 

. structure 

£ a positive integer 

. M = a b ending moment 

M max 

. M+ 
max 

ill 

the clockwise bending moments at the left and right. ends) 
respectively, .. of a beam 

the clockwise bending moments at the top and bottom ends, 
respectively, of a column 

the maximum moment in·abeam.for design'purposes 

the maximum positive moment in a beam 

the number of constraints; also, a positive integer 

N an upper bOillld on the number of iterations reCIuired to 
correct back to the feasible region 

n the number of variables; also, 'a positive integer 

.p an externally applied load; also, the .axial force in a.member 
of a pin-jointed frame; also, the compressive force in a column 

- - T-' 
= I - U (x)V (x)U (x) =: the s·ymrnetric n x n .proj ection matrix 

CI q q 

the intersection of thesupporting·hyperplanes.H
l
(X'6)' G.O, 

, H (i) at 'X' 
CI .0 0 

the current number of active·constraints 

'R the feasible region, a subset of E 
n 

. R T a region in' E which. contains. R 
n 

r the radius of gyration in the plane of bending of a member 
in a rigid frame; also, the minimum;radius of gyration of a 
member of a pin-jointed truss 

r .. - the minimum radius of gyration of a member 
'IDln 



r(xv) 

s 

U (x) q 

Uo ex) 
l 

v (x) q 

v .. 
II 

w(x) 

W 
0 

w 

wCl(xV ) 

lW:q(X"y) I 

x 

X. 
l 

x max 

x 
o 

z(x .. ) , v 

ex 

.-

=:: 

=:: 

=:: 

=:: 

=:: 

,-xi-

- T·--
V (xv)u (x )g =:: a vector of order Cl 

q Cl Y . 

a section modulus 

- r- --(ul \x) ,7 ••• J u
Cl 

(x») = a qxCl matrix 

Vp. (x) == the gradient of. cpo ex) at x, a vector of order n 
l. l 

rr - --1 
[U-(x)U (x)] = a symmetric ClxCl matrix 

q q 

the ith diagonal element of V (x) 
q 

the current total weight of a structure 

a reference value for defining the non~dimensional objective 
function 

the weight of a member per unit length 

(CP1(X ), •.• ,cp (iy)) = the error vector of order q 
y. Cl 

the leggth of the error vector, a measure of the nearness of the 
point Xv to the intersection G 

(xl" .. 'x) = the current design, a vector of order n, a point 
in E n 

n 

the current value of the ith design variable 

the optimum solution 

a reference value for defining the non-dimensional design 
variables 

= a point which lies near the intersection, G, of Cl constraints, 
l::;q:;m 

= 

Pq(xv)glIPq(xv)gl =:: a unit vector of order nwhichpoints in 

the direction of the projected gradient 

a measure of the linear independence of the vectors ~ (x')) a , • J 

U' (x); also, the angle of inclination of an external Ioad on a 
tfh.ee-bar truss 

~. =:: the angle of inclination of the ith member in a three-bar truss 
l 

r. (x ) /2"jV-::-
l Y II 

max 
i 
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5 a tolerance.which cor;ttrols. the· nearness of the point Xv to the 
intersection G 

E: a tolerance Which, controls the nearness of the point X to max 
the true optimum point 

A. = a measure of the curvature of the intersection of the active 
constraints 

g = a measure of the distance from. the end of a uniformly loaded 
bearnto the point of maximum:positive·moment 

~t a measure of the optimum step length 

T a step. length 

cp •. (~) 
l 

W. (x) 
. l . 

:W(x) 

= the current value of the ith constraint 

= u. (x) = the gradient of. cpo (x) at x, a,vector of order n 
l . l· 

= g(x) = the gradient of the objective function, at x, a vector 
of order n 



Io INTRODUCTION 

1.1 Object and Scope of Study 

The object of this investigation is to demonstrate the feasibility 

of using programming techniques for obtaining minimum-weight design of elastic 

steel structures) and to develop a method by which this can be accomplished 

with the aid of high-speed digital computers. 

T~e present study. is limited to relatively simple statically inde-

terminate rigid frames and trusses which can be fabricated from standard 

rolled steel wide-flange (WF) sections. Structures which are subjected to 

more than one loading condition are included. Stresses due to bending 

,moment, axial force) and combined stresses ,are considered; the possibilities 

of buckling of columns and excessive· deflections of the structures are 

included as constraints in the design considerations. Local buckling) lateral 

buckling.of beams) shear stresses) and other secondary effects are not con-

sidered; however) they can be included if necessary. 

The study inclUdes only structures for which the overall configura-

tion is known ~ priori) and for which the selection of a combination of 

member sizes leading to the least weight is desired. The method may be 

extended to include optimization problems in which it is required to select 

the member sizes as well as certain overall dimensions. 

For convenience) the weight of a structure has been selected as 

the criterion for optimization. .Although the weight of a structure is not 

necessarily the. best measure of optimality 0 f civil engineering structures) 

it may nevertheless be one of the considerations in design) and if the 

remaining phases of the design process(3)* have been performed efficiently 

* Superscripts in parentheses refer to entries in the Bibliography. 
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then a savings in weight can be of' importance. For aero-space structures) 

least-weight design is the most important consideration. 

1.2 Fonnulation of Problem 

In designing a statically determinate structure of a given overall 

configuration.it is necessary merely to analyze the structure under the 

prescribed loads and to select member sizes such that stresses and deflections 

are less than prescribed allowable vaiues. 

However, in the case of a statically. indeterminate structure the 

results of the analysis are dependent upon the relative sizes of the individual 

members. Thus in the usual process of design, a set of member sizes is 

assumed, the structure is analyzed) the member sizes are revis:ed, and the 

cycle is repeated until each member is fully stressed under at least one 

loading condition. This process does not alw-ays lead to the least·weight 

design) especially. when the structure is subjected to more than one loading 

condition) and when limitations on deflections are prescribed. Thus there 

is a need for a method by. which the: least weight design of a statically in-

determinate structure can bedeterminedv-Tith reasonable mathematical 

certainty. Nonlinear programming provides a formal basis for the optimiza-

tionproblems of structural design, and the related computational algorithms 

provide feasible numerical techniques for the determination of an optimum 

design. 

A programming problem may be defined as follows: 

Given the objectiv~ function 

w (x) = W (x-, ,x
2

) • 0 ., x ) 
J.. n 

(1) 

and the ill constraint functions 
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cp. (x) = cp, (Xl' x2) ... "x ) J i 
l 1. n I, .. OJ ni (2) 

. determine the variables 

so as to 

minimize W(x) 

under the constraints 

cp. (x) > 0 
l -

i l,~ .. ,m; where m > n (4) 

In the context of Eq,s. (1) through (4)} the minimlL'I!l-weight design 

problem is as follows: 

The weight, W, of the structure may be expressed as a function of 

n geometric and/or structural variables xl ,x2'. '.- ,xn ' whic~ are the design 

variables, The variables x = (Xl' X2; ... ) xn) could be the areas of an 

n-member trussed structure, or the n moments of inertia that define a framed 

structure. 

In any design) the variables x must be detennined such that they 

satisf,y the req,uirements or limitations of specifications. For instance) the 

computed stresses in the members and deflections at certain points in the 

structure should not exceed some prescribed allowable values. These limita-

tions are also functions of the design variables x, and hence constitute 

the constraints given by Eq,. (~). 

The design variables, x, of the structures considered herein are 

assumed to be the sizes of the n members that make up the structure. Further-

more, it is assumed that the structures are' fabricated from available wide-

flange sections. Thus in reality the functions W(x) and cp.(x) are defined 
l 

only for discrete values of the member sizes, x; this means that formally 
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the problem is an i.nteger programming problem" At present (1965) the avail-

able nonlinear prograrrLnring techniClues reCluire tha\:, the functions 'Wand cp. be 
l 

continuous functions of the variables x. 

1.3 Organization of Report 

Chapter 2 includes a general di.scussion of programming problems 

and various prograrmni.ng techniClues, and a detailed presentation of the 

gradient projection method of nonlinear programming, including modifications 

and revisions which were found to be necessary. 

In Chapter 3 l.t is shown how the design problems can be formula ted 

as a prograTILming problem for structures composed of rolled steel wide-flange 

shapes. 

Several illustrative examples are presented in Chapter 4, and in 

Chapter 5) the results of the study are summari.zed and several conclusions 

are presented. 

1.4 Previous Ap'plications of Programming TechniClues to Optimum Design Problems 

In the recent past several authors have investigated the possibility 

of usl.ng rna thematical programming techniques to obta in minimum weight des igns 

of structures., 

.Based on the 'work of Prager J Heyman J Lives'ley J and others Bigelow ( 4) 

developed a method for obtaining the minimum weight of plastically designed 

steel frames" A problem in minimum weight plastic design leads to a progra!Il-

ming problem in which the constraints are linear and the objective function 

is nonlinear, Using a linear approximation to the objective function and 

the simplex algori tbm of linear programming Bigelow obtained a firs t approxi,-

mation to the minimum weight design. On the basis of available WF members 



-5-

a minimum weight plastic design is determined. The design method presented 

by Bigelow enables one to obtain the least-weight combination ofWF members 

for a given indeterminate frame in an efficient manner and should have a wide 

application to a variety of practical design problems. 

Sc~mit(8) formulated the minimum weight design of a three-bar 

planar truss as a nonlinear programming problem. The structure considered 

is shown in Fig. 1. The predetermined overall'configJration is defined by 

~l) ~2J ~3) and N. The constraints consist of upper and lower limits on the 

stresses in the members and limits on the deflections at the point S.The 

structure may be subjected to several loading conditions as defined by P 
n 

and ex ) and may also be subjected to temperature changes 0 The objective 
n 

function is a linear function of the member sizes) or areas. The resulting 

nonlinear programming problem was solved by a ITmethod of alternate steps" 

by which if the current design) (the set of values of A
1

)A2 ) and A
3

) is not 

constrained (i.e. none of the computed stresses or deflect.ions are equal to 

the a.llowable values) the member sizes are modified in the direction'of 

maximum change in. weight; if the current design is constrained the member 

sizes are modified in one of three alternate directions of zero weight change. 

The method is continued until a step in the direction of maximum weight change 

cannot be taken ... Schmit and Kicher(9) extended the three-bar truss problem to 

include material properties and overall configuration as design variables. 

This was accomplished by obtaining minimu.rnweight designs for several discrete 

combinations of material properties and geometric configuration) and selecting 

the minimum weight design from among these answers. Schmit and Morrow(ll) 

further extended the three-bar truss problem to include buckling constraints 

based on the assumption of annular members) and ScbJUit and Mallett(IO) 

studied the three-bar truss problem to include material properties and overall 
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configuration as continuous rather than discrete design variables. This 

results in a problem of nine variables and necessitates a revision in the 

method of alternate steps to the use of a random direction of travel when 

modifying the members in a direction of zero weight change. 

Moses(5) used the cutting plane method which involves solving a 

succession of linear programming problems to obtain the' solution to a three-

bar truss problem and also to obtain the solution toambre practical p.roblem 

consisting of a single-story single-bay rigid~ frame. 

The papers by Schmit and others have demonstrated several important 

points concerning mini.mum-weight structural design, among which are the 

following: 

(I) Minimum weight structural design problems can be form~lated as 

nonlinear programming .problems, 

(2) The minimum-weight design is not necessarily one·in.which each 

member is fully stressed under some loading condition, 

(3) A proof that a nonlinear programming solution leads to'an 

absolute optimum rather than a local optimum would be desirable. 

It is hoped that the present investigation will demonstrate the 

advantages· and promise of programming techniques as'a practical approach to 
--Y, 

the formulation of the problem 'of minimum-weight structural design) and to 

the solution of a broad range of practical d~sign problems. 



II. SOLUTION OFI THE PROGRiLMMING PROBLEM 

2.1 Nonlinear Programming Techniques 

A concise discu,ssionof developments in nonlinear programming up 

to 1962 is p.resented by Wolfe(12); it is concluded that while the subject of 

linear programming is well in hand both from the theoretical and computational 

standpoints, the same is not true of nonlinea'r programraing. The bulk of the 

report is devoted to describing.several of the algorithms proposed for the 

. solution of various special types of nonlinear programming problems. 

The programming .pr0blemas defined by . Wolfe is presented in 

. Section .1.2 above. The problem is illustrated in twodimensionsin.Fig. 2. 

The shaded area is called the feasible region, i.e. the set of all x ,satisfying 

.the constraints)Eq. (4) .. The boundary of the feasible region consists of all 

x such that some constraint function vanishes. The vertices of the feasible 

region consist of points at which.enough constraint functions vanish to define 

a unique point. A contour of the objective functiol1;W is a set of points on 

.which the function has a constant value. The programming problem consists 

of finding the highest (or lowest) valued contour of W having.some point in 

COl11.!.!lon with the feasible region. The gradient of W at ;(") denoted by '\lw(i,) , is 

defined by 

, ... , dW(X) } 
dx 

n 

The gradient atx is nOTIaal to the surface (or curve) definedby.·W(;(") 

constant which passes through x, and the gradient points in .the direction of 

steepest ascent (or descent), i.e .. the direction of maximum rate of change 

of W. (It should be noted that the problem of minimizing a functionW. is 

-7-
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the same as the problem of maxLmizing -W.) It is convenient to assume that W 

is a concave function; i.e. the graph of the function.lies entirely below any 

tangent plane. In addition the functions ~. are assumed to be convex, i.e. 
l 

the graph of the function lies a"bove any. tangent plane 0 Consequently) the 

feasible region is a convex set. Under these assumptions about W and~. it 
l 

can be shown that anY,local minimum is also a global minimum. A local minimum 

is a point x such that there is no point in the immediate neighborhood of x 

which gives a smaller value of W. A global minnrrWTIis a point x such that 

there is no other point in the feasible region which gives an improved value 

of W. 

Among the programnling techniques discussed by Wolfe the cutting-plane 

method best seems to fit the requirements of the minimum weight design problem. 

By this method the nonlinear constraints are approximated at the feasible 

point x by linear first order Taylor series expansions. The resulting linear o . 

programming problem is solved to yield a solution which does not necessarily 

,satisfy the original nonlinear constraints. This solution is revised so that 

-' 
the original constraints are satisfied and a new feasible point X and the 

o 

process is repeated until the·linear program.ming solution.satisfies the non-

,linear constraints within some acceptable tolerance. 

Rosen(6),(7) presented a gradient projection method for nonlinear 

programming}. and concluded that the gradient projection method has some ad-

vantages over the cutting-plane method. In the cutting=plane method it is 

necessary to solve a linear programming problem each time a linear approxima-

tion to the constraints is constructed. In the gradient projection method 

only a single inverse matrix based on local linearization is required at each 

step. Also, in the gradient projection method if a feasible starting point 

is known, then all points obtained in the optimization procedure are also 
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feasible points; hence, the procedure ,may be stopped at any time with an 

Lmproved feasible solution. In addition; with gradient projection it is only 

necessary to approximate those nonlinear constraints which actually constrain 

at a particular point. 

Because of these advantages and because it is felt that the gradient 

projection method provides a better insight into the basic nature of the mini-

mum weight design problem it was decided to use the gradient projection method 

for the solution of the minimum weight problem of structural design. 

2.2 The Gradient Projection Method of Calculation 

The following summary of the gradient projection method of nonlinear 

programming has been condensed and presented here as a convenience for the 

reader. For a more detailed presentation of the method including proofs of 

the results) the papers of Rosen(6),(7) should be consulted. 

A Euclidian n-dimens ional space En is cons idered) a point in the 

space being represented by the vector 

(6) 

It is assumed that a convex and bound.ed region R within En is defined 

1...._;0 ...... __ -+- .- -+=' ......... __ ........ _ -+- ~II'"'I. ~ "'"' -i- _ J'""\ ~ 1 ___ -+- _ V"\ -. _..p ... 1-. -: _ 1.... ..: _ _ ....... _ ....... , ..: ...... -. _...- ..&i ........... _..L.. .: _ _ __.t:'t .J... l.- _ 
uy Cl. OC LJ U.!. III <-.::UUo LJ.LCl..l..U LJo j Cl. LJ ..L.ca.o LJ UllC U.!. WU.l..<-.::U .l..o a l.lUl.l..L..l..l.H::a.L .L Ul.ll; v.!.UU U.L L..L1e 

variables xl 'x2 '.' ';Xn ' These constraints are assumed to be in the form 

cp. (x) > 0 J i = I} 2 J "'} m J 
]. -

where the m functions" cpo (;(:'L are concave a'nd satisfy certain conditions noted 
~ 

below. The convexity of R follows from the assumption that the ~.(;Z) are 
1. 

concave functions. A geometric interpretation of convexity can be presented 

as follows: The region R is convex if all points x on the line joining any 

two points Xl and x2 in R are also in R. 
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Corresponding tc each funct·ion CPi (;;) is a hypersurface G
i 

defined by 

(8) 

If a point, lies in the q hypersurfaces G'" i. :::.: 1, • " 0) q, lt is said to lie in 
. l 

the intersection of the q hypersurfaces, denoted by Go 

'Ihe closed and bounded convex feasible region R and its boundary B 

are defined as follows: 

R ~ {x I <"Pi (x);:: 0, i= l, ... ,m} , 
B= { x I x in R, CPi(X) = o ,for at least one i} (10) 

Every point. in R is called a feas ible point 0 An interior point x is one for 

which cp. (x) > 0, i = 1, ... ,m', ;Z is said to lie i.n a 5~neighborhood of· the 
l q 

intersecticn G if \' cp .• 2(;:) < 52, rrhe bounded region R can be enclosed L· 1 ·1 -. l~ 

i.n a regi.on RI deter.mi~ed by an upper and lower bound on each variable, 

R' ={;;I -b. <x. <b., i:=l,.u.,n} 
-l - l - l 

Ihe maximum length of the regi.on R' is defined by L, where 

2 In . ~ 2 
L := (b" + b.) 

"_ -}. l 
::;.:::.:.1 

(11) 

(12) 

It is ass1J1ned tha t, the ill fur~ctions CPi (x) have contiil'G.ous and. "bounded 

s8cond. partial derlvat;ives fo:r all x in R I •. At each pcint x' in R! thE; grad:i.ent 

of each function cp, (X') 1.S a vector) 
l 

{ 
6:p. (x) O:p i (x)} 

O:'i ex) :=. \7cP i (X)·~ d~ . ' , 0 " dx. ' } .i == 
l . n 

It is assumed that the cp, (x) have been normalized so that /li, (x) I < 1 for x 
l l 
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in RI and i = l, .. ~,m. Let x be a poi~t which ·lies ina a-neighborhood of 
o 

the'intersection, G, oT q hypersurfaces G., i = l,.~.~} 1 ~ q ~ m. It is 
. l 

assumed that U. (x ) f 0, i = 1,.0. ,q, and that the q vectors U. (x ) are linearly 
l 0 l 0 

independent. 

Because the gradient vector of any function points in the direction 

of the most rapid increase of that function, and because of the inequalities (7) 

which determine the feasible region R, it is convenient to think of the vector 

u. (x) = \7CP. (x) as pointing into R if x is in B and toward R if x is outs ide 
l l 

of B. Fer any point Xo in the hypersurface Gi the vector Ui(X
o

) is orthogonal 

to G.. A hyperplane containing x which is 'also orthogonal to ui(x ) is 
l 0 0 

given by 

H.(x) = {x I ~.~.(x) - xT', u.(x)= of"~ 
l 0 l 0 0 l 0 

(14) 

H.CX' ) is the supporting hyperplane to G. at x. Suppose that a point x lies 
l 0·. l 0 0 

in the int.ersection.GDf.'.q.h;y:persurfacesG'.9i .-.. l-" .. -.. ,~. -Corresponding·tQ-· 
l 

ea·ch G
l
, is ~ supporting hyperplane at x , H. (x ), which contains x. Then 

. 0 l 0 . 0 

these q supporting hyperplanes form an intersection Q(Xo ) which contains xo. 

Only the simplest linear objective function F(x) = x need be 
n 

conside:"'ed since a problem with any other linear or nonlinear objective 

function can be reformulated to have this objective function by adding one 

variable and one constraint. In particular} if the original objective function 

is F(X1 , ... ,x 1) the variable x is added along with the additional constraint n- . n 

- x > 0 . 
'. n 

'This new constraint will satisfy the conditions given above if F(.xl ,· .. ,X
n

_
1

) 

already satisfies these same conditions. 
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The nonlinear programming problem can now be stated as' follows: 

maximize {xn I xn in R } (16) 

Note that since we are considering a ,linear objective function the desired 

solution,X = i will always occur on the boundary, B. The gradient of the' max 

linear function F(~) =: x is the constant unit vector g} where n 

g = {o , ... ,oJl} 
A rna trix. U q (x) is defined in terms of the. normals. Ui ex) to Hi (x) , 

i = l}. CI ., q S. m J 

U (x) = [Ul(X), u
2
(x)} ... J~ (x) l} 

q .' q 
ex in R). (18) : 

: Because of the assumed linear independence of the U. (x) at each boundary point 
J. 

X in the boundary B of R the qxq symmetric matrix UT(x)U (x) is nonsingular 
qq. 

for all x in B. Let 

A symmetric nxn projection matrix P ex) is defined for' each x in B by 
q 

p (x)' = I ~ U (x)v (x)UT('x') • 
qq' 'q q' (20) 

This matrix takes any vector in E:a into the intersection Q(X') of the supporting 

,linear hyperplanes to the hypersurfaces, G., i = lJ .0., q, at. x . 
. J. 

In the course of an optimization calculation 'using gradient pro-

ject10n it is necessary to obtain the projection of the gradient vector on 

various intersections Q. For a particular: set of q vectors u.(x), it is 
J. 

always possible to fonn the matrix UT Ci')u (x) and invert it to obtain Vex) . 
q q q 

Alternatively the inverse can be obtained by means of recursion relations 
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presentedin.part .1 of RosenJs paper. 

is determined by direct .inversion. 

For the·purposes of this study V (x) 
q 

The stepwiseopt1mization procedure can be described as follows. 

It is assumed that a feasible starting point is known. If the starting point 

is.an interior point of R the constant gradient g is followed until a boundary 

. point is reached. ,At a boundary point the supporting hyperplanes to.the 

constraint hypersurfacesin which the point lies are determined. The gradient 

is projected on the intersection of these supporting hyperplanes. A step is 

taken in the direction of the projected gradient toa new point with an 

increased value of F. Since the constraints are nonlinear the· new point will 

generally not bea feasible point; ,it is then necessarY to correct back to 

the feasible region in such away that F remains greater than its value prior 

to taking the step. A correction procedure is presented which uses the 

inverse matrix Vq, w:qich gas already been generated, to determine a vector 

through the new non-feasible point which. is normal to the intersection, G, 

of the tangent hyperplanes. The new feasible point is then determined by. the 

vector normal to the intersection and conta,ining the new.non-feasible p.oint, 

. and the elements of the error vector. 

The basic a,lgoritbm for the gradient'projection method is given 

below. . Several of the quantities referred to· are defined in the paragraphs 

preceding Theorem 1. It is assumed that a tolerance E > 0 has been specified 

2 2 
. and tha t another tole ran ce 0 i s given by 5 = E / 3A ( 8-nla ) , and that an 

initial feasible point is known .. Here ex is· a constant which is a measure of 

the linear independence of the vectors ~.(x). A is a constant which depends 
l 

on the dimensionality. and geometry of the region R. For almost linear 

constraints A= 1. 
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ALGORITEM 

The followingalgorith~ is extracted from· Ref. 6~ 

l. If Xo is an interior point of R let xl = Xo + ~g where ~ is 

chosen so that x is in B. This is a one-dimensional interpolation problem 

to determine ~ such that cp. ex + ~g) > 0) i= 1, ... , m,. where the equality holds 
l 0 .-

for at least one i. 

2. Consider a point x which lies in a a-neighborhood of the inter
V 

section G of q constraints) lSq·~ m. For convenience let these be Gi , 

i= 1. 0 • ') q, so that jw (;; ) / < 5 where w (x) is given by Eq. (21). The point , qv - q' 

~ may be either the initial point x or a subsequent point. 
V o. 

Compute V ("JZ ) 
qv 

by inversion of 1..( ("JZ )U (x ) J r(x )=V ("JZ ) uT ex )g, 
.q y q v V q V q V 

P (x )g = g~U (x )r(x ) and 
q V q V V 

f) = (3(x ) as given by Eqs. (24) and (25). . If (3 <_ E/2nLa then F(x ) differs 
V . V 

from the global maximum by at most E (Theorem 2}. 

3. If (3 > E/2Jrfu:X and Jpqg/ ::: f3£, compute the unit vector z(;;v) 

according to Eq. (26) .. This is illustrated by. Fig.· 3. A sequence of n points 

is computed accordingto·EClS. (2B) and (29) with ~ = a{3/6A.) a.nd n the smallest 

integer such that j; (x(n)(~))j < 00 If ~.(x(n)(~») > 0) i q+l, ... k, let 
q l-

xY+l =x(n) ( ~ ) . Then F(x
v
+ 1) F(Xv ):: CX{32/12f-.by theorem 1. The point 

x lies in a a-neighborhood of G. If cp. (X-(n) (~) < 0 for at least one 
v+l l 

i., i = q + 1) ... Jill" . we interpolate for the value~ = 1."' 1 < cxf3/6"A such that 

= q ,+ 1-, . 0 • ,in. .' with the equality holding for a tleast one 

value of i. This is shown in Fig .. 4. We let Xv+l ~ i(n)(,I), givingF(X
v
+

l
) -

F(x:) > ~1{3/2 by theorem 1. The point x 1 lies in a a-neighborhood of a new 
V -. V+· 

intersection consisting of G and at least one additional co~straint. 

4. If f3 > E/2rnIa and /Pqg/ < {3£} dropu£ from Uq and obtain Uq_l 
T 

and the corresponding inverse matrix V 1 Compute r = V lU 19) q- q- q-
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P g::;= g - U lr, and z =.p 19l1p 19l q-l' q-' q- q-
A sequence of n points is then 

computed according .to-Eqs. (28) and (29) with U I' V l' and w l(x,) 
q- q- q- . J 

replacing the corresponding quantities U , etc. 
g 

The value ~ = a~/6~ is used, 

and n is taken as the smallest integer such that I; l(x(n)(~))1 < o. This 
q-

is illustrated in Fig. 5. By theorem 1 CP2(x(n)(T)) > O. If in addition 

.CPi(x(n)(1'))::' 0, i = q+l'.'.JllJ let xv+l = x(n)(~) which gives F(X
v
+l ) -

F(X
y

) ~a~2/12A. The point x 1 lies in a a-neighborhood of the intersection 
v+ . . 

of the q-l constraints Gi' i = 1)_ .. "q, i~t. If CPi(x(n)(1')) < 0 for at least 

one i, i = q,+l, ... ,:m, interpolate for 1'1 such that cp~(;:c(n)(~i)) ::: 0, 
..1. 

i= q + I, 0 •• , tn, with an equality for at leas.t one i. Let xv+l = x(n) (~y )) 

givingF(x 1) - F(x ) > 1'i~/2. The point x 1 lies in a a-neighborhood of 
y+ V - v+ 

the intersection of theq-l constraints G:.,i = l,~ .. ,q,. i/=:£, and.at least one 
l 

other constraint. 

This completes the algorithm for a typical step. The convergence 

of a sequence of steps taken according. to this algorithm,is shown'in Theorem 3. 

It is shown in theorem 1 how a step can.be taken from a feasible 

point toa'newfeasible point with an increased value of F. by showing.that 

given a feasible point x for which the· quantity l3(x ) is positive). another 
V V 

feasible point can be ,formed with an increase in F which is proportional to 

l3(x) and the·step length. 
V 

Consider the intersection G of q hypersurfaces G:., i = I, ... , q < m. 
l -

A measure of the· 11 distance" of a point x from Gis given by the length of the 

error vector 

1- (-' 
lw x) q . 

I 

{. cpiX") J · · . JCP(;Z)} 
q 0" i 

(21) 

Consider a point X ,and the corresponding matrices U (x ), V (x ) and P (x ) 
V q V q V q V 

as given by Eqs. (18), (19) ,. and (20). A q-dimensional vector with components 

;. (x.) is defined by 
l V 
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and q quantities {3. (x ) are given by 
l V 

(22) 

B. (x ) = r, (;; ))2 ~-l ) (23) 
. l V l V II 

where the v .. are the diagonal elements of V (,x). Let 
II q V' 

13£ = maxJ I3. (x l} , (24) .' i ~~Ul V 

We define the unit vector 

i(~ ) =P (x )g/Ip ex )gl . 
V q V q V 

Then the following theorem. can be proved: (7) 

Theorem 10 Let the· point x and the constant 5 be such that 
V 

(26) 

where (3 = (3(Xy ) > 0 is giVen by Eq. (25). For f3 IPq(xy)g/:: f3£, a .sequence 

of points is given by 

(28) 

-(j+l), \ -(j)() (-) (-)- (-(j)) X \~J = X ~ - U x V x w x ,j = 0,1, .... 
q y q V q 

For f3 = f3 > I P (;Z )g I a sequence of points is given by Eqs. (28) and (29) 
2 q y 

with. Pl' replacingP in'Eq. (26) and U l} V 1) and W 1 replacing the q- q q- q- q-

corresponding ~lantities in·Eqs. (28) and (29), Then for any ~ such that 

fue < < eXf) 
f3 - T - 6(-.. , (30) 
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and every integer n such that 

1 
n ~ N(o) = 1.443 log (24~o) ) 

then 

And .if R A. <.1:.... then 
I-' 1'-',£ - 4a ~ 

cp (i:(n) ('I) > 'rf3 > 4ao. 
2 . - 2 - (34) 

Theorem 1 states that a step can be taken from a feasible point to 

a new feasible point with an improved value of F .. That is, given a feasible 

(within a specified tolerance) point x for which f3(X') is positive) another 
V V 

feasible point can be found· with an increase in the value of F which is 

proportional to the product of f3(x ) and the step length 'I. 
V 

maximum: 

Next the following sufficient condition is given for a global 

Theorem 2: Let x be a point in the intersection Gas described 
V 

prior to theorem 1. Let a tolerance E >0 be specified and· f3(x,) be the 
V 

quantity given by Eq. (25). Then if 

we have for any x in Ro 

F(X') - F(x ) < E 0 

V 

Theorem 2 states that if the quantity f3(~ ) is sufficiently small) then the 
V 
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value of the objective funct.ion, F(i' )) is as close as desired to the global 
V 

optimum value. The proof of theorem 2 depends on the fact that the constraints 

determine a convex feasible region. 

The convergence of the algorithm to the global maximum is based on 

the following theorem~ 

Tneorem 3: Let E > 0 be specified and 

2 2 
5 = E /3~(8nLa) . 

Starting at any feasible point x in R the algorithm gives a sequence of points 
o 

x. ) j = IJ 2y • o. .~ suchtha t 
J 

cp. (;;.) > ~o, i 
l .'] 

F~Llrthermore J if 

1, ... ,m 

F = F (~ ) = max i. F (~") I x in R} 
max max 1J 

there exists a finite member k(E) such that 

F - F(x.) < E 
max J-

for every j '::: K( E) . 

(40 ) 

( 41) 

As part of the proof it is shown that at most K(E) steps are required 

to reach x ,where max 

(42) 

and where the step length '1" = af)/6"" is used whenever possible. In practice 

the actual number of steps required will be far less thanK(E). Also, .more 

importantly) the nu:n:.ber of steps required will depend directly on the closeness 

of the starting.point x to the optimu..mpoint x 
- 0 max 



-19-

The proofs of the above three theorems are omitted but are given 

in Ref. 7· 

In connection with the iteration'EClso (.88) and (29), in the usual 

case only a few iterations are reCluired per step to get within the 

a-neighborhood of the intersection G, and if the active constraings are nearly 

linear) . the number of iterations reCluired approaches zero. 

To determine the optimum. .steplength, the Cluantity 1" = af3/6i\. can be 

estimated by applying a single iteration.;ECls. (28) and (29) with a small value 

of 1" = 1" I to get ~(l) (1"' ). It then can be shown that for (J' = r;;(l) 1/ F;( 0) I 

( 43) 

The algorithm can also be applied to the~problem.of maximizing a 

linear function in a nonconvex region. This is·true because Theorem 1 does 

not require the functions ~.(x) to be concave. Hence, even for. a nonconvex 
l 

re'gionR, if f3(x.) > 'E/2nla, a point x . 1 is obtained by the algorithm such 
J J+ 

that F(X
j
+

l
) -F(Xj ) :: 1"f3/2. Since Theorem, 2 depends on the convexity of R, 

it can be shown that for a nonconvexTegionthe algorithm will converge to a 

constrained stationary point. Because gradient projection is a steepest ascent 

procedure the point obtained for a nonconvex region will almost always be a 

constrained maximum point, which may be only a.local maximum. 

This completes the summary of the gradient projection method presented 

by Rosen. (7) In the following section some modification and simplifications 

to the method are suggested for the purpose of obtaining. a workable computer 

program based on the method. In Chapter 4, the various steps of the algorithm 

are illustrated in detail in connection with a two-dimensional example. 
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2.3 Computational Aspects of the Problem and Modifications to Rosen i s Gradient 
Projection.Algorithm 

In order to apply the gradient projection method to mir.liml1m weight 

desi.gn problems} it is necessary to violate certain of the requi.rements on F 

and CPo! as given in Section 2020 Also, in order to ottain a workable computer 
.L 

program it was necessary to modif'-j certain portions of the algori thmo 

It is as sumed in Section 202 that the feasi.ble regionR is convex and 

bounded 0 It can be shown (see Example 401 cf Chapter 5) that the feasible 

region for a minimum weight design problem is not necessarily con"lexo Si.nce 

Theorem 1 is applicable to a nonconvex feasible region the gradient projection 

.met.hod is still valid. 0 .But since Theorem 2 applies strictly only for convex 

feasible regions one cannot be very sure t~at a solution necessarily leads to 

a minimumo This difficulty can be overcome by starting the algorithm at two 

or-more points \.I!h:Lcha-re significantly dIfferent and comparing the fi.nal 

solutions 0 Furthermore,r in a m.i.ni:m1J1J1 weight a.esign problem i.t is not necessary 

to provide constraints in the form of upper bounds on each member size, since 

from the physical significance of the objective function it is observed that 

no member size can be expected to j.ncrease beyond a reasonable bound 0 

It is assumed in Section 202 that the functions cpu have continuous 
1. 

and bounded second partial derivatives., These derivatives are required for 

estimating the constant f,.,wh5.ch is a measure of the curvature of' the constraints 0 

The value of A. 1s used for calculating the maximum step length and in testing 

for convergence. In order to be a.ble to complete the algorithm. in a reasonable 

length of computation time it was found. advantageous to use an arbi tra:r-y step 

length of L/lOO, . where L is defined in·Eq:. (12) 0 Also itlrli11 be seen that 

the tolerance 6 need not depend on 'f..,as in Eqo (37) 0 The vectors :u:-~ (~) as 
.l.. 

given by Eg. (13) can be conveniently calculated by a forward finite difference 



-21-

technique. Therefore the only requirement necessary for the functions ~i is 

that they be continuous for all x in R. 

It is also assumed in Section 202 that U. (x ) ~ 0) i= 1) .... ,qJ and 
l 0 

that the vectors ~,(x ) are linearly independent, where x is a point ina 
l 0 0 

a-neigh-bOyhood of an intersection Go That this requirement must be met should 

be pointed out. The vanishing of u. ex )) or U. (x ) = OJ is possible for a 
l 0 l 0 

constraint which does not depend on at least one variable x .. Linearly 
l 

dependentu. may result when two or more constraints are redundant. This can 
l 

happen) for example) if constraints are written for two corresponding members 

of a symmetrical structure subjected to a symmetrical loading. 

In .Section 2.2 it is suggested that only the simplest objective 

function F(x) = xn need be considered. This leads to no great savi.ngs in 

computation time or simplification in the computer program. Therefore it was 

decided to computeF(x)=-'-- \lW tx)- at each step in order to gain abetter 

understanding of t:O.e behavior of the problem. Furthermore} it is assumed 

that a tolerance E:: > 0 has been specifi,ed and that another tolerance a is 

given bya = E2/.3"A.(8.nIa)2. The difficulty in calculating A has already been 

noted. The constant a is a measure of the lin.ear independence of the 

vectors u
l
') and is a property of the matrix V = [UTU. ] -1. 

q q q 

The tolerance a deterrJlines the closeness of each constrained' point 

.x to the corresponding intersection Go Because the IBM 7094 d.igital computer 
o 

provides single-precision accuracy of 8 decimal digitsJ it was found that 

for a:$ 1 x 10-7 the sequence of points given by Eqs. (28) and (29) does not 

always converge to an acceptable point. Also) the. sequence given by Eqs. (28) 

and (29) converges faster for larger values of o. In the course of this study 

values of 5 between 1 x 10-3 and 1 x 10-5 were found to give satisfactory 

. results. 



-22-

The tolerance E determines the closeness of the indicated solution 

to the true optimum. In Section 2.2 E and 5 are formulated so that for the 

step length as determined by ~ = a~/6A the objective function will never 

decrease for a given step. Using the arbitrary step length ~ = L/IOO and the 

tolerance 5 in the range 1 x 10-3 to 1 x 10'!'5 it is no longer possible to say 

that a given step. will not decrease the value of the objective function. Under 

these conditions it is necessary to· stop the algorithm .. whenever a .decrease .in 

the objective function is noticed .. The desired solution x will then lie max ' 

somewhere between the point· at which computatlonwas stopped and the point 

immediately preceding. By redefining ,the step length to be less than L/IOO 

and restarting the algorithm at the last feasible point? ,x can be obtained . max 

with greater accuracy. ,Alternatively, an interpolation procedure could be 

applied which should converge·to the point x 
max 

The above difficulty only occurs when the' solution 'lies in the 

intersection of <l < m constraints .. When the solution lies in the intersection 

of. <l = mconstraints, such an intersection defines a unique point (at least 

within a 5-neighborhood)"and in such cases at xmax ' ~. as given by Eqa (25) 

. was fOund to be of the order of magnitude of 1 x 10-
11

. 

For problems in.which x is obtained at the intersection of q = m max 
-8 -10 constraints, ,values of E in the range of 1 xlO to Ix 10 were found to 

be satisfactory if computation is stopped when~ < E/2nL~ For problems in 

which x is obtained at the intersection of <l < m constraints, the same 
max 

value of f3 was found satisfactory, provided the algorithm is stopped .when a 

decrease in F occurs. 

In Section 2.2. it is implicitly. assumed that the feasible region R 

contains only points x for which x. > 0, i =1, ... ,P. It is possible in the 
l 

course of the algorithm .that one or more variables may, approach zero. This 
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can be prevented) if necessary) by defining n.constraints in the form of lower 

bounds on each variable .. Also) it is possible that during certain steps the 

values of some xi may become negative. In such a case it may not be possible 

to analyze the structure or evaluate the constraints. Therefore provision is 

made in the computer program to prevent obtaining negative values for the 

variables x 0 • 

l 



III. STRUCTURAL SYSTEMS OF WIDE-FLANGE STEEL MEMBERS 

301 Rigid Frames 

As was noted in Chapter I) the weight of the structure and the 

constraints on stresses and deflections are expressed as functions of 

n geometric and/or structural variables ~1)x2) ... )xn) which are the design 

variables of a structure. . A typical wide-flange section has several properties) 

known as section properties) which are necessary to define the elastic behavior 

of a structure. These properties include moment of inertia) section modulus) 

areay,weight y .and two radii of gyration. Rather than include each section 

.property.as a design variable it is convenient when possible) to use ·only one 

of these section properties as the design variable for a particular member) 

. and to obtain the pther. section properties as functions of the designated 
-- -- _ ....... __ .•....... - ._ .. --_ ... - .. _ ..... _ .... - ....... _ ... __ .... _ ........ __ ..... _ .•....... - ..... _ .....•. __ .......... -

design variable. 

For an indeterminate rigid frame, the analysis of the structure 

depends on the relative moments of inertia of the members. Therefore for 

framed structures the member sizes) or design variables x., i = 1)2,0 OO)n) 
l 

wi.ll be taken to be proportional to the moments of inertia of the members) 

10. In formulating the constraint functions, it may be observed that stresses 
l 

due to bending depend on the section moduli, '. S.;. and stresses resulting. from 
l 

combined bending moment and axial force depend on the sect:j.on moduli and the 

areas) :Ai o·~ For frames braced ~gainst lateral buckling) the compressive 

stresses depend on the area and the in-plane radii of gyration, . Deflect-

ions also are functions of moments of inertia. For minimum weight design) 

.the objective function is the total weight of a struature and can be formu-

lated as a function of the weight of each member per foot of length) w.o 
l 

-24-
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Thus for problems involving rigid frames it is necessary to determine 

approximate relationships giving section ~odulus, .8,area, A~ radius of gyra-

tion, r, and!w~.ight p~T foot, . w, as continuous functions of the moment of 

inertia, I. Approximate c~rves representing the above relationships have been 

constructed for the so-called economy. sections which provide a given section 

modulus for.the/least weight. These sections are tabulated in the AI8C 

handbook. (1) In table 1, values of 1,8, ,w,and r are listed for these economy 

sections, .and these ·data.are plotted in Figs. 6, 7, and 8. 

Figtlre 6 shows the variation of section modulus with moment of 

inertia. The approximate curves were obtained by passing.aparabola through 

the' points 

I ;::: 0 8 :::: 0 

I :::: .5350 .8 354.6 
-'-"-'-... _ ... - .... _._ .... _ .. -_ ........... -

I 9000 
, I 

S :::: 502·9 

and.a straig~t line through the points 

I :::: 9,000 8 :::: '502·9 

I :::: 20,300 ., . 8 1105·1 

Thus the following relationship is assumed to represent the continuous variation 

.of sectionmodulus·with.momentof inertia~ 

8 :::: {~60. 6r + 84, 100 i - 290, 0 < I < 9,000 

(I - 8056.3)/1.876, 9000 SIS 20,300 

(44) 

Figure 7 shows the variation of weigntper linear foot of member 

with moment of inertia. The approximate curves were obtained by passing.a 

parabola through the' points 

I:::: 0 .w o 

I :::: 9,000' w 150, 
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where the parabola has a vertical slope at the originj .and a.straight line 

through the points 

I 9}000 w =150 

I 20}300 w = 300 

Thus the following relationship i.s assumed to represent the continuous varia-

tion of unit weight with moment of inertia: 

w 
j 1.58R, 0 SIS 9000 

1 (I + 2300 )/75.3. 9000 S I S 20.300 

Since -steel weighs about 490 pounds per cubic foot) the area of a section 

and the unit weight are directly related by the equation 

.A 

Hence} from.Eg. (45) 

A 

144 
490 w 

o :s I S 9000 

{ 

o. 465,JI J 

(I + 2300 )/25. 6 9000 S IS 20)300 

(46) 

Figure &-"shows the variation .of in-plane radius of gyration with 

moment of inertia. The approximate curves for 0 SIS 9000 were obtained 

by using 

and Eg. (47) .. A linear variation was assumed for 9000S lS20,300. Thus 

r ~ OS I S 9000 .21583 
r 

1 
(48) 

I + 174,.498 
9000 S l·S 20}300 12.,841 
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}u2 Trusses 

In the case of an indeterminate pin~pointed frame, or truss, the 

analysis of the structure depends on the relative areas of the members. 

Therefore for a trussed. structure J the member sizes.7 or des ign variables J 

x., i .= 1,2, coo, n,. will be taken to be proportional to the areas of the 
l 

members, A.o In computing the constraint functions buckling stresses depend 
1. 

on the least radii of gyration of the members, r. . Thus it is necessary mln. 
l 

to determine an,approxim.ate relationship giving r. as·a continuous function mln 

of the area.,.A c 

Incomputing.the objective fun.ction the unit weight of each member 

is a linear function of the area as given by Eqo (46), and hence the total 

weight is a linear function of the member sizes A .. 
l 

Figure 9- shows the variation of r. with. A for all theWF sections 0 IDln 

Figure 10 shows the variation of r . . wi thA for only. the 14;WF sections u mln 

. Since the 14':WF sections provide nearly the same range in A and r. as do mln 

. all the. WF sections, aqd since it i.s convenient to specify the· same depth 

for themembers.of a truss, the illustrative study made herein is further 

restricted to trusses made of 14WF sections 0 

The approxi..mate curves giving r. in terms of A were obtained by , mln 

passing.straight lines through the points 

and through the points 

A = 

A r.. = 4034. mln 
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·Thus the £ollowing relationship is assumed to represent the continuous 

variation of minimum radius of gyration with area: 

r . mln {

. 0.0113lA - 0.60122, 9.4~ A ~ 34.7 

= O.000382A + 3·786718, 34·7 <A S 125 

It is noted that Eq,sa (44) through (49) are only crude approxima-

tions to the-actual variations of the section properties of selectedWF 

members. However, it will be seen that any such approximation is sufficient 

for the purpose of finding the least weight design from among commercially 

available sections . 

. 3.3 . Least. Weight Design from, Available- Sections 

METHOD 1. Using continuous approximations to represent the 

variations among the properties of the available' sections - (Eqs. (44:), (45), 

(46),(47?,(48),(49)), theminimum-weightdesign.problemcan be formulated as 

a nonlinearprogramming.problem. The gradient projection method can then be 

used to solve the resulting :programming problem ,and obtain:what may be called 

the· "continuous solution." However, in general, . there may. not beany.co.fI1bina-

tionof commercially. available sections that corresponds to the continuous 

sGlution. It is therefore necessary to select the combination of available 

sections 'which gives an .available minimum-weight design. . Thi.s combi.nation 

of available- sections will be called the· "available solution." 

It seems reasonable to assume that the available solution will occur 

somewhere in the neighborhood of the continuous solut.ion. Tha t is, for each 

member size to be selected, oqlythe few available sections whose sizes are 

slightly less than or greater than the size indicated by the continuous 



-29-

solution. need be considered. Having selected such a range of available sizes 

for each member, all possible combinations of these available members are 

considered. Beginning with the lowest indicated size for each member} the 

structure is analyzed and the values of the constraints are computed} based 

on the actual section properties . The .member sizes are then increased one at 

a time to.the next available size until an available design is found which 

does not violate any of the constraints. Thereafter the structure is analyzed 

only for those combinations of available sections·which lead to·a lighter 

structure .. By this method the available solution is obtained from·all 

possible combinations of available sections in the neighborhood of the 

continuous·· solution .. 

. METHOD 2. The above method was found to be quite satisfactory for 

problems in l.vhich the number of design variables was small, (n·:S5) . However} 

in the case of problems in. which the number of design variables was large 

(n,~ 10) the number of possible corribinations became too iarge for this method 

to be practical. ,In such a case the following alternative method was used. 

An initial available solution. 'is ,determined by selecting for each 

member the available· section giving a.member size not less than that ,indicated 

by the. continuous solution 0 If any, constraint is vi.olated for this initial 

available solution} the next greater available size is chosen for each member} 

until a satisfactory initial available solution is obtained'. The size of each 

member is then successively. changed to the next lO-:-wer available section; the 

member giving the greatest weight decrease is changed. first .. The procedure 

is terminatedwhenJ no, member size can be decreased without violating some 

constraint· The resulting combination of available sections is then the 

min1mum.weight design. 
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The second procedure was applied to a 10-dimensional problem 

(see Seco 5.1+) and was found to work quite satisfactorily as regards compu

tation time. It was also applied to a 4-dimensional problem. (see ·Sec. 5.2) 

and was found to give the same available solution as the first pr0cedureo 



IV. ILLUSTRATTVE . MINIMUM-WEIGHT . DESIGNS 

4.1 General Remarks 

In this chapter) the gradient projection method is applied to several 

typical Civil'Engineering structures 0 

In order to·obtaina computer program which would be applicable to 

any general type of structure the computation.was divided among ,a main program 

and several auxiliary subroutines. The function.of the mainprogram.is to 

carry out the steps of the gradient projection algorithm as. set forth ·in 

. Section 2.2 and modified in. Section 2.3. The functions of the auxiliary sub

routines are to read in and write out variables which do not directly concern 

the main program, to analyze the structure" to calculate the values of the 

constraint functions" to calculate the values of the objection function and 

gradient vector). and to ,select an available design based on the continuous 

solution. The main program is applicable to anY,design.problem.whichhas been 

formulated in terms 'whi,ch correspond to the re<luirement of the gradient 

projection method. The auxiliary, subroutines may need to be ·revised for each 

individual problem, ,depending on the type of structu.re., . the' method of 

analysis, the constraLnts, the objective function"the relationships among 

the properties of the members, . and the type of ou.tput desired 

A description of the computer'program for minimum-weight designy 

a machine-independent flow d:i.agramforthe main program, short descriptions 

of the auxiliary. subroutines,!1 .and input data for atypical rigid frame and 

a typical truss are presented in.Appendices Aol,A.2,A.3, andA .. 4, 

respecti.vely. 

-31 
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In the examples to follow, the-Argyris matrix formulation(2)of 

structural analysis was used throughout. . The displacement method was used 

in the cases of rigid frames, and the force method was used in the case of 

the indeterminate pin-jointed truss. It should be pointed out that the main 

computer program is independent of the method of structural analysis used. 

4.2 Symmetrical Portal Frame 

As a first example the structure shown in Fig.· 11 is considered. 

The structure is a rigid frame of 30-ft. span, .and 15-ft. height;. the 

supports are rigidly fixed. The' structure is'loaded by 30-kip loads applied 

at the quarter points of the hor,izontal member. 

The moment of inertia, section modulus, area, .and unit weight of 

the columns are denoted by 11 , Sl' ,Al , and wl ' respectively; and the moment 

of inertia, . section modulus, .and weight per foot of the beam are denoted by 

. 1
2

, S2" and w
2 

respectively. . In accordance with the matrix . displacement 

method of . formulation the external joints A and B. and the internal joints 1, 

, 2, . 0 .,6 are denoted as shown. .The bending .moment diagram j.s defined by the 

moments at the internal' joints, ,M = {Ml' , M2, ... ,M6l . 

The non-dimensional design.variables x., i = l,2"are taken to be 
l 

l, 
x.r ./ x , where the reference value, x , is taken to be 9000 in'T. 

l l 0 0 

The non-dimensional constraints, CPi J i =1, 2" .3, .are defined so 

that the stressesrdue to bending:moment, or bending moment and axial force, 

'. are not greater than 20 ksi. Thus) 

IM21 
..l2.-. > 0 CPl 1 - ---

20B 20A -
1 1 

1 -
IM21 

> 0 (50) CP2 = 208 2 
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~l ~ 0 requires that the stress in the column due to bending 

moment and axial load is not greater than. 20 ksi. '~2 ~ 0 and ~3 ~ 0 require 

that the bending stresses in the beam resulting 'from the maximum negative 

" 

moment and the maxLmumpositive moment, respectively, .are not greater than 

20 ksi. 

The non-dimensional objective function is defined by F·= -W/W , 
o 

where W is the total weight of members 1 and2 J and the reference value, :Wo ' 

is taken to be 10,000 Ib ..Letting L. denote the tota11ength, in feet, of 
l 

members of size I., i = 1, 2 J l 

W \2 L .W • 

L i=l l l 

and 

2 
-1 ·T··· . F =---.' . L w' 

: W ",10., i i 
o -·l=..L 

Thus the gradient of the objective function, g, is given by 

Differentia ting :Eqs. (45),' 

-0·79 
L. 4 l if x < 9000 in. J .x 

W ~ l 0 -
. ,0 

l 0 

g. L. l -1.0 4 l if ,> 9000 in. x.x 

l W 75··3 lO- J 0 

; i 1,2 
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It is instructive to consider the steps in the solution of this 

rather simple problem in detail. If the gradient projection algorithm is 

initiated at the point ';('0 = {l .. O, 1.0} (see Fig. 12) the gradient, g, is 

followed until the point x:::: [0.1109, 0.1109} is reached, at which point 

Following the constrai~t surface CPl :: a., (~hich) in this cas~,. is 

a curve) the solutionX' :::: {0.1136, 0.100'71 is obtained. In order to illus-: max 

trat~the boundary of the feasible regionR, the algorithm was restarted at 

;('! r == {a. 7, o. 2J , the gradient was followed to the point;; == [0.6573" 0 .1202} , 
o 

and the constraint curveCP2 :::: 0 was'followed to the point x By plotting 
max. 

successive v~lues of {Xl' .x2J during. the travel along the curve CP2 == 0,; a 

plot of the portion of tpe boundary of R defined bY,·CP2 :::: 0 was obtained, and 

is shown in Fig. 12. Similarly, by starting the algoritbm at~o" :::: {O.l, 0.7}, 

the portion of the boundary of R defined by cp :::: 0 was 'obtained. and is also 
1 

shown in, Fig. 12. It cB;n be seen from this figure that the boundary is indeed 

nonlinear ..Also it can be seen that.R is not a convex region, but that this 

fact does not render the gradient projection method ineffective in the 

present case. 

In order to visualize the geometrical meanings of the various steps 

of the gradient projection method a.typical· series of calculations, in 

c.Qp:nection with this two-dimensional problem are illustrated. For this 

purpose the·algoritlnnwas started at the point xo = {0.165, Oo130}. The 

results are shown on Fig. 13, which is·an enlarged region of the solution 

. space in the neighborhood of x max 

In accordance with the flow diagram given in the appendix, the 

structure is analyzed, the constraints are caiculated, and it is determined 

that the point x ·is feasible (i.e. cp.(x ) ~ 0, i = 1,2, 3), and that no o l 0 

. (- ))2 2 constraint is active (l.e. (CPixo > 5 , i :::: IJ. 2, 3). Then by means of 
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Eqs c (51) the gradient of the objective function at· Xo,g(.~o) = -l-o .615, 

-Oo693}X 10-4, is determined. In accordance with part 1 of the algorithm, 

movement occurs in the direction of the gradient to the point Xl = 

r } - 2 2 . 
LOo1423, 0.1044 , at which point (~2(xl)) ~ a , ~l > 0, ~3 > o. Thus the 

point Xl lies in a a-neighborhood of the graph of the function ~2(~) O. 

By means of the forward finite differencetechnique·described in the flow 

',. -: .. : - - ,{. dcp2 (Xl )dcp2 (xl) } 
diagram th~ gradlent of ~2at Xl' u 2 (xl ) =. dX

l 
' dX

2 
= {-1.0696, 907759} is calculated using :Eq. (13). The vector U'2CX1) is normal 

to ~2(i) = 0 at the pOintxlo The line H
2

(;(1)' which.:is tangent to the graph 

of ~2 (x) = 0 at xl" is constructed which is normal also to u2 (;(1) at ;21' The 

matrix V'l (xl) = (u~ (Xl)U '1 (xl)) -l.= (0. Ol034) is determined, and the gradient 

of the objective function at Xl,g(f
l

) == {-0.6623, -0.7732} X 10-
4

, is calcu

·lated according to ,Eqs. (51) .. r(~l) = Vq (X"l)U~(X"l)g(X"l) = (-0.7083) X 10-5 

is calculated by :E:'l- (22:),. and U'l(Xl ) r(iZl ) = {O. 0758, -0. 6924} x lO -4 is 

determined. U qr .is ,the component of the gradient, g(X
l

) , normal to the curve 

CP2(i) = 0 at ;(1' i.e. the component of g(xl ) in the direction.of U2 (;(1)' 

'-,Subtracting this component U r from g, the component of g which lies in the q , 

tangent of the graph of CP2 C;() = 0 at Xl is obtained. Thus Pq C;(l)~(~l) = 

g(:iZl ) - U <l. (:iZl):r(:iZl ) = {-O. 738l, -0.0808} x lO -4. 

The quantity ~l = -0.3483 X 10-
4 

is computed according to Eq. (23), 

-4 I '-I and ~2 = ~l = -0·3483 x 10 is computed according to Eq. (24), P g = 
. q 

. ''--2---'2' -4 -) I '-I 4 
"Igl + g2 = 0·7425 xlO is determined, and f3(xl . = Pqg = 0.7425 x 10- is 

computed according to Eq. (25). Since ~ > E/2InL = 0.1768 x 10-9 and 

/Pqg/ ':: ~2 ' the unit vector z(Xl ) is computed according to ·Eq. (26) .;:(x
l

) 

is a unit vector in the direction qf the projected gradient and lies along 

the tangent to '~2(x) = Oat Xl' Usi.ng the step length 1" =1/25, .a movement 
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-(0) { 1 is taken in the direction of z to the point x (~) = 0.0860, 0.0983J . . Due 

to the curvature "of the graph of CP2(x) = 0, (CP2(~(0)(~)))2 > 52; it is then 

necessa~ to apply the correction procedure prescribed by Eqs. (28) and (29) 

until. the point x2(~) = x(5)(~) = {0.0863) 0.0958} is obtaine¢L At point 

X2(~3)J CPl(x2(~)) < O. One-dimensional interpolation is used to find ~l such 

that 0 < '];'1 S ~,.which yields X2(~I) = x 2 = {Ool136, Ool007}. At x2, 

(CP1(x
2
))2 + (CP2(x2))2 ::: 52. Thus the point x

2 
lies ina5-neighborhood of 

the intersection of the two constraint surfaces CPl(X) = 0 and CP2(x) = o. 

The gradients of CPl andCP2 at x2 are calculated according to :Eq. (13) 

giVing :U
Q

(x
2

) =' [ul ,u2 J. J . where 111 = (5.8601) 1.6000}) and 112 = {-1.5677,lO.415J] 0 

;1 (x
2

) and U'2 (X2 ) a,re normal to the graphs of CPl (x2 ) = 0 and CP2(x) =0, 

respectively, at the point x
2

" The lines,H
l

(x2) and H2 (x
2

), which,are tangent 

at x
2

to the graphs of CPl= 0 and CP2= 0 respectively, are then constructed. 

The curvature of the graph ~f CP2(x) = 0 may be seen by considering the angle 

between the tangent lines H2 (xl ) and H2 (x
2

). The gradient of the objective 

- - -) { 6 + .+} -4 function at ·x2) g(x2 =-00741074 0.-:-) .-0.7871116&:- x 10 is calculated from 

,Eq. (51). r(x2 ) = V (x2)U
T(x2 )g(x2 ) = {-0.1409, -0~0539jx 10-4 is calculated 

q. q . 

using.Eq. (22)"and uq (x2 )r(x2 ) = {-0.741074612:, -0.787111672:1 x 10- 4 is 

determined. ,Since,. at x2, there are two active constraints) .(Jjis the 

component·of the gradient which is normal to the intersE;!ction of the lines 

H1 (x
2

) and H2 (x2)· As before we obtainPq(x2)g(x2 ) =g(x2 ) - Uq (i"2)T'(x2 ) 

{0.0909, -Oo1819} x 10-
11

" .which is the projection of the gradient on the 

intersection of the ·lines Hl (x
2

) andH2 (x2 ). Since the intersection of two 

lines is a point, this latter component is zero. The quantities 

-4' 8 -4 ·~11 
(31= -0.,4250 x.10 ,(32 = -0.2 21 x10 ,and (3 =0.2034 x 10 are computed 

according to Eqs. (23), (24), and (25) .. Since (3 S E/2nL = 0.1768 x 10-9 , the 

point '~2 is the desired optimum point x . 
max 
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The algorithm was restarted at the point ~3 = {0.120, Oo146}, and 

similar results were dbtainedj the steps are sketched in Fig. 13. 

In the manner described above, the gradient projection method yields 

a continuous solution to the problem of minimizing the weight of the structure 

shown in Fig. 11, subject to the prescribed constraints on certain stresses 

in the structure. ·It remains to choose available WF sections which provide 

a realizable opti.rnlli'TI. structure .. Taking :L =3, 7 possibilities for each 
band 

member are considered. The tolerance E 
a 

0.01 is chosen so that a· computed 

stress which.is in.excess of the allow~ble stress by ·less than 1% of the 

allowable stress is considered acceptable. The available sections considered 

for each member· are shown in.Table 2. 

By considering all possible combinations Qf these -available sections, 

it was found that an.lBWF55 column section and an l8WF50 beam section provide 

the optimum available solution. 

The moment diagram corresponding to the continuous solutionis 

shown in. Fig. 14,. and the moment diagram corresponding to the available 

solution .is shown in Fig. 15. 

4.3 .S~..metrical Two-Story· Single-Bay· Frame 

The second example considered is shown in. Fig. 16. It is a two-

story single-bay frame having the overall di.rnensions shown .. Members ofA7 

steel are·used,.and the frame ·is to be designed according to ,current (1965) 

AISC Specification~l) For design purposes) it is assluned that a 1 ~~f 

uniformly. distributed load acts on the roof beams, a 2 klf uniformly ,dis·- . 

k k tributedload acts· on the floor beam, .and that wind forces of 3.57 and 8.92 

act at the roof and floor levels, respectively. Since the wind may. act from 

. either direction, .it is assumed that the final design will by symmetrical. 



This structure was also considered by Bigelow}4) who obtained the 

minLmum-weight plastic design according to,AISC specifications. The results 

of the elastic and plastic designs will be compared later. 

T-wo cases are consi.dered~ In Case I, deflections will not be 

constrained; in Case II,an allowable lateral deflection at the roof line is 

specified to be 0.3 in. 

,As In 
.1...1 __ 

lJue first example, the non-dimensional design variahles are 

x.= I./x , i 
l l 0 

1,,2, 3, 4, where Xo = 9000,in4; . where II corresponds to the 

,roof beam) 12 the floor beam, ,and so on, as shown in Fig . 16. 

The constraints are defined so that stresses due to bending moment, 

and combined bending moment and axial load are within the allowable stresses 

of the AISC Specification. ,The effects of shear and local buckling are not 

considered; ,also, the frame is assumed to be 'adeCluately braced against out-

of-plane deformations. If necessary, these secondary effects could be con-

sidered in the form, of additional constraints. 

To obtain the constraint functions, consider ,the typical members 

shown in: Fig., 17. A typical beam of length'L is subjected to' a total load 

W=wL, ,where wis the intensity of the ,uniformload,E:lnd to the end moments, 
I 

ML and~J ,where positive moments produce clockwise rotation of the ends of 

the member in accordance with the matrix formulation of the analysis. The 

distance ,from the left and of the beam to the point of maximum 'positive moment 

is 

(~+ ~) 
s = 0·5 - WL/2 

The maximum positive 'moment M+ is then given by max 
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·A typical column of lengthL is subjected to an axial loadP and to end moments 

·MT and ~e 

In formulating the constraints it is preferable to define a single 

constraint for each member in each loading condition, rather than a separate 

constraint for each maximum stress.in each membero To illustrate this, 

consider the gravity load stresses ina roof beam·· of the two-storyi two bay 

frame shown in Fig 0 240 . Neglecting shear and other secondar.f effects it is 

necessary to limit the bending stresses due to the end momentsJ.~ an~~, 

+ . and due to the maximu.m :positive moment, M e' Suppose that a separa~econmax 

straint is formulated for each. of these moments, and suppose further that for 

some combination of member sizes ML=~' If for this combination of member 

sizes the constraint pertaining to ~ were active, then the constraint 

pertaining to'MR would also be ·active. ,Since :we can only drop.one constraint 

at a time, these two constraints would remain active during the course of the 

algorithm, and computation would proceed) always maintaining .the equality 

between .the endmoments~ Therefore) . since .this possibility;would lead to an 

unreasonably restricted answer, it is preferable to write a single constraint 

which pertains to the controlling stress in a given member for a g:iven 

,loading conditione 

Informulating.the constraints it is necessary to avoid thepos-

sibility of obtaining.active constraints which have linearly dependent 

gradient vectorso .For the example of Fig. 16, under gravity loads, the 

stresses in. column AB -are. identica,l to .the stresses in column.CDbecause of 

symmetrye Thus the constraintCP3 .. ::: 0 (see Fig. 15) applies both to column AB 

and to column.CD) and a separate constr~int for column CD should not· be 

includede 
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In view of the preceding comments) there are eleven independent 

constraints as shown in Fig ... 18. This figure indicates the correspondence 

between the constraint functions and the members·and loading conditions. 

~l ~ 0) for example, requires that the controlling bending stress in the 

roof beam due to gravity loads .be not greater than the allowable stress 

'prescribed by the' AISe specifications. CPll'::: 0 requires that the lateral 

deflection be not greater than a prescribed value. To illustrate the forrnula-

tionof these constraints" the following typical cases are considered: 

.1) typical beam - gravity. loads) 

2) typical beam - wind and gravity. loads) 

3) typical column - gravity loads} 

4) typical column - wind and gravity, loads • 

. Inthe following) it is assumed that the forces shown correspond to the 

loading condition being considered. 

1) Typical. beam- gravity loads;.· According, to section 1.5.1,.-4 of 

the,AIse specifica,tion) the allowable bending stress is limited to 0.66 F ) 
Y 

.where F is the yield stress. For A7 steel) F = 33 ksi. The member maybe y y 

proportioned for 9/10 of the negative moments produced by gravity loading if 

the maximum position moment is increased by. 1/10 of the average of the negative 

moments .. Thus" for gravitY,loads, the kth constraint corresponding to beam j 

.is given by) 

(54) 

where 

d S . th t . d 1 f th . th b an . lS e sec lon rno u us 0 e J , earn. 
J 
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2) Typical beam-wind and gravity loads .. According to section :1.5.6 

of the AISC Specification) allowable bending stre~ses for this case maybe 

increased by 1/3. 
th . 

Thus) for wind and gravity loads) the k constraint corre-

sponding to beam j is) 

CPk 
M 

max 

Here- M = max (I~ L I~ I) /M+ ./) max -D -~ max 

(56) 

3) Typical column gravity loads. According to section 1.5.1.5 and 

1~6.1 of AISC Specifications) columns must be proportioned such that 

and 

where) 

kL = 

r 

C = c 

F.S. = 

F = y 

Fb = 

f 
a 

0.6F 
y 

F = a 

< 1.0 

[l - (~~~)J Fy 
c 

F.S. 

effective length of the column, 

radius, of gyration . in the plane of bending) 

131.7 for A-7steel) 

2+.2. (kLLr) - (kL/r)3 
3 8 Cr 3 c 8 Cc 
yield stress. 33 ksi for A-7 steel, 

0.66 F y 



F' 
e 

149.000 000 

(kL/r)2 
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f computed axial stress =P/A. ) 
a J 

f b - computed bending stress = 0.9 max (I~ I ) I~ I }/Sj 

c = o. 85 except when f IF < 0.15; m a a-

f fb 
For this case, require F

a
.+ ~.~ 1.0 

a b 

Thus, for gravity loads, the kth constraint corresponding to column j is 

formulated as follows: 

if p/ A,jFy ~ 0.15, 

~k= min {l - ~: - ;~ , l - O~6Fy .~;~} ; 

if piA,'. F > 0.15, 
J ~ 

r 

~k = min{l 

(57a) 

(57b) 

4) Typical column-wind and gravity loads. In this case the 

. stresses F
b

, ,Fa' and F~ may be increased by 1/3 over the values given above. 

th . 
Thus, for wind and gravity loads".the k constraint corresponding to 

column j is as follows: 

if P/AjF < 0.15" y-

if P/AjF> 0.15 
y 

~k = min {l - (~;; 
3 a 

f 4 
(1- :&.) (-)F 

(-)F! 3 b 
3 e 

,,1-
f 

a 
4 

(-3)0.6F . Y 

fb } 
(~)F . 
3 b 

(58b) 
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The objective function is defined as in the previous example by 

using F = -W/W ,.where W is the total weight of the structure. and the 
. 0 " 

reference value W is taken to be 10,000 lb. The gradient vector gis defined o 

by Eqs. (51), for values of i = 1, 2, 3, 4. 

Starting the algorithm at the point x = (0.5, 0.1, 0.5, O.l), the 
o 

gradient projection procedure leads to the continuous solution x max 

(0.0747, 0.1748, 0.1156, 0.0937) for Case I, in which deflections are not 

limited. The active constraints·· at the point xmax are CPl' CP3' CP6" and CPIO· 

The continuous solution for Case I is shown in Fig. 19. 

Considering all combin~tions of seven available sections for each 

member, the following available solution.was obtained for Case I: 

11 515 in4 16 WF40 

T 1479 21 WF68 -2 

13 = 889 .18 WF55 

14 583 16WF45 

This available solution is shown in Fig. 20. The minimum;"weight plastic 

design of the frame as obtained by Bigelow(4) is compared with the·present 

optimum elastic design in Table 3. 

For this frame; plastic design:leads to a weight savings of 690 Ib, 

or 10.2 percent . 

. For Case II, in.which the lateral deflection at the roof line was 

limited to 0.3 in., the gradient projection procedure was started atx 
o 

(0.1, 0.5, 0.1, 0.5}, .and led to the continuous solution ~II 1 
max+ 

0.57943, 0.07766, 0.41884}. The active constraints at this point are ~l' 

CP3' and CPll' 
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-I In Case I the solution.x corresponds to the intersection of four 
max 

constraint hypersurfaces, which, in a four-dimensional problem, defines a 

unique point which is a vertex of the feasible region. However, in Case .11 

-II 
t he solution xmax+1 corresponds to the intersection of only three constraint 

hypersur£aces, which are sufficient only to define a curve in a four-

dimensional problem. Inis situation is illustrated in Fig. 21. In this 

figure) G denotes the curve which is the intersection of q = n - 1 constraint 

hypersur£aces, . where n is the number of variables. The algoritbm proceeds 

from the point x 1 in the direction of -;: (~ 1') to the point x . max- max- max+l, and 

since the weight of the structure at xmax+l ' W(xmax+l )' is greater than 

.W (x l)' x 1 is indicated as the solution point according to the modifi-max- max+ . 

ca,tions to the gradient projection procedure described in.Section·3.3 above . 

. Actually., the solution x lies somewhere between the points x 1 and max max+ 

x 1 along the curve G. Since it was necessary to use a small step length 
max-

~ = L/100 in traveling along the boundary of the feasible region, the points 

x
max

-
l 

and Xmax+l are both reasonably close to the actua,l solution point. 

In the present example, the algoritnm was restarted at the point 

Xi -.(100, ,1.0, 1.0, 1.0} and led to the continuous solution X II 1 
o max+ 

0.07032., 0.55852, 0.07761, 0.44308 , at which po.int the active constraints 

are CPl' CP3' and qJll as before. The optimum weights corresponding to the two 

solution points are 990001b and 98992 lb. 

The continuous solution corresponding to xmax+l = (0007032, 

0.55852, 0.07761, 0.44308} is shown in Fig. 220 The available solution was 

obtained by considering a,ll combinations of seven sections for each member, 

and is shown in Fig. 23.. The same available' solution is obtained when the 

- t algorithm is started at the alternate point x' 
o 
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Beginning at the point Xl = ~.O, 1.0,1.0, 1.0}, the path that 
o 

leads to the continuous solution can be described in the following manner: 

begin with feasible point, 

X = (1.0, 1.0, 1.0, 1.0}; 

move along gradient and interpolate to find first active constraint, 

x = (0.3146, 0.3146, 0.7009, 0.5256} 

CPll is active; 

move along hyper surface defined by CPll o until next constraint 

is encountered, 

x = (0.0768, 0.4894, 0.5424, 0.5043} 

CPl and CPll are active; 

move along hyper surface defined by 

CPl = 0 and CPll = o until next constraint is encountered, 

X=: (0.0703, 0.5585, 0.0776, 0.4431} 

move along hypersurface (curve) defined by CPl = 0, CP3- 0 , 

. and CPll = 0 until: weight increases, 

The computer time required for this path was approximately 

50 seconds on the· IBM 7094. 

4.4 Unsymmetrical Two-Story Two-Bay Frame 

The third illustrative design is shown in Fig. 24. It is a two-

sto~ two-bay frame having the overall dimensions shown in Fig. 24. Members 

of A36 steel are to be used and the frame is to be designed according to the 

current (1965) AISC Specification. The structure is subjected to the same 
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loads as in the second example (Section 5.3 above) excep~in this case,. it is 

assumed that the wind can act from either direction. 

The non-dimensional design variables x. = I./x , i =1.,2, ... ,10 are 
l l 0 

defined as before J with x = 9000 in4. The members are numbered as shown in 
o 

Fig. 24. 

The constraints are formulated in accordance with the procedure 

outlined in the second example, the only difference being that higher. allow-

able stresses are specified for A-36 steel. The constraints are numbered as 

shown in Fig. 25· The constrain~s CP31 ::: 0) CP32 ::: 0) and CP33 ::: 0 require that 

the lateral deflection at the roof line be not greater than a specified limit. 

This l~it was taken to be '30 in. so that the deflection constraints would 

not be come active. In this manner, the solution can be obtained without 

deflection constraints. The deflections corresponding to this minimum weight 

design can then be examined; and if they are twolEi.Yge; the problem can be 

solved again with appropriate limitations on deflections. In this example 

the maximum lateral deflection was 0.54 inches· and.was considered acceptable. 

The effective C01UTIln lengths a.re assumed to be 102 and 2.0 times the actual 

lengths for the upper and lower stories, respectively. 

The objective function is defined as in the first example 

(Section 5.2) by F = -W/W ,. where W is the total weight and W is taken to be· o 0 

.10000 lb. The gradient vector ,g, is as defined_ by.·Eqs. (51), for i = 1, 2) 

0 •• , 10. 

Beginning the gradient projectionalgoritbm at the point x 
o 

(1.0, .1.0) o •• ,l.O}) the solution ~ .= (0.07837) 0.01837, 0.38405, 0.27490, max 

0.41602, 0022726, 0.14805, 0.36987, 0.22785, O.97379}is obtained. The 

active constraints at the point xmax are CPl' CP2' CP3} CP5' CP6} CP7' CP8) CP9' CP10J 

and CP24',' Since ten constraints are active, .and since the problem is 
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ten-dimensional, the point x corresponds to a uni~ue point which is a 
max 

vertex of the feasible region. The continuous solution is shown in Fig. 26. 

The path taken according to the gradient projection procedure is obtaining 

this solution can be summarized as follows: 

Begin at feasible point x = ~.O, 1.0, .. 0, 1.0} 
o 

follow gradient to first active constraint, 

.~ = 1, ~lO is active; 

follow. projected gradient to next active constraint, 

~ = 2"~8' ~10 are active; 

. follow projected gradient to next active constraint, 

q = j, ~8" ~9' ~10 are active; 

follow projected gradient to next active constraint, 

q = 4, ~7 ~8' ~9' ~lO are active; 

follow projected gradient to next active constraint, 

~ = 5, ~~, ~7' ~8' ~9' ~lO are active; 

follow projected gradient to next active constraint, 

~ = 6, ~3' ~4J ~7'~8' ~9' ~lO are active; 

follow projected gradient to next active constraint, 

~ = 7, ~3' ~4' ~6' ~7' ~8' ~9' ~lO are active; 

follow projected gradient to nE:;xt active constraint, 

~ = 8, ~3) ~4-' ~6J ~7'11~8' ~9' ~lO' :5£24 are active; 

follow projected gradient to next active constraint, 

q = 9"~3' ~4"5£5' ~6' ~7' ~8' ~9} ~lO' ~24 are active; 

drop ~4 from intersection of active constraints, 

.~ = 8, ~3' ~5} ~6' ~7' ~8' ~9' ~lO' ~24 are active; 

follow projected gradient to next active constraint, 

~ = 9, ~2' ~3' ~5' ~6' ~7' ~8" ~9' ~lO'~24 are active; 
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follow projected gradient to next active constraint) 

are active; 

at this point" f3 S. E/2:r'l.L; hence x x max 

Here, projected gradient means the projection of the gradient along the inter-

sectQon of the active constraints, and q denotes the number of active 

constraints. Also, the most recently added constraint is underlined in the 

above summary of steps. 

The computer time required for this solution was approximately 

6 minutes 40 seconds on the IBM 7094. 

Using the second method of obtaining. an available solution (Section 

4.2)) the following available' solution is obtained: 

·1 1 
447 iri4 16WF36 

12 = 147 14B17·2 

13 3610 . 27WF102 

14 2370 24WF84 

15 = 3610 27WF102 

16 = 1600 21WF73 

17 1328 21WF62 

IS 3260 27WF94 

19 2093 24WF76 

110= 9000 .36WF150 

This available solution leads to a frame weighing jO,,053 lb." and is shown 

in Fig. 27. To obtain the available solution from a ~Bown continuous 

solution) using the second method) required approximately 36 seconds 

computation time. 
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4.5 ,Pin-Jointed Truss 

The fourth and last example considered in the present study is 

shown in Fig. 28. It is a pin-jointed truss) which is 20 ft. high by 10 ft. 

wide; loaded by 1000k vertical loads and 300k lateral loads as shown. It is 

assumed that the lateral loads can act from either side. Since the lateral 

loads can act from either side) the vertical members are all taken to be of 

the same size; for the same reason) the two diagonal members in a given panel 

are taken to be identical. Thus it is re~uired to select 5 unknown member 

sizes. The members are numbered as shown in Fig. 28. The cross-sectional 

area and least radius of gyration of the members are denoted) respectively) 

by Ai and r min.) i = 1) ... ) 5 0 

l 

The non-dimensional variables, x.) i = 1) ... )5) are taken to be 
l 

x. = A./x ) v.There the reference value) x ) is taken to be 34.7 in2 . 
l l 0 0 

The non-dimensional constraints are defined so that tensile stresses 

are limited by the equation 

1 
p 

> 0 (59) 

and compressive stresses by 

where 

P 
l+AF > 0) (60) 

a 

P axial force acting on member being considered (tension positive), 

A cross-sectional area of member being considered (for tension 
members the net section is assumed to be 80% of the gross 
section) J 

F
t 

allowable tensile stress on net section 

F 
Y 

0.6 F ) y 

yield stress 36 ksi) 
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F allowable compressive stress 
a 

[l -0·5 (~)J FY 
F.So ) for L/r.< Cc) 

for Llr > Cc ) 

L/r slenderness ration of member being considered) 

L = unbraced length of member ) 

r r·. = minimum radius of gyration of member) 
mln 

c~ 126.1 for A-36 Steel, 

2. + d. (L/r) _ 1:. (L/r)3 
F.B.= 8 C 8 c .3 'C . c· 

Additional constraints are given requiring that the member sizes should not 

be smaller than a specified minimum value. In this example, the minimum 

member size was taken to be 8.81 in
2

) which is the cross-sectional area of 

the smallest available 14WF section. The size constraints are written in 

the form 

x.x 
lO 1>0 l' 

8.81 - . - i 1, ... ) 5 (61) 

Thus} the problem involves 15 constraints as· shown on Fig. 29; 

10 of these constraints control the stresses in the members, and the other 

5 constraints llmit the sizes of· the members. 

The non-dimensional objective function is defined byF = -w/w 
o 

where W is the total weight of the members and the reference vEilue,:Wo'. is 

taken to be 10,000 lb. Letting.L. denote the total length) in ft., of 
l 

members of size A.} and w. the weight per linear foot of members of size A.) 
l l l 

w ~ I 5 

. i=l 
L.w. 

l l 



and F 

490 Since w. - -- A 
l - 144' i 

F 
1 
W 

o 

L.w. 
l l 
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L.x. 
l l 

Hence, the gradient of the objective function, g, is given by 

i 

(62) 

Using the gradient projection technique to obtain the continuous 

solution and the first method to obtain the available solution, the design 

shown in Fig. 30 is obtained. 

,Since, in this. design, the size of members 2 and 3 are equal to the 

lower limit of 8.81 in2 , it was considered possible that a weight savings 

might result by eliminating ,one or both of these members, or by selecting a 

statically detenninate design obtained by, eliminating one diagonal from each 

panel. The resulting alternative indeterminate minimum weight designs are 

shown in Figs. 30 through 32. These designs, along.w.ith the determinate 

designs, are compared in Table 4. 

From Table 4, it is evident that the least weight des.ign corresponds 

to configuration II, in which the lower horizontal bar has been omitted, and 

the upper horizontal bar has been retained at the minimum size. 

It is interesting to note here that a minimum weight solution in 

which one or more design variables are equal to the lower limit does not 

necessarily imply that these members should be eliminated. The elimination 
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of one or more members leads to a structure of a different topology, and thus 

to a new :programming problem having fewer variables and no direct relation-

ship to the original programming problem. In order to solve cases II and III, 

it was necessary in each case to reformulate the constraints and to redefine 

the flexibility matrix for analyzing the structure. To solve cases IV, V, 

and ,VI, no programming was involved, since these structures are statically 

, d.etermina te 0 

In comparing the designs shown in Table 4 it is obvious that the 

lightest configuration (Case II) may not necessarily ,be the cheapest one. In 

order to choose the most economical design it would be necessary to study the 

costs of fabricating and erecting each of the alternative designs as well as 

any other variables that might affect cost. These and other considerations 

which bear on the choice of actual designs are beyond the scope of this 

investigation. 

In none of the cases considered was any member aize controlled by 

tensile stress. Thus, the assumption A t'= 0.8 A is immaterial as long as ne 

the tension,connections can be ,designed so that the stresses on the net 

sections of the members indicated in Figs. 30 through 35 are;, acceptable. 



V. SUMMARY AND CONCLUSIONS 

5.1 Sunrrnary 

A flexible techni~ue has been developed for obtaining the minimum 

weight design of indeterminate rigid frames and trusses based on the assump

tion of elastic behavior. This has been accomplished by assuming that the 

structures are to be fabricated from commercially available steel sections. 

By obtaining approximate relationships among the necessary section properties} 

the number of constraints on stresses and deflections are reduced to a 

relatively small number; the objective function is formulated in terms of the 

weight of the structure. The resulting constraints and objective function 

define a nonlinear programming problem which is an approximation to the 

original design problem, and which can be solved by means of the gradient 

projection method of nonlin~ar programming. The solution of the nonlinear 

programming problem, called the ii continuous solution, il may be thought of as a 

first approximatioIj. to the solution of the original design problem. ,On the 

basis of the continuous solution an "available solution" is obtained from the 

combination of available sections that gives the least weight·structure. 

5.2 Conclusions 

The following conclusions can be presented as a result of this 

investigation: 

1. Problems of minimum weight design of staticallyirideterminate 

rigid frames and trusses can be formulated as nonlinear prograrmning problems. 

2. In order to formulate the design problem as a programming 

problem, it is necessary to obtain approximate relationships among the section, 

-53-



-54-

properties of the structural members. It is possible to do this for the 

economy WF sections for rigid frames) and for the l4WF sections for trusses. 

3. The gradient projection method of nonlinear programming provides 

an efficient numerical technique for solving nonlinear programming problems in 

connection with structural design problems. The method is suitable for use on 

large digital computers, and provides a sound ma thema tical bas.is . on which to 

develop a rational design method. 

4. It is possible to select a set of commercially available member 

sizes on the bas.is of the solution to the programming problem. This can be 

done with reasonable certainty that' the available solution is in fact the 

lightest available design. 

5. The method which has been developed has proven to be flexible. 

At the present stage) instability constraints) size constraints) and deflec-

tion constraints have been formulated in addition to constraints on stresses. 

In order to accommodate other types of constraints it is necessary merely tq 
........... _ .. __ ._ .......... - .. _ .......... _....... ..._. . .. __ ................ _ .. -........... __ .. _-_ ... _ ...•.. __ . __ ... _ ........... _ ....•....... -.:.. ... _._._ .. _._ ..... _-" ..... , .... _ ............ __ ._ .................. __ ........ " .... -.-.......... --.-.- ....... ~ ... -----:... ..... -.-.~ .. , ..............• __ ................. _ .................. _ ...................... -.......•.. _ .... _ ...... -._" ._-_. __ ._. __ ....... _.~_._" .. - _. '--'~ 

obtain the relationships among the required section properties.and the 

design variables. Also) overall dimensions can be included as design 

variables. 

6. A minimum-weight design problem does not necessarily'·lead to a 

programming.problem with a convex feasible region. Thus) it.is not mathe-

matically certain that the programming technique will always lead to a global 

min~mum rather than a local minimum. This difficulty can be overcome by 

starting the gradient projection algorith~ at more than one initial feasible 

point and comparing the final answers. 

7.A minimum.weight design is not necessarily. a fully-stressed 

design) especially if the structure·is subjected to more than one loading 

condition and if deflections are constrained. In other words, the solution 
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to a programming problem does not necessarily occur at a vertex of the 

feasible region. This occurs when the number of active constraints corre

sponding to the optimum solution is less than the dimensionality of the 

feasible region. 

8. It is not always possible to obtain the minimum-weight design 

.merely by removing members which tend to become small during the solution of 

the programming problem. Rather it is necessary to reformulate the program

ming problem because of changes. in the dimensionality of the programming 

problem and changes in the topology of the structure. 

9. The minimum weight design is not necessarily the most economical 

design. In order to obtain the most economical design the problem must be 

formulated with the cost of the structure as the objective function of the 

design variables. The technique proposed herein, however, is applicable to 

minimum-cost designs. 
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APPENDICES 

A.l Computer . Program for Minimum-Weight Design 

The complete computer program for obtaining the minimum weight 

elastic design of a structure consists of the following parts: 

1) main program; 

2) auxiliary subroutines; 

.3) input data. 

The function of the main program is to 'perform the gradient projection 

.calculations according to the method presented in Sections 2.2 and 2.3 of the 

text. It is advantageous for this main program to be in such a form that it 

can be used as a tool to obtain the design of any type of structure. For this 

reason the main program was designed to be independent of the type of 

structure being considered. A machine-independent flow diagram of the main 

program is presented in Appendix A.2. 

The auxiliary, subroutines perform the following functions: 

1) read input variables other than those which pertain to the 

main program; 

2) write the appropriate output quantities whenever this is 

required by the main program; 

3) calculate the section properties; 

4) analyze the structure; 

5) calculate the values of the constraints; 

6) calculate the values of the gradient vector and the objection 

function; 

7) select an available design on the basis of the continuous 

solution. 

. -;.57-



No attempt was made to obtain auxiliary. subroutines which,Wouldbe applicable 

to all structures. It was necessary to write a separ~te subroutine for cal

culating the values of the constraints for each problem. The subroutines for 

reading input variables and writing output variables" analyzing the structure) 

calculating the section properties) calculating the objective function and 

gradient vector" and selecting the available design were written in two forms" 

depending on whether the structure was a rigid frame or a truss. Short 

.descriptions of the auxiliary subroutines written for the study. are presented 

in Appendix A .3. 

The input data was read according to one of two formats" depending 

on.whether the structure was a rigid frame or a truss. Input data for a 

typical rigid frame problem and for a typical truss problem are presented and 

explained in AppendixA.4. 
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A.2. Flow Diagram--Main Program 

read m"n 

print.ni"n 

read E, 5" x ,W . o 0 

read b. i i = 1" ... "n. 
l 

pr in t b." i. = 1" . . . ,:n 
l 

read .b ., i = 1,; ••. , n 
-l 

print b. J i = 1, ... ,Xl 
-l 

read x . J . i = 1, . 0 0 Jp. 
l 

print xi" i = lJo, .,n 

:L = !\.n. (b. _b.)2 ' 
ItJL i=l l l 

T = L/100.0 

. W = 1.0*10
20 

old 

call ANALYZ 

call PROPS 

call CHECK 
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CPmin = min(CPi' i = 1, .. . ,m) 

test - cP - min 

print. "INITIAL 
TRIAL NO GOOD" 

! 
CPmin 

old 
x. 

l 

old 
CPmin 

___ pri~\~ 
gi = g/JI~ gi', i = l, ... ,u 

",-,:,,1. =1- .- .. 

t = L/IOO.O 

• I. , 

=mln " cP .; 1. = 1, 0 •• , In) 
l 

= x., i = 1, ... ,~n 
l 
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* I X 0 = x. +t g. \ i = 1) c c • )!n 
l l l-

old 
x . . = x. j = 1 J • • • ) in 

J J 
print xi' i =1, ... ).n 

t = t/2.0 
. call; ANALYZ 

call PROPS 

ca.ll CHECK 

cP min = min ( cP i ' i = 1 J ••• , m.) 
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t = t ( Ie old 
old CPmin CPmin 

old 
x. = X.) i =l)ooo.,D 

l l 

old 
·CPmin' = CPmin 

*.! 
X. ;::: xi+t g. 

l l 

old 
x. = X. j:= l)o.o)n 

J J 

t = t/2.0 
.~.-~~-

(613) 
'-.-/ 

I,cp =min(cp." i 

I 
min 2 l 2 

test = cp. - 5 
mln 

call ANALYZ 

call, PROPS 

call, CHECK 
I 

> 

~ 
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error 0.0 

q = 0 

active . I 
'Pi = 0.0) i 1, ... )ID 

rt~st cp I "--___ =r--_m~!1 .. 
< 

> 

i = i 

2 error = error + cp . ifound 

test = error - 8
2 

< 



q = q + 1, 

active 
CPifound 
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1.0 

old 
x. 

;' I 

old. 
CPi = CPi' i 

print xi" i = 

print q 

1" . " ."m 

1" .. I "n 

. active 
prInt cp. J" i ~ 

I . 

t------.....J'---
I 

Uij 0.0" i = l~' .... "nl 
j 1, . I • ,m 

--oId--C- -- - --
X. F X. j = 1, 10 ~,n. 

J J 

xi = Xi+Xi/100,O 

call AN.ALYZ 

call PROPS 

call CHECK 

-----...... ------ -_ .... - - '-. - .... - .. _-_ .... __ .. _ .... _ .. _ .. _-------- .'-

cp~ld)/(x./100vO)" j = 1", 0 I"m 
J I 

~------------~--~ 

X I 

I Xi 
old 

i 1, I 00, n I = x. = 

I 'Pi 

I 

l, ... ,ml old· 
i =cp. = 

I 

9 
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> 

rl . 
. (wq ) j =CPp 

(u .) . . ,= u. , . i = 1, 0 0 • ,.n 
. q lJ lP 

j ,= J ,+ 1 

___________ mm_ ... _ .. _ - _m __ -- .. ~-~.----.-:~l-------- .. ------------- -------
:: 1 call, FrNDGj 

< 

print .. il INCREASE IN 
OBJECTlVEFUNCTION Ii 

~ 

print,w/wol 

_ .. _. -I ' 
[tes .. t . =W. . -·W I .old 

w =W 
old 

r = (V) (uT)g 
q q 

(p )g =g - (U )r 
q q 

(3. = r ./2.0*,j(V ) . .', i ~ 1, ... ,q 
l l . q II 

(3'd ,=maxC{3., i = 1, ... "q) 
l rop l 



f t3 = Plidrop 

J 

print.
lI

MINIMUM I 
WEIGHT DESIGN" 

< 

< 

< 
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Ipi l = f'i: (pi)~ I\f... l=l 

test /Pqgi - ~idrop 

r----~-L------".- .... _ ... _ .. _ ... 

z, = (p g) . / I Pg J, i = 1, ... )n 
lq l q 
old 

xi = xi j . i = 1, ... ,P. 

old 
,CPi ;;:;;CPi j i = I" ... )in 

X.= x. + -r*z. 
l l l 

test = x. 

> 
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old 
x = X. j . J j . = 1, ... .,n 

1" = 1"/200 

> 

~ ~t 
J-c-or-r-=-.( -U-q )-(. V-<1_. -:-: )W==-. <1-. - nJ 

carr l .= 1., ... ,_ . X=X. - ., i, . 
8 4 

print xi' ~ 1, 0 •• ,P 

call. CHECK 

(w ). = cp. 
<1 J .l 

j ,= j i+ 1 
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t==..--~-"'" print ',"IDROP == 0 . 
ORIDROP >K" 
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active 0,0 cpo 
l 

q = q ... 1 

print IBROP 

print q 

print. active i 1" ... , ill CPi j 

X. = X.+ t*z.j i = 1" ... "n 
l l l 

print xi" i = l" ... "n 

. call. ANALy£j 
call PROPS 

call' CHECK 

(?o?) 
"'-.-/ 



(w).;=cp. 
q J l 

j = j +1 

CO rr = (U ) (V rl ) W 
q ':1 ,q 
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8 
i 

> 

> 

I ,q- 2 
error. =, '. (w) . 

,'i=l q l 

test = error _ 52 

X.= x.-corr.,i= I, ... ,u 
'l II 

I print xi' i= 1" ... ~l 
--~--(b .. . 

I tes t = qJ. -cp ~ I 

E}·~~~ 

> 

~ 
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i ' = i added 

, 2, 
error = error + cp . 

mln 

,test = error _ 52 

do .14----) 
1, ... ,p., . 

I 

I 
. , I 

, test ,=xi - (Xi - 't1 * zi) I 
c§ ... = <;:5><0 
'*--'-J '" ! print. "UNABLE TO lr-:t~e-s-:-t--"-=-cp--. -+1 

ADD NEXT CONSTRAINT" . . mln 

= t + t 
1 
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.A.3 .. Descriptions of Auxiliary Subroutines 

INPUT: A subroutine· which reads input variables required by sub-

routines other than the main progrqm . 

. ANALYZ : A subroutine which analyzes the structure for unknown 

forces and displacements on the basis of the current design and variables 

supplied by.· INPUT. 

PROPS: A subroutine which calculates the necessary section 

properties on the basis of the current design using the· approximate relation-

ships developed .in Chapter 2. 

CHECK: A subroutine which calculates the values of the constraint 

functions cp., i = 1, ... ,ill, on the basis of the current .design and the results 
. l 

ofANALYZ and PROPS . 

. ERROUT: A subroutine which prints current values of the design 

variables and other quantities of interest ·when the main program fails. 

FINDG: .A subroutine' which computes the values of the obj.ective 

function.and the gradient vector on the basis of the current design and the 

variables read by INPUT. 

,.ANSOUT: A subroutine ·wb.:ichprints the continuous solution xmax 

and other infonnation of interest when.the main program has obtained a 

solution . 

. SELECT: A subroutine which. selects' an available minimum-weight 

design on the basis of the continuous solution and the available sections 

properties. 

,.A.4. Typical Input Dita 

'Input data for atypical rigid frame problem are shown. in Table 5. 

This data corresponds to the symmetrical braced portal frame considered in 
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. Section 4.2 of the text. In Table 5" rh~ and n .denote the' nurp.ber of constraints 

and the number of variables respectively. E and 0. denote the tolerances 

defined. in Ch:a pter 2. 

andW = 10,,000 Ib, 
o 

x and W denote the reference values" x := 9000 in4 
o 0 0 

b. and b. denote the upper and-lower bounds defined in 
l . -l 

Chapter, 2. nls " nmf " neal" and nimd a;re variables pertaining to the 

.Argyris formulation of structural ahalysis and are respectively" the number 

of loading conditions considered". the number of member forces to be determined) 

the number ofloadsappliedj andthe·number of internal rp.emberdisplacements 

to be calculated. . F ,is a n. 1 x n
l 

ma trixof externally. applied loads) 
e ea s 

Ff is a n f x n.l ma tr-ix of fixed-end moments" and· a . is an. d x n 1 emm ' s' e.lID ea 

matrix giving internal joint displacements corresponding to unit disp~acements 

of the external joints. L.denotes the member lengths. 
l 

n t denotes the sec s 

total number of availableWF economy sections. ~and is a measure of the 

number of these available sections to be considered as possibilities for 

each member to be selected. For each.member the available section next 

larger in size than indicated by·the continuous solution plus \and sections 

above and ~and sections below'thatone are considered. Thus'2 i
band 

+ 1 

available sections are considered for each number in the determination of 

an.available solution. Ea is a tolerance specifYing an acceptable error 

by which a constraint may be violated in an available design; thatis,.a 

given combination of available sections is considered acceptable if ~i ~ -Ea " 

i = 1, ... "m. P is a table of section properties giving the moment of 
sects 

inertia" section modulus, 'unit weight" maximum .radius of gyration) and 

cross -sectional area of each, available WF economy, section. The. cards ,in 

the table Pt' are sorted in order of increasing moment of inertia. The 
sec s 

last card (or cards) gives the values of the variables" x." for the. initial 
l 

feasible solution. This input would be typical for a rigid frame analyzed by 
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the Argyris displacement method. .AII matrices except the table P tare 
sec s 

punched by colQmDs;P t is punched by rows. sec s 

Input data for a typical truss problem are shown in Table 6. These 

data correspond to the twice indeterminate pin-jointed truss considered .in 

. Sect·ion 405 of the text. In Table 6, m and n.denote the number of constraints 

and number of variables respectively. E and 5 denote the tolerances defined 

in Chapter 3. x and W denote the reference values x 
000 

34.7 in
2 

and 

W IOOOO.lb.b. and b, denote upper and lower bounds defined in Chapter 2. 
o l-l 

nl, f' n J n . f' . and n .. l are variables pertaining to the Argyris formulation .eal rl' s 

of structural analysis, and are, respectively, the number of internal member 

forces, the number of externally applied loads, the number of redundant 

internal forces J . and the number of loading conditions considered. . Z is a 4xl 

~atrix_~~._~~~=~_~~=~~_d:~_bo is a ~iL.~~eal ~a~.rix_~f_~nternal member forces 

caused by unit external forces· acting on the structure without the redundant 

members J and bl " is a nif x nrif matrix of internal member forces. caused by 

unit values of the redundant member forces. n denotes the number of sects 

sections available, E is a tolerance specifying an acceptable error by 
a 

'which a constraint may be violated in an acceptable available design. 

P t is a table of the properties of the·14-inch·wide flange sections and 
sec s 

gives the minimum radius of gyration and cross-sectional area for each 

sectd.on. The cards iri the tableP . t are·sorted .in order of increasing sec s 

area. x is the initial solution. This input would be typical for a ,pin-

jointed truss analyzed by the ·Argyris force method. ,All matrices except the 

table P t are punched by columns; P t .is punched by rows. sec s . sec s 
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TABLE 1. PROPERTIES OF THE ECONOMY SECTIONS 

In-Plane 
Moment of Section Weight Radius of 

Section Inertia Modulus· Per Foot Gyration Area 

(inches4) (inches3) (lb per ft) (inches) (inches 2) 

3w 4.1 1.65 1.1 4.1 1.17 1.19 
3w 5.0 1.80 1.2 5·0 1.12 1.46 
6Jr 4.4 7.20 2.4 4.4 2.37 1.30 
7Jr 5·5 12.20 3.5 5·5 2.74 1.61 
8Jr 6.5 18.80 4.7 6.5 3.12 . 1·92 

10Jru 8.4 32.50 6.5 8.4 3.61 2.47 
10Jr 9·0 39.00 7.8 9·0 3.85 2.64 
12Jrul0.6 . 55.80 9·3 .10.6 4.23 3.12 
lOB 11.5 32.50 10.5 . 11·5 3·92 3.39 
12Jr 11.8 . 72.00 12.0 11.8 4.57 3.45 
12B 14.0 88.80 14.8 14.0 4.61 4.14 
12B 16.5 105.00 17· 5 ·16.5 4.65 4.86 
14B 17.2 147.00 21.0 17·2 5.40 5.05 
12B 19·0 128.40 21.4 19·0 4.81 5.62 
10WF 21 106.40 21.5 21.0 4.14 6.19 
12B 22.0 151.80 25.3 . 22.0 4.91 .. - 6.47 

_. __ ._- -J:8WF---25--·- --1-}).-88 -- ---20.4----- --25.-0- -------4.26- - - ---::r-.-9-~----
12WF 27 204.00 34.1 27.0 5.06 7·97 
14WF 30 290.00 41.8 30.0 5.73 8.81 
14WF 34 340.00 48.5 34.0 5.83 10.00 
16WF 36 447.00 56.3 36.0 . 6.49 10.59 
16WF 40 515.00 64.4 70.0 6.62 11·77 
16WF 45 583.00 72.4 45.0 6.64 13.24 
16WF 50 657.00 80.7 50.0 6.68 14.70 
18WF 50 802.00 89.0 50.0 7.38 14.71 
18WF 55 889.00 98.2 55.0 7.41 16.19 
18WF 60 985.00 107.8 60.0 7.47 17.64 
21WF 62 1328.00 126.4 62.0 8.53 18.23 
21WF 68 1479.00 139·9 68.0 8.59 20.02 
21WF 73 1600.00 150·7 73.0 8.64 21.46 
24WF 76 2093.00 175.4 76.0 9.68 22.37 
24WF 84 2370.00 196.3 84.0 9.78 24.71 
24WF 94 2680.00 220.1 94.0 9.85 27.63 
27WF 94 3260.00 242.8 94.0 10.87 27.65 
24WF 100 2990.00 248.9 100.0 10.08 29. 43 
27WF 102 3610.00 . 266.3 102.0 10.96 30.01 
30WF 108 1.~460. 00 299·2 108.0 11.85 31·77 
30WF 116 4920.00 327·9 116.0 12.00 34.13 
30WF 124 5350.00 354.6 124.0 12.11 36.45 
33WF 130 6700.00 404.8 130.0 13.23 38.26 
33WF 141 7440.00 446.8 141.0 13.39 41.51 
36WF 150 9000.00 502·9 150.0 14.29 44.16 

(Continued) 
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TABLE 1. (Continued) 

In-Plane 
Moment of Section Weight Radius of 

Sec.tion Inertia ,Modulus ' Per Foot GyTation Area 

(inches4) (inches3) (lb per ft) (inches) (inches
2) 

36WF l60 9730.00 541;0 160.,0 14:.38 47.09 
36WF 170 10470.00 579·1 170.0 14.47 49.98 
36WF 182 11280.00- 621,.2 182.0 14.52 53.54 
j6"WF 194- 12100.00 663.6 194.0 14.56 57.11 
33WF 200 11050.00 669.6 200.0 13.71 58.79 
33WF 220 12320.00 740.6 220.0 13·79 64.73 
36WF230 15000.00 835.5 ' 230.0 14.88 67.73 
36WF: 245 16086:~00 892'.5 ,245.0 14.95 72.03 
36WF 260 '17240.00 951 .. 1 260.0 15.00 76.56 
,36WF- 280 188:20.0 1031.2 280.0 15,.12 82.32 
36WF 300 20300.00 1105.1 300.0 15.17 88.17 



-77-

TABLE 2. AVAIL..t\BLE SECTIONS CONSIDERED 
TWO-DIMENSIONAL EXAMPLE 

Column Beam 

18~fF50 16WF50 

10055 10050 

10060 18WF55 

21WF62 18wF60 

21WF68 21WF62 

21WF73 21WF68 

24WF76 21WF 73 

TABLE 3. COMPARISON OF PLASTIC AND ElASTIC DESIGNS 
OF TWO-STORY· SINGLE-BAY FRAME 

Member Plastic Design Elastic Design 

1 16WF40 16wF40 

2 21WF62 21WF68 

3 16WF45 18WF55 

4 16w.EP40 16WF45 

.Weight 6080# 6770# 



Verticals_ 

Upper Hori~ontal 

Lower Horizontal 

Upper Diagonals 

Lower-Diagonals 

Weight of 
Continuous Solution 

Weight of 
Available-Solution 

T.A.BLE 4. COMPARISON OF ALTERNATE DESIGNS FOR -PIN-JOIN~~ED 'IiRUSS 
MEM.BERS SELECTED FOR A VA lIABLE SOLUTION S 

Configuration 

I II III IV V 

14WF264 14WF264 14WF264 14WF287 14WF3~2 

14WF30 14WF30 14WF61 

14WF30 1 4WF3 0 14WF103 

2-14WF76 2-14WF68 2-14WF84 ·2-14WF1031 1-14WF84 

2-14WF103 -2-14WF95 .2-14WF103 2-14WF1031 1-14WF142 

15 725 lb 15·348 15 787 16 420 17 920 

16172 lb 15 479 16 156 17330 18 520 

VI 

14WF342 
I .. 

--.:J 

14WF61 
()) 
I 

14WF61 

1-14WF84 

1-14WF142 

11 450 

17 910 



,TABLE 5. INPUT DATA. FOR SYMMETRICAL BRACED PORTAL FRAME 

Cols. 1-10 Cols. 11-20 Cals .. 21-30 Cols.31-40 Cols. 41-50 Cols" 51-60 Identification 

3 2 k,m 
.000000001 .00001· 9000.0 10000.0 E J 5 JX ,W 
1.0 100 - 0 0 b. 
0.0 000 b~ 
1 6 2 6 

~-l 

nl ,n f,n( l,n. 
+202500 -2025·0 F s (2~ ) ea lffid 
0.0 0.0 -2025·0 2025·0 0.0 0.0 F~ (6xl) 
0.0 1.0 100 0.0 0.0 0.0 a em(6x2) 
0.0 0.0 0.0 1.0 1.0 0.0 e 

30.0 3000 L. 
54 4 0.01 l n i E 

3 4.1 1.65 1.1 4.1 1 017 1.19 psects' ban~) a 

3 5·0 1.80 1.2 5·0 1.12 1.46 
sects (54x 

6Jr 4.4 7·20 ;2.4 4.4 2·37 1·30 
7Jr 5·5 12.20 3·5 5·5 2·74 1.61 . 8 

.-:--:1 . 
8Jr· 6·5 18.80 )+·7 6·5 3·12 1·92 \.0 

I 

10Jr 8.4 32·50 6·5 8.4 3·61 2.47 
lOB 11·5 32·50 1005 11·5 3·92 3·39 
10Jr 9·0 39·00 7·8 9·0 3·85 ·2.64 
12Jrl0.6 55·80 9·3 10.6 4.23 3·12 
12Jr 11.8 72000 12.0 11.8 4·57 3045 
12B 14.0 88.80' 14.8 14.0 . 4.61 4.14 
12B 16·5 105·00 1705 16·5 4065 4086 
10WF 21 106040 2105 21.0 4.14 6019 
12B 19·0 128040 21.4 19·0 4081 5062 
10WF 25 133·00 26.4 25·0 4.26 7035 
14B 17·2 147000 2100 17·2 5.40 5005 
12B 22.0 151.80 25·3 .22.0 4·91 6.47 
12WF 27 204.00 ·34.1 27·0 5.06 7097 
14wF 30 290.00 41.8 30.0 5073 8.81 
14WF 34 340.00 48·5 34.0 5.83 10.00 
16WF 36 447·00 56·3 3600 6.49 10·59 

(Continued) 



TABLE 50 . (Continued) 

Cols. I-tO Cols. 11-2- Gols 0 ·21-30 Colso 31-40 pols. 41-50 .Cols. 51-60 Identification 

16WF 40 515·00 64.l~ 40~0 6 .. 62 . 1107'7 
16WF 45 583 p OO 72. l~ 4500 6.64 13.24 
16WF 50 657~OO 80·7 50.0 6.68 14·70 
18w· 50 802000 89.0 50.0 7·38 14·71 
lSWF 55 889·00 9802 55·0 7·41 16.19' 
lSW 60 985.00 107·8 60.0 7·47 17·64 
21WF 62 '1328.00 126.·l~ 62.0 8.53 18.23 
21WF 68 1479·00 139·9 68.0 8,.59 20.02 

·21WF 73 '1600.00 150~7 73·0 8'.64 21.46 
24TNF 76 2093·00 175 .l~ 76.0 9·68 22·37 
24wF 84 2370.00 196.3 84.0 9·78 24·71 

.24WF 94 .2680.00 220.1 94.0 9.85 27·63 
24TNFI00 2990000 .248·9 100 .. 00 10.08 29·43 
271tlF 94 3260.00 242.8 94.0 10.87 27·65 
27TNF 102. 3610.00 266.3 ' 102.0 10·96 30.01 I 

ex> 
30WF 108 4460.00 299·2 108.0 11.85 31·77 0 

I 

30WF 116 4920.00 327·9 ·116.0 ·12.00 34.13 
30WF 124 5350.00 354.6 124.0 12.11 36.45 
33WF130 6700.00 ·404.EI 130.0 13·23 38.26 

. 33WF 141 7440.00 446.8 141.0 13·39 41.51 
36WF 150 9000.00 502·9 150.0 14.29 44.16 
36WF 160 9730. 00 541.0 160.0 14·38 47·09 

. 36WF 170 10470. 00 579·1 170.0 14.47 49·98 
33WF200 11050.00 669·6 200.0 13·71 58.79 

·36WF 182 11280.00 621.2 182.0 14052 53.54 
36WF 194 12100.00 663.6 - 194.0 14.56 57·11 
33WF·220 ,12320.00 740.6 '220.0 13·79 64073 
36WF 230 15000.00 835·5 230.0 14.88 67.73 
36WF 245 16080.00 892.5 245·0 14·95 72.03 

. 36WF. 260 17240000 951.1 260.0 15·00 76~56 

. 36WF 280 l8820000 1031.2 280.0 15·12 82·32 
36WF 300 20300.00 1105·1 300.0 15·17 88.17 
100 1.0 x -007 0.2 .. x -0.1 0·7 x 
0.165 0.130 -

x 
0.120 0.142 -

x 



Colso 1-10 Gals 0 .11-20 

15 5 
000000001 000001 
.3061 3 061 
0025 0025 
10 4 
1000.0 . 1000.0 
-100 -100 
000 000 
-1.0 -100 
000 000 
-100 000 
0.0 000 
OeO -100 
-00707 000 
IvO -00707 
000 -00707 
100 100 
4000 1000 
39 0001 
1!4·WF 30 1041 
14WF 34 1046 
14WF' 38 1049 
14wF 43 1089 
14WF 48· 1091 
14WF 53 1092 

.14WF 61 2045 
14WF 68 2046 
14WF 74 2048 
14WF 78 3000 
14WF 84 3002 
14WF 87 3070 
1~4WF 95 3071 
14WF 103 3·72 
14WF III 3073 
14WF' 119 ·30'75 
IJ+WF 127 3076 

TABLE 60 INPUT rATA FOR·PIN..,JOINTED TRUSS 

Colso 21-30 

3407 
3061 
0.25 
2 
300.0 
000 
000 
000 
000 
1.414 
OcO 
000 
-00707 
000 
000 

1000 
3 

8c81 
10000 
11.17 
12065 
14.11 
15059 
17·94 
20000 
21 076 
22094 
24'071 
25056 
27094 
30026 
32065 
3)+099 
37033 

Colso 31-40 

1000000 
3·61 
0025 
1 
300.0 
000 
0.0 
000 
100 
-100 
-100 
10404 
0.0 
000 
000 

28028 

(Continued) 

eols. 41-50 

3061 
0025 

0.0 
0.0 
0.0 
-100 
000 
000 

-00707 
000 
000 

28.28 

Colso 51-60 

000 
000 
0.0 
-2.0 
10414 
0.0 

100 
-00707 
-0·707 

Identification 

k"m 
.£"oJx JW 
b. 0 0 

'b:' -1 

Zl, 1. e~lJ rifJnl n"{Jn n 
,+X.l.) s 

b
o 

(10x4) 

b
1 

(10x2) 

L. 
1 . 

n s ects .~ Ea:; l'band p . 
sects ' 

B 

CX> 
I--! 
8 



TABLE 60 (Continued) 

Cols .. 1-10 Cals .. 11-20 Colso:21-30 Cals. 31-40 Cals .. 41-50 Cals. 51-60 Iden t i.fi ca t ian 

14WF 136 3·77 ,39.98 
14WF 142 3·97 41.85 
14wF 150 3099 44.08 
14WF 158 4000 46.47 
14WF 167 4.01 49·09 

:14WF 176 4.02 51·73 
14wF 184 .4.04 54.07 
14WF 199 4.05 .56·73 
14WF 202 4.06 59·39 

.14WF 211 4.07 62.07 
14WF 219 4.08 64·36 

. 14w:w 228 4010 67·06 
'14WF 237 4.11 69·69 
14WF 246 4.12 72·33 
14WF 264 .4.14 77·63 r 
14WF 287 4.17 84.87 OJ 

(\) 

14WF 320 4.17 94.12 I 

·14WF 314 4.20 92·30 
14WF 342 4.24 100·59 

. 14wF 370 4027 108078 
14WF 398 4·31 116·98 
14WF 426 4~34 125·25 
3·0 3·0 3·0 3·0 3·0 x 
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FIG. 1. THREE BAR TRUSS (AFTER SCHMIT) 

6 

wC~) = 5 

we,;) = 3 

2 
¢ C;Z) :: 0 

3 

FIG. 2. TWO-DIMENSIONAL NONLINEAR PROGRAMMING PROBLEM (AFTER wOLFE) 
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FIG. 3. ITERATION TO OBTAIN FEASIBLE POINT XV+l 

IN INTERSECTION G. (AFTER ROSEN) 

Q(x ) 

FIG. 4. INTERPOLATION TO OBTAIN FEASIBLE POINT xv+l. (AFTER ROSEN) 



x 
v 
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FIG. 5. DETERMINATION OF POINT xV+l IN INTERSECTION G' 

BUT NOT H~ G 1 • (AFTER ROSEN) 
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Weight s 2943 Ib 

FIG. 14. CONTINUOUS SOLUTION - TWO-DIMENSIONAL EXAMPLE 

AlIIII H 11111 th 1
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18wF55 
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FIG. 15. AVAILABLE SOLUTION ... TWO-DIMENSIONAl EXAMPLE 



Ml 

40 ft 

Frames 20 ft c to c 
Grav i ty loads 

roof; 
floor: 

50 psf x 20 ft / 1000 c 1,0 kif 
100 psf x 20 ft I 1000 = 2.0 kIf 

Wi nd loads 
wind velocity = 108 mph (assumed) 
by ASCE, wind force = 37.5 psf 
assume wind loads concentrated at roof and floor 
roof: 35.7 x 20 x 5 I 1000 = 3.57 k 
floor: 35.7 x 20 x 12.5 I 1000 = 8.92 k 

AISC Specification 
A ... 7 Steel 

FIG. 16. SYMMETRICAL TWO-STORY SINGLE-BAY FRAME 
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FIG. 17. FORCES ACTING ON TYPICAL MEMBERS 
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A. gravity loads 
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B. wind and gravity loads 

FIG. 18. CONSTRAINTS FOR SYMMETRICAL- TWO-STORY SINGLE-BAY FRAME 
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weight = 6541 Ib 

A. member sizes 

1548 

(symmet rica 1) 

B. gravity load moments 

12 65 ae=:r:r:--' -T1""'1~±r::"i"'""1 "'T'""-I-_~ 
IJ??:"": 

1829 
::--s5§:I 

. 3916· 

1803 c:(11T I ± I I Cr)--.,.:'9£I 
B?' . 

C. wind Ina gravity load moments 

t 
2400 in 

l 

480I 

205S 

FIG. 19. CONTINUOUS SOLUTION - TWO-STORY SINGLE-BAY FRAME 

CASE I - DEFLECTIONS NOT CONSTRAINED 
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16 WF40 
I = 515 in4 
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weight = 6770 Ib 
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c. wind and gravity load moments 

FIG. 20. AVAILABLE SOLUTION - TWO-STORY SINGlE~BAY FRAME 
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x max ... l z 

FIG. 21. SOLUTION POINT NOT AT A VERTEX OF THE FEASIBLE REGION 
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FIG. 22. CONTINUOUS SOLUTION - TWO-STORY SINGLE-BAY FRAME 
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16WF40· 4 
I == 515 in 

30WFl16 
I == 4920 
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c. wind and gravity load moments 

FIG. 23. AVAILABLE SOLUTION - TWO-STORY SHtGLE-6AY FRAME 
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CD 31 
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CP2 P4 C06 

A. gravity loads 

cP32 

\ rD17 CP18 

r.p 11 CP13 CPIS 

CP19 CP20 

CP12 CPl4 CP16 

C. wind from right and gravi"ty loads 

FIG. 25. CONSTRAINTS FOR TWO-STORY tWO-BAY UNSYMMETRICAL FRAME 
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4 
17 I: 1330 18 == 3330 

11 ~ 705 inches 13 ::: 3460 . IS lC 3740 

19 I: 2050 110 :: 8250 

12 ::: 165 14 == 2480 16 lC 2040 

weight == 29166 Ib 

FIG. 26. CONTINUOUS SOLUTION - TWO-STORY TWO-BAY FRAME 

21 WF62 27WF94 
I == 1328 I == 3260 

16WF36 27WFI02 27WFI02 
1==447 24WF76 I == 3610 36wF150 I = 3610 

I :: 2093 I =: 9000 
14817 .. 2 24WF84 21wF73 
I Ie 147 I := 2370 I == 1600 

weight == 30053 Ib 

A .. member sizes 

FIG. 27-A. AVAILABLE SOLUTION - TWO-STORY TWO-BAY FRAME 
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FIG. 28. PIN=JOINTED TRUSS 
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FIG. 29. CONSTRAINTS FOR P IN-JOINTED TRUSS 
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A. Continuous Solution (Weight = 15725 Ib) 

14WF76 
21 .. 76 

14WFI03 

77.63 

77.63 

1000 1000 

300 -55 

... 755 -lOSS 

300-+~ ____ ~ ____ ~ 

kO'26~ 
Member Sizes (in ). 

-302 -1502 

Member Forces (kips) 

B. Available Solution (Weight = 16172 lb) 

FIG. 30. MINIMUM-WEIGHT DESIGN OF PIN-JOINTED TRUSS 
Case I: All members retained 
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FIG. 31. MINIMUM-WEIGHT DESIGN OF PIN-JOINTED TRUSS 
Case II: lower horizontal bar removed. 
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FIG. 32. MINIMUM-WEIGHT DESIGN OF PIN-JOINTED TRUSS 
Case III: upper horizontal bar removed. 
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