CIVIL ENGINEERING STUDIES

Structural research series no. 269
$P y \underset{\sim}{2}$
by
JAMES O. JIRSA
METEA. SOZEN
CHESTER P. SIESS

A Report to

THE REINFORGED CONCRETE RESEARCH COUNCIL OFFICE OF THE CHIEF OF ENGINEERS, U. S. ARMY GENERAL SERVICES ADMINISTRATION, PUBLIC BUILDINGS SERVICE HEADQUARTERS, U.S. AIR FORCE, DIRECTORATE OF CIVIL ENGINEERING U. S. NAVY, ENGINEERING DIVISION, BUREAU OF YARDS AND DOCKS

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS
JULY, 1963
THE EFFECTS OF PATTERN LOADINGS
ON REINFORCED CONCRETE FLOOR SLABS
byd. O. JirsaK.A. SozenC. F. Siess
A Report on a Eiesearch Project Conducted by the
CUVL ENGUEEERING DEFARTKENT UNIVERSITY OF BLLHOOS
in cooperation with the
REINFORCED CONCRETE RESEARCH COUNCIL
OFFICE OF THE GRIEF OF ENGINEERS, U. S. ARMY
GERERAL SERVICES ADGUNISTRATION, PUBLIC BUILDINGS SERVICE
HEADQUARTERS, U. S. ABR FORCEand
U. S. NAVY, ENGINEERUNE DUUSION, EUREAU OF YARDS AND DOCKSNBy 37633
LNVERSITY OF ILLHORS
ureana, lllinols
July 1963

TAEEE OF COHTERTS

Fage
List of Tables v
List of Figures vi

1. BE ERODUCTEOK 1
1.l General Remarks 1
!. 2 object and Scope 2
2. 3 Acknowledgments 3
i.4 kotation and Definitions 4
3. EEGAUGOR OF TEST STRUGTURES URDER FATERR LGADHES 7
2.i Introductory Remarks 7
2.2 Description of the Test Structures 7
2.3 LoEding fatterns on the Test Structures ©
4. 4 Efiect of Pattern Loacings on Strairis and Gracking 10
2.5 Effect of Fattern Loadings on Deflections 12
2.6 Gonclusions 14
5. FEASURED KORENTS URDER FAETERN LOADHEG 17
6. 1 fatroductory Remarks 17
3.2 Hethod of Analysis for Computation of Homents 17
3.3 Fonents in the Flat Plate 20
3.4 Foments in the Flat Slabs 22
3.5 fiomerts in the Two-kiay Slabs 23
3.6 General Discussion of fieasured bonents 24
7. TREORETIGAG SOLUTIORS FOR FATTERN LOADIMGS 27
4.l Introductory Remarks 27
4.2 Definition of Variabies 28
4.3 Effect of fattern Loadings on foments in an fnterior Panel 31
4.4 Effect of Pattern Loadings on Honents in farels with One or Two Discontinuous Edges 37
4.5 Effect of Pattern Loadings on Moments in Beams 38
4.6 Gonclusions 39
8. COMPARISON OF DESIGA ARD HEASURED MOMENTS 4.1
5.l lntroductory Remarks 41
5.2 Qesign Methods 4.1
5.3 Design Hicthods for Flat Slabs 42
5.4 Design Methods for Two-way Slabs 46
5.5 Design foments in the Test Structures 49
5.6 Comparison of Measured with Design boments 50

TRELE OF CONfENTS (Cont'd)
Page
6. A PROCEDURE FOR DETERMINHG THE EFFECT OF EEAK AKD COLUKH STIFENESSES 54
G. 1 Introciuctory Remarks 54
S. 2 Development of a Procedure to Estimate the Effect of Eeam and Column Stifinesses 54
6.3 Application of the Froposed Procetu:d 58
6.4 Comparison of Test Results with the froposed procedure 61
7. SUEGAR 66
7.1 Object and Scope 65
7.2 Eehavior of Test Structures Under Pattern Lacds 66
7.3 Theoretical Solutions for Pattern Loed Noments 67
7.4 Procedure for Estimating the Effects of Pattern Loads 68
Bibliography 69
TAELES 72
Figures 81
APPERD:XA 131
Table to. Faos
1 Froperties of Katerials in Test Structures 72
2 73
Assumed Properties Used in Koment-Strain Relationships .
4 Comparison of Pattern kith Uniform Load Negative koments in an !nterior fane! 75
E
Comparison of Checkerboard with Uniform Load homents in 76
an Interior Panel.
an Interior Panel.Comparison of Checkerboard with Uniform Load koments ina Corner Panel78
Gomperison of Strip with Mniform Load Homents in Eeams. 80
Gomperison of Checkerboerd with Uniform Lozd Morents in an Ecige Fanel - Ferpendicular to Egge 78
Comparison of Checkerboard with Uniform Load Foments in an Edge Fanel - Farallel to Edge 77

3 Comparison of Pattern with Uniform Load Positive Koments in an Interior Panel 74Comperison of Heasured with Computed Moments inStructure Flstructure F140
A2 Comparison of keasured with Computed Moments in Structures $F 2$ and $F 3$. Structures F2 and F3 141
A3 Comparison of Measured with Computed Monents inStructures $T 1$ and $T 2$142
Figure No. PミQE
2.1 Leyout of Flat Plate Test Structure (Fl) 81
2.2 Layout of Flat Slab test Structures (Fl, F2) $\varepsilon 2$
2.3
Layout of Two-kiey slab Structures (T1, T2) 83
2.4 Eoading Fatterns 84
2.5 View of Test Structure and Loeding System $\varepsilon 5$
2.6 Gomparison of fattern with Uniform Load Strains Across Fositive koment Sections $\varepsilon 6$
2. $\bar{\gamma}$ Gomparison of Pattern with Uniform Load Strains Across Negative foment Sections 87
2.8 Strip and Uniform Load Deflections in Structure Fl. 88
2.2 Strip and Uniform Load Defilections in Structure F2 89
$2 \cdot 10$
Strip and Uniform Load Deflections in Structure F3 90
2.11 Gheckerboard and Uniform Load Defiections in Structure T 91
2.12 Checkerboard and Uniform Load Deflections in Structure T2 92
3.1 Typical Poment-Strain Relationship for a Reinforced Concrete Section 93
3.2 Strip and Uniform Load Monents in Structure Fl 94
3.3 Comparison of Strip and Uniform Load Moments in Structure Fl 95
3.4 ふerip and Uniform Load Moments in Structure F2 96
3.5 Comparison of Strip and Uniform Load Moments in Structure F2 97
3.6 Strip and Uniform Load Homents in Structure F3 ¢8
3.7 Gomparison of Strip and Uniform Load toments in Structure F3 99
3.8 Checkerboard and Uniform Load Koments in Structure $T 1$ 100
Figure Ho． Fage
3．g Gomparison of Checkerboard and Uniform Load Moments
in structure Tl 101
3．i0 Checkerboard and Uniform Load Moments in Structure T2 ． 102
3．11 Comparison of Gheckerboard and Uniform Load Koments in Structure $T 2$ 103
4．1 Fartial Loading Fatterns for HEximum Fositike and liegミさive Koments 104
4．2 Superposition of Loadirg Conditions to obtait Kaximum Moment Loadings 105
4.3 Gheckerboard Loading Patterns for slabs with $\hat{f}=\infty$ ．．． 106
4.4 Fattern Ratio Vs．Eeam Flexural stiffness，a／b＝0．5， $d=K=0$ 107
4．5 Pa¿tern Ratio Vs．Beam Flexurai Stiffness，a／b $=0.8$ ， $d=K=0$ 108
4．6 Fattern Ratio Vs．Beam Flexural Stiffnesso a／b＝1．0， $\mathcal{L}=K=0$ 108
4．7 Fattern Ratio Vs．Beam Flexural Stiffness，a／b＝1．25， $\downarrow=K=0$ 110
4．8 Pattern Ratio Vs．Beam Flexural Stiffness，$a / b=2.0$ ， J $=K=0$ 111
4．9 Gheckerboard Fattern Ratio for Positive Moment Vs．Beam Torsional Stiffness，$K=0, H=\infty$ 112
4．10 Gheckerboard Pattern Ratio for Negative Moment Us．Eeam Torsional Stiffness，$K=0, H=\infty$ 113
4．ll Strip fattern Ratio for Beam Koments Us．Beam Flexural Sti̊ffness $d=K=0$ 。。。。。．。．。．。．。．。。。 114
5．1 Design Moments for Structure Fl 115
5．2 Desigu toments for Structures F2 and F3 115
5.3 Design Moments for Structure Tl 117
5.4 Design Homents for Structure T2 118

```
LESTOF FIGURES (cont 'd)
```

Fiaure Bo. Pace
5.5 Comperison of Design and Weasured koments in Structure Fl 119
5.6 Gomparison of Design ard Heasured Moments in structure E2 120
5.7 Gomparison of Design amd Heasured honents in Structure F3 121
5.8 Gonparison of Design and heasured honents in Structure Tl 122
5.9 Gomparison of Design and keasured foments in Structure T 2 123
6.1 Uariation of pattern fatio for fositive koment kith 6.2 Combinations of Stiffness Parameters SatisfyingSelected Pattern Ratios. a/b $=0.5$ 。. 125
6.3 Gonbimations of Stiffness Farameters SatisfyingSelected Pattern Ratios: $a / b=0.8$126
6.4 Combinations of Stiffness Farameters Satisfying Selected Pattern Ratios, a/b=1.0 127
6.5 Gombirations of Stiffness Parameters Satisfying Selected Pattern Ratios, a/b $=1.25$ 128
6.5 Gombinations of Stiffness Parameters Satisfying Selected Patterm Ratios a/b $=2.0$ 129
6.7 Estimated Effects of Pattern Loads on the Test Structures 130
A.l bocation and Gross Sections of Assumed Frame 143
A. 2 Rotation of Eeam Under Applied Unit Twisting Moment 144
A.3 Gonstant for Torsional Rotation of a Rectangular Cross Section 145

1. BNTPOQUCTION

1.1 Eeneral Remarks

The pivotal assumption of working stress design is thet if the borking stresses in the structure do not exceed certain levels, the structure will behave satisfactorily. In order to proportion the sections to setisfy trie 'imits imposed on the flexurel stresses, it is recessery to krow the maximum monent at those sections. For example it is known that the positive monert in a contimuous beam on supporis mitch offer ro restraint may be dodbled if alternate spans are loaced. The negative monents may increase by 25 percent under the pertinent loading. In such a beam the total design moments exceed the static moments considerably.

The use of working stress design for slabs makes it necessery to know the efiects of pattern loads on the monents. The analyses of a threedimensionel structure is more difficult and. because of the diverse backgrounds of the design methods for different types of slabs pattern loads are not treated uniformly. The design moments for two-way slabs are based on checkerboard loads giving maximum moments while flat slab design methods largely ignore pettern loads.
litr the development and acceptance of limit design methods, the need for designing for more than the static moment has been questioned. bimit desicn takes advantage of moment redistribution and if the total static moment is provided, the strength of the structure is unimpaired. The moments will be redistributed to the sections until the full capacity of each is Utilized. fowever, accompanying the rotations of the sections necessary for moment redistribution are large deflections and additional cracking. These

```
factors may render the structure unserviceable even though the strength is
adequate. it is necessary to consider the effects of pattern loads and it
mey be aduisable to impose certein minimum restrictions on the moment increases
fr order to satisfy serviceabllity requirements.
    A study of pattern loads is therefore necessary to enable the
designer to estimate the effects of such loadings on floor siabso in this
report, the available information is brought together ard correlatsd to provide
a unified epproech for determining the effegts of pattern loadings in slabs.
```


1.2 Object and Scope

The object of this stuay is to develop a design procedure to determine the effects of pettern loads on reinforced concrete floor slabs. The procedure is intenced to provide a unified approach to the problem of patterr loads in regtangular slabs of all types.

The experimental information used in developing the design procedure was obtaired from five test structures: a flat plate, two flat slabs, ard rwo two-way slabs. The strains and deflections measured under pattern loadings are discussed. fonents under pattern loadings are compared with those under uniform loads and aiso with design monents.

A conpilation of existing theoretical solutions in which pattern loads are considered is made for a range of various support conditions. Ertensions of these theoretical solutions are made to cover cases not available eisewhere.

The five test structures are described briefly in Ghapter 2 which also contains a discussion of their behavior. Chapter 3 is a discussion of

```
the measured moments and a comparison ofं measured uniform and pattern load
moments. The theoretical solutions ame compibed in Ghapter 40 Chapter 5 is
a discussion of current design methods and a comparison of design with
measured moments is ircluded. The procedure for estimating the effects of
pattern loads is giver in crapterg. A freme eralysis is given in tre
Appendix for ceiculating moments in Gloor slabso A gumary of the study is
given in Ghapter 7.
```


1.3 Ecknomledaments

Tris report kas prepared as pare of an uruestigation conducted in the structural Research baboretory of the Givil Engimeerimg Department at the University of bllinois in cooperation with the following organizations:

Feinforced Concrete Research Councib
Directorate of Givil Ercibeerimg, Besciquarters. U. S. Air Force
General Services Administuation. Pubife Euildings Service
Office of the Chief of Engineers, W. So frmy
Bureau of Yards and Docks. Engineerimg Division, W. S. Navy
The program of investigetion has been guided by an advisory
committee on which the following persons have served:
Douglas hchenry, Ghaipman of the Adyisory Conmittee, Portland Cement Association
b. H. Gorning. Past Ghaimman. Fortland Cement Associetion
G. B. Begg, dro, Public Euildings Service, General Serwices Administration
Ho do Bobisch, BuDocks, Department of the Wavy
Frank Erown, wire Reinforcement lnstitute, lnco
A. Di Stasio, Sro, Consulting Engineer, Di Stasio and van Buren (Deceased)
A. S. Neiman, Headquarters, U. S. Air Forge
N. M. Newnark, University of llifnois
D. H. Pletta, Virginia Pobytechnic lustitute
J. R. Powers, Headquarters. U. E. Air Force

Paul Rogers, Consuiting Engineer, Paul Rogers and Associctes
E. do Ruble, Association of American Reilroads
W. E. Schaem, Qffice of the Ghief of Engineers, W. So Army
M. P. van Buren, Consuttirg Engineer, Di Stasio and van Buren
C. A. Willson. American lron and Steel lnstitute

The project has been under the over-all direction of Dr. G. F. Siess, frofessor of Civil Engineering, and the imnediate supervision of Dr. k. A. Sozen, frofessor of Givil Ensineering.

This report wes prepared as a thesis under the direction of Professor H A. Sozen.
i.4 lhotetion and Derinitions

```
            Movable load = the load that can be positioned to create
                        maximum monerits
            femmenent load = the load thet is stationary or, in some cases,
                        the dead load
            Total load = sum of movable and permanent loads
            fioment retio = moment in a structure under pattern load divided
                        by the unform load moment, cesignated by }
                            Load ratio = movable load divided by the total load, desigrated
                        by e
            Fattern ratio = pattern load moment divided by uniform load moment
                        designated by a, generaliy used for theoretical
                        moments when the load ratio \beta=1
            a = span length in direction in which moments are consicered
            \alpha = pattern ratio
\alpha CE: 的作 pattern ratio for checkerboard and strip loads, respectiveiy
            b = span length in direction perpendicular to \Xi
            b
                of the beam.
            \beta = load ratio
            a/b = aspect ratio
            c = diameter or width of column or capital
            c}=\mp@code{liameter or width of column or capital in direction of span
```

```
        c
        perpendicular to that of span considered
        C = a measure of the torsional rigidity of a beam (See
        Section A.2 of the Appendix)
    C
        of the spans a and b
    \gamma=monent ratio
    E = modulus of̃ elasticity
    fi}=\mathrm{ compressive strength of concrete
    fr m modulus of rupture of concrete
    fy= yield stress of steel
    G modulus of elasticity in shear. E/2(lth)
    h = story height
    H,}=\mathrm{ the height (the iarger dimension) of each rectengular
        section of the beam
        H = relative flexurel stiffness of beam
```



```
        spanning in a and b directions, respectively
        1 = moment of inertia of gross uncracked section of member
        \Omega = relative torsional stiffness of beam
        d}=GC/aN, \mp@subsup{\mathcal{S}}{b}{}=G\mp@subsup{G}{b}{}/bN, relative torsional stiffmesses in a and
        b directions, respectively
\mp@subsup{k}{c}{},\mp@subsup{k}{s, 的 }{\prime}=
    K = 就E|col/h
        joint to stiffmesses of other members framing into the joint
    Kbc}=\mathrm{ stiffness of the beam-to-columm combination
```

```
    L= span length
    m}=\mathrm{ span length in direction considered
    b}\mp@subsup{b}{2}{}=\mathrm{ span length in direction perpendicular to spare considered
    \lambda = a constant which is a function of the cross section of a
        b\inem
    mi = a distributed torque applied along the axis of the beam
    H}=\mathrm{ average moment across a section
    Ho}=\mathrm{ sum of positive and regetive monents in a panel
FGegtst= average monents across a section due to checkerboarc ard
                strip loads. respectively
    H= Poisson's retio
    U=Et*/12(1-H}\mp@subsup{}{}{2}), a measure of the plate stiffnes
    G = distributed load per urit of apea
    \Phi = ~ a n g l e ~ o f ~ t w i s t ~ p e r ~ u n i t ~ o f ~ l e n g t h ~
    t = thickness of a plate
    t}=\mathrm{ mimimum thickness of a flat slab
    t}2=\mathrm{ thickness of flat slab and drop panel
    T = twisting monent
    0f}=\mathrm{ total angle of rotation (caused by an arbitrary moment) of
        the end of a columm without translation of either end
    \mp@subsup{\sigma}{t}{}=
    w = total load on a panel
    "DOM= total dead and live loads on a panel
```

2. REHAVIOR OF TEST STRUCTURES UNOER FATTERU LOADHES

2.1 Introductory Remerks

The effects of pattern loads are most eas!ly studied and observed in terms of deflections and cracking which may be readily visible if excessive. Since deflections and cracking are measures of serviceability they are studied In order to determine the signiricance of pattern loads on behayicr of structures. Theoreticel studies offer little information on deflections and none on cracking since they are concerned with an elastic material. lt is necessary to turn to experimental studies to determine the behavior of structures uncier pattern loads.

A series of structures were built and tested at the University of Hllnois. Fhese structures have been fully described in peferences i through 6. Erief descriptions of the structures are given in this chapter. boading patterns and load levels are also discussed. Deflections and strains under uniform loads are compared with those measured under pattern loads. A general discussion of the serviceabibity of the structures concludes the chapter.

2.2 Description of the Test Structures

A total of five structures were included in the University of fllimois floor slab test program. They are designated as foilows:

Fl Flat flate
F2 Flat Slá
F3 Flat Slab Reinforced with Kelded-wire Fabric
Tl Typical Two-Wey Slab
$T 2$ Two-key siab with Shallow Beams
The abbreviated notations will be used in the following discussion, figures and tables.

All the structures wers designed according to the controlling criteria in the Acl Eullding Code Requirements for Reinforced Concrete 313-56 (hereafter feferred to as the ACl Goie, Ref. 7), except i2 which was modified so thet the beams were less stiff than in a typical designo Structures fi, F2 End FS Here designed acconding to the Emplrical kethod of Section loof of the ACl Code ty the firm of di stasio and van Durer, Consulting Engineers. liew Vork. Siructure Ti wes designed following kiethod l of section roe of the fich Gocie for "Tw-key systems with supports on Four sides." this design was cartied out by the firm of faul pogers and Associates. Ghicago. Structure T2 was designed on the basis of tho fundamental criteria. The first was that the total design monent kas taken as the static monent or 0.125 wh. The second was that the behavior and strength were to be intermediate between Fl End Ti.

The structures, as designed, had $20-f t$ square panels. The structures construated in the laboratory were quarter-scale and had 5-ft square panels. All structures had nine panels arranged three by three.

Layouts of the test structures are shown in Figs. 2.1, 2.2 and 2.3. The data given in the figures include beam and column dimensions. The flat slabs $E 2$ and $F 3$ had the same dimensions, the only difference being the reinforcenent. The properties of the materials used in construction of the test structures are given in Table 1 . The experimental program consisted of construction, loading and analysis of the structures. Each slab was loaded ire a series of tests including both uniform and pattern loads. Deflection and strain data were recorded at the different load levels in each individual load test.

Strains were obtained by placing electrical resistance strain gages on the reinforcement. Gages mere placed to take advantage of symetry of the structures and reduce the number of gages required.

Deflections were measured by means of mechanical deflection diais at 33 locations on the siabs. Reacings were taken at the micpoints of the panels and at the midpoints of the column centerlines.-

Crack patterns were recorded after selected load levels hed been reacheci. The structures were examined for cracking by means of magnifying glasses and were then marked and photographed.

2.3 Loading Fatterns on the Test Structures

All structures were subjected to uniform loading (all panels loaded) and to pattern loadirg consistirg of strips of three panels in structures F. F2 and F3 and checkerboard patterns in $T 1$ and $T 2$. The patterns are shown in Fig. 2.4. The deflection or monent which is meximized by the loading pattern is also indicated.

Loads were applied to the structure by means of a hydraulic jack system. The load was distributed over each panel by a series of frames which resulted in a l6-point loading. An over-all view of one of the structures is shown in Fig. 2.5.

The loads were measured with ring dynamoneters and also with the large h-frames which can be seen in Fig. 2.5. These dynamometers were made up of four-arm bridges and gave accurate readings as well as providing a double check on the loading in each panel.

Each test consisted of the application of load to a given level. The load was applied in predetermined increments. The rumber of increments
depenced on the maximum leve! of loading, the previous loading history, and the expected behevior of the slab. Dasa were recorded at the initial zero load, at each load increment, and agein at zero loads following loadirg. The actual dead load of the test structures was less than the design dead load and to comperisate for this. the applied load wes ircreased in the unform load tests. However, in the pattern load tests, the total dead load was not reached by applyims additional load. Rather then use dead boad and live load terminology, it is more appropriate to use the terms "movable" and "permanent" loads. The ratio of movable load to total load (sum of permanent and movable loads) is especially important in pattern loads since the lower the ratio the less the effect of pattern loads fif the movable to total load ratio is zero or all the load is permanent loed, pattern boads are not possible.

The movable and permanent loads on the test structures under pattern lojdings are sumnarized below.

Structure	Movable boad, psi	Permanent Load, psf	Total Load, pst	Movable Load Total Load
Fl	111	44	155	0.72
F2	241	44	285	0.85
F3	300	85	385	0.78
T1	174	41	215	0.81
T2	141	75	215	0.65

2.4 Effect of Pattern Loadings on Strains and Cracking

Strain readings were taken during both uniform load tests and pattern load tests. The strains were read at all the gage locations but of prime interest are those which were maximized as a result of a particular
pattern load. The strains measured under the pattern loadings are compared with uniform load strains in Figs. 2.6 and 2.7.

In Fig. 2.6 the strains across the positive moment sections are shown. The increase in strains under checkerboard loading in Tl and T2 were quite small. However, the strains were increased considerably in the remaining structures when strip ioads were applied. The strains increased from 17×10^{-5} to 57×10^{-5} in the interior panel of $F 2$. The increases were greater in the interior panel than in the edes panel. The uniform load strains were higher in the edge panel but the chenge due to pattern loads was less in camparisono

The strains across negetive moment sections are show in Fig. 2. 7. The strains in the interior panel were much figher initially and also increased much more. The strains at the edge beams were low and rather Insensitive to pattern loads. The comparisons shown in Figs. 2.6 and 2.7 indicate that the changes in strains are greatest in irterior panels and also that the positive moment sections are affected more than the negative monent sections.

The crack patterns observed in these tests indicated that there wes little change in the over-all crack pattern after pattern load tests had been concluded. However, there is a definite correlation between the extent of cracking under uniform loads and the increase in strains under pattern loads.

Structures Tl and T2 were relatively uncracked at the conclusion of the uniform load tests. The pattern load tests did not increase the strains significantly and they were at low levels during both loadings.

Cracking vas most extensive in structure F2 and the strains increased considerabiy. The crack pattern wes not changed after pattern loading concluded, frdicating that increases ir strairs took place largely through the wicening at existing crecks.

The moments are increased at the sections were strains increase In Fig. 3ol. the influence of cracking on the strains is fliustratecio ff the section has already cracked, any increase in moment must be accommodated by a significent increase in strain. The slope of the uncracked section is much higher and, therefore, the strains increase less for an ecual increase in monent. In the sections where cracking had not taken place, as in the positive moment regions of $T l$, the strain increase was very small; however, the moment may have increased by a larger amount than in some of the sections phere large strain increases were recorded. A complete discussion of monents is contained in Chapter 3.

2.5 Effect of Pattern Loadinos on Deflections

The deflections were measured at 33 locations on the structures. In Figs. 2.8 through 2.12, the location at which readings were taken are Show by small circles. Since all the structures were partially symmetrical. some of the readirgs are, in effect, duplicated to provide a check.

The flat plate (Fl) deflections are shown in Fig. 2.8. Strip loads increased the edge beam deflections very little and sirip load slab deflections could be estimated by increasing the uniform deflections by 10 percent.

The deflections in the flat slabs. F2 and F3, are given in Figs. 2.9 and 2.10. The total loads on these two structures were 285 and 385 psf.
respectively, so a direct comparison is not possible ln additions the concrete strength of structure f2 was lower and cracking kias guite extensive before strip loads were applied. The effect of cracking is to reduce the stiffress and thereby increase deflections. This behavior kes apparent in structures F2 and F3. Structure F3, heving greater loads did not heve corresponcirgly greater defiections. The strip loacis doubled the deflections inf2at some locations. The increases in FO were not as greet but were as much as 50 percent greater.

The increases in deflections keremore significant in the flat slab structures than in the flat plate。 The main reason for this difference is that of column stiffresses. The flat plate hed short stiff column withon tended to isolate the strips. The flat slabs hed long flexible colums Which did not provide the fixity that wes present in the fiat plate.

The loed ratio was also a factor, being 0.72 for El. 0.85 for E2 and 0.78 for 53 . The lower load ratio for the flat plate tended to reduce the ffifct of strip loads, while the flat slab $F 2$, having the greatest load ratio, also had the greatest increases in deflection.

The deflections measured in $T 1$ and $T 2$ are show in Figs. 2.11 and 2.12. These structures had the same dimensions, except that the beams in T2 kiere less stiffo The load ratio was 0.65 for $T 2$ and 0.81 for Tlo

The uniform load deflections were less for structure T l since its beams were stiffer. The beam deflections were nearly twice as large in T2. The effect of the checkerboard loading on these two structures is shown by comparing the uniform with the checkerboard load deflections. The mid-panel deflections in Tl increased about 10 percent while the beam deflections
increased about $20-30$ percent. The absolute increase in both beam and panel deflections wes small. in structure Th. the mid-panel deflections changed very little (less than five percent in most panels). However, the beams, being more fiexible than those in Th, deflected considerably under the pertinent checkerboard loads. The edee beam deflections increased from 10-30 percent with the interior span edse beam increasing as much as 50 percent. The interior beam deflections increased $20-30$ percent. lt can be seen from Figs. 2.11 and 2.12 that the more flexitle the beams, the higher the deflections and the less the effect of checkertoard laads on mid-panel deflections. Since the beam ceflections are maximized by loading adjacent panels (see Fig. 2.4), it is apparent that the beam deflections would have bean about the same hed strips been loaded rather than a modified checkerboard pattern.

2.6 Gonclusions

The increases in steel strains were greatest across the positive moment sections of the interior panels of all the structures; in panels not supported by beams (F1, F2 and F3), the average increases in steel strains were about 100 percent. The increase was about 75 percent in the edge panels and less in the corner panels. In structures Tl and T 2 , the checkerboard loads did not produce significant changes in the strain in the positive monent sections.

The negative moment strain increases under pattern loading were less than the increases in positive moment strains in all the structures. At the interior negative moment sections, the strains increased by about one-third in structures FI, F2 and F3. The checkerboard loadings on Tl and

Th did not change the strains across the negative moment sections. The exterior negative moment regions were virtually unaffected by pattern loads in all the structures.

Since the strains were the greatest in F2 under pattern loading and also increased the greatest amount in comparison with the other structures, it is interesting to examine the stresses in the reinforcement for that structure. The meximum positive monent stress in the interior panel ircreased from 5 to 18 ksi under strip load. In the edge panel the maximum positive monent stress was 18 ksi under uniform and about 30 ksi under strip load. In the other four structures, the design stress kas not exceeded under pattern loads.

The deflections in the flat plate were almost the seme under both uniform and strip loads. This can be attributed to the low load ratio and the relatively stiff columns in the structure.

The deflections in structures $F 2$ and Fa^{2} were increased under strip loads. However, the extensive cracking in $F 2$ resulted in a lower siab stiffness and the uniform load deflections as well as the increases under strip loads were larger than in F3. The larger increases in $F 2$ resulted, in part, from the difference in the load ratios of the two structures.

The increases in deflections in the two-way slabs $T 1$ and $T 2$ were dependent on the beam stiffness. The pattern loadings resulted in greater increases in mid-panel deflections in $T 1$ than in $T 2$. The beam deflections were increased more in 12 than in 7 . The more flexible the beams, the less the ircrease in slab deflection and the greater the increase in beam deflection under checkerboard loads.
-15-

```
it does not appear that the serviceability, measured in terms of straims and deflections, was impaired in the test struetures as a result of pattern locilngs.
```


3. MEASURED MOHEETS UNQER PATEERN LOADBBGS

3.1 Entroductory Remarks

In this chapter, the monents measured in the structure under Fattern loading are compared with uniform load moments. The monents are computed from strain measuraments. The analysis is based on the determination of amament-strain relationship for each structure. The monent-sirain relationship depends on concrete strength, reinforcenent type and strengit. amo the percentage of reinforcement at a section.

The moments are computed for each of the five test structures. Comparisons are made between unifom and pattern bad moments at the design sections of the structure. The design sections in flat siabs or flat plates are generally referred to as column, midde and kall strips. themoments io the $k=11$ strips of $F i, F 2$ and $F 3$ include the edge beam moments even though the beam and slab were designed separately for these cases. The design sections in the two-way slabs $T 1$ and $T 2$ are beams and slabs and the slabs are not divided into strips as in the case of the flat slabs.

In the following discussion, an evaluation of the monents will be given in terms of general trends. Since the conversion of strain to moment may result in larger moment differences in some locations any abnormal differences can be disregarded if other similar sections yield consistent results.

3.2 Method of Analysis for Conputation of Moments

The conversion of measured strains to moments is accomplished by constructing a moment-strain relationship for a particular section. The
determination of a moment-strain curve is complicated by the difficulty of an accurate neans of estimating the tenslie strength of the concrete. The tensile properties of the concrete becone extremely importent in sections which heve low reinforcement ratios since a large portion of the cepacity is provided by the esnsile strength of the concrete.

A typical moment-strain relethonship for a section is show qualitatively in fig. 3.l. It is necessary to construct similar curves for each section in which the reinforcement ratio, concrete strength or depth to the steel changed. Each curve is made up of two straight lines. Two points in addition to the origin are needed to describe the curves. The coominates of the intermediate point are the cracking moment and strain. The coordinates of the end point are the yield moment and strain. in the case of reinforcement having no well defined yield point, the moment at the proportional limit of the steel and the corresponding strain are used.

The cracking monents were computed using the ordinary flexure formula $\sigma=f=/ 0$. The transformed section wes used in computing the moment of inertia. The strain distribution across a section was assumed to be linear. The cracking stress used in the formula was generally less than the modulus of rupture reportec in Table 2.1. fowever, the control specimens were not reinforced which resulted in higher strengths. The reinforcement in the slab tended to restrain shrinkage and lower the tensile strength. In addition, the assumed tensile strength and cracking strains were chosen to correlate with results of studies of the static moments in the interior panels of the structures which could be computed accurately.

The yield moment of the section was computed using the straightline formula. It was assumed the tensile strength of the concrete was
negligible at yield in the steel and that cracking had developed sufficiently to werrant thils assumption.

The monent-strain curves for the beams were developed in the same manner. It was necessary to make an additional assumption about width of the slab that kes actirg as a flange at the beams. This flange width wes assumed to be ft (four times the slab thickness) in structures Fi, F2 ard F3 at the deep beam ecige and zero at the stallow beam edge. The fiange width wEs ft in structure Tl for all beams and $3 t$ in structure 72 for all beams.

The assumed cracking straim and stress and the flance widths are sumarized in Table 2. The ectual concrete properties were given in Table i Which also includes the properties of the reinforcement.

The proper use of the moment-strain curves depends upon correctly interpretirg the strain readings. The strain measurements are affected by electrical drift in the wiring and switch systems. In addition residual strains are accumulated which must be taken into consideration.

The electrical drift kes easily corrected by monitoring a check gage which should have undergone no change in strain during loading. Any changes in the check gages vere ettributed to electrical drift and a correction wes made in the strain measurements for the reinforcement.

The residual strains are determined from the differences between the initial and final zero readings in a given test. These sumations of the residuals ($\epsilon_{r e s}$ in Fig. 3.1) are then added to the strains measured in the following test to obtain the total strain for a particular loado

The monent-strain curves gave excellent results if the strains used were higher than any previous strains measured. However, in certain

Abstract

cases the strains were lower than had been measured in a previous test and a Slighty different procedurehad to be followed. The Gurve in Fig. 3.l shows an unioading curve as well as the first-ioacirg curve ff the strains were greater thar $\epsilon_{\text {max }}$ the first-ioading curve could be used $\epsilon_{2}>\epsilon_{f}$ o fr the used as inciosted ir the figure. fe ispossible for the slope fife; to change simce the value of $\epsilon_{\text {res }}$ may change white the value of emax remains the same Quring tests in wich smay is rot exceeded. bowevero the siope of the unloading curfe daes not hange greatiy between tests and tends to decrease as the strains frerease。

3.3 Koments in the Elat Elate

The monemts conputed fron strain measurenerts in structure Elo the fiat plote, are given in Fig. 2.2 as coerfigients of qa ${ }^{3}$. The uniform load monents shoun ir the figure mere meadured at a total load of i55 psfo The strip load moments, shom in red numerals, were based on strains measured under loads of 155 psf on the "ioaded" panels and 44 psf on the "unloaded" panels. This loading gives a load ratio of 0.72.

The moments are computed across the critical negative and positive sections used in design. The divisions are made according to column middle and wall strips. Golum and midide strips have a width of one-half the panel width and the wa 11 strip is one-fourth the panel widtho

The moments in the midde strips were about 0.02 qa at all sections except the exterior negative The strip loads did not increase these monents significantly. The colum strip negative monents were not changed while the column stwip positive monents did increase slightiy.

The relatively small changes in slab moments under strip load are explained by the presence of stiff columns. The columns were short and relatively wide, making them flexurally stiffo The stiff columns tended to isolate the strips or, in effect, fix the panels.

The wall strip moments, which include the beam moments, showed much greater increases at some locations. Howeyer, the beams were considerably more difficult to analyze and therefore are less accurate. The strain in the beam reinforcement was not measured precisely at the face of the column. Since the moment gradient is quite high at that location, correcting the moment to the face of the column, even if for a short distance, may result in a large absolute moment change.

Several additional factors complicate the beam analysis. Torsional rotations of the beams with respezt to the colum may induce strains which cannot be gaged. Gracking in the beam at the location of the strain gage is likely to change the distribution of strain along the reinforcement. The loss of bond between the bar and the concrete accompanies the placement of strain gages and also affects the strain distribution. For these reasons, no beam moment corractions yere attempted and the moment computed at the gage location was assumed to be the moment at the critical section.

The comparison of strip loadmonents with uniform load moments is shown in Fig. 3.3. The moments are indicated by the small symbols. jemo values of moment ratio $(y=4 / 3, y=1)$ are indicated by the straight lines. A moment ratio of one indicates no change due to pattern loads. The value of $y=4 / 3$ is a precedent that has beenfrequantly given as an allowable increase (Sae Ghapter 5).

Points that lie below the line $\gamma=1$, indicate that the moment decreased under strip loads. It can be seen that most values lie between the tho lines. The only values that lie above $y=4 / 3$ are wall strip moments and as was discussed above, these values may not be indicative of the actual moments because of the difficulty with beam analyses. From this figure, it is apparent that the slab moments did not exceed $\gamma=4 / 3$ and if the beam moments are omitted, $y=1.2$ for the slab moments.

3.4 Homents in the Flat Slabs

The moments in the two flat slabs were measured at a load level of 285 psif on 52 and 385 psf on 53 . The movable loads were 241 psf and 300 psfo respectiyaly, resulting in nearly equal load ratios, 0.85 for 82 and 0.78 for F3.

The critical seztions across which the moments are analyzed are the same as those used in the flat plate. The uniform and strip load monents are givan in Fig. 3.4 and 3.6 .

Since the two structures mere identical exeept for the type of peimforcement. the uniform load moment coefficients should be similar. There was fittle difference betmeen the moments at most sections. The locativa of the masimum relative difference is at the interior span positive moment section mere the moment is about $0.015 \mathrm{qa}^{3}$ in 52 and $0.009 \mathrm{ga}^{3}$ in 73 in the middle stwips.

It can be seen that the wall strip monents are high, especialiy at the deep beam edge regative sactions. Howeyer, for the purpose of this discussion, the relative increases are more imporsant than the absolute monents.

The effects of the strip loacings on $F 2$ and $F 2$ are show in Figs. 3.5 and 3.7. The lines at $\gamma=4,3$ and $\gamma=1$ are dram and in both structures the moments lie consistently between these ilnes.

The only values that appear to be greater than $\gamma=4 / 3$ are the interior span positive monents in F3. It was pointed out previously that the unifom load appeared to be low across this section and it is evident also in this comparison. The strip load moment coefficients across the interior span positive section Ere about 0.017 qa ${ }^{3}$ in F2 and 0.016 ca e^{3} in F3. Therefore, the points above the line can be attributed to low uniform load monerts.

It is interesting to note thet the high ansolute monents analyzed in the well strips are not significant when comparisons are made between strip and uniform load moments. fo structure $F 2$, the wall stif monent was very high at the deep beam ecise, about $0.05 q e^{3}$, but the moment ratio at this location, shom in Fig. 3.5 is reasonable in view of the general trends.

The moment ratio in F2 wes actually not as high as 4/3. Fost of the points lie below the moment ratio of 1.2 which indicates that the moments did not undergo serious changes due to strip loads. Although, a few values exceeded $\gamma=1.2$ in structure $F 3$, it is a more representative value of γ $\operatorname{than} \gamma=4 \% 3$.

3.5 Moments in the Two-Way Slabs

The moments in the two-way slabs were measured at a total load of 215 psf on both Tl and T2. The movable load on Tl was 44 psf and 75 psf on T2 giving load ratios of 0.81 and 0.66 , respectively.

```
The monents are given for slab and beam sections. The slab is not divided as it pas in the case of the flet plate and flat slab structures. The uniform and checkerboard load moments are given in Figs. 3.8 and 3.10.
The uniform ioad monents are as expected in view of the difference in tre beam stiffnesses. The interior beam monents are about jo percent greater in \(T\) than in th. However, the stab monents in there less than hat of the values in T 2 .
Checkerboard patterns were used to create maximum loading conditions. The increase in moments in il yielesmonent ratios that if ie between \(\gamma=1\) and \(y=4 / 3\) as show in Fig. 3.9 . The comparisons indicate that the structure behaved well under checkerbcard load since no serious deviations occurred in either the slab or the beam monents.
The comparison of checkerboard and unform load moments for structure Th are shown in Fig. 3.ll. These comparisons incilcate that the monent ratio for the structure was about 1.2 . However, if only slab moments are considered. \(\gamma\) is about one. lit appears that slab moments were not maximized by checkerboard loads. The beam monents which are maximized by modified checkerboard loads account for the value of \(y=1.2\). The beam monents are obtained by loading adjacent panels of what is nearly a strip load and the slab monents may also have been greater if strip loading had been used.
```


3.6 General Discussion of Heasured Moments

The moments measured in the test structures have been discussed in terms of absolute monents and by comparing pattern with uniform load
monents. The absolute moment coefficients gave an indication of the magnitude of the moment at a particular location However, as was pointed out previously. the absolute values may, in some cases, not have been accurate.

Qreater accuracy is obtained when the strains are high. fre some sections, such as the exterior negative sections, the strairs were low under both patterm and uniform loads. Therefore. small changes in strains resulted in large moment changes in moments of rather low magnitude.

In order to determine the re ative increases. the pattern load momerts were plotted against the uniform loed moments. These plots provide a means for determining the effect of pattern loads on the structure as a uthole. Locations which have lerge monent differentials assume less importance if the remeinimg monent changes are consistent. From these plots (Figs. 3.3. 3.5.3.7, 3.2 and 3.11 a monent ratio for each of the structures was obtainedo For structure $F i$, the moment ratio γ was 1.2 if the wall strip moments are excluded. The moment retios for $F 2$ and $F 3$ were also about 1.2. The monent ratio for structure T was about 1.2 . The slab monert ratio for $t 2$ was about ! . 0 and for the total structure about $\% 2$ since the beam moment ratio was higes:. The load ratio on t2 was lower chan on $T 100.66$ compared with 0.8: En: $-\quad$:

T-s - orent ratios given in the preceding paragraph are average values for the structure as a whole it can be shown by comparing individual sections thet the monent ratios were greater for interior than for exterior paneis.

It does not appear that the monents in the test structures were critical under pattern loads. It should be remembered that these are average
monents across specific sections and that the local monent at some areas may be higher. however, since reinforced concrete slabs can undergo significant moment redistribution, these effects tend to be rinimized and shou d create no serious problens as irdicetec by the test results.

4. THEORETICAL SOLUTEORS FQR PATERRE LOADGHES

4.1 Entrocuctory Remarks

A three-dimensional structure composed of several bays and stories generally has a floor slab as one of its structural components. The floor siab is divided arbitrarily irto sections referred to as panels which span betueen the supporting elemerts of the fioor siab. since such a system has a number of panels, it becones possible to apply load to individual panels as well as to all panels simultaneously.

The theoreticel solutions for the problem of flexure in plates are generally limited to plates of a homogeneous, isotropic, linearly elastic material. The selection of such a material expedites analysis which consists of sofuing ecuations based on statics and geonetry. The structures anelyzed by this process may respond differently from structures studied by direct physical tests. However, the elastic solution does represent a good first approximation to the response of the structure and makes it possible to study the effects of a wide range of variables. The elastic solutions are valuable in making comparisons between structures and establishing continulty between individual physical tests.

A number of elastic solutions are available for study. The range of veriables is extensive enough to provide a general understanding of the effect of pattern loadings on slab monents. The major variables which have been considered are the beam flexural stiffness, beam torsional stiffness, column stiffness. aspect ratio of the panels and the loading pattern. These solutions form a framework which may be used to determine the effects of pattern loadings on moments in idealized, elastic structures.

The slab moments dissussed in the following sections are average moments, an average moment is expressed in units of load and must be multipiled by the distarce across which it acts to obtain the total moment. Beam monents in the iocalized structures mist, of course, be in terms of totel monent. Themonenty for a given aspect ratio (afbly are given only for the a span, uniess othervise noted. For example the monent in a pane! having an aspect ratio of 0.5 would be in the short span (across the long spen edgel。

4.2 Defirition of Uatiables

(a) Beam Flecural stiffness

The relative beam flexural stiffress is defined as follows:

$$
n_{a}=E_{a} / b b_{a} \text { or } n_{b}=E_{b} / a \text { an }
$$

Where $\quad l_{z}=$ the moment of inertia of the beam in span a
$b=$ span perpendicular to span a
$y=\frac{E t^{3}}{12!-\mu^{2}}$ 。a measure of the plate stiffness per unit width
t = the plate thickness
$H==0$ s=0ns ratio, assumed to be zero in these studies.
Tr = =5n Efiffness paraneter relates the stiffness of the beam to the stiffnes: of the slab in the dipection of the beam. The range of beam stiffnesses t: fot zero to infinity where zero is the case where no beam is present and infintty is a rigid support. The beam has no kidth in the elastic solutions. In effecto it lies in a vertical plane at the boundary of the panel. The use of such a beam reduces the complexity of the equations needed for a solution.

In the theoretical solutions considered here, the beam flexura! stiffress ratios in the two spans of a panel are alkeys related in a definite maner. For $a / b=1.0, h_{a}=h_{b}$; the beams in the two directions are identical. For rectangular panels the $E f$ value of the beam in the long span is always greater than the $E l$ value of the beam in the short span by the ratio of the sides of the panel; $E l a: E l_{b}=a: b$. In terms of the relative stiffness paremeter, H_{0} this is expressed by $H_{a}(b / a)=b_{b}(a / b)$ or $H_{e}=k_{b}(a / b)^{2}$ (6) Eeam Torsionel Stiffness

The relative beam torsional stiffness is defined as follows:

$$
I_{a}=\frac{G C_{a}}{a H_{0}} \text { or } j_{b}=\frac{E C_{D}}{b N_{1}}
$$

were $\quad Q=$ shear modulus of elasticity

$$
c_{E}=\text { torsional stiffress in span } \underline{E}
$$

The beam torsional stiffness parameter relates the torsional stiffness of the beam to the flexural stiffness of the slab spanning across the beam. The values of torsional stiffness range from zero to infinity. A value of zero is for the case where no beam is used while an infinite torsional stiffness applies to a clamped edge. As in the case of flexural stiffress, the torsional restraint is applied to the panel through a beam bying in a vertical plane at the boundary of the panel.

(c) Golumn Flexural Stiffness

The relative column flexural stiffness is given by the expression:

$$
K=\frac{\sum k_{c} E_{0} c o l^{/ h}}{\sum\left(k_{s} E_{s l a b}+k_{b} E_{b e a m}\right) / a}
$$

where $\quad d=m o m e n t$ of inertia of gross, uncracked section of column, slab or beam in direction ir which moment is considered
h = story heicht
a $=$ span lengeh
$k=$ e factor representing the support conditions of the member (eogo. 4 if the far end is fixed and 3 if it is simply supported).

The values of k may renge fron zero where a slab does not tranier any moment to the column to infinity where heavy columns are used. In the idealized structuras, the colum stiffness is transmitted to the panel through a vertical line located at the comer of the panel.
(d) The Aspect Retio (Ratio of Side henoths)

The aspect ratio a/b may range from zero to infinity. The values of aspect, ratio consicered in this chapter ramge from one-half to two these values cover the range of panel sizes commonly encountered in fioor slabs. (e) Loading Fatterrs

Three loading patterns were considered in the solutions. Entire panels were loaded uniformly in each case. Wo studies were made for concentrated loads or loads varying across the panel. In order to determine the effects of the pattern loadings, it was necessary to obtain the monents for all panels loaded uniformly. These moments are referred to as uniform lad monerts. In addition, the slab systems were loaded by strip (ST) and checkerboard (CB) patterns. These patterns are shown in Fig. 4.l. The patterns may be different when positive or negative moments are being studied. These monents are referred to as maximum monents in the following tables and figures.

The checkerboard loading for meximum negative monent is achieved by placing tho checkerboard patterms end to end. The strip pattern for negative monent does not yield the absolute maximum monent since there are almays two strips loaded and two under zero load. This loading arrangement resuited from the use of superposition. The meximum monent occurring when two alternate strifs are loaded is $0.104 \mathrm{qa}^{2}$ wile the true meximun moment is 0.11 ge ${ }^{2}$. The checkerboard pattern for maximum negative monents was also chosen to allow superposition of available solutions.

The values of monents resulting from pattern loadings were obtained by averaging the uniform load moments and monents in alternately loaded one or two panel strips as shom in Fig. 4.2. The fatterns resulting from superposition ate also shown irfig. 4.2.

4.3 Effect of Fatterg boadings on konents in an lnterior Panel

The majority of available solutions in whin pattern loadings are considered are concerned with interior paneis. The interior panel is defined to be one bounded by an infinite number of identical panels. Interior panels are chosen since they afford the use of symetry. fn the theoretical solutions, the symmetry of the panel reduces the number of equations necessary for a solution. The solutions discussed in this section were obtained from References 8 through 12 .

The various theoretical solutions available for an interior panel may be divided into two groups according to the parameters which are varied. The major variable is the beam flexural stiffress in the first group and the beam torsional stiffness in the second group.

In the first group, the beam flexural stiffness varies from zero to infinity. The beam torsional and colum flexural stiffnesses are assumed to be zero. Five values of the aspect ratic are considered, $0.5,0.8,1.0,1.25$ and 2.0. Table 3 llists average moments at the critical sections for positive Roment uncer uniform, checkerbeard, and strif leadings. Tabie \& lists negative monents under the seme loading conditions.

The strip and checkerboard monents are compared with the uniform load montrats in terms of pattern ratios. The pattern ratios, designated as α_{0} are plotted against the parameter $H /\left(1 h^{\prime}\right)$ in Figs. 4.4 through 4.8. Since the values of H extend to infinity. the parameter $H($ (lth) was used to allow a Finite scale for the plots.

Three important trencs emerge from a study of the data presented in Table 3 and Figs. 4.4-4.8. These are discussed in the following three paragraphs.

The first trend is one that can be deduced without the necessity of rigorous solutions. As the relative beam stiffness f increases, the slab moments decrease for all types of loading. The decrease may be drastic as in the case of a panel having an aspect ratio of 2.0 . The average negative moment across the short edge for strip loading is $0.1042 \mathrm{qa}^{2}$ for $\mathrm{H}=0$. This value is $0.0079 \mathrm{qa}^{2}$ for $\hat{H}=\infty$, a reduction of 92 percent.

As the relative beam stiffness if increases, the checkerboard loading becones more critical than strip loading. The pattern ratio for a square panel with $H=0$ is 2 for strip and 0.8 for checkerboard loading (Fig. 4.6). For $H=\omega_{0}$, the moment ratio becomes 0.9 for strip and 1.7 for checkerboard loading. lt should be emphasized that checkerboard loading does not govern
for all finite values of tio The value of H at which the checkerboard loading produces a greater pattern ratio than the strip loading varies with the aspect ratic but in all cases is more than one.

The positive moments are increased more than the negative monents by the pattern loadings in this group of solutions. The necative moment pattern ratios do not exceed 1.25 whereas the positive moments may be as much as twite the uniform load positive moments. This trend can be seen in the curves shown in Figs. $404-4$, where the pattern retios for positive monent always lie above the negative moment pattern ratios.

The influence of the beam torsional stiffness on the monent can be stuated with the help of the second group of solutions given in table 5. These solutions have been obtalned from a monent distribution procedure for slabs supported on risid beams developed by siess and liemmark (ll ${ }^{\text {t. }}$. The procedure is approximate and ail comparisons between uniform load and checkerboard load moments must be made between moments computed by this procedure. Therefore, absolute moment values given in Table 5 may not be the same as those in Tables 3 and 4. The loading patterns used to obtain these moments are shown in Fig. 4.3.

Walues given in Table 5 show that as the beam torsional stiffress increases, the checkerboard load has less effect on moments. it is not necessary to consider strip loads in these panels; it was shown previously that checkerboard loadings are critical in the case of flexurally rigid beams. The positive moment increases are generally greater than the negative monent increases in these solutions also. For an aspect retio of 2.0 where the

[^0]negative moment increases are greater, the absolute values of the monents are Quite small and subject to greater errors in the distribution procedure than large absolute moments.

The ratios of checkerboard load monerts to uniform load moments are ploted 三gainst the beam torsional stiffress represented by the parameter diflith in Figs. 4.9 and 4.10 . The manent is unchanged when d is infintte: the plate becomes clamped at the edges and pattern loadings have no effect.

Very fek three-dimensional studies have been made of the variation of slab monents with column stiffness. Korrison (13) obtained solutions for nine-panel structures with square panels and rigid columns and varied the beam flexural and torsional stiffnesses. The moments were for uniform and strip loads. The positive moments for the interior panel are sumarized below.

㫛	\pm	Uniform Load Moment ge?	Strip Load Koment, ga	Pattern Ratio
0	0	0.037	0.046	1.24
0.5	0.5	0.023	0.027	1.17
2.0	0.5	0.017	0.018	1.05
2.0	2.0	0.017	0.017	1.00
5.0	5.0	0.013	0.013	1.00

lt is important to note that the pattern retio for $H=\mathcal{J}=0$ is 1.24 when the columns are rigid and 2.0 when $k=0$. The moment coefficients shown vary slightly from those shown in Table 4.1, but there are edge effects in the interior panel of a nine-panel structure and the columns have a finite cheratio $(c / L=0.1)$.

The effect of increasing column stiffness is similar to increasing beam flexural stiffness. Therefore, as the column stiffness increases, the value of h at which checkerboard loads yield higher moment ratios is decreased; the column imparts additional stiffness to the beams. The increase in moment due to checkerboard loads is not reduced by increasing colunn stiffness. Only the range cver which checkerboard loads are critical is increased. The column stifthess does reduce the increase in moments under serip loacirg, honever.

Westergaard and slater (14) studied the effects of strip loads on square panels of flat slabs with varying column stiffnesses. Two cases mete considered: rigid colums and columns in which the capitals were free to rotate. It was found thet for $c / L=0.15$ and rigid columns the positive moment pattern ratio due to strip loads was 1.20 which compares kell with horrison's value of 1.24 for $C / L=0.10$.
bor order to determine the effects of columns having intermediate stiffnesses, kestergard proposed a frame analogy enabling interpolation between stiffnesses of zero and infinity. By definition, the column stiffness K is the distribution factor to the column in a two-dimensional frame considering the slab as a beam. For such a frame, it can be shown that the pattern ratio is a function of the equation $K /(1+K)$, the degree of fixity. The degree of freedom is $1-K /(1+K)$ or $1 /(1+K)$. In a frame, the positive moment pattern ratio is 2.0 if the fixity is zero and 1.0 if the fixity is one. However, in a slab with rigid columns there is some "leakage" of moment around the columns since the pattern ratio is 1.20 . Therefore, Westergaard interpolated linearly between fixity values of zero and one. The pattern ratio was 1.20 at a fixity
of one and 2.0 at a fixity of zero. Therefore, the pattern retio could be chtained simply by using $1.20+0.80[1 /(1+k)]$.
it is necessary to consider the effects of column stiffness when the aspect ratio is not one if the aspect ratio is less than one, the columns are not as eftective in reciucing the infuence of strip loacis. ft the aspect ratio is very small, the column do rot reduce strip load moments. The pattern ratio remains at 2.0 . if the aspect ratio is greater than one the columas Eecome more effective, In the case of very large aspect ratios, the pattern ratio becomes 1.0 for rigid columns.

The influences of beem torsional stiffness and column and beam flexural stiffnesses camot be completely isclated. fin order to develop the beam torsional capacity, the column and/or the beammust be able to carry the torsion tramsmitted to ito fre the case of positive moment checkerboard loadings, the column stiffress is not critical since there is a diagonal line of symmetry across the columns. However, for other patterns it is of importance. The general effect of column flexural and beam torsional stiffnesses is to isolate the panel from loadings in adjacent panels. $1 f$ the values of d and K are increased, the pattern loadings will have less effect.

The first group of solutions (Tables 3 and 4) in which d and K were assumed to be zero are more severe then solutions in which the values of \mathscr{A} and k are fimite. For a given panel size, the increases in moment would be no greater than those listed in Table 3. The increase in positive moment is greater than the negative monent and the pattern ratio is decreased as the parameters $H_{0} \AA$ or K are increased.

4.4 Effect of Pattern Loadings on Moments in Panels with One or Two

Qiscontinuous Edces

10 most structures, there may be as many paneis having discontinuous edges as there are interior panels. Since, these paneis behave differentiy under pattern loeds than when all panels are loaded it is necessary tc determine what frfluence the pattern loas exert on the moments. The solutions díscussed here bere obtained from feferences ll and th. These solutions mane use of the distribution procedure of keference 11 and the absolute moment Values are approximate but they afford the opportunity to make comparisons between uniform and pattern load monerts.

Homents in edge and corner panels are given in Tables 6, 7 and 8. In the case of an edge panel. the moments are given for spans perallel and perperdicular to the edge. fill moments are in terms of the span a wich is the span in which moments are considered. The solutions assume flexurally rigid beams and only checkerboard loads are considered.

As in the interior panel, the effect of pattern loads decrease as A is increased. The pattern ratio α for the edge and corner panels is compared with the pattern ratio for a similarly supported interior panelo dt can be seen that α is less for a panel with discontinuous edges than for a comparable interior panel. on an edge panel, α is nearly the same as in an interior panei. However, in a corner pamel α is considerably less. For example, the positive pattern ratio in an interior panel having an aspect ratio of 0.5 and $d=0$ is 0.57 . In an edge panel it is 1.55 in the parallel span and 1.47 in the perpendicular span, while in a corner panel it is lo33. Similar comparisons may be observed for other values of the aspect ratio and torsional stiffress.

In order to discuss the effects of strip loadings in discontinuous paneis, the three dimensional structure may be reduced to a two-dimensional frame. In such a frame, it can be shown that the end span is less affected by pattern loadings than the interior spans. Although the uniform load monents are higher in the end span, the moment increase is less k ken colums of the frame are made stiffer the sparis tend to be isolated further from effects of loading in adjacent spans. Therfifre the solutions for the interior panel strip loecionge yield increases ir moment wich are greater then those in discontiruous panels.

The renge of variables for which solutions are available and the frame analogy provide sufficient information to determine the effects of pattern loミds ch edge and comer panels. The effect of pattern loadings on these panels is dependent on the number of discontinuous edges. There is little difference between moments in an ecge panel in the direction parallel to the discontinuous edge and those in an interior panel. However, in all cases the pattern ratios are less in the panels with discontinuous edges than in interior panels. The pattern loadings are less critical in the edge and corner panels than im the interior panels.

4.5 Effect of Pattern Loadings on Moments in Reams

It was shown in Sec. 4.3 that the moment in the panel tends to decrease as the beam flexural stiffness increases. The monent is transferred to the beam. Since these beams may carry large monents, it is important that the effect of pattern loadings on their behavior is discussed.

A limited number of solutions are available for beam moments. Only the effect of strip loads are given since beam moments are greatest when the
panels adjoining the beam are loaded. In Table 9 , beam monents are listed. As the stifiness of the beam increases the moment carried by the beam increases also. The negative to positive uniform load moment ratio is about 2 to 1. similar to a continuous beam. The values of α for strip load positive moment are between 2 and 3 while the negative monent ratios are about l.3. These trends are similar to the continuous beam where only certain spans are loaded to create maximum monents. In a continuous simply-supported beam, the positive monent may be twice as large by losding alternate spans and the regative maximum monent 1.25 times the monent when all spans are loaded.

The values of α for strip loads are plotted against the beam stifiness in Fig. 4.ll. These curves show quite definitely that the negative moment is not altered as substantially by the strip loacis as is the positive monent. The negative moment increases fall withim a narrow band However, the positive moment ratios are quite scattered. As the aspect ratio increases, the positive monent increases less with greater beam stiffness. it will approch the ratio of 2 as the aspect ratio becones large. In effect, the continuous beam case is approached.

The increase in beam monents in the beams supporting a slab are quite similar to those in a continuous beam. The trends exhibited by these beans as far as negative to positive moment distribution and increases in moment due to pattern loads can be closely predicted by examining a continuous beam.

4.6 Conclusions

In the precedirg sections, the available theoretical solutions for pattern loadings were compiled. The effects of strip and checkerboard
patterns on continuous and discontinuous panels were studied. Certain conclusions based on the theoretical solutions are presented here. The trends in moment changes in the slab and the beams are sumarized separatelyo

Three distinct conclusions ean be drawn from a study of the effects of pattern loads on slab momerts. First. it was shown in Tables G. 7 and \& and ir the frame analogy that the pettern ratios are less for both strip and checkerboaró loads in a discontinuous panel than in an interior or continuous panel. Therefore, the effects of pattern loads are more critical in the interior panel and it is sufficient to concentrate on such panels. Secondiy, checkerboard loeds do not control for all values of finite Deam stiffness. As H increases, pattern ratios for checkerboard loads increase: however, may not be critical until the beam stiffness reaches a value considerebly above zero.

Thirdiy, the positive moments are affected more than the negative monents by pattern loadings as illustrated by the curves in Figs. 4.4-4. 10 .

The effects of pattern loads on the beams in slab structures are very similat to the effects on contimuous beams. The positive moment increases are greazer and s!ightly larger than those occurring in a continuous beam. Fhis is due to the moment being attracted from the slab to the beam and resultimg : $=$ frofortionally greater moment under pattern loads.

5. COAPARISON OF DESEGR ARD REASURED HOHENTS

5.1 Introductory Remarks

In the preceding chapter. solutions were presented for the effects of pattern loads on monents. larious values of the stiffness parameters kere considered. lt bees shown that the transition between slabs with no beams and slabs supported on beams is a gradual and continuous transition hovever: in the various design procedures currently in use, a distinction is made betweer slabs with or whout beans; tho-mey slabs or fiat slabs.
bo this chapter, the development of the design procedures is discussed. The important features of the methods are pointed out and special emphasis is given to the provisions included for pattern loadings.

The typical design resulting from use of these methods is given. The design monents used in the test structures were obtained using ACl Code provisions. Finably, a comparison is made between the design and measured monents in the test structures. Both pattern and uniform load moments are compared with the design moments. In this way, an evaluation of the design procedures as to their ability to provide for the actual moments is possible.

5.2 Design Miethods

Design of reinforced concrete slabs has been divided into two classes: the flat slab and the two-way system with supports on all sides which is usually called a two-kay slab. Basically, the flat slab is supported directly on colums and may have capitals and drop panels. If there are no capitals or drop panels it is commonly referred to as a flat plate. The two-way slab is supported along its edges by walls or beams.

However, the two types are often combined, the flat slab having beams and the tho-way slab having none in some spans, but the design procedure is quite different depending upon the basic type of slab choser.

The reason for the difference is mainly one of development of desich methods. The development of each method is briefly discussed in Sec. 5.3 and 5.4. Particuler emphesis is given to the provisions for pattern pacireg.

5.3 Desion hethods for Flet Slats

The actual construction of flat slabs preceded any formal desisn procedure and resulted in a wealth of differing opinion as to their acequacy and analysis. Engineers who had successfully built and tested theit designs could defend them on principles of pragmatism. In Reference 15, the various procedures are discussed.
bost of the engineering public considered flat slabs to have properties which precluded rigorous analysis and until d. Ro Kichols (i6) wrote his paper presenting a relatively simple solution, no one ventured into the area of analysis. He developed an equation which, for the total moment in an interior panel of a pin supported slab, would be

$$
\begin{equation*}
M^{+}+M_{1}^{-}=M_{0}=\frac{W L_{0}}{8} \tag{5.1}
\end{equation*}
$$

where M^{+}and H_{1}^{-}are moments across the positive and regative sections and Mo is the total monent. This equation did not give the distribution to negative and positive moment sections but specified the sum. For a slab supported on finite columns, Nichols derived an approximate expression:

$$
\begin{equation*}
M_{0}=\frac{W L}{8}\left(1-\frac{2 C}{3 L}\right)^{2} \tag{5.2}
\end{equation*}
$$

However, the first doint Comittee (17) in 1916 gave the design static monent as $H_{0}=0.107 \mathrm{~kL}\left(1-\frac{2 c}{3 G^{2}}\right)^{2}$ or 85 percent of that computed by Eq. 5.2. This was subsequently (is20) reduced even further to $\%_{0}=0.09 \mathrm{~kL}$ $\left(1-\frac{2}{3} \frac{c}{b}\right)^{2}$. The second doint comittee (18) recomended the same equation with explicit recognition of the fact that they were designing for 72 percent of the monent resulting fran a consideration of statios. The 1956 ACb Buibdrag Gode (7) added a factor $F(F=1.15-c / b$ but $F>$ i) which was to prevent the possibillty of low design moments in slabs with low dh ratios. $W_{0}=0.00 \mathrm{kLF}\left(1-\frac{2}{3} \frac{c}{1}\right)^{2}$.

Up to this time no explicit consideration hed been given to pattern load conditions. All monent coefficients yere based on uniform loacs over all panels. Studies made for the 184 ACl building Gode (ll) showed that various arrangenents of the movable load gave significantly higher moments at some locations. Rather than alter the moment coefficients since they had been in long satiafactory use, the flexibility of the columns was limited in order to minimize the effects of live load differentials between panels.

It was considered satisfactory for the maximum monents to exceed the $u n$ form load moments by not more than 33 percent. It was found that this could be accomp isted by establisting a minimum average moment of inertia for the colurns above and below the floor (See Ref. 20). This was given by the formula which is found in Sec. $1004(b)$ in AGl 318056.

$$
\begin{equation*}
l_{c}=\frac{t^{3} h}{0.5+\frac{W_{D}}{W_{l}}} \tag{5.3}
\end{equation*}
$$

Where $\quad{ }_{c}{ }_{c}=$ minimum monent of inertia of column but $l_{c}>1000$ in 4
$t=$ the minimum recuired slab thickness in inches as given in Sec. $1004(6)$
$h=$ story teisht
K_{0} and $k_{\mathrm{L}}=$ total dead load and live loads on panel
The fomula wes derived by analyzing a number of frames with varying column stiffeeses and load ratios V_{0} /ki and limiting the increase of the sum the maximum negative and positive moments to 33 percent.

It was recognized that the meximum nesative and positive moments vould not occur simultaneously and that redistribution of monent would have a beneficial effect in reducing the severity of the loading imbalance. Therefore an increase of 33 percent was allowed.

Since the maximum positive and negative monents cannot cocur simultaneously the equation limits either the positive or negative moment increases under strip loads to 33 percent. The effectiveness of this equation may be estimated by considering the monent of inertia of a typical column and comparing the monent increases that are known to result from certain colum stiffresses.

The efficiency of columns in reducing the effects of strip loads was discussed in sec. 4.3. The increase in moments in a square panel could be computed by the equation $1.20 \div 0.80\left[1 /\left(1+K^{\%}\right)\right]$. bt is interesting to compare the increase in positive moment that would occur if minimum values of column stiffness prescribed by the ACl code are used. For typical value

of t, $H_{0} k_{\text {, and }} k_{0} / k_{l_{0}}=0$, the value of k is usually greater than 1.0 so the morent ratio may be about 1.60 which is more than the prediced value of 1.33 . The values of K must be about 5 in order to keep the moment ratio less tham 1.33 . Although the dead to live load ratio will usually be less severe than used here, it does not appear that the limiting column stiffress (EGG. 5.3) is sufficiert to reduce the effects of strip loas. within the alloviable range foadition, for aspect ratios less than one, the efficiency of columas is further reduced.

The need for a more rational method for the design of flat slabs arose fron the inability of the empirical method to account for the effects of pattern loadings on moments in slabs and columns. Out of this concern the frame or elastic analysis was developed which essentially reduces the threedimensional structure to a tho-dimensional frame。

The Elastic Analysis appeared in the 1941 A6l Code but was modified to yield answers comparable to the empirical method so it did little to alleviate the problem of pattern loads. The moments were obtained in the frame by using either the known load conditions or by positioning the full live load on the spars to obtain maximum moments. (The 1963 AGl Code, Ref. 21 , uses $3 / 4$ of the live load in pattern load configurations to take advantage of the probability of a greater dead load-live load ratio and monent redistribution effects.) The moments in the frame were based on conditions of equilibrium and therefore were higher than those of the empirical design. To eliminate this discrepancy, the negative monents at a distance from the column center line could be used in design. The consequences of this recommendation were moments that were nearly the same

-4.6-

as the empirical designmoments. The benefit of a solution based on equilibrium was lost. The method did serve to alert the designer to pattern loads and provided a method of cesign when the aspect ratio was beyond the limits imposed by the empirical method (0.75 \leq a/t ≤ 1.33).

The design of flat slabs largely ignores the effects of pattern
loses. The emplrical method limits columin stiffiess but is not adenute to reduce pattern load effects to a predetemined level. The elastic anelysis considers pattern loads in determining design monents then reduces the negative monents to a level which gives total moments nearly equal to the total moment ir the empirical method.

5.4 Desion tiethods for Tho-Vay Slabs

The recommended design of two-way slabs is currently by use of any one of three methods given in the 1963 Acl code. hiethod 1 has appeared in the ACl Code since 1936 . Method 2 since 1947 and Kethod 3 in 1963 . The development and essential aspects of each method will be discussed in this section. Detailed discussions of these methods appear in Reference 22.

(a) Miethod 1

Unlike the flat slab which was attributed extraordinary strength, the two-may slab was analyzed by routine flexural computations. The two-way action of the slab was not fully recognized of utilized. The beams on which the slab rested spanned between the columns and seemed to indicate that the one-directional action that had been used for floors comprised of joists and girders carrying the load to the columns wes applicable.

This led to an analysis similar to the elastic analysis in flat slabs. The three-dimensional problem was reduced to a two-dimensional
approximation of a plate on rigid supports. The method is explained in References 23 and 24 .

An deveioping the procedure, two basic simplifications were made. First the load was divided to the two slab spans by a formula which was modified to make results conform with avallable theoretical anciyses. Secondly, the distribution of load along the span was assumed. To account for the end restralnts of the slab, the points of contrafiexure ir the slab Were determined fron a frame anaiysis and used to obtain the fffective span in the slab.

Since part of the load kas assigned to each span in the slab, the remainder of the load was carried by the beams so that all the load kas carried in each direction.

The slab monents were based on ioading patterns to create meximum monent conditions. in addition beams were designed by the continuous beam moment coefficients which also consider pattern load. Therefore hethod 1 resulted in design moments that bere in excess of those given by a solution considering equilibrium of the slab. It was apparent that pattern loads were provided for.

(b) Kethod 2

Method 2 had its foundation in the 1921 paper of kestergaard and Slater (14), iro which they gave manert coefficients for slabs and the supporting beams. The solutions used to obtain the moments were for continuous plates supported on rigid beams which provided no torsional restraint. since flat slabs were designed for 72 percent of the static monent the maximum moment coefficients (based on pattern loadings) were reduced by 28 percent.

The moment coefficients were incorporated into the 1947 ACl Gode with sone modifications made by the 1940 doint Comittee (25) The coefficients mere given for single panels having different boundery conditions. Any unbalanced monent at the boundaries wes assumed to be resisted party (l/3 of the unbelanced moment) by the torsional restreint of the beams which uas specified by requirimg beams ard slabs to be cast monoblthicaliyo

Ir adition, the load to the beams was specitied by assigning a certain area of the siab to be transferring load to the beam. The beams were then designed by use of the coefficients specified for contimuous beams in wich pattern loads were considered.
(c) Method 3

The basis for Kethod 3 is found in a procedure reconnended by Marcus (25) fiarcus divided the slat which was supported on rigid beams into strips and determined the moment coefficient for the strips. since this did not account for the torsional restraint between the strips the monerits were corrected to conform to elastic solutions.

Gheckerboard loads were used to obtain positive monents and uniform loads for negative moments since farcus concluded that the pattern loads did not affect negative moments materially.

The coefficients obtained by the farcus method were only silghtly modified and giten for isolated panels with various boundary conditions in the is53 AGl Building Gode (2l). The coefficients for positive monent are different for live load and dead load in keeping with the original solutions Hapcus obtained. Since the positive dead load monents are for umiform loading. no increase in moment is necessary, whereas the live load may cause an increase in moment, the coefficients for checkerbcard load are given.

As in the other methods, a portion of the panel load is assigned to be uniformly distributed along the beam and the beam moments are computed using the coefficients for beans given in the ACl code.
(d) Suntery

The design of two-wey slabs is basically the same for all the methods. The monent cofficients are determined for contimuous slats supported on rigid beams. These coefficients are obtained for pattern loadings to yield maximum monents. in each case a portion of the load is assigned to the beam whith is then designed using beam monent coefficients besed on pattern loaings on continsous bears.

Therefore each method results in coefficients kinich give total moments that are in excess of the staticmonent in a panel. This is in sharp contrast to flat slabs which do not effectively account for patterm loads and are not even designed for the total static monent in a panel.

5.5 Design Koments in the Test Structures

Four of the test structures were designed according to provisions of the $A G 1$ Gode. The flat plate Fl and the flat slabs F2 and F3 were designed according to the Empirical Method. The typical two-way slab Tl was designed by Hethod 1 for slabs supported on all sides. The two-way slab with shallow beans was designed to provide a beem stiffness that was about midway between Fl and Tl. it was designed using a total design moment based on the static manent 0.125 Wh 。

The design monent coefficients are shown in Figs. 5.1-5.4. The beam and the slab moment are combined in the wall strip in F1, F2 and F3 even though in design these elements are considered separately.

5.6 Gomparison of Heasured with Design Homents

Ideally, a design procedure should provide for the moment at a given section. Further. for an economical design, it is equally important that certain sections are not over-designed while others are under-designed. A balance should be maintained if possible. In viek of the background regarding the design methods, the design monents are compered with the uniform and pattern load measured moments.
fr Figs. 5.5-5.9. the measured moments are plotted against the design moments. The measured moments are taken from Figs. 3.2. 3.4. 3.6, 3.8 and 3.10 . The moments are show by different symbols for the column or midde strip and the wall strip. Open symols represent uniform load moments and solld symbols designate pattern load moments. A line has been drawn from the origin at 45 degrees which is the ideal case of measured moments and design moments being equal.

In Fig. 5.5 the monents in structure flare considered. It can be seen that the points are scattered and lie both above and below the 45 degree line. The wall strip moments (including the beams) lie well below the line. However, the beams which constitute the major portion of the moment are not typical cases. First, the beams tend to be conservatively designed and secondly, the measured beam monents are not as reliable as the measured slab moments.

The solid symbols should lie above the open symbols since the loads were applied to create maximum moment conditions. However, no definite trend is evident in that respect. The concentration of points at the lower left of Fig. 5.5 are the only values that are above the equality line. These points
represent interior aggative midde strip monents and positive monents in the midde and colum strips. These gections appeat to be under-designed even For uniform lozes. Hometer. with the Freponderance of points belon the line. Tt appearg that the flat plate has been adeauately designed as a whole structure despite the under-designed interiof panel sections.

The design and measured momers for the flet slabs. F 2 ard f3. are considered in Fig. 5.5 and 5.7 . frothese two structures, the reasured monents ercerded the design monerts 天t almose all sectione This is in contrast with the flat plate in which the design monents were in excess of measured moments in a majority of the sections. Five pattern load moments are ghighty fugher than the uniform load moments. however it is significant thet the uniform load momerts exceeded the design moments. fad the design monents been sufficient to provide for the unfform lawd it is unifkely that the pattern load monents would have exceeded the design monents.

Shnce the flat plate and the fiat siato are designed accordirg to the empirical method, it is important to gasider the three structures es a group in any comparison with design menernis. In the previous discussion it was show that beam monents are designed as separate elements of the structure. In doing this an edditional strength is imperted to edge panels. Therefore. the monarts in the interiot parel are of greatest importance.

In the three structures the measured positive moments in the colum and midele serips and the midde strip negetive moments exceeded the design monents. These sections constitute a najor portion of the monent capacity in an interior panel. if the design monents are not adequate at these sections. the bereficial effects of momert fedistribution are lost.

The comparison of moments in structure T is shown in Fig. 5.8. Tha points for uniform load monerts lie consistently below the equality line Even the pattern load moments are generallybelow the line This comparison indictes that the structure was over-designed. It is desirabie to have the uniform laed moments be about equal to the design moments with the pattern load moments excecing the design moments by a small percertage. fovever. in structure il witich was designed by liethod lof the Act code, the meesured monents were almost all below the design monents. This result is consistent with the fundementel espects of the tiethod in win in the beams and slab are both designed for maximum monents. lo doing this the design monents are cuite large and over-designirg resules.

The comparison of monents in structure 12 , shown in Fig. 5.9, results in several interesting conclusions. The design monents appear to adequately provide for uniform load. The design moments are low at some sections and high at others but over-all the design seems to be sufficient. The pattern load moments generally were greater than the design maments but were not excessively high. ft appears that the main criticism of the method is that it does not distribute the monent to the sections very well. However. pattern loミds did not seem to exceed design monents sufficiently to be given particular cons!esrations.
in sumery, the empirical design method did not provide for the uniform load and therefore did not provide for the pattern load. The mitigating condition is that the pattern load monents were not substantially greater than the uniform load moments in structures $F 1, F 2$ and $F 3$. Fithod i for two-way slabs resulted in a design that provided more monent capacity
-53-
then was needed under uniform or pattern loads. The method used for structure T2 appeared to have provided sufficient capacity for the monents in the structure as a whole, however, the manent was not well distributed between the sections.

6. A PROGEDGRE FOR DETERGHMRG THE EFEEGT OF REAH ABD COLUW STAFFRESSES

6.1 lotroductory Remarks

In the preceding chapter. design procedures for slabs were
discussed. It kes show that the treatment of pattern loads is not consistent for the different methods. From thet discussion it is afperent that considerably disagreement exists as to the importance of pattern loads. fi pattern lacds are important, the design methods do mot satisfactorily stipulate hok they shall be included in the design.

A methoc is presented in this chapter to estimate the effects of pattern laad in a given slab. The procedure is not intended to provide absolute values of pattern load monent, but rather to indicate when pattern loads should be given further attention in a particuiar gase.

The procedure consists of developing domains of stiffness parameter combinations which satisfy a given pattern ratio. The establishment of the domains kas accomplished by using the evailable theoretical solutions and extending them to cover additional cases where $H_{0} d_{0}$ and k are varied. The influence of the load ratio on the effects of pattern loads is included. A discussion of pミttern load effects on beams is also given.

Finaly: zhe procedure is compared with the results of pattern load tests on tre five test structures.
6.2 Development of a Procedure to Estimate the Effect of Beam and Colum

Stiffnesses

The combinations of the stiffness parameters that have been studied were discussed in Chapter 4. The available solutions include the effects of
bean stiffness ti on morents under both strip and checkerboard loads with $\mathcal{d}=k=0$. There are also solutions for varying values of \mathcal{f} and $k=\infty$, $K=0$. The aspect ratios varied from 0.5 to 2.0 in these solutions. In addtion, the effect of strip loads were studied for square penels heving rigid colums with $t=\Omega=0$. Ey a method of interpolation. Flexible columas could be included in this solution.

The pattern retios for strip loedings in panels heving combinetions of finite values of both h and k were not avaliable. There were no solutions for varying values of K and J in panels under strip loads. The effect of checkerboard loads had not been studied for panels in which d and k were varied along with a verying value of ho Rowever, most of these cases had been studied at some extreme values of the stiffness parameters such as rigid beams or no beams.

Pn order to approximate the pattern ratios for the cases which were not studied freviously, a means of establishing these ratios was devised. The construction for these solutions is shown in Fig. 6.1. Pattern ratios for a panel having an aspect ratio of one are shown and only positive moments are included since these were shown in the preceding discussions to be critical. The basic curves, uppermost in Fig. G.l, are identical to those shown in Fig. 4.6. These top lines give the pattern ratios for cases of strip loading with $K=0$, f varying and checkerboard loading with $\mathcal{A}=0$, H varying.

The remaining curves for the condition of strip loads were determined in the following manner. For $a / b=1.0$, it was known that for $k=0, K=\infty$, the patterm ratio α wes approximately l.20. In addition a linear interpolation for the pattern ratio between values of $k=0$ and $k=\infty$ could be used.

Therffore, a vertical linear scale was established on the $H /(i+f)=0$ axis. A straight line was drawn connecting $\alpha=1.20, \operatorname{Hf}(1+K)=0$ and $\alpha=1.0$, $H(1+t)=1.0$. The exact shape of this curve may not be a straight line, but may decrease very rapidly for low values of hind approach an asymptote at $H /(1+t)=1.0$. however the straight line is a conservative appronimation. The curves for values of $k(1+k)$ between zero and one were dram using a llnear vertical interpolation.

This construction completed the pattern ratios for strip loads for varying values of H and $k, \alpha=0$. By examinirg the curves for strip loads, it can be seen that the effect of finite values of $\&$ is to further decrease the curves so that $\alpha=1.0$ is approached. However, the effectiveness of d in reducing moments depends on the cepacity of the colum and beam to withstand the torsion transmithed to then. Wo accurate estimation of the parameter din reducing effects of strip loads was available, therefore, it was considered conservative to assume that increasing d did not reduce strip load pattern ratios.

The curves which completed the combinations of stiffness parameters for checkerboard load pattern ratios were constructed by using the following procedure. From the available solutions, the pattern ratios were known for cases of $=0$ and \mathfrak{H} being varied. Solutions for the influence of d in checkerboard loadings with $h=\infty$ were shown in Fig. 4.9. It can be seen that the variation of the pattern ratio is almost linear with increasing values of \mathcal{d}. This is conservative since a small increase in \mathcal{A} is more efficient in reducing the pattern ratio at low values of d than at higher values. This led to a vertical linear scale of $d /(1+d)$ along the $\mathcal{K} /(1+f)=1.0$
axis between values of $d /(1+d)$ of zero and one. F_{0} further assumption was made that the values of α would be 1.0 for $(f(t)=1.0$ regardless of the value of Had that the origin of all the curves was at the point where the curves for $\mathscr{A}=0$ crossed the line for $\alpha=1.0$. All the curves may not cross at this point, however, the variation should not be too great. The curves for intermediate values of d/(lith) vere constructed using a linear verticel interpolation between the limitirg curves.

The influence of k on checketborid load pattern ratios was not neeced since only positive monents are critical and k has no influence on these ratios: there is a diagonal line of symetry across the panels.

This method of extending the avaliable solutions to other values of the a三pect ratio was accomplished with only one additional assumption. The checkerboard load curves for any values of the aspect ratio can be constructed just as for a/b $=1.0$. However, for strip loads the efficiency of the stifriess of the columns in reducing the pattern ratio decreases as the aspect ratio deareases. In order to complete the curves for strip loads. it was assumed that for $a / b=0.5$ finite column stiffness did not reduce the moments while for $a f b=2.0$, rigid columns were completely effective in isolating the panels from strip loads. By fitting a curve through the known points, the pattern ratios were determined to be approximately 2.0 for $a / b=0.5,1.4$ for $a / b=$ $0.8,1.2$ for $a f b=1.0$ (this value was previously known). 1.1 for $a f b=1.25$ and 1.0 for $a / b=2.0$.

It can be seen that the effects of pattern loads are divided into strip load effects in which fi and K are the major variables and checkerboard load effects in which H and a are the major variables. This division made it
possible to chart comains in which combinations of the stiffness parameters satisfy a particular pattern ratio.

These domains are indicated in Figs. E.2-6.5. Three values of the pettern ratio (4/3, 3/2, 5/3) are used and the domains are given for five aspect ratios. The domains were obtained using the curve shown in Fig. G.l for $a / b=1.0$ and similar curves were constructed to establish the donains for the remeining espect ratios.

The shaded areas in Figs. 6.2-6.6 indicate the combinations of the stiffness parameters which result in the moment ratio being exceeded. Therefore, if a particular combination of fond or find falls withir this "danger" area, the patterns ratio may be surpassed. it should be pointed Out that the areas are not sharply delineated since the curves from which the velues were obtained are not exact in all cases. These domains give an indication when further attention to the effects of pattern loads is needed. The use of these domains in practical problems is discussed in the following. section.

6.3 Application of the Proposed Procedure

The development of the procedure discussed in Sec. 6.3 was based on theoretical solutions in which the permanent load was assumed to be zero. In an actual structure, there will be some permanent load on the floor slab. Since the procedure is to be applied to slabs having varying values of permanent and movable loads it is necessary to adjust the pattern fatio to obtain the moment ratio.

The pattern ratio α was previously defined as the ratio of pattern to the uniform load moment where the entire load was a movable load. The
moment ratio γ kas the ratio of pattern to uniform load moment in a structure having a load ratio β. The load ratio B is the ratio of movable to total load.

In a structure hiving a value of β less than one, the effects of pattern loads are less severe than when $\beta=1.0$ (the case of pattern ratios). Equation ϵ_{0} ! relates α, β_{0} and γ

$$
\begin{equation*}
\alpha=1 \div \frac{\gamma-1}{B} \tag{5.1}
\end{equation*}
$$

The equation is derived by considering the monent in a structure to be the sum of the permanent load multiplied by the uniform load moment coefficient and the movable load multiplied by the pattern load moment coefficient.

The use of this equation in conjunction with the domains of fig. 6.2-6.6 for a given structure consists of the following five steps.

1. Determination of the load retio, B.
2. Selection of the allowablemonent ratio γ.
3. Determination of the pattern ratio α using Eq. 6.b.
4. Computation of relative stiffnesses H. d and K.
5. Using Fig. 6.2-6.5, determine whether pattern loads may result in greater increases in moment then were allowed in Step 2.

The first three steps are self-explanatory. However, the fourth and fifth steps need further explanation. The method of computing H, \mathcal{A} and K are given in sec. 6.5. In the case of a rectangular slab having different beans in the two spans, a check is made for the effects of pattern loads in each dipection. In making these checks, the effects of different beam flemural stiffness $\left(H_{b}\right)$ in the perpendicular span are covered automatically.

If the torsional stiffnesses of the beams in the two spans are different, it is conservative to use the lower value of I for both spans.

Step 5 involves making two checks for a particular paneli one for the effects of strip loed and one for checkerboerd load. The check for strip load is made by computing the values of $K(1+6)$ and $k /(1+i)$ and this point is loceted on the coordinates of Figs. S.2-6.6. Simblarly the value
 two points do not lie in the shaced areas, the pattern loads should not increase the average moments more than the prescribed amount.

For example, if the patern ratio is determined to be $3 / 2$ for a
 $d /(1+d)=0, K /(1+K)=0.2$ it can be seen in Fig. 6.4 that checkerboard load moments will not exceed the allowable a but strip load monents may exceed the value of $\alpha=1.50$. fowever if $K /(1+k)$ is 0.3 strip loads should not yield pattern ratios exceeding 1.50 .

The steps outlined in the preceding paragraphs ape for the effects of pattern loads on the slab positive moments in an interior panel. In Ghapter 4 it was pointed out that these moments are the most critical witfo respect to pattern loads. This is confirmed by the measured monents given in Fig. 3.2, 3.4, 3.6, 3..8, and 3.10. Therefore, any combinations of the stiffness parameter satisfying the requirements for positive slab moment in the interior panel should also be sufficient for edge or corner panels.

It is important to remember that as the values of the beam flexural stiffness increase the distribution of monent to the beam also increases. For large values of h, the major portion of the moment is carried by the beam.

It is recessery to determine the effect of pattern loads on the beams simce these may be trecritical sections. The bean monents are maximized by strip loadings in most cases and strip loadings will produce increases equal to modified checkerboard loadings in the remaining ceses. A frame amalysis is given in the Appendix for computing the moment patios in siab structures approximated by a two-dimensional frame and loeded uniformiy or by strip petserts.

6.4 Gomeatison of Test results bith the froposed frocedure

The procedure outlined in this chapter has been besed strictly upor theoretigel considerations. it is desirable to determine how well it corbem lates with the results of the five test structures. The procedure is interced For use in estimatirg the fffects of pattern loads on a given structure。 Fowsver: for the purposes of this comparison the procedure is altered sightly Rather than assume a value for the allowable monent ratio γ_{3} the monent ratios measured in the test structures are used and for the values of the load ratio β on the structures, the measured values of α are determimed. The measured values of α are compared with the estimated values of α according to the suggested procedure. The comparisom is made in terms of the positive moment ratio ire the interior panels of the structures.

Ir any comperison, the similarities and differences between the stiffness parameters of the test structures and idealized stiffmess parameters must be examined. The greatest difference is in the supporting elements. fo the test structures the beams and columns have finite widths and thicknesses. In the theoretical solutions, these elements are dimensionless. The neutral axis of the beams and slabs are the same in the theoretical solutions elimimating T-beam action of the slab.

The values of K are determined routinely with the stiffness of the column capitals considered as outlined in the Appendix．

The values of the stiffnesses and stiffness parameters are given below for the interior panels of the test structures．A range rather than a single value is given for beam stiffnesses of structures T land T 2 ．The lower bound of the range corresponds to a rectangular beam while the upper bound sorresponds to a T－beam as described above．

Structure	H	α	K	$\frac{d}{1+H}$	$\frac{J}{1+j}$	$\frac{K}{1+K}$	
	H	0	0	11	0	0	0.9
$F 2.53$	0	0	1	0	0	0.5	
71	203	1	4	$0.67-0.75$	0.5	0.8	
72	$0.4-0.6$	0.3	9	$0.28-0.38$	0.23	0.9	

To estimate the effects of pattern loads on the test structures， Figo E． 7 is usid．This figure was constructed in the same manner as mere
 approximate the values of the patterm ratios．

Ying the values of $H_{0} \cdot 2$ and k given in the table aboye，points are locaさミら＝－：：g．E．for the partinent combinations of the stiffness parameters for zaご
$\therefore=2-=3$ seen that chackerboard loads should be of no concern in structures 7 ：$Z 2$ and F3．Since these structures have no beams，the important consideraticn is the strip load effect．Structure fl should not be seriously affected by strip loads．The value of $x /(i+k)$ is large and the value of α is about 1．2．However，the value of a for F2 and F3 is about lo6．The columns were felatively flexible as indicated by the value of $k /(i+k)=0.5$ and strip loads must be given consideration．

The points plotted for structures $T 1$ and $T 2$ are shown as lines as a result of the range of beam flexural stiffnesses that were computed. The location of the lines for Tl indicates that the value of α for either checkerboard or strip loads is less than 1.2 . This pattern ratio is quite low and pattern loads should be of no consequence in T.l.

The location of the line relating $J /(1+J)$ and $H /(1+H)$ for t2 shows that the effects of checkerboard loads should be negligible. Figure 6.7 indicates that the effect of strip loads will be greater than the effect of checkerboard loads. However, the strip load pattern ratio should be about 1.2 which is quite low.

The values of α measured in the tests are summarized below. The value of β was known, γ was measured in the tests and α was obtained by use of Eq. 6.1.

Structure	β	$\gamma_{\text {meas。 }}$	α meas.
$F 1$			
$F 2$	0.72	1.09	1.13
$F 3$	0.85	1.14	1.17
71	0.73	1.64	1.82
T2	0.81	1.21	1.26
	0.65	1.03	1.05

ft can be seen that the estimated yalues of α compare favorably with the measured yalues. Strip loas resulted in a pattern patio slightly greater Than 1.1 in Fin and this is nearly the value that was estimated The measured yalue of α is quite low in F2 and high in F3. At is felt that these are extreme values and the actual pattern ratio lies betweer. The estimated pattern ratio was 1.0 which sems reasonable. The value of α estimated for Tl was about equal to that measured. At was predicted that checkersoard loads Would be of no consequence in $T 2$ and this was confirmed by the tests.
-65-

It must be remembered that the values of measured monent used to compute the pattern ratio are across the interior panel positive moment section and therefore are subject to localized irregularities which cannot be eliminated as easily as when the average moment ratio is taken for the entire structure Howeter, the estimated values are sufficiently accurate for desigh purposes.

7. SUKMARE

7.1 Obiect and scope

The object of this study is to evaluate the effects of pattern loadings on reinforced concrete floor slabs. This report brings together and correlates the avalable analytical and experimental infomation on the effects of pattern loadings in floor slabs in order to develop a unified approach to the problem.

The experimental studies consist of load tests on a series of five multiple-panel reinforced concrete floor slabs. The test structures included two flat slabs, a flat plate and two two-way slabs. layouts of these slabs are shown in Figs. 2.1-2.3.

The available theoretical solutions for plates under pattern loadings are listed in Tables $3-9$. Fanels having aspect ratios from 0.5 to 2.0 are considered. The variables are the beam torsional and flexural stiffnesses and the column flexural stiffness.

7.2 Eehavior of Test Structures Under Pattern Loads

Two types of pattern loads were applied to the structures. Gheckerboard patterns wers used in the two-way slabs and strip patterns in the flat slabs. The leading patterns are shown in Fig. 2.4.

Represertative strain distributions across critical sections for uniform and pattern loadings are shown in Figs. 2.6 and 2.7. Deflections are compared in figs. 2.8-2.12. The pattern loadings increased strains across all the sections. However, in some cases this increase was negifible. The increases in deflection ranged from 10 percent in Fl to 100 percent in F 3
but the absolute increases in deflection were small in all the structures. The crack patterns were nearly unaffected by the pattern loads. Ho new cracks were formed but a slight widening and lengthening of the existing cracks wes observed. On the basis of the deflection, strain and crack observations. it can be said that the serviceability of the test structures Has unimpeired by pattern loads.

The monents in the test structures were calculated from strain measurements for both pattern ard unifom loads and are compered in figs. $3.2-3.110$

The strip load moments in the flat plate and slabs kere about 20 percent greater than uniform loadmoments. Under checkerboard loads, the moments increased by about 30 percent in the typical tho-kay slab, but were unchanged in the two-wey slab with shallow beans.

7.3 Theoretical Solutions for Pattern Load Homerts

The available solutions for the effects of pattern load on monents are given in Tables 3-9. The trends evinced by these solutions are shown in Figs. 4.4-4.11.

The theoretical solutions indicate that the effects of pattern loads on the slab moments in edge or conner panels are less than on an interior panel and positivemonents are affected more than negative momentso in addition, it is shown that checkerboard loads result in greater moment increases than strip loads only if beams having very large flexural stiffness support the slab.

7.4 Frocedure for Estimating the Effects of Pattern Loads

The discussion of development of current design methods in Ghapter 5 indicates that pattern loads are not treated consistently in the various methods. They are included in determining twowey slab design moments and largely ignored ir flat slab designo

A nethoi is developed in Ghapter for predictirg the effects of petterr loacs on a siad supported by beams or column of any stiffresso The method is besed on the avellable theoreticel solutions and plausible entensions of these solutions for a wider range of veriables. The method consists of determining whether the given combinations of the stiffness parameters are sufficient to limit the monent increases to a prescribed level (See Figso 6.2-5.6) 。 The beam flexural and torsional stiffresses must frovide for checherboerd loads; columns camot limit the effects of checkerboard loeds on positive monents. The beam and column flexural stiffnesses must provide for the effects of strip loads. $\| t$ is assumed that the beam torsional stiftnesses do not decrease the effects of strip loads.

The suggested procedure for estimating the effects of pattern loads shows that checkerboard loads are not critical unless very stiff beams are used. lt is also shown that in most structures, strip loads are of prime concern and significant moment increases result if relatively flexible beams or columns are employed.

A frame analysis is presented in the Appendix for determinimg the uniform or steip load moments in any type of slab. The frame analysis enebles computation of absolute moment values at design sections.

1. Kayes, Go To, M. A. Sozen, and Go Po Siess, "Tests on a Quarter-Scale Hodel of Rultiple-Panel Reinforced Concrete Flat Plate Floor," Structural Research Series foo 181, Department of Givil Engineering, University of lllinois. September 1959.
 of a Reinforced Concrete Flat Slab Floor." Structural Research Series Lio. 200, Department of Civil Engineering, University of llinois, dune 1550.
2. Hatcher, D. So, Mo A. Sozens, and C. F. Siess. "A Study of Tests on a Flat Flate and a Flat Slab, " Structural Research Series No. 217. Eepartment of Civil Engineering, Vhiversity of llllnois. duly lest.
3. Gamble, $\%$ Lo, K. A. Sozen, and G. Fo Siess, "An Experimental Study of a Tho-Kay Floor slab," Structural Research Series No. 211, Department of Civil Engineting, University of llinols, june le6l.
4. Vanderbilt, Ko D. K. A. Sozen, and Go F. Siess, "An Experimental Study of a Reinforced Concrete Two-ley Floor Slab with Flexible Beams: ${ }^{\text {f }}$ Structurel fiesearch series fo. 228, Departnent of Givil Engineering, University of 111 inois. kovember 1961 .
5. dirsa, do Oo, k. A. Sczen, and Go P. Siess, 'An Experimental Study of a Flat Slab Floor Reinforced with kilded kire Fabric, " Structural Research Series lio. 249 , University of lllinols, June 1962.
6. American Concrete Institute, Euilding Gode Requirements for Reinforced Goncrete (ACl 318-56).
7. Sutherland. d. Go. b.E. Goodman, and M. M. R'ewnark, 'Analysis of Plates Continuous over Flexible Beams." Structural Research Series No. 42, Department of Civil Engineering, University of $111 i n o i s$, danuary 1953.
Q. Timostenko, So, and So Woinowsky Krieger, "Theory of Plates and Shells," Second Edition, MoGraw-hill Book Coo, hew rork, 1959.
8. Kemmark. Ri. M. "tA Distribution Procedure for the Analysis of Slabs Continuous over Flexible Eeams," Bulletin 304. Engineering Experiment Station, University of 111 inois . 1938.
9. Siess, C. Po. and N.M. Nemmark, 'Yfoments on Two-Way Concrete Floor Slebs," Eulletin 385, Engineering Experiment Station, University of fllinois. 1950.
10. Gamble. K. Lo. M.A. Sozen, and G. P. Siess, 'Heasured and Theoretical Bending Homents in Reinforced Concrete Floor Slabs," Structural Research Series No. 245, Department of Civil Ensineering, University of lllinois. June ise2.
11. Morrison, Q_{0} D. ''Solutions for Rine-Fanel Gontinuous Plates with Stiffening Eeams," ki.S. Thesis, Department of Givil Engineering. University of lllinois, leal.
 Froceedings ACl, vol. 17, 1921. pp. 415-538.
12. Sozen. $\mathrm{H}_{0} \mathrm{Ao}_{\mathrm{o}}$ and G. P. Siess, "fnvestigation of kultiple-fanel feimforced Goncrete Floor slabs, Design tiethods, Their Evolution and Comparisons" ACl dournel. fugust 1953.
13. Richols. d. Ro. "Statical Limitations Upon the Stee! Requiremencs in Reinforged Concrete Flat Slab Floors," Frans. ASCE, Vol. 77, IS14. FP. 1670-1681.
14. [First] dolnt Comittee Report on Concrete and keinforced Concrete. "Final Report" I duly 1916 .
15. [Second] Joint Comittee on Standard Specifications for Concrete and Reinforced Concrete, "Standard Specifications for Concrete and Reiríorced

16. American Concrete Institute, Standard Building Regulations for Reinforced Concrete (A.cl 318-4.1).
17. Distasio, d. and K. P. van Euren, "Background of Ghapter 10, 1956 Regulations for Flat Slabs:" Unpublished report prepared for AGl Comittee 318 .
18. American Concrete institute Building Code Requirements for Reinforced Concrete (ACl 318-63).
19. Casillas, wuan Go de ho, and Go F. Siess, "Comparative Studies of Design Procedures for Two-Way Reinforced Concrete Slabsot Structural Research Series No. 215, Department of Givil Engineering. University of fllirois, they l961.
20. Distasio, do and M. Fo van Buren, "Slabs Supported on Four Sides, ${ }^{\text {B }}$ ACl Froceedings, Vol. 32, 1936. pp. 350-364.
21. Berting R. Lo, do Distasio and M. Po van Buren, "Slabs Supported on Four Sides," ACl Praceedings, Vol. 41. 1945. pp. 537-556.
22. EThird] Joint Comittee on Standard Specifications for Concrete and Reinforced Concrete, 'Recomnended Practice and Standard Specifications for Concrete and Reinforced Concrete, "American Concrete Institute, Detroit. $1=40$.
23. Harcus, Ho, "Die vereinfachte Eerechnung beegsamer Platten," Jullus Springer, Eerlin, 1929.
24. Gorley, K', G., K. A. Sozen, and C. P. Siess, "The Equivalent Frame Analysis for Reinforced Concrete Slabs," Structural Research Series Ko. 218, Department of Givil Engineering, University of lllinois. June is6!.
25. Seelys F. B., and J. O. Smith, "hdvariced Strength of Vateriais," Kiley: llev York: Second Edition, IO52, f. 271.

TABLE 1 PROPERTIES OF MNTERIALS IN TEST STRUGTURES

Structure	$\begin{gathered} \mathrm{f}_{\mathrm{c}}^{8} \\ \mathrm{psi} \end{gathered}$	E_{c} ksi	$\begin{aligned} & \mathrm{f}_{\mathrm{r}} \\ & \mathrm{psi} \end{aligned}$	Age days	Reinforcement	$\begin{array}{r} f_{y} \\ \text { ksi } \end{array}$	Design Live Load psf	loads Dead Imad psf
51	2510	2400	700	76	1/8 in. sq. bars	36.7	70	85
F2	2760	3100	600	78	$1 / 8$ in. sq. bars	42.0	200	85
F3	3760	3700	750	55	$\%$	70\%\%	200	85
TI	2830	3000	590	76	1/8 in. sq. bars	42.0	70	75
T2	3550	3300	940	50	1/8 in. sq. bars	47.6	70	75

* Wires with diameters ranging from 0.142 to 0.0625 in.
*\% Based on average of wires at 0.2% offset.
Proportional limits of wires $50-55 \mathrm{ksi}$.
Concrete properties are based on tests of 2 by 4 -in. cylinders.

TABLE 2 ASSUMED PROPERTIES USED IN MOMENT-STRAIN RELATIOMSHAPS

Structure	Gracking Strain	Gracking Stress, psi	Deam Edge Beams	ths Interior Beams
81	0.00015	310	4t, deep beam 0 , shallow beam	
F2	0.00015	360	4t, deep beam 0 , shallow beam	
F3	0.00019	600	4t, deep beam 0 , shallow beam	--
T 1	0.00015	400, slab 350, beams	4 t	$4 t$
T2	0.00020	550, slab 500, beams	3 t	3 t

TABLE 3 cOMPARISON OF PATTERN K!TH UMIFORM LOAD FOSITIVE FOMELTS in An heterlor fanel

$$
=K=0
$$

Aspect	Deam		Averas	lab Fositiv	Momerts,	a^{2}
	Flexural			erboard		
2/b	Stiffress\% \because	${ }^{\mathrm{H}} \mathrm{UL}$	${ }^{\prime} \mathrm{CS}$	$\frac{M_{C B}}{\frac{M_{U L}}{M_{U}}}=\alpha_{C B}$	${ }^{H}$ ST	$\frac{W_{S T}}{k_{U S}}=\alpha_{S T}$
					-	
0.5	0	0.0417	0.0533	1.28	0.0933	2.00
	0.25	0.0304	0.04 .77	1.57	0.0501	1.98
	0.5	0.0278	0.0464	1.67	$0.052 i$	1.87
	1.0	0.0263	0.0456	1.73	0.0456	1.73
	2.5	0.0255	0.0452	1.77	0.0401	1.57
	∞	0.0251	0.0450	1.79	0.0352	1.40
0.8	0	0.0417	0.0384	0.92	0.0833	2.00
	0.4	0.0277	0.0314	1.13	0.0521	1.88
	0.8	0.0232	0.0291	1.25	0.0398	1.72
	1.6	0.0197	0.0280	1.42	0.0313	1.59
	4.0	0.0172	0.0261	1.52	0.0230	1.34
	∞	0.0152	0.0251	1.65	0.0161	1.05
1.0	0	0.0417	0.0327	0.78	0.0833	2.00
	0.5	0.0263	0.0250	0.95	0.0454	1.73
	1.0	0.0208	0.0222	1.07	0.0331	1.59
	2.0	0.0154	0.0200	1.22	0.0234	1.43
	5.0	0.0127	0.0182	1.43	0.0155	1.22
	∞	0.0095	0.0166	1.73	0.0080	0.94
1.25	0	0.0417	0.0313	0.75	0.0833	2.00
	0.63	0.0248	0.0228	0.92	0.0408	1.65
	1.25	0.0185	0.0197	1.06	0.0279	1.51
	2.50	0.0133	0.0172	1.29	0.0182	1.37
	6.25	0.0088	0.0148	1.68	0.0105	1.19
	∞	0.0049	0.0128	2.61	0.0042	0.86
2.0	0	0.0417	0.0256	0.61	0.0833	2.00
	1.0	0.0208	0.0158	0.75	0.0313	1.50
	2.0	0.0139	0.0124	0.89	0.0195	1.40
	4.0	0.0085	0.0097	1.14	0.0113	1.33
	10.0	0.0041	0.0075	1.83	0.0051	1.24
	∞	0.0005	0.0033	6.60	0.0004	0.80

$\% H_{b}=H_{a}(b / a)^{2}$.

```
TABLE 4 COHPARISON OF PATTERN WITH URIFORN LOAD KEGATIVE MOHERTS
    If AN INTERIOR PANEL
        J=K=0
```


$\% H_{b}=H_{a}(b / a)^{2}$.

TABLF 5 COMPARBSON OF CHECKERBOARD WITU UNAFORA LOAD MOMENTS BA AN INTERBOR PANEL.

$$
H=\infty, k=0
$$

Aspect Ratioa / b	Beam Torsional Stiffness		Average Slab Moments M/ga					
			Positive Moment			Megative Moment		
			MuL	$M_{\text {CB }}$	$\alpha_{C B}$	MuI^{\prime}	${ }^{1} \mathrm{CB}$	$\alpha_{C B}$
	${ }^{\text {J }}$	d_{b}						
0.5	0	0	0.0279	0.0467	1.67	0.0556	0.0728	1.31
	0.78	1	0.0279	0.0360	1.29	0.0556	0.0676	1.22
	1.54	2	0.0279	0.0330	1.18	0.0556	0.0633	1.14
	∞	∞	0.0279	0.0279	1.00	0.0556	0.0556	1.00
0.8	0	0	0.0168	0.0262	1.56	0.0389	0.0523	1.36
	0.79	0.83	0.0168	0.0213	1.2 .7	0.0389	0.0473	1.22
	1.58	1.66	0.0168	0.0196	1.17	0.0389	0.0449	1.15
	∞	∞	0.0168	0.0168	1.00	0.0389	0.0389	1.00
1.0	0	0	0.0119	0.0178	1.50	0.0290	0.0434	1.50
	0.81	0.81	0.0119	0.0146	1.22	0.0290	0.0371	1.28
	1.62	1.62	0.0119	0.0136	1.14	0.0290	0.0342	1.18
	∞	∞	0.0119	0.0119	1.00	0.0290	0.0290	1.00
1.25	0	0	0.0065	0.0099	1.52	0.0198	0.0322	1.62
	0.83	0.79	0.0065	0.0083	1.28	0.0199	0.0261	1.31
	1.66	1.66	0.0065	0.0077	1.18	0.0199	0.0245	1.2 .3
	∞	∞	0.0065	0.0065	1.00	0.0199	0.0199	1.00
2.0	0	0	0.0023	0.0032	1.39	0.0079	0.0156	1.98
	1	0.78	0.0023	0.0027	1.17	0.0079	0.0128	1.62
	2	1.54	0.0023	0.0026	1.13	$0.00 \% 9$	0.0105	1.33
	∞	∞	0.0023	0.0023	1.00	0.0079	0.0079	1.00

TABLE 6 COMPARISON OF CHECKERBOARD WITH UNOFORH LOAD MOMGNES IN AN EDGE PANEL O PARALLEL TO EDGE

$$
18=\infty, K=0
$$

Aspect Ratio a / b	Bean Torsional Stiffness$d_{a} \quad d_{b}$		$\mathrm{Mu}^{\text {U }}$	Average slab lioments, 1/9a ${ }^{2}$							
			Positive froment	Negative Moment							
			${ }^{11} \mathrm{CB}$	${ }_{6}{ }_{6 B}$	Int. $\%$ Panel γ CB	${ }^{1}$	${ }^{11} \mathrm{CB}$	${ }_{C B}$	Into家 Panel α CB		
0.5	0	0		0.0310	0.0480	1.55	1.67	0.0586	0.0794	1.36	1.31
	0.78	1		0.0292	0.0362	1.24	1.29	0.0577	0.0678	1.19	1.22
	1.54	2	0.0286	0.0330	1.15	1.18	0.0572	0.0628	1.10	1.14	
0.8	0	0	0.0194	0.0271	1.4 .0	1.56	0.0465	0.0556	1.20	1.36	
	0.79	0.83	0.0181	0.0214	1.18	1.27	0.0426	0.0433	1.13	1.22	
	1.58	1.66	0.0177	0.0196	1.11	1.17	0.0414	0.0450	1.09	1.15	
1.0	0	0	0.0109	0.0173	1.59	1.50	0.0376	0.0479	1.27	1.50	
	0.81	0.81	0.0113	0.0142	1.26	1.23	0.0337	0.0379	1.13	1.28	
	1.62	1.62	0.0115	0.0135	1.17	1.14	0.0319	0.0348	1.09	1.18	
1.25	0	0	0.0084	0.0109	1.30	1.52	0.0287	0.0366	1.28	1.62	
	0.83	0.79	0.0075	0.0085	1.13	1.28	0.0238	0.0273	1.15	1.31	
	1.66	1.58	0.0072	0.0077	1.07	1.18	0.0224	0.0214	1.09	1.23	
								- ${ }^{1}$			
2.00	0	0	0.0027	0.0034	1.26	1.39	0.0129	0.0180	1.39	1.97	
	1	0.78	0.0025	0.0027	1.08	1.17	0.0102	0.0124	1.22	1.62	
	2	1.54	0.0024	0.0026	1.13	1.13	0.0094	0.0107	1.14	1.33	

[^1]TABLE 7 COMPARISON OF CHECKERBOARD WITH UNBFORM LOAD MOHENTS IN AN EDGE PANEL O PERPENDICULAR TO EDGE

$$
H=\infty, k=0
$$

Aspect Ratio a / b	Beam Torsional		14	Positive Moment			Average Slab Moments, M/ga ${ }^{2}$								
			Interior Negative Moment				Exierior Megative Moment								
	$\begin{aligned} & \text { Stit } \\ & \mathrm{d}_{\mathrm{a}} \end{aligned}$	ness J_{b}		${ }^{11} \mathrm{CB}$	${ }^{\text {c }}$ CB	Int.o ${ }^{\circ}$ Panel α CB	810	${ }^{\mathrm{M}} \mathrm{CB}$	${ }^{\alpha} \mathrm{CB}$	$\begin{gathered} \text { Into } 6 \\ \text { Panel } \\ \alpha_{C B} \end{gathered}$	1 UL	${ }^{18} \mathrm{CB}$	${ }_{C}^{\alpha} \mathrm{CB}$	$\begin{gathered} \text { Intox } \\ \text { Panel } \\ \alpha \quad \alpha B \end{gathered}$	
0.5	0	0		0.0336	0.0493	1.47	1.67	0.0640	0.0810	1.2 .7	1.31	0	0	\cdots	1.31
	0.78	1	0.0305	0.0363	1.19	1.29	0.0612	0.0683	1.12	1.22	0.0282	0.035%	1.25	1.22	
	1.54	2	0.0295	0.0331	1.12	1.18	0.0598	0.0639	1.07	1.14	0.0374	0.0433	1.16	1.14	
0.8	0	0	0.0173	0.0263	1.52	1.56	0.0415	0.0539	1.30	1.36	0	0	\cdots	1.36	
	0.79	0.83	0.0172	0.0211	1.23	1.27	0.0404	0.0475	1.18	1.22	0.0195	0.0242	1.24	1.22	
	1.58	1.66	0.0171	0.0195	1.14	1.17	0.0401	0.0449	1.12.	1.15	0.0259	0.0305	1.18	1.15	
1.0	0	0	0.0154	0.0195	1.27	1.50	0.0290	0.0431	1.49	1.50	0	0	${ }^{\circ}$	1.50	
	0.81	0.81	0.0137	0.0150	1.10	1.23	0.0290	0.0364.	1.26	1.28	0.0145	0.0191	1.32	1.28	
	1.62	1.62	0.0131	0.0138	1.05	1.14	0.0291	0.0342	1.18	1.18	0.0194	0.0233	1.20	1.18	
1.25	0	0	0.0063	0.0099	1.57	1.52	0.0202	0.0320	1.58	1.62	0	0	\cdots	1.62	
	0.83	0.79	0.0094	0.0082	1.28	1.28	0.0199	0.0264	1.32	1.31	0.0100	0.0134	1.34	1.31	
	1.66	1.58	0.0065	0.0076	1.17	1.18	0.0199	0.0243	1.22	1.23	0.0132	0.0164.	1.24	1.23	
2.0	0	0	0.0025	0.0033	1.32	1.39	0.0082	0.0156	1.90	1.97	0	0	${ }^{\infty}$	1.98	
	1	0.78	0.0024	0.0027	1.13	1.17	0.0080	0.0118	1.48	1.62	0.0040	0.0061	1.53	1.62	
	2	1.54	0.0024	0.0026	1.08	1.13	0.0079	0.0103	1.30	1.33	0.00\%3	0.0071	1.34	1.33	

$\stackrel{1}{1}$
$\%$ Interior pane $\alpha_{C B}$ is ${ }_{C B}{ }_{C B} / M_{U L}$ for an interior panel supported similarly.

TABLE 8 COMPARBSON OF GHEGKERBOABD WATH UNAFORM LOAD MOMENTS ON A CORMER PAMEL

$$
H=\infty, K=0
$$

Aspect Ratio a / b	Beam Torsional Stiffness $d_{a} d_{b}$		Mus	Average Slab Moments M/ga											
			Positive foment	Intepior degative Moment				Exterior Megative Moment							
			${ }^{81} \mathrm{CB}$	${ }^{\alpha}$ CB	Int.o Panel α CB	H_{31}	${ }^{8} \mathrm{CB}$	${ }^{\circ} \mathrm{CB}$	$\begin{aligned} & \text { Bnto } 8 \\ & \text { Fanel } \\ & \alpha \text { go } \end{aligned}$	MU1.	${ }^{1} \mathrm{CB}$	${ }^{\alpha} \mathrm{CB}$	Int. ${ }^{3}$ Panel α CB		
0.5	0	0		0.0393	0.0522	1.33	1.67	0.0716	0.0846	1.18	1.31	0	0	cn	1.31
	0.78	1		0.0324	0.0368	1.14	1.29	0.0644	0.0692	1.03	1.22	0.0298	0.0354	1.29	1.22
	1.54	2	0.0306	0.0333	1.09	1.18	0.0617	0.0644	1.04	1.14	0.0386	0.0435	1.13	1.14	
0.8	0	0	0.0234	0.0291	1.24	1.56	0.0520	0.0603	1.16	1.36	0	0	\cdots	1.36	
	0.79	0.83	0.0190	0.0214	1.13	1.27	0.0449	0.0490	1.09	1.22	0.0218	0.0247	1.13	1.22	
	1.58	1.66	0.0182	0.0199	1.09	1.17	0.0429	0.0459	1.07	1.15	0.0279	0.0308	1.10	1.15	
1.0	0	0	0.0156	0.0196	1.26	1.50	0.0401	0.0488	1.22	1.50	0	0	${ }^{\circ}$	1.50	
	0.81	0.81	0.0134	0.0148	1.10	1.23	0.0339	0.0378	1.11	1.20	0.0170	0.0197	1.16	1.28	
	1.62	1.62	0.0128	0.0137	1.07	1.14	0.0321	0.0348	1.08	1.18	0.0217	0.0239	1.10	1.18	
1.25	0	0	0.0088	0.0112	1.27	1.52	0.0298	0.0370	1.24	1.62	0	0	∞	1.62	
	0.83	0.79	0.0075	0.0084	1.12	1.28	0.0241	0.0270	1.12	1.31	0.0125	0.0146	1.17	1.31	
	1.66	1.58	0.0071	0.0077	1.04	1.18	0.0226	0.0250	1.11	1.23	0.0151	0.0168	1.11	1.23	
2.0	0	0	0.0029	0.0035	1.21	1.39	0.0134	0.0181	1.35	1.97	0	0	-	1.97	
	1	0.78	0.0026	0.0028	1.08	1.17	0.0103	0.0123	1.19	1.62	0.0052	0.0064	1.23	1.62	
	2	1.54	0.0025	0.0026	1.04	1.13	0.0094	0.0105	1.12	1.33	0.0063	0.0073	1.16	1.33	

[^2]TAELE 9 COHPARISON OF STREP WITH UHEGORK LOAD HOWERTS IN BEAHS

$$
1=K=0
$$

Eote: Dimension $h_{c}=16-5 / 8^{4}$ in Typical Two-Kay Stab (Tl) and $h_{c}^{c}=13-7 / 8^{s}$ in Tw-key Slab with Shallow Beams (T2)

FIG. 2.3 LAVOUT OF TKOHEY SLEB TEST STKUGTURES (T1, T2)

Maximum fosttive and Exterior kegative Bancot
Feximut kidepan Deflection $\mathrm{Fi}, \mathrm{F}, \mathrm{F}=$

Karimen fegative koment $\mathrm{FE}: \mathrm{FZ}_{8} \mathrm{FB}$


```
Nakimun fositive faments
Karimun Kicpenel Deflections
    Tl. T2
```

Kenimun kegative koments
fiaximut Eeam Deflections

$$
71,72
$$

Fiarimu Reqative Eeam homents
Ti, T2

Rote: Heavy lines indicate sections of maximized monent Circles indicate locetions of maximized deflection

FIG. 2.4 LOEDEGG PATTERNS

kote: Uniform Load Deflections Strip LaEd Deficctions

FIG. 2.8 STRIP AND UNIFORH LOAD DEFLECTIONS If STRUCTURE FI

Wote: Uniform Load Deflections Strip Load Deflections

FEG. 2.9 STRIP AND URIFORM LOAD OEflections in structure f2

Rote: Uniform Load Deflections Strip LoEd Deflections

FIG. 2.10 STRIP AND URIFORM LOAD DEFLECTIONS IN STRUCTURE F3

Hote: Unifurm Load Deflections

Checkerboard Load Deflections

FIG. 2,11 CHECKEREOARD AND UNIFORH LOAD DEFLECTIONS IA STRUCTURE TI

FIG. 3.3 COMPARISON OF STRIP AKD UNIFORK LOAD KOMERTS in structure fi

FIG. 3.5 COMPARISON OF STRIF ARD UNFORR LOAD MOKERTS le structure f2

-98-						
Oirection of moments						
$\begin{aligned} & \text { Uall } \\ & \text { strip } \end{aligned}$	Kidde strip	Columa Strip	Kicele Strip	Columa Strip	Hiddle Strip	$\begin{aligned} & \text { kall } \\ & \text { strip } \end{aligned}$
	0.007 0.007	$\frac{0.427}{0.027}$	$\begin{aligned} & 0.006 \\ & 0.008 \end{aligned}$	$\begin{array}{r} 15 \\ 0.6205 \\ \hline \end{array}$	0.005 0.008	$\left[\begin{array}{l}0.022 \\ 0.021\end{array}\right]$
101020	$\begin{aligned} & 0.019 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.022 \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.615 \\ & 0.622 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.015 \end{aligned}$	\|0.052
	0.017	$\begin{aligned} & 2 \cdot 6 \\ & 56 \end{aligned}$	0.018		0.014	$0 \mathrm{0} 0 \mathrm{EE} 5 \mid$
$\begin{aligned} & -20 \\ & 0,035 \end{aligned}$	0.018		0.018	$\frac{n^{2}}{6 \cdot \frac{1}{6} e}$	0.016	0.051
10000	$\begin{aligned} & 0.010 \\ & 0.018 \end{aligned}$	$\begin{gathered} 0.133 \\ 0.619 \\ \hline \end{gathered}$	$\begin{aligned} & 0.008 \\ & 0.018 \end{aligned}$	$\begin{aligned} & 0.614 \\ & 0.415 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.015 \end{aligned}$	0, 016
$\begin{array}{r} 1 \\ 0.031 \\ -\times 35 \end{array}$	0.015		0.018	$\begin{aligned} & 0.640 \\ & 2063 \end{aligned}$	0.013	$\begin{aligned} & 0,055 \\ & 0,054 \end{aligned}$
0.039 0.04	0.018	$\begin{array}{r} 4.4 \\ 6.64 \\ 0.445 \end{array}$	0.018	$\frac{6.42}{6.04}$	0.014	$\begin{aligned} & 0.060 \\ & 0.062 \end{aligned}$
01018	$\begin{aligned} & 0.015 \\ & 0.018 \end{aligned}$	0.015 0.620	$\begin{aligned} & 0.017 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.019 \end{aligned}$	[1]
$\begin{aligned} & \text { c!020 } \\ & \text { f1022 } \end{aligned}$	$\begin{array}{r} 0.008 \\ 0.008 \\ \hline \end{array}$		$\begin{aligned} & 0.004 \\ & 0.005 \\ & \hline \end{aligned}$	0.022 0.63	0.007 0.005	$\left[\begin{array}{l}0.015 \\ 0.019\end{array}\right]$
Hote:	cuents in niform trip Load 10. 3.6	erms of मoments axents RIP ANO	1000	EkTS le str	IRE F3	

FIG. 3.7 COMPARISOR OF STRIP ANO URGFORM LOAD MOHERTS if structure f3

FIG. 3.3 COMPARISON OF CNECKEREOARO AKD UMIFORM EOAD MOKENTS IN STRUCTURE Ti

FIG. 3.11 COEPARISOR OF CNECKEREOARD AND UNIFORH LOAD MOMENTS f H structure t2

FIG. 4.4 PATTERA RATIO US. BEAM FLEXURAL STIFFNESS, $a / b=0.5, d=K=0$

FIG. 4.5 PATTERK RATIO VS. BEAK FLEXURAL STIFFKESS, $a / b=0.8, \mathrm{~d}=\mathrm{K}=0$

FIG. 4.6 PATTERK RATIO VS. BEAM FLEXURAL STIFFEESS, $a / b=1.0, d=K=0$

FIG. 4.7 PRTTERN RATIO VS. BEAM FLEXURAL STIFFAESS, $a / b=1.25, d=K=0$

FIG. 4.8 PATTERN RATIO VS. BEAM FLEXURAL STIFFRESS, $a / b=2.0, d=K=0$

FIG. 4.9 Checkereoard fattern ratio for positive monent us. eeah TORSIORAL STIFFRESS, $K=0, K=\infty$

FIG. 4.10 CHECKERBOARD PATTERE RATIO FOR REGATIVE MOHENT US. REAK TORSIOGAL STIFFNESS, $K=0, H=\infty$

Note: Moments in terms of M/ga ${ }^{3}$

FIG. 5.1 OESGGU HOEENTS FOR STRUETERE FI
fatrection of kimonts

$\begin{aligned} & \text { KEll } \\ & \text { strip } \end{aligned}$	Middie strip	Columb striep	nide strip	Colus: sthip	$\begin{aligned} & \text { Midde } \\ & \text { strip } \end{aligned}$	$\begin{aligned} & \text { Eatil } \\ & \text { strip } \end{aligned}$
\int_{0}^{0225}	$-\overline{0.007}$	70.020	0.007	0488	0.007	0.028
0.025	0.013	0.016	0.613	0.015	0.015	0.028
	0.018	$\frac{0.27}{6+1}$	0.011	$\begin{aligned} & 0.637 \\ & -\sqrt{6} 7 \end{aligned}$	0.011	
0.037		GR,				0.046
$0,018$	0.018	0.018	0.010	0.213	0.010	0.020
	0.011	$\begin{aligned} & 0.092 \\ & 1+\frac{1}{1} \end{aligned}$	0.011	pore	0.011	
0.037		6et		40-5		0644
	0.013	0.016	0.013	0.016	0.013	0.0281
1.026	0.013	$\begin{aligned} & 0.016 \\ & 17 \end{aligned}$	0.013	$1 \frac{0.016}{7}$	0.013	

Note: Fonents in terms of $\mathrm{M} / \mathrm{qa}^{3}$

FIG. 5.2 DESIGR MOKEKTS FOR STRUCTURES F2 AED F3

FIG. 5.5 COMPARISOR OF DESIGA AKD MEASURED MONERTS 16 STRUCTUKE FI

FIG. 5.6 COMPARISOH OF OESIGN RUD MEASURED MOMERTS lk structure fo

FIE. 5.7 COMPAR:SOR OF DESIGN ARO MEASURED KOKENTS if structure f3

FIG. 5.9 COMPARISOK OF OESICR ARO KEASURE MOMEKTS 10 STRUCHEE T2

Fig. 6.1 VARIATION OF PATHERN RATIO FOR POSITIVE MOMENT W'fth H, J, and K

FIG. 6.2 COMBINATIOAS OF STIFFMESS PAPAMETERS SNTASFYING SELECTED PATTERA RATIOS, Q/D $=0.5$

FIG. 6.6 COMAMMATIONS OF STIFFNESS PARAMETERS SATISFVING SELEGTED MATTERM MATBS, A/D -2.0

APPEND:XA

FRANE ARALYSIS

A.l Eackeround

The simplification of a threedimensional slab to a twodimersional frame has been used for some time. The frame analysis appeared in the 1941 AG! Code as the "Elastic Analysist but had been used prior to that time in analyzing and designing fioor slabs.

The frame analysis as given in the ACl Code has several drenbackso By assuming an infinite monent of inertia at the joints between the columns and slabs, the sections are given too great a stiffness. fn reducing the negative monents to a critical section some distance from the colurn centero line, the adyantage of a solution based on statics is lost and the moments revert to those used in the Emplrical Kethod.

Corley (27) proposed a frame analysis which alleviated some of the problems in the ACl Coce Elastic Analysis. However, the method proposed was not used to determine the effects of pattern loads and in that respect it had certain shortcomings.

The method proposed here is basically a modification of the analysis proposed by Corley. Several changes have been made in order to eneble use for strip loadings and coyerage of slabs supported on beams. The analysis was used to compute the moments in the five test structures and the results of this study are given in Tables A1, A2 and A. 3 where comparisons with the measured moments are included.

A. 2 Procedure

The procedure is discussed in this section in general terms. it may be applied to flat slabs or flat plates. with or without drop panels and to troway slabs. The figures are glven for a flat slab which is the most complex case. Hodifications to be made for various elements of other types of siabs are included in the pertinent discussion.

The first step in any frame analysis involves removing a section one fanel wide from the slab structure as shown in Figo A.l. The cross section of an interior bay of this frame is shown in Fig. A.l. The areas for the moments of inertia of the various sections along the frame are shonn. The f / El diagram for the slab may be used to determine moment distribution constants and fixedmend moments by nomal procedures. For a twoway slab Where a beam spans between colums the moment of inertia laf is computed on the basis of an assumed T-beam section. The flange dimensions are determined by a 45 degree line drawn from the bottom edge of the beam.

It should be noted that the moment of inertia at the column (from the face of the column to the column center line) is based on the moment of inertia of the slab immediately surrounding the column. The moment of inertia at the column is given as $1_{C C}=1_{B R} /\left(1-c_{2} / L_{2}\right)^{2}$. This relationship was established for two reasons. It increases the moment of inertia at the column While maintaining it at a level considerably less than assumed in the ACl Gode. The equation also covers the condition of a slab monoitthic with very wide columes. The maximum condition of a wall $c_{2} / L_{2}=1.0$ is covered since ${ }_{c c}=\infty$ ir that case.

The computation of stifmesses for the colums is consicerably more involved. It was shown in Ghapter. 4 that the positive moment in a siab ircreases under strip loads even if rigid columns are used. in a frame with infinite colum stiffess, no change kould be computed finerefore, it was necessary to consicer the section at the columns as a beam-column combination in which the beam across the column could rotate even though the column was infinitely stiff. The resulting section may be likened to a ${ }^{\text {nh}}$ hamerheads

Sketch B

In the case of an edge beam, such a section is quite obvious. Some of the monent is transferred from the slab directly to the colum and the remainder is transferred first to the beam and then to the columns. it can be seen that a rigid column does not preciude the rotation of the beam with respect to the columns.

In order to determine the stiffress of this beam-column combination. according to the Gross distribution procedure the following equation is used.

$$
\begin{equation*}
k_{b c}=\frac{m_{1}}{\theta_{f}+\theta_{t}} \tag{A,1}
\end{equation*}
$$

Where $\quad K_{b c}=$ stiffress of the beamocolumn combination
$m_{1}=$ a distributed torque applied along the axis of the beam
$\begin{aligned} \theta_{f}= & \text { total rotation of the end of the column due to bending } \\ & \text { in the column }\end{aligned}$
$\theta_{t}=$ average rotation, due to twisting, of the beam with respect to the column.

The stiffness of the column can be determined by Eq. Aol if m, θ_{f} and θ_{t} are known.

The value of θ_{f} is independent of the distribution of torque along the beam or the beam torsional stiffness since the total applied torque ultimately is resisted by the column. The moment of inertia of the column is computed on the basis of gross cross section below the capital (if one exists) and then varies linearly from the base of the capital to the base of the slab where it is infinity. It is infinitely stiff from the base of the slab to the center of slab ($t_{1} / 2$ or $t_{2} / 2$ if a drop panel is used).

The computation of θ_{t} requires several simplifying assumptions. The twisting moment (applied by the slab) is assumed to be triangularly
distributed along the beam. If no beam frames into the column, a portion of the slab equal to the width of the column is assumed to offer the torsional resistance. if a beam frames into the column, Tabeam action is assumed as shoun in sketch A。 The portion of the bean directly above the column or capital is assumed to undergo no rotation.

The method of determining the value of θ_{t} is lllustrated in Fig. Ao2. The beamocolumn combinction is shom in Fig. A. 2e. The length L_{2} is the distance between colum center lires. The unit twisting moment is applied according to a triangular distribution along the column centerm line. A tolangular distribution is used since the monent in the slab tends to be attracted tomard the stiffest section which is the columno The twisting monent diagram is parabolic as stown ir Fig. A. 2c. Once the twisting monent is kram \equiv et each section the unit rotetion diegram can be expressed by the equation $\Phi=T / 6$, and for the beam in this gase the expression is

$$
\Phi=\frac{\left(1-c_{2} / L_{2}\right)^{2}}{2 \sum \lambda b_{1} h_{1}^{3}} \frac{\bar{E}}{\sigma}
$$

```
where \Phi = angle of twist per unit of length
    T = twisting moment
    \lambda = a constant which is a function of the cross section
    b
        section of the beam
    h, = the height (the smaller dimension) of each rectangular
        section of the beam
    \Sigma = summation of all rectangular sections
    G shearing modulus of elasticity, G=\frac{E}{2(1+\mu)},\mu=0\mathrm{ for concrete.}
```

For the beamacolumn combination shown in Fig. A. 2 a the average effective angle of rotation is taken as one-third the area of one of the parabolas show in Fig. A. 2 d. This yields the following expression for θ_{t}.

$$
\theta_{t}=\frac{L\left(1-c_{2} / L_{2}\right)^{3}}{36 G \Sigma \lambda_{0} t_{1} h_{1}^{3}}
$$

The section constant $c=\Sigma \lambda_{0} b_{1} h_{1}^{3}$ may be evaluted by dividing the T-bean section into rectangular parts which can then be considered separately. This may result in a small error but is sufficiently accurate for this procedure. A chart has been given in Fig. Ao3 for determining λ as a function b_{1} / h, (Taken from Reference 28).

After the values of θ_{f} and θ_{t} have been computed the stiffress $K_{b c}$ can be determined and the distribution constants and fixedoend moments are now known for the frame. The moments at the column center lines on the line frame can be determined.

Since the columns have finite dimensions, it is necessary to reduce the negative moments to the critical or design sections. To do this, an Essimption must be made concerning the shear distribution Satiso factory results are obtained if the shear is assumed to be distributed Uniformly about the perimeter of the supports. In the case of a flat siab the shear is mifcrmly distributed around the periphery of the capital and in a twowley slab it is uniformly distributed along the face of the beam and column. The center of reaction is taken as the critical section and the momerts are corrected to the center of reaction from the column center line.

It should be pointed out that this method was developed primarily for an interior strip of panels. However. the necessary assumptions have been given which may be extended for analysis of a wall strip having a width of onehaif panel. Due to the lack of symmetry and the addtionai torsional and fiexural deformations of an edge beam, the results may be less satisfactory.

A.3 Comparison of Heasured Homents Wich Frame Analysis

The procedure outhined in the precedirg section was applied to an interior strip (onempane widith) of each of the five test structures. The results of the procedure were compared with the measured momemts in these strips to detemmine whether the increase in monent due to strip loads and the absolute moment at the critical sections culd be estimated.

The measured uniform and strip load monents are given for each slab。 The moment ratio γ is computed for both measured ard computed moments. The value of β was taken irto consideration in computing the monents. The Yalues of measured monent in Fl. F2 and F3 were obtaired by combining midale and colum strip moments. for the case of the twoway slabs. Tl and $T 2$ the measured moments given for the interior strip were composed of the interiop beam moments and the interior slab moments. Since no slab moments were obtained under strip loads in the twomay slabs, it was necessary to use the measured maximum beam moments in conjunction with the uniform load slab moments. It was felt that the strip load slab moments would haye been approximately equal to the uniform load moments.

In making comparisons between absolute moments at a section, it must be remembered that the frame analysis is based on statics and the full
static moment (the sum of positive and average negative monents) is always present ir any given bay. The measured monents tended to be slightly less than the static monert in most bays. This is espesially true in end bays Where the exterion negative slab moment is difficult to analyze accuratelyo Therefore, the besig ariterion for judgent is whether the frame analysis provides sufficient moment gapacity at a section to deal with uniform of strip loads kithout excessive cueradesignirg.

The manents in the interior strip of structure fi are given in Table Al. A comparison of the moment ratios for measured and computed monents irdicate that the frame analysis was guite accurate for pattern load effiects. The computed absolute values of positive moments were nearly equal to the measured values. Negative monents were higher by the frame analysis than measured. However, it wowld appear that the total measured yalues may have been less than the static momento Only at the exterior negative sections is there a serious discrepancy and it may be explained partially by a general reduction of stiffuess due to gracking in the beamo. column sonmection at the exterior column.

The moments in strugtures $F 2$ and F3 are given in Table A2. It can be seen that the monent ratios compare favorably. The only large deyiation in momert ratios is that at the interiop positive section in F2. The absolute moments at thet section are small and a small absoiute moment change results in a significant change in relative monents. The actual walue of γ is probably between 1.18 and 1.60 .

Absolute moment comparisons between F2 and F3 show that the measured moments are less in F3 than in F2. It Gan be seen that the absolute
selues of measured and computed moments compare favorably in structure F2. However. measured moments are less than computed in F3 and it is likely that the measured moments are lon in F3. The largest deviation between measured and computed monerts is at the deep beam edige exterior negative section where the computed values are in excess of measured moments. fo making the adjustment of moment to the critical section, it was assumed that the shear was distributed unifomly along the supports and in the ease of the deep bean, the center of reaction is very near the column center line so fittle correction was necessaryo in view of the measured monents, it appeaurs that the actual center of reaction is a greater distance from the columr center line than assumed.

The moments in stuctures $T 1$ and $T 2$ are listed in Table A3. The computed moment ratios for both structures compare ferorably with the measured yalues. The most serious difference occurs at the exterior negative section of Tho However, the trends indicated by Fig. 3.9 show that the measured beam monent was excessively high at that location. The comparisons of absolute moment vary 10×20 percent at some sections. ft should be remembered that the total moment is provided for in each bay and no serious difficuities would arise if these moments were used for design moments. The design of structure 72 indicated that although the distribution of moment was not as favorable as might be desired the structure behayed satisfactorily. (See Sec. 5.6)。

In summary, the computed moments given in this section for the test structures compared well with the measured moments. It is felt that the proposed frame analysis is adequate in determining the moments under uniform or pattern loads and that it is sufficiently broad to enable analysis of a range of panel sizes and supports.

TABLE AI COMPARBSON OF MEASURED WBTH COMEDTED MOMENTS UH STRUGTMRE F1, $B=0.72$ Interior Strip, Oneopanel Mide

TABLE A2 COMPARISON OF MEASURED WOTH GOMPURED BOMENTS BN STRUGTURES F2 AND F3

 Interior Strip. Oneopanel WideSection

Structure $F 2, \beta=0.85$

Measured Uniform Load Moments	0.025	0.042	0.068	0.062	0.029	0.061	0.065	0.038	0.025
Measured Maximum Moments	0.027	0.049	0.079	0.072	0.033	0.067	0.071	0.042	0.025
Moment Ratio, γ	1.08	1.17	1.16	1.16	1.18	1.10	1.09	1.11	1.00
Computed Uniform Load Moments	0.024	0.045	0.072	0.062	0.025	0.062	0.071	0.044	0.040
Computed Maximum Moments	0.030	0.053	0.078	0.073	0.04 .1	0.072	0.077	0.052	0.048
Moment Ratio, γ	1.25	1.18	1.08	1.18	1.64	1.16	1.08	1.18	1.20

Structure F3, $\beta=0.78$

Measured Uniform Load Moments	0.029	0.038	0.057	0.055	0.023	0.058	0.060	0.034	0.024
Measured Maximum Moments	0.034	0.042	0.060	0.058	0.037	0.060	0.061	0.039	0.027
Moment Ratio, γ	1.17	1.11	1.05	1.05	1.60	1.03	1.02	1.15	1.12
Computed Uniform Load Moments	0.024	0.045	0.072	0.062	0.025	0.062	0.071	0.044	0.040
Computed Maximum Moments	0.031	0.054	0.077	0.073	0.043	0.073	0.077	0.053	0.049
Moment Ratio, γ	1.29	1.20	1.08	1.18	1.72	1.18	1.08	1.20	1.23

TABLE A3 COMPARBSON OF MEASURED WBTH COMPUTED MOHENTS BN STRUCTURES TI AND TZ
Interior Strip, Onempanel Wide
Section

Moment Coefficients of qa
Structure T1, $\beta=0.81$

Measured Uniform Load Moments	0.043	0.046	0.079	0.071	0.036
Measured Maximum Moments	0.057	0.054	0.090	0.083	0.042
Moment Ratioo γ	1.33	1.17	1.14	1.17	1.17
Computed Uniform Load Moments	0.029	0.054	0.081	0.070	0.036
Computed Maximum Moments	0.033	0.061	0.083	0.078	0.050
Moment Ration γ	1.14	1.13	1.03	1.11	1.39

Structure T2, $\beta=0.66$

Measured Uniform Load Moments	0.036	0.056	0.069	0.061	0.045
Measured Maximum Moments	0.041	0.060	0.077	0.064	0.047
Moment Ratio, γ	1.14	1.07	1.12	1.05	1.05
Computed Uniform Load Moments	0.044	0.049	0.076	0.068	0.038
Computed Maximum Moments	0.051	0.052	0.070	0.073	0.046
Moment Ratios γ	1.16	1.06	1.03	1.07	1.21

(E) Esem-6olurn combletion

(c) Thisting Koment Diagram

(d) Unit Rotation Diagram

FIG. A. 2 ROTATION OF EEAR UHOER APPLIED UNIT TWISTING MORERT

[^0]: to Kumbers in parentheses refer to entries in the bibliography.

[^1]:

[^2]: ${ }^{\circ}$ Interior panel $\alpha_{C B}$ is $M_{C B} / M_{U L}$ for an interior panel supported similarly.

