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t. EHTRODUCTIOK
1.1 Gbject

The object of the thesis is twofold: to develop e thecreticel

f some of the phenomena observed in tests of concrete under

6]
Pf

o
(4]
1
m
rr
o]
9
O

different stress conditions; and to present the results of & test progrem
which was conducted on a series of exielly-loaded prisms with longitudinegl
end traansverse reinforcenent.

The thecry which was developed gave & ¢ood representation of the
behevior of unconfined concrete throughout the entire range cf the load-

ceflection curve. Accordingly, it wzs possible to explein the factors

responsiblie for the feilure of concrete under this type of loading condition.

3
m
n.
(o}
rt

on, the theory wzs extended to the case of confined compression to

1.2 Qutline of Studies

{2} Theory

Foilowiné g review of some of the existing theories of failure
which have been applied to concrete, 2 description is given of the develop-
ment of & model which is a2ssumed to be representative of the structure of
cement peste. The basic unit of the resulting model consists of mon-deforming
spheres, cubically arranged, and interconnected by elastic struts. Besed on
observations of the 5eh3‘,or of concrete, load-strain relations for the

component struts of the model are derived, and the behavior of the resulting

metrix is then studied.
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The first loading condition which is investigated is that of

unconfined compressi

on of concrete.

The proposed model is subjected to

continuously increasing compressive strain and the resulting load-strain

relations are derived and compared with those obtained from tests of

concreate.

by that of the model

, ara discussad.

Gbservatipns about the behavior of concrete, which are implied

In a similar manner, the mcdel is subjected to axial compression

and simultanecus uni

form lateral confining pressure.

The behavior of the

model is compared with that of concrete tested under triaxial ccompressiocn,

and the theoretical results are projacted to practical conditions after a

censideration of the
Finally, t

"

wnich is ¢o

na2tworTk of

togather to form tha

structure of concrate.

hz modal |

w

nfinad }

total structure.

appliad to the case of axially-loaded
ateraily by me2ans of ractangular transversz
reinforcement produces ncnuniform

ical solution is obtained by invastigating

struls, formad by stacking a number of thz individual cubas

The rasults Tor thz2 condition of uniform lateral confinamzn: ars

ccmpared wiin thosa

and

A descript
axially-lcaded colum

N - 1
ware testzd, all of

v

a serizs

icn is given of
as confinad by rzctanguiar tis

which had dimensions ¢f S by 5 by

{rans

ars2 v2inforcamant,

L4

case2s are discussa2d.

conductad On sguarse,
A totsl of 80 spacimans
25 in., and ncminal
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concrete strength of 3000 psi. The series included 15 plain concrete prisms
as control specimens, and the volumetric ratio of the transvarse reinforce-
ment in the remaining 45 spscimens was kept constant at 0.02.-

of

wn

The variabies used in the tests were the spacing and stiffnes

the -transverse reinforcement, and the amount and stiffness of longitudinal

oF

reinforcemen

°
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2, FAILURE THECRIES

2.1 introductory Remarks f:

in order to gdraw intefiigent conclusions fram test results and -
in order to project thesz results beyond the limitations of the test )
conditions, it is pecessary to have a tneory of failure for the material 7;
concerned. in Section 2.2, a brief discussion is presented of the obszarved -
icad-deformation characieristics of concrete. A number of thsories hava -
been developed to explain various facets of the observed phencmena, but =

they have been found to have, at best, a limited application. i{n the

following sections, scme of thase theories will be outlinad and thair : =
limitations discussed. Particular attention will b2 given to thz theory -

N ,
proposad by Erling Reinius {1) since it appears to agrzz guite closaly

tructurz and many aspects of the bahavior of concrete.
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2.2 Siress-Strain Rzlationshios for Concratse

{a) Unconfined Toncrate

Figure 2.1 shows tynical load-styain rzlations for unconfinad
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°

also produces scme increase in strength and considerabie increase in ductility.

Figures 2.3 gmd 2.4 summarize scme of the results obtained in these tests. In
ihese graphs, curves 1 refer to plain concrete s;»ee;:imens9 curves 2 to spacimens
with No.2 ties at 2-im. spacing and curves 3 to specimens with No. .3 ties at
2-in. spacing.

?hehvarﬁab%es used were amount of lateral reinforcement, strength of
concrete and shape of cross section. The proposed equation of the strength of

rectangularly=-tied columns was : -

Y 1
f,=fl+1.8f, (2.2)

where T, = unit strength in cocmpression

' = unit strength of prism without reinforczmant
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A numbar of authors (1,3,5) have presented summaries and critical

+anaiyses of 727 Urzs theories which are applicabizs io concrete under various

The stress=strain curves shown in Fig. 2.1 represent an important
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the crack, was equal to the rate of absorption of ensrgy in the formation of

new surfaces. Griffith's theory is based on the bshavior of the meterial at -
the microscopic level, and so is difficuit to apply to relatively large speci-
mens with nonuniform stress distributions.

Shear or sliding fallure theories have been applied gquite extensively )
to concrats. These thsories assume that failure takes place by siiding along -
scme critical plane. The most general of the shear failure theories is Mohr's
theory, which states that the shearing stress and simultaneous normal stress on ..
the sliding plene satisfy a given relationship. Mohr's theory may be expressed
by the equatiion oE

1 = f(o) (2.3) -
whars ¢ = the shearing stress at faiiure _

T = thz normal stress on th2 plane of sliding o
Coulombls thsory is a particular cass of Mohr's thsory, and assumas that ths
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and iz indsoandent of the intermediate principal stress. However, soms sxperi=- .

ments havs oroducad results which conflict with this sssumption to a cariain -

2 A 7 = a0 ~ & S ] HESRE RN
and 3%ker (9) conducted t2s%fs on marbla im which thz ing=r-

msdiate 51r235 was varied. They tested cylinders subjscied to small latsral

g n
Dres55urss x?z = T.) and largs end pressurss \U]}g thus sroducing a8 smail wvalue
%t 1 -
of ths intermadiatz principal siress; and they also subjected cvlinders to largs
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The resulting Mohr's circle envelopes for the failure of these specimens ars
shown in Fig. 2.5. The solid curve is the failure enveiope for the conditiocn
of high intermediats stress, and the broken curvzs is that for the condition of
low intermediate siress.

It can be seen from Fig. 2.5 that variations in the intermediate
principal stress produced strength differences of approximately ten percent.

00

On the basis of thesz results, Boker (9) concludad that Mchr's theory was

o}

[0]

invalidatsd, and that the intermediate stress should not be disrsgarded.

Reinijus (3) tested concrete prisms under ccmbined axial compression

and one-directional lateral confining pressure. The confining pressures rangad

up to 15 percent of ths axial pressure. The resuliing strength increase was

approximatsly sgual to the magnitude of the latsral pressure, and nenge th

e
strength was dapendent on thz intermediate principal siress.

The rasults of thess tests, and others conductad by YWastlund {10},
and Ballamy {11}, imply that Mohr's thsory is not correci. Howsver, tns

ntermadiate principal stress is not sufficiently great to

oo

e
2 v £
yuenge o7 Lhe

ba critical for applications to concrate.
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A& drawback of Mohr's thsory is that in scme instancas, as
zasz of columns confinsd by reciangular tiss, ons or more of in2 principal
str23323% may vary ovar ths cross saction, and may 2iso be difficult or even
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limiting value T, Hence, Brandtzaeg's theory states that failure is caused

_,.

by simultanecus "'splitting' and "disorganizing" effects, the former being of .

primary importancs. The presence of an externail lateral restraint repiaces -,

much of the laters! tension in the elastic elements. Brandtzaeg's theory is

applicable only up to the point at which splitting failure occurs.

2.4 Bresler and Pister

Many investigators have noted that all thres principal siresses are

°

important for the condition of failure. This fact is taken intoc account in

the octahedral shearing stress theory, which {s equivalent to the

energy of

distortion thezory and so subject to the same limitations. Ths octahedral

shearing strsss is determinsd by the equation

whare 7., 7, and ©c, are thz three principal siresses.

Brzsier and Pister {12) developad a theory using stress
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shearing stress T and a normal stress o- The '"mean stresses' are obtained

by averaging these stresses over the spherical surface

. : 1
Lo = Lip s 3
i cra ms-—>0 SLUS ds
172 {2.8)
= Li 15?4
Ta T "M 50103 < Ts
which leads to
v == (o, +0,+0,) = iny
a 3 I 72 73 3 7]
172
_ 2 2 21
T, —-Mﬁ5 [(c] 02) + (02 o) + (03 Ui) | {2.7)
_[2_ 2 04172
EE (51 332>

It can be sz=2n that the ‘‘mean shearing stress’ is equal to a constant

times the octahadral shearing stress. The 'mean strassss?

vyariant | but MNovozhilov has shown that 115 =27fazct is almost

(24
i
“y
£
9]
(a4
3
[§]
W
(4]

39

[
0

Brasiar and Pister carri:

=y

{7}

out tests on hollow ccneoraie cylinder

subjected to various ccmbinaticns of torsion and axial load. 2y atiampiad

9]
O

to ipterpret thair data by two trial functions involving o_ and T, 23 follows:
=
2 linsar Tunciion
T T,
a Enl b -
=T = A, + 3, {=7) {2.8)
[ 1 i T
c c
and a gquadratic function
7, o, %, 2
—==A_+38, (=2 +¢C, (= (2.9;

O =
0 9
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The coefficients A,, B., A_, B, and C2 were obtained empirically

12 712 720 T2
from the test results, and depended on the size of test specimen. :
In an effort to test the validity of this theory, Oran (i3}, tried -~

to apply it to the results of the tests by Richart, Brandtzaeg and Brown (3},
Saries 2, 3A and 3B. The results are shown in Fig. 2.,59 and Egs. 2.8 and
2.9, developed by Bresler and Pister, have been plotted on the same graph
for comparison.

Fiqure 2.6 illustrates that the theory by Bresler and Pister is
not able to represent faithfully the phenomena observed over the whole range

of the tests by Richart et al. Not only do the specific curves derived by

Ga/fﬁ and Taff“ cannct properily be applied to the tasis. -

(W]

McHenry and Karni {14} carried out tests on 91 hollow cyiindars e
which were 24 In. high and had '4-in. outside diamsters and 16-in. inside -

diamsters. The specimens were subjected to a combination of intarnal pressure
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either stress was at a value of 50 percent of thz strength for tha
alone, the other stress was reduced by 50 percent.

The authors attempted to analyze thes results in a manner similar
to that of Bresler and Pister {12}). They plotied the relationship batwsen
the octahedral normal stress and the coctahedral shszaring siress at fajilure,

and found it to be essentially linsar, except near conditions of sis
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compressive and simple tensile stressas.
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Mo single relationship bstween the octahedral stresses could bs
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applied to the whole range of the tests. This fact, together w
presented in Fig. 2.6, results in the conclusion that failure theories which
are dependent on a relation betwesen the octahsdral stresses, or similar

~
iy

narameters, are invalid for concrais.

Studies of the structurzs of cement pastz indicate {15,18) that it
is composed of cement particles in various stages of hydration, intsrconnescted

a =~ 3 e - : = e [ PP p H
tive of ths structure of concrate, and by m2ans of which he was ablzs to axplain
- z - 3 ~ - - £
scma ©of the cbssrved properiizs of cohceraifz.

-

Figure 2.7 shows a diagram of the Reinius modsl. 1t comsists o
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number of idsntical spheres {analogous to the unhydrated cement grains in
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The spheres are interconnected by a number of rods, analogous to

the nesdle-like crystals in the gel. The rods are homogeneous, elastic, have i?
a constant modulus of elasticity, and are capable of carrying both tensile -
and compressive forces. They are attached to the spheres by means of pinned -
connections. -
It is assumed that the bonds between spheres of spacing a can carry -

—

transverse as well as longitudinal stresses. Accordingly, they are represented '
by four %od5 intersecting at point A. Each rod {s assumed to have length 24 .
and area A4a Two of the rods, AB and AC, lie in the vertical plane passing w
through the centers of the spheres. The other two rods, AD and AE, lie in a =
plans also passing thrcough the centers of the spheres, but perpendicular to -
nlans ABC. The angle of inclination cf the rods i3 denocted by 8 as indicatad -
in Fig. 2.7 _

a face of the cube i3 considerad o be unity. Hence,

L o T alan e
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undar unrestrained loading in one direction. Tnes resulis are:



L) =4, =4 =1.52, {2.16)
g = 55°

Il

Y 0.144

Reinius next determined the forces in zach rod when the structura
is subjectad to uniaxial pressure ng Py or PZ and is unrestrained in ths
other two diractions. The results are summarized in Table ). Ths sign con-
venticn used {s that compression is positive and temsion n@catuveo

The effect of unrestrained locading can be sesn more readily by
referring to the two-dimensional model shown in Fig. 2.8a. Under the action

1 ‘

of forze F, vertical strut P35 and diagonal struts FQ and PR will be subjectzd

to comoressive stresses. (n order to maintain static equilibrium, strut QR

must than 6o Into tension. he tor in strut QR corrasponds to forces 7
and Py in the Reinius model under pressurs st winiiz tha foree in P3 corrs-
sponds IO PB and Torces PQ or PR correspond to ths sysitem of forcss PABQ ?Ago
kAD and PAEO

17 - 3 i i 3 - o LA ¢ . o D & 3 ; PR
dirsction of leading. Rupture and cracking can te agiributed o the

S . B 00w g a . o~ 3 5 B4 - -~ — g %
of ths <=mznt crystals under fansion or of ths bond bestwssn these gorystals

and the aggdregate or cement particles.
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P

Fig. 2.8b. [If strut QR breaks, the total force F must then be carried by

étrut PS and hence additional load is transferred to the system of struts STUV.
As the load is Encreaéed, the next weakest crystals, or tneir bonds, will fail.
Thus, the number of tension failures and the transverse expansion will be
accelerated with increasing load.

fure in tension is prevented, rupture of the concrete will
occur as a result of failure of the crystals under compression.

In explaining the failure phencmenon by means of the Reinius model,
the behavior of the whole concrete mass can be studﬁed by considering a single
cube. As can be seen from Table 1, under unrestrained loading 929 rods’l9 2
and A3 (Fig. 2.7) are subjected to approximataiy esqual tensile stresses, since
arsas AH and A2 are squal to 4A4o The failure of various tensile crystals

tructure can be simulated by reducing the area of rods 1, 2

21]

PR 3 EO
tnrougnout itnes

and AB as ths load is incresasad, while kesping ths rod lsngths, the modulus
of elasticity & and the angle B constant.
Rezinius first assumed that as ths tensilie crystals break, the com-
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Reinius noted that at high ccompressive stresses, the thecratical

ere much less than the corresponding test resulis. He reasoned

difierence was due to thz fact that scme comprassion crysiais

aking tefore complete tension failure occurred in the transverse

he most highly-stressed comprassion rod in the

-~

. Sinca rod 3 is
assumed that it reduced in area at the same rale as thz tension

e the remaining cimpression rods remained unchangad.

icuiations are given in Table 3, and the derived stress-sirain

2 the broken curves shown in Fig. 2.S. These curvés agraz quite

with test results.

Zxnlanation of Observad Phencmana

—ae
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Using the model and failure theory ocutlinsd abovea, Rein

tias of concrete which have bean observed in test
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For th2 mo3t part these axplanaticns ware gualitative.

Yaricus exparimenters have obsarvad that if concrete is subjectad
2d loading, ine maximum load in each cass db2ing nearly as graa2t as
1gth of tha spacimen, the unloading curves have considsrabls curvaturs

e

: reloading curvz is nearly linear up to @ high parcentags of pea

>

typical gragh of 3trass vs strain for respaated loading o
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Tig. 2.10. 11 should be notad that thz initial tangesnt
scr2ase witn 2ach succassive loading, but in sach casz ars graatar
secant modulus of the previous peak joad.

Thz Reinius theory would seem to imply that soth unloading and

g curves would be linear and wouid follow the initial loading secant
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modulus line. However, Reinius explained the observed effect by postulating
that during inoading, crystals which had previously broken in compression
now carry tension, with a resulting nonlinear unloading curve. Upon reloading,
less crystals are effective than in ths iniiial curve, nence the modulus of
elasticity is less. The linear reloading curve is due to the Tact that the
majority of the effective crystals are those which were not broken during
the initial loading.

Another concrete property explaiﬁed by Reinius is the accurrence
of oblique fracture surfaces during ccmpression tests. Reinius suggested
that these failure surfaces initiate at a cavity on the lateral surface.
The presence of thz cavity causes the horizontal tension members to begin
breaking in a diagonal line through the specimen.

Reinius also made tests cn 51 prisms icaded to failure while iateral

pressures of uo to IS parcent of the axial pressure werz applied in one

“h

directicn only. He found that th2 increasz in strengtn was on the order ¢
thz magnitudz of lateral pressure. The explanation given for this strengtn

intr2ase was that =2 rearrangement of the rod stresses takss place in the model.
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cd siresses for a model with Py = 0.5 Pz, and Px = Q. Hes
made arbitrary eszmctions Tor the new rod arsas under this lcading, and found
that basidess :n: excacted raduction in siress for the horizontal membzars in
the y-directicp, Ine2re was also a2 decreasz in tha tensicns in the x-direction.
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be explained by the resulting reduction in tensile stresses. In spiral

columns, for example, if the spiral reinforcemant is sufficientiy strong,

~H
o
[
b
0]
23
—
1)}
er

sral tensicn can bz prevented completely. Rupture thus
results from a failure of the ccmpression crystals.

einius made another series of tests on concrete cubes which had

prel

a preccmpression applied in the y-direction. After removal of this stress,
the cubzs ware loaded to Tailure in the z-direction. He found that the
modulus of slasticity for thass cubes was lower than for similar cubes with
no preicading. Also €, was less, and g, was greater tnan the transverss

eformation of cubes with no lateral preccmpression.

feinius® explanation for these results was that when P is applied,

more Tailurzs take place in the y-direction than in the x- and z~directions.
Hence, the =2ffactive areaz is less in the y-direction, giving greater ¢
valuzaz.
{d) Cbs=rvations Concerning the A=inius Thzory
Reinius has made an imporiant coniributicn fo clain a2nd reinforced
concratz rechnciogy. fis model and failure thsory ars baszad on obsarvaticns

of the structure and behavior cf concrete and orovide an explanation for

Uniortunately, thes Reinius theory possasszs scme limitaticns. in
the firs: plac2 thera is an inconsistency regarding tha failure tneory of
comorsssion rods. As the rods brzak with incresasing load, a greaster par=-
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perticularly rod AC. Thus, these three rods carry a greater proportion of
a greater load; nowever, the failure theory assumes that these rods do not
break. "

Tests of plain concrete have shown that at strains beyond maximum
load there is a gradual decrease in load with considerable increase in
strain. However, the Reinius theory would produce only the increasing
portion of the load-strain curve, with no explanaticn for the behavior
beyond maximun load.

Another limitation of the Reinius theory is in its explanation of
the effect of confining pressure on the strength and deformation of concrete.
in tests by Richart, Brandtzaeg and Brown (3), for exemple, strains as high
as 0.06 and stresses as great as 24,500 psi were obtained for confined
concrete.

In attempting to explain the effect of confining pressurs by means
of the Re2inius model, it is more convapient to consider strain as the inde-

pendent variable rather than load. Sincz thes struts arz assumed to have

“h
e

v

copstant meduius of elasticity, the reilstion of strut area to magnitude of
load could a2lso be considerad as a relation between strut area and strain.
TJo obtain the load-strain curve for unconfined concrete, Reinius assumad
that thz arza of the variical struts {rods 3) w23 2'most zero 2t maximum

ioad occurred at a vertical strain, ¢_, of

3]
X
3
§

load and that tnz m

spproximately 0.002. Hence, in order to be consistent, the same reduction

{0

in area mus:t be assumad et this strain regardless of the magnituds of con- -
fining prassure. 1t is obvious, therefore, that these vartical struis ars

ccmpletely ineffectual at the high strains obtained in tests of confinad

concrete.
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A similar observation can be made with respact to increase in
strength due to confinement. The wertical pressure is the sum of the
stress2s in the vertical struts and the vertical componant of tha stresses
in the diagona! struts. As has airesady been pointed out, since the vertical
struts are virtually ineffective at high strains, the total lcad must thsre-

fore bes carried by the diagonal struts..

The only wey these difficultias can bz resolvad using the Rzinius
model is by assuming that the diagcnal struis ars cepabliz of withsianding

tion is inconsistent with the assumptions made concerning the bshavior of

the vertical struts.

2.5 Baker
LN
2atear {15 o A .- fmma ; ; cmm A
3aker {15} davazlopad 2 tvo-dimansional laiticz by mzans of which
H s - JUREN S, T . H = ~ - . %~
he studiad scmz of ihs properiizs of concratz. A dizgram of the Iattige

bz analogous to 2 structural ring, which is subjactad to compressive siressas
as a rasult of the apnlied pressure p. Member B{ is sireassad in tension to
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maintain equilibrigm, and accordingly represents the tensile stress in the
mortar. The vertical shortening of the model induces compression in member
AD, analogous to the direct compressive stresses in mortar. . -
7he modulus of elasticity of the rings is assumed to be greater
than that of the mortar, since the former are ccmposed to é large extent
of densely-packed sggregate, more or less in contact. |
Baker suggested that .lattices similar to that shown in Fig. 2.1}
may be developed on a smaller scale, owing to transfer of pressure betwesn
sand grains, and that microscopic lattices may also be'fqrmed by the particles
of cement groﬁt- However, Se concluded that the governing influence in -
concrete as a whole must be thz siresses developed by pressure spanning the

.

voids bstween the sionas, and that the compressive strength of concreizs is

. -

primarily a Tunction of thez tensile strength of tha mortar. -
Saksr jnvestigatzd the behavior of an elastic model similar to

the diagrem shown in Fig. 2.11. Thz mode] was constructed of draper’s

-~

elastic, and the areas of th2 disgonal members were half that of the hori-

Tne lattice was given an initial pras

[

zontal and vartical mambars. 723589,

to prevent any membars from bacoming compressed during tests.

Thz modal was subjectad to . lcads esguivaiesnt to external prassurs

end restraint on the bzhavior of ths members
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was studisd. In addition, 2 study was made of the formation of cracks in
concrate, and their influence on the force distribution among the lattice
members. This model investigation supported ths previous conclusion that -

tensile forces are of primary importance in the compressive strength of

concrete.
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3. DEYELOPMENT OF A NEW FAiLURE THECRY

3.1 introductory Remarks

The develogment of a theory to describs the benavior of concrets
under variogs condétions éf loading is described in thi; chapter. The
basic concept of the Reinius model, that is, a lattice of struts representing
the needle-like crystals of the cement gel, seemed to be a logical basis on
which to formulate a failure theory, éinc§ this concept agrzes favorabliy with
tﬁe observed structure of concrete.

Onz2 of the disadvantages'of the Reinius mcdel is that it is rather
ccmplicazedvto woT K with,fbeCaQse of ghe ccmplex arrangement of the diagonal

struts. Also, the model provides very little resistance to torsicn in

[}

cemparison to its direct shear resistance. Accordingly, scme modification

to the Reinius modal is desirable. n addition, the Taliure thsory should

matching of test resuits in order to determina the rod zreas under varicus
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In the following discussion of the preliminary models, only the
final results of the relationship among the strut areas will be given. A
description of the method used to calculate these aree rezlations is outlined

in Section 3.3, and the calculations for each model are given in Appendix B.

3.2 Preliminary Models

{a) Tetrahedron
Since a tetrahedron is the simplest stable three-dimensional
structure which can be constructed from pin-connected struts, it seemed to
be a good choice for a failure moée\. The tetrahedral mcdel is shown in
Fig. 3.1.
in order to produce a structurs with the same bzhavior in all three

-

principal directions, the areas of all struts must be equal. This is also
logical when onz considers that the strut lengins are all egual, and so thz
crystals which ''grow' baiwesn cemant grains should procduce squal areas.

The value of Poissen’s ratio for this modei‘is 0.22. Although this
valua is scmawnat hign, it is within thes rangs of test results. However, the
fact that ths same valus of Poisson'’s ratio is cobtainad, regardieés of the

chelice of strut arsas, is a limitation, sincz valuss of v as low as 0.1 have

sts of concrate.
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Ancihar disadvantags of th

s not conducive to thz usez of Lartesian coordinates, which would

thz modal

desirable, particulariy when applied to rectangular mambers. In

4 .
D2 V2T

~

.

addition, if 2 number of single tetrahedrons is stacked togather, thay ien




to produce structures wihich are alsc tetrahedral in shape. For this reascn
it is not possivle to subdivide a ractangular structure into a number of

tetranedral units, unless ths relative size of tha units is 50 small that

The final limitation of the model may be {llustrated by means of
?ig.‘S.l. Under the acticon of load P, the inciinad struts A3, AL and AD
are sﬁbjected to compression, and the struts in the horizental piene, BL,
{0 and 3D ar= in tension. The magnitude of the compressive forcas is {nres

times that of the tensile forces. However, the compressive strength o

concrate is approximately ten times as great as its tensile strangth. This

1 o)

rasults in the condition that the maximum valuz of load P, and the sshavior

T Y - - PR, i~ H s - - - ~te =

further iozd <an bz rasistad by & unit i¥ one of its tznsile siruls braaks.

M 4 - - -~ M Y 1 - - A - - =3

Sinca 1t i3 not reascnadlz to conciuda that cement crysizals under comprassion
- B \ H T . b - g ~ o~ - P

navz almost no affsct on the pehavior of concrate subjactzd to comprassive

- - ey 307 P H ~ b L -t 3
For tne reasons outiined above, it was concluded that the fz2trahadral
] 2 2 - - - £ ~ 3 - - - - .- ~ - -
modzl zould not bz ws2d 25 2 mazns of repTesenting tha struciurs o7 Concrseia.

H ; th o= 1 i oar ran = 2o te T3 3 Lt
situzfz2d in = body-cantered cudic arrangamant, &5 shown in Fig. 3.2, Thais

modai exczpt that, for simplicity, =2ach groun of
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disadvantaga that it possesses no resistance to torsion, but it was thought -

that if it produced reascnable results for other types of loading, it could ~

po.

be modified to provide torsionail resistance.

The notation used is similar to that employed by Reinius: The
areas of struts in the x, vy and z directions are A], A2 and A3 respectively
and their lengths are L]; the inclined or diagona! struts have length L4
and area A,. In order that the model will behave similarly if subjected to

4

unrestrained loading in any of the three directions, x, y or z, the areas A],

Az and A3

tetrahedral model, this conclusion is also logical on the basis of crystal

must be equal. As was pointed cut In the discussion of the

growth. N
As a Tirst approximation, the diameters of the sphares wers assumad -
to be negligible with respect to their center-to-center spacing. Hence

'L4 =°J§/2 L}. The valuz of A4 was tnen ccmputad in order to give a Poisson's

ratio of 0.15 under unrestrained compression. The result of this calculation

is that A, = 0.5355 A}. Howevar, since L, is less than L], it Toliows from
-7

4
the concepi of crysial growth, that Aa should be greater than A]. Accordingly ~
tha modsel dozs not producs a reasonable result, and must be discarded. -

The next approach which wes followed was to assuma that ths sphares

were of finite diamstar. This producss the result that thz ratio L4/L‘ is

. 7. . . .
unknown, but less than ~3/2, since the spneres arz 2ll of equsl diamester.

Again assuming that Poisson's ratio is C.15 for unrestrainad comoression, the
A] L
quantity — T— can ba shown to be egual to 1.56. If L4/L] <*J5/2 then

A4 L}
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A]/A4 > 1.81. As in the pravious case this result is illogical in terms

of crystal growin.

3.3 The Cubic Model

The model which was finally adopted is shown in Fig. 3.3. This
model was formed by assuming a sphere at each corner of a cube, connected
Dy struts along each =2dge of tha cube, in tha X, y, and z diraciions. in
addition, on each cube face thes spnerss are connactad by intersscting
diagonal struts. The sphere diameters are assumaed to be negligible compared
with their spacing, so that the length of each strut is squal to thes distance
petween the centers of the spheres to which it is connected. All struts are
assumad to be honogenszous and elastic, to have constant modulus of =2las-

ticity £, and tc nave esqual siress-stra2in propsriies in both t2nsion and

Struts in tne X, y, and z directions are numdzrad 1, 2, and 3,
respactivaly. Their lengths ars L], Lz, and L3 and theair arsas are Ai’
AZ, and A,, raspsctively. The forzes in struts 1, 2, and 3 ars ?}, P
and PB’ raspactiveiy. Ths diagonal struts in tha vartical planes {ocarailzl
1o planes xz znd yz) ars numbzrad 4. Thay have lzngths L, 2nd arzas A,,

3 3
and forces ?5.
Sinca thes spheres are asswmad 1o be arrangad in a cube, the
rzlations among thes strut lznginhs are:
L, =L, =1
] 2 3 (-
Lo i)
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As was mentioned in Section 3.2a3, the relation of the strut areas
must be such that the structure has the same behavior in ail three principal
directions. Also, from a consideration of the concept of crystal growth, .

struts of equal length should have equai areas. Accordingly, it follows

that:
A] = A2 = A3 -
(3.2)
A4 = AS .
The only remaining unknown is the relation between areas Al and _
A4. This was determined so as to produce an initial value of Poisson's :

{]

ratio {before any crystals begin to break) of 0.!5, under unrasirained -
compression in the z direction. Sincz th2 modal is statically indeterminate,

tha calecuiation of the relation betwzen A, and A, involves eguations of

i
equilibrium and compatibility, as well as considsrations of symmetry.
Zach cubzs is considered to be a szsparate unit or *building block.”

Thesa units are stacked togethsr in a dense, face-tco-face arrangsmant to -

form the total structure. Thus, the total area of =ach strut in the interior

2]

of the structure in the X, vy, and z directions is 4A while that of the

'l b

interior diagonal struts is 2A4. Because of symmetry, the bshavior of the
whole structure under unrestrainad ccompression may be desterminaed py & study

& single cub=s. it is further assumed that ths area of

~“h
=44

o] gach face of the
cube is unity, so that a stress in the structure in the X, y, or z directions
may be represented by 2 singie force of the same magnitude and direction,

appiied to the exterior of ths cube.
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The notation used is as follows:

tensile forces and deflections + ve

comprassive forces and deflections - ve
applied compressive stress PZ - ve

{a) Egquilibrium Equations

Principles of equilibrium require that L FK = 0. Therefore,

P, + L P4-+ L P =0

ST J2 ®

Froem symmetry in the horizontal direction,

P, =P,
Also, Z ?z = C,
P =ap + 3
z SENY

izcticn of any strut is givan by,

A, 33—_ (3 = 1929"‘33)

Se2n drawn 3ssuming positive values of A, and Az and 2 nagative valus
53. Howewar, ine assumed directional senss of Ai does not afizct ths

mination c¢f ths compatibility relations. The assumptions which do aff

ths compatibility relations are that the deflections are sufficiently
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that they do not cause changes in geocmetry, and that the deflected positions

of struts 1, 2, and 3 are parallel to their ini

Frem Fig. 3.4 it can be seen that

and
A, = L A, + lﬂ-A

AN N

Using the relationship

>

S R
€ = Li, {i 1,2,...5)

tial positions.

(3.7)

(3.8)

(3.9)

fquations 3.7 and 3.8 can be rewritisn in terms of strains by combining them

with Egs- 3.1, 3.2, 3.4, and 3.6.

Hence,

and

1
e, =3 e *ey)

e

(c) Dztermination of Relation Batween A

—t

{3.10)

(z.11)

and A4

Tne equilibrium and compatidbility e23

vations which have been

derivad can bz used to davelcp a ganeral expressicn for Poisson's ratio

in terms of A; and A4 and, accordingly, to compute the relation betwezn

s o
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Rewriting £q. 3.8 by means of Egq. 3.6 and using the length and

area relations of Egs. 3.1 and 3.2, the force in strut 4 may be expressed as:

A
P =2 (5. + D) (3.12)
= T “

Similariy, from Eg. 3

4
?5 =5‘T?} (3.13)

Combining £€g9s. 3.3 and 3.13 the relation between P, and P

i 4

baccmes:

3 =-———ﬁi——94 {3.14)
Jaa s a,

Also, by cembining Egs. 3.12 and 3.14, Ps may bz expressed in

A {222

+ 3
» = ;\—‘ Y > £3.15)
T daa ey T

Thz eguation for Poisson’s ratio, v, is

Mow, substituting Egs. 3.14 and 3.15 in EZg. 3.185,

{3.17

S



-32-

Assuming v = 0.15, the relation between A] and A4 beccmes

Ay = 1.30 A, (3.18)

]

This result is reasonable from a consideration of crystal growth, since L}

is iess than L4.

The model which has thus bsan determined is capable of withstanding
torsion and direct shgar as well as external tension, compression, and bend-
ing mements. These facts, together with its agreement with observations
concerning the structure and behavior of concrete, imply that the model

should produce a reasonable failure theory.

3.4 The Failure Thaorvy

Observations described by Rainius (1) and othars {14,13) have

shown thal ths structurz of cemant paste is extremsly heterogenzous. A
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ccmplex nziwork of randomly-oriented crystals of va:

cemsnt grains in all stages of hydration. Therefore, it seems prcbable

on in strengih, dzcauss of a

-

tha: thn2 crystals will exhibit a great variat
number of fTactors such as their size, strength of bond to the surrounding

nz loading direction.
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2™ in naturz. Statisticians, in an effort to describe such
n3 m2inematically, bave had censidaradle success with the so-callzd

or *5aussian Curve'’ {17). The general egquation of this curve is

=T




e . {3.19)

and @ plot of the curvas is shown in Fig. 3.5 for the particular values ¢ = 1,
X = 2. The quantity y, the height of the curve at any point along the x-axis,
is known as the "probability density' or '"frequency density'' of the particular
value of x involved. X is the mean value of x for the distribution, and o is
the ''standard devietion,' a measure of the probadbility of encountering values
of x differant from X.

1t appears resasonable to apply the normal distribution curve to the
oroblem of crystal strength variation. Accordingly, if the curve is used to
relate strain and the numbar of crystals which break undsr load, the variable
% corrzsponds to a function of strain, and v corresponds to the number of

lar strain.

©
V)
et

s o Ve S 3 Y E - h
crystals wnich break at a partic

n2 zporooriatz modal sirut.  in applying tha normal curve to the model,

nareforz, itne variable vy must coirsspond to a strut arza, while X corresponds

-

7 us2 with tha failura medsi, 1% is morza convenient 1o work wi?

- {x--
v =350 2 <0 X) {3.20)
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b

The constant 50 is used because at x = x, 50 percent of the crystals are
assumed to have been broken. The percent strut area remaining, A, then

baccmes

X1

A=100-vy, x<
(3.21)

1

A=y ,y X >

The final derivation of the failure theory for the cement paste —
now reduces to the determination of constants k and x and variabie x. Since
tests of concrete and cement paste have shown that their strength is consider-
ably less in tension than in ccmpression, it seems obvious that two equations
are required, one for tension struts and one for compression struts. This
conclusion does not produce any departure from the logical derivation of the -
failure theory, even though the struts are assumed to have egqual stress-strain
prepartizs in both tension and compression. The strength of tznsion crystals
is !érge\y dependent on the effectiveness of their bonds to the surrcunding
elements, while that of the compression crystals has no such dependency.

In preliminary attempts to darive the area-strain esguaticns for
the struts, it was assumed that x was proportional to tensile or compressive
strain. The constants X and x werz then determined 23 describad below. Co-

As shown in Fig. 2.1, wha2n concrete spscimens are loaded under
ccmorassion to high strains {2), the load-carrying capacity is practically
zzro at a strain cf £.01. Hence, in thz aresa-strain equation Tor compression
struts, the value of A should bz neariy zzro at ¢ = ¢.01. Aliso, before any

s2ms reasonabls to assume that A

(a4
X
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o———
M
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S
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ljoad is5 applied to the s

should be approximately 100. Based cn theses upper and lower limits, tae
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value of X was assumed to be at € = 0 005. The choica of k then determines

the exact value of A at the upper and lower bounds.

The load in the strut is given by the equation P = AZ

€, where L

is assumed to be constant. Figure 3.5 shows the ‘ccmpression strut load-

strain relation for a rangs in k from 0.C5 to 0.5. 1t can bs ssen that the

maximum load cccurs in the vicinity of x = x.
As a Tirst approximation, the vaiue of k was assumad tc bz O.1.
The relation between area and strain for the ccmpression struts is thus
-,
given by the equation

Y 2
{y -
y = SGE-O‘] AR 5)

where x =g x 10

b=l
i
~
X
v

w

Since the tensile strength of concrate is spproximately 10 percent

(v

of its ccmpressive strength, and since ths maximum load occurs a2t approximataly

hei1)
'8}

“h

% = x, the valuz o or thz tensicn siruis was assumad o bz 0.5. in order
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These failure theories for tension and compression struts were
then apnlizd to the model shown in Fig. 3.3, for the condition of unrestrained
compression in the z-direction. The resulting load-strain curve is shown
in Fig. 3.7. The broken curve has been plotted by assuming continuously
increasing horizontal strains (ex and €y)’ and deriving the related vertical
strains (52) and vertical stress (Pz)- The solid curve represents the
corrasponding load-strain relation for the conditicon of continuously increasing
vertical strain.

The unusual shape of the curve in the vicinity of €, = 2 x 10-3 is
an inherent characteristic of the general area-strain equation, and is not
dependant on the particular choice of values for the constants k and x. Thesez
consitants were assignad a wide range of values in the eguations Tor both thz
tensicn and ccmpression struts, but the results in each cass were similar to
that shown in Fig. 3.7.

Th2 r=ason for this phancmencn can be illusiratad by considering

the compatibility and eguilibrium equations for the modal shown in Fig. 3.3.

what = 3train in mamber 3

W
m

3t72in in manbar &

£z = strain in membar |

LW

and the =2guilibrium squaticn involving ?i and P,, obtained from £gs. 3.14 and

P, = -2.18 P,
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As is described in Chapter 4, this relation between ?1 and P4 is

constant for all strains, sincz it depends on the relation between A, and
AS’ which vary at the same rate throughout the entire range of strains.

The relation between P] and €, is similar to that shown for
compression struts in Fig. 3.5. Thus, for valuzss of €, belo@ maximum load
in strut 1, P! increases with increasing €. TJo satisfy eguilibrium P4
must increase at the same rate, and this increase will be accompanied by an
increases in €4 and a decresase in A4. However, for horizontal strains beyond

the maximum value of P, P4 will begin decreasing wnile A4 remains constant.

I
Hence the relation between €4 = PQ/A4 and €, in this region will be similar

to that baiwesn P, and €, -

!

The ccmpatibility squation may be written in incremental form as:

it can be sesn, therafore, that for absolute increasss in ¢

{Ae_ < C), the condition

must be s3tisfisd.

beyond peak load is such that
Ne . > 1/2 aex ,

so that increases in € oroduce decreases in the absolute wvalue of €, a3

shown in Fig. 3.7.
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To produce reasonable results, tnerefore, the tension strut load-

strain curve must be 'flatter' beyond peak load than that given by the

assumed theory. Values of k and x which produce sufficiently flat curves

yield the result that A is approximately egual to 50 at € = 0, which is

unreasonable.

A similar difficuity is encountered concerning the ccmpression

strut theory. The curves of Fig. 3.5 do not agree with the test results

shown in Fig. 2.1. The load drops off much more rapidly beyond maximum

load than test results indicate.

In order to resolve these inconsistencies while still maintaining

the normal distribution concept, it was dacidad to uses a ''skewed’

curve of the form

-2
y = SOe-k(Z - 2)

2

x 107)

th

where z =1ln x = Ip |
The physical significance of this logarithmic transfermation
weak crystals ars more common than very strong crysials.

Thz principles governing the choice of constants k

similar tc those outlinad Tor the pravicus theory.

The ccmpression sitrut area relation is given by the

;
-1.3{z - 0.5628)°
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The load-strein reletion corresponding to this eguation is shown
in Vig. 3.8. As can be seen, the shape of the curve for streins beyond
peak load agrees cuite favorebly with test results.

The area-strain equation for the tension struts is

0.5(z + 1.61)2
-0-5(z .61)

y = 50 (3.26)
where z=1n {e x 107)
or\ "3
A%} =100 - v, € < 0.2 x 10
A =y s e >0.2 x 1077

The resulting tencion load vs. strain curve is shown in Fig. 3.S.
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4. UKCORFIKED CONCRETE

4.1 ‘fntroductory Remarks

Using the model and feilure criteria described in Chapter 3, it
is possible to develop e thecretical load-strain reletion for concrete sub-
jected to unconfined compression. Since tre model is assumed to represent
cement paste, the relationships cerived from it will be of necessity inde-
pendent of the quality of eggregete in the concrete. However, failure of
the model is dependent primarily on the strength of the tensior members.
The only tension resistancz in unconfined concrete is provided by the peste,
so that the shepe of the theoretical load-deflection curve should agree
guite closely with the shape of meesured curves.

As in the case of the c$lcu!ations outlined in Chapter 3 toc deter-
mine the strut area relation, the load-strain curves for the concrete

structure as & whole can be developed by considering a single cube.

4.2 Derivation of Theoretical Load-Strain Curves

in determining the load-strain re!ationé for the model, it was
assumed that before any load is applied to the structure, struts 1, 2, and 3
have an area A. The corresponding initial area of struts 4 and 5, from
Eq. 3.18, is 0.76% A. As load is applied to the structure, Egs. 3.2 and 3.18
ere no longer valid, since the struts will break at varying rates. The strut
areas must therefore be computed from the area-strain relations given by

Egs. 3.25 and 3.26.
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Leboretory tests of a compression member are usuaily conducted
o .

by eppiving continuously increasing compressive strains to the specimen
: ¥ = I [ T

incre-

1}
a
.
-
©
O
0
1
Q
"3
™
-h
-H
o
[¥a)

iing the corresponding loads. The & ulty in applyin
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verticatl streins and lfoads. Ey this method the problem cen be solved directly
for each essumed strain value.

The method of deriving the load-strain re!étions is described here.
The first step is to assume & valte of Ex" Then, from Eg. 3.10 it may be

noted that

so that the reletion of areas Ai’ AZ' and As will be constant for any value

of ¢ :
X

= -2 = 0.769 (6.1}
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Equation 3.13 may now be rewritien

A
= — = 0.7 (4.2
PS A; P} 0.76%9 PI 3.2}
Substituting Eq. 4.2 in £q. 3.3
BPoo= -2.18 F [4.3]

From Fig. 3.5, the value of P, may be found, and the corresponcing value of

(46
]
-

F4 mey be obtained from Eq. 4.3. Using Fig. 3.8 and the computed veiue ¢

P

o the quartity ¢, is ther determined. Finally, a3 is derived from £g. 3.11

2-4
and ?3 is then obtained from Fig. 3.8.

All the unknown quantities have now been determined, znd the wvertica!l
stress Pz is computed from Eqg. 3.5. When the above procedure is repeatea for
successively increesing velues of € . the entire curves of losg vs. defiescrion
znd load vs. horizontal strain may be obtained.

The theorstical relationship between lozad and vertical strair is
shown in Fig. 4.1, and that between load and horizontal strain is shown in

Fig. 4.2. The maximum value of Pz is 5.37 AE x !0-3-

4.3 Discussion of Theoretical Results

The theoretical load-deflection curve shown in Fig. 4.1 agrees
very favorably with test results. The ascending portion of the curve is
very nearly linear up to approximately 40 percent of maximum load. Beyond

this point, the slope of the curve decreases at an increasing rate until the

maeximum load is reached. These properties are in agreement with observations
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macde by Richert, Brandtzeeg and Brown (4). The meximum load is reached at

e vertical strein of 0.0018, which is elso well within the range of test

The descending portion of the curve, at strains greater than

thet at meximun load, is convex until the lcad has reduced to zbout &0 percent

of its meximum, end beyond this point it becomes concave. This phencmenon
clso egrees with test resuits, &s mey be illustrated by & comperison with the

curves showa in Fig. 2.1.
The theoreticzl curve for load vs. trensverse strain, shown in
Fig. 4.2, aizo agrees with the test results recorded by Richart, Brandtze

end Ercen {4). The transverse tencsile strain increases at & rather clow

rate with increasing load until epproximately 80 percent of meximum lced has

compression is increesed bevond maximum load, the transverse strain increases
very repidly. The velue of the strein at meximum load is about 0.0008, while
after only & 5 percent decrease in load it has reached a value of nearly 0.0023.
The ratio ex/eZ at maximum load is about 0.5, which is scnewhet lower
than the values observed by Richart, Brandtzaeg and Erown (4). However, this
fact does not suggest a limitation i; the failure theory, since in the vicinity
of meximun iozd, cracking caused by transverse straias is extensive. For this

reason it is almost impossible to cbtain accurate measurements of the transverse

strains.
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The fezilure theory provides 2 very good insight into the behevior

of concrete under unconfined compression. The compressive load Pz is

resisted by comprescsive forces in members 3 and 4. Forces P4 in turn induce

trensverse tensions in members 1, 2, and 5, and with i{ncreasing PZ. these

n

-
tEN

ion forces cause & reduction in areas A%' A, and Aa which ts analogous

to failures in the horizonte!l cement crystels of the prototype. In the

s

in erea to suct

™
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A
o
Q.
[
O
0
a3

nostruts

0O

vicinity of maximun tcad, these tensi
an extent that further increases in strain produce & reduction in tensile
forces Pl' Pz, and PS. To maintein ecuilibrium, there is & corresponding
reduction in P@» so thet e grezter proportion of PZ is resisted by the
vertical struts. |{f vertical comprescsion is continued, struts 3 will also
be strained beyond their maximun capscities, and beyond this point the value
of PZ will decrezse very repidly.

The guantitative demonstration described in this chapter chows thet
the observed behavior of unconfined concrete under axial compression can be
simulated by the model developed in Chapter 3. Vhat is of significance in
the use of this model is that the shape of the load-deflection curve is pre- . };
dicted throughout the whole renge of loading.

The effect of aggregate properties on the load-deflection curve
can be recognized by combining the known ccmpression-strain properties of
the eggregates with the response of the metrix. However, it should be pointed
ocut that the use of different qualities of aggregate will not alter the general

shepe of the curves in Figs. 4.1 and 4.2. A useful device by which the effect

of the aggregate may be incorporated in the model itself is to assume that

.



the strength and moduius of elasticity of the esggregate is included in the
unknown guantities A and £ of the model. However, this device has the dig-
sdventege that the ghysical significence of the model, as being representative

of cement paste, is destroved. For this reason, it is preferabie to zssume

vocontined concrete for strzins bevond maximum lead is nearty inczgendent of
the tension crystels. An examination of Teble B, which gives values of strut

. .
i

iciral va

r
0
Q
-

&, hes been reduced to 16.2 percent of i
f. heas Leen reduced by only 50 percent. The loadestreain relations for strains
¥ b P

teyond this point are ailmost entirely dictated by the behavior of the come

prescicn elements in the corncrete, in perticuler by the behavicor of the vertical
cement crystels. The close egreement of this descending portion of the lozc-
strain curve with test results is also an indicatien thet the model describes

the actual behavior of concrete.
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5. COKFIKED COKCRETE

5.1 Intrecductcry Remarks

The behavior of concrete under compressive stress and simulteneous
laterel confining pressures is of considereble practical and theoretical
interest. Therefcre, it is desirable to extend the fezilure theory to this
loading concition.

Tests on concrete subjected to combined compressive stresses (3}
have shown thet its strength mey be increased greatly by the ection of con-
fining pressures. |f the feilure theory is to be of value in predicting the
behavior of concrete, it should produce & corresponding strength increase.
it is also particularly important to apply the theory to the case of concrete
confined by rectilinear reinforcement, in order teo interpret the results of
the test program described in Appendix A and the tests by Szulczynski (5).
Specifically, it should be possible, by means of the theory, to explain the
difference between the effectiveness of rectenguiar and spiral transverse
reinforcement.

As has been described in Chapter 4, the strength of the model under
unconfined compression is largely dependent on the strength of the horizontal
struts, which ere in tension. Since lateral confinement reduces the horizontal
tensile strains end so increases the effectiveness of these struts, it shouild
thereby cesuse an increase in the maximum value of P,-

However, it is not possible by means of the theory as outlined in

Chapters 3 end 4 to explain the very large increases in strength and deforma-

tion which have been observed in tests (3). From Eq. 3.5 it can be seen that
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F_is a Tunction of forces P, and F4 only. The maximum velue of FS’ es
< -
determined by means of E£q. 3.25, and shown qualitatively in Fig. 3.8, irs

. - -3 L . S . -3
1,084 AE x 10 7. Similarly, the maximum value of P4 is 0.842 AE x 10 ~.

~
-
~

Hence, from £g. 3.5, the maximum thecretical value of Pz is .15 AE x 10 .

This represents an increase of cnly approximetely 70 sercent over the velue
p PP P

P - -3 T, s
of F_ = $.37 AE x 10 7, derived in Chepter 4 for the case of uncenfined com-
cression. Ac cshown in Fic. 2.2, strength increesces of much creater megnitude

s on confined concrete.

rt

have been obtained in tes

cf P, is reached &t & strein, e€_, of sbout 2.75 x G 7. {f ¢_ is increesed
~ Z o
beyond this veiue, & reduction in PZ wiil result. However, in the testg by

s
w
o
-
jaid
s

"

Richart, EBrendtzaeg and Erown (3), the maximum lozd was reached &

The difficulties described ebove cen be overceme by & cons
of the structure of concrete. The over-all structure is composed of & ¢great
meny solid particies of aggregate and unhydrated cement grains, bonded together
by the cement paste. In the initial state, before any load is applied to the
structure, the specing of these solid particles is extremely varied. Some
particles ere contiguous, while in other parts of the structure the closest
spacing may be several particle dieameters. As lcad is applied to the structure,
and the cement crystals begin bresking, an increasing number of perticles will
come in contact with each other, thus permitting 2 direct load trensfer which

is dependent of the strength of the cement crystals.
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Since for unconfined compression, the strength appears to be
mainly a function of horizontal tensile forces, these grein-to-grain
contacts are relatively unimportant. f[n the case ofkconfined compression,
however, the large strains produced wiil cause & much greater Encfdance of

direct grain contact, so that the sciid perticles play a much greater roie

T

-

in the beheavior of the concrete mecs ac & whole. [n addition, the confining
pressures permit loac to be cerried by the structure even when no cement
crystals are effective, thus creating a condition which is independent of

the struts ia the failure model.

-

{n orcer to explain the behavior of confined concrete, it seems
apperent that a study must first be made of the behavior of solid particles

under similar loading conditions.

5.2 Behavior of Grenular Medie Under Combined Compressive Stresses

A number of investigations have been made of the behavior of an
array of granuler particles in contact. Duffy and Kindlin (18) calculated
incremental stress-strain reietions for a face-centered cubic arrangement of
elastic, identical spheres in contact. Thurston and Deresiewicz (l§5 enlarged
on these resulits and studied the problem of three-dimensional compression
applied to this model.

Thurston and Deresiewicz assumed the face-centered cubic model te
be subjected to equal confining pressures in the three principal directions,
following which uniaxial compression was applied to failure. They found that

failure occurred due to a ''twinning' process, in which one layer of spheres

was displaced through an adjacent parallel layer, thereby forcing apart the



spheres in this adjecent lever. The fzailure stress associeted with this

St & - B

loading condition is given by the equation

¥
9 .
e _Je +8f ,
{5\' = {S.I)
c 0 Js - s
O 4
vhere g_ = failure ctress
<
{o} _ . . . .. .
Go = initiel icotropic pressure
f = coefficient of friction of sphceres
Thursten end DReresiewicz also derived tote!l lcad-ctrein retletions
for the lozding condition described above. The resuits are shown in Fig. 5.1,
which is & greph relating edditional {dimensionless) stress and strzin in the
direction of uniexia! compression. {n Fig. 5.1, the following notation is used:
< = zdditionel icotropic stress
o_ = additicnal axiel pressure applied in the z-direction
<
{0} . . .
c = initial isotropic pressure

For the paerticuler case of Uo = 0, the greph shows the relztion betwsen exial
and confining pressures.
Although the magnitudes of the pressures are extremely smell, it is

of interest to study the general shape of the curves in Fig. 5.1. it can be

”r

ceen that the stiffness of the structure increases with increasing strain. This
behavior is & result of the ideal nature of the model. The spheres are cf ecguzl

size, arranged in the densest manner possible, and are assumed to deform

etesticelly until the failure stress is reached.
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Although the investigetions of Thurston and Deresiewicz provide
en insight into the behavior of an ideal granuiar medium, their resuits
cennot be applied to rezl aggregates such &s occur in concrete. n a2 materic
such as sand, for exampie, the size and orientation of the particles mey ke
extremely random. In addition, under the action of compressive stresses,
iocal and general failures of the grains teke pleace.

Some typical results of drained triexial tests on fine sand (20,21}
are shown in Fig. 5.2. The curves in Fig. 5.2 show the relaticn between
(Ul - 03) and axie! compressive strein, where

oy = axiel pressure

o lateral confining or consolidation pressure.
As in the case of the results shown in Fig. 5.1, the magnitudes of the
pressures are smeil. However, the guelitstive stress~strain reliations ere
of great importance in providing an understanding of the behavior of the
zggregate and cement greins in concrete. As cen be seen, the stiffness
decreases with increasing strain. Also, as might be expected, dense sands
are much stiffer than loose sends.

Before the behavior of confined concrete can be interpreted, the
effect of confinement on the model! must be investigated. The results of this
investigation, together with the observed stress-strein relations of aggregate

particles should then ensble the desired conclusions asbout the behavior to

be made.




5.3 Combined Axial Comprecssion ena Unitform Transverse Fressure
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condition of confining pressure which was stu
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Th
that which occurs in spivelly-reinforced columns, in which vertical com-
pressions induce horitzontal confining pressures, P which increase with
increasing straims. Since for any given vaive of vertical strain, the
velue of o is the seme for ell pcints in the structure, the over-ail
behevior caen ecain be determined by studying the behavior of e single cube.

For the assumed loading condition, the competibility eguetions, and
i K:

tibrium equaticns 3.4 and 3.5,are stit] velid., However, Eag. 3.3 must be

m
8]
[

2

0
Q.
“h

ed to inciude the effect of p .
Referring to Fig. £.3a, it is seen that pressure P mey be repre-
sented by e force of pc/4 at ezch ccrner of the cube. [t was decided to
express the calculetions in terme of the ecuivalent force H{, eg shown in
Fig. 5.3b, since confining pressure due to rectengular ties must ieter be
represented in this manner, as will be discussed in Section $.4. Hence,

the value of H becomes

J2
H = Z P = 0.354 Pe . {5.2)

H is assumed to be positive in the direction shown in Fig. 5.3b.

For equilibrium of forces in the x-direction,

b+ —p s+ tp + oy (5.3)

NG N R

the
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The method of determining the load-strain relations wass similar
to that outlined in Chepter 4. |t was egein assumed that the independent
variable was €. which was increased in successive increments over the

entire desired range.

in crder to compute the value of H, it was assumed thet the spiral
steel had an idea! elasto-piastic stress-strain relation, and that its yield
. . . 6 . .
stress wes 50,000 psi. Assuming £ = 30 x 10 psi, the value of strain at
. -3 . . .
yield = 1.67 x 10 7. In accordance with these assumptions, the value of H
. . . o . , -3
increases linearly with € reaching its meximum value at €. = 1.6/ x 10 .

Beyond this strain, H remains constant.

Accordingly, the velus of H is given by the equation

,--
o
w

~

Using Egqs. 5.4 and 5.5, together with the area-strain relations
given in Egs. 3.25 and 3.26, the load-deflection relation can be determined.

The result of these calculations is shown in Fig. 5.4 for an assumed maximum

value of Pec of 0.1 fé = 0.537 AE x 10-3. The maximum load is 6.7 AE x IO-E, or

)

124.5 percent of the calculated maximum load for unconfined concrete ic Chapter

4, and the value of K in Eq. 5.5 is 19 AE x 107°.
maXxX
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The final confining pressure condition investigeated was thet which
occurs in columns confined by rectanguler ties. Since this type of transverse
reinforcement srovides little leterel restraint a

for ties of the size normally used in practice, it wes assumed that the effect

of the ties could be represented by a2 single horizontel force zt each corner,
ze chown in Fig. S.Ib.

The value of Pe is no loncer constent over the cross section, as
it wes in the previous cace, end, hence, the problem cannot be solved by con-

sideraticns of & singie cube. The method of sciution which was foliowaed was

to divicde the cross section into successively fimer ¢rids, which is equivelent

to zssuming succesgively smaller cube sizes with respect to the size of the
cotunn. Derncting the number of cubes along ezch cicde of the column bv n, the

r=
t

vaiues of n = 1, as shown In

-

o]

lozd-deflection relation was determined

a
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For the sake of simplicity, the axial spacing of the ties was assumed
not to be & veriabie. To achieve this condition, it was considered that the
force H wzs cpplied as & line load, of intensity 2K, over the entire length
of the specimen. 1In all ceases the cubes were assumed to have ¢ dimension of
one unit, with the result that the megnitude of H wae increased linearly with

the value of n, in order to produce the same relative effect.
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As can be scen, the shezpe of the cross section was not varied, the
only condition studied being that of a sguare column.
[n order to compere the effect of spirel reinforcement with that of

rectanguier ties, if{ wes assumed that the average stress across en axial

section remained constent so that for n = 1, the value of Hw*k in Eq. 5.5 isg
maX
i ~=5 -5
1@ AE x 10 ~, eng for n = 2, K = 3B AE x 10 .
max
{e} o =1

entical to that for the

For the cese of n = 1, the conditions are |

ing

o

cpiretly reinforced column, as investigeted in Section 5.3. The resul
lcad~-deflection curve ie therefcre as chown in Fig. 5.4, end the velue of the
maximun load is 124.5 percent of the maximum load for unconfined concrete.
B n = 2
Referring to Fig. 5.5, it can be seen thet, because of cymmetry,

it is only necessary to study the behavior of cube ABCD in order to determine

that cf the whole structure.

1941

The value of &m&x in Eg. 5.5 is 38 AE x 1G .

The notation used for the struts is indiceted in Fig. 5.5. The
diagonal struts in the vertical planes conteining AB and AC are designated 4A,
and those in the vertical planes containing BD and CD are called 48. All
vertical members are denoted by the numeral 3.

Fer eny stege of loading, it was assumed that the value of €, was
‘constant over the entire cross section. Under these conditions, for a given
value of €, there are only two unknown horizontal deflections: the deflection

of B along a line connecting B8 and D; and the deflection of A along a line

connecting A and D.
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The eguation for eguilibrium of forces in the z-direction ic

The equations of compatibility and the remeining eguilibrium
equetions relating members 1A, ZA, 3, 4A and 5S4 zre those which were used
he corresponding eguations releting members 18, 28, 2,

48 end 5B are these which were used in Chepter & for uncoenfined compression.
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gric cen be obteined by combining the cese of unrestrein
the case of compression plus hydrostetic confining pressure.
The procedure followed was te first plot & ¢greph of P, vs. €
T

from the resuits of Chepter 4, and next to plot a greph of P4A V5. €,

(A1

cbte

v fcllowing the procedure of Section $.3 with H = 38 LE » 10 .

e

rned
Kow, for en assumed value of €_, the velue of P, was obtaired by mezns of
A -

Ea. 2.25 and the velues of P,, and PQQ were obtained from the grephe referred

LA

to cbove. Finally, PZ was determined from Eg. $5.5. The lozd-deflection curve,

- shown in Fig. 5.8, was determined by working with successive increments of €_-
The calculated value of the maeximum load is 115 percent of the

meximum load for unconfimed concrete.

{c) n=3

A diagram of the 3 by 3 grid system is shown in Fig. 5.6. As in
the case of the 2 by 2 grid, because of symmetry, it is only necessary to
consider one gquadrant of the structure. In addition, the notation of the

horizontal struts in the y-direction was adopted as a result of conditions
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T

truts in the vertical

[7¢]

of symmetry in the horizontel pilene. he diagenal

planes conteining 1A, 1B, 1C, and 1D are denoted by 44, 4B, 4C, &and 4D,
respectively, and eli verticel struts ere dencted by 3.

The caiculetions invoived in computing the load-deflection releation

PRy

are given in Appendix B. Only & generzi description of the method will ke
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deflections, it is possible to determine four compatib

o~
[

‘
n
[&4]

teo, from Ea. 2.1l four additicnel

o

t SA to

f.
[

ing the eight struts lA to 10 an
compatibitity equations can be derived relating struts 1A to D, 44 to 4B, ard

3. Fipally, four eguations of horizontel ecuilibrium cen be written.

The eguetions were solved in the fellowing manner:

1

equitibrium equations were rewritten in terms of ercas and strains. Ksﬁt,
the eicht compatibility eguations were ;ybs:ituted intc the equilibrium
eqguations in crder to obtzin four equations invoiving only the strains

€x£ andg €.p as basic unknowns, together with the 12 unknown strut

areas. For each assumed value cof ez, these four eguations were then solved

X x8’

by & triel and error procedure as described in the following paragraph.
The first step in the solution of the equations was to assume
values for €nr Sea0 Soc0 and €0 Rext, from the compatibility equations,
the remaining eicht unknown strains were determined. From the area-strain
relations of Egs. 3.25 and 3.26, the 12 related areas were determined. These

zreas were inserted in the four equilibrium equations, which were then solved

to compute values of ¢ €

<A €48’ Sxe? and €.p I £ thg resulting values did not
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compare favorebly with the assumed values, the procedure was repeated until
convergence was cbhtained.

The main purpose in determining the lozd-deflection relations uncer
the action of corner confining loads was to comparé the resulting maximum
foad with that obtained for ‘spiraliy-reinforced' concrete. Accordingly, in

the 3 by 3 and 4 by 4 ¢grids, the loads were not determined for €_ vaiues

-~ -~ -~ - ar § 1 -
reater than thet et meximum lead.

!

The load-defiection curve for the 3 by 3 grid is chown in

end the maximum veive of P_ is 108.8 percent of the meximum load for uncenfined
concrete.
{d} rn =4
The notation used in this system is shown in Fig. 5.7. The method
of solution is . as outlined in Section S.4c except that zix eguations cf
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These equations, as well &s the details of the sclution, are given in Agpendix
B, and the resulting load-deflection curve is shown in Fig. 5.10.

The maximum value of PZ is 107.5 percent of the maximum load fer

unconfined concrete.

5.5 General Discussion

The relation between the maximum load carried by the model and the

size of grid is shown in Fig. 5.11 for values of n from | tc 4. The result

for n = 1 is that of the condition of spiral reinforcement. The shape cf the
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curve et n = 4 indicates that this value of n is sufficient to determine

the effect of rectanguler reinforcement on the mcdel. The increase in the

theoretical maximum load ceuced by rectanguler reinforcement is approximately

(SR
7 percent.

(e} Spiral Reinforcement

he theoreticel maximum

ct

Spirat reinforcement produces an increase in
lcea of 24.5 gercent over the maximumn load of unconfined cencrete. The corre-
¢ increase observed in tests (4} would be &1 percent for the assumed
value of P. = .1 fé, as can be seen from Eq. 2.1. This difference is shown
in Fig. 5.4, in which the strength given by Eq. 2.1 hes been p!ottgd s a
broken line. The lack of agreement between the model and test results is
rerising since it was pointed out Eﬁ Section 5.1 that the upper bound

-3
x 10 7, or 7C percent greater

m

on the velue of PZ for the model is S€.15 A
than the unconfined strength. [t seems apparent that the gap between the
model and test results becomes greater with increasing magnitude cf P

it was further suggested in Section 5.1 that the difference betwesen
the behavior of the model and that of concrete is attributeble to direct locad
transfer between the solid particles existing in concrete. The relatively
high strains which concrete must undergo in order to develop the strength of
the spiral cause most of the cement crystals to fracture, and force the solid
particles into contact. As the strains increase, these granular contacts

become increasingly important, and require the use of curves such as Fig. 5.2

to express the behavior of concrete.
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~

The explanation given sbove is not unrealistic. f[ndeed, it is
inherent in the cerivation cf the mocel, which is assumed to represent the
crystels of cement peste. As these crystels break at high streins, the
model must withdraw more and more {rom participation in the over-ell

behavior of the ccncrete.

heli the strength of the plain columns which were tested in the seme ceries.
The ghenomenon described in the previous paragreph is not incom-
petible with the medei. As the mode! is subjected to axiesl compressicn, the

. N . . 3 Y, - o Y S £
dizgonal struts in the plane perailel to the directicon of lozding istruts &

L

do not feil completeiy. The lcads carried by these struts ere timited by
the emount of herizonta!l force proviced by the tensionvséfgégignd ﬁraﬁéverse
reinforcement. Accordingly, their reduction in area is limited to that
required to produce their maximum loed-carrying cepacity, or zpproximetely
40 percent of their original area. Under the action of the axial strain,
the : .es of these diagonal struts rotate into a pos{tion more nearly per-
endicular to the loading direction. Hence, when the load is removed, these
struts, which are still bonded to the aéjacent cement particies, are cepable

of providing the tension resistance necessary to produce unconfined compression

strength.
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Kanson {23} conducted a series of tests on iightweight concrete

under combined stresses. The test series included specimens with normal

from zerc to one-third of the unconfined compressive strergth of the speci-

the strencth of the lightweight concretes was approximatety egual to that of
nerme! weicht concrete having the same unconfined compressive strength. At
higher magnitudes of combined compressive stresses, however, the strencth o
the lightweight concretes was 65 tc €0 percent of that of the correspondinc
nermal weight concrete.

The results of Hansonls tests aaree with the behavior of the model.

[An]

For low magnitudes of confining pressure, a relatively small percentage of

the eggregate particlies are in direct contact, so that the strength is mainly

&t hicher values of combined compressive
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stresses, many more of the sggregate perticles come into contact, and singe
the strength of lightweight aggregate is less than that of neormal wsight
ggoregate, the concrete as a whole will show a similar decrease in strength.

(b) Rectangular Transverse Reinforcement

The strength of the model restrained by means of rectangular trans-
verse reinforcement is approximately 7 percent greater than the theoretical
strength of unconfined concrete, as can be seen from Fig- 5.11. This strength
increase [s only 28.5 percent of the corresponding increase for spirally-

b=

reinforced concrete, and demonstrates the lower efficiency of rectangular

reinforcement as a means of providing lateral confinement for concrete.

The reason for this reduced efficiency is that, whereas spiral

reinforcement confines all the horizontal tension members in the structure,
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rectangular reinforcement provides little restraint for those portions of

the concrete remote from the corners. This explanation can be illustreted

by referring to Fig. 5.12, which shows & plan view of the 4 by 4 grid. The

olid lines represent the deflected position of the model confined by rec-

W

tengular reinforcement, at the point of maximum lcad (ez = ¢.00258). The
£

broken lines indicate the deflected position of the unconfined model, =t

trein. ~he cricinel position of the model is

w0
L)

the same value of vertical
not sShown.

can be seen that & bulging of the structure hes teken place

-
ot

near the middle of each side of the column, while the corners have been com-
pressed horizontally with respect to the unconfined model. Since the broken

nes represent the condition of the unconfined specimen at a vertical strain

L
beyond that at tts maximum load, the tension struts zre almost completely

ineffective at this point. [t follows, therefore, that the structure of the
confined model is also extremely disintegraeted in the exterior portions mid-
way betwsen the corners.

The above observations agree with the test results of Szulczynski (5},
in which it was observed that considerabie surface spaliing of the concrete
took place near maximum load. [t was also noted in these tests that vertical
”archgg” were formed, which spanned between the ties. These arches could also
be explained by means of the model, in a manner similar to that described above.

The concrete between the ties receives little lateral confinement, and the

resulting high tensile strains cause @ break-down in the structure.
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6. TEST RESULTS

ests

6.1 Qutline of

The variables considered in the test series were as follows:

{1} Spacing of transverse reinforcement, which ranged in 2-in.
Encrgments from 2 to

{2} Bending stiffrness of transverce reinforcement.
varied by using both No. 2 and Ho. 2 bars as ties.

(3} Amount of longitudinal reinforcement. The lengitudinal
reinforcement ratio, p', ranged from 0 to 1.8 perﬁent.

{4) Bending stiffness of longitudinal reinfercement, which was
& secondary verieble because of the different tie spacings used.

A total of 60 test cpecimens were cast; &all specimens were 5 by

in cross section, and 25 in. long. T7he specimens were cast in groups

(53]
3

of four, each group being composed of one plain specimen; one specimen with
ties only;, one specimen with ties plus 4-No. 2 longitudinal bars; and one’
specimen with ties plus 4-Ko. 3 longitudinal bars. All the specimens with
ties in any one group had identical tie arrangements. In all cases the ties
were fabricated with outside dimensions of 5 by 5 in. The volumetric ratio
of the transverse reinforcement was 2 percent for all the specimens with ties.

in order to meaintain consistent concrete strengths, the aggregates
were oven-dried before each batch was mixed, and the amounts of aeggregate,
cement, and water were carefully weighed. As a result, the‘variation in
strength throughout the test series was relatively small.

A detailed description of the materials, as well as the casting and

testing procedure, is given in Appendix A.
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€.2 Behavior of Test Soecimens

in Appendix A (Figs. A.4 to A.34). The ceneral chape of the curves is similar
for all tied coliumns, being essentielly linear up to & load of betwzen 60 and
7S percent of meximum loed. EBevond this point, the slope of the curve decreases

imum load is reached. The averzge cver-zll

3
“
s
rt
E}
o
X
3

with increesing deflectio:

r+
o

strain et maximum loed, computed by dividing the totel deflecticen by

1

specimen iength, renged from 0.0027 to 0.0053, with epproximately 75 percent
of the values being betwsen 0.002 ang 0.004.

The piecin specimens behaved in & similar manner to the tied specimens

up to cbout 75 percent of meximum load. However, the streains did not increase

ce the stiffness of the testing machine was not sufficient to ebscrb the

w
el

¢

sudden release of energy at meximum load in the plain specimens, & sudden
fracture occurred, end it was not possible to record strains beyond that et
maximum load.

The load in the tied specimens decreased rather rapidly with increas-
ing strains beyond maximum load. Rather extensive spalling occurred when the
load had reduced to about 50 percent of its maximum value. |n the specimens of
Series 1, which had Ko. 2 ties 2t 2-in. spacing, and the specimens of Series 2,
which had 2-Ko. 2 ties at 4-in. spacing, fracture of one of the ties occurred
after the load had reduced to about 30 percent of maximum. In the remaining
specimens, fracture of the ties did not occur, and testing was discontinued at

ebout 10 percent of meximum locad.
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Crushing in the specimens of Series | ususlly occurred cver a

tength of 4 to © in., and the zone of crushing was very nearly horizontal

in most cases. For the specimens of larger tie spacing, however, the zone

(e}

- s . - . c 420 . .
of crushing usueily was inclined &t an angle of 457 to 60 to the verticati,

nd for the majority of these specimens the fzilure zone extenged from the

[

middle of

tie cpace on one side of the specimen to the middle of an adjacent

[iV]

spece on the other side. Beczuse of the inclined failure zone, most of the
specimens with 4~, &6-, and 8-in. tie specings began to exhibit sliding along
this feilure surface, producing relativeiy large verticel deflections in
meny ceses.

The definition of strain as epplied to reinforced concrete requires

some discussion. in general, strain is defined by the relation

strein = deformation/length.

However, the appropriate legnth to be used in applying this relation is not
always apparent. In the case of axially-loaded columns, the total shortening
is usually the most important deformation, and hence the critical strain would
appear to be the average strain throughout the length. |f most of the crushing
takes place over e relatively small region, however, the values of average
strain at the same losd level in similar columns of different lengths will vary
considerably. For this reason, if the results of one condition are to be applied
to other conditions, it is pecessary to compute the local strain at the crushing
zone.

An important application of reinforced concrete columns is their
use in monolithic beam and column construction. To analyze this type of struc-
ture, it is important to know the strain at the beam-column connection,

particularly if the analysis is based on the principles of ultimate capacity}



From the zbove comments, it can be seen thet it is very desireble
in tests of coiumns to obtein leocal strein values. [n en effort to determine
the strain of the test specimens over the failure region, deflection dials

.

were mounted on the specimens over two continuous Z-in. gage fengths. For
the specimenc in which crushing occurred outside this 4-in. gage length, the

eilure zone wes computed by subtrecting from the tote! deflection
the deflicction of the uncrushed portion of the specimen, and dividing the di

ference by the height of the crushed regicn. The deflection of the uncrushed

ocutside the fzilure zone. |[n most cases, the deflection dials which measured
deformetions of the uncrushed pert of the specimen showed a decresce in strain

Ret portion of the test which was carried con aftfer maximun load had been

in the cruched recien.

m
Q.
0
~
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3J
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e
®

Ficures A.35 to A.57 show the relation betwsen load
crushed region for the columns with ties. The strain in the zone of crushing when
the net lozd had reduced to 50 percent of its ma%imum value for the specimens with
Ko. 2 ties et 2-in. spacing renged from 0.017 to €.042 with a mean of 0.032; for
the specimzns with 2-Ho. 2 ties et 4-in. spacing ranged fraom 0.015 to 0.027 with

-z mean of 0.CZ0; for the specimens with Ko. 3 ties at 4-in. spacing ranged from

0.G15 to 0.023 with a2 mean of 0.018; for the specimens with 3-No. 2 ties at 6-in.

wae

cspacing renged from 0.013 to 0.023 with a mean of 0.028' and for the specimens

with 4-Ko. 2 ties at 8-in. spacing ranged from 0.005 to 0.015S with a2 mean of 0.009.
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6.3 Effect of Variahles

(a) Amount of Transverse Reinforcement

The effect of the amount of transverse reinforcement on the strength
and ductility of axially loaded columns is illustrated in Figs. 2.3 and 2.4.
in each case, curve | shows the stress-strain relatioh for & plain concrete
specimen; curve 2 refers to & specimen with No. 2 ties at 2-in. spacing; and
curve 3 refers to & specimen with No. 3 ties et 2-in. spacing. The stresses
used in piotting the curves are gross stresses, cbtsined by dividing the axial
load by the gross aree of the cross section. The strains are average longi-
tudinal deformetions, based on the total chortening of the columns.

ft can be seen from Figs. 2.3 end 2.4 that the use of ties did not
affect the gross strength of the specimens eppreciebly. However, the ties
did produce considerable improvement in ductility. As can be seen {rom the
grephs, at large strains, the larger the amount of transverse reinforcement,
the greater the percentage of maximum load which was meintained.

{b) Tie Spacing

The curves of Fig. 6.1 show load-strain relations for tie spacings
of 2, 4, 6, and 8 in. In all cases the transverse reinforcement ratio was
equal to 2 percent and the cross-sectional dimensions of the columns were
5 by 5 in. The load used for the ordinate of the graph was the relative
gross strength, obtained by dividing the load on the specimen by the maximum

load of the plain specimen in the same series. The strains were the local

strains at the failure zone.



Figure 6.1 illustrates that the cuctility decreased with increzsing
tie spacing, when the trensverse reinforcement retic was Kkept constant.
(c} Loncitudinal Reinforcement
Figure 6.7 shows the effect of loncitucdinal reinforcement. The
soclid curves refer to specimens with longitudinal steel ratio, p', ecuel to
0, 0.8 end 1.8 gpercent, and with transverse reinforcement ratio, p'', constent
et 2 percent. The broken curves heve been piotted by subtrecting from the
totel load-strain curves thz load carried by the lengitudineg! bers.
Longitudinal reinforcement wee inciuded in the specimens to see {f
it helped confine the concrete in combination with the ties. Howsver, it hed
noc significent effect on cencrete strencth or ductitity, This is illustrated
by the fact that the broken curves compere well with thet for the specimen
with no longitudinal steel.
{d} Concrete Strength
An exemination of Figs. 2.3 end 2.4 reveals that concrete strength
has no merked influence on the strain atf maximun load. Howesver, for strains

beyond meximum load, the higher streng
ductility.

{e) Shape of Cross Section

The curves of Fig. 2.3 refer

1
'

2.4 refer to 5 by 10 in. columns.
these two column stzes, it is necessar
curves 3 of Fig. 2.4, since these have
volumetric ratio, p''. On the besis of

section zappears to have no significant

th concrete results in a decrease in

to 5 by 5 in. columns, and those of
In order to compare the behavior of
vy to compare curves 2 of Fig. 2.3 with
very nearly equal values of the
cgmparison, the shape of cross

effect on either strength or ductility.
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(f) Stiffness of Longitudinal Reinforcement

The stiffness of the longitudinal reinforcement, as demonstrated
by the effectiveness of a given size of longitudinal bar at different tie
spacings, hed apparently no influence on the results. This was as expected,

since it was pointed out in Section 6.3c that longitudinel reinforcement had

tittle effect on strength or ductility in epecimerns with a 2-in. tie speacing.
(g) Stiffness of Ties
The specimens of Series Z had 2-Ro. 2 ties at a2 4~in. spacing, while

those of Series 3 had 1-No. 3 tie at 2 4-in. spacing. It was hoped that by a
comperison of these two series, the effect of tie stiffness on the resuits
could be determined. However, the only difference which could be observed
was that in Series 2, fracture of one of the ties usually cccurred at high

strains, while in no cese did one of the Ko. 3 ties breek.

6.4 Discussion of Test Results

{z) Strength
The use of ties had no significant effect on the gross strength of
the test specimens. The maximum load of the tied specimens with no longitudinal
reinforcement was en average of 101 percent of the plain specimen strength,
with a renge from 87 to 107 percent. The maximum net load of the specimens

with No. 2 verticel bars, computed by subtracting the locad carried by the
bars from the totel load, was an average of 97 percent of the plain specimen

strength. The range in values for these specimens was from S0 to 102 percent.
The maximum net load of the specimens with No. 3 vertical bars was 96 percent

of the plain specimen strength, with a range from S1 to 102 percent. The



latter averages do not include the results from specimen 1232, which failed

by local fracture at the end.
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The results summarized in the previous paragreph illus
the gross strength of the specimens, celculeted on the basis of the total
cross-csectionai area, waes not greatly effected by the ties. The gross strength

is cften thoucht of as the useful strength, since it ordinarily has the most

significance in practice. However, it is eiso of interest tc investigste the
net ctrength, or the strength of the concrete confined by the ties. tt ic

of the real effect of ties on the behavicr of concrete. [n eddition, the net
strengch is important in order to compere the results of various test

55
in the tests carried out by Szulczynski (5), the met strencth wes

rea within the ties.

¢}

celculated by dividing the meximum load by the concrete
The increase in unit strength, Afc, was then defined as the difference between
the net strength end the strength of the plein specimen of the same set. The
relation betwesen Afc snd the effectiveness of the transverse reinforcement was

expressed by meens of en assumed laterel stress, fZ’ cgefined as follows:

pllfil
fo= ——t (6.1)
2 (.‘2 + b.)
h b
where p'' = volumetric ratio of the transverse reinforcement
f; = yield stress of the trensverse reinforcement
b = width of the enclesed section
h = depth of the enclcsed section.



The equation

represented & reasonebie lower bound to the data of Szuilczvnski's tests,

pf = 1.4 f, (6.3)

describea the lower bound to all the results in the tests.

The results of the model analysic described in Chaptér 5 can be
used to develop an equation similar to Eqs. 6.2 and 5.3. [t was cbserved
in Section 5.5b that the theoretical strength increzse proéuced by rectangulear
trensverse reinforcement wes only 28.5 percent of that produced by spiral
reinforcement. Altﬁough it was pointed out that the absolute magnitude of
the theoretical strength increeases did not agree with test results, it seems
reasonable to assume that the reletive effects of the two types of transverse
reinforcement are valid. The modification of the results in terms of granular
contacts applies to both the spiral and rectangular cases. ©n the basis of
this reasoning, it may be assumed that rectangular ties are approximately
30 percent as efficient as spiral reinforcement.

The strength increase caused by spiral reinforcement, as observed
in tests (4), and expressed in Eq. 2.1, is given by the relationship

Af =401 f (6.4)

The corresponding strength increase caused by rectangular ties, obtained by

combining the results of the model analysis with Eq. 6.4, may be expressed

Af = 1.2 f (6.5)
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The increase in unit strength, Afc, observed in the test results
cescribed in this chapter, is pliotted as & function of fz (Eg. 6.1} in
Figs. 6.3, 6.4 and 6.5. Broken lines corresponding to Eags. 5.2 and 5.3,
and & solid line corresponding to Eg. 6.5, have been shown on the same
graphs for comparison.

Figure 6.3 shows the strenugth increases for the specimens with
ties ang no longitudinal reinforcement. The open circles refer tc specimens
with Ho. 2 bars as ties, and the solid circles refer to specimens with Ko. 3
bars as ties. |t is seen that the strength increases for the test series
re iess than that in the tests by Szulczynski, since five of the results
fall below the line representing Eg. 6.3. The line representing £g. 6.5
gives & lower bound to all the test results, and suggests that the resulits
of the mocel enelysis of Chapter 5 are realistic.

The increases in strength for the specimens with No. 2 end Ho. 8
longitudinel bars are indicated in Figs. 6.4 and 6.5 respectively. These
results are somewhat lower than those pleotted in Fig. 6.3. A possible
explenation for this reduction in strength is that the load which is assumed
to be carried by the bars is greater than its correct value. Kowever, if this
is the case, the discrepancy cannot be due to buckling of the bars, since the
results of Fig. 6.5 are at least &s low as those of Fig. 6.4. In addition,

the two lowest results of Fig. 6.5 are for specimens with tie spacings of

2 end 8 in., which implies that the unsupported length of the bars is not a

critical factor.
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Another possible reason for the strength difference is thet the bars reduce

ncy of the adjacent concrete. 1t seems likely that the concrete
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t the corners af the specimen, outside the bars, will spall off very easily,

m

weakening effect may extend scme distance from the bars.

)
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 other variables constant, procduced an increase in ductility. From the tests
of Szulczynski {5}, it appeared that increzsing the concrete strength produced
some decrezse in ductility beyond maximum load. The remaining variables -
shape of cross section, stiffness of transverse reinforcement, and amount and

LLL

little or no effect on the

0.

stiviness of longitudinal reinfercement - he

The tests have demonstrated that the use of rectangular ties can
improve the behavior of concrete in ccmpression to & great extent. In the

specimens with ties at 2-in. spacing, the average strain at fracture, based

on the total shortening of the specimen, ranged from 0.025 to 0.046, with a

mean value of 0.034.

6.5 Siress-Strain Relationship Obtained From Test Results

Iln order to apply the test results to gecmetrical and loading
conditions which are different from those in the test program, it is very
desirable to define the stress-strain relation in terms of the most important
variables. A study of Figs. 6.1 and 6.2 reveals that the relation betwsen the

stress of the concrete enclosed by the ties and the strain in the failure



region can be expressed conservatively by means of two straight lines, as

~h

shown in Fig. 6.6. The pesition of line AR is fixed, where B represents the
meximun net strength, which is eguel to the unconfined compressive strencth,

and occurs &t a strain of 0.002. The siope of line BD varies, cdepending on

the amount and spacing of the transverse reinforcement, and czn be determined

eno

at point C nt &t which the stress
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hes recuced to 50 percent of its maximum vealue.
lt was pointed cut in Section 6.4 that the main verisbles affecting

the ductility of the specimens were the zmount and spacing of the transverse’

reinforcement. Accordincly, the value of €50 the strein corresponding to

end s/h,

Q

point € in Fig. 6.6, will be expressed in terms of the pareameters p
where p'' is the volumetric ratio of the transverse reinforcement, defined as

v

ties and the volume enclosed by th

or
[

the ratio betwsen the volume of th

dimensions of the ties; s is the center-to-center spacing of the ties, znd h

is the smaller vailue of the cutside dimensions of the ties.

The reletion betwesen ¢ and s/h for the test series is shown in

=
~

O

Fig. 8.7. [t can be seen from Fig. 6.7 that the equation

= 0.015 = {(6.6)

agrees very clesely with the test data.
The influence of the volumetric ratio p' on the variation of €54

is more difficult to define accurately, since the emount of available data

bt}

elating these variables is rather limited. A study of the tests by
Szulczynski {5), the results of which are illustrated in Figs. 2.3 and 2.4,

seems to indicate that the relation between €5q and p' is linear. Accordingly,



since the results shown in Fig. 6.7 correspond to a value of p* ecual to 0.02,

the stress-strain relationship for concrete confined by rectangular transverse

reinforcement may be expressed by the eguatien

P
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7.1 The Failure Theorv

In order to explain scme

failure thsory was developed based
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concrate and cement pasts. ement

e

particles interconnected by slende

5=

=7

SUMMARY

of ths behavior of concrete, a

on observations of the structures of

paste is ccmposad of a number of solid

r crystals, the cament gal. Accordingly,

an analcgous model was derivad in a manner similar to that introduced by
i

Reinius (1), by assuming a cubic a

2

=

spheres, interconnected by elastic

rrangement of idantical, nondeformable

struts, as shown in Fig. 3.3. The areas

of the struis were proportionad so as to produce a2 value of Peisson's ratic
of 0.15 §n the initial stages of uniaxial compression of the mcdal.

As concrete is loaded, the cemeant crystais in both tension and
ccmoression begin breaking at varicus iocations in the concratz mass. Ths
numbar of such crystal fracturss incrsases with increasing load untii
eventually Turiner increases in deformation resulz in a decreass in load.
Since orystal failures in the concrete mass are eguivalant to a reduciion
in the arsa of the apprepriate strut in thzs model, zguations relating area
and strain wsre developed Tor ths siruts. The randcmn nature of ths crvstal
strengths suggested the use of thz normal distribution curve or Haussian
curvs to express thase arsa~sirain ralations. [n ordar zo produce reasonable
resulis it was necessary 1o uss skawad curves for toth ths tension and com-
pression struts, which impiies that exiremely weak crystals ars more common
than extremely sirong crystals.

The arsa-strain sgquation for the compression siruts was

2
-~ —~1e3{z - 0.388)7 -
y = 50e (7.1
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In (e x 103)

where z

A(%) =100 -y, € < 1.8 x T

3

It

A=y , € > 1.8 x 107

and that for the tension struts was

-0.5{(z + !.61)2

y = 50e (7.2)
; 3
where z = In {e x 107)
A(%) = 100 - y, € <0.2 x 10°°
A=y , € >0.2 x 1072

7.2 Application of the Failure Theory to foncrete Under Uniaxial Stresses

The model, together witn the area-strain relations of its struis,
%35 tnen used to explain the load-strain relations of concretz subjectad to
both unconfinad and confined compression. "The resulting load-defisction
curve for unconfinad comprassion {Fig. 4.1) agread very favorably with curves
cotainad from tests, and the behavior of thes model provided a basis for
explaining the phencmenon of failure in concrete under this loading condition.

B

A description of this failura process will bz givan in the following paragraph.

PN

Undar tne action of gradually incr=asing vartical compressive strain,

a plain concrate spacimen which has no latesral rastraint will begin dasvaloping

- .

horizontal tensile strains. Thase tensile strain

1

o)

are causegd by the aciion o
cemant crystals which are inclined at an angie to the direction o7 ccmpression,

and which create horizontal forces to maintain static equilibrium. in the

absence of extzrnal horizontal ccmpression on the spacimen, thasz inducad



horizentel forces must be resisted by tensile stresses in horizontal cement
crystais. The incidence of crystal fractures eccelerates with increasing
compressive strain until finally the tenmsion crystals reach their maximum
load-carrying capacity. The meximumn compressive load then occurs after 2
smatl further increase in strein. For strains beyond thet et which the

capecity of the tension crystals is reached, a greater proportion of the

\{:
t
o
@

epplied compression is resisted by the vertical crystels, and eventuei

-

number of compression feilures is so extensive that the load decreases rether

repidly with increasing strain.

.3 fApplication of The Failure Theory to Concrete Under Triaexial Stresses

An explanation cf the behavior of confined concrete depends on a
consideration of solid particles in the concrete, as well as the cement
crystals. From the preceding decscription of the failure of unconfined
concrete, it cen be seen that the initiation of failure for this loading
condition is & function of the strength in tension of the horizontal cement
crystals. For this reason, when concrete is subjected to lateral confining
pressures in addition to axial compression, the strength is increased, and is
more dependent on the compressive strength of the cement crystals.

The structure of concrete is composed of a number of solid perticles,
both unhvdrated cement greins and granules of eggregate. The spacing of these
particles varies considerably throughout the concrete, but as compression of
the concrete progresses, and the cement crystals break, an increasing number

of the soiid particles are forced into contact. At very high strains, in the

presence of sufficient confinement, virtually all the load will be carried by



- 78-

direct grain-tu~-grain contact. A description of the behavior of confined
concrete can accordingly be given by the derived model and failure theory
at low strains, but es the strein increases, the behavior is more nearly

& function of the losd-strain reiations of confined zggregate.

The failure theory was &lso used to illustrate the difference
betwsen the strength and ductility of spireliv-reinforced columns and of

columns with rectangular ties. The theoretical strength of spireit columns
was appreciably greater because all horizonta! tension members were confined
by the action cf the spiral. In the case of tied columns, however, the
confining effect of the ties was produced by concentrated horizontal loads
at the corners of the column. Accordingly, many of the horizontal struts

remote from the corner received little or no confining pressure.

7.4 Experimental Program

tn order to compare the theoreticai behavior of tied columns wfth
that occurring in practice, a test program was carried out on axially=-loaded
columns with rectangular ties.

A total of 60 specimens were tested, all having dimensions of
5 by 5by 25 in. The main variables considered in the test program were the
spacing and bending stiffness of the ties, and the amount and stiffness of
the longitudinal reinforcement. The results of these tests indicated that
the use of ties did not affect the gross strength of the columns appreciably,
but did produce considerable increase in ductility.

From a consideration of the test results of these 6C specimens,

together with the results of 30 specimens tested by Szulczynski (5), the
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following conclusions cen be mzde regarding the hehavior of axially-lozaded
tied coltumns: Rectanguler ties have no si¢gnificent efiect on the gross
strenéth of columns, but do produce an increase in deformation capacity.

The ductility of tied columns increases with increasing amount or decreesing
spacing of the ties, if the other varisbles are kept constant. The ductilisy
is decreased somewhat with increzseg in concrete strencth. Qther veriablies,
fi

cuch es flexurel ctiffness of transverse reinforcement, emount and exural

ness ¢ | reinforcement, and chepe of c¢ross sectica have !

n
ot
s
-ty
-
n
-h
o
Q
3
28]
-
£
(&N
2
o

cr no effect on the behavior.
An importent epplication of rectanguler ties is their use as stirrups

in reinforced concrete beams. Since the principles of limit desicgn reguire

censiderable ductility of the members concerned, and also since ductility is

tant in provicding recictence to dymamic loading, favorzhle

1
=
Q
“1

Q
=

extremely Iimp
deformation qualities are very desireble in reinforced concrete. The results
of the theoretical and experimental investigations ocutlined sbove impiy that
sufficient ductility can be obtzined by using properly-designed rectangular

ties.
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RCD FORCES UKDER UNIAXIAL PRESSURE - REINIUS MODEL

Crocan . D
ressure ") Py Ps Pag Pac "an Pre
PZ -0.051 -0.051 0.351 -0.013 g.057 ¢.022 0.022
Py -C.051 0.351 -0.051 0.040 J.004 0.05%32 -0.008%
P 0.351 -0.051 -0.051 0.040 0.004 -0.00°% 0.053
Values given are coefficients of P_ in the first line, of P in the
second lipne, and of Px in the third line.
TABLE 2
PRELIMINARY REINIUS FAILURE THECRY
Effective Area 0Of .
Rods 1|, ?. and AB P = p p c =¢ c L= X
in Relation to 1 2 3 y z €,
Original Area
100 % -0.051 PZ 0.351 PZ -0.051 Km 0.351 K 0.14
75 % -0.048 PZ 0.355 Pz -0.064 K 0.35¢ K 2.8
50 % : -0.043 PZ 0.362 PZ -0.08¢ K 0.362 K 0.24
25 % -0.033 PZ 0.377 Pz -0.132 K 0.377 K 0.35
10 % -0.020 Pz 0.399 PZ -0.195 K 0.399 K .50

* K = %/AE, where A = original area of struts
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FINAL REFNIUS FATLURE THEORY
Effective Arez of
Rods |, 2, 3, And  , _ 5 _ i €x
L8 in Relation to 1T 3 €x T &y €, <
Original Area “
100 % -0.051 P 0.35] -0.051 K 0.25% K 14
ra 4
75 % -0.05¢ P_ 0.324 PZ -0.078 K 0.432 K .18
pa
50 % -0.067 P_ 0.284 -0.i35 K 0.568 K .24
&L
25 % -0.0786 F’Z 6.217 PZ -0.305 K 0.867 K 35
10 % -0.,068¢ Dz 0.142 -0.882 K 1.416 K 43
* K = Z/AE, where = criginal area of struts 1, 2, 2.
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APPERDIX A

EXPER{MENTAL WORK

A.1 Test Specimens

A total of 60 specimers were cast and tested in 15 groups of 4.
The specimens measured 5 by 5 by 25 in.

The nominal concrete compressive strength was 3000 psi and the
noninal volumetric ratio of the transverse reinforcement was 0.02 for sli
specimens.

The variebles were:

8); Spacing of transverse reinforcement {2, 4, 6, 8 in.)

(2) Stiffrness of transverse reinforcement (Ho. 2 and Ko. 3 bars)

(3) Amount of longitudinal reinforcement {zrez ratio, p'= 0,
¢.008, 0.018)

{4) Stiffness of longitudinal reinforcement (& secondary variable
as a result of the different tie spacings)

Each specimen was zssigned a2 designation consisting of four numerals
having the following significance: The specimens were grouped into different
series according to size and spacing of transverse reinforcement. The first
n;meral indicated the test series to which the specimen belonged.

I : Ko. 2 ties at 2-in. spacing

2 : 2-No. 2 ties at 4-in. spacing -
3 : No. 3 ties at 4-in. spacing

4 : 3-Ko. 2 ties et 6-in. spacing

5 : 4-No. 2 ties at 8B-in. spacing
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The second numeral was used to distinguish the specimens having
the same veriables.
The third numeral described the longitudinal reinforcement.
0 : Ko longitudinel reinforcement
2 : 4-Ho. 2 longitudinel bars
3 : 4-Ko. 3 lomgitudinel bears
The fourth numeral indicated the size of ties.
2 : Ko. 2 ties
3 : Ho. 3 ties
£ summary of the properties of 2ll the specimens is given in

Table A. 1.

A.2 CLoncrete
{z) Cement
Marquette brand type [li portlend cement was used for all specimens.
(b) Aggrecates
The concrete was manufactured using Wabash River sanc and gravel.
Because of the close tie spacing used, the maximum size of the gravel was
restricted to 3/8 in.
The absorption of the sand was 1.6 percent and that of the gravel was

2 percent by weight of surface-dry aggregate.

(c) Concrete Kix

All aggregates were oven-dried before each batch of concrete was

mixed in order to control the strength variation throughout the test series.

AN
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The nominal mix proportions were 1:3.6:3.9 (cement:sand:gravel) by weight.
The water/cement ratio was 0.76, corrected for sbsorbed water. |

The compressive strength of the concrete was determined by testing
6 by 12-in. cylinders, and the tensile strength was measured by splitting
tests on 6 by 6-in. cylinders.

The properties of each concrete mix are summarized in Table A.1.

A.3 Casting, Forms, Reinforcement

{a) Casting

All specimens were cast in‘a horizontal position, and the concrete
wes piaced using & mechanical hand vibrator. Twenty-four hours after casting,
the specimens were removed from the forms end stored for five days in & moist
rocm, maintained at 100 percent relative humidity and 74°F . They were then
pleced in the laboratory for & minimum of 24 hours before testing.

(b) Forms

The forms were constructed of steel, and were manufactured with
extreme care s0 as to maintain the dimensions of the specimens within a
tolerance of 1/32 in. The bottom of each form consisted of a 7-in. steel
channel, and the sides and ends were 5-in. steel channeis. The sides and
ends were bolted to the base to facilitate removal of the specimen.

(c) Reinforcement

Both Ho. 2 and No. 3 reinforcing bars were used for the ties and
longitudinal reinforcement. The No. 2 bars were round, with a diameter of
1/4 in., and the Ro. 3 bars were deformed, with a nominal diameter of 3/8 in.

eand a nominal area of 0.11 sg. in.
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A 24-in. test sample was cut from each length of reinforcing ber,
end tested in tension to failure. The strains during each test were deter-
mined using an 8-in. gage length. A summary of the properties of the rein-
forcing bars is given in Table A.S, and typical stress-strain curves for the
Ko. 2 and Ko. 3 bars are shown in Figs. A.l and A.2 respectively. I[n addition,
z histogram of the yield strecses for the Neo. 2 bars is civen in Fig. A.3.

The ties were febricated by cold bending. The ends of the bar
were lapped e distance of approximately 2 in. and welded. The ties were
placed in the forms so that the laps occurred on two opposite faces of the
specimen only, and on each alternate tie on each fece. In the specimens
with no longitudinal reinforcement, the ties were held in position during
cesting by comnecting them with No. 14 gage annealed wire. The ties in the
specimens with longitudinal bars were positioned by fastening each corner
of the tie to the longitudinal bar at that corner by meens of Ho. 19 gage
wire.

Each specimen with longitudinal reinforcement contazined four bars

extending throughout the length of the specimen, one at each corner inside

the ties.

A.4 Instrumentation

Since the tests conducted by Szulczynski (5) gave relations

between longitudinal and transverse strains, and indicated that yield strain
had been reached in the ties 'at maximum load, it was decided that only the
longitudinal strains would be measured during the tests.

The instrumentation which was used in the test program Is shown in

Fig. A.S8.
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The over-zll deflections of the specimens were determined by
measuring the shortening betwzen the upper and lower loading plates of the
testing mechine. This was accomplished by means of two 0.001-in. diais
attached to extensometers and placed at the north and south faces of the
specimen.

in order tc meacsure local deformations of the specimen, and if
possibie the deformation at the failure zone, the deflection of the speci-
meh w3s also meesured over two continuous 2-in. gege lengths located nezar
the mid-height. For this purpose, three square frames with zpproximate
inside dimensions of 5 1/2 by 5 1/2 in. wsre constructed from 1/4 by /2 in.
steel bars. The spacing between the frames was maintained by means of spacer
plates. The frames were attached to the specimen with pointed machine bolts
which were threaded through the bars,Aand after they were in place the spacer
plates were removed. The deflection between the frames wss mezsured using
eight 0.001-in. deflection dials, one in each gage length on each fzce of
the specimen. By this means it was also possible‘to determine whether any

bending moment was applied to the specimen during testing.

A.5 Test Procedure

The specimens were tested with a 300,000 1b capacity screw-type
testing machine.

A particuler effort wes made to apply axial load to the specimen.
Accordingly, S by 5 by 1/2 in. steel plates were attached to each end of the
specimen with plaster of Paris. The plates were installed while the specimen
was in position on the loading platform of the testing machine, and a carpen-

ter's level was used to ensure that the specimen was vertical and the plates



horizontal. The deflection dials were then positioned as described in
Section A.4, and the specimen wes placed under the center of the loading
head. The position of the loading head was fixed, but the use of the
tevel plates at the ends of the specimen caused & geometriceily-axial load
to be spplied.

£ toad of approximately 10 ibs wes epplied to the specimen, after
which initiail reedings were made on the dials. The load was increzsed in
1G,000-1b imcrements up to the maximum. ([t was necessary to discontinue
testing of the plain specimens when the meximum load wes reached, beczuse
the stiffness of the machine was insufficient to prevent complete fracture

his point. In the tests of the tied specimens, incrementel strains ware

rt

et
epplied beyond meximum load such thet the load decrements were epproximately
10,000 ib. The tests were discontinued when fracture of one of the ties had
taken place, or, if no fracture occurred, when the load had reduced to ebout
10 percent of its meximum value.

After each load increment {or decrement), readings of the 10 deflection
dials were recorded, es well as the time. The latter observation was made to

provide a measure of time-dependent effects during the test.

A.6 Measured Load-Deformation Characteristics

The results of the tests on the specimens with ties an& no longi-
tudinal reinforcement are summarized in Table A.2, and the test results on
the specimens with Ko. 2 and No..3 longitudinal bars are summarized in Tables
A.2 and A.4 reSpectiveIQ. in Tebles A.3 and A.4, the net maximum load of the
specimens is included. This has been computed by subtracting from the total
load the load carried by the longitudinal bars, in order to give a measure of

the effect of confinement on the concrete.
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Graphs of load vs. measured strains are given in Figs. A.4 to A.34.
In these graphs, curve | gives values of average strain cover the length of
the specimen, computed on the basis of the total shortening of the specimen;
curve 2 refers to the average strain over the upper 2-in. gage length of the

specimen, obtained as described in Section A.4; and curve 3 refers to the

average strain over the lower 2-in. gage leagth. |t should be noted theat in
Figs. A.4 to A.34, curve | indicates an initial strain at zero load. This
e

is ceused by the fact thet the plaster of,?éris at the ends of the specimen
compressed during the early stages of each test, after initial readings had
been recorded for the two extensometers. Curve | has been plotted by extra-
polating the lower portion of the curve to intersect the zero load axis.
True values of the average over-all strain are therefore obtained by sub-
tracting the initial strain from the values representec in curve 1.

Figures A.35 to A.57 are graphs of load vs. strain in the failure
zone, for the specimens with ties. In cases for which failure occurred
within the two 4-in. gage lengths on the specimen, the strain in the failure
region was obtained directly from the mounted dials. For the specimens in
which failure occurred cutside this length, thé shortening in the failure
zone was conputed by subtracting from the total deflection the deflection of

the uncrushed portion of the specimens.
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FROPERTIES OF SPECIMEKS AKND CORCRETE

fark Tie Size Longitudinal Concrete
Bar Size S tump ge &t Compressive Tensi ie
Test Strength® Strength®
in. Davs psi psi

1102 fo. 2° -

1122 ko. 2 No. .2‘b 2 1/2 10 3080 320
1132 Ko. 2 Ko. 3 (2} (2)
1202 Ro. 2 -

1222 No. 2 No. 2 z /2 8 2880 280
1232 Ho. 2 RHo. 3 (4) (4)
302 Ro. 2 - :
1322 No. 2 No. 2 2 1/2 2 3700 310
1332 No. 2 Ro. 3 (4) (4)
2102 No. 2 - .
2122 Ro. 2 Ko. 2 2 10 3480 350
2132 Ro. 2 Ro. & (4) (4}
2202 Ko. 2 -

2222 Ko. 2 Ko. 2 3 8 3480 340
2232 Ro. 2 Ro. 3 (4) (4)
2302 Ro. 2 -

2322 Ho. 2 Ro. 2 2 /4 7 3370 340
2332 Ro. 2 No. 3 (4) (4)
3103 No. 3 -

3123 Ko. 3 No. 2 2 1/2 7 3320 360
3133 No. 3 No. 3 (4) (4)
3203 No. 3 -

3223 No. 3 Ho. 2 2 1/2 7 3440 320
3233 Ro. 3 No. 2 (4) (4)
3303 No. 3 -

3323 No. 3 Noe. 2 2 1/4 7 3330 340
3333 No. 3 No. 3 (4) (4)

Based on 6 by 12-in. cylirders.

cylinders tested.
Based on splitting tests of

Plain bar,

i/4-in. diameter

6 by 6-in. cylinders.

Deformed bar, Nominal Diameter: 3/8
Nominal Area: 0.11 sq. in.

in.

Numeral in parentheses indicates number of
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TABLE A.1 (Cont‘®d)

Hark Tie Size Longitudinal Cencrete
Bar Size Slump Age at Compressive Tensi le
Test Strength#* Strength~*

in. Deays psi osi
4102 No. 2 -
4122 No. 2 Ko. Z 2 1/2 7 3150 310
4132 No. 2 Ko. 3 (4) (4)
£202 Ko. 2 -
4222 No. 2 Ko. 2 3 1/4 7 3200 30
4232 Ko. 2 Ho. 3 (4) (4)
4302 No. 2 -
4322 Ro. 2 Ko, 2 3 7 3380 320
4332 No. 2 No. 2 (4) (4)
5102 Ro. 2 -
Si22 No. 2 Ho. 2 2 1/2 7 3330 320
5122 No. 2 No. 3 (4) (4)
5202 Ro. 2 -
5222 Ro. 2 Ro. 2 2 1/2 8 3410 340
5232 Ro. 2 No. 3 (4} {4)
5302 Ke. 2 -
5322 Ko. 2 Ko. 2 2 /4 7 3460 350
5332 Ko. 2 Ko. 3 (4) {4)

o
<

Based on 6 by 12-in. cylinders. Numeral in parentheses indicates number of
cylinders tested.
Based on splitting tests of & by 6-in. cylinders.
Plain bar,

l/4-in. diameter
Deformed bar, Rominal Diameter:
Nominal Area:

3/8 in.
0.11 sq.

in.
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TABLE A.2Z

TEST RESULTS: SPECIKERS WITH THES OKLY

i 2 3 4 5 ) 7 8
. . - - ~ . ¢ ~_ ot P P PSR

Mark Maximunm Kaximumn Cvlinder Frism® U u g ==

t.oad Stress Strength Streagth A ft A f P

2 P /A £i £ c P

u u c cp

kips psi psi psi
11g2 0.0 3600 20E0 3560 1,17 1.01 .34
1202 8S.0 3560 2980 3320 1.20 1.07 ¢.0z6
1302 102.0 4080 3760 4200 1.10 0.87 0.037
2102 86.0 3440 3480C 3400 0.88 i.01 0.022
2202 83.8 3750 3480 3520 1.08 1.06 0.030
2302 89.5 3829 3370 3680 1.06 0.28 0.017
3103 80.0 3600 3320 3430 1.08 1.05 0.016
3203 86.0 3440 3440 3480 1.00 0.8¢ 0.018
3303 1.7 3670 3330 3800 1.08 0.97 0.013
4102 85.0 3400 3150 3400 1.08 1.00 ¢.Q20
£202 g5.0 3460 32060 3360 1.06 1.0 G.00%
4302 85.0 3400 3380 3400 1.30 1.00 0.00¢s
5102 85.0 3400 3330 32370 1.02 1.01 0.005
5202 85.5 3420 3410 3440 1.00 1.00 0.00°
5302 0.0 3600 3460 3400 1.04 1.06 0.00¢

5 by 5 by 25-in. unreinforced specimen.

** Average strain at the time the resistance is reduced to 25 percent of .
maximum.

Average strain at tie fracture.
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TABLE A

.3

SPECHMENS WITH TIES ARD 4-KO. 2 LOKGITUD{NAL EBARS

] 2 3 4 5 6 8

Mark Maximum Load Ret Pu-As'su Prism= —Asfsu R

Load Carried Maximum A Strength A £ P

By Bars Load cp
- P A f P =A f psi §
u s su U’ s s. ' cp

kips kips kips nsi
1122 85.0 8.4 86.6 3460 2560 0.87 O.Gésf
1222 %4.5 9.4 g5.1 3400 3320 1.02 0.628%
1322 108.6 8.9 g9.7 3320 4200 0.85 0.042%
2122 S3.3 8.6 84.7 3380 3400 i.00 0.024
2222 98.8 10.5 88.3 3530 3520 1.00 0.0625
2322 2c.4 10.6 88.8 3550 3580 0.97 0.026
3123 25.0 9.2 85.8 3430 3430 1.00 0.018
3223 94.5 8.2 85.3 3410 3480 0.98 0.034
3323 6.7 P1.0 85.7 3430 3800 0.20 0.015
4122 c0.0 3.4 80.6 3220 3400 0.S5 0.014
4222 ©0.0 10.6 72.4 3180 3360 0.95 0.018
4322 20.0 3.9 80.1 3200 3400 0.%4 0.013
5122 20.0 10.4 72.6 3120 3370 0.85 0.005
5222 85.0 9.6 85.4 3410 3440 1.00 0.009
5322 89.0 10.1 78.9 3150 3400 0.93 0.007

<
<

St
o~

5 by S by 25-in. unreinforced specimen.
Average streain at the time the resistance is reduced to 25 percent of

maximum.

Average strain et tie fracture.
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TABLE A.4

SPECIMERS WITH TIES ARD 4-NO. 3 LOKGITUDIRAL BARS

i 2 3 4 5 6 7 8
- P -f f
Merk  HMaximum Load Ket P Asf Prism#s U Asrsu e
Load Carrie Maximum A Strength A f P
By Bar Load P
P A f P -A T psi £
U s st u s su cp
kips kips Kips psi

1132 16¢.0 20.8 88.2 3530 3560 c.92 0.033°
1232 ge.0 20.8 68.2 2730 3320 0.82 0.0357
1332 118.7 26.0 e8.7 3850 4200 .24 0.025°
2132 102.9 24.8 78.1 3120 3400 0.92 0.039°
2232 110.0 24.8 85.2 3400 3520 0.97 0.028
2332 110.0 24.8 85.2 3400 3680 0.93 0.038
3133 t12.1 24.8 87. 3480 3430 1.02 0.025
3233 108.0 25.0 83.0 3320 3480 0.%6 6.038
3333 114.0 25.2 88.8 3580 3800 0.%4 0.047
4132 105.0 25.2 78.8 3190 3400 0.%4 0.014
47232 107.8 24.4 83.4 3340 3360¢ 0.9% 0.0is
4332 1g6.¢2 24.4 82.5 3300 3400 0.97 0.013
5132 161.7 25.2 76.5 3060 3370 0.¢1% 0.00¢
5232 111.3 25.2 86.1 3440 3440 1.00 0.007
5332 106.S 24.4 82.5 3300 3400 0.87 0.007
* 5 by 5 by 25-in. unreinforced specimen.
¥ Average strain at the time the resistance is reduced to 25 percent of

maximum.

a Average strain at tie fracture.
b Locel failure at end of specimen.



TABLE A.S

PROPERTIES OF REIRFORCING BARS

Kark SizeXx Yield Maximum Location
Ko. Stress Stress (Merk of Concrete Specimen)
f T Ties Longitudinal
sy s
ksi ksi
; 2 5101 7%.5 1i02
yi 2 £8.0 74.6 1122
3 2 51.9 72.3 1132
4 i £2.9 66.3 1122
5 3 47.3 62.8 1132, 1232
3) 2 54.0 76.3 1222
7 2 45.0 €8.2 1202
8 2 £38.0 70.6 1232
G 2 45.8 78.4 1302
10 2 45.5 68.8 1322
il 2 51.2 76.8 1332
12. 2 47.8 70.4 1222
13 3 45,5 VAR 1332
14 z 45.5 6.6 1322
15 2 £7.4 69.5 2102
16 2 50.6 78.6 2122
17 2 53.6 78.6 2132
18 2 54,7 80.9 2202
19 2 50.6 77.2 2222
20 2 4S8.5 70.S 2232
21 2 49.0 71.6 2302
22 2 48.0 74.6 2322
23 2 44,1 67.4 2122
24 3 56.4 81.4 2132, 2232
25 2 53.7 79.4 2222
26 2 54.1 80.5 2322
27 -2 44.9 67.4 2332
28 3 56.4 90.6 2332, 3133
29 3 56.7 80.6 3103
30 3 55.3 87.0 3123
31 3 55.3 88.4 3133
32 2 47.1 68.4 3123
33 2 47.1 70.6 3223
34 3 56.7 990.7 3233
35 3 54.9 88.2 3203
36 3 56.4 91.6 3223, 3233
37 3 57.3 93.4 3303
38 3 56.6 1.2 3323, 3333

* HNo. 2 : Plain Bar, 1/4-in. diameter.
No. 3 : Deformed Bar, Nominal Diameter: 3/8 in.
Nominal Area: 0.1l sqg. in.
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TABLE A.5 (Cont'd)

Kark Sizex Yield Maximum Location
Ko. Stress Stress (Mark of Concrete Specimen)
£ e Ties Longitudinal
sy s
ksi ksi
38 2 55.8 81.1 3323
40 3 57.3 83.7 3333, 4132
41 2 47.0 70.2 4162
42 2 48.2 76.1 4122
£3 2 48.8 72.0 4132
44 2 48.0 69.6 4122
45 2 47.6 6¢.9 4202
48 2 48.8 75.¢ 4222
47 2 46.0 6S.3 4232
48 2 54.1 73.3 4222
489 3 55.5 gg.5 4232, 4332
50 2 48.0 72.9 4302
51 2 53.1 81.4 4322
52 2 46.8 69.38 4332
53 2 42,2 76.8 5102
54 2 48.8 7t.¢ 5122
58 2 £42.0 71.6 513z
56 2 48.2 75.¢9 5202
57 2 53.7 80.5 5222
58 2 52.0 78.8 5232
58 2 50.5 77.8 4322
50 2 43.8 76.9 5302
61 2 50.6 77.4 5322
62 2 47.5 7G.5 5332
63 2 52.9 78.4 5122
64 3 57.3 91.8 ' 5132, 5232
65 2 48.8 70.0 5222
66 2 51.5 76.5 5322
67 3 55.4 87.5 5332

% Ko. 2 : Plain Bar, 1/4-in. diameter.
Ko. 3 : beformed Bar, Nominal Diameter: 3/8 in.
Nominal Area: 0.11 sq. in.
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(b) Series 3
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APPERDIX B

DERIVATIORS

B.1 HModels
(2) Tetrahedron

Referring to Fig. 3.1, it can be shown that the angle of inclina-

(e]

tion of struts AB, AC, &nd AD with respect to plane BCD is 54.5°. The assumed
notatign is as follows:
Force in struts AB, AC, and AD = PC
Force in struts BC, BD, and CD = PT
Length of struts =t
Area of struts = A
Modulus of elasticity of struts = E
The direction of P indicated in Fig. 3.1 is assumed to be vertical

Because of symmetry, the vertical component of PC must equal P/3

Accordingly,

csc (54.5°%) = 0.408 P (8.1)

B
i
wlo

The horizontal component of PC is equal to PC cos (54.50). To

maintain static equilibrium,
2p_ cos (30°) = P_ cos (54.5°) (8.2a)

P =0.136 P (8.2b)

The axial deformation of struts AB, AC, and AD is given by the

equation

P L
o =R = 0.408 &= (8.3)
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Since point A must move vertically under the action of force P, the vertical

component of AC, AV, can be expressed as
A=A csc (54.5°%) = 0.502 St (e.4)
v c AE

The vertical cistance from point A toc plane BCD is equel to

L ~Q . . .
L sin (54.57), so that the vertical strain, e_, is
P

Av p
e_ = = 0.618 — {(5.5)
L sin (54.5%) AE
The horizontal strzin, € is
P
T _ P
e, =xE = 0.136 7= (5.6)

The value of Poisson's ratio, v, for the tetrahedron, from

Egs. B.5 and B.6, is

€ 2
v = 'é'é = 0-1\}6 = 0.22 (8.7)
z

(b) Body-Centered Cubic Kodel

The assumed notation for the body-centered cubic model is shown
in Fig. 3.2. The length of the diagonal struts, such as AM, is L4, and the
cross-sectional area of each strut is A4. The area of each cube face is
assumed to be unity, and the following equations are derived for the condition

of unconfined compression in the z-direction, produced by the action of a

single force Pz epplied to the exterior of the cube.
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The length and area reletions for the model mey be summarized as

follows:
L‘ = Lz = L3
Ly =“—’;3l L, (8.8)
AI = AZ = A3
The forces in struts 1, 2, 3, and 4 are assumed to be P}, Fz, P3
and P4, respectively.

From symmetry in the herizontal direction

P, =P (8.9)

From equilibrium of forces in the horizontal direction,

2

P, =-=rp, (8.10)
] J} 4
{n order to determine the compatibility equations for the model, it

is assumed thet the axiel deformztions of struts 1, 2, 3, and 4 are Al, Az, A3,

and A, respectively. in addition, it is assumed that strut 4 undergoes &

4
rotation d9p in a direction parallel to the z-axis. A positive value of d9 is
assumed to cause positive values of AI and AZ and a negative value of AB
The relationship among Al’ A4, and dO is given by the egustion

] } i
A =2£Ta + —— do | (B.11)
‘ 3 4 A
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and the relationship among &3, A4 and dP may be expressed

A, = o, - csq:g (8.12)

;| L Bl
3 Lz ¢

By combining Egs. B.11 and B.12

.&._] = 2y
By 4 ZAS-JE% (B.13)
By means of Eq. 3.6, Eq. B.i3 may be rewritten as follows

5 o
P]L] . P3L3 =~\3 P4L4 ©.14)
Al 2 Az A4
Substituting Egqs. B.8 and B.10 into Eqy. B.14, the following
equation is obtained,
38, + 48, A3
P3 = 7 P4 (8.15)

4
The equation for Poisson's ratio, v, is

i -€ l"P /A "‘P
X [ ]

v = = = (B.16)
€, P3/A3 P3

By substituting £gs. B.10 and B.15 into Eq. B.16, v may be

expressed in terms of AS and A4

2A
v = 4 (8.17)

3 \[3A3 +an,




=201~

For a velue of v equal to 0.15, Eqg. B.17 yields the result

A, = 0.555 A, {8.18)

If it is assumed that the spheres shown in Fig. 3.2 are of finite
diameter, the ratio L4/L‘ is then unknown. In deriving an expression for v,
Egs. 8.9, B.10 and B.13 are still valid, but the resulting equation relating

P, end P, becomes

3 4
- A, L
4
P, =L2\/3/—\—iz—:+ij Py (8.129)
¢ =1 d3
and the equetion for.v is
v = ! (8.20)
3A, L
1 T4
T, T
4 "l

Substituting the value v = 0.15 into Eq. B.20, the relation among

the lengths and areas of the struts is

A L
-AiT.f: 1.56 (8.21)
4 7]

B.2 Unconfined Compression

A description of the method used to compute the load-strain relations
for unconfined compression of the cubic model (Fig. 3.3) is given in Chepter 4.

The corresponding calculations are summarized in Table B.]
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The celculations shown in Table B.1 were carried out in the
following order:

t. Assume & value of €., the transverse strain {Column i}.

2. BDetermine the propertion of effective ares, AEfA, from

Eg. 3.26 {Coiumn 2).

)

Determine the value of PE/AE corresponding to €, by multiplying

. Using Eg. 4.3, determine the velue of PéfAE for the dizconat

[&8)

columns | and 2 {Column

strut in the vertical plene (Column 4).

(9]

Enter Fig. 2.8 with the quentity 94/AE expressed as & percentage

of the maximun load for the diegonal strut (94 = 84.2 AE x IO-S)
to obtain € (Cotumn 5}. For velues of €, greater than that et
witich the larcest value of P, /AE is reached,'determine/GQ by
dividing column 4 by column 6 {see step €).

6. Compute A, /A from Eg. 3.25 {Column 6). For values of €, greater
than that at which the largest value of P4/AE is reached, Aé/A
remains constant.

7. Evaluate €, from the compatibility condition expressed by Eg. 3.11
(Column 7).

8. Compute Aj/A from Eq. 3.25 (Cotumn 8).

S. Determine the value of P3/AE corresponding to €, by multiplying
colunns 7 and 8 (Column 9).

10. Calculate the axial load from the egquilibrium condition expressed

by Eq. 3.5 (Column 10).

11. Express the values of column 10 as a percentage of the maximum

value of PZ/AE (Column 11).
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8.3 Spireal Reinforcement

The method used to compute the locad-strain relations for axial
compression of the model confined by spiral transverse reinforcement is
described in Section 5.3. The calculations are sumnarized in Table B.2.

The cziculations shown in Teble B.2 were carried out in the
following order:

. Assume & value of € s the transverse strain (Column 1}.

2. Determine the proporticon cf effective area, A]/A, from Ea. 3.26

(Column 2).

w
.

Betermine the value of FI/AE corresponding to € by multiplying
columns | and 2 (Column 3}.
4. Using Eg. 5.5, and z vaiue of Hmax = 19 AE x 20-5, determine the

value of K for the assumed value of €, (Column 4).

w

Using Ea. 5.4, determine the value of 94/AE for the diagonal

strut in the vertical plane {Column S5}.

6. Enter Fig. 3.8 with the quantity P4/AE expressed &s a percentage
of the meximun load for the diagonal strut (P4 = 84.2 KRE x 10-5)
tc obtain €4 (Column 6). For vaiues of € greater than that at
which the largest value of P4/AE is reached, determine €4 by means
of the equation €y = 94/94’ X 54' where P4° is the largest value

of Py, and ¢ ' is the corresponding value of €4°

4
7. Evaluate €, from the competibility condition expressed by
Eq. 3.11 (Column 7).

8. Compute A,/A from Eq. 3.25 {Column 8).
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w

betermine the value of FSIAE cor?eSpondEng to €, by multipiving
columns 7 and 8 (Column ¢).
10, Ceiculeate the exial load from the equilibrium condition expressed

by £q. 3.5 (Column 10).

e
.

Express the velues of column 1Q as & percentage of the maximum
= & £ : ) -5

value of Fz/At for unconfined comgpression, FZ = 537 AE x 10
Column 11).

It cen be seen that the calculetions recuired to determine the

guantitites in columns 4, 5 and 6 are the only ones which differ from the

procedure followed in Table B.1.

8.4 Rectancular Transverse Reinforcement

(e} n=2
The procedure which was followed to determine the load-strainm

reletions for the 2 by 2 grid is described in Section 5.4b. This procedure
inveolved the relation between P4A and €, for the condition of spiral rein-
forcement, with P. = 0.2 fé. Accordingly, the calculations of the locad-strain
relations for this condition are given in Table B8.3. The quantities shown in
Tebie B.3 were derived by the same procedure that was followed to obtain Table
B.2. The only difference betwsen these two tables is that the value of H, shown

in colunn 4 of Table 8.3, was determined by substituting the value Hrax = 38 AE

3

x 10 into Eq. 5.5. The relation betwzen P4A and €, obtained from Table B.3,
is shown in Fig. B.1. The relation between P48 and €, for unconfined compression
of the model, obtained from Table B.1, is shown in Fig. B.2. The calculations of
the load-strain relations for the 2 by 2 grid are sumnarized in Table B.4. The

calculations shown in Table B.4 were carried out in the following order:
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1. Assume a value of €, the longitudinal strain (Column 1}.
2. Determine the proportion of effective area, AS/A’ from

Eq. 3.25 (Column 2).

(3]

Determine the value of P3/AE corresponding to €, by multiplying
columns 1 and 2 (Column 3).
4. Enter Fig. B.1 with the assumed value of €, to obtain the
quantity P,,/AE (Column 4).
5. Enter Fig. B.2 with the assumed value of ez to obtain the
quantity PQS/AE (Column 5).
6. Compute the axial loéd from the equilibrium condition expressed
by Eq. 5.6 {Column 6).
7. Express the values‘of column 6 as e percentege of the maximum
value of PZ/AE for unconfined compression, Pz = 537 AE x }O-S
(Column 7).
(b} n =3
A diagram of the 3 by 3 grid model is shown in Fig. 5.6. A single
gquadrant of the model is shown in Fig. B.3, including the assumed deflected
positions of points A, B, C, and D. The components of deflection, A‘, Az, A3,
and By have been indicated in their positive directions.
fn determining the equilibrium equations for the model, the portions
of the structure to the left of limes l-1, 2-2, 3-3, and 4-4 in Fig. B.3 were

considered as free body diagrams, and the equations were determined for

equilibrium of forces in the x-direction. The structure was assumed to be
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one cube in height (in the z-direction), so that struts 1€, 1D, 4C and 4D
are doubled because of the corresponding members of the adjoining cube.

For equilibrium of forces to the left of line 1-1
G

For equilibrium of forces to the left of line 2-2,

i ! 2 i
— H +P - F = P Pe, + 2P, +— P, =0 (B.23)
N ig JZ &8 J2 SB N Sh 3] J2 4D

For eguilibrium of forces to the left of line 3-3,

t 1 2 2 ]
— KR+ P, +—0P, . += P + 2P,  +=P  +— Poe = 0 {B.24)
JZ e 42 4E Jé ic ¢§ 4C JZ

The equation for ecuilibrium of forces to the left of line 4-4 was combined
with Eg. B.22, which is equivalent to considering equilibrium'of joint € in

the x-direction

1 . 2 A -
7 Psp + 2 Pio TJZ Pap +\/,2 PSB =0 (B.25)

For equilibrium of forces in the z-direction

2.25 p = gp 2 + & P, (8.262)

3t : Pan Psg 4C 4D
z J2 Jz Jé J2

PZ = 493 + 1.257 P4A + 0.628 P45 + 1.257 P4C + 2.514 Pap (B.26b)
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Four eguaticns of compatibility were derived which related the
streins of the struts parallel to the x-y plane. These equations were
determined by means of the assumed deflections By AZ, 3 and By, as

described below

B, =\/2L] (e , +0.5¢€) (B.27a)
s, =J2Ll (0.5 ¢ ) (8.27b)
by = G.SL“ €5 (8.27¢)
b, =Ly <€x0 + 0.5 exC) {6.27d)

The strains in struts 5A, 58, 5€, and 5D mey be expressed in terms

of Al’ A?' A3. and Aﬁ a2s follows:
€sp ='~’;L1 (al - 8,) (B.28a)
€5 = JZIL‘ (j; By :/I; 8,) {8.28b)
€5c =\/21L, (2 AZ) (8.28¢)
€sp =~/2lL] W2 234 -V2 a,) ~ (8.28d)

By combining equations B.27 and B8.28, strains €5p0 €5p> €50 and
€gp MaY be expressed in terms of €’ €xB’ ExC and €pn° The resulting

equations are
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eSA =€, + 0.5 (exﬁ - EXC) (8.
€gg = 0.25 € o +0.25 € .+ 0.5 € g (5.
€50 = €0 (8.
Ssp = Eup T 005 legp - ep) .

Four additional compatibility

similer to the derivation of Ea. 3.11.

€4y = 0.5 (exA
€45 = 6.5 (exs
€4 = 0.5 (exc
€4p = 0-5 (eXD

The force in any strut may be
P, = AieiE

Using Eq. B.31, together with

equi librium eguations (B.22, 8.3, B.24

€xa’ €x8° €xc

and €.p 25 independent unknowns.

equations ware determined In a manner

These equations are as follows:

;»ez) (8.
+ ez) (B.
+ ez) (8.
+ ez) (8.
expressed

(B.

campatibility Eqs. B.29 and B.30,

and B.25) were expressed in terms

30

O
o’

30b)

30c)

304)

31)

the

of

The resulting equations are
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W2 Ay ¥ 0.5 Ay A )E , + (0.5 Aga)e o - (0.5Ag,)e o +
+ (0.5 A4A)€z +H=0 (B.32a)
(Ag)e , + 2 Apg * 0.5 Ay + 0.5 A, + 0.5 Aggle o
(0.5 Agg-0.5Ag, )e + (N2 A+ gy ¥ Aggde o+
+ (0.5 Agg + AQD)ez +H=0 (8.32b)
(2 A +0.58,; +0.5A)e  + (A2 A +a, + 050+ e o+
T (Aggle o + (0.5 A + A, Je, T H =0 (8.32¢)
(0.25 Agg - 05 ASD)eXB + (0.25 Agg + 0.5 Aso)exc'+
+ (A A, T 05 A+ Agpleyp + (Rgple, = 0 (8.32d)
The value of H, determined from Eq. 5.5, is
H=22.66¢,+11.3¢, (8.33)
H =57 AE x 107>
max

Equations B.32 were then solved by the procedure described in

Section 5.4c. The resulting strains are given in Table B.5, and the corre-

sponding strut areas, determined from Eqs. 3.25 and 3.26, are given in

Table B.6.
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The value of Pz for each incremental vertical strain, ez, was
computed by means of Eqg. B.26. The results of these calculations are
summarized in Teble B.7. The quantities given in Table B.7 were derived
by the following procedure.

. Assume & value of axial strain, €_, of the same magnitude

<

es that used in solving Egs. B.32, and indicated in Tables
B.5 and 8.5 {Column 1).

2. From column 3 of Table B.4, obtain the value of Pz/AE
cofresponding to €, Multiply the value of P3/AE by 4
{(Column 2).

3. Determine the quentity P4A/AE by multiplying the eppropriate

values of €an and A4A/A given in Tables 8.5 and B.6 respectively.

Kultiply this velue of P, /AE by 1.257 (Column 3).
4. Repeat the procedure followed in step 3 to determine the
appropriate multiples of P4B’ P4C’ and P40 shown in Table B.7

(Columns 4, S5, and 6, respectively).

5. Determine the value of PZ corresponding to the assumed value of

€, from the equilibrium relation expressed by £q. B.26 (Column 7)

6. Express the values of column 7 as a percentage of the maximum
value of PZ/AE for unconfined compression, PZ = 537 AE x 10—5
(Column 8).

(c) n =24

Figure B.4 is & diagram of one quadrant of the 4 by 4 grid model.

The assumed deflection components of the horizontal deformations are By By



AB, A4, AS' and As.

in Section 8.4bf
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The method cf sclution was similar to that described

The relations among the forces in the struts were expressed by

means of six equilibrium equations.

These equations were derived by con-

sidering equilibrium of joints L, K, K, P, and Q in the x and y directions.

For ZF
X

For ZF
X

J2 P

For ZF
Y

For ZF
Y

For ZF
X

2v2p -2d2p_+2p
xC xE

For ZF
Y

J2 p

=0 st joint L
-
N2 PxA + Pen

=0 at joint M
" J2 Pat Pas
= 0 at joint M
2d2p +2p
x£€

= 0 at joint K

Jap +p

xDb

=0 st joint P

= 0 at joint Q

xD JZ PxF + P4D

+

4c

4D

4¢

p

P

+ P

p

54

4B

+H =0

=0

SD

z

Pag

For eguilibrium in the z-direction

P =4 P,

+1.414 (P, + P

+ 0.707 (P4A + P

48

ag)

+

<+

P

=}

Pge = 0

=0

sa ~ Pse
Py = 0

ap * Par

)y +

{8.

(8.

(8

(8.

(8.

(8.

(8

34)

35)

.36)

W
-~
N

38)

39)

.40)
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The compatibility equations relating the strains in struts parallel

to the x-y plane were derived in a manner similar to that described in

Section B.4b. The resulting eguations are as follows:

€sa T Sxa T Sxp T Sxe

655 = Sxc B xE ~ x5

e = 0.5 {exs te o te .
€5p = 0.5 (exo + € F)

€sg T Sxe

eSF = exF

(g.41za)

(8.41b)

(8.41¢c)

{6.41d)

(B.41e)

(B.41f)

fn addition, six compatibility eguations were derived by means of

Eg. 3.11

48

4¢

4D

SE

xF

w

(8.42a)

(B.42b)

(B.42¢)

{B.42d)

(8.42e)

(B.42f)
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The final equilibrium equations, expressed in terms of strut areas

and strain, are,

«2 Aia T 05 A, A )e (A )e o - (Ag)e o F

+ (0.5 Ay )e +H =0 (B.43a)
N2 a, +0.5 Aupdeq - N2 AL+ 058, %A +0.5A e  +

+ (Agg = 0.5 A de o+ (Agy - 0.5 A e o+ (0.5 A Je o +

+ (0.5 A, - 0.5A, ) =0 (B.43b)

N

(0.5 Age - Aggde o + (22 A+ A+ Ay + 0.5 A e,  +

+ (ASB + 0.5 Asc)exE - (0.5 Asc)eXF + (A4C)€z =0 (g.4ac)
«z Alp 0.5 A, +0.5A )e + (0.5A )e o+ (0.5~ )e =0 (B.43d)
(Agpde q * (Agple g * (242 Ale ¥ A T

- (242 Alg * Agp tAgy T AgE)e o (R - Agde, =0 (8.43¢)

. i : } +
(0.5 Acde g + (0.5 Agcde o+ W2 Ayp * 0-5 Agpde o

. - . . +
+ (0.5 A W2 A+ 058, +0.5A +A)e .

s¢)€xe F 5C

+ (0.5 A4D - 0.5A =0 (B.43f)

4F)€z
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The value of K is

Ho=22.6 ¢, +22.6¢ (8.44)

XA B

H = 76 AE x 10
meX

Eguations 5.43 ware solved by the trial and error procedure described
in Section 5.4c. The resulting strains are summarized in Table 8.8, and the
corresponding areas are given in Teble B.9. For the sake of simplicity, only
the results for struts | and 4 are given in Tables B.8 and B.2. The strains
in struts 5 mey be determined by Egs. B.41, and the corresponding areas may be
obtained from Eq. 3.26.

The load-strain relations, calculated from Eq. B.40, and using a
procedure similar to that followed in deriving the quantities in Table B.7,

are summarized in Table B.10.



TABLE 8.1

CALCULATION OF THEORETICAL LOAD-STRAIN RELATIONS FOR UNCOMF INED COMPRESSION

(M (2) (3) (4) (s) (6) (7) (8) (%) (10) (r)
o3 A Pl s P4A.‘ 5 3 13 y P15 z 5
exx Al AE.-xlO KEX 0 e4x10 A4/A €, X A3 A KExIO -/—\fé-x 10 ::2;(.::13;
(%) =(1)x(2) =-2.18(3) (%) =2(5)~(1) %) =(7)x(8) =4(9)+5.66(4) Load
0.001 100 0.10 - 0.22 -0.003 76.9 -0.007 100 - 0.7 - 4 0.7
0.04 86.4 3.46 - 7.54 -0.097 76.9 -0.234 98.8 - 23.1 ~135 25.2
0.08 67.0 5.36 -11.7 -0.152 76.9 -0.384 97.8 -~ 37.6 ~216 40.2
0.12 56. 1 6.73 -14.7 -0.191 76.9 -0.502 4 - A7.2 ~272 50.7
0.17 50.7 8.61 -18.75 -0.245 76.5 -0.660 86.5 - 57.1 -334 62.2
0.23 49,5 11.4 -24.9 ~0.328 75.9 -0.886 74 - 65.5 ~403 75.1
0.30 46.0 13.8 -30.1 ~0.402 74.8 ~1.104 63.4 ~ 70.0 ~450 83.8
0.40 39.4 15.75 -34.4 -0.470 73.2 -1.34 55.4 - 74.2 ~49] 91.5
0.57 28.9 16.5 ~36.0 -0.499 72.2 -1.568 51.2 - 00.3 ~525 97.8
0.90 16.2 14.6 -31.8 -0.441 72.2 ~1.782 50 - 89.1 ~537 100
1.50 6.5 9,75 ~21.2 -0.294 72.2 -2.088 48.6 -103 ~532 99,1
2.25 2.7 5.08 -13.2 -0.183 72.2 -2.62 41.6 -109 -511 95.2
.0 1.2 3.6 - 7.85 -0.109 72.2 -3.22 32.2 -103.8 -459 85.5
.5 0.4 1.8 - 3.93 -0.055 72.2 -4.6) 15.8 - 72.8 ~313 58.3
0 0.15 0.9 - 1.9 -0.027 72.2 ~6.05 7.5 - A5.4 -193 36.0
0 0.06 0.48 - 1.05 -0.015 72.2 -8.03 2.8 - 22.5 - 96 17.9

O H W

-SiZ-



CALCULATION OF THEORETICAL LOAD-STRAIN RELATIONS FOR MODEL CONFINED BY SPIRAL REINFORCEMENT (PC = 0.1 f')

TABLE B.2

C

©

(1) (2) 3) (4) (5) (1) (8) (9) (10) ()
P P P - P " Percent
exx|03 A/A K%-xlos %E-xlos K%'xlos c4x|03 ele03 A/A E%><to° R%"'OS Unconf i ned
Compression
%) =()x) =11.4(1) =-[(4)+2.18(3)] =2 (6)~(1) %)  =(7)x(8) =4(9)+5.66(5) Maximum Load
0.001 100 0.10 0.01 -~ 0.23 -0.003 -0.007 100 - 0.7 - 4 0.75
0.04 86.4 3.46 0.45 8.0 -0.104  -0.24 99.8 - 24 ~141 26.3
0.08 67.0 5.36 0.9 12.6 -0.166  -0.41 Q7.1 - 39.8 ~230 42.8
0.12 56. 1 6.73 1.4 16.1 -0.212  ~0.54 92.4 - 50 ~291 54.2
0.17 50.7 8.61 1.9 20.7 -0.27 ~0.71 83.8 - 59.5 -355 66.1 N
0.30 46,0 13.8 3.4 33.4 ~0.,46 -1.22 59.0 -~ 72 ~477 88.8 pos
0.40 39.4 15.75 4.6 38.9 -0.56 ~1.52 51.8 -~ 78.8 ~535 99.6 !
0.57 28.9 16.45 6.5 42.3 -0.62 ~1.81 50 - 90.5 ~601 12
0.90 16.2 14.6 10.2 42.0 -0.62 -2.14 48,1  ~103 -650 121
1.50 6.5 '9.75 17.1 38.2 -0.56 -2.62 41.6  ~109 ~652 121.4
2.25 2.7 6.07 19.0 32.2 -0.47 -3.19 32.7 -104.2 -599 111.5
3.0 1.2 3.6 19.0 26.8 ~0.39 -3.78 2.1 - 9] -516 96
4.5 0.4 1.8 19.0 22.9 ~0,34 -5.18 11.6 - 60 ~370 69
6.0 . 0.15 0.9 19.0 21.0 -0.31 -6.62 5.5 - 36.4 -264 49
8.0 0.06 0.48 19.0 20.0 -0.29 2.1~ 18.0 ~185 34.5

-8.58




TABLE B.3

CALCULATION OF THEORETICAL LOAD~STRAIN RELATIONS FOR MODEL CONFINED BY SPIRAL REINFORCEMENT (PC = 0.2 fé)

(1) (2) (3) (4) (s) (6) (7) (8) (9) (10) (1)
P P P o P Percent
exxl03 A /A K%"‘OS %E"'OS K%;<|05 64/103 ezx103 A/A i 10° 'K%"‘OS CUnconf!ned
ompress ion
%) =(1)x(2) =22.8(1) =1[(4)+2.18(3)] =2(6)~(1) (%) =(7)x(8) =4(9)+5.66(5) Maximum Load
0.001 100 0.10 0.02 - 0.24 0.003 0.007 100 0.7 4 0.7
0.04 86.4 3.46 0.91 8.46 0.11 0.26 99.6 25.9 152 28.3
0.08 67.0 5,36 1.8 13.5 0.18 0.44 96.2 42.3 245 45.7
0.12 56, 1 6.73 2.7 17.4 0.23 0.58 90.6 52.5 308 57.4
0.17 50.7 8.61 3.9 22.7 0.30 0.77 80.5 62.0 377 70.2
0.30 46.0 13.8 6.8 36.8 0.51 1.32 55,9 73.8 503 93.7
0.40 39.4 15.75 9.1 43.5 0.65 1.70 50.2 85.3 587 109.3
0.57 28.9 16.45 13.0 48.9 0.82 2.21 47.3  104.8 694 129
0.90 16.2 14.6 20.5 52.3 0.97 2.84 38.3 109 732 136
1.50 6.5 9.75 34.2 55.4 1.20 3.90 23.1 90 673 125
2.25 2.7 6.07 k:] 51.2 1.1 4,47 17.0 76 593 110
3.0 1.2 3.6 38 45.9 1.00 5.00 12.9 64.5 518 96.5
4.5 0.4 1.8 38 41.9 0.91 6.32 6.3 39.8 396 73.8
6.0 0.15 0.9 38 39.9 0.87 7.74 3.3 25.6 330 61.5
8.0 0.06 0.48 38 39.0 0.85 9.70 1.3 5

12.6 271 50.
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CALCULATION OF THEORETICAL LCAD-STRAIN RELATIONS FOR MODEL
CONFINED BY RECTANGULAR TRANSVERSE REINFORCEMENT,

-218~

TABLE B.4

Z BY Z GRID
() (2) (3) (4) (s) (6) (7)
A P _ P, , Percent
e xi¢ Zi (%} E%—xlob Z%5><105 Zgg-xlOs ZE-XIO CUnconfE?ed
ompression
=(1)x(2) =4(3)+2.83[{(4)+(5)] Meximum Load
-0.5 4,1 - 47.0 -i{5.6 -15.3 =275 51.3
-1.0 68.2 - 68.2 -28.8 -28.2 =434 80.8
-1.5 52.1 - 78.1 -40.6 ~35.5 -528 88.5
~2.0 48.3 - 88.6 -47.3 -23.5 -5%4 110.5
=2.5 43 .4 -108.5 -51.0 -14.5 619 115.0
=32.0 38.6 -106.8 -53.3 - 8.3 -603 $112.3
-3.52 28.2 - ©8.7 -55.0 ~ 6,2 -568 105.8
-4,0 21.7 - 86.8 -55.2 - 5.0 -517 6.3
-5.0 12.9 - 64.5 -45.9 - 3.4 =388 74.2
6,0 7.7 - 46,2 -42.7 - 2.0 -3i2 58.2
-8.0 2.8 - 22.4 -39.5 - 1.2 -205 38.2




TABLE B.5

STRAIN RELATIONS FOR MODEL CONFINED BY RECTAMGULAR REINFORCEMENT

3 BY 3 GRID
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (rn) (12) (13) (14)
€ %E x10°  €xa €an €5 €8 €4p €sp €xC €ac €5¢ €D €40 €5p
x10° x10° x10°  x10°  xi10° x10°  x10°  x10° x10°  x10°  x10° x10°  xi0°
-0.5 3.25  0.094 -0.203 0.087 0.100 -~0.200 0.113 0.114 -0.193 0.114 0.119 -0.191  0.126
-1.0 7.28  0.212  -0.394 0.196 0.220 ~0.340 0.25] 0.253 ~0.373 0.253 0.266 ~0.367  0.282
-1.5  11.04  0.320 ~0.590 0.256 0.338 -0.581 0.452 0.465 ~0.518 0.465 0.502 -0.499  0.592
-2.0  17.53  0.579 -0.711 0.139 0.393 -0.804 1.092 1.272 -0.364 1.272 1.353 -0.324 1.798
-2.5  25.03  0.914 -0.793 0.076 0.387 ~1.057 1.664 2.062 ~0.219 2.062 2.105 -0.197 2.943
3.0 31.24  1.132  -0.934 0.031 0.501 ~1.249 2.170 2.702 ~0.149 2.702 2.740 -0.130  3.84)

-&1¢-



TABLE B.8

STRAIN RELATIONS FOR MODEL CONFINED BY RECTAMGULAR REINFORCEMENT

4 BY 4 GRID
(1) (2) (3) (4) (5) (6) (7) (8) (9) (to) (1) (12)  (13) (14)
2 Hx10° Sxa faa ke %8 S¢ Y0 S0 S0 Sxe faE S CaF
x103 x103 xIO3 xl03 xlO3 x103 x]03 xIO3 x103 xIO3 xlO3 xlO3
-1.0 9,36 0.200 -0.400 0.214 -0.393 0.264 -0.368 0.264 -~0.368 0.248 -0.376 0.258 -0.371
-1.5 14.13 0.315 =0.593 0.310 -0.595 0.517 -0.491 0.504 -0.498 0.447 -~0,526 0.485 -0.508
-2.0 23.55 0.666 -0.667 0.376 -0.812 1.345 +0.328 1.335 -0.333 1.101 ~0.450 1.438 -0.28]
-2.5 35.93 1.245 =0.627 0.345 -1.077 2.063 -0.219 2.115 ~0.192 1.744 -0.378 2.313 -0.094
TABLE 0.9
AREA RELATIONS FOR MODEL CONFINED BY RECTANMGULAR REINFORCEMENT
4 BY 4 GRID
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (12) (13)
€, AIA/A A4A/A AlB/A A4B/A AIC'IA A4C/A AlD/A A4()/A AIE/A A4E/A A]F/A AAF/A
3 0, (+) Q, (+) 0, 0, 0, o, 0, 0,
x10 (%) (%) ) (%) (%) (%) (%) (%) (%) %) (%) (%)
-1, 50.0 74.9 49.8 74.8 48.0 75.4 48,0 75.4 48.7 75.3 48.2 75.4
-1.5 45.0 69.2 45.5 69.1 31.9 72.6 32.5 72.4 36.2 71.5 33.8 72.1
2. 24.0 66.3 41.0 60.0 8.1 72.6 8.25 72.4 11.4 71.5 7.13 72.1
-2.5 9.5 67.9 41.0 49.7 3 72.6 3.10 72.4 4.72 71.5 2.45 72.1
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TABLE B.7

LOAD~STRAIN RELATIONS FOR MODEL CONFINED BY RECTANGULAR REINFORCEMENT

3 BY 3 GRID
(1) (2) @) (4) (5) (6) ™ (9)
4P3 5 P7 5 Percent
[ i -
€, AE x 10 1.257 x 0.628 x 1.257 x 2.514 x AE)(IO Unconf i ned
P P P - P Compression
x 10 A g0 4B g0 _AC I 5 =(2)+(3)+(4) i
AE x 10 AE %10 AE x 10 AE x 10 +(5)+(6) Maximum Load
-0.5 ~-188 ~-19,6 - 9,7 ~18.6 -23.1 ~-259 48.3 .
-1.0 -272.4 -37.2 -16.0 ~35.3 -69.6 431 80.3
-1.5 -312.8 -51.4 ~25.4 «46.,9 -91.0 ~528 98.5
~2.0 -394.4 «57.6 -30.5 -32.9 -59.0 =574 107.0
-2.5 =434 ' ~-60.7 -33.5 ~19.9 ~36.0 -584 108.8
-3.0 -427.2 ~64.6 -35.0 -13.4 -23.06 -563 105.0
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TABLE 8.6

AREA RELATIONS FOR MODEL CONMFINED BY RECTANGULAR REINFORCEMENT
3 BY 3 GRID

M @ 6B @ ) e () ®  (® (o) (1) (2 (13)

€, AlA/A A4A/A ASA/A AIB/A A4B/A ASB/A AN AL A AL/A AID/A A, /A ASD/A

I1C 4C 5C 40
3 O, o, () 0, 0, o, s

oL T ¢ I 3 B3 B B (N (S B 3 B 3 B N (OB (5

-0.5 62.0 76.9 49.6 60.5 76.9 44.2 57.2 76.9 44,0 56.5 76.9  42.3

-1.0 49.8 75.0 38.5 49.7 75.0 37.3 48.5 75.4  37.1 47.9 75.5  36.2 ,
-1.5 45.0 69.4 37.0 43.5 69.7 27.5 35.0 72.0  27.0 33.0 72.5  23.1 NS
-2.0 28.2 64.4 37.0 39.8 60.4 8.15 9.1 72.0 7.0 8.05 72.5 3.42 o
-2.5 15.6 60.9 37.0 39,8 50.4 3.73 3.6 72.0 = 2.53 3.13 72.5 1.03

-3.0 11.0 55.0 37.0 32.5 44.6 2.23 1.68 72.0 1.29 1.60 72.5 0.46




TABLE B8.10

LOAD-STRAIN RELATIONS FOR MODEL CONFINED BY RECTANGULAR REINFORCEMENT

4 BY 4 GRID

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

P 5 Percent

¢ 4p 0.707 x  0.707 x  1.414 x  0.707 x  1.414 x  0.707 x —Zx 10 ereen

z —Z %10 AE Unconf ined
SEE—. Pan o5 T4 g5 TAC, 05 TAD o5 TAE o5 TAE 08 =(2)r()+(a)e(s)  LoResEOn

‘ AE AE AE AE AE AE +(6)+(7)+(8) ax a
1.0 -272.4 -21.2 -20.8 -39.3 -19.7  -40.0 -19.8 -433.2 80.6
1.5 -312.8 29.0 -29.1 -50.5 -25.5 ~53.2 -25.9 ~526.0 97.8
2.0 -394.4 31.2 -34.4 -33.7 -17.0 -45,5 -14.4 -570.6 106. 1
2.5  -434.0 -30.1 107.5

-37.8 -22.5 -19.8 -38.2 - 4.8 -577.2
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A, B, £, D : Original Positions

AT,B?,C%,D' v Assumed Dafilected Positions

FIG. B.3 QUADRANT OF 3 BY 3 GRiD MODEL
SHOWING ASSUMED DEFLECTIONS
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_FIG. B.4 QUADRAKNT OF 4 BY 4 GR!D HMODEL
SHOWENG ASSUMED DEFLECTIONS
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