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10 INTRODUCTION 

101 Object and Scope 

The object of the work reported is to study the behavior and 

strength of a flat slab reinforced with welded wire fabric which is a high­

strength reinforcemento 

Tests were carried out on a nine-panel flat slab designed in 

accordance with Section 1004 of ACI 318-560 The test structure is described 

in Chapter 2, its construction in Chapter 3, and its instrumentation in Chapters 

4 and 50 The test structure was part of an extensive investigation of multiple 

panel reinforced concrete floor slabs. Descriptions of the various components 

of the test apparatus were given in previous reports (Refs. 2,3, 4, 5 and 6). 

The details will not be repeated here. 

The program of testing was established to determine the performance 

of the structure at design load, overload and failureo The test procedure 

and chronology are discussed in Chapter 60 Chapter 7 presents the behavior of 

the structure and the distribution of measured moments is discussed in 

Chapter 8 along with comparisons of the measured moments with static and 

theoretical moments 0 An analysis of the strength of the structure is presented 

in Chapter 90 

102 Acknowledgments 

The studies included in this report were made as part of an investi­

gation conducted in the Structural Research Laboratory of the Civil Engineering 

Department at the University of Illinois in cooperation with the following 

organizations: 



Reinforced Concrete Research Council 
Directorate of Civil Engineering, Headquarters, U. So Air Force 
General Services Administration, Public Buildings Service 
Office of the Chief of Engineers J U 0 S. Army 
Bureau of Yards and Docks} Engineering Division) U. S. Navy 

The program of investigation has been guided by an Advisory Committee 

on which the following persons have served~ 

Douglas MCHenry y Chairman of the Advisory Committee) Portland 
Cement Association 

L. Ho Corning, Portland Cement Association 
G. B 0 Begg, Jr 0, Public Buildings Service., General Services 

Administration 
Wo Jo Bobisch, BuDocks, Department of the Navy 
Frank Brown, Wire Reinforcement Institute, Inc 0 

J. Di Stasio, Sro, Consulting Engineer, Di Stasio and Van Buren 
A. So Neiman, Headquarters, Uo S. Air Force 
No Mo Newmark, University of Illinois 
D. Ho Pletta, Virginia Polytechnic Institute 
J. Ro Powers, Headquarters) Uo So Air Force 
Paul Rogers, Consulting Engineer, Paul Rogers ana ASsoc~a~es 
E. Jo Ruble, Association of American Railroads 
Wo Eo Schoem, Office of the Chief of Engineers, Uo So Army 
Mo Po Van Buren, Consulting Engineer j Stasio and Van Buren 
Co Ae Willson, American Iron and Steel Institute 

The project has been under the direction of Dr. C. Po Siess, 

Professor of Civil Engineeringj and the immediate supervision of Dr. Mo A. 

Sozen, Associate Professor of Civil Engineeringo 

Invaluable assi,stance in the instrumentation of the test structures 

and in the development and operation of the data recording equipment was given 

by Professor VO J. McDonald and his staffo 

The following research personnel assisted in the construction and 

testing of the test structure and in presentation of the data: E. J. Strougal, 

H. L. Smith, AD L. Heard, and L. Do Stroup 0 



-3-

2. DESCRIPTION OF TEST STRUCTURE 

201 Description of Prototype Structure 

The test structure was a quarter-scale model of a typical flat 

slab structure. The prototype was a nine-panel structure with three bays in 

each direction 0 Each panel was 20 feet on column centerlines. An over-all 

layout of the prototype is shown in Fig. 201. 

The prototype slab was designed by the engineering firm of DiStasio 

and Van Buren according to the provisions of the empirical method in Section 

1004 of the 1956 ACI Building Code. The slab was designed for a live load of 

200 psf; and a dead load of 84 psf) giving a total design load of 284 psf. 

The stress for the concrete was 1350 psi (f~ = 3000 psi). The design 

stress for the steel was 20)000 psi. 

The discontinuous edges of the structure were supported on spandrel 

beams. Two adj acent edges were supported on deep; narrow beams which were 

relatively stiff in flexureo The other two edges were supported on wide; 

shallow beams. The structure was symmetrical about one diagonal. 

The slab was reinforced with 1!2-in. square bars 0 The placement of 

the bars in the prototype is shown in Figs. 2.2 and 2.3. 

2.2 Description of the Test Structure 

The over-all layout of the test structure is shown in Fig. 204. The 

structure was a nine=panel slab J with the panels spanning 5 I _0" center to 

center of columns. 

All dimensions were scaled down directly from the plans for the 

prototJ~e structure by a factor of one quarter. The slab was 1 3/4 in. thick. 

The over-all thickness of the drop panels was 2 1/2 in. The interior drop 

panels were 1 ft 8 in. square. The interior column capitals were 1 ft square. 
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The shallow beams were 4 1/2 in. wide and 2 1/2 ino deep. The deep 

beams were 2 in. wide and 6 in. deep 0 All beams were reinforced with #2 deformed 

bars 0 The beam stirrups were made of 1/8 ino square bars and were closedo The 

beam reinforcement and stirrups are shown in Figo 2.5. 

The corner columns were 3 1/2 ino square) the side columns were 

3 1/2 in. by 5 in. and the interior columns were 3 3/4 in. square. The length 

of the columns was 21 3/8 in. The columns were reinforced to provide a 

stiffness equal to that of the prototype structure columns which extend above 

the floor. The column reinforcement is shown in Fig. 2.6. 

The slab was reinforced with welded wire fabric. The wire mats were 

fabricated of various gages of wire to provide the required steel area at each 

design section. The location of the mats and the wire sizes are shown in Fig. 

2.7a) b) c. 

203 Relationship of the Test Structure to the Prototype 

First) it must be emphasized that the prototype was designed using 

1/2 in. square bars as reinforcement 0 In the previous flat slab structure built 

from this prototJ~e design) a direct bar for bar substitution was made using 

1/8 in. square bars. However) for this test structure) such a direct substi­

tution was not practical. 

The method for establishing the wire size and spacing was to determine 

the area of steel provided per foot at each design section in the prototypeo 

The wire size and spacing needed to provide the same area of steel was then 

determined. 

Since the test structure was a quarter-scale model, the diameters of 

the individual wires were scaled down by a factor of one quarter. The spacing 

of the wires was also scaled down. This resulted in an equivalent wire for 
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wire substitution of the reinforcement for a prototype structure reinforced 

with welded wire fabric. This design was done by Mr. Frank B. Brown of the 

Wire Reinforcement Institute. 

Since it was not possible to select wire sizes that would provide 

the exact areas of steel at the design sections in the original prototype) 

the closest size was chosen. A comparison of the area of steel provided by 

the welded wire fabric at each section in the model with the area of steel in 

a similar structure reinforced with 1/8 in. square bars is shown in Figs. 2.8 

and 2090 

The concrete used in the slab was composed of a small-size aggregate. 

The stress-strain curve in compression for the concrete was similar to that 

for concrete used in full-sized reinforced concrete structures. 
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3. MATERIALS AND CONSTRUCTION OF TEE TEST STRUCTURE 

3.1 Reinforcing Steel 

(a) Slab Reinforcement 

The slab reinforcement consisted of specially manufactured small-scale 

welded wire fabric. The wire sizes _ranged from 905 (diameter 0.142 in.) to 16 

(diameter 000625 in.) gage 0 The wires were formed into mats by welding at each 

intersection 0 The mats were crated in flat layers rather than rolled. The 

fabric was m~~ufactured by the Joliet plant of the American Steel and Wire 

Division of the United States Steel Corperation. 

Measured stress~strain curves for each of the sizes of wires used 

in the test structure are shown in Figo 3.1 through 307. Each curve represents 

the average of three samples cut from the pertinent mats 0 The strain at 

fracture measured over 4 ino including the zone of fracture ranged from 1.5 for 

the :2.,5 gage wire to 2.5 for the 905 gage wire 0 The apparent initial modulus of 

elastici ty was very close to 30 x 10
6 psi.o Welding did not seem to have affected 

the stiffness appreciably, The ultimate stress ranged from 70,,000 to 81,000 psi. 

To improve the bond properties of the steel, the wire mats were placed 

in a moist room for several days and allowed to rust. The mats were then wire 

brushed to remove the loose rust, 

(b) Beam Reinforcement 

All of the beams were reinforced with Noo 2 deformed bars. This 

steel had an average yi.eld stress of 54,000 psi. A typical stress-strain curve 

for the bars is shown in Fig. 3.80 

(c) Column Reinforcement 

The columns were reinforced with Noo 3 deformed bars. The yield 

stress of these bars was 55,000 psi. 
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(d) Stirrup Steel 

The stirrups were fabricated of liS-in. s~uare plain bars. The 

average yield stress of the steel was 47,000 psio 

3.2 Concrete 

The close spacing of the slab reinforcement necessitated the use of 

a mix containing only small aggregate, Since the requirements for this 

structure were the same as the previous four structures; no trial batching 

was necessary. 

The concrete was mixed in 600-1bo batches in a non-tilting drum 

rotary mixer of 6 cu-ft 0 capacity 0 The aggregate was 80 percent Wabash River 

gravel and 20 percent fine lake sand by weighto The aggregate to cement ratio 

was 409. Type 1 cement was usedo 

Two sizes of test cylinders were casto Fifty-four 2 by 4-ino 

cylinders and thirty-six 4 by 8-in. cylinders were casto In addition; 24 bearus 

1 3/5 ino deep} 2 in. wide and 17 in. long were cast to provide data on the 

modulus of rupture. 

Table 3.1 contains a tabulation of the data on the water:cement ratios} 

compressive strength and modulus of rupture of the test specimens at the 

beginning (56 days) and end (100 days) of tests on the structure 0 

old. 

psio 

Thirty-three 2 by 4-in. cylinders were tested when they were 56 days 

The average strength was 2760 psi with values ranging from 3290 to 4850 

6 
The initial modulus of elasticity was 300 x 10 psio Eighteen 4 by 8-in. 

cylinders tested at this time had an average strength of 3900 psi with a range 

of 3440 to 4350 psio The modulus of elasticity of these specimens was 300 x 

10
6 

psio The average modulus of rupture at 56 days was 750 pSi. Individual 

values ranged from 710 to 800 psio 
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At the conclusion of testing} 100 days after casting, the remainder 

of the specimens were testedo Twenty-two 2 by 4-in 0 cylinders averaged 3670 

psi with a spread of values from 3020 to 4780 psio Eighteen 4 by 8-ino 

cylinders averaged 3880 psi and ranged from 3330 to 4640 psio The modulus of 

rupture at 100 days was 804 psi with individual values from 693 to 882 psi. 

303 Formwork 

MOst of the formwork was composed of 3/4 in. plywood sheets supported 

on 2 by 6 in. joists spaced at 15 in. The 2 by 6 in. joists were in turn 

supported by 4 by 8 in 0 beams at 20 in 0 centers 0 The column forms and drop 

panel forms were also made of 3/4 ino plywood 0 The exterior faces of the beams 

were formed by steel channelso 

The columns and beam forms were aligned and the plywood slab forms 

were checked in order to maintain a uniform slab thickness. 

The forms were coated with "Slippi til before the reinforcement was 

placedo 

304 Placement of Reinforcement 

The column and beam reinforcement was assembled in cages to facilitate 

placement 0 Noo7 gage wires were welded to the ends of the column steel in the 

exterior columns to provide additional anchorage. The length of these wires 

was about 8 ino Following placement of all of the steel, the No.7 wires on 

the exterior columns were bent over and checked to insure proper cover. The 

o wires were bent in the form of a 90 hook. The purpose of the wires was to 

provide a means of transferring stress to the columns. 

The beams framing into the corners were assembled together with the 

corner column and placed as a unite The remainder of the exterior columns had 

been placed prior to the positioning of the corner beam and column assembly. 
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The middle beam cage was tre n placed. This cage had been fabricated without the 

negative steel. Finally) the negative steel in the middle span was tied into 

place. 

The slab reinforcement was already formed into mats. The mats were 

located in their proper position and all transverse wires lying outside the 

design section were cut so that they would still serve as anchorage but not as 

reinforcement. Strain gages were placed on the wires and waterproofed before 

the mats were tied into place. 

The mats were supported by 1/4-in. square bars at 8 to 12-in. 

intervals. Slots were cut in these bars at various depths so that all the 

steel would have proper cover. The opening of the slots was slightly smaller 

than the diameter of the wires to enable the support to be clamped to the wire. 

All mats were tied to the plywood forms. 

305 Casting and Curing 

The structure was cast on 14 March 1961. The first batch was 

mixed at 8:15 a.m. and the last batch was placed at 11:30 a.m. 

The concrete was placed using buckets) pushed into place by hand 

and consolidated with an electric internal vibrator. Three temporary screed 

supports were used) and they divided the slab into four parallel strips. The 

location of each of the batches of concrete is shown in Fig. 3.9. 

The concrete in the columns and beams was consolidated with the 

internal vibrator. The vibrator was placed along the exterior surface of the 

forms to insure a well consolidated member. The concrete in the slab was 

consolidated with a vibrating screed made by attachi~ an electric vibrator to 

a 4-in. channel. This vibrator was supported by the channels forming the edge 

beams and by the temporary screed supports. The surface was given a second 

screeding with a wooden screed. The temporary screeds were then removed and 
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the trough left after their removal was filled with concrete and troweled 

smooth 0 Finally the entire surface was troweled with a steel trowel. 

Eight hours after completion of the casting) the structure was 

covered with wet burlap. The burlap was removed after seven days and the 

forms were struck. The entire surface of the structure was painted with 

I1Traffic White lT to reduce moisture losso The test specimens were cured and 

painted in the same way as the structure and were then stored under the 

structure. 

3.6 Condition of the Structure At The Start of Testing 

At the start of testing) the thickness of the slab was measured 

using a level at 141 points located at critical sections. The maximum positive 

deviation was 1/8 ino and the maximum negative deviation was 1/16 in. Figure 

3-10 shows a contour plot of the thickness deviation from the desired 1 3/4 in. 

The contour interval is 1/32 in. 

Exami~ation of the structure for shrinkage cracks indicated that none 

had formed 0 The corner columns had lifted off the reaction dynamometers because 

of shrinkage and it was necessary to shim the dynamometers up until contact 

was restored. 
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4 c LOADING SYSTEM 

4.1 Loading Frame and Reaction Piers 

An elevation of the reaction and loading frames is shown in Fig. 4.1. 

The 16 reaction piers were concrete blocks 18 in. s~uare and 5 ft. high. These 

piers were tied together at the top by steel beams cast in the concrete to 

resist overturning forces. 

The loading frame was made of three steel bents which crossed the 

slab in the north-south direction. The vertical members of the frames were 

lO-in. WF columns) and the cross beams were pairs of l8-ino channels, to which 

the nine loading jacks were bolted. The vertical members were bolted to floor 

beams on each side of the test setup and the floor beams were bolted to the 

laboratory floor. 

4.2 Load Distributing System 

The load on each panel was applied by one jack and distributed 

equally to 16 loading points by means of a pyramidal system of bars. A 

loading plate) 8 by 8 by 3/4 in.) was used at each loading point. Reasonably 

uniform pressure under these plates was effected by 3/8-in. sheets of gray 

sponge rubber between the plates and the slab. An elevation of this system 

is shown in Fig. 4020 

The nine 20-ton capacity hydraulic jacks were connected to an 

electric pump. A control manifold was used so that any combination of panels 

could be loaded. 
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50 INSTRUMENTATION 

501 Strain Measurements 

(a) Steel Strains 

In the previous four test structures, the strain gages on the 

reinforcement were mounted after casting of the slab. The reinforcement was 

made accessible at the required locations by using cork blockouts which were 

subsequently removed. In this test structure, the same method could not be 

used because the diameter of most of the wires was very small making it 

difficult to attach the gages once the wires were embedded in concrete unless 

very large blockouts were usedo Consequently, the strain gages were mounted 

prior to casting. 

The most critical problem was that of waterproofing of the gages. 

The waterproofing had to meet several requirements in addition to sealing the 

strain gage from moisture. It was necessary that the material used could 

provide an adequate seal without exceeding the cover thickness of the concrete. 

Also it was essential that the waterproofing be tough enough to withstand 

handling during placement and casting of the concrete. 

As a trial, several gages were mounted on wires and covered with a 

* layer of Epoxoid. These wires were then loaded and the strains indicated 

by the gages embedded in epoxoid were compared with strains measured 

mechanically. There was no adverse affect of the epoxoid layer on the 

reliability of the strain gages. 

The waterproofed gages were next placed in water for two days and 

then checked for electrical short circuits. Several of the gages were in-

operative following this test. The epoxoid was found to have hairline cracks. 

*An adhesive produced by the International Prestressing Corporation, Los 
-Angeles, California. 



The cracking was apparently due to the relative flexibilities of the wire and 

the epoxoido The wires were very flexible and the epoxoid was cracked in 

handling. Even though the epoxoid lacked the needed flexibility) it did 

provide the necessary resistance to abrasion that was needed) so the final 

step in the waterproofing was to find a material that would seal the hairline 

cracks 0 

The most easily applied material appeared to be wax 0 The gages were 

heated and molten wax was applied on the epoxoido The wax used was Sinclair 

300) an industrial wax product used in waterproofing milk cartons. These wax­

coated gages were found to be ade~uate in providing a moisture seal and this 

method was subse~uently used for all, the steel gages in addition to the epoxoido 

The welded wire mats were marked at the locations of strain gages 

and the wires were cleaned at these pointso A total of 323 strain gages were 

mountedo The location and notation of these gages as shown in Figs. 501, 502) 

and 5~3> All gages were Type A-7 SR4 electric strain gages 0 

Fol2.owing mounting of the gages; the mats were placed in the forms. 

As each mat was placed, the strain gage leads were led through holes drilled 

in the forms, The holes were located so that several leads could be led 

thrOUgL the sruwe hole 0 The holes were large enough to allow the forms to be 

pulled over the wires when the forms were strucko In order to prevent concrete 

from entering the holes, each hole was sealed with a small. piece of ordinary 

modeling clay which remained soft and allowed the wire to pull through 0 

After the structure was cast and the forms stripped) 320 of the 

323 gages applied on the reinforcement were found to be operative. 

(b) Concrete Strains 

Following curing of the concrete.~ a total of 30 strain gages were 

mounted on . the concrete 0 Ten gages were placed on the top of the slab at the 
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edge. The location of these gages is shown in Fig. 5.4. Twenty gages were 

placed on the bottom surface on the drop panel at column 7. The location of 

these gages is shown in Fig. 5.5. 

5.2 Reaction and Load Measurements 

The column reactions were measured in three orthogonal directions 

by specially built tripod dynamometers which can be seen in Figs. 5.6 and 5.7. 

The deSign) manufacture) and method of operation of these dynamometers have 

been described in Refs. 2) 3 and 5. A needle deflection of one dial division 

on the strain indicator corresponded to a vertical reaction of 60 lbc or about 

2.5 psf on the structure. 

The applie d load was measured by means of two sets of dynamometers. 

Load was measured by recording the strains in the 5-in. WF main beam of the 

load distributing system in each panel. This procedure resulted in a 

sensitivity of about 90 lb. per dial division on the strain indicator 

(.approximately 3.5 psf) . 

A specially built horizontal ring dynamometer was placed between the 

jack and the main loading beam in each panel. Tpe sensitivity of this 

dynamometer was 25 lb. per dial division on the strain indicator (l psf). These 

dynamometers were removed in the test to failure since the rated capacity of 

each dynamometer was 13)000 lb. 

Detailed description of these dynamometers have been given in 

Refs. 5 and 8. 

5.3 Deflection Measurements 

The vertical deflections of the structure were measured at 33 

locations with O.OOl-in. dial gages in all of the tests. Fig. 5.8 shows the 

locations and deSignations of the dial gages. The gages were located at the 

midpoint of each panel and at the midpoints of all beams and column centerlines. 
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The dial gages at the midpoint of the panels were supported on adjustable 

stands resting on the floor 0 The stands for the gages located at the mid­

points of beams and column lines were supported on the steel beams of the 

reaction frameo 

504 Torsional Rotation of the Beams 

The torsional rotation of two corner panel beams} one shallow and 

one deep, were measured during the test to failure 0 Eight OoOOl-ino dials were 

placed on the side of each beam, two dials measuring the rotation at the 

center, two at the one ~uarter=pointJ and two at each endo 

5,5 Reading and Recording 

All strain gages were wired to a large switchboard in which one 

switch point was provided for each load dynamometer, strain gage, reaction 

dynamometer leg and check gageo The check gages were used to provide 

information on the magnitude and direction of electrical drift during testing. 

The switch bank was connected to a portable strain indicator, which 

was balanced semiautomatically by an external servomechanism mecha...11.ically 

coupled to the indicator 0 The servomechanism was a Leeds and Northrup Type G. 

Speedomax) which was wired to sense the deflection of the strain indicator 

dial. and then drive the slide wire of the strain indicator until the dial 

deflection was reduced to zero 0 

From the strain indicator., the strain data was fed directly into an 

analog-to-decimal converter unit (Benson - Lehner Decimal Converter) 0 The 

strain data were taken directly from the decimal converter into an IBM card 

punch and into an automatic typewriter 0 The strains were thus punched into 

IBM cards and tabulated as well. The strain data, including computation of 

reactions, were reduced using IBM equipmento 
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The load dynamometers were read and recorded manually both before 

and after each load incremento There were 18 load dynamometers and 413 other 

strain gages which were automatically balanced and recorded, so a total of 

449 strain readings were taken for each load incremento The deflection dial 

gages were read and the data recorded and reduced manuallyo 

In addition, observations of the behavior of the structure and data 

on cracking were also recordedo 
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60 TEST PROCEDURE AND CHRONOLOGY 

60l Test Procedure 

Each test consisted of the application of load to a given load 

level 0 The load was applied in predetermined increments 0 The number of 

increments depended on the maximum level of loading, the previous loading 

history and the expected behavior of the slab 0 In the tests where no failure 

occurred, the load was removed and the maximum load during the test was again 

applied in one incremento Data was recorded at the initial zero load, at each 

load increment) and again at zero loads following the initial and rebound 

loadings 0 

The magnitude of the load increment was controlled by monitoring a 

particular load dynamometero After this dynamometer indicated the desired 

load had been reached) the hydraulic pump was stopped and the main valve leading 

to the control manifold was closedo The load on each of the remaining panels 

'fas checkedo If no adjustment of load was necessary, the individual valves 

leading from the manifold were closedo If some adjustment was needed, the valves 

of the panels that were loaded properly were closed and the load on the remainder 

of the panels was adjusted to the desired levelo This operation took approx­

imately 10 minuteso 

When the loading operation was completed) the deflection and strain 

readings were begun simultaneously 0 Deflection readings were completed in 

about 10 minuteso 

Strain readings were read and recorded in the following order: (1) 

the six check gages, (2) bottom steel gages, (3) top steel gages, (4) beam 

steel gages) (5) concrpte gages, (6) tripod reaction dynamometers) (7) the six 

check gages 0 The strain readings took from twenty-two to thirty minutes 0 
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After all the strain gages had been read, the deflections at the midspan of the 

panels and the load dynamometers were read and recorded. 

The structure was checked for cracking whenever the load was 

expected to cause additional cracks 0 Seven-power magnifying lenses were used 

in looking for cracks 0 The cracks were marked with pencil and the test number 

and load increment were marked beside the crack. About one hour was taken to 

mark cracks 0 

Photographs of the crack patterns in the structure were taken at 

various times during the testing period. 

6 . 2 Chronology 

A total of 14 tests were carried out on the structure over a period 

of about 8 weeks 0 A complete tabulation of the panels loaded in each test, 

load level and date of test is contained in IJable 6.10 

Testing began on 3 May 1961 when the first load was applied and 

concluded on June 2l 0 A total of 49 days was required to complete the load 

test. 

Test 500 involved only the strain and deflection readings before and 

after the loading frames were placed on t he slab 0 The combined weight of the 

slab and the loading frame was 44 psf. 

Test 501 consisted of applying a load of 56 psf making a total load 

of 100 psf. This load did not exceed the estimated cracking load of the 

structure. The test also provided a means of checking all loading equipment 

and instrumentation. 

The structure was loaded to design load for the' first time in test 

502. The applied load was 240 psf making a total load of 284 psf. 

The loading during test 503 was increased to 384 psf or 1.5 live 

loads plus 1.0 dead load. Following test 503, a series of tests, 504-511 were 
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conducted with various combinations of panels loaded. These tests were all 

carried out at a total load of 384 psf. 

Test 512 was terminated when three of the interior reaction 

dynamometers failed. In test 513, all four interior column dynamometers 

were replaced by short steel pipe columns 0 In this test, the structure carried 

a total load of 955 psf when an exterior row of panels failed. Test 514 involved 

the loading of the interior panel E to failure with loads of approximately 500 

psf applied on the remaining eight panels to provide restraint along the edges 

of panel E. 
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70 BEHAVIOR OF TEE TEST STRUCTURE 

7.1 Introductory Remarks 

The behavior of the test structure observed in four tests is 

described in this chapter 0 The tests described are the following: (1) Test 

502, all panel,s loaded to design load (284 psf); (2) Test 503, all panels loaded 

to 384 psf; (3) Test 512, all panels loaded to 674 psf; (4) Test 513, all panels 

loaded to 955 psfo The behavior of the structure is presented in terms of 

deflections, steel strains and cracking. 

In this chapter, the response of the structure is evaluated in terms 

of the applied load or the load applied by the hydraulic jacks. The dead load 

of the test structure including the weight of the load distributing system is 

44 psf) 40 psf less than the assumed dead load of the full-sized structure. It 

is important to note that the remainder of the design dead lea d (40 psf) was 

applied by the hydraulic jacks and is considered as part of the applied load. 

702 Test 502 (Design Load) 

(a) Loading 

The load was applied in four increments to the following load levels: 

60, 117, 174, and 242 psfo Thus, the maximum total load was 242 + 44 = 286 psf. 

This was the first test in which the design load was reached. The complete test 

took 6 1./2 hours 0 Previous tests had been below the estimated cracking load of 

the structure 0 

(b) Deflections 

The maximum recorded deflection in Test 502 was 00096 ino This 

deflection was recorded at the center of panel A, the corner panel supported by 

two shallow beams 0 The interior panel deflected 00042 ino The maximum beam 

deflections were 00049 and 00019 inc for the shallow and deep beams, respectively. 

These are the deflections due to the appl,ied load in this test only. 
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Several load-deflection curves are shown in Fig. 7.1. The first 

five curves are for mid-panel deflections. Curves Al and J3 are beam 

deflections and El is the deflection at the midpoint of the centerline between 

two interior columns. The load deflection curves are nearly linear throughout 

the loading range indicating that there had been only a small amount of cracking 

during this test. 

A schematic deflection diagram showing the deflections measured under 

the maximum applied load is presented in Fig. 7.2. 

(c) Strains 

The strains presented for test 502 are those measured under the 

applied load. No measurable residual strains existed since previous loadings 

were below the cracking load. 

Measured load-strain curves at various points in the slab are shown 

in Fig. 7.3 for gages on the bottom steel and in Fig. 7.4 for gages on the top 

steelo These curves were selected to give examples of the different types of 

load-strain curves observed. 

The load-strain curves for the bottom steel (Fig. 7.3) are linear for 

gages E24) F15, and J15. This observation is consistent with the state of the 

slab which was uncracked at the bottom. The bending over of the load-strain 

curve for gages A24, B22) and C22 indicated possible cracking. However) a 

detailed search for cracks in these regions during the test revealed no cracks 

that could be detected. 

As would be expected) the strains measured in the top steel were 

significantly larger than those measured in the bottom steel (Fig. 7.4). The 

only load-strain curves which remained linear were those measured in the slab 

reinforcement at the faces of the spandrel beams (gage B62). Cracking strains 

were measured in all other sections although only one crack was actually 
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discovered on the top of the slab 0 As explained in Section 601, cracks were 

sought using illuminated seven-power magnifying glasses. 

The distribution of strains in the positive moment sections is 

shown in Figo 7050 The only strains in the bottom reinforcement that exceeded 

the cracking strain were across section 2-20 The maximum strain in the bottom 

reinforcement was 20 x 10-5 and was recorded in an exterior column strip. There 

was no measurable strain in the bottom reinforcement adjacent to the deep beams. 

In Figo 705 the strains measured across section 2-2 are considerably 

larger than those measured across section 6-60 However, this does not mean 

that the bending moments across these sections differed in the same proportion. 

The reinforcement in the middle strips of section 6-6 was closer tome neutral 

axis of the uncracked slab than the corresponding reinforcement in section 2-2. 

Furthermore, the measured strains were in the vicinity of the cracking strain; 

the moment-strain relationship was not linear at every sectiono 

The distribution of strains in the negative moment sections is shown 

in Figo 7.60 Strains in the top reinforcement ranged from a maximum of 37 x 

1.0-5 to nearly zero strain 0 Maximum strains in the top steel were recorded at 

the faces of the interior column capitals and ranged from 20 to 30 x 10-5. 

Strains in the reinforcement over the exterior columns on the shallow and deep 

beam Sides were 25 x 10-5 and 15 x 10-5 , respectively 0 Strains in the top 

steel at the edges were all less than 10 x 10-5 except for one gage which 

reached 15 x 10-5
0 

The maximum strains recorded in the deep beams were 18 x 10-5 and 

strains in the shallow beams reached 30 x 10-5
0 

(d) Cracking 

The structure was examined for cracks after the application of each 

load incremento No cracks were found in the bottom of the slab during this 
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test. A few very short cracks were found over column 2 extending toward column 

6 after tbe final load increment (242 psf) had been applied. The load-strain 

curves indicated more extensive cracking in the negative moment sections but 

no further cracks were observed. 

7 .3 Test 503 (1. 5 Live Loads + Dead Load) 

(a) Loading 

The load was applied in four increments to the following load levels: 

117, 239, 290, 336 psf. The maximum total load on .the structure was 336 + 44= 

380 psf. The two increments applied after the design load had been reached were 

smaller (about 50 psf) than the first two increments (about 120 psf). The 

test was completed in 8 hours. 

(b) Deflections 

The maximum mid-panel deflection measured during test 503 was 0.16 

in. in panel A, the corner panel supported by two shallow beams. The interior 

panel deflected 00065 in. The maximum shallow beam deflection was 0.70 in. and 

the maximum deep beam deflection 0.025 in. 

Representative load-deflection curves are shown in Fig. 7.7. The 

first five curves represent mid-panel deflections. Curves Al and J3 depict 

beam deflections and Hl the deflection between two interior columns. All of the 

curves are linear up to an applied load of 240 psf. Since the structure had 

been loaded to this level (240 psf) previously, no further cracking or inelastic 

action would be expected to that load. 

A schematic deflection is shown in Fig. 7.8 for test 503. The 

deflections given in this diagram include residual deflections from test 502 

and thus represent the values that would have been measured if the structure 

had been loaded to 336 psf applied in one test. 
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(c) Strains 

Load-strain curves are presented in Figso 709 and 70100 The load­

strain curves are linear up to an applied load of 240 psfo Since the structure 

had been loaded to this load in previous tests) a linear load-strain curve 

was expected. Nonlinearity beyond 240 psf indicates further cracking at or 

near the gage locationso Several of the gages which indicated significant 

cracking during test 502 remained nearly linear in test 503. The load-strain 

curve for gage XlO in Fig. 704 indicated cracking at or near that gageo In 

Fig. 7010, gage XlO had much less residual strain 0 This indicated a crack of 

sufficient height at gage XlO had formed during test 502 so that only a small 

amount of further cracking occurred during test 503. This behavior should 

not be confused with the behavior of curves E24 and F150 A comparison of the 

load strain curves for gages E24 and F15 in Figs. 709 and 7.3 shows that the 

strains remained linear throughout both test 502 and 503. No cracking had 

taken place at these locations. 

The distribution of strains in the positive moment sections is shown 

in Fig. 7,ll. The plotted strains include the residual strains in the preceding 

test 502. The strains in section 4-4 increased by approximately 30-50 percent 

over the corresponding strains in test 502. Strains in section 6-6 increased 

by about 50 percent and those in section 2-2 increased by about 100 percent 

over the strains measured in test 502. The differences in the increase in 

strain between tests 502 and 503 is primarily the result of cracking. Once 

cracking occurs, the rate of increase of strain is greater than the rate of 

increase of an uncracked sectiono Therefore; those sections that were cracked 

in test 502 (section 2-2) had a greater percentage increase in strain in test 

503 than those sections that remained uncracked throughout tests 502 and 5030 
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The maximum strain in the bottom reinforcement was 53 x 10-5. This 

occurred in an exterior column strip in section 2-2. Strains across section 

4-4 were all below the cracking strain. Strains in the reinforcement adjacent 

to the deep beams remained relatively unchanged from test 502 and were nearly 

zero. 

The distribution of strains in the negative moment sections is shown 

in Figo 7.12. Residual strains are included in this figure. Strains in the 

top steel generally increased about 50-70 percent over the strains in test 502. 

The maximum strains in the top steel were recorded at the face of the 

interior column capital. These strains reached a value of 67 x 10-5. The 

strain in the middle strips at all the sections was less than the cracking 

strain. The highest strains were in the reinforcement over the columns and 

ranged from 20 to 40 x 10-5 . 

The maximum strains in the deep and shallow beams were 37 x 10-5 and 

45 x 10- 5) respectively. 

(d) Cracking 

Figure 7013 shows the pattern of observed cracks in the bottom of 

the slab. The cracks were confined to about the middle third of the exterior 

panels and. were parallel to the beams. The cracking on the bottom of the 

panels adjacent to the shallow beams was more extensive than in those adjacent 

to the deep beams. Cracking extended into the shallow beams in the corner 

panele The bottom of the interior panel Showed no cracking. 

Figure 7.14 shows the crack pattern in the top of the slab. All 

cracking was confined to the area around the columns 0 Most of the cracks 

around the interior columns were parallel to the edges of the column capitals 

and drop panels. A few cracks began to appear along the column centerlines 0 

All the cracks were very short. The cracks over the exterior columns were 
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perpendicular to the edge and extended toward the interior columns. The 

length of these cracks was also very short. They were generally confined to 

the surface above the exterior drop panels. 

Flexural cracking occurred in the beams. The negative moment 

sections of the beams at the columns showed the most cracking. The flexural 

cracks in the beams were extensions of the cracks in the top surface above the 

columns 0 The cracks in the positive moment sections of the beams were confined 

to the corner spans. The deep beams supporting panel J were cracked the most 

extensively in the positive moment region. The length of the cracks in all the 

beams was about one-half the depth of the beam. The negative moment flexural 

cracks were confined to the width of the column and the positive moment cracks 

were generally within the middle third of the span. 

The exterior surfaces of the columns were cracked during test 503. 

The cracks were spaced at 3~5 in. and were located in the upper two-thirds of 

the columns. The cracks penetrated about one-half of the way through the 

columns. 

All cracks in the structure could be classified as hairline cracks; 

the maximum crack width did not exceed 0.005 in. 

7.4 Test 512 

(a) Condition of the Structure Before Test 512 

Tests 504 to 511 were tests with various patterns of loading at 

dead load plus 1.5 live load (384 psf). The patterns of loading were chosen 

to produce maximum ~oments at critical sections and, consequently, some 

additional cracking was produced. However, this additional cracking was 

largely confined to short extensions of existing cracks and the over-all 

crack pattern remained the same. 
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Tests 504 to 511 produced only slight changes in the crack patterns 

of the beams and columns 0 Very few new cracks were formed 0 Almost all 

additional cracking was confined to extension of the existing flexural cracks 

in these memberso 

(b) Loading 

The maximum load was reached in five increments with the applied load 

at each level as follows~ 240, 338, 433) 522 and 630 psf. The last load 

level (630 psf) was the maximum load applied when three of the interior reaction· 

dynamometers failedo 

(c) Deflections 

Because of the sudden failure of the reaction dynamometers) no 

deflection data was obtained at an applied load of 630 psf. As a result) all 

following discussion is based on deflection measurements recorded at an applied 

load of 522 psf 0 

The maximum deflection recorded in test 512 was 0036 ino at the mid­

point of panel Ao The interi.or panel mid-point deflection was 0014 ino The 

shallow beam deflection was 0015 ino and the deep beam deflection was 0005 ino 

Load-deflection curves for test 512 are shown in Figo 70150 The first five are 

mid-panel deflections and curves Al and J3 are at the mid-point of beams. 

All of the curves are linear up to 340 psf which was the magnitude 

of the load in previous tests 0 Beyond this load) the curves bend over 0 All 

curves except J3 exhibit some definite increase in the rates of deflection 

after a load level of 433 psf has been reachedo Curves AO and JO show large 

increases in deflection with the application of load increment 5 (522 psf) 

indicating that cracking had reduced the stiffness of these panels considerably 0 

There are no residual deflections shown since many dial gages were inoperative 

following the failure of the reaction dynamometerso 
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A schematic deflection diagram showing the deflections at 522 psf 

is given in Fig. 70160 These deflections include any residual deflections 

resulting from tests prior to test 5120 The deflections shown are greater 

than the maximum deflections observed during test 512. The cumulative residual 

deflections at the mid-points of the panels varied from 0.10 in. in panel A to 

0.035 in. in panel E. The cumulative residual deflections in the shallow 

beams ranged drom 00016 to 00046 in. and in the deep beams the values ranged 

from 00005 to 0.01 ino 

(d) Strains 

Representative load strain curves are presented in Figs. 7.17 and 

7018 for gages on the bottom and top steel) respectively 0 The curves are 

essentially linear up to 340 psf, the level of loading reached in preceding 

tests. The initial slopes of the curves indicate greater flexibility than 

those measured in tests 502 and 503) indicating the effect of progressive 

cracking in tests 504- 511. 0 Curve E24 indicated that the first cracking was 

produced at that location during test 5120 Curve B62 is linear throughout 

test 512. This gage was on the top reinforcement in a middle strip between 

exterior columns and cracking never occurred at that point. No residual. 

strains are shown for test 51.2 since the failure of the reaction dynamometers 

produced unrealistic strains 0 

Figure 7.19 shows the strain distribution at the positive moment 

sectionse These distributions include residual strains which resulted from 

previous tests 0 The maximum strain was 120 x 10-5 and was measured in 

section 2-2 which had the highest strainso As before, the smallest strains 

were measured in section 4-40 In all sections, the strains were bighest in 

or immediately adjacent to the column strips and were nearly zero in the 

reinforcement near the deep beamso 
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The strain distribution in the negative moment sections is shewn in 

Fig. 7.20. Residual strains have been included in these strain distributions. 

The largest strains were recorded in the top steel over the interior column~. 

The maximum strain was at the face of an interior column capital and reached 

a value of 150 x 10- 5 . The strains across the interior negative moment sections 

indicated that cracking had occurr-ed along the entire section. The strains 

at the exterior columns ranged from 50 to 120 x 10-5 • The strains on the 

exterior middle strips were all below cracking strain. 

Strains in the shallow beams varied from 31 to 97 x 10-5. Strains 

in the deep beams ranged from values of 22 to 60 to 10-5 . 

(e) Cracking 

At an applied load of 433 psf) the crack pattern became more 

extensive on both the top and bottom of the structure. Existing cracks were 

widened and extended and new cracks formed. Figures 7.2l and 7.22 show the 

cracks which had formed in the slab at the maximum applied load in test 512. 

These figures do not show the abnormal cracks which opened as a result of the 

failure of the three interior column dynamometers. 

The cracks on the bottom of the structure began to spread to almost 

all positive moment sections (Fig. 7.21). In addition) a series of cracks 

were formed which extended from the mid-point of the corner panels to the 

corner columns. Crack widths on the bottom of the slab were less than 0.005 

Cracking on the top of the slab was concentrated around the columns 

(Fig. 7.22). Cracks radiated in all directions from the interior columns. The 

"diagonal" cracks were close to 0.01 in. in width and had the largest width of 

any of the cracks on the top of the slab. Cracks extended the entire distance 

between interior columns. The negative moment sections between interior and 
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exterior columns also exhibited some cracking although this was generally 

not a continuous crack as it was between the interior columns (Fig. 7022 

shows final state). The width of these cracks was about 00005 ino Cracks 

over the corner columns were confined to sbort cracks across the corner of 

the structure 0 The cracking on top of the slab over the remainder of the 

exterior columns was arranged in a triangular configuration. Cracks started 

at the edge of the structure as parts of the torsion cracks in the beams and 

radiated inward concentrating at a point at about the edge of the drop panel. 

The flexural cracking in the beams and columns was confined mainly 

to an increase in the extent of existing crackso Maximum crack widths in 

these members measured to be 00005 ino 

(f) Conditions Leading to the Failure of Reaction Dynamometers 

The failure of the dynamometers supporting the interior columns was 

initiated by distress in the beam-column connectjons which caused a transfer 

of load and bending moment to the interior columnso 

Torsional cracking in the beams was first noted at 433 psfo Torsional 

cracks were observed at all beam-column connections but they appeared to be 

most pronounced in the shallow beams. However) these cracks were hairline 

cracks and there was no sign of distresso 

The following load level (522 psf) produced considerable widening 

and development of these cracks. There was a large concentration of rotation 

at the torsional cracks at columns 2 and 3 supporting shallow beams. The 

torsional cracks at columns supporting deep beams were not extensive. 

Application of the fifth load increment whfuh increased the total 

applied load to 630 psf caused further severe rotation at columns 2 and 3. 

As soon as the load of 630 psf was reached) three reaction dynamometers 
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supporting columns 6, 7, and II failed. The condition of the dynamometers 

after failure indicated that they had failed under the action of a resultant 

force w~h was oblique to the horizontal. These dynamometers were calibrated 

under vertical loads corresponding to 750 psf and designed to carry 1000 psf 

on the slab and would not have failed unless a fairly large horizontal thrust 

was involved along with the applied load of 630 psf. 

After the tripod dynamometers failed, the structure was deflected in 

an abnormal pattern and deflection and strain data were no longer realistic. 

Photographs of the cracks at the beam column connections are shown 

in Fig. 7023. These pictures were taken prior to test 513. The black steel 

rods seen in the pictures are clamps used to reinforce the beam-column 

connection. These were installed after test 512. The cracks in the shallow 

beams are shown in Figs. 7023a and b and the deep beam is shown in Fig. 7.23c. 

The torsional failure at columns framing into shallow beams was well defined 

by the spalling of the concrete in the zone of failure. The deep beam (Fig. 

7.23c) had several well defined torsional cracks but still retained considerable 

torsional capacity at the connection 0 

705 Test 513 (Test to Failure) 

(a) Preparation of Structure for Test 513 

It was necessary to replace the damaged reaction dynamometers 

before further testing proceeded. The slab was lifted off the interior 

dynamometers by a lift system conSisting of two screw type jacks and a wood 

framework. The two jacks were placed on opposite sides of the interior column 

enabling the slab to be lifted uniformly. The reaction dynamometers at all 

four interior columns were removed. A short section of 4-in. steel pipe was 

placed into position. This pipe had a plate fitted for a one inch steel ball 

welded to the upper end. The slab was lowered anto the pipe and the pipe was 
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welded into placeo The columns retained a pin-ended condition and the slab 

was returned to proper height with replacement of the dynamometerso 

The comparison of the ini,tial slopes of the load-deflection curves 

measured in tests 512 (Figo 7015) and 513 (Figc 7024) indicates that the 

eight exterior panels of the structure underwent a reduction in stiffness of 

about 40 percent after test 5120 However) this reduction is not unusual in 

view of the fact that extensive additional cracking occurred in the final 

stages of test 512 and the exterior beam-column connections were damaged 0 

Evidently, the abnormal cracks, which opened in the bottom of the slab in the 

immediate vicinity of the interior columns as a result of the failure of the 

dynamometers) were suffici,ently closed when the columns were restored to 

their original elevationso If these cracks did affect the response of the 

structure) their effect was not appreciableo 

The beam-column connections were strengthened by an external 

prestreSSing device 0 A vertical force was applied to the exterior edge of the 

side columns by means of clamps 0 The clamps were made of two steel plates" 

one at each end of a one inch diameter threaded rodo The threaded rods slipped 

through holes at the middle of the steel plates 0 One end of the plates fit 

against the top and bottom of the column and a 1 ino diameter rod fit between 

the other end of the plateso Tension was applied to the rod by turning one of 

the nuts 0 A view of this clamp is shown in Figs 0 7023a and bo The clamps 

provided a means of transferring load to the columns at those connections where 

severe torsional cracking had already taken place and retarded failure in the 

columns that were not severely damaged 0 

(b) Loading 

The load was applied to all, panels D Measurements were made at the 

following load levels~ 247.1 343, 529.: 625, 720, 791 and 911 psfo At 911 psf 



-33-

(955 psf total)) failure was observed in panels ABC 0 An attempt was made to 

place additional load on the remaining panels but failure was imminent in all 

panels except panel E. Hence) loading was continued only on panel E. At 

1200 ps~) the main beam of the load distributing system in panel E yielded. 

Thus) the loading was stopped without complete collapse of the interior panel. 

This panel was loaded to failure in test 514 after .the load distributing system 

was strengthened. The panel failed at 1500 psf. 

(c) Deflections 

The last deflection measurements for applied load during test 513 

were made at a load of 791 psfo Following the failure of panels ABC) only 

scattered measurements were obtained. Representative load-deflection diagrams 

are given in Fig. 7.240 The first four show mid-panel deflections. Curves Al 

and J3 show beam deflections and curve Hl indicates deflections measured between 

interior columns. Curves AO and BO show large increases in deflection in the 

final stage of loading. Curve EO did not show signs of a significant decrease 

in stiffness of that panel, although a definite bend in the curve was noted 

at the higher loads. The deflection of the deep beam (curve J3) increased 

nearly linearly throughout test 513. The shallow beam (curve Al) showed signs 

of decreasing stiffness) especially with the application of the final load 

increment. 

A schematic deflection diagram is shown in Fig. 7.25. This diagram 

does not include any residual deflections from previous tests. The deflections 

shown are for an applied load of 791 psf. The diagram shows a Tl trough" 

developing in panels ABC. The deflection at the midspan of these panels was 

nearly 1 in. The similar panels on the opposite side of the diagonal of 

symmetry through columns 1 and 16 had deflections of about 0.70 in. The 

deflection of the shallow beams spanning columns 1 through 4 were also greater 

than the beams spanning columns 1) 5) 9) and 130 
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(d) Development of Yield Lines and MOde of Failure 

In a slab reinforced with intermediate grade reinforcement) the 

development of a yield line is marked by the extensive opening of one or two 

adjacent cracks in a zone of maximum moment and by the noticable concentration 

of rotation in that region. It is possible to judge whether a given section 

has developed its yield capacity simply by visual inspection. In a slab 

reinforced with welded wire fabric) the phenomenon of "yielding!! is different 

because of the stress-strain curve and positive anchorage of the wires. 

The stress-strain curve for the fabric does not have a "flat-top" 

region. Any increase in rotation at any section meets with increased resistance 

at all levels of loading; a stage when rotation occurs freely is never reached. 

Thus) the cracks do not open wide even at final stages of loading 0 Furthermore) 

the elongation required at the level of the reinforcement is concentrated over 

a short length of the wire bounded by cross-wires. For a given crack opening 

large strains are developed. Thus) the steel fractures before the development 

of cracks wide enough to be diagnosed positively as yield lines. 

In accordance with the preceding discussion) it appears that the 

best measure of whether a given section in the test structure has developed 

its yield capacity is the distribution of stresses across that section. 

Although the welded wire fabric does not exhibit a well defined yield point) 

the reaching of the 0.2 percent offset stress may be designated as II Yieldingfi. 

For the steel used in the slab) the ultimate stress was .about ten percent 

greater than the 0.2 percent offset stress. 

The distribution of the steel stresses across four critical sections 

is shown in Figs 0 ·7.26-7.29. The plotted diagrams depict the variation of the 

total (including residual stresses) applied load stress across a section for 

load levels of 434) 720 and 791 psf applied 0 The 0.2 percent offset stress of 

the reinforcement in each strip is indicated in the figures. 
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From these stress distributions, it can be seen that at all load 

levels the stresses were highest in the positive moment section of panels ABC 

(Fig. 7027). The stresses across column line 5-8 (Fig. 7.28) were higher 

than the corresponding stresses across column line 3-15 (Fig. 7.29). On the 

basis of the stress distribution, the moments in the positive moment sections 

and interior negative moment sections of the exterior panels supported by 

shallow beams were greater than;those supported by the deep beams. Since the 

shallow beam-column connections were more severely damaged than the deep beam 

connections, their stiffness was reduced thus causing a larger moment in the 

remaining sections. 

The structure was inspected carefully for crack widths that could 

be classified as yield lines. At an applied load of 720 psf, no cracks opened 

sufficiently to be diagnosed as yield lines. The stress distributions at 720 

psf confirmed this observation. The stresses reached magnitudes slightly 

greater than 60,000 psi at several locations, however, the stresses in these 

sections were still below the 0.2 per cent offset stress. 

As the load was increased to 791 psf, cracks of sufficient width to 

be considered yield lines were observedo In general, the stress distributions 

corroborated this observation. 

The crack widths indicated that a yield line formed at the center of 

panel B. The stress distribution at this section (Fig. 7.26) indicates that 

002 per cent offset stresses were reached in·the column strip between panels 

A and B. 

The crack widths between columns 6 and 7 indicated that a yield line 

formed in that region (See Fig. 2.4 for designation of columns.). The stresses 

across the centerline between columns 6 and 7 did not reach the yielding level, 

however, it is important to point out that the maximum moment does not exist 



across that line. The line of maximum moment shifts gradually from the face 

of the capital to the column centerline at mid-panel. Thus, the low stresses 

measured across the column centerline do not preclude the formation of a yield 

line at a short distance from the centerline. The cracks in the structure 

indicated that a yield line had formed at the face of the capital at column 6 

and extended into panel B toward column 7. 

Further increase in load above 800 psf resulted in apparent yield 

lines at other .locations. As the load increased, cracks opened sufficiently 

at the center of panel H and between columns 10 and 11 to indicate the formation 

of a yield line. The loading was terminated when a line of fracture formed in 

panels A and B. At the time of the occurrence of the fracture, the maximum 

applied load was 911 psf, determined from monitoring one load dynamometer. The 

strains measured after the failure had occurred were no longer realistic and 

stresses could not be utilized to verify the formation of any additional yield 

lines. However, the stress distributions at a load of 791 psf indicated 

stresses at the negativ.e moment section between columns 7 and 11 (a similar 

section on the opposite side of the diagonal of symmetry) such that additional 

load could be expected to raise the stresses to the 0.2 per cent offset stress. 

The fracture which occurred in the center of panels A and B at 911 

psf coincided with the yield line at the locationo The stresses in the 

column strip between panels A and B reache~ 75,000 psi at a load of 791 psf. 

With additional load, the reinforcement fractured at that location. The 

fracture probably originated at the column strip and spread into panel B. 

The length of the fracture was about 45 in. 

The fracture was accelerated by the loss of moment capacity at 

columns 2 and 3. The moment was redistributed to the positive moment and 

interior negative moment sections of panels ABC, which in turn resulted in 
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higher stresses at those sections. The fracture resulted in a sudden rotation 

of the slab about the interior and exterior columns. This rotation caused the 

complete collapse of column 2. The condition of column 2 after failure is 

shown in the photograph in Fig. 7. 30a. The capital broke away from the column 

and spalled as a unit. Figure 7. 30b shows wide cracks through the column and 

crushing of the concrete at the base of the capital indicating that the 

rotation was about the base of the capital 0 Rotation about that point caused 

an outward deflection of column 2. The whole reaction was transmitted to the 

column through the bottom corner of the capital which was sheared off 

simultaneously with the fracture of the slab reinforcement. 

Further loading was attempted on the remaining panels (DEF and GHJ) . 

However) the load caused very large deflections in panels G and H and it was 

impossible to reach the previous load of 911 psf on these panels. 

The large deflections were accompanied by a widening of the yield 

lines in panel H and between columns 10 and 11. In addition, large rotations 

were observed at column 14. Figure 7.30c shows the crack pattern at column 14. 

The large crack which formed along the top outside corner of the beam extended 

about 20-25 in. in both directions from the column. The crack propagated 

througL the slab. A bottom view at column 14 is shown in Fig. 7.30d. Crushing 

of the concrete can be seen at the base of the column capital indicating 

rotation was taking place about that point. 

The failure of column 14 was unlike the failure of columns 2 and 3 in 

that the beam-column connection remained largely intact. Failure at columns 

2 and 3 was characterized by the beams and slab twisting away from the column. 

However, at column 14 it appeared that the slab rotated without a further 

transmittal of moment to the beams or column. As can be seen in Fig. 7.30c, 

a large crack formed around the top plate of the prestressing clamp 0 (The 



clamp was removed when the photograph was takeno) It is evident that the 

clamp strengthened the beam-column connection sufficiently to prevent a failure 

of the connection similar to that at column 20 

Since no further load could be applied to the exterior panels only 

the interior panel was loaded with the remaining panels retaining from 500-800 

psf. As the load was increased on the interior panel, the. drop panels at 

columns 10 and II began to spall 0 The spalling of concrete at column 10 is 

shown in Fig. 7 0310 The cracks between the drop panels and the slab were 

first observed at a load 791 psfo As the loading increased the cracks became 

wider with some minor spalling occurring at a load of 911 psf. The final 

loading of the interior panel resulted in almost complete destruction of the 

drop panel 0 Large portions of the drop panels spalled and the remainder of the 

drop panels were loose and could be removed by hand. 

The loading on panel E was terminated when the main beam of the load 

distributing system began to yield 0 On the follOwing day, the beam was 

strengthened and loading was resumedo The maximum total load on panel E when 

it failed vlas 1500 psf 0 The failure was marked by yield lines forming at the 

negative moment sections of the panelo The entire center panel appeared to 

have been flpushed through" the slab. 

Following all loadings to failure,? the load distributing system was 

removed and photographs were taken of the crack pattern on the top and bottom 

of the slab. These crack patterns are shown in Figs. 7.32 and 7.33. The dark 

lines indicate cracks that formed prior to test 5130 



--39-

80 DISTRIBUTION OF MOMENTS IN TEE STRUCTURE 

801 Introductory Remarks 

The moment distributions presented in this chapter were analyzed 

from strains measured during test 502. The moments are related to the total 

load on the structure including the dead loado Test 502 consisted of four 

load levels in which the total loads were 104) 161, 218) and 286 psf; the last 

load was the design load of the structure. 

In this chapter) the distribution of moments across the full width 

of the structure are discussedo In addition) the moments at the design 

sections are compared with the ACI deSign moment at those sectionso The moments 

in the interior panel are compared with theoretical solutions available for a 

typical interior panel. The moments in individual panels are given and the 

total moments across strips conSisting of three panels are compared to the 

static total moment in these three-panel stripso 

802 Determination of MOments 

In reinforced concrete structures) the conversion of measured 

strains to moments is not straightforward. The complication arises primarily 

from the tensile strength of the concrete which contributes to the capacity of 

the sectiono For structures with low reinforcement ratios) the tensile 

properties of the concrete have a significant influence on the capacity. 

Therefore) it is necessary to determine moment-strain relationships which 

include the effect of the concrete tensile strength. 

A typical moment-strain relationship for a section reinforced with 

welded wire reinforcement is shown qualitatively in Fig. 8.10 Such curves 

were developed for each section in which the wire diameter) reinforceme~t 

ratio or steel depth changed. Each curve consists of two straight lines. 
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Two points in addition to the origin are needed to describe the relationship. 

The coordinates of the intermediate point are the cracking moment and strain. 

The coordinates of the end point are the moment at the proportional limit of 

the wire and the corresponding strain. The method of producing the moment­

strain diagrams is based on the conclusions of small beam tests conducted in 

connection with this structure and the previous structures in this series. 

The cracking moments were computed using the ordinary flexure formula, 

a = Mc/r. The moment of inertia was based on a transformed section. The strain 

distribution was assumed to be linear. The cracking strain was taken to be 

0.00019. The cracking stress assumed in these computations was 600 psi. This 

was somewhat less than the modulus of rupture of the test control specimens 

which gave values of 775 psi. However, it should be pointed out that the 

control specimens were not reinforced. The steel in the slab offered a 

restraint to the concrete shrinkage and resulted in a lowering of the tensile 

strength. Furthermore, the assumed tensile strength was chosen to correlate 

with results obtained from a study of the static moment in the interior panel 

which could be computed accurately. 

The strains measured in the slab reinforcement during test 502 were 

all less than the proportional limit of the wire. Therefore, the proportional 

limit stress was used in computing the moment at the third point for the moment­

strain diagram. The cracking was assumed to have developed sufficiently at 

this level that the influence of the concrete in tension was negligible. The 

values of proportional limit stress and strain were obtained from the stress­

strain curves for the wire (Figs. 3.1-307). 

Separate moment-strain curves were developed for the beams. Typical 

moment-strain curves for the beams are shown in Fig. 802. The cracking moment 

was computed in the same manner as that used for the wire reinforcement. The 
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deep beam was assumed to have an effective compression flange width of 4t (four 

times the thickness of the slab) and to be restrained from twisting about its 

longi tudinal axis. The cracking stress and strain remained the same as for 

the slab. The yield stress and strain were used in computing the terminal 

point of the moment-strain relationship. Since the steel used in the beams had 

a well-defined yield point (Fig. 3.8)) the yield point values were analogous to 

the proportional limit values used previously. 

The moments were computed for total load. Dead load strains were 

added to the strains measured at the applied load levels. The dead load strain 

'vas determined by projecting the load=strain curves for each gage location to 

a zero load. The total load strains were used to obtain a moment from the 

moment-strain diagrams. 

803 Distribution of Moments Across the Full Width of Structure 

The moments were determined at critical sections across the full width 

of the structure. The location of the critical sections is shown in Fig. 8.3. 

Sections 1) 3, 5 and 7 are negative moment sections and sections 2) 4 and 7 are 

positive moments sections. 

The distribution of moments across the sections are shown in Figs. 

8,4 tr~ough 80120 The moments are Sbolfll for the four load levels in test 502. 

The beam moments at the corresponding load levels are indicated by the solid 

circles and their magnitudes are given in parentheses. It is important to 

note that the beam moments are given in kip-in. while the slab moments are 

plotted in kip-inc per foot 0 The moments across the column capitals are 

distinguished b;;- the additional vertical lines within the column strips denoting 

the edge of the capital. The curves are discontinuous at the column capitals. 

The curves are formed by straight line segments connecting the values of moments 

computed at each gage location 0 Metz Bei'eI'ence Room 
Civil Engin88~ing Dep~rtment 

BI06 C.E. BUildillg 
University of Illinois 
iUrbana.; lllinoii1l i~~ 



In general the highest moments were reached in those sections with 

the greatest stiffness, that is) the column strips and wall strips 0 The middle 

strips which had the lowest stiffness had the l.owest moments 0 From the 

moment curves} it can be seen that the moments at the positive and exterior 

negative moment sections (lJ 2) 4J 6 and 7) were zero adjacent to the deep beamo 

The negative moments at the interior column capitals were higher at 

the exterior face of the capital than at the interior faceo The negative moments 

at sections 3 and 5 (excluding moments across the column capitals) reached a 

maximum just outside the capital and decreased at the edge of capital 0 The 

point of maximum moment was at the edge of the drop panels and a higher moment 

was expected at that location since the drop panel was stiffer 0 

The exterior negative moment distributions (sections 1. and 7) show 

that the moments at the columns were much higher than at the remainder of the 

exterior sectionso The torsional stiffness of the beams was less than 

usually assumed in design procedures" 

Since the strains did not exceed the proportional limit values, 

there was no significant reduction in the stiffness of any sectiono This is 

evident from the moment distributions which showed that the moment at all 

sections increased almost proportionally with the loado 

804 Comparison of Measured MOments with Theoretical MOments in Interior Panel E 

Theoretical solutions for plates supported on columns are available 

for a linli ted number of cases 0 The theoretical solution is based on the 

differential equation which describes the deflection of the plateo The equation 

and various solutions and references to literature on the subject can be found 

in Refo 70 

The differential equation was solved by the method of finite 

differences to obtain the theoretical moments presented in this discussiono 
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If small finite lengths are considered instead of the differentials, difference 

equations are obtained which correspond to the differential equation. The 

solutions obtained by difference equations approach the exact solutions as 

the finite length approaches zero 0 The number of difference equations needed 

to express the differential equation increases as the boundary conditions 

increase, as a result few solutions for edge panels are available since the 

boundary conditions are more involved in the edge panels than they are in a 

typical interior panel. 

In Ref. 7, the results of Nielsen's theoretical solutions obtained 

by finite differences are given for an interior panel of an infinite array of 

uniformly loaded panels. The distribution of moment across the negative and 

positive moment sections are shown in Fig. 8.13. Two solutions are shown in 

the figure. For one solution Nielsen assumed the column reaction to be uniformly 

distributed over the area of the capital which imparted no additional stiffness 

to the slab. In the second solution the stiffness of the capital was assumed 

to be equal to the slab stiffness at the edge and infinitely stiff at the mid­

point of the capital. The shear in this solution was assumed to be distributed 

linearly around the perimeter of the capital. 

The measured moment is shown by the broken line in Fig. 8.13. The 

measured negative moment is higher than the theoretical moment at the column 

ca-pi tals and is nearly the same in the middle third of the panel width. The 

higher moment at the capital is due to a greater stiffness of the capital than 

assumed in the theoretical solution 0 The drop panels in the structure also 

contribute to the stiffness. The negative moment reaches a peak at the edge of 

the drop panel and decreases slightly at the edge of the column capital. The 

measured positive moment is lower than the theoretical values as a result of 

the increased measured moment at the negative moment section. 
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Theoretical solutions have also been obtained for a typical interior 

panel at the University of Illinois. These solutions are presented in Refo 70 

The theoretical solution for a panel similar to the interior panel in the test 

structure is shown in Figo 8.140 The theoretical solution is based on the 

reaction being concentrated at the corners of the capitals. The capitals were 

assumed to be infinitely stiffo 

The measured negative moments indicate that the capital is not 

infinitely stiff since the moment did not approach zero at the edge of the 

capital 0 The peak theoretical moment at the corner of the capital due to the 

concentrated reaction at that point is not evident in the measured moment 0 The 

theoretical structure did not have any drop panels. Thus the measured moment 

reaches a peak at the edge of the drop panel which is not present in the 

theoretical solution. The positive measured moment is lower than the theoretical 

values largely due to the greater moment measured across the drop panel in the 

negative moment sections. 

In general the theoretical. solutions and measured moments show the 

same trendso The distribution of moment between the negative and positive 

moment sections varied slightly from the theoretical momentso The major reason 

for discrepancy is the drop panels in the test structure which caused the 

measured negative moment to be higher than theoretical valueso Also, it is 

quite evident that the actual stiffness of the column capitals is extremely 

difficult to predict and any assumption is subject to questiono 

805 Comparison of Measured MOments with PCI Design MOments 

In order to compare the measured moments with the design moments, 

it was necessary to convert moment distributions across a section to the total 

moment across that section. This was done by determining the area under the 

curves shown in Figs. 804-8.12 within a given deSign sectiono Thus) the 
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moments were obtained in the wall) middle) and column strips at the critical 

sections. The measured moments in the design s.ections are presented in Tables 

8.1-8.4. The moments are given for the load levels in test 502. The moment 

is given at each critical section (See Fig. 8.3). The moment measured at 

the design load is compared to the design moment computed according to Article 

1004) ADI 318-56. The design moments are computed for the load level measured 

in the test (286 psf). 

(a) MOments in the Wall Strip 

The moments in the wall strips are divided into the moment carried 

by the slab and beamo For each load level) the total moment carried by the 

slab and beam in the wall. s trip is given in Table 8010 

The ACI beam design moments are based on the code provisions of 

Arti.cle 1004 of ACI 318-56 which give the percentage of panel load carried by 

the beam. The beam moment coefficients are given in Article 701. 

The relative magnitudes of the measured total moments at 286 psf 

shown in Table 8.1 are reasonable 0 The end moments appear to be unusually 

high) especially the moment at the end adjoining the shallow beam (section I). 

Nevertheless) these high values may be ascribed to the stiffness 0 f the column 

relative to the shallow beam. On the basis of the figures listed) no strong 

case may be made for nonsymmetry of the section about section 40 The moment 

at section 7 is lower than that at section 40 This relationship is corroborated 

by the relative magnitudes·of 'the moments at sections 3 and 5. However) it is 

unlikely that this is a direct effect of the difference between the geometry 

of the two beams perpendicular to the strip considered. 

The comparison of the total measured and design moments is not 

favorable (Table 801). The design moments were lower at the interior negative 
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sections 3 and 5 and higher at all other sections. The greatest relative 

difference occurred at section 4. 

The relative magnitudes of the moments measured in the slab and 

beams at each section differed considerably from the proportions assumed in 

design. At sections 3 and 5, the design moments in the beam and slab are of 

comparable magnitudeo The measured ratio of slab to beam moment at those 

sections was on the order of two. At the exterior sections 1 and 7, the design 

moments for the beam and slab are also comparable while the measured ratio of 

slab to beam moment was about one-half. 

The measured and design moments for the wall strip including the deep 

beam are listed in Table 8.2. At 286 psf, they compare in the same manner as 

the moments listed in Table 8.1. The difference between the measured and design 

moments is very large in sections 1 and 7. The measured distribution of moment 

to the beam and slab is approximately the same as assumed in design. However, 

it should be noted that in interpreting the test data, the deep beam was 

assumed to have a flange of four times the slab thickness in addition to the 

width of the beam. 

(b) MOments in the Column Strip 

The measured moments in both column strips in the structure are 

presented separately 0 They are given in Fig. 8.3. In this way, each strip 

can be compared individually with the ADI deSign moments which are the same for 

both column stripso 

In both strips the exterior negative design moments were slightly over­

estimated. The interior negative measured moments were about 25-30 per cent 

greater than the design moments. The exterior positive moments were greater 

in the test structure than the design moments while the interior positive 

moment is about the same in both caseso 



(c) Moments in the IVri.ddle Strip 

The measured moments are given separately for each of the three 

middle strips and compared individually with the design moments) which are 

the same for two of the middle strips. The moments in the middle strip are 

shown in Table 8.4. 

In general) the exterior negative measured moments were less than 

the design moment and the interior negative measured moments were considerably 

greater than provided in design. The positive measured moments were generally 

higher than the design moments 0 

806 Comparison of Computed) Measured) and Design Static Moments 

This section is devoted to the comparison of three ~uantities: 

computed) measured) and design values of the static moments in the test 

structure, The static moment is defined as the moment caused by the load 

about a section at mid-spano In a beam) the static moment is e~ual to the sum 

of the positive moment at mid-span and the average of the negative moments at 

the ends of the spano The static moment in a rectangular panel of a slab is 

resisted not only by the bending moments acting on planes perpendicular to the 

span but also by the twisting moments acting on edges parallel to the span 

consideredo Furthermore) the centroid of the reaction is influenced by the 

distribution of shears along the supported edges. 

A panel in a flat slab structure is not a basic structural unit 

even if the columns are arranged in a regular pattern. However) one 

advantage of considering the flat slab panel by panel is that an approximation 

to the static moment may be obtained in a given panel on the basis of 

e~uilibriUlli conditions alone. 

None of the column centerlines in the test structure were lines of 

symmetry. Therefore) the boundary forces along the column centerlines could 
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not be ascertained without a rigorous analysis 0 However) if the shears and 

twisting moments along the adjoining panel edges are arbitrarily assumed to be 

zero) it is possible to obtain an approximate evaluation of the static moment 

in the panel 0 If a reasonable assumption is made about the distribution of 

shears along the supported edges of the slab in each panel and twisting moments 

along these edges are ignored, the static moment in the panel can be calculated 

directly 0 

Two different assumptions were made as to the distribution of the 

shear at the supported edges 0 One set of computed static moments was based on 

a uniform distribution of shear along all supported edges including those 

supported by beams 0 These are denoted as M in all the following tables 0 

s 
The 

second set of computed static moments was based on a uniform distribution of 

shear aJ..ong the edges of the columns or capitals depending on the panel 

80nsideredQ Moments based on this assumption are given as M10 The true static 
s 

moment i.n the panels lies between the values of M and M! 0 Since no precise 
s s 

determination of the distribution of shear can be made, this range of values 

provi.des a means of estimating the actual static moment 0 

The measured static moment in each panel was determined by adding 

the positive measured moment at the centerline of the panel to the average of 

the negative moments in the panel 0 The measured moments for all. panels of 

the structure are listed in Tables 806 to 80140 The percentage of total moments 

at the sections considered is given 0 The total moments are also given as 

coefficients of WL, the product of the total load on the panel and the span 

center to centerline of the supporting constants, The value of WL was constant 

for all panels 0 

The design static moment was determined by summing design positive 

moment and the average of the design negative moments in each panelo 
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In the following tables, the computed, measured, and design static 

moments are listed for each panel individually. However, in comparing the 

static moments, it is preferable to consider a strip of three panels such 

that the boundary conditions are known 0 Therefore, the panels are grouped 

to give a section across the full width of the structure if they are considered 

together 0 

Static Moments in Panels ABC 

Panel A Panel B Panel C Panels ABC 
M/~VL MiWL 

! 
M/WL M/3WL 

M 0.098 00093 00098 0.096 s 

M' 00101 00090 00101 00097 s 

M 
0.107 00091 00105 0.101 me as 

M des. 0.102 00070 00111 0.094 

There was little difference between the computed static moments 

based on the two different assumptions. In the corner panels A and C, the 

centroid of the reaction was near the face of the beam if the shear was assumed 

to be distributed along the beams and columns 0 However J if the shear was 

distrib~ted along the columns only, the centroid of the reaction was closer to 

the edge of the panel (to the outside of the face of the beam). Thus, the 

value of M I was larger than M 0 The centroid of the reaction at the interior 
s s 

column capitals remained the same for both assumptionso 

The measured static moment in the individual panels deviated somewhat 

from the computed static moments and the measured moment across the full width 

of the structure was slightly highero Figure 8015 shows the variation in the 

measured from the computed static moments at the four load levels in test 502. 
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The design static moments were nearly the same as the computed 

static moment in panel A. However) in panels B and C there was considerable 

difference in the values. Panel B was under-designed while panel A was over-

designed but it is important to note that in the section across the entire 

structure) the design static moment compared favorably with the computed and. 

measured values 0 

Static Moments in Panels DEF 

Panel D Panel E Panel F Panels DEF 
MlWL M/WL M/WL M/3~JL 

! 

M 0.096 00088 00096 0093 s 

Ml 0.097 0.088 00097 0094 s 

M 0098 0.087 00110 0.98 me as 

Md 0096 00065 00106 0089 es 

The end support conditions were the same for the individual panels 

and in panels D and F) the computed static moments were e'lualo Although 

panels D and F were supported by different spandrel beams) these beams did 

not affect the support conditions in the span parallel to the beamo 

The measured moments compare favorably with the computed static 

moments in panels D and E but in panel F the measured moment was considerably 

greater (13 per cent) 0 The measured static moment across the entire section was 

4 per cent higher than the computed values) largely as a result of the high 

measured moment in panel Fa The variation between measured and computed 

static moments across the section is shown in Fig. 8.150 

The design moment in panels D and F are approximately equal to the 

computed values) however; in panel E the deSign moment is 26 per cent less 

than the computed static moment 0 The design moments for the section across 
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the full width are 5 per cent lower than the computed static moments and 9 

per cent less than the measured value. 

Static Moments in Panels GHJ 

Panel G Panel H Panel J Panels GHJ 
M/HL M/WL M/"JL M/3WL 

}.i 0.106 00100 0.106 00104 s 

}.i' 0.101 00090 00101 0.097 s 

M 0.102 00081 0.127 00103 me as 

M des 0.103 00069 0.112 0.095 

The computed static moment in the panels was considerably different 

depending on the assumptions for shear distribution in these panels. As can 

be seen from the table, M was higher in all panels. If the shear was 
s 

considered to be distributed along the beams and columns, the centroid of the 

reaction was shifted toward the edge of the panel. The centroid of the 

reaction was near the edge of the beam and since the deep beam was narrow the 

reaction was almost at the edge of the panelo The result was a higher value 

of M in these panels. 
s 

The values of measured moment in the individual panels varied 

considerably, especially in panel H and Jo However, the measured moment 

across the entire structure falls within the range of computed moments. The 

measured static moments in test 502 are ~hown in Figs. 8.15. 

The value of design moment in panels G and J appears to be reasonable 

but p&~el H appears to be under-designed. The design moment across the 

entire structure falls below the range of computed static moments. 

A summary of the static moments is given in Table 8.150 The 

measured moments in th~ individual panels were considerably different from the 



-52-

computed static moments in those panels. However) as was pointed out in the 

preceding discussion" the measured moment across the full width compared 

favorably with the static momentso Referring to Figo 8.15) it can be seen 

that in all sections across the entire structure the measured and computed 

moments were very close. In general) the measured static moment increased as 

the load increased but this is not unreasonable since the load may cause 

sufficient deflection of the capitals to shift the reaction to the edge of 

the panelso As a result) the moments tend to increase 0 

Comparison of the computed and deSign static moments in the 

individual panels (Table 8015) shows that the design is adequate in the panels 

with some beam support in the direction of the spano The three panels which 

had no spandrel beams in the direction of design moment (Panels BEH) were 

considerably under-designed. The method for deSign of the beams provides a 

considerable addition to the caracity \)f the panel 0 On the basis of these 

resl:..-'-..t.s) it can be concluded that as the number of panels which have no beam 

support. in. the direction of the span increases) the design static moment 

across the full width of the structure decreases 0 The over-all result will be 

a reduced factor of safety for the structure since the beams are the major 

reason for attaining a design static moment that is close to the computed 

static moments. 
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90 STRENGTH ANALYSIS 

901 Introductory Remarks 

The strength of the structure was determined by considering various 

failure mechanisms similar to the method suggested by A. Inger.slev and 

improved by K. W. Johansen (Ref. 9)0 This method is commonly referred to as 

the yield-line analysis. 

Three different failure mechanisms are considered. The first is a 

collapse mechanism deSignated as a "structural failure" shown in Fig. 9.1. 

The mechanism is distinguished by the formation of yield lines or hinges across 

the full width of the structure including the beams. The exterior hinge is 

assumed to form at or near the face of the beam. 

The second collapse mechanism is a slab failure shown in Figo 9.2. 

The exterior hinge is assumed to form across the full width of the structure, 

excluding the beams. The interior yield line forms between the interior 

columns and extends to about the center of corner panels along the diagonal 0 

the positive moment yield line is located near the center of the panels and 

extends along the diagonals to the corner columnso 

The third failure mechanism shown in Fig. 9.3 is for the interior 

panel 0 The positive yield lines form an X coinCiding with the diagonals of 

the panel. The negative yield lines are parallel to the column centerlines 

but do not coincide with these centerlineso 

The resisting moments across the sections at which yield lines 

formed were computed using the straight line formula 

M 



where 
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M resisting moment of the section 

A area of tension reinforcement 
s 

f = stress of the reinforcement 
s 

jd effective internal moment arm 

The welded wire fabric used in reinforcing the slab did not have a flat-top 

stress-strain curve. Therefore in keeping with the discussion of Section 

7.5(d)) the strength of the slab was calculated based on the 0.2 per cent 

offset stress in the reinforcemento Since the wire still has some strength 

after it reaches the 0.2 per cent offset stress, the strength was also 

computed using the ultimate stress in the wire. The straight line formula 

was used for the ultimate resisting moments of the sections. The ultimate 

reSisting moments could have been computed by defining the internal moment 

arm as 

where k 
u 

(p - P 
f cu 

f 
Y 

d (1 - 004 k ) 
u 

fcu average compressive strength of concrete at failure (fcu = 0.7 f~) 

p tension reinforcement ratio 

pI compression reinforcement ratio 

However, the moments computed on this basis were numerically the same as those 

given by the straight-line formula. 

The yield moment was us,ed in determining the strength of the beams 

si.nce the beam. reinforcement had a well defined yield point. For the deep 

beams a flange width was assumed equal to the width of the beam plus four 

times the slab thickness) or 9 in. 
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9.2 Comparison of Calculated and Measured Strength 

The loads determined from each of the assumed modes of failure are 

shown in the table belowo The loading was assumed to be concentrated at 

sixteen points which was the actual loading on the test structure. However, 

computations based on uniform loading gave almost identical results. 

Two different assumptions were made as to the distribution of shear. 

One set of computations was based on a uniform distribution of sbear along all 

supported edges. Another set of computations was based on the assumption that 

the shear was concentrated at the corners of the column capitals. 

Capacity 
Assumed Based on Based on 

Failure Mode Shear 002% offset stress Ultimate Stress 
Distribution psf psf 

lo Structure 
(a) Row adjacent 

to shallow beam Uniform 1040 1 nQn --,,-

(b) Row ad.jacent 
to deep beam. Uniform 970 1030 

2. Slab 
( a) Row Adjacent Uniform 873 964 

to shallow beam Conc 0 1100 1200 

(b) Row Adjacent Uniform 776 876 
to deep beam. Conco llOO 1220 

3· Interior Panel Uniform 1330 1480 
Conco 2100 2320 

As can be seen from the table, the critical failure mechanism was a 

slab failure adjacent to the deep beamo However J the assumption that the shear 

is concentrated along all supported edges tends to make the span of the slab 

too great and results in a low capacity. A more realistic value of the 



capacity at failure would appear to be that for the slab failure in the row of 

panels adjacent to the shallow beamo With a uniform distribution of shear 

along all supported edges the ultimate load was computed as 964 psfo The 

ultimate load ~ith the shear concentrated at the corners of the capitals was 

1200 psfo The assumption that the shear is concentrated at the corners is 

also unrealistic because the capitals deflect considerably at high loads and 

thereby cause a shift in the reaction toward the beamo The span increase is 

accompanied by a corresponding decrease in the capacity 0 It is also important 

to remember that the development of the slab mechanism depends upon the 

abil.i ty of the beam-column connections to withstand torsional rotations which 

in many cases may control the strength of the structure 0 

On the basis of the calculations for capacity it appears that a 

reasonable value of the strength is about 900 psfo This load gives a factor 

of safety for the structure of 302 based on the design load of 284 psfo It 

j,s in-:,eresting to note that the actual failure in the structure occurred as a 

slab taLi_ure in the panels adjacent to the shallow beam at a load of 955 psf 0 

However., the beam-column connections were reinforced prior to this load and, 

even with t.his ext.ra reinforcement, were responsible for the failure. 

The structural failure load was conSiderably higher than the slab 

failure load largely due to the beamso The beams add considerable strength to 

the structure and as a result. do not participate in the failure mechanism 0 

The ultimate load for the interior panel was calculated as 1480 psf 

based on a uniform distribution of shear 0 The value based on concentrated 

shear is very high but the assumption is uruealistic because of deflections in 

the column capitalso The factor of safety based on the design load (284 psf) 

is 5020 The actual failure load of the interior panel was about 1500 psfo 
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It should be pointed out that the X-shaped failure mode assumed in 

the interior panel occurs only if the failure mechanism is confined to a 

single panel 0 A series of like panels in an infinite array of panels would 

have a different failure mode. Such a failure mode is characterized by 

hinges or yield lines along the column and panel centerlines and includes more 

than one panel. The failure load would be 948 psf if the reinforcement in each 

panel was similar to the interior panel in the test structure. 

From a comparison of the computed ultimate loads with the actual 

failure loads on the test structure} it can be concluded that the structure 

was able to develop its rated capacity. The maximum moments in the slab 

failure mode were not fully developed because of the torsional failures in 

the beam column connections. However} the load at the 0.2 per cent offset 

stress was reached in the section that failed and the factor of safety for 

the measured failure load was 3.4. 

From the viewpoint of the strength of the structure it appears 

unreasonable to use the same working stresses for high-strength as for inter­

mediate grade reinforcement. 



100 SUMMARY 

1001 Object and Scope 

This report describes and analyzes the tests on a nine-panel flat 

slab structure reinforced with welded wire fabric 0 The work was carried out 

as part of an extensive investigation of multiple~panel reinforced concrete 

floor slabs 0 

The panels were arranged three by three 0 Each panel measured five 

feet s~uare on column centers 0 The slab was 1 3/4 ino thicko The dimensions 

of the slab} the spandrel beams} and columns are given in Figo 204-2060 

The deSign of the structure was made according to Section 1004 of 

ACI 318-56 for a live load of 200 psf on the slab 0 The arrangement of the 

slab) beam) and column rei.nforcement is shown in Figo 205-2070 The average 

Ov2 per cent offset stress for the steel was 70 ksio The properties of the 

concrete are listed in Table 3010 

Each panel was loaded at 16 symmetrically located points (Fig 0 402 

and 506)0 A series of tests) including pattern loadings) were carried out as 

indicated in Table 6010 The structure was instrumented with 323 strain gages 

on the reinforcement and 30 on the concrete (Figo 501-505)0 Deflections were 

measured at 33 locations (Fig 0 508). 

1002 Behavior of the Test Structure Under Service Load 

The performance of the structure under service load was characterized 

by very low stresses and deflections 0 The maximum deflection was 00096 ino or 

L/625 (Fig. 702) and the maximum stress in the reinforcement was 11}OOO psi 

(Figs 0 '704 and 705) at the desi.gn loado 

The distribution of moments across the full width of the structure 

are shown in Figso 804 to 80120 Comparisons of the measured moment with the 



-59-

design moment are given in Table 8.1 to 8.4. The comparison of the design 

moments with those measured was poor. The ratio of the measured to design 

moment at a total load of 286 psf ranged from 0.22 to 1.79 for the slab and 

0031 to 1.48 for the beam sections. 

10.3 Strength 

The test structure failed at a total load of 955 psf on all panels. 

The failure was initiated by distress at the exterior beam-column connections 

and consummated by fracture of the reinforcement across the mid-span of a row 

of three exterior panels. The ratio of the ultimate to design load was 3.4. 

Calculation of the capacity of the structure on the basis of the 

yield-line analysis indicated a load of about 900 psf predicated on a negative 

Yield-line forming at the face of the exterior beam. However, the beam-column 

connection failed in combi~ed bending, shear, and torsion before the slab 

reinforcement yielded at the face of the beam. As long as the deSigner 

provides for the moment and shear to be transmitted to the supporting columns, 

the yield-line analysis should give a safe estimate of the capacity. 
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TABLE 3.1 

PROPERf.rIES OF CONCRETE 

Compressive strength 

\-iater 56 da~s 
Batch Cement 2x4 cyl. f' 4x8 cyl. fi 

No.of c No.of c 
Tests psi Tests psi 

1 0·72 2 4380 
2 0·72 2 3590 3 3440 

3 0073 3 4470 
4 0·73 3 4850 3 4350 

5 0·72 3 3490 
6 0·73 3 3940 3 3830 
7 0·72 3 3670 
8 0·72 3 3720 3 3850 

9 0·72 3 3290 
10 0·72 2 3770 3 3910 
11 0072 3 3560 
12 0 .. 72 3 3390 3 4000 

Averages 3760 3900 

f' = compressive strength of a 6 x 12 in. cylinder c 
f modulus of rupture 
r 

2x4 cyl. 
No.of 
Tests 

2 

2 
2 

2 
2 
2 
2-

2 

2 
2 

100 dals 

f' 4x8 cyl. 
c No.of 

psi Tests 

4140 

3 
4780 
4060 3 
3380 
3580 3 
3240 
3020 3 
3180 

3 
3970 
3410 3 

3670 

Modulus of Rupture 

56 dals 100 dals 

f' f f c No.of r No.of r 
psi Tests psi Tests psi 

3330 3 800 3 812 

4640 3 718 3 882 

3870 
8 
(J'\ 

3760 3 778 3 822 J--l 
• 

4180 3 711 3 693 

4180 

3990 750 804 
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TABLE 601 

CHRONOLOGY OF TESTS 

Test Noo Date Panels Loaded Remarks 

500 20 April 1961 All Readings taken during assembly 
of load distribution system 0 

501 3 May All 100 psf* 

502 4 All LL + DL 284 psf 

503 11 All lo5LL + DL 384 psf 

504 16 ABC-GHJ 384 psf on ABC-GHJ, 
84 psf on others 

505 18 DEF 384 pst on DEF, 
84 psf on others 

506 23 ADG-CFJ 384 psf on ADG-CF:l.T) 
84 psf on others 

507 25 BEH 384 psf on BEH, 
84 pst on others 

508 6 June ABC-DEF 384 psf on ABC-DEF, 
84 psf on others 

509 9 DEF-GHJ 384 pst' on DEF-GHJ .• 
84 psi" on others 

510 12 ADG-BEH 384 psf on ADG-BEH} 
84 pst on others 

511 13 BEH-CFJ 384 pst on BEH-CFJ, 
84 pst on others 

512 15 All 674 psf 

513 20 All 955 pst' 

514 21 E 1500 pst 

* All values of nominal uniform load given in the table include the weight of the 
slab and the load distributing system 0 



Load, psf 

104 

161 

218 

286 

(Design Load) 

DESIGN MOMENT 
for 

286 psi' 

TABLE 8.1 

MEASURED MOMENTS IN WALL STRIP INCLUDING SHALLOW BEAM 

Shallow Beam Deep Beam 

~ 2 313' 4 5' 15 6 _·71 
Slab 100 1.2 
Beam 100 105 
Total 2.0 207 

Slab 105 200 
Beam 20~ 207 

Total 400 407 

Slab 200 2.6 
Beam 405 400 

Total 605 606 

Slab '0' '0' 
Beam 50' 409 
Total 806 802 

Slab 503 306 
BeeXil 501 5.8 

'l'ota1 10.4 904 

Moments, kip-ina 

,.6 ,06 
1·1 106 

50' 502 

509 509 
20 1 2·5 
806 8.4 

707 707 
500 ,.4 

12.7 1101 

1001 1001 
60 2 5·1 

16.4 15.2 

706 607 
802 7.2 

1508 1,.9 

006 40' 40' 
009 106 101 
1·5 5·9 600 

009 606· 6.6 
10' 2<2 205 

202 809 1001 

10' 809 809 
1·9 202 500 

3·2 1201 1,09 

108 1102 11.2 
205 406 608 

4., 1508 1800 

208 607 706 
500 702 802 

7·8 1309 15·8 

101 
108 

2·9 

108 
200 

408 

205 
4.2 

6·7 

,., 
408 

801 

306 
5·8 

9·4 

008 
104 

2.2 

101 
200 

301 

1.6 
205 
501 

2.4 
409 

7·, 

40' 
501 

9·4 

u 
0\ 

\.N 
B 



Load, psf 

104 

161 

218 

286 

(Design Load) 

DESIGN MOMENT 

for 
286 psf 

TABLE 802 

MEASURED MOMENTS IN WALL STRIP INCLUDING DEEP BEAM 

Shallow Beam Dee12 Beam 

11 2 3 1 3' 4 5' 1 5 6 71 
Moments z kiE-ino 

Slab 002 004 105 105 003 100 100 003 004 
Beam. 100 200 502 500 106 502 601" 505 108 

Total 102 304 607 605 109 603 707 508 202 

Slab 003 0·5 200 200 004 106 106 004 0·5 
Beam. 106 405 7·1 800 206 708 100;2 1100 209 

Total 109 500 9.1 1000 300 904 1109 1104 304 

Slab 005 007 302 302 005 202 202 006 007 
Beam 202 705 1208 1100 306 10.8 1400 1502 309 

@ 

Total 207 802 1600 1402 501 1300 1602 1508 406 
0\ 
. .t::;-
I 

Slab 006 100 401 401 007 402 402 009 100 
Beam 20 2 1102 11 04 l5~9' 406 14<2 18<2 15<(: " 40 2 
Total 305 1202 2105 19,,1 503 1805 2205 1606 509 

Slab 207 108 309 306 104 306 309 108 202 
Beam ~ 1006 1409 1201 900 1;01 1409 1006 903 

Total 1200 1204 1808 1607 1004 1607 1808 1204 1105 



TABLE 8.3 

MEASURED MOMENTS IN COLUMN STRIP 

Shallow Beam Deep Beam 

~ 2 313' 4 5' 1 5 6 71 
Load, psf Moments, kip-in. 

Column Strip 1 (Closer to parallel shallow beam) 

104 3·8 208 8.3 5·9 1·9 7·7 7·4 1·7 ;.2 
161 5·7 4.4 1;.1 9·2 3·0 12.4 11.9 4.; 4·9 
218 7·1 509 16.1 1200 4.0 16.6 17.0 5·7 6.8 
286 1001 1001 20.0 170:2 504 21.1 21.8 202 806 

Design Moment 
for 286 psf 1200 607 15.6 1309 506 1;.9 15.6 6.7 10.0 

Column Strip 2 (Closer to parallel deep beam) 

104 
161 
218 
286 

Design Moment 
for 286 psf 

2·7 
4.; 
5.6 
8.0 

12.0 

3.7 7·8 7.6 200 7.7 8.2 204 
4.9 13.411.6 303 12.0 12.7 3.8 
6.7 1609 17.; 4.4 ::1.6.6 lI.O 50; 
9.7 20·7 20.6 6.0 19.1 20.8 903 

30 3 
500 
6·9 
8.8 

607 15.6 13.9 506 1;.9 15.6 6.7 10.0 

I 
0'\ 
\Jl 

U 



TABLE 804 

MEASURED MOMENTS IN MIDDLE STRIPS 

Shallow Beam DeeE Beam 

I 1 2 3\3' 4 5'1 5 6 71 
Load~ Moments, kip-ino 

Middle Strip 1 (Closer to parallel shallow beam) 

104 007 209 2.4 204 102 203 203 1·9 100 
161 101 4.4 309 -3·9 108 3·7 307 302 103 
218 103 509 505 505 203 500 500 403 108 
286 108 804 705 705 302 7·1 701 604 204 

De sign Moment 
for 286 psf 306 605 506 408 40B 408 506 605 6·5 

Middle Strip 2 g 
CJ\ 
CJ\ 

104 100 207 209 2·9 104 108 108 207 007 8 

161 1·5 402 404 404 203 209 209 403 102 
218 201 507 509 509 3010 400 400 507 105 
286 207 806 7·5 105 401 100 100 104 202 

Design Moment 
for 286 psf 301 506 407 402 402 402 407 506 506 

Middle Strip 3 (Closer to parallel deep beam) 

104 006 1.6 200 2.0 102 201 201 108 101 
161 100 209 3·2 3·2 1.6 3·1 3·1 2.8 107 
218 1.4 308 4.2 4.2 20.3 404 404 308 204 
286 109 200 600 600 40'7 508 508 5<2 302 

Design Moment 
for 286 psf 301 506 407 402 402 402 407 506 5·6 



Load, psf 

104 
161 
218 
286 

Measured Total Moment 

104 
161 
218 
286 

Load,~ 

104 
161 
218 
286 

Total Moment Coeffi.cient 

104 
161 
218 
286 

TABLE 8.5 

MOMENTS ACROSS FULL WIDTH OF THE STRUCTURE 

Shallow Beam 

1 2 3 

-12.02 19·77 -35·38 
-19.48 30.51 -56.00 
-26.52 42·73 -77.34 
-36.55 62.04 -99·65 

43·47 
68025 
94.66 

130014 

Moments, kip-in. 

3' 4 5' 

-32·50 10·99 -33·77 
-50.50 17.16 -52040 
-70.21 23.19 -71.59 
-93.14 32085 -94.79 

44.14 
68.61 
94.09 

126.82 

Moment Coefficients in Terms of WL 

1 2 3 3' 4 5' 

00026 0.042 0.075 0.069 00024 0.072 
0.027 0.042 00077 0.070 0.024 0.072 
0.027 0.044 00080 0.072 0.024 0.074 
0.028 0.048 00078 0.07"2 0.025 0.014 

0.093 0.094 
0.094 0.095 
0.097 0.097 
0.101 0.098 

5 

-35036 
-56024 
-77034 

-101.46 

5 

0.076 
0.078 
0~080 

0.079 

Deep Beam 

6 7 

20.11 -13.68 
34.69 -20·78 
47026 -29.14 
63·37 -38·39 

44.63 
73·20 

100·50 
133·30 

6 

0.043 
0.048 
0.049 
0.049 

0.095 
0.101 
0.108 
0.104 

7 

0.029 
0.029 
0.030 
0.030 

D 
0\ 
-.:] 
I 



TABLE 806 

MOMENTS AT DESIGN SECTIONS, CORNER PANEL A, DESIGN LOAD 

Measured Moment (kip-i.n.) Percenta~e of Total Moment 

Load, psf 104 161 218 286 104 161 218 286 

Exterior Negative Moment 

Column Strip 1094 2·91 3035 4068 1209 1109 9·9 1002 

Middle Strip 0067 1006 1031 1·75 405 4.3 3·9 3·8 
Wall Strip 1.00 1048 1·95 3·30 6·7 601 5.8 702 
Beam 1.00 2·50 4·50 5·30 6·7 10.2 1304 11·5 

Interior Negative Moment 

Column Strip 3·53 5.63 7·13 9·61 23·5 23·1 2102 2009 
Middle Strip 2.41 3087 5045 7·52 1601 15·9 16.2 16.4 

Wall Strip 3·64 5·88 7·73 10.10 2403 24.1 22·9 2200 I 
0\ 

Beam 1·70 2·70 5000 6·30 11·3 11.1 1408 1307 co 
I 

Total Ext. Neg. Moment 4.61 7095 11011 15003 3007 3206 3300 32 07 
Total Into Neg. Moment 11028 18008 25·31 33·53 75.2 74.0 74.5 73·0 
Average Negative Moment 7095 13·02 18.21 24028 53 00 53·3 5400 5209 

Positive Moment 

Column Strip 1046 2·29 3·04 5.08 9·7 9·4 900 1101 
Middle Strip 2090 4040 5088 8038 1903 18.0 1704 18 03 
Wall Strip 1019 2001 2058 3·26 7·9 8.2 707 7·1 
Beam 1·50 2070 4000 4·90 10.0 11.1 11·9 10·7 

Total Positive Moment 7·05 11.40 15050 21062 47·0 46.7 4600 4701 
Total Moment 15000 24042 33071 45·90 100.0 100.0 100.0 100.0 

Moment Coefficient, WL 00096 00101 00103 00107 



TABLE B.7 

MOMENTS AT DESIGN SECTIONS, EDGE PANEL B, PERPENDICULAR TO 
THE SHALLOW BEAM·, DESIGN LOAD 

Measured Moment (kip-in.) Percentage of Total Moment 

Load, psf 104 161 21B 286 104 161 21B 286 

Exterior Negative Moment 

Column Strip 3052 5041 7·08 10027 25·2 2408 2409 2602 
Middle Strip 1000 1052 2005 2072. 7·2 700 7·2 609 

Interior Negative Moment 

Column Strip 9023 14056 17·93 21040 6601 660B 6301 5406 
Middle Strip 2091 4036 5094 7·45 200B 2000 2009 19·0 

Total Ext 0 Nego Moment 4052 6093 9·13 12099 3204 31.8 32.2 33·2 I 
CJ\ 

Total Int. Nego Moment 12014 18092 23·87 28.85 8700 8608 8401 7306 \0 
0 

Average Negative Moment B·33 12093 16.50 20092 5907 5903 5801 5304 

Positive Moment 

Column Strip 2096 4.63 6023 9·68 2102 21.2 2109 24·7 
Middle Strip 2067 4.25 5067 8058 19·1 1905 2000 2109 

Total Positive Moment 5063 8.88 11·90 18026 4003 40·7 41·9 46.6 
Total Moment 13.96 210B1 28.40 3901B 10000 10000 10000 10000 

Moment Coefficient, WL 0.090 0.090 0.oB7 00091 



TABLE 808 

MOMENTS AT DESIGN SECTIONS, EDGE PANEL B, PARALLEL TO 
THE SHALLOW BEAM, DESIGN LOAD 

Measured Moment (kip-in.) Percentage of Total Moment 

Load, psf 104 161 218 286 104 161 218 286 

Negative Moment 

Column Strip 3·28 5025 6079 9028 2202 2207 2109 22.0 
Middle Strip 2035 3076 5·20 7030 1509 1602 1608 17·3 .. 
Wall Strip 3096 6023 8031 10.64 26.8 26.9 26.8 2503 
Beam 1.60 2040 3030 4.83 1008 10.4 10.6 11·5 

Total Negative Moment 11019 17.64 23·60 32.05 7508 7602 76.0 76.1 

Positive Moment 

Column Strip 0096 1047 1·96 2063 6.5 604 6·3 6.2 I -a 
Middle Strip 1017 1084 2032 3016 709 7·9 7·5 705 I 

Wall Strip 0.56 0.88 1025 1.76 308 3·8 400 402 
Beam 0.88 1·32 1091 2·50 600 5·7 602 509 

Total Positive Moment 3057 5·51 7044 10.05 24.2 23·8 24.0 23·9 
Total Moment 14076 23015 31004 42010 10000 10000 100.0 10000 

Moment Coefficient, WL 00095 00096 00095 0.098 



TABLE 8.9 

MOMENTS AT DESIGN SECTIONS, CORNER PANEL C, PERPENDICULAR TO 
THE SHALLOW BEAM, DESIGN LOAD 

Measured Moment (kip-in.) Percentage of Total Moment 

Load) psf 104 161 218 286 104 161 218 286 

Exterior Negative Moment 

Column Strip 1006 1.67 2024 3014 7·3 7·6 6·9 7·0 
Middle Strip 0.63 1.03 1·39 1.89 4·3 4·7 4·3 4.2 
Wall Strip 0.20 0·30 0.45 0.60 1.4 1.4 1.4 1·3 
Beam 1.00 1.60 2.20 2·90 6·9 7·3 6.8 6.4 

Interior Negative Moment 

Column Strip 3.28 6·34 7·99 9·75 2206 28.8 24.5 21.6 
Middle Strip 1095 3.16 4.17 5·98 13·4 14·3 12.8 13·3 

• Wall Strip 1·53 2.40 3·20 4.14 10·5 10·9 9·8 902 -..:] 
t-.J 
I 

Beam 5·20 7·10 12.80 17.40 35.8 32.2 39·3 38.6 

Total Ext. Neg. Moment 2.89 4.60 6.28 8.53 19·9 20·9 19·3 18·9 
Total Int. Neg. Moment 11.96 19·00 28.16 37·27 82.4 86.2 86.5 82·7 
Average Negative Moment 7·43 11.80 17·22 22·90 51.2 53·6 52·9 50.8 

Positive Moment 

Column Strip 2.08 2.42 3·30 4·99 14·3 11.0 10.1 11.1 
Middle Strip 1.61 2·78 3·80 4.97 11.1 12.6 11·7 11.0 
Wall Strip 0.40 0.53 0·73 1.00 2.8 2.4 2.2 2.2 
Beam 3·00 4.50 7·50 11.20 20·7 20.4 23·0 24·9 

Total Positive Moment 7·09 10.23 15·33 22.16 48.8 46.4 47·1 49·2 
Total Moment 14·52 22.03 32·55 45.06 100.0 100.0 100.0 100.0 

Moment Coefficient, WL 0.093 0.091 0.099 0.105 



TABLE 8ol0 

MOMENTS AT DESIGN SECTIONS, CORNER PANEL C, PERPENDICULAR TO 
THE DEEP BEAM:J DESIGN LOAD 

Measured Moment {kip-in.) Percentage of Total Moment 

Load, pSf 104 161 218 286 104 161 218 286 

Exterior Negative Moment 

Column Strip 1.63 2063 3 .. 32 4.28 11.2 11.1 10.2 9·7 
Middle Strip 1.01 1·31 1 .. 83 2.44 7·0 505 5.6 5.6 
Wall Strip 0.76 1.14 1,,58 2.43 5·2 4.8 4.9 5.5 
Beam 1.45 2.00 3 .. 50 4·90 10.0 8.5 10.8 11.2 

Interior Negative Moment 

Column Strip 3090 6·33 8 .. 49 10·70 26.8 26.8 26.1 2404 
Middle Strip 2.28 3065 4,,95 7·07 15·7 15.4 15.2 16.1 

D 

Wall Strip 4.28 6.58 8,.88 11.18 29· 5 27 .8 27 .4 25·5 -..:] 
f\) 
I 

Beam 1070 3050 5 .. 00 6.80 11·7 14.8 1504 15.5 

Total Ext. Neg. Moment 4.85 7·08 10.23 14.05 33·4 30.0 3105 3200 
Total Into Neg. Moment 12.16 20006 27 .. 32 35075 8307 8409 8401 81.4 
Average Negative Moment 8051 13·57 18.78 24·90 5806 5704 57·8 56 07 

Positive Moment 

Column Strip 1.24 2008 2·70 4.46 8.5 808 803 10.2 
Middle Strip 1085 3015 4027 6.44 1207 1303 13·2 1407 
Wall Strip 1.13 1083 2·52 3·32 708 707 708 7·6 
Beam 1.80 3000 4.20 4080 1203 1207 1209 10·9 

Total Positive Moment 6.02 10006 13·69 19·02 4104 4206 42.2 4303 
Total Moment 14053 23063 32,.47 43092 10000 10000 100.0 100.0 

Moment Coefficient, WL 0.093 00098 0.099 0.102 



TABLE 8.11 

MOMENTS AT DESIGN SECTIONS, INTERIOR PANEL E, DESIGN LOAD 

Measured Moment (kip-in.) Percentage of Total Moment 

Load, psf 104 161 218 286 104 161 218 286 

Negative Moment 

Column Strip 7·25 11035 15·94 20.21 57· 5 55·7 56.8 54.2 
Middle Strip 2·35 3.62 4·95 7·20 17·4 17.8 17 06 19·3 

Total Negative Moment 9·60 14·97 20.89 27 .41 74.9 73·8 7404 7305 

Positive Moment 

Column Strip 1·97 3·17 4.19 5.81 14.6 15·5 14·9 15·6 
Middle Strip 1.42 2025 2098 4.05 10.5 1100 10.6 10·9 

Total Positive Moment 3·39 5.42 7·17 9·86 25·1 26·5 25.6 26.5 
• 

Total Moment 12099 20·39 28.06 37027 100.0 10000 10000 10000 -:) 
\..N 

I 

Moment Coefficient, WL 0.083 00084 0.086 0.087 



TABLE 8.12 

MOMENTS AT DESIGN SECTIONS, EOOE PANEL F, PERPENDICULAR TO 
THE DEEP BEAM, DESIGN LOAD 

Measured Moment (kip-in.) Percentage of Total Moment 

Load, psf 104 161 218 286 104 161 21B 2B6 

Exterior Negative Moment 

Column Strip 3.16 4·75 6.79 B.67 27·6 26.2 27·0 25·0 
Middle Strip 0.67 1.1B 1·50 2.17 5·9 6·5 6.0 6·3 

Interior Negative Moment 

Column Strip 6.40 10.16 14·97 20.41 56.0 56.0 59· 5 58.8 
Middle Strip 1·78 2.87 3·95 5·48 15·6 15.8 15·7 15.8 

Total Ext. Neg. Moment 3·B3 5·93 8.29 10.84 33·5 32·7 32·9 31.2 
Total Int. Neg. Moment B.IB 13·03 1B·92 25·B9 71.6 71.B 75·2 74.6 I 

-:] 

'Average Negative Moment 6.01 9·48 13·62 1B·37 52.6 52·3 54.1 52·9 +:-
D 

Positive Moment 

Column Strip 2·75 4.33 5.B9 B.93 24.0 23·9 23·4 25·7 
Middle Strip 2.67 4·33 5·66 7·41 23·4 23·9 22·5 21·3 

Total Positive Moment 5.42 B.66 11·55 16034 47·4 47·7 45·9 47.1 
Total Moment 11.43 18.14 25.17 34·71 10000 10000 100.0 100.0 

Moment Coefficient, WL 0.073 0.075 0.077 0.OB1 



TABLE 8.13 

MOMENTS AT DESIGN SECTIONS, EDGE PANEL F, PARALLEL TO 
THE DEEP BEAM, DESIGN LOAD 

Measured Moment (kip-in.) Percentage of Total Moment 

Load, psf 104 161 218 286 104 161 218 286 

Negative Moment 

Column Strip 3093 5·98 8.56 9·79 23·9 23·8 24·5 20.6 

Middle Strip 2.00 3·15 4.27 5·90 12.2 12.6 12.2 12.4 

Wall Strip 1·37 1.82 2069 4.17 8·3 7·3 7·7 808 

Beam 5·13 7·90 10·90 14.65 31.2 31.5 31.1 30·9 

Total Negative Moment 12.43 18085 26.42 34.51 75·5 75·2 75· 5 72·7 

Positive Moment 

Column Strip 1.00 1065 2.20 3·01 6.1 6.6 6·3 6·3 B 
-..:] 

Middle Strip 1.16 1.58 2.25 4.66 7·0 6.3 6.4 9·8 \J1 
B 

Wall Strip 0.27 0040 0053 0067 1.6 106 1·5 1.4 

Beam 1.60 2.60 3·60 4.60 9·7 10.4 10·3 9·7 

Total Positive Moment 4.03 6.23 8·58 12·94 24·5 24.8 24·5 27 ·3 
Total Moment 16.46 25·08 35.00 47.45 100.0 100.0 10000 100.0 

Moment Coefficient, WL 00105 0.103 00107 0.110 



TABLE 8.14 

MOMENTS AT DESIGN SECTIONS} CORNER PANEL J) DESIGN LOAD 

Measured Moment (kip-in.) Percentage of Total Moment 

Load) psf 104 161 218 286 104 161 218 286 

Exterior Negative Moment 

Column Strip 1.68 2060 3 .. 60 4047 900 8·3 8.4 802 

Middle Strip 1.13 1074 2,,41 3·18 600 5·5 506 508 

Wall Strip 0039 0·53 0 .. 71 0095 2.1 1·7 1·7 1·7 
Beam 1.80 2090 3·90 4·90 9·6 9·2 9·1 9 .. 0 

Interior Negative Moment 

Column Strip 5 .. 30 8009 10·.59 11·50 28.4 25·7 24·7 2101 

Middle Strip 2005 3013 4037 5.82 11.0 1000 10 .. 2 10·7 
Wall Strip 1.02 1.63 2019 4.20 5·5 502 501 7·7 I 

-:J 
Beam 6.65 10 .. 30 13 0 95 18·30 35.6 32.8 32·5 33 05 0\ 

I 

Total Ext. Nego Moment 5·00 7·77 10.62 13·50 2608 24·7 2408 24·7 
Total Into Neg. Moment 15·02 23·15 31.10 39082 8004 73·7 72·5 72·9 
Average Negative Moment 10001 15·46 20.86 26066 53·6 4902 48.6 48·7 

Positive Moment 

Column Strip 1.07 1·73 2·37 4.86 507 505 5·5 8·9 
Middle Strip 1.82 2.82 3·81 5030 9·7 9·0 8·9 9·7 
Wall Strip 0.28 0042 . 0.64 0085 1·5 103 105 106 
Beam 5050 11000 15·20 17·00 29·4 35·0 3504 3101 

Total Positive Moment 8067 15097 22002 28.01 4604 5008 5104 5103 
Total Moment 18.68 31043 42088 54067 10000 10000 10000 10000 

Moment Coefficient) WL 0.120 00130 00131 00127 
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TABLE 8.15 

SUMMARY OF STATIC MOMENT COEFFICIENTS 

Panel A B C D E F G 

M @ 104 psf 0.096 00090 00093 00095 0.083 0.105 0.093 meas 

M s 
M' s 

M des 

M: s 

M' ~ s 

('l 

~ 
de:: ~ 
H .. ...;.a!:j &...I ~ 
U ~. UJ (1) 

;~~b~~ 
P' I-i Q) crq 
... m I-'- !:U 

~"O t:J (1) 
H c+. (1) 1-1) 
...... «:<j I?j(!) CD 
f-I . ~~ l-j 
~. 0 f-'. CD 
tJ H;. W ~i :::s 
Q r.:: aq Cl 
...,. H f-'. CD 
(/If-Bf--lt::1 
. f--l p.., ('.) ~..fJ m f-'. f-'.Id 0 
'J....! ~ :::s 1\':> 0 
,0) () crq ~t 13 c "",. CI 

~~ ~ 
~ 

161 0.101 0.090 00091 0.096 0.084 0.103 0.098 

218 0.103 0.087 0.099 00095 0.086 00107 0.099 

286 0.107 00091 0.105 0.098 00087 0.110 0.102 

0.098 00093 00098 00096 0.088 0.096 0.106 

0.101 0.090 6.101 0.097 0.088 0.097 0.107 

0.102 00070 00111 0.096 0.065 00106 0.103 

Uniform distribution of reaction along all supported edges. 

Uniform distribution of reaction along edges of capitals and/or columns. 

H J 

0.073 0.120 

0.075 00130 

0.077 0.131 

0.081 0.127 

0.100 0.106 

0.090 0.101 

0.069 0.112 

I 
-.:] 
-:.J 

B 
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Note: All bars 1/2 in. square 
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IJ. L2 L3 
Shallow Beam 

5 - #2 x 6 II - 7 1/2" top 
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2 ... #2 x 7· .. 6ft 
top 5 .... #2 x '6' - 7 1/ 2 01 top 

2 - #2 x 9' - 11 1/2" bottom 5 - #2 x 5' - 0 1/4" 1?ottom 

3 .. #2 x 6' - 7 1/2" top 
3 - #2 x 58 GO 0 1/4" bottom 

Deep Beam 
1 ... #2 x l' - 6" top 3 - #2 x 6' - 7 1/2" top 
3 ... #2 x 4' ... 11 1/2" bottom 3 !" #2 x 5' os 0 1/4" bottom 

Stirrups 
Beam No. Stirrups Size Spacing Each End From Face of Support 

Shallow L1 28 1/810 Sq. Bars 10@ 1", 1@ 2", 3@ 43/4ft 
1,2 28 1/8" Sq. Bars l~ 1", l@ 2", 3~ 4 3/4" 

Deep IJ. 18 i/8" Sq. Bars 8@ 2 5/8", 1@ 4 1/2" 
L2 18 i/8" Sq .. Bars 8@ 2 5/8"., l@ 4 1/2" 

FIG. 2 .. 5 ARRANGEMENT OF BEAM REINFORCEMENT 
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BOTTOM REINFORCEMENT 

Wire Spacing Wire Size 
~in. l ~G~ No. ~ 

Desie!!stion Main Transverse Main Transverse 

1 1 3 14 16 
2 1 3 13 15 
:; 1 2 12.5 12.5 
4 1 2 12 12.5 
5 1 2 14 12.5 
6 1 2 11.5 12.5 
7 1 2 12 12.5 

TOP REINFORCEMENT 

Wire Spacing Wire Size 
(in. ) (Gage No.) 

Designation ~ Transverse !!!!l Transverse 

AA 1 1 10 10 
B 1 3 13 16 
c 1 1 12.5 12 
D 1 3 11.5 10 
E 1 3 12.5 16 
F 1 1 14.5 16 
G 1 1 13 13 
H 1 1 10 10 
J 1 1 9.5 12 

SECTIONAL AREAS OF WELDED WIRE FABRIC 

Gage No. 

9.5 
10 
11.5 
12 
12.5 
13 
14 
14.5 
15 
16 

Diameter (in .. ) 

0.142 
0.135 
0 .. 115 
0.106 
0 .. 099 
0.092 
0 .. 080 
O.OTI 
0.072 
0.063 

Area (sQ. in.) 

0.0157 
0.0143 
0.0102 
0.0087 
0 .. 0076 
0.0066 
0.0050 
0 .. 0046 
0.0041 
0.0031 

FIG .. 2 .. 7(e) GUIDE TO DESIGNATION OF SLAB REINFORCEMENT 
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