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I. INTRODUCTION

1. Summary

The purpose of this study is to investigate the applicability
various methods of numericel integration to problems of dynamic response
of structures. The scope of the study is, therefore, limited to differe
tial equations of order not higher than two, but the method of analysis
be applied equally well to differential egquations of higher orders.

Probléms of dynamics of structures are usually considered to t
initial-value problems. TUnlike the boundary-value problem which has its
given prescribed values along a closed boundé:'y s the initial value probl
has its given conditions prescribed at the begimning of the time coordi-
nate. Analytical treatment for both types of problems are different, ar
so are the numerical approaches. For boundary-value problems a typical
mumerical approach is the method of relaxation which solves a system of
algebraic equations, approximating the given set of differential eguatic
in the sense of finite differences, at a finite number of p§in‘bs. For
initial-value problems the mmerical solution is usually obtained throug
a marching process (a step-by-step integrating procedure). The range of
interest of the time coordinate is divided into & finite mumber of small
intervals. Since the necessary guantities have been given at the beginr
of the interval, the values at the end of the interval can be obtained t
simple formilas of integration; these values will éerve as the initial
values for the next interval. The accuracy of the mmerical solution is
affected by the method of numerical integration and by the finemess of t

subdivision of the time coordinate.
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-A.simple procedure would leave large truncational errors, and,
therefore; needs a finely divided interval to reduce the error; while an
accurate method of integration could tolerate a coarse time infemnﬂq bu
here the computations for each step are more campliéa$ed. What is neede
in design is a simple procedure with moderate accuracy which does not
entail laborious computational work.

In the present report, variocus methods of numerical integratic
are reviewed. Comparisons between the numerical solution and exact solu
tions are made for a system with a single degree of freedom, with consta
spring modulus. Since it is well known that motion of mmlti-degree-of-
freedom systems can be split into eigemmodes with each vibrating ﬁith it
own frequency, the apalytical comparison can be used equally well in the
case of milti-degree-cf-freedom systems, without loss of generality.
Systems with viscous damping or negative spring constant are also con-
sidered.

In a step-by-step procedure it is usually known that any erreor
either truncational or round-cff, commitied in ome step will combtimuocusl
affect the resulis of siubsequent compubtation; under certain circumstance
the error may grow without bound and eventually destroy the mumericel si
nificance of the apswer. This instability of error is discussed in deta
herein for problems of structural dynamics. The instebility criteria of
various methods are studied,; and means of suppressing the unstable solu-
tion are suggested.

Although the present analysis s mede for differential equatio
with constant coefficients; the result can give some qualitativé indicat

in cases where the coefficiemts become time-dependent. If the time inte
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3.
is teken small enough, within the interval it is reasonsble to assume th
the coefficients are constant. But this point-by-point checking does no
in gemeral, give relisble information. L)

However, it mmst be noted that the application of step-by-step
methods of integration is not merely limited to problems of initial-valu
type; nor is the relaxation method limited only to boundary value proble
For instance, attempts have been made to solve a tramsient heat-flow pro
blem by the relaxation technigue ,(2) and there are also possibilities of
obtaining solutions to & boundary value problem by means of step-by-step
integration. (3 The choice of the methods mainly depends upon the compu.

tational facilities available.

(L) S. H. Crandall, "Stebility Criterion of Difference Equation Selectic
of a Partial Differential Equation” June, 1953, pp. 80-81. J. Phy.
mthﬂ

(2} D. N. de G. Allen and R. T. Steven, ®The Application of Relaxation
Methods to the Solution of Non-Elliptic Partial Differential Equa-
tions®. Quart. J. Mech. and Applied Math. 4, (1951) 209-22; 5 (1952)
h7.45),

(3) M. Hymen, "A Non-Tterative Solution of Boundary Value Problem™,
Appiied Scientific Research. Section B, 2, No. 5, pp. 325-351, 195%



II. GENERAL DESCRIPTION OF VARIOUS METHODS
OF INTEGRATION

2. Classification of Methods of Mumerical Integration

Methods of mumerical integration have been a subject of inbtere
since Buler's day. Most of them ca:.i be found in the standard text books
of rmumericeal analysis; however only some of the most celebrated methods
are discussed here with respect to their application to problems of dyns
of structure. For the sake of simplifying the discussion, all available
methods are tentatively classified into three groups based on the opera-
tions used in the method.

(1) Methods using derivatives. - Methods in this group are
usually comstructed on the basis of ordinary Taylor expasnsion with highe
order terms truncated. Typieal examples are several integration formmuls
devised by W. E. M:L‘l‘:.ne.(h') | |

(2) Methods of subdivision in each step. - Typical examples ¢
this group are the famous Runge-Kutta methods in which the integrands ax
more accurately deiined by subdividing the interval.

(3) Methods of using higher order differences. - By extensive
introducing higher order differences into the expression the method can
produce resulbts as accurate as is needed. Methods of this type are
numerous, for instance, Adams® extrapolation procedure and inberpolstion
procedures.

This clessification is by no means rigid; there are procedures

{5)

which possesgprincipal features of two groups.

(4) Milne, W.G., A Note on the Mumerical Integration of Differential
Equations”;, J. Res. Nat. Bur. Stand., 43, pp. 537-542 (1949).

(5) Z¥rmiihl, R., "Runge-Kutta Method unter Verwendung hbherer Ableitung
ZaMM, 32, DP-. 153-15k, 19520;
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In the following, the discussion of variocus methods of numeric
integration is limited to integrating differentiel equations of first or
second order, gince differential equations of sectnd order can be split

into two equatioms of first order, i.e.,

g

vy =17T (t,v,5) (2
is eguivalent to
vi=1f (t:V)Y)
(2
yi=v

]

where y = dynamic displacement of the mass

v = velocity of the mass.

3. Methods Using Derivatives - Milne's Methods.

In one of his papers published in 191;9(6), Professor Milne lis
a series of integration forrmlas constructed on the basis of Taylor expa
sion of the integrand for differential equations of first and second ord
The higher the order of derivatives included in the expression the bette:
is the approximation in gemeral, but this further complicates the numeri
operations of the procedure. The most accurate formila in the list is o
with a residual of order of magnitude of h7, where h denotes the length ¢

intervel. This formila was discovered independently by Lotkin in 1952.

{6) Milne, W.G., "The Remainder in Linear Methods of Approximation”, J.
Res. Nat. Bur. Stand., Rp. 2401, 43, pp. 501-511 (1949).

Lotkin, M., "A New Integrating Procedure of High Accuracy®, J. Math.
Phy., 31, pp. 29-3%, 1952. '
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The derivation of the formula, for integrating differential equations of
the first order, is briefly reproduced as follows. Based on the Taylor

? "
expansion of £ in terms of T o’ g o’ f .“.f( n) it is clear that the

t +h
f © ar £(1) can be expressed in a power series,
t

o
+t +h 2 3 u n
o _ h® ' h (n)
/; f('r)d'r—hfo+2!fo B,f +...+’ 3
o
voom (n) ar a’r %
where f , £ ,f , . . . . % represent the value of £, =, —=.c0 o=
o’ "o’ "o o) dt 2 n
dt dat
at t=t o respectively.
"
Similarly, £ can be expressed in terms of fl, fl, l,....f§_n)
. (n) ar &% %
where f_, B :E‘ eoof represent values of £, ——) —=,...—— at t=t +h
1 l 1 1 dt 2 n o]
dat dt
Thus,
t +h 2 5 n
o h ! h
j; d'rf('r)—hfl--—gz £l vET oy - e (3
o]

Now sum eqs. (3-1) and (3-2) and average the sum; the following result i

obtained

to+h b w2 n
ft drf(z)—g(f+f)+22,(f )+25,(f+f)+...(;

e}

In truncating the unwanted terms the following two Taylor expansions are

found very useful,

f§n) = fé i n f(n+l) 121, £n+2) .. 6
(@) _ f:t(,n) h f](-n+l) 121 J(-n+2)+ . ¢

The difference of the two expressions is

f:{n)__ 1,c()n)

r.
é I_h (fgn:l)f§n+l)) (f(n-!-a) (n+2))+

(3



or more specifically for n = 1, 3, and 5,

(). 1) 2 [h (), @) L2 (0D 0Dy,

(-9 3o (o) B

f§5)_ féB): _

S L

[h (f(6)+ f(6)) + 5 (f(7) f{r)) + e (3

these three equations can be used to eliminate the terms involving ]:LLL s h5

and h6, in eq. (3-3), the finé.l form of the Milne-Lotkin formmla is then

ft°+hdvc £(1) = 5 (£+ £,) + (f ) + (f
" l 120 |

° (3-
It is not surprising to find that the residual is of the order of h7 , sin

r 24 "

t
six parameters fb s fl, fo 5 fl 5 fo’ fl have been incorporated into the

formle to define the integrand within the interval.

+ 7 ;) + 0(n!

(5] ]~g

Milne also devised an approximate but simple expression for the
residual, indicating the order of magnitude of the residual at each step.
This can serve as a guide to the mﬁber of significant figures of the
mmerical solution.

Based on the same technique one can construct a formmla for
second differential eguation

Yw = £(t,v,¥)

Integrating Eq. (3-3) once more with respect, to-t,r bnésfinds

: tth . 2~ | kg LN S " 58 o
.ft © f ar £(x) = % [l;_.(fo-!-fl) +’-311!~ (£,-£;) ‘”‘1]%: (£ +£,) + ] (3-1
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By using Egs. (3-7), (3-8) and (3-9) to eliminate terms involving h5, h6
and hT, in Eq. (3-11), one arrives at the integration formula for second

order equations with the residual of the order of h8°

t +h 2 5 1] 3 l" w.o» ’
[ [a? o) = Beae)) + K (eloel) + B (elae]) + 00 G
t .
O

The complete scheme of computation is then based on two different inte-
gration formulas with the order of magnitudes of the residuals differed

by a factor h,

2 5,4 1 gt nom (8),(8)y
I = V¢ voh +'%'(fo+fl) +7gﬁ(fo‘fl) + gﬁﬁ'(fo+f1),' 5286?¥00f §g)
(3-
(7)
‘ n* % n ¢
vy = vo (f +f ) + = lO (fo fl) + 755 (f 4 l) _Iﬁﬁ—gé%l—' (3-

tods s < toﬁh

The merits claimed for this type of integration procedure can be clearly
seen from the facts that

(1) +the residual, or truncational error, can be easily comput
or estimated from the derived expression and a knowledge of the derivati
of f;

(2) the length of the interval, h, can be changed at any time
so long as the error of the result is within the allowable.

However the,procedure is subject to the following dbjections:
(1) since £, and its derivatives appear on the right hand sid

1

of the equations; normally an iterative procedure would have to be ﬁsed;
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(2) in a complex situation such as a mmlti-degree of-freedom
system where f is a function containing AARERTR Y, vy ,vn in a not
necessarily linear manner, the computation of derivatives of f presents
a tedious task which would become prohibitive if n becomes large. For

instance, if =1 (yl Fpo VooV t)

n n
then E’f_ - z Z i
A at & & 3?5

4. Methods of Subdivision- Runge-Kutta and Nystrom Methods.

This celebrated method has its merit in improving the result
without introducing the derivatives into the operation, in contrast to
the methods of Taylor éeries duscussed in the foregoing section, but the
construction of the procedure is still based on the Taylor expa.nsioh' of
the integrand, which is the foundation of piactically all numerical
methods. The basic idea was first used by Runge end laﬁer modified’by
Kutta. Through continuous elaboration and genereslization, mostly by
students of Runge, the’ method is now among the mbst widely used ones,
especially in Europe. The construction of a Runge-Kutta fourth order
method for first order differential equations is briefly descri‘bed beiow.

Let vy = () (4-1)
be the given differential equation with initial walue yo at to. It is
required to compute y at t = t_+h. By substitutingy =y in (3-1), one

obtains the slope of the curve %% at to. Then define k as follows:

k =h2(t ¥ ) (k-2)
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Now proceed along this tangent line a distance mh on the t-axis and kl
is defined as
k, =h f(to-i-mhg yo+mk°) (b-

Having computed ko and ko’ one define a third element

k,=h f(to+nhy y0+(n-r)k0*rkl) (h-

and then a fourth element

k3 =h f(to+ph, yo+(p-s-q)ko+ sk, + qke) (L-

where n, r, p, s, and q are parameters of the same kind as m.
The increment of y, Ay, is defined as

Ay = 8k + bkl + ck2 + dk5 (b-

It must be noted that the points, mh, nh, and ph, measured from the initi
point to are only used as additional points to obtain an improved defi-
nition of f; they are not the end points of the broken lines along which
the procedure of numerical integration is made. The choice of the ten
parameters, a; b, ¢, d, my n, r, p, S, and q, is based on a comparison
between the Taylor expansion of Ay and a power series in h for Ay ob-
tained through successive elimination of ko’ kl, k2’ and 1:5‘9 defined in
equations (4-2) to (4-5). The latter can be obtained by expanding k's
into power series in h by means of Taylor expamsions. Having equated the
coefficients of the first four terms o} both expressions; one obtaines
the following conditions for a result whose first error term is of the

5

order h7.
8 +b +c+ d=1

bm? + cn? + dpe =

Wi

Cmr + d (nt + ms) =~%

2 o, 2. 1
Cn“r + 4 (n“t + ns) = T
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bm + cn + dp =

o+

bmj + cn5 + & 5 = %

emr + dp ( nt + ms) = 5

1
dmrt =
2k

This system of eight equations leaves a doubly infinite number of choices
for the ten parameters. For an efficient scheme the parameters should

take on simple numerical values, a commonly used Runge-Kutta method is

y = bk, + 2k + 2k, + K,)/6 (4-8
where kc =h f(to’ yo)
kl =h f('ho * %h’ o %kb) "
<

w
il

2 h f(to +'%h’ Io * %kl)
kg h:f(to +h, ¥, + k2)

Gill(Y) chose the parameters on the basis that the number of registers ca

be reduced when the procedure is used to solve problems on a digital com-

puting machine, this leads to irrational numbers for some of the paramete

(8)

Using the similar technique, Nystrom develcped a Runge-Kutta

method for differential equations of second order. With four k functions

(7) Gill, S. "A Process for the Step-by-Step Integration of Differential
Equations in an Automatic Digital Computing Machine™, Proc. Caumb.
Philos. Soc. 47, 46-108 (1951).

(8) Nystrom, E.J., "Uber die Numericshe Integration von Differential-
gleichungen,” Aeta Soc. Sci. Fennicae, 50, no. 13, 56 pp. (1926).
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the method can yield a solution in which both the displacement; y, and
the velocity, dy/dt, are correct to h5 provided that no velocity terms is
involved in f, otherwise the solution is correct only to the hh term. Th

following is one of his schemes for
y* = £(t, ¥, v)

25 k + 15k, - 27k +25k3J
. _ 8] 2
Ay =h [ro + ~I9 =
o - 23k + 125k, - 81k, + 125k,
192
With k = f(tg,yo)h T, = h(vo + )
B =2t + 5 5, "'5"3;)h Ty = B(v, + ).
5 5 k +k (4-1
ky = £{t, + £ h, 7, + 5 r) b rs = h(v, + ---5--—9)

by
bn
k3 =_f(to + R +"‘"5'2)h

(9)

By the use of similar reasoning Blaess devised a numerical
method and later on it was improved and generalized by Bukovics(lo)o The
scheme was simplified by letting the parameters teking on same number,

but the accuracy was preserved at the expense of more number of substi-

tutions.

(9) Blaess, "On the Approximate Sclutions of Ordinary Differential
Equations", Z. Ver. Dtsch. Ing. 81, pp. 587-596 (1937).

(10) Bukovics, E. "An Improvement and Generalization of the Blaess
Method for Numerical Integration of Differential Bquations”,
Ost. Ing. Arch. 4, pp. 338-349 (1950).
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The advantages of the Runge-Kutta method are
(1) No iteration is needed.
{(2) No derivatives are involved in the computation.
(3) The length of the interval can be changed according to
expediency.
(4) The cperation is simple if the parameters are chosen as
simple figures.
However, objections to the use of the Runge-Kutta method can be found in
the literatures; there is chiefly that a highly accurate Runge-Kutta met
of order m needs more than m substitutions when m is greater than 4. As
far as error is concerned, Bieberbach(ll) has found an expression indi-
cating an upper bound for the error within a given step of the Runge-
Kutta process, but the bound is always found to be too overcautious to
give any practical significance. Lotkin(lg) improved the expression yet

the bound is still far on the safe side.

5. Metheds of Finite Differences.

Methods under this heading consist of a great variety of pro-
cedures of numerical integration which are perfected by introducing high
order differences extensively. Typical examples in this category are th

Adams' extrapolation procedures, interpolation procedures, and methods o

11. Bieberbach, L. "On the Remainder of the Runge-Kutta Formmla in the
Theory of Ordinary Differential Equation". ZaMP, 2, No. b, 1951,
pp. 233-248.

12. Lotkin, M., "On the Accuracy of Runge-Kutta Method", Math Tables an
Other Aids to Computations"; 5, No. 35, pp. 128-133, July, 1951.
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central difference. The formulation of the expressions can be found in

most books on numerical analysis. For a first order differential equatic

v =2 (t,7) (5

The extrapolation procedure is to compute y from

st -3-§5-fn+ ") (5

v =y, *+ h (f +

n+l 2

where V’fn = fn - f the backward difference.

n-1’

The interpolation procedure gives

Pt

vafn+1 - n+l - ...) (5'

v
2 12 2k

n+l =¥, *h (£

n+l

and the method of central difference gives

v, Vhf 1 P

—y + h (2f = 3 n+1 -5-0— :('—g nt3 - .o-) (5

yh 1

The last two procedures needed to be carried out on an iterative basis

since the unknown Vel is involved in the right-hand side.

In view of the finite differences equations an obvious questior
is how to start the problem. Besidés the given initial values there is
not enough information leading to the computation of the various differ-
ences needed in the formula. A usual technique is to compute y's at fire
few steps by a simple formula such as Taylor series method, Runge;Kutta
methods; these values will give a series of backward differences of y
with reliable accuracy, then new y's are computed by Egs. (5-1), (5-2),
or (5-3). This process may need several repetitions until the y's reach
stable values, afterwards the procedure will be carried on as usual.

This starting of the process is certainly a great disadvantage

of the methods, especlally in the case of analyzing dynamic behavior of
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8 siructure, the elastic property of which may change as certain parts of
the member yields; and, as a consequence; the equation of equilibrium maj
take & new, different form and the problem has to start afresh, Moreove:
as it will be shown later on, the introduction of higher order difference
is not always bemeficial, sometimes extraneous solutions are introduced
into the result due to the presence of higher order differences.

In order to get the beneficial result of using higher order
differences the following procedures have been suggested. They are
carried out on an iterative basis and the numerical result can be obtaine
as accurately as it'is needed. For a first order differential equation
yj =xf(tgyﬂuitoisiélﬁays possibié to'wrije the finite difference equiva-
lence as

yﬁ = Ahyh-l

+B +E/ (5
By first neglecting the residual, or truncational error, Eny y's can be

obtained from the basic equation

yﬁ ='A33nsl * Bn {5

as a first approximation. Then the first approximation of En can be pom-
puted and used to find the second approximation for ¥, 1o the Eq. (5-5).
This resembles the starting process for an extrapolation or interpolatiocr
procedure except that the process will be used throughout the whole probl
The efficiency of the procedure depends upon a balanced choice
of A and E. If A is chosen to contain all terms in Eq. (5-2) that are
needed for the desired accuracy, E will consist of the remaining higher
order terms. In this case, the y's computed for the first trial will be
as accurate as required. Few or no cycle of iterations would be needed.

But if A is chosen this way, so it would be an involved expression which
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would be time-consuming to evaluate at each step. It can be seen that a
simple expression for A; at the expense of larger residual error, would

constitute a better basis for ccmputations. The following example,

b b
Vo=V, +h (v g +vp) +E) (5-1
3 & 7
., _ 8 .8 &
with E = (- 5t 155 - Bt eee) £y
—2-+n

where & is the central difference operator, applied to a differential
equation of first order
]

y =fy+g

The recurring relation is shown by the following difference equation

(A-fh)y,=@Q+£f by ,+h(g +g.4)+E (5-¢

Several similar procedures can be found in a paper by’Fox(lB) and Goodwin.

The same technique can be used for second order differential
equations. For second order differéntial equations without terms in-
volving the first derivative, (any second order differential equation can
be put in this form by a suitable transformation), & simple and highly

accurate method is recommended by Fox. In the later discussion it will

be referred to as Fox's method, but the basic formula has been discussed

13. Fox, L., Goodwin, E.T., "Some New Methods for the Numerical Inte-
graticn of Ordinary Differential Equations”, Proc. Camb. Philos.
Soc. 45, pp. 373-388, (1949).
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and used in several publicationse(lh) Iet the differential equation be

i

y=yf+g
The presence of g does not cause extra difficulty as has been seenr in

the last example, thus g may be neglected. If y® is replaced by its

] 2
central difference equivalent and then difference operator (1 + %5) is

applied throughout the equation, a recurrence relation is obtained

2 2; h2

h™f 54°F g
o+l fna_ "n n-1 '
@ -—357 ) Yy = @) ¥y - (- W0t By
; g (5
and the truncation error E_ = ( - 5, 138 _ <e.)y_ where & is the
n 240 15120 n

central difference operator. The recurrence relation is quite simple
and the truncational error is of order of magnitude of 86, which is very
sma.ll in most normal cases.

If £ is a function of y as well as t, then the differential
equation is no longer linear. Trial values for f have to be assumed and
the process becomes a doubly lterative procedure. If the time interval,
h, is kept small enough, convergence will not be a serious problem.

In all the methods of integration by iterative procedures, the
truncational errors are computed in terms of the differences of the
function values previocusly established; central differences are usually
to be recommended. However, it generally happens that in the first and

the last few steps the given information is not sufficient to determine

14. Peinstein; L., and Scharzshild, M., "Automatic Integration of Linear
Second Order Differential Eguations by Means of Punch Card Machines,"
Rev. Sci. Inst. 12, 1941, pp. 4%05-8.
Lindberg, N. A., "Integration ¢f Second Order Differential Equation
on the Type 602 Calculating Punch", Proc. Sci. Computation Forum,
p- 23, 1948, IBM.
Collatz, L., "Numerische Behandling von Differentialgléichungen,”::. . .
Springer, 1951, § 897 .G1. (5.40).
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all the central differences that are needed. In such a case these differ-
ences are usually supplied by extrapolation or guess. In order to utilize
all the given informmtion available, a mixed central difference and back-
ward difference scheme has been suggested. Lowdin(l5) in his recent paper
succeeded in supplying the additional central differences by means of the
given backward differences in the last backward line. |
Lowdin's method has features similar to those of the step-by-
step iterative integraticn procedure; mamely, a basic formula upon which
the first approximation is comstructed, and a difference correction that
takes into account truncational error in terms of differences. To start
the problem, an iterative procedure is used to establish a few values at
the beginning, but is not continued. After this iterative procedure has
been used up to a certain number of steps, the process is transformed
into & "marching process", with all the needed central differences supplie
by the backward difference formulas. When the marching process has been
completed for the whole range of integration it is possible to improve the
accuracy of "y" by utilizing the actual values of central differences
formed in the later stages of calculation. An correction may be added

{16)

if it is significant. Using a similar technique Lowdin published a

procedure for differential equations of second order.

15. Lowdin, P.0.;, "On the Numerical Integration of Ordinary Differential
Equations of the First Order", Quart, Appl. Math. 10, No. 2, July,

1952, pp. 97-111.

16. Lowdin, P. 0., and Sjolander, A., "A Note on the Numerical Calcu-
lation of Asyenptotic Phases with a2 Numerical Study of Hulthin's
Variational Principle", Archiv for Fysik, 3, No. 11, pp. 155-159 (1951
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The essential points of Lowdin's procedure are:

(1) A mixed use of central backward differences to utilize
all available information.

(2) An iterative process is needed only to start the problem,
then a marching process continues on to get all the rest of the solution.

(3) To correct the solution on the basis of central difference
computed from the velues of the solution obtained, a correction can be
added; the correction is usually small. |

As a concluding remark, these methods have the advantage that a
clear indication of truncational error can be easily obtained for the
classical method of finite differences (namely Adams' method). Since the
iterative procedures of numerical integration will yield the same solutior
but with a truncational error which is practically zero, they differ only
in the operating scheme.

However, there are some annoying features of the methods:

(1) The same time interval has to be used throughout the whole
problem.

(2) The methods needed a starting device to establish an
approximate solution from which the differences can be obtained.

(3) The operating scheme is complicated and time-consuming.

(&) It is not convenien£ to use the methods for problems where
the differential equations change their functionsl forms when critical
limits of certain parameters are reached, since the solution is not
supposed to reach its final form until the last iteration. These methods
are less objectionable for non-linear differential equations, since

iteration has to be used anyway.
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III. INSTABILITY OF NUMERICAL SOLUTION

6. General Description

In the method of using an equivalent difference scheme to re-
place the given; partial or ordinary, differential equations, it has been
observed that under certain circumstances the method may lead to a solutic
that is radically different from what is anticipated. For most of the
initial value problems this erroneous seclution usually tekes the form of
an oscillation with an ever-increasing amplitude. Its existence has been
observed and reported by many investigators and suitable remedies have
been suggested. It is generally agreed that the instability of error is
an intrinsic property of the method of solution with respect to the
assoclated problem.

For partial differential eqguations of hyperbolic and parabolic
type, Brien, Hyman and Kaplan(lT) bave found, by a method used by von
Neumann in his unpublished study of unstable solution of difference
equations, that certain relationships between the meth sizes of the net
must be maintained in order to keep down the growth of errors. Similar

efforts have been made by‘Eddy(la) in studying unstable solution in heat

17. Brien, G.0., Hyman, M., and Kaplan, S. "A Study of the Numerical
Solutions of Partial Differential Eguations", Jour. Math. and

Physics 29, pp. 223-251, 1951.

18. Eddy, R.P. "Stability in the Numerical Solution of Initial Value
Problems in Partial Differential Equatious", Technical Memo. 10232,
Naval QOrdnance Iaboratory.

Metz Referen
(fivil Enginescring

Q
3 <D

University of Iiiinocis
Urbana, Illincis 61801
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conduction problem and by Collatz(l9) in deriving the imstability criteric
for differential equations in the problem of the vibration of beams, and
also for the use of the method of central differencen(eo)

Becently'Rutishauser(Ql) made instability tests for several methc
of numerical integration of ordinary differential equations of simple type
He attributes the unstable solution to the presenﬁe of "extra” solutions
arising from the use of higher order differences, which result in e higher
order characteristic algebraic equation. A generalization of the method
of analysis was also reported.

In all the methods of analysis a test differential equation was
replaced by its equivalent difference equation, obtained with the aid of
some numerical method. Then the solution of the differential equation is
compared with that of the difference equation. The'trucationél error, due
to the replacement, is expected that the two solutions aré of the same
order of magnitude and can have similar physical interpretation. If they
cannot be compared con this basis, the truncational error of the numerical

method is certainly serious enough that the numerical solution has to be

rejected.

19. Collatz, L. "Zur Stabilitdt des Differenzenverfahrens bei der
Stabschwingsgleichung", Z. Angew. Math. Mech. 31, 8. 392-393, 1951.
20. Collatz, L. "lber die Instabilitft beim Verfahren der zentralen

Differenzen fur Differential-gleichungen zweiter Ordung", ZaMP &,
1953, seite 153-15k.

21. Rutisbauser, H. "Uber die Instabilitét von Methoden zur Integration
gewbhnlicher Differentialgleichungen”, ZaMP, 3, seite 65-7h, 1952.
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7. Criterion of Instability

In the present study the test differential equation is

¥" +py =0 (7-1)

the solution of which is well known as
¥ =7, cos pt + % sin pt (7-2)
P

where Iq and v, are the initial displacement and initial velocity respec-
tively. Since a second order differential equation can always be split
into two first order differential equations, Eq. (7-1) can be formulated
into
y'=v, v = oy (7-3)

then the corresponding difference equation of Eq. (7-1) will take two
different forms dépending on the type of integration formula to be used.

If the Runge-Kutta Fourth Order method, Eq. (4-8), is used to
solve the system of two first order differential equations, after success

ive substitutions of k's the following difference equations are obtained.
2 k 2
e e e
n = @ - 7 7 53) Jp1 * - 7?0 hvia

2 6° o2 "
vh=0 (-1 + 7;) Yool * (r - = +-§H) hv o (7-4%)

The solution to the above equations can be assumed to take the form
v a
n n .
= ( 2 (7-5.
v_ h
.
. After direct substitution for Y and V. it can be proved that the

following determinate has to be zero if the two constants, & and b, will
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take non-zerc values.

2 L 2
6 6 _ 8
l-—é-~3-§£-‘3\. l-%-
=0 (7-
2 2 4
-92(1-%—) l“%*%ﬂ'l

where € = ph.

The characteristic equation is
2 b 2
e 8 2 2 67y2 _
(l—?-i--z-i-k) + 6% (1 -g) =0
from which the rcots for A can be cbtained.

It is obvious that the solution to the difference equations has
to be sinusoidal in view of the exact answer, Eq. (7-2). To achieve this,
the A's must be complex numbers, nevertheless, the absolute value of the
complex rcoots must be unity in order to assure a sinusoidal solution

with constant amplitude. In the present case A\ is always complex but

unfortunately the amplitude is not conserved; since

02 ot ) 62, '
1--2-+§E~xile(;~-€-)=o (7-1
and
é 8
11,2 =1 - §§ + g;g

Apparently the amplitude can be conserved if the interval h is chosen
small enough to make 6K 1,

In the next example the method of using derivatives is tested,
a double integration formuls is chosen to get In and a simple integration

formula for v_, namely Egs. (3-13) and (3-1k).



2k,

Since = -P2y
! 2
therefore f=-pv (7-8)
)] )4_
f=pvy

] n
After eliminating £, £ , etc., and £ from Egs. (3-13) and (3-14) by the

above expressions the resulting difference equations are obtained.

3
e 2]
1t VB _h-_ (y *7 l) Tl (vn- vn—-.'l.)h + Lo (yn+ yn-l)

Yn = In-
(7-
vh=v h-g—e-( + )+—6—3-(v-v )h+§——-(+ )

n ~ ‘n-l 5 Vn ¥ Ipa 10 Y'n 'n-l 120 Vn Yn-1
which is equivalent to the following system after a few algebraic
simplifications

2 b4 2
9 6 6=, 6 8

Yo 135510 = Va1 -+ 3m0) + Va0 - T5)

(7-1
vh(1+39 9)—- 92(1-92)+v h(l-i@ )
T o0/ T Vpa1 60 n-1 -7-'15

The characteristic equation of above system is
2 .4
76~ . 6 39 e
[1'56*556 » A+ gz T@'ﬂ*e <l-1o)(1-6->-°

from which the roots for A are given as

2

-3 79 —,4-5+ 9\/(1- 21 - g5)
= n
36 e
1+% "%
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In this case the roots become complex conditionally; therefore, the solut:
is conditionally stable but will not behave sinusoidal when

10 < 62 < 60
But this time the amplitude is always conserved because of the fact that
lﬁ? = 1 no matter what value for h is taken so long as the solution is
kept stable.

From the examples given above; the stability of the numerical
solution is mainly dependent on the nature of the roots of the character-
istic equation. If the matrix of the coefficients in the right hand side
of Eq. (7-3) has complex eigen-values of unit absolute values stability i
assured. It is unnecessary to test every numerical method for stability,
since it can be shown that the eigen-value of the matrix can always be
made complex if the same integration formula is used for the system of tw
first order differential equations, Eq. (7-2).

No matter what method of integration .is used, it is always

possible to write down the formula as

t +h [ ]
[ () dv=h |A £+ BE + Cf 5 + ....
o .

if higher order differences are not included the formula could be even
simpler

t_+h
f° £(t) dv =h (A £+ B L) (7-11
£ o]
[0}

where A, B, are functions of § . Then Eq. (7-2) can be transformed into

the corresponding difference equatiouns

(v

2
n vn-l) = P‘j§d2 =" p2h (A'yn+ B yn—l)

yn T Yp-1 =\/de2 =h (A,yh.+ B vn-l)
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transposing,

yn - AvV£h = Yp-1 + B Vﬁ-lh~

(7-12

2
A6 Vo t Vﬁh - BS Yp1 * Vh-lh

A , in this case, must satisfy the following condition

1-2 B + A\

-6%(B + M) 1 -2
1-2=1(B+A\)

Therefore, A will become complex independent of the values taken by A and
B. Moreover, the inclusion of higher order terms merely complicates the
elements in the determinant and assigns more roots to A . Since elements
along the principal diagonal are always the same and the elements along
the other diagonal are always differed by a factorjfeg, A will never be-
come real. This observation confirms the result in the first example in
which the Runge-Kutta Fourth Order method is used and the numerical
solution is sinusoidal; while in the second example two different inte-
gration formulas are used, one for simple integration and one for double
integration, <the numerical solution is not always sinusoidal despite the

fact that amplitude can be conserved.

8. Conservation of Amplitude

However, if A is complex, it doesn’t necessarily follow that
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amplitude is conserved. There are separate criteria to find whether or
not amplitude is conserved. From theory of matrices, it can be proved
that if the complex eigen-value of the matrix in Eq. (7-4) has unit
absolute value then the determinant of the matrix is unity, (see Appendix
A). The numerical value of the determinant of matrix in Eq. (7-10) can
certainly confirm this statement.

More generally, there are cases in which both the I and v, are
expressed only implicitly such as in Eq. (7-9). Then the criterion for
conserving amplitude is that values of determinants of the two matrices
on the left and right hand sides must be equal. This 1s & direct conse-

quence of the foregoing statement and its proof is trivial. Eq. (7-9)

can serve as an example; after transposing,it is found
2 ok 2 2 ok 2
e~ o 6 _ 6~ 0 6~
1+ 5= 350) Yot 50 o2 = @ - T+ 350 Ypat @+ 55) Vaab

2 e“ 2 2 e” 2

] ) ) )
G - 120 Ypt @ +30) VB = €3+ 150) pat U+ 10) Vit
and
) Y 7o) 20 )
2
I
- 20 ~ 2h0
2 ot 1.8
2 120 10
2 2
65, 6 &
; 1l = E +.-2-j;b- 1+ 30
1+ 12?- eh
= 20 ~ 2L0
-22.}..9&_ i +i2.
2 7 120 10
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To formulate a general princ:_lp;fl.e upon which numerical methods
can be constructed with the aim of conserving amplitude is quite involved.
However, it can be shown that the Milne's methods always comnserve amplituc
If the simple integration formula is used symmetrically for the
system of two first order differential equations, Eq. (7-2), then

At°+hdr () =Zan[ (n), (-)2 (n)]

° v
and (8-

h/;_t?*'hdr v(T) =Zan l: (n)+ (=) v(n)]

o

Where &, are functions of h, can be simplified by making use of the re-

curring property of the original differential equation; na,mely,

i
2
y +py=20
[ I B 2
y +py=0
iv 2
Yy -py=0
Therefore, yn - yn-f.'l. = ‘Alh (vn + vn-l) + AQ (yn-l s n)

_ 2
h (vn - vn-l) =P [Bl (yn + yn-l) + Beh (Vn-l- vn):l

where A and B are functions of p and h, transposing,
v, 1 +A) +Vh (-A) = yn_;(l +A) +V_ bA
(8-¢
.2
y, B 5° +Vh(l-32§) L (4°B) +V_;h (1 - Bp%)
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It is obvious that the determinants of the two matrices on both sides are
equal; the statement is then proved.

To prove conservation of amplitude;, in the case of the use of
one simple integration and one double integration formulae of the Milne's
methods additional property of the methods of this group is required.
Examination mede of Egs. (3-13) and (3-14), will show that the two formule
are in the ratio, h/2. But it will be proved that this relation always
holds true as long as both keep the same order of terms no matter how manj
terms are involved. The proof is in Appendix B.

This additional property is found useful in the proof of the
property of amplitude-conserving of the numerical solution. Instead of

using the two original formulas,

_ 2
Yo = pa * vn«lh +.19Pf @T

Vn=vn_l+ffd't

either one of them can be replaced by the additional property Jjust found,

— 2 e ]
n=Yp1 t a2t tElJ T

(8-

namely

J

h .
- yn-l'+ Vol ¥ 5'(vn '.vn-l) (8-

_ h
=Vpa1 3 (vn + vn-l)
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Now let the second of Eq. (8-2) be written as see Eq. (7-11)

R ]

h (an V,.1) =-p [Bl(yn+ Vo1l * Bsh (V5 Vﬁ) (8-k
After this equation is combined with Eq. (8-3), it becomes clear that

the amplitude of the numerical solution computed by the Milne's methods

will be conserved.

9. Influence of Higher Order Differences

Theoretically the inclusion of higher order difference in formu
for numerical integration will reduce truncational error; it is logical t
surmise that the growth of error could be suppressed. But from the resul
of several investigators this seems not the case.

Inclusion of higher order differences in the formulas (see Adam
procedures) usually would raise the order of the characteristic equation
the difference equations which replaces the original differential equatio:
Hence extraneous roots will be produced as a consequence. Eoubolt(zz)
uses a third order backward differences for the acceleration; this préduo
a cubic characteristic equation of which one of the roots must be real.
Fortunately the real root is always less than one. It corresponds to a
damped component in the numerical solution. Similar results were found i

the "parabolic acceleration method"(25), in which the acceleration is

assumed varying parabolically within the small- time interval. The result

22. Houbolt, J.C., "A Recurrence-Matrix Solution for the Dynamic Respons
of Elastic Aircraft" NACA TN 2060, March, 1950.

25. Newmark, N.M. and Chan, S.P., "A Comparison of Numerical Methods for
Analyzing the Dynamic Response of Structures”, Civil Engineering
Studies, Structural Research Series No. 36, University of Illinois,
pp. 16-19.
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characteristic equation is again cubic, but the real root is not always
less than one, and the complex roots alone de not produce an amplitude-
conserving sinusoidal soclution as they should.

The foregoing example may suggest that higher order differences
might be included only up to an even order. This will produce a characte:
istic equation of even order. Here, then, is the possibility of suppress:
all the real roots and leaving the roots complex conjugates with the furtl
requirements that the absolute value of the roots should be equal to unif;
Even if all these could be achieved the numerical solution would be a mix.
ture of several sinusoidal waves each having a particular frequency,
instead of & single wave.

It seems that influence of using higher order differences is nof
always beneficial, despite the theoretical support which claims to reduce
truncational error by inclusion of the differences. However, it can be
shown that the theoretical reasoning is correct if a proper process is
used. One of the processes is the method of iterative numerical inte-
gration discussed in section 5. The truncational error, computed in term
of higher order differences of values in previous trial, is considered as
known and put at the right-hand side of the difference equations. This
leaves the homogeneous difference equations of the difference equations
always of . second order; consequently, removing the possibility:of
appearance of extraneous roots correspondipg to unwanted solutions. This
may be called a Picard process; the particular solution of the difference
equation is improved each trial.

In the following are two examples, in which the same problem

is worked out by two different procedures, the time interval, h, is so
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chosen that one of these procedures leads to an unstable solution. But
later on the instability is suppressed; after correction the unstable
scheme shows a better result than the stable one. _

The first procedure is the Timoshenko's modified method,(eh)
for a given problem |
: n

2 . .
y +py=0 (9-

the eguivalent difference equation is

62 6° 6°
Q+g)ypa-@-35)y,+Q+g)y 4 +E (9-i
’ s 8 8
with the truncational error E = (- Z* 755 " 1008 * cos) Ty
The second scheme is the famous Fox method(25);'the equivalent difference
equation is
62 5 52 6° .
(Q+35) Yo~ (-8 ) v (L +35) v, = By (9-:
6 8
. _(._5% 158" _
wlth En - ( m ',’ “_—'—isleo ooo-) yn

Now take ph = 2.5, and p = 1. This will make the second solution unstable
to begin with, while Timoshenko's method will always give a stable so=-
lution. The initial conditions are given with yd = 0 and ¥, = cos h,

which corresponds to unit initial velocity. Since the differential equati

24, Timoshenko,bs., "Vibration Problems in Engineering”, 2nd Edition D.
Van Nostrand Co., Inc., New York, 1937, pp. 126-128. .

25. Fox, L., and Goodwin, E.T., "Some New Methods for the Numerical
Integration of Ordinary Differential Equations", Proc. Camb. Phil.
Soc., 45, p. 381, 1949.



33-
consists of members of even order, the central differences can be
assigned without guessing. After the first trial, (see Table I and II)
the result shows that the unstable solutiomn, computed by Fox's method,
comes closer to the exact solution. But the divergent oscillation of
higher order differences;, with ever increasing magnitude, comstitutes
a serious drawback to the method, and limits iﬁs application. In parti-
cular, if the process is going to be carried out on digital computing
machinery, the divergence in ﬁhe values of differences will evenfually
run the number out of bound. Even if fhe scale of numbers is changed,
the round-off error will cause & serious concern. The examples merely
show that a procedure with smaller truncational error could yield a
better answer despite the fact that it has to start with an unstable
solution.

In view of the oscillatory property of the unstable solution
it may be inferred that a method of averaging the successive value might
bring down the magnitude of the figure withoué impairing the accuracy.
(This idea is suggested in Lowdin's paper(l5)),

It would be helpful to view the method by studying the following
difference equation

2
;- (2- = -l
Vpay = (B0dyy + 7,5 =0 ( 9-1

2
where Q?= EQREE;__E .
12 + peh

Fox's method is used, see Eq. (9-3). The instability criterion for the

This equation replaces Eq. (9-1) after the

R 2 R - -
method is pah < 6. After Vp-17 and v, are given, ¥ .4 and V4o CoB be
computed by the recurrence formulas, Eq. (9-4), now instead of carrying

out the routine, the reqguired Va1 is computed bj averaging Y2 §h+l’ and

Y. ns i.€.
n+2 1l = -
o4l = & (yﬁ+2 T2 Vn * Ya) (o=
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Algebraically this is equivalent to a modification of Eq. (9-4) to the

following difference equation

v (b - 2)(2-- a2) Y - P
n

n+l Ip ) yn-l =0 - (9-¢

In the case of a multi-degree-of -freedom system the time interval, h, may
be fine enough to give accurate answer for lower modes but still not meet
the instability requirement for higher modes, then the average procedure
will not impair the accuracy for the lower modes but can postpone the
starting of instability, as can be seen in the following derivation. The

characteristic equation in this case is

22 k- a?%(z - ) 2+ B__:Ef_ =0 (9~

If the lﬁs’which cause the instability before average and after average
are plotted against ézin Fig. 1, it is apparent that the root which causes
instability has its magnitude reduced; this implies a delay in starting
instability. But fori9?>20 the root for average procedure becomes greater
than that for Fox's method. Moreover, another unfortunate feature of this

procedure is the fact that the amplitude is not conserved since

MQ =1 -%’2
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IV ANALYSIS OF ERROR

10. Interpretation of Errors

It is not difficult to formulate a numerical method of integrati
but to analyze the error involved in the method and its sequentisl effect
is not a simple task. The present discussion of error is limited only to
ﬁruncational error and its cumulative influences. The investigation of
round-off error will not be considered because of its complicated and
random nature, and its dependence on every detail of the particular com-
puting process by which the method is carried out. A rigorous mathematica
treatment of round-off is not impossible but usually it leads to an over-
estimated bound of error which is far on the safe side; yet, a sﬁatistical
analysis of the error based on the random character of round-off, sometime
would underestimate the actual error.

However, to analyze the influence of truncational error of a
numerical method in a generalized way is by no means easy. Quite often
the results are not reliable and deveid of physical significance.- Numerou
analyses of errors have been made, most of them are subject to two serious
defects shown from the following points:

(1) analysis always tend to cover a great variety of integrand
functions but lack the means of depicting its behavior, thus leave the
class of functions described by few parameters or the bounds of the para-
meters. For instance, two problems with the same bound for the Lifschitz
constant for their integrand functions may have radically different

solutions even if the same numerical method is used to get the solutions.
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Sometimes two different numerical procedures way have their performance
compared with respect to a certain class of integrand functions, but the
indications would be completely revérsed if a problem, the integrand
function of which belongs to the class, is solved numerically by the two
methods .

(2) On account of the complicated form of the resulting differ-
ence equations the study of propagation of error is often reduced to a
study of bound of error in each step. After simplifying a few undesirable
terms of the expressions, this oversimplification may lead to unreliable
and controversial results. In the course of this simplification it may
happen that an accurate procedure gets a larger bound for its error than
a less accurate method.

To avoid incorrect estimates of error the present investigation
is made on a realistic basis. Instead of estimating error or its bound
the intention is to find out how truncational error manifests itself in a
different part of the numerical solution. Since the nature of the differe
ential equations of problems of dynamic structural response is fairly well
known, the numerical method is applied to such a standard problem that
generalization of the characteristics of the numerical solution may be

possible.

1l. Manifestation of Truncational Error in Various Methods

Without loss of generality the standard problem is taken as

11

v +py=0 (11-1)
with initial condition Yo and Ve Separate discussion will be given in th

next chapter for cases involving viscous damping.
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The Milne-Lotkin 6 order method, Eq. (3-10) is applied to the

system
' 2
vV =-py
' (11-2)
y =V
The replacement difference equations are
2 3
_ h, 2 2 h 2 2 h L L
vy =V 3 (P - V) + 35 (BT PTV) 4355 (Pt RY,)
ey B + B (P oB) + B (o - B)
V1 =972 Wot Y/ TG VP IF P V) Y150 VP VT Py

after the derivatives are eliminated by the following equations, obtained

by differentiating Egs. (11-1),

v o= - Py = - PQV*‘

v= - pirt = PV,
2
y*=v' =17,
mo o pByl o pov, etc.

Now let ph = 6 and simplify the expression, then

2

2 2
o o 1l @
) =73, @ -15) + v (5 - 155)

(-2 wn -
1 10’ 1" \3 - 1306

2
2,1. 6 e
TG -1t TP -1

5
21 o 6
¥16°(3 - 335) + VB2 - 15)

Metz Referonse Room
Civil Enginscring De

e & AT L -L...Q Mvpartment
B106 C. E. Building
University of Illinois
Urbana, Illinois 61801
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From the results in the previous analysis it can be inferred directly
that the solution of the difference equations is always sinusoidal and

conserves the amplitude, the A in the present case is

2 2 2 2
6 y2 2,1 6 . g 8
B = (1-qp)- (G -1 230 (- )0 - ) (-
2 2
~ 62 .2 1 6° 2
where D = (1 - E—) + 0 (2 - "——120)

After the initial conditions are incorporated into the solution, it is
v )

found that: Yo =¥, cOs Dk + 3?-sin np
v, = - ¥, P sin nu + v cos np (11-

where p/h is defined as the pseudo-circular frequency of the response an

6° 02
_1‘ e(l = iﬁ)(l = 66) (ll_|

B = tan 2 5
o 2,0 6°2
(- 82 0% - &)

Then the pseudo period of the solution can be computed, TS = Enth and
compared with the actual period, T = 2n/p. In Fig. 2. TS/T is plotted
against O, the error is only 10 percent when an interval as long as the
period -of the system is used.

In the following a 6-order formula for double integration and a
6-order simple integration formula Egs. (15) and (16) are applied to
Eq. (11-1); the replacement difference equations are

2 3 L
_ W, 2 .2 y_ k.2 2 ' o4k
Y= Vot Vb + TP PYy) - 5P em 2y + ag(R vt Yy



2 3
_ h, 2 2 - 2 R’ L L
vl—. v0+ 2" ~('-P‘y0- P yl) - 10 (P‘_ .VO- P Vl) + IEO(P y0+ P yl)

From previous analysis (see_ page 24%) the numerical solution is

ally stable with a conserved amplitude. The A's are given as

2 bk ‘ 27 2
T6< 0 ) / e 0
Lttt {4 -5)Q - g
- 2 &
1+2.8
20 - 2L0

2 2
8 6
af /G - ST

and p = tan
1-76%, 6"
20 ~ 2L0

The complete solution is
'v‘ i asesom
] RLY

Y= ¥, cOS mu + n 92 8in np
1-%
Vn= YOP p 511 nu +'Vo COS np
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(11

condition-

(11-

(-

In the plot of TS/T s Fig. 2, this method gives consideratle error in

fregnency, sometimes as high as 15 percent. Moreover, another anncying

o®
1-I0
2
e
1-%

feature is the presence of factors

expression for yn)-

in the cqefficien’c of v0 in

in the coefficient of ¥, in expression for A

Both factors should be "' unity but this can only be achieved by using

GNO.
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By using a similar technique, the 4th order formulas for double

and simple integration can be obtained, namely

2 3
ﬂf i =% (£, +2) + %; (g2 - £1) (11-

2
JF _h h i t L
far=3 (:E'O + :E‘l) *E( £, - fl) (L1-

n
This formulas have the advantage of saving the trouble of computing f
but at the expense of introducing higher truncational error. If Eq. (11-:
is used for the system of first order differential equations, Eq. (7-2),t]

replacement difference equations are

2 v.h 92 voh

6 b 6%, Vb
v @ -13) -5 =5, @ -15) +3

(11-
2 2 2 2
6 e e e
IRA TG (a -Iﬁ) = -V, FVR (2 - 1)
and the pseudo frequency u/h is given as
2
6 (1-25)
tan p =37 (11-
1 --5-9-"-1-9
12 71k

the numerical solution is similar to that of the 6th order method except
for a larger error in frequency, as can be seen in Fig. 2, where the

error is about 40 percent if © is taken as 6.
_

= y g 2 s
Yy, =79, cos np + D sin np

v =—yop sin np. + vo cosS ny
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If both Egs. (11-10) and (11-11) are used to integrate Eq. (11-1

1

2
y = -pP Y

to obtain y, and v., it is found the replacement difference equations take
1

1
the following form

6° 62
Yy =Vt voh -3 (yo + yl) i (-voh + vlh)

(11-1
6° 02
v;h=vh - §r(yo + yl) +35 (-voh + Vih)
and the numerical solution is

_ _o sin np

yh = yo cos np  + p =

1.8

12
(11-16

B<
]
&
Lo
=
¢
l-'ICD
151 ]
E
2]
8=
+
<
0o
[o]
0
=]
b=

62 2
with N1 -5 if 6°< 12. , (11-17

1 1
0272 2, 3
Again this time, erroneous factors (1 - i§) and (1 - EE)
are present in the equations.
The truncational error in a Runge-Kutta Fourth order method can
be easily seen from the result of a stability analysis wade in the last

chapter, Eq. (7-7). It must be remarked that although there are several

Runge-Kutta 4th order rules, depending upon the choice of numerical values

for the parameters, that are satisfying equations (4-7), the numerical
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coefficients in the replacement difference equations, Egs. (7—#), are
independent of the numerical values of the parameters. It can be shown
that the parameters appearing in the coefficients are so grouped that
they take precisely the same functional forms as those in Egs. (4-7).
This leaves no choice of numerical values for the parameters on the basis

of minimizing truncational errors.

v
N o .
Y, = 1 (yb cos mp + —= sin ni )

(11-1
n
v, = 1N (-yp sinop + v, cos n )
2
_lelll-%
with B = tan 5 (11-1
o 1-2,8
2 T2k

The numérical solution of Runge-Kutta'method is sinusoidal;
nevertheless, it does not conserve amplitude. In Fig. 3 the amplifi-
cation factor is plotted against phc It seems that in the usable range
for 6 , is 6< 2.8. Beyond that, an undesirable divergent oscillation
will result. The pseudo period, TS/T, of Runge-Kutta solution is also
plotted in Fig. 2 for compari50n.

In the following, one of the Nystrom method Eq. (4-10) is

demonstrated for n o
g ==Yy

After the k-functions have been successively eliminated the difference
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equations take a simple form

2k 6 2 b
y (l-‘s-“i-% m)-ﬂ-voh(lﬂ-%-}-gﬁa)

¥y =
2 4 2 b

_ 2 6= 6 8= 8 e

vlh_-eyo,(l-g-r—leo)+voh(1-2+-éx) (11-20

The eigen-value of the matrix, A, in this case, is given as

2 b 6 2 h 10
8= o 9+19\/( ee)e 2

d=1-3+3% - 150 Pt B (n-21,

This time the solution can simusoidal only when
2 ot 65 .
1-7+355> 30506 ¢ ¢ 6 < 2.9394 (11-22;

The solution of the difference equations takes a complicated form

=22 [ cos np - i sin np -
I~ yo BE = 72060 I 10}
. J(l 6 g

) 6 \2_
z ¥ 150 10002
v l«-ea-&»g}:—
== 6220 sinnp.:l
) > 30
6 6% 2 o
Q-7 )P =5
1200 (11-23)
-2
02 ot ’
A I
v = ln - ¥y p sin nu
n 6. 61 2 0 ©
(1 -2 +5=)
& " 120 10002
' ..95 sin ny }:I
"'.vp {cos BH - 7560 ° o2 510
(1“€+120

.1200
The amplitude is longer comserved, besides, there are errors in the

phase and the coefficients, which can only be minimized by using a small
interval. BSo far as the errors in the amplitude and in the period are
concerned the Nystrom method shows better performance than the Runge-Kutts

Fourth Order Rule if the interval is kept within the stebility limit.
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From the foregoing analysis it can be seen that the truncational
error can conceal itself in the frequency, or in the amplitude, or in both
end it can also introduce gu erroneous phase angle as well as an erroneous
coefficient modifying the amplitude tc some extent. However, it will be
verified in the following that the coefficients can be kept free from
errors by the using of the same formulas of simple integration for the

system of two first order differential equations Egs. (11-2).
) t +h
. o
Let \4Tf dt =Af +Bf : (11-2
o
After applying the formula to Eq. (11-2) one cobtains a system of two first

difference equations; namely

yl - yo A vo + B vl
(11-2

2
-»- (Ay, +By,)

<
g

<€
1

If Yn and vnh are assumed as

y a
(n>=f( (11-2
v . h b

n
then
+
=1-919A (11’2,
M,o=TFipB

therefore the final solution is

v
n 0
a A [yo cos np --l-,P sin np ]

ed
]

(11-2

n
A [ﬁyo P sin np + v, cos np ]

<
L

where

1l- pQAB



45.

V. p METHOD

12. General Description

One of the most versatile methods of numerical integration is
the B method, in which the value of B can be changed so that the method
will give the best possible result under the particular condition. The
formulas are simple to use and the numerical operations and sequence of

operations are convenient for most computing facilities, namely

1 2 2
¥y yo+voh+(~2feﬁ) £h° + B f,h

(121

b
-vo+§(fl+fo)

where the differential equation to be integrated is of the type

it

y = £(£v,y)
The properties and practicability of the methed have been extensively

(26’27)° When B is taken as O, the method reduces to Levy's

explored
procedure; B = 1/k, it is the Timoshenko's modified method; B = 1/6, it
implies the assumption that the variation of acceleration is linear within

the interval; for g = 1/12, the method is equivalent to the Fox's method

(or the Collatz method of Central Difference)

26. N.M. Newmark, "Computation of Dynamic Structural Response in the
Range Approaching Failure"”, Proc. Symposium on Earthquake and Blast
Effects on Structures, University of California, Los Angles; Cal.,
June, 1952. pp. 116-126.

27. N. M. Newmark and S. P. Chan "Comparison of Numerical Methods for
- Analyzing the Dynamic Response of Structures” Civil Engineering
Studies, Structural Research Group, No. 36, 1952.
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When the function £ is taken as —pEy, the replacement difference

equation is found %o be

2
e ;
Yps1 = (@ - T EeR) Yn ¥V = O (12~
and the numerical solution is
vb sin
Y. =y  cos nu + -2 . (12-
n o} P 1 2
1-(5-8)e
v, = - yopl/l - (% - 5)92 sin np + v cos nH
Where
/__6’_2__2_ (4,__26_3)
tan u = 1 + Be . 1l + B6
2]
"
1+ 86

Therefrom it is claimed that the sclution conserves amplitude but is only

conditionally sinuscidal and subjected to the restriction

R (122

Furthermore the velocity-response and the velocity, due to the initial
1

displacement, y_, are both in error by'factorsy.[l - G& - 5)62]¢§

] .
and{l - (%-- B)Gaj% respectively. If B = 1/4, these factors reduce to

unity and the
criterion for
to be feared,

the response.

methods as can be seen in Fig. b.

choice of time interval is no longer restricted by the
instability. In this case, where instability is no longer
this leaves the truncational error in the frequency of
The B = 1/4 methed has the largest error of all the B

Perhaps this is less objectionable

in comparison to the errors in other parts of the solution, but in a

milti-degree-of-freedom system if the solution is the super-position of
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several participating modes, then, the error in phase will yield an

erronecus peak value.

13. A Modified B = 1/4 Method

It would be of practical value if the B = 1/h method could be
modified to have the error in frequency reduced without changing other
parts of the solution. To explore this possibility it is suggested that

the solution produced by the B = l/1+ procedure by reviewed, i.e.

v
= 2
yn—yocosnp +P sin np
(13-
vn=-yosinnu + Vv, cos np
withtanu:-—e—u-e—
8
B Gl-_2—
or tan 5 =3 (13-
)
. 8 _8,16)3 P » :
Since tan.2_2+-3(2)+... _2(e+n) for 6~ 1 (13-

it is inferred that, instead of using p in the given differential equatior
2

qQ=Dp (l+%)' is used in all numerical operations. This reduces the

truncational error in the frequency and the modified frequency @/h, is

given as

tan ¥ - L (13-4

Humerical values for TS/T are plotted against ph in Fig. 4. Considerable
improvement can be seen wilthin the stable zone for other B procedures whil
higher modes are kept from growing wild. In doing so;, an error is intro-

duced into terms involving velocity since g is in the place where p was, i

v

= L
yn—yocoan)+qsinnqa |
(13-5,

v = - i +§‘
Vn yoqsmm) Vo COS P
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However this can be remedied by modifying the velocity by a factor q/p 7
in other words v ° has to be multiplied by q/p before it enters in the
numerical opergtions; the relation between the pseudo velocity, 'v_, and
the actual velocity, v, is
| v =v (a/p) (13-

Upon substituting the sbove expression for v in egs. (13-5) one can obtain
the right result.

A further improved result can be obtained if higher order terms
in the seriles expansion of tan g are added.

A1l of this seems quite obviocus, but this can also be done for a
multi-degree of freedom system without kmowing the actual values of fre-
gquencies of system. Without loss of generality the equations of equili-

brium can be assumed'a.s

¥y +Zpij vy = 0 i,d =1, .2.. N (13-7.
From theory of matrices, if Pj‘_j has pi, n=1... Ny as its eigen-values,
then, Qij 2h2 2 hh P} .
Q= Pyy * T Py * I Fug (15-8,
will have qxzy n= l 000 N; ag the eigen“‘va].ueS’ Since
2
2 _ 2 2n2 2 -
Q" =" (1 +55) (13-9,

Therefore P 13 is replaced by Ql 3 in actual mmerical operstions. Similarly

the factor q/p is equivelent to a metrix A, 5 ¥ith

2
A, =85,, +2

15 = %13 * 1T P
where Si 3 is the unit matrix, or the Kronecker's delta. The pseudo velocit;

xi_eptor ;i is them obtained by

7 =) Ay vy A=l E (13-10,
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This modified B = 1/4 procedure is certainly mot convenient
to use in case of time-dependent or non-linear elements in the matrix
because of the necessary modifications to be made in the matrix, in each
step of integration. For problems with insignificant higher modes
this modified method may lead to & correct solution, without

-introducing serious error in peak values.

1h. B Method as Applied to System with Viscous Damping

In an actual vibration system damping is always present but onlj
to some extent. Therefore, it is imperative to study different integfatic
methods for a damped system and to examine the respective merits of the
various methods. In the following, a viscous damping force is added to
the test differential equation and only the B methods are used to study
the result.

Let the test equation be -

§+2rpy' +py =0 (142

the exact solution is

-rpt Vo+ P Y,
y (t) = e -(yo cos qt + S sin gt) (1h-z
where qe = p2(l-r2)
The replacement difference equation is
2
Vpgy L +e) -yp(2-07) +y, ;@ -c)=0 (1h-2

1 + pp°H° 1 + Bph°
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The characteristic equation is therefore

2 (te)-(2-B)r+(l-c)=0

(144
and
L_2-PE)(2- PP k@ - o)?
2{(1+¢)

The truncational error of the B method creeps into the criterion for
critical damping of the system, which is

b .hfedt=0 :
more precisely, k4 rapeham i pzhgﬂl + B p2h2) + ph'hh =0 (14-5

The system is supposed to be in a state of critical damping if r = 1,
but now this criterion is dependent upon the value of B and the time
interval used in the analysis. It can be seen that the criterion coin-
cides with the exact one by taking p = 1/4. Again this suggests a
speculation that if the same simple integration formulda is applied to

'
v

—§V-pey
(14-6)
]
y =Y
the truncational error of the formula will not enter into the condition
for critical camping.

Let the integration formula be
t +h
£ :
JLAT=AL +BT (14-7)
o
Having carried out the substitution one obtains the following replacement

difference equations

| 2 \
v, -V, = - 5(A v+ B VO) - P (A.yl+ Byé) (14-8)
Yl"'yo=Avl+Bvo



and A-determinant
1 -2 B + A\
[2%(3 + a0) 1-2-8(B+AX (24-

Therefore the characteristic equation is

(L-2)2-8(B+m)(@-2)+p°B+a)2=0

hence

ot

-2 §_=t__.__..__1_ W ® (14-1

+ A\ 2

Lv: ]

The solution begins to behave aperiodically when

5% - b p® >0 (141
Hence the critical demping of the system is 2p.

Now if

(2-0f)-4(1-c?) <o
The numerical periodic solution of the difference equation then can be
compared with the exact one in two respecis, namely the pseudo frequency
and pseudo attentuation factor. The exact solution is

- v +I1pY¥y
=e rpt(yo cos gt + —SLEf_—__E' sin q t)

]
i

2
PR

3 sin qt)

v = e-rpt(vb cos gt -
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while the numerical solution takes following form

2
v (1 - rP6°(1 - 48)) + 7 rp(1 - S(1-18))

Yn = Rn [?0 CcOos 1 + —————— » sin n@}
PJl-();"ﬁ)G-I‘

(1h-13,

s 2. 6°
v rp{1-(1-48)7) + v p7(1- 1{1-18))

v =Rn[v cosw_msmn@]
n ° 1 2 2
P1~°(1;-B)9~1"

-cf- (2 - %2-)2
with tan @ = ) -
1 -2
-2

It is of interest to note that the truncational error of the
method enters into different parts of the numerical solution, besides
the errors in freguency and attenuation factor. Errors also-appear in
the coefficients as happened in £he case of undamped system. However if
g is taken as l/k, these errors disappear, and the numerical solution
takes exactly the same form as the exact solution except the errors in
frequency and attenuation factor.

To compare the pseudo frequency of the response with respect
to the exact value, values of TS/T (=qh/@ ) are plotted against the
different values of ph in Fig. 5, for B = 0, 1/12, 1/8, 1/6, and 1/k.
Except for B = l/h, the validity of the curves is limited by the aperiodic
boundery beyond which aperiodic respomnse will result despite the fact ‘

that physically the response should behave periodically.
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In Fig. 6, the ratio between the actusl attenuation factor and
that of the numerical solution is plotted against different values of ph,
for B = l/h, the curves show the numerical solutions are all under-damped;
for p = 0, the numerical solutlions are all over-damped; for the rest value:
of B, solution for r = 3/4 show over-damped trend; r = 1/2, 1/4, under-
damped.

So far as the aperiodic respomnse is concerned the performance
of B method can not be seen clearly Jjust by comparing a few quantities.
Since the exact solution behaves monotonically decreasing as time is
increasing it is imperative toxhaveiltaking positive values less than one,

wWhere

2-PxVe-P>% 1. (2414
: a (1 +c¢) |

A=

To achieve that |[Al <1, it is found that

2-f V- u(1-cP)|<2 @+eo)

It is sufficient to teke the negative sign, thus

\/(2-aa)a-i&(l-e2)+a2-2<2(l+c)

It follows immediately that'a?<h , after a few algebraic operations.
If the positive sign is taken it is found thatq?>0 which is auto-
matically satisfied for any choice of ph and B.

The above condition limits the numerical aperiodic solution
from growing divergently either monotonically or in an oscillatory manner.
To make sure that A be positive it can be proved that cfa:2 is a sufficien
criterion, that is

2 2
6 <D§Tt:7a;



Sk
Thus it can be concluded - that if B and‘ph”arE/SO'chcsen”that'a? is larger
than 2, the solution may become oscillatory but convergent if a? is larger
than 4, the oscillation becomes divergent.

The performance of the B method is best illustrated in the
following examples in which different values for B8, ph, and r are chosen
to cover a wide range, for the sake of cqmparison, The differential
equation is taken as

0

v + bry' + by
with initial conditions: Yo = 1, v, = 1. The damping coefficient; r,
takes on values 1, 1.5, and 2; B tekes on O, 1/12, 1/8, 1/6, and 1/k.
Numerical analysis is made by using h taking on l/h, 1/2, and 1. Numeri-
cal results are plotted in Fig. T, and compared with the exact solutlons.
It seems the comparisOn gives favorable consideration to p = 1/4, and 1/6
procedures provided the criterion ag<2 is satisfied. Otherwise undesirab

oscillation would result.

15. B Method as Applied to System with Negative Spring Constant

In studying dypamic response of structures realistically,; certai
secondary influences which were usually neglected in the classical approac
because of their insignificance and their hindrance to elegant mathematica
methods, may have to be included, esbecially when the structure is to be
analyzed in the range apprcaching failure. For example, besides non-linea
behavior of structural members and joints, a secondary effect of excessive
deflection and axial thrust may gain practical significance in the analysi
This raises the possibility that certain components of the structure might
behave as 1f the restoring ferce of the component were not tending to ob-

struct the motion but to aggravate the motion. This situation may be



55.
idealized as one in which a negative spring constant has been inserted for

the component.
To investigate the performance of B method for problems of this

pature the test differential equation is simply set up as

" 2
y -kKy=0 (15-1)
its exact solution is
Yo
¥y = yo cosh kt + = sinh kt
(15-2
v=v, cosh kt + yok sinh kt
The replacement difference equation is then
Vg - @+ 7))y +y, =0
c (15'5
with 7 = ————
1 - pERC

Since .a monotone solution is expected the roots should be real and

positive, where A is now given as

. + oy 2y -

b
12

This can be easily achieved by maintaining 9>c¢ , which means

2 _1
(kn)* <z (15-5
as the criterion for a non-oscillatory numerical solution.

However this does not insure that the numerical solution is

always increasing in magnitude as it should be expected; it may become

monotonically decreasing if Hli is less than one.

¥Hety Reference Room

CiVil En,g'ir .
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Urbana, I1linpig 618858.
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The complete solution to the difference equation is

v
¥, cosh (n 1m)) + o — sinh (n 1nd)

k ¢i + (% - B) kb

]
]

(15-6.

i

v =yokv1+(%—3)i:—h'2§inh (n 1nd) + v cosh (n 1n 2)

A
where >

_et+tr+ (i + 7}

In order to compare the over-all ﬁerformance of the different solutions,
values of 1n A/kh is plotted in Fig. 8 against different values of kh.
This ratio, ln)./kh, is called the growth factor which gives an indicatior
of how fast the numerical solution is growing in comparison with the exaci
rate. It is interesting to note that f = O is free from the restriction
for an oscillisory solution and ifs numerical solution grows more slowly
than the exact solution. For other values of B, namely 1/4, 1/6, 1/8,
and 1/12, the numerical solutions are always growing with a faster rate
and erroneous solutions will result if the time interval used is approach-
ing the critical limit, 1/k,'rg§ .

So far as the growth ratio is concerned a best cholce of B is

to make 1n A = kh, that is

1+Z4\@+ 22 1= | (15-7.

After a few algebraic operations one arrives at the following expression



for B which will preserve the growth rate for a given kh,.

Kb 992 ()2 e BB o
B = (e(m):2 Zekh E 1§2 e (15-8;

Fig. 9 shows the general trend of B as a function of kh. As kh takes on

very small values the asymptotic value of B is 1/12.
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CONCLUSIONS

As a result of the present study the B method is suggested for
dbtaining solutions to problems of dynamic structural response because of
its simplicity and flexibility in various applications. Among them the
B = l/h procedure is recommended for its being not restriéted by insta-
bility for undamped vibration and possessing correct critical damping in
damped system. This is important for :analyzling.a system with a large
number of degree--of freédom; but for aperiodically damped systems and
systems with negative spring constant the use of B = l/h would encounter
limitations on the choice of time interval.

For a system having only a few number of degree-of-freedom bett
accuracy may be obtained by introducing the derivatives in the formulatio
as has been done in the Milne-Lotkin Methods. The methods share all the
advantages of the B = 1/4% method and imp;ove their accuracy by teking in
the derivative if the computations of the derivatives do not entaill
lsborious work. However, it must be noted that sometimes a cut-down of
time interval would give better accuracy and need less Work than the
inpnovation made by introducing derivatives.

In case the problems are so proposed that the iterative procedu
is highly undesirable, one has to resort to methods like the Runge-Kutta
Method, the Nystrom Method, or the Bl&ssMethod. All these methods have t
annoying feature of not conserving amplitude of the motion; on that accou

it seems that the B = O procedure is preferable except that the time inte

“val has to be chosen within the stable limit.
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o To perfect a numgrical procedure by means of higher order diffex
ences is a well-known fact, but the contribution of higher-order differenc
can become beneficial only when the used time interval is within certain
limits. Due to the presence of extraneous solutions, produced by the higk
degree of the characteristic polynomial by the introducing of higher order
differences, the regular introducing of higher order differences is not
recommended provided a compatible time interval is used.
If the functiopal form of the differential equations does not
change during the course of analysis and if a highly accurate result is
expected, the iterative integration method, namely Fox, Lowdin's methods,
1s suggested for using. The method can eliminate the truncationmal error t
the desired significant fligures.
The investigation of instability of numerical solution with
respect to an undamped system is wade under two different requirements;
namely, sinuosity of the solution and conservation of amplitude. It is
found that a symmetric use of the same simple integration formuls for the
two first order differential equations always leads to a sinusoidal soluti
but the conservation of amplitude is achieved only in. some methods, for
instance, Milne-Lotkin metheods and'ﬁ meﬁhodsa
For the case of damped system there exists a criterion similar
to that for instability in undamped system, namely, criterion for critics
demping. If the interval; h, is not properly chosen, an under-damped
system may have & numerical solution showing over-damped response. If
B is taken as 1/%; this criterion is automatically satisfied.

If the given system will show aperiodic response, the analysis

of B method finds that the choice of time interval and the parameter B
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has to comply with the following criterion

2
1-28

in order to remove any oscillation that may result in the numerical

(ph)? <

solution.
If & system happens to have a negative spring comstant; the

choice of time interval is limited by

h<.1/k~/é'
It seems the B = O procedure would be free from this restriction, but the
use of B = l/h procedure can eliminate some truncational errors appearing
in the coefficients as usually happened in the damped and undamped cases.

But in Figs. 8 and 9, it seems that & best choice of p will take value

between O and 1/12, which is also depending on the given value on k and h.
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APPENDIX A

If Y and v, are connected to Yp1 by the following relation

= {a-1
vnb {Rc d yn_lh

and if Yn and v, are supposed to exhibit an oscillatory motion themn the
motion will be of amplitude-conserving type if the determinant of the
matrix is equal to unity.

Let v c

n. _,n 1
(A-¢
th c2
therefore a - b
=0 (A—7
c d - A
or ad - (A+a)A+2° -bec=0

l___a.-ﬁ-dii[(a-&-d)g-l}(ad-bc)
(]

=

a+dti VL (ad - be) - (a + d)2

= :
Since y and v represent deflection and velocity of s simusoidal motion,
) mist be a complex mumber. Now if |A| = 1 then ad - be = 1. Therefore

the statement is proved.
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APPERDIX B

In this appendix it is proved that the double integration
"‘_‘o'~*'h 2
formulagk/z ‘/PdT f(T) and the simple integration formula,

th o*Par f(r) of function f are in a!simple:relation, namely,

t
ffd’t (1) = fd—.: £{1) (B-]

o
where the two integration formulas are constructed by the Milne-Lotkin
Method and involving the same terms. In constructing the integration
formulas it has been found that the following "null" functionm, g, are

gquite useful, in eliminating superfluous terms.

= (1) f(i)+_g (fgi+1.)+ féi-:~1)) .

g = £ { (i+1)_ §i+l)) ..

eozf(f
i=1,3,5 (B-
see Egs. (3-4) to (3-9). Therefore, to prove the fore-mentioned state-

ment it is sufficient tc prove the following equivalent arguement that
t +h t +h
f J are £(7) - —_/; ° ar £(x) =Z c&; (B-
o - i=1,3,5... '
where c; # O for some i, and [d1f and L%;Taf are in their original unre-

fined forms, nemely,

Jorstle,ve o B ]
drf =3 fo+fl+-§(fo l)+5,(f +f)+¢....
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L

2 3
2 h |n o, t .t h', ® @
and ﬂd? f=§[§ (fo+fl)+-5—!(fo- fl)-x-m(fo-l-fl)+...:[
Now
h o B B ns ey B2 m on
-2-“/;.'rf-_[/c;.rf=@:(f;-fi)+-Eg(fo+fl)+T66(fo‘-fl')+....

oo+ P2 1™ [fgn_l)+ (-)n'lf_if_n‘l) ] (B-1)

° o

After Egs. (B-2) are substituted for g;'s in Eq. (B-3) and the coefficient
of h of the same power on both right-hand and left-hand sides are equated,
two sets of linear algebraic equations for c; are obtained, depending on

odd or even power of h, as follows,

¢y = %F (%! B %2)
1 .
2.'5 Cl+ 02 = % (l! - %1)
11 11 1,1 2
3°51% T 331% t ¢ =% & - 5) (®
¢y = %{ (%’, - 71-{!)
1
31 + ¢ = %T <-§-. - %z)
1 1
51 T 31% * ¢ =% (g'g - gg)
(B-€

It can be seen that the first few values of ;s cbtained from the first
set of equations, satisfies the second set, and vice versa. However the

existence of cy needs the proof that these two sets of equations share
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the same unique solution.

In order that the arguement will not be confused by the presencs
of the same notation in both sets of equations, it is suggested to use a,

for ¢y in the first set and bi for N in the second set, then proceed to

prove that

for all values of 1i.

If the first equation of Egs. (B-5) remains unmodified; the
second one is multiplied by -x2, where x is an arbitrary number; and the
third one is multiplied by +xu; the fourth, by -x6, and so forth; the
operation proceeds according to this rule, then sum all the equations,

the following equation is obtained

h 6

6
(l-;% x%%% %o%., +°..,)(a1-a;2x2+a.’3xh- a)x + Ceee)
2 Lk 2k
1
='E' (‘22—- el 'E? +gg°-os) ‘-— 5i had %! +%g- .oou)

after transposing and simplifying, one arrives at a clear expression,

2 I _2sinx -x (1 + cos x)
B "8 X T X - .00 =753 ( + cos X) (B-

Similarly, if the first equation of Bq. (B-6) is multiplied

by x; the second, by‘-xB; the third by +x5; the fourth, by -XT, and so

forth; the summation of all these modified equations yields,

3 5 LT
(x..?%z +§£ ,.% + oee) (bl-b2x2+b5xh-bhx6+,..,)

='}I(%z'§s+%2 "Gt ) t5 G mF L - 3or o)
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which reduces to

b, -bal +bxt -l 4.2 -cosx) - x sinx (B-¢
172 3 i 2 3 i
sin X

Since the right hand side of both Eqs. (B-7) and (B-5) are identical, the

following is, then, true for any value of x,

2 L 6 2 4 6
8'1 - a,Ex + 8.51{ o= al{_X + oco-‘-bl - b2X + b5x - bh'x + 08

Hence

a, = b,
i i

for all values of i.
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7.5
10.0
12.5
15,0
17.5
20,0
22.5
25.0
27.5
30.0
32.5

y
0

2598%
=,2627
=,%831
+,5748
+,27%6
=,595%
=,0132
+.6012
=,2507
=, 4911
4+,4663
+.2864
=,5921

52
O

=1,4596
+ ,6408
+1.1783
=1,158%
= ,6698
1,522
+ 0323
=1, 4664
+ 611k
+1.1979
=1,137
- ,6986

TABLE T

TIMOSHENKO MODIFIED METHOD

2. 56253’1 = -1.125y  -2. 5625y_1 + E

50

=1, 4596
+2,1005
+ .5375
=2,3365
+ 4882
+2,1221
=1,4199
=1,%987
+2,0779
+ 5864
=2,335%
4+ ,4388

0

43,5602
=1,5630
=2,8740
+2, 8247
41,6338
=3.5420
- 0787
+3.5766
=1,4914
=2,9218
+2,.7742

780

+ 750

5°

+8.5602
=5,1232
=§,3109
45,6987
=1.1209
=5.1759
43,4632
+3, 6554
=5,0681
=1.4304
+5,6961

8

- ) )
1008’ Yo

8
0

=8,683%
43,8122
47,0097
=6,8897
=3,9850
+8.6392
+ 1921
=8,7236
+3.6376
+7.1265

gl

- 8,683
+12. 4957
+ 3,1975
=13.899%
+ 2.9046
+12,6242
= 8.4470
= 8,9157
+12.3612
+ 3.4888

8% B/2.5605

0

+21,1791
- 9,2981
=17,0870
+16.804
+9,7195
21,0713
- L4687
+21,2770
- 8,872k

=,2727
+.1197
+,2201
=,2163
=,1259
+,2713
+,0060
=,2739
+, 1142

y

598}
=,535%
=,2436
+,8625
-,3513
=, 833k
+,9886
+,%05Y
=,1365
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5.0

7.5
10,0
12,5
15.0
17.5
20,0
22.5
25,0
27.5

y
0

.598
- 1,263
+ 2,066
- 3,095
4+ b, Lk
= 6,322
+ 8,873
=12,396
+17,278
-2%.053
+33,464

598
- 1,861
+ 8,329
= 5,162
+ 7,559
-10,786
+15,195
=21,269
429,674
=4{,331
+57.517

= 2.460
+ 5,191
- 8,191
+12.722
-18.3u6
425,982
=36,464
+50,943
=71,005
+98,849

yj' =

= 2,460
+ 7.651
-18.682
+21.213
=31,068
+44,828
«62,447
+87,408
+21,949
+169,855

TABLE II FOX'S METHOD

-2,109589056y0 -yt E/1.52083

E =

+

10,111
21,334

+

84,896
52.282
+ 75,397
=106,775
+149,856
=209,358
+291.80%

(

6

0 1568

~ Lot 15120) Yo

8

+ 10,911
= 31,445
+ 56,230
= 87,179
+127,680
=182,173
+256.,631
=359,21%
+501,163

86

0

- 41,556
+ 87.676
=143.410
+21%,859
-309,853
+438,805
=615.846
+860,378

50

= 41,556
+129,233
=231,086
+358,269
-524,713
+748,658
<1054, 651
+1476,225

+

170,789

]

360.319
£89,356
882,983
+1273,3M
=1803.310
+2530,876

+

[}

+ 210
o W43
+ 726
-1.087
+1.568
-2,221
+3,118

y
0

.598
=1.052
+1,178
= 707
= 774
+3.309
=9.288

exact

-,958"
+.937
=, 5hh
=.066
+,650
=,975
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Legend:
N, Nystrom Method
R-K, Runge-Kutta 4th Order Method
6-S, Milne 6th Order Method

1.8 Symmetric Use of Same Simple Integration Formr
6-C, GCombinatory Use of One Simple integration Forn

and One Double Integration Formula
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