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I. INTRODUCTION 

1.0 Summary 

The purpose of this study is to investiga.te the al?l?1.icability 

various methods of' numerical integration to problems of dynamic response 

of' structures 0 The scope of the study is, therefore, limited to differe 

ti~ equations of order not higher than two, but the method ofanaJ.ysis 

be appl.ied equa.lly vell to di:f'ferentiaJ... equations of higher orders .. 

Problems of dynamics of structures are usua.lJ..y considered to 1: 

initial-value problems.. Unlike the boundary-vaJ.ue problem which has its 

given prescribed values along a closed boundary, the initial. value prahl 
I 

bas its given conditions prescribed at the beginning of the time coordi": 

nate. ~ical treatment for both types of prob1.ems are different, aTJ 

so are the numerical. approaches... For bound.ary-vaJ.ue problems a typical. 

numerical approach is the method of reJ.axation which solves a system of' 

e.l.gebraic equations, a:pprox:i.ma.ting the given set of differential equatic 

in the sense of' finite differences, at a finite :m:mJ.ber of points.. For 

initial-value problems the numerical so1.ution is usua.lJ..y obtained tbrO'U.€ 

a marching process (a step-by-step integrating procedure). The range of 

interest of the time coordinate is divided into a finite number of sma.ll 

intervaJ..s.. Since the necessary quantities have been given at the begim 

of' the interval, the values at the end of the interval. Call be obtained 1: 

simp1.e for:mu.l.a.s of integration; these values wi1.1. serve as the initial. 

values for the next interval. The accuracy of the numerical solution is 

affected by the method of numerical integration and by the fineness of t 

subdivision of the time coordillate .. 



2. 

A sim;p1.e procedure wouldl.eave large trunea.tionaJ.. errors, and, 

therefore, needs a. fin~ divided interval to reduce the error; while a.tJ 

accurate method of integration cou.ld tolerate a coarse time interval" bu 

here the computations for each step are more compJ.icated. What is neede 

in design is a simJ]l.e procedure with moderate accuracy 'Which does not 

enta.il J.a.borious co:m;putational work. 

In the present report, various methods of numerical. integratio 

are reviewed <> Cong;>arisons between the numerical. solution aDd exact sol'll 

tions are made for a system with a single degree of freedom., with consta 

spring modulus. Since it is vell mown that motion Of'mu.lti-degree-of'-

f'reedcm systems can be split into eigenmodesYiiih each vibrating with it 

own frequency, the a.n.alytical. comparison can be used equa.lJ.y· well:ln the 

case of mu1ti-degree-df ... freedom systems, without loss of generality. 

Systems with viscous dan'g;>ing or negative SI>ring constant are aJ.so con-

sideredo 

In a step=by-step procedure it is usua.l.ly known that a:r:r:r error 

either trunca.tioDBl. or rOUIld.~o:f'f' ~ committed in one step will continuousl 

affect the results of subsequent computation; under certain circumstance 

the error may grow- wit;hO'Llt bound and eventuaJ.ly destroy the nUmerical si 

nil'icance of the a..nswer <> This instablli ty of error is discussed in dets 

herein for problems of structural d",vnam.ics 0 The instability criteria of 

variou.s :nethods are studied, and mea..us of suppressing the unstable solu-

t~on are suggestedo 

Although the present analysis ms made for differential. equatio 

nth constant coefficients, the resul.t ca.u give some quaJ.itative indicat 

in cases where the coefficients became tim.e-dependento If the time inte 

Metz Reference Room 
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is taken small enough, 'Within the interval it is reasona:b1.e to askume th 

the coefficients axe constant.. But this point-by-point checking does no' 

in genera.l,? give reliable information. (1) 

However, it must be noted that the application of step-by-step 

methods of integration is not merely limited to problems of initial-valul 

type; nor is the relaxation method limited. only to boundary value proble] 

For instance, attem;pts have been made to solve a transient heat-flow pro­

blem by the re1.axation technique, (2) and. there are also possibilities of 

obtaining solutions to a boundary value probl.em by means of step-by-step 

integration. (3) The choice of' the :methods mainly depends upon the compu.· 

tational facilities available .. 

(1) S .. Ho Cran.da.ll; tJaStability Criterion of Difference Equation Sel.ectic 
of a Partial. DifierentiaJ. Equation- June, 1953, ppo 80-81. Jo Pbyo 
Math .. 

(2) Do N .. de G. Allen and R. T .. Steven, lBTbe Application of Relaxation 
Methods to the Solution of Non-Elliptic Partial Differential Equa­
tionsw

• Quarto J 0 Mech. and Applied Math. 4, (1951) 209-22; 5 (1952) 
447-454. --

(3) M .. B'ymanJ wA Non-Iterative Solution of Bound.a.:Iy VaJ.ue Problemlllt
, 

Applied Scientific Research. Section B, g, No.. 5, PI'., 325-351, 195~ 



II. GENERAL DESCRIPTION OF VARIOUS METHODS 

OF n:JT.EnRATION 

2. Classification of Methods of Numerical Integration 

4. 

Methods of numerical integration have been a subject of interE 

since Euler f s da\v.. Most or them can. be found in the stand.axd. text bookf 

of' numerical analysis; however only some of the most celebrated methods 

are discussed here with respect to their application to problems of Ciy'm 

of s·cructure. For the sake of .simpl.ifying the discussion, aU. available 

methods are tentatively classified into three groups based on the opera-

tions used in the method. 

(1) Methods using derivatives .. - Methods in this group are 

usuaJ.J.y constructed on the basis of ordinary Ts\ylor expansion with highe 

order terms truncated.. 'Typical. examples are several integration formula 

devised by W. E. Milne. (4) 

(2) Methods of subdivision in each step .... Typical examples c 

this group axe the famous Runge ... Rhtta methods in which the integrands ax 

more accurately defined by subdividing the interval. 

(3) Methods of using higher order diff'erenceso ... By extensive 

introducing higher order differences into the expression the method can 

:proiuce resu.l ts as accurate a.s is needed.. Methods of this type are 

numerous:T for instance, Adams 11 extrapolation procedure and interpolation 

procedures 0 

This cJ.a.ssi:f'ication is by no means rigid; there are procedures 

which posses~principal features of two grOUps.(5) 

(4) Mi.lne,ll w .. Go, ~nA Note on the Numerical Integration of Differential 
Equations lllt 

Jl J. Res. Nat .. Bur .. stand., 43, ppe 537-542 (1.949). 

(5) zUrmtihl, R." IliRunge-Ifutta Method unter Verwendung hbnerer Ableitungl 
zaMM, 32 :J pp. 153 -154, 1952 .. 
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In the following, the discussion of various methods of numeric 

integration is limited to integrating differential equations of first or 

second' order ff since differential equatiOns of second order can be split 

into two equations of first order, i .. e. , 
aa 

y = f (t,v,y) (2 

is equivalent to 

Vi = f (t,v,y) 
(2 

y' = V 

where y = dynamic displacement of the mass 

v = velocity of the mass. 

3. Methods Using Derivatives - Milnets Methods. 

In one of his papers published in 1949 (6), Professor Milne lis-

a series of integration formulas constructed on the basis of Taylor expru 

sion of the integrand for differential. equations of first and second Orof 

The higher the order of derivatives included in the expression the betteJ 

is the approximation in general, but this further complicates the numeric 

operations of' the procedure. The most accurate foxmula in the list is OJ 

with a residual of order of magnitude of h7, where h denotes the length ( 

intervaJ... This formula was discovered independently by Lottin in 1952. 

(6) Milne, W.G. ~ nThe Remainder in Linear Methods of' Approximation", J. 
Res. Nat .. Bur .. Stand., R,p .. 2401, 43, pp.' 501-5ll (J.949) .. 

Lotkin, M • .9 lit A New Integrating Procedure of' High Accuracyll!, J.. Math. 
Phy., 31, ppo 29-34, 1952. 
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The derivation of the formu.la., for integrating differential equations of 

the first order, is briefly reproduced as follows. Based on the TS\Yl.or 

-.expansion of :f in terms of :f J f f, :f If _4O. _f{n) it is clear that the 
o 0 0 0 

t +h J 0 d Tf ( T) can be expressed in a power series, 
to 

f to +h h2 tl ~ n hn (') 
1'(",) d", = hi' +-2' f +--31 f + ..... +-1' I;l , 

to.. 0 .. 0 n! 0 
o 

, n 

where f , f , fo) o 0 

at t=to respectively. 
,n (n) 

Similarly, :f can be expressed in terms of f 1 , f1' fl., •••• f 1 

,,, (n) df d2f dnf 
where f 1 , f 1 , fl. .• 01'1 represent values of f, dt' 2,0 .. - at t=t +h 

dt dtn 
0 

Thus, 

(3 

Now sum eqs. (3-1) and (3-2) and average the sum; the following result i 

obtained 

In truncating the unwanted terms the following two TB\Y10r expansions are 

found very useful, 

fen) = r(n)+ h r(n+1)+ h
2 

f(n+2)+ 
1. 0 0 2! 0 

(: 

fen) = f(n)_ h f(n+1.)+ h
2 

f(n+2)+ 
o 1. 1 2-! 1 

The difference of the two expressions is 

f(n)_ f(n)=1l
r
h (f(n+l)f(n+l» + h

2
(f(n+2>-f(n+2})+ .. 

1. 0 2. 0+ 1. 20 1 '. 

(3-



or more specifically for n = 1, 3, and 5, 

fi1)- f~l) = ~ [h (f~2)+ fi2» + ~2 (f~3)_ fi3» + ... J (; 

these three equations can be used to eliminate the terms involving h 4, h5 

and h
6, in eqo (3-3), the final form of the Milne-Lotkin formula is then 

It is not surprising to find that the residual is of the order of h7, sin 
t n n VI 

six parameters fa' fJ.' fo' f 1 , fo' fl have been incorporated into the 

form:u1a. to define the integrand within the interval .. 

Milne also devised an approximate but sjmpJ.e expression for the 

residual, indicating the order of magnitude of the residual at each step. 

This can serve as a guide to the number of significant figUres of the 

numerical solution. 

Based on the same technique one can construct a formul.a for 

second differential equation 

" y = f(t,v,y) 

Integrating Eq. (3-3) once more :rl~~' respect) to.-,t,f:b.n.esfinds 

(3 ... 1 
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By using Eqs. (3-7), (3-8) and (3-9) to eliminate terms involving h5
i h6 

and h7, in Eq. (3-11), one arrives at the integration formula for second 

order equations with the residual of the order'uJ: h8
0 

The complete scheme of computation is then based on two different inte-

gration formulas with the order of magnitudes of the residuals differed 

by a factor h, 

t <s<t+h 
0- - 0 

The merits claimed for this type of integration procedure can be clearly 

seen from the facts that 

(1) the residual j or truncational error, can be easily comput~ 

or estimated from the derived expression and a knowledge of the derivati' 

of f; 

(2) the length of the interval, h, can be changed at any time 

so long as the error of the result is within the allowableo 

However the :procedure is '·s'Ub'jeet ·to t~i_,f9l1.pwing objections: 

(1) since 1'1 and its derivatives appear on the right hand sidE 

of the equations, normally an iterative procedure would have to be used; 



(2) in a complex situation such as a multi-degree o~-treedom 

system where f is a function containing YIo" .0 .Yn , vl ".· .vn in a not 

necessar~ linear manner, the computation of derivatives of f presents 

a tedious task which would become prohibitive if n becomes large. For 

instance, if f. = f. (YIO". y , vl " .. v , t) 
~ 1 n n 

then 

4. Methods of Subdivision- Runge-Kutta and Nystrom Methods. 

This celebrated method has its merit in improving the result 

without introducing the derivatives into the operation, in contrast to 

the methods of Taylor series duscussed in the foregoing section, but the 

construction of the procedure is still based on the Taylor expansion of 

the integrand, which is the foundation of practically all numerical 

methods. The basic idea was first used by Runge and later modified by 

Kutta. Through continuous elaboration and genera.lization, mostly by 

students of Runge, the method. is now among the most widely used ones, 

especially in Europeo The construction of a Runge-Klltta fourth order 

method for first order differential equations is briefly described below. 

Let (4-~) 

be the given differential equation with initial value y at t.. It is 
o 0 

required to compute y at t = to +ho By substituting Y = Yo in (4-1), one 

obtains the slope of the curve *' at to. Tb.en--.define_kH-B.B -raJ 1 ow.s~ 

k = h f( t ,y ). 
000 

(4-2) 



Now proceed along this tangent line a distance -mh on the t-axis and kl 

is def'ined as 

kl = h f(t +mh~ y +mk ) o 0 0 
(4 .. 

Having computed k and k ~ one define a third element o 0 

(4-

and then a fourth element 

(4-

where n7 r J p J S 7 and q are parameters of the same kind as mo 

The increment of y~ ~y~ is defined as 

(4 .. 

It must be noted that the pOints» mh3 no, and ph~ measured from the initj 

point t are only used as additional points to obtain an improved defi­o 

nition of f; they are not the end points of the broken lines along which 

the procedure of numerical integration is madeo The choice of the ten 

parameters~ as b~ Cs dJ m» n~ rs p~ ss and q~ is based on a ,comparison 

between the Taylor expansion of ~y and a power series in h for ~ ob-

tained through successive elimination of' kos k1, k2~ and k3~ defined in 

equations (4-2) to (4-5)0 The latter can be obtained by expanding kBs 

into power series in h by means of Taylor expansions 0 Having equated the 

coefficients of the first four terms of both expressions~ one obtaines 

the following conditions for a result whose first error term is of the 

order h5
0 

a+b+c+d=l 

2 2 2 1 
bm +cn +dp =3 

1 
Cmr + d (nt + ms) = b 

(4-'i 

em2r + d (n2
t + m2s) = ~ 



1 
bm + en + dp = '2 

br?+cn3+dp3=~ 

1 
'Cnmr + dp ( nt + InS) = 'B" 

dmrt - 1 -'24 

"11.. 

This system of eight equations leaves a doubly infinite number of choices 

for the ten parameters 0 For an efficient scheme the parameters should 

take on simple numerical values, a commonly used Runge-Kutta method is 

where 

y = h(ko + 2kl + 2k2 + k3)/6 

k = h f(t , y ) 
000 

~ = h r(to + ~JI Yo +~o) 

k2 = h fe t
o +~, Yo +~) 

~ = h: 'f(to + h, Yo + k2 ) 

(4-8 

(4-5 

Gill(7) chose the parameters on the basis that the number of registers ca 

be reduced when the procedure is used to solve problems on a digital com-

puting machine, this leads to irrational numbers for some of the paramete 

Using the similar technique, Nystrom(8) developed a Runge-Kutta 

method for differential equations of second ordero With four k functions 

(7) Gill, S. tlA Process for the Step-by-Step Integration of Differential 
Equations in an Automatic Digital Computing Machine Jt

, Proc. Cambo 
Philos. Soc. 47, 46-108 (1951). 

(8) Nystrom, E.Jo, t1Uber die Num.ericshe Integration von Differential­
gleichungen~nAeta Soc. Scio Fennicae, 50, no. 13, 56 pp. (1926). 
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the method can yield a solution in which both the displacement, y, and 

the velocity, dy/dt, are correct to h5 provided that no velocity terms is 

involved in f, otherwise the solution is correct only to the h4 term. Tb 

following is one of his schemes for 

yD = f(t, y, v) 

_ [ 23 ko + 75k:t - 27k2 + 25k:? ] 
6y - h ro +-xg2' 

_ 23ko, J+ J.25k]. - 8lk2 + J25~ 
fl.v - 192 

With k= f(t Y)h o 0, 0 . 

2h 2r~ 
~ = f(to +'"5' Yo' T)h 

(4-1 

k2 = f ( to + ~ h, Yo + ~ r ~) h 

4h 4r 
~ =f(to + 5' Yo + -?-)h 

By the use of similar reasoning Blaess(9)devised a numerical 

method and later on it was improved and generalized by BukoVics(lO)0 The 

scheme was simplified by letting the parameters taking on same number, 

but the accuracy was preserved ~t the expense of more number of substi-

tutions .. 

(9) Blaess, "On the Approximate Solutions of Ordinary Differential 
Equations", Z. Vero Dtscho lng. 81, ppo 587-596 (1937)0 

(10) Bukovics, Eo I1An Improvement and Generalizatioll of the Blaess 
Method for Numerical Integration of Differential Equations", 
Ost. lng .. Arch. ~, pp .. 338-349(1950). 
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The advantages of-the Runge-Kutta method are 

(1) No iteration is neededo 

(2) No derivatives are involved in the computation 0 

(3) The length of the interval can be changed according to 

expediency. 

(4) The operation is simple if' the parameters are chosen as 

simple figures. 

However~ objections to the use of the Runge-Kutta method can be found in 

the literatures; there is chiefly that a highly accurate Runge-Kutta met 

of order m needs more than m substitutions when m is greater than 4. As 

far as error is concerned, Bieberbach(ll) bas found an expression indi-

eating an upper bound for the error within a given step of the Runge-

Kutta process, but the bound is always found to be too overcautious to 

give any practical significance. Lotkin(12) improved the expression yet 

the bound is still far on the safe side. 

5. Methods of Finite Differenceso 

Methods under this heading consist of a great variety of pro-

cedures of numerical integration which are perfected by introducing highl 

order differences extensively 0 Typical examples in this category are thl 

Adams u extrapolation procedures, interpolation procedures, and methods Q 

11. Bieberbach, L. nOn the Remainder of the Runge-Kutta Formula in the 
Theory of Ordinary Differential Equation". ZaMP, 2, Noo 4, 1951, 
ppo 233-2480 -

120 Lotkin, Mo, nOn the Accuracy of Runge-Kutta Method", Math Tables anI 
Other Aids to Computations", 2" No. 35, pp. 128-133, July, 19510 
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central difference 0 The f'ormulation of the expressions can be found in 

most books on numerical analysiso For a first order differential equatic 

u 
y" = f (t, y) 

The extrapolation procedure is to compute y from 

Y _ Y + h (f + \ffn + 5'1- f + -,i5r + .. It 0,) 
n+l - n n 2 12 n -0 n 

where \j f = f .. f l' the backward dif"ference .. n n n-

The interpolation procedure gives 

\]f if-r '" f Y 1. = "tT + h (f +1 - n+ 1 n+ J. - n+ 1 - ...... ) n+. "'D n "2-12 24 

and the method of central difference gives 

The last two procedures needed to be carried out on an iterative basis 

since the unknown Yn+l is involved in the right-hand side. 

(5-

In view of the finite differences equations an obvious questior 

is how to start the problem. Besides the given initial values there is 

not enough information leading to the computation of the various differ-

ences needed in the formula. A usual technique is to compute y's at firf 

few steps by a simple formula such as Taylor series method, Runge-Kutta 

methods; these values will give a series of backward differences of y 

with reliable accuracYi then new yis are computed by Eqso (5-1), (5-2), 

or (5-3). This process may need several repetitions until the y's reach 

stable values, afterwards the procedure will be carried on as usual 0 

This starting of the process is certainly a great disadvantage 

of the methods, especially in the case of analyzing dynamic behavior of 

/ 



a structure j the elastic property of which may ehange as certain parts of 

the member yields; and~ as a consequence~ the equation of equilibrium IDaj 

take a new:; different form and the problem has to start afresh, Moreovel 

as it will be shown later on~ the introduction of higher order differencE 

is not always beneficial, sometimes extraneous solutions are introduced 

into the result due to the presence of higher order differenceso 

In order to get the beneficial result of using higher order 

differences the follo~ng procedures have been suggestedo They are 

carried out on an iterative basis and the numerical result can be obtainE 

as accurately as it is needed 0 For a first order differential equation 

y .. :::;:f'·(t\j~J:ij;cid.s.Lalw:ays p:oErsd.b;l~ :to;:·Vr;i.j;~ the finite dif'ference equiva-

lence as 

y=A.y.,+B+E n . n n-..l. n n 

By first neglecting the residual, or truncational error~ E , y 8s can be 
n 

obtained from the basic equation 

as a first approximationo Then the first approximation of E can be com­
n 

puted and used to find the second approximation for y in the Eqo (5-5). 
n 

This resembles the starting process for an extrapolation or interpolatioI 

procedure except that the process will be used throughout the whole probJ 

The efficiency of the procedure depends upon a balanced choice 

o"f A and E. If A is chosen to contain all terms in Eqo (5-~) that are 

needed for the desired accuracy, E will consist of the remaining higher 

order termsc In this case, the y 9 s computed for the first trial will be 

as accurate as required 0 Few or no cycle of iterations would be needed. 

But if A is chosen this way~ so it would be an involved expression which 
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would be time-consuming to evaluate at each step. It can be seen that a 

simple expression for A, a.t the expense of larger residual error, would 

constitute a better basis for c~utations. The following example, 

with 

i Y 

Yn = Yn- 1 + h (Yn -1 + Yn ) + En 

E 
n 

where 8 is the central difference operator, applied to a differential 

equation of first order 

y' =fy+g 

The recurring relation is shown by the following difference equation 

Several similar procedures can be found in a paper by Fox(13) and Goodwin. 

The same technique can be used for second order differential 

equations. For second order differential equations without terms in-

volving the first derivative, (any second order differential equation can 

be put in this form by a suitable transformation), a simple and highly 

accurate method is recommended by Fox. In the later discussion it will 

be referred to as Foxls method, but the basic formula bas been discussed 

13. Fox, L., Goodwin, E. T., "Some New Methods for the Numerical Inte- _ 
graticn of Ordinary Differential Equations J1

, Proc. Camb 0 Philos. 
Soc. 45, ppo 373-388, (1949). 
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and used in several publications 0 (14) Let the differential equation be 

on 
y=yf+g 

The presence of' g does not cause extra difficulty as has been seen in 

the last example, thus g may be neglectedo If yS is replaced by its 
2 

central difference equivalent and then difference operator (1 + ~2) is 

applied throughout the equation~ a recurrence relation is obtained 

8
6 

and the truncation error En = ( - 240 138
8 

+ 15120 - ooo)Yn where 8 is the 

central difference operatoro The recurrence relation is quite simple 

and the truncational error is of order of magnitude of 86, which is very 

small in most normal caseso 

If f is a runction of y as well as tJ then the differential 

equation is no longer linearo Trial values for f have to be assumed and 

the process becomes a doubly iterative procedureo If the time interval, 

h~ is kept small enough~ convergence will not be a serious problem. 

In all the methods of integration by iterative procedures~ the 

truncational errors are computed in terms of the differences of the 

function values previously established; central differences are usually 

to be recommendedo However J it generally happens that in the first and 

the last few steps the given information is not sufficient to determine 

140 Feinstein~ LO J and Scharzshild~ Mo)] UAutomatic Integration of Linear 
Second Order Dll'ferential Equations by Means of Punch Card Machines.;>" 
Rev. Scio Insto 12~ 1941J ppo 405-80 
LindbergJ N. AoJ--ulntegration of Second Order Differential Equation 
on the Type 602 Calculating Puncb"~ Proco Scio Computation ForumJ 

po 23~ 1948~ IBM 0 

Collatz J LO J rlNumerische Behandling von Dllf'erentialgleichungen/~;.>;.',:, 
Springer'; '1951, S 8bc: GI. (5.40 ) . 



all the central dif'ferences that are needed. In such a case these differ-

ences are usually supplied by extrapolation or guesso In order to utilizE 

all the given information available!' a mixed central diff'erence and back­

ward difference scheme bas been suggested. Lowdin (15) in his recent paper 

succeeded in supplying the additional central differences by means of the 

given backward dif:ferences in the last backward lineo 

Lowdinu s method bas features similar to those of the step-by-

step iterative integration procedure~ namely~ a basic formula upon which 

the first approxi-mation is construct-edp and a difference correction that 

takes into account truncational error in terms of differences. To start 

the problem, an iterative procedure is used to establish a few values at 

the beginningJ but is not continued~ Arter this iterative procedure has 

been used up to a certain number of stepsJl the process is transformed 

into a flmarching process", 'With all. the needed central differences supplie, 

by the backward difference formulas 0 When the marching process bas been 

completed ror the whole range of integration it is possible to improve the 

accuracy of flyn by utilizing the actual values of central differences 

formed in the later stages of calculation 0 An correction may be added 

if it is significanto Using a similar technique Lowdin(16) published a 

procedure for differential equations of second order. 

150 Lowdin, P 00 0 J nOn the Numerical Integration of Ordinary Differential 
Equations of the First Order fl

, Quart,? Applo Math 0 107 Noo 2j July,? 
1952~ ppo 97-1110 --

160 Lowdin~ P. OOJl and Sjolander.? AO J flA Note on the Numerical Calcu­
lation of Asyenptotic Phases with a Numerical Study of HulthinUs 
Variational Principle"j) Archiv for FysikJ ~J Nco 11.)1 ppo 155-159 (195] 
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The essential points of Lowdin~s procedure are: 

(1) A mixed use of central backward differences to utilize 

all available information~ 

(2) An iterative process is needed only to start the problem, 

then a marching process continues on to get all the rest of the solution. 

(3) To correct the solution on the basis of central difference: 

computed from the values of the solution obtained, a correction can be 

added; the correction is usually small~ 

As a concluding remark~ these methods have the advantage that a 

clear indication of truncational error can be easily obtained for the 

classical method of finite differences (namely Adams' method). Since the 

iterative procedures of numerical integration will yield the same solutio! 

but with a truncational error which is practically zero, they differ only 

in the operating scheme. 

However, there are some annoying features of the methods~ 

(1) The same time interval has to be used throughout the whole 

problem. 

(2) The methods needed a starting device to establish an 

approximate solution from which the differences can be obtained. 

(3) The operating scheme is complicated and time-consuming. 

(4) It is not convenient to use the methods for problems where 

the differential equations change their functional forms when critical 

limits of certain parameters are reached, since the solution is not 

supposed to reach its final form until the last iteration. These methods 

are less objectionable for non-linear differential equations, since 

iteration has to be used anyway-
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III 0 L~STABILITY OF NtJME!RICAL SOLUTION 

6. General Description 

In the method of using an equivalent difference scheme to re-

place the given, partial or ordinary» differential equations~ it bas been 

observed that under certain circumstances the method may lead to a soluti( 

that is radically different from what is anticipatedo For most of the 

initial value problems this erroneous solution usually takes the form of 

an oscillation with an ever-increasing amplitudeo Its existence has been 

observed and reported by many investigators and suitable remedies have 

been suggestedo It is generally agreed that the instability of error is 

an intrinsic property of the method of solution with respect to the 

associated problem. 

For partial differential equations of hyperbolic and parabolic 

type" Brien7 Hyman and Kaplan (11) have found, by a method used by von 

Neumann in his unpublished study of unstable solution of difference 

equations~ that certain relationships between the meth sizes of the net 

must be maintained in order to keep down the growth of errors. Similar 

efforts have been made by Eddy(18) in studying unstable solution in heat 

17. Brien, GoO.;I Hyman.9 Mo ~ and Kaplan,? So uA Study of the Numerical 
Solutions of Partial Differential Equations tl

, Jour., M9.th~ and 
Physics 29J ppo 223-2513 1951. 

18. EddYJ RoP. "Stability in the Numerical Solution of Initial Value 
Problems in Partial Differential Equations", Technical Memo. l0232, 
Naval Ordnance Laboratoryo 

Metz Reference Room 
Civil Engineering De]?artment 
BIOS C. E. Builii~g 
University of Illi.Y1ois 
UrbarM1, Illinois 61801 



conduction problem and by Collatz(19) in deriving the instability criteric 

for differential equations in the problem of the vibration of beams, and 

also for the use of the method of central difference 0 (20) 

Recently Rutisbauser (21) made instability tests for several methc 

of numerical integration of ordinary differential equations of simple typE 

He attributes the unstable solution to the presence of "extratl solutions 

arising from the use of higher order differences, which result in a higheI 

order characteristic algebraic equationo A generalization of the method 

of analysis was also reportedo 

In all the methods of analysis a test differential equation was 

replaced by its equivalent difference equation.9 obtained with the aid of 

some numerical method.. Then the so.lution of the differential equation is 

compared with that of the difference equation. The trucational error.9 due 
/ 

to the replacementJ is expected that the two solutions are of the same 

order of magnitude and can have similar physical interpretation.. If they 

cannot be compared on this basis, the trunca tional error of the numerical 

method is certainly serious enough tba t the numerical solution bas to be 

rejectedo 

190 ColJ.a.tzj) Lo iiZur Stabilitl:tt des Dl.!"!"erenzenver!"ahrens -oel. d.er 
Stabschwingsgleichung l1

,9 Z. Angewo Math 0 Mecho 31, So 392-393, 19510 

20. Collatz, Lo ftiTher die Instabilitat beim Verfahren der zentralen 
Differenzen fur Differential-gleicbungen zweiter Ordung", ZaMP 4, 
1953, seite 153-1540 -

210 Rutisbauser, H 0 TI'Uber die Instabil:t ta t von Methoden zur Integration 
gewohnlicber Differentialgleichungenn~ ZaMP, 2: seite 65-74J 1952. 



1..:.. Criterion of' Instability 

In the- -:present study the test differenti-aJ.. equation is 

2 
ytf + P Y = 0 

the solution of which is well known as 

v 
Y = Yo cos pt + ---cr sin pt 

p 

(7-1) 

(7-2) 

where y and v are the initial displacement and initial velocity respec-o 0 

tively. Since a second order differential equation can al~s be split 

into two first order differential equations, Eq. (7-1) can be formulated 

into 
2 y' = v, v t = -p y 

then the corresponding difference equation of Eq. (7-1) will take two 

different forms depending on the type of integration formula to be used. 

If the Runge -Kutta Fourth Order method, Eq. (4-8), is used to 

solve the system of two first order differential equations, after success 

ive substitutions of' k!s the following difference equations are obtained. 

242 e e e 
Yn = (1 - '2 + 21+) Yn-l + (1 - b") h vn _l 

(7-4) 

The solution to the above equations can be assumed to take the f'orm 

After direct substitution for y and v , it can be proved that the n n 

following determinate has to be zero if' the two constants, a and b, will 



take non-zero valueso 

82 e4 
1- 2 +'24"" Ii. 

= 0 (7-

2 e2 
- 8 (1 - b") 

where e = pho 

The characteristic equation is 

from which the roots for A can be obtained. 

It is obvious that the solution to the difference equations has 

to be sinusoidal in view of the exact answerJ Eq. (7-2). To achieve this~ 

the A's must be complex numbers~ nevertheless, the absolute value of the 

complex roots must be unity in order to assure a sinusoidal solution 

wi th constant amplitude 0 In the present case " is always complex but 

unfortunately the amplitude is not conservedJ since 

(7-7 

and 

Apparently the amplitude can be conserved if the interval h is chosen 

sma...L: enough to make 8« 1,9 

In the next example the method of using derivatives is tested~ 

a double integration formula is chosen to get Yn and a simple integration 

formula for vnj namely Eqso (3-13) and (3-14)0 
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Since f = 
2 

-p Y 
t 2 therefore f = -p v (7-8) 
" 4 

f = p y 

I " After elim1na. ting f, f , etc _, and f from Eqs. (3-13) and (3-14) by the 

above expressions the resulting difference equations are obtained. 

(7-

which is equivalent to the following system after a few algebraic 

simpl1fica tions 

The characteristic equation of above system is 
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In this case the roots become complex conditionally; therefore, the solut: 

is conditionally stable but will not behave sinusoidal when 

10 < e2 < 60 

But this time the amplitude is always conserved because of the fact tba t 

IAT = 1 no matter what value for h is taken so long as the solution is 

kept stable. 

From the examples given above~ the stability of the numerical 

solution is mainly dependent on the nature of the roots of the cbaracter-

istic equation. If the matrix of the coefficients in the right band side 

of Eqo (1-3) has complex eigen-values of unit absolute values stability il 

assured 0 It is unnecessary to test every numerical method for stability~ 

since it can be shown that the eigen-value of the matrix can al~ys be 

made complex if the same integration formula is used for the system of tWj 

first order differential equations, Eq. (1-2). 

No matter what method of integration .. is used, it is alway's 

possible to write down the formula as 

[to +hf ( 1:) d .... h [A fJ. + Bfo + Cf' -J. + •••• ] 

o 

if higher order differences are not included the formula could be even 

simpler 

(7-11 

where A, B, are functions of S. Then Eqo (7-2) can be transformed into 

the corresponding difference equations 

(v - v 1) = - p2 ~d2 = - p~ (A y + B y 1) n n- JY n n-
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transpos ing, 

y -AVh=y l+BV lh n . n n- n-

(7-l2 

lI.e,2Yn + Vnh = Be2y + V h 
.til - 1 1 n- n ... 

A , in this case, must satisfy the following condition 

l - 1. B + AA 

= 0 
1 ... A 

, , 1 - A = i (B + AA) 

Therefore, A will become complex independent of the values taken by A and 

B. Moreover, the inclusion of higher order terms merely complicates the 

elements in the determinant and assigns more roots to A 0 Since elements 

along the principal diagonal are always the same and the elements along 

the other diagonal are always differed by a factor .. _e2, A will never be-

come real. This observation confirms the result in the first example in 

which the Runge-Kutta Fourth Order method is used and the numerical 

solution is sinusoidal; while in the second example two different inte-

gration formulas are used, one for simple integration and one for double 

integration, the numerical solution is not always sinusoidal despite the 

fact that amplitude can be conserved. 

8. Conservation of Amplitude 

However J if A is complex, it doesn't necessarily follow that 



amplitude is conserved. There are separate criteria to find whether or 

not amplitude is conserved 0 From theory of matrices~ it can be proved 

that if the complex eigen-value of the matrix in Eq. (7-4) bas unit 

absolute value then the determinant of the matrix is unity, (see Appendix 

A). The numerical value of the determinant of matrix in Eq. (7-10) can 

certainly confirm this statement. 

MOre generally, there are cases in which both the y and v are 
n n 

expressed only implicitly such as in Eq. (7-9)0 Then the criterion for 

conserving amplitude is that values of determinants of the two matrices 

on the left and right hand sides must be equal 0 This is a direct conse-

quence of the foregOing statement and its proof is trivial. Eq. (7-9) 

can serve as an example; after transposing, it is found 

and 

e~ 84 e2 82 84 82 
(l + 1} ... 2'l'iQ) Yn + 20 vnh = (1 - '4 + 2IiO) Yn- l + (J. +20) vn_J.h 

82 8 4 82 82 8
4 

8
2 

(2 - I2Q) Yn+ (1 +lO) vnh = (_0'2 + J.20) Yn-l+ (J. + J.O) vn_lh 

2 8 
20 



To formulate a general principle upon which numerical methods 

can be constructed with the aim of conserving amplitude is qUite involved. 

However, it can be shown that the Milne's methods always conserve amplituc 

If the simple integration formula is used symmetrically for the 

system of two first order differential equations~ Eq. (7-2), then 

~to +hd-r y( -r) = I an [y~n)+ (-)n yin)] 

o 
and 

jto+hd-r v(-r) = Ian [v.~n)+ (-)nvin)] 
to 

where a are functions of h, can be simplified by making use of the re­
n 

curring property of the original differential equation; ~mely, 

11 2 
Y +py=o 

11~ 2 
y + p y = 0 

iv 2 
y - p y = 0 

Therefore, Yn - Yn~l = A:t.h (Vn + Vn_I ) + ~ (Yn-1 .. Yn) 

h (v .. v I,) =_J/2' l131 (y + Y 1) + B2h (v, 1- v )] n n... ,n n- n- n 

where A and B are functions of p and h, transposingp 

(8. 

(8-~ 
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It is obvious that the determinants of the two matrices on both sides are 

equal; the statement is then proved. 

To prove conservation of amplitude, in the case of the use of 

one simple integration and one double integration formula of the Milne's 

methods additional property of the methods of this group is required. 

Examination made of Eqs. (3,,:13) and (3-14), will show that the two formuls 

are in the ratio, hj2.. But it will be proved that this rela tion always 

holds true as long as both keep the same order of terms no matter how manJ 

terms are involved. The proof is in Appendix B. 

This additional property is found useful in the proof of the 

property of amplitude-conserving of the numerical solution. Instead of 

using the two original formulas, 

Y = Y 1 + V lh + fff d-r
2 

n n- n- , 

v = V 1 +Jf d-r n n-

{8-: 

either one of the~ can be replaced by the additional property just found, 

namely 

h 
= Y 1 + v lh + -2 (v - v 1) n- n... n n ... (8-: 

"., 

= y 1 + * (v + v 1) n- ~ n n-
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Now let the second of Eq. (8-2) be written as see Eq. (7-11) 

(8-4 

After this equation is combined with Eq. (8-3), it becomes clear that 

the amplitude of the numerical solution computed by the Milne's methods 

will be conserved. 

~ Influence of Higher Order Differences 

Theoretically the inclusion of higher order difference in formQ 

for numerical integration will reduce truncational error; it is ~ogical tl 

surmise that the growth of ~rror could be suppressed. But from the resul" 

of several investigators this seems not the case. 

Inclusion of higher order differences in the formulas (see Adam 

procedures) usually would raise the order of the characteristic equation I 

the difference equations which replaces the original differential equatio: 

Hence extraneous roots will be produced as a consequence.. HOUbOlt(22) 

uses a third order backward differences for the acceleration; this produc' 

a cubic characteristic equation of which one of the roots must be real .. 

Fortunately the real root is always less than one. It corresponds to a 

damped component in the numerical solution. Similar results were found i 

the flparabolic acceleration methodn (23 )3 in which the acceleration is 

ass umed varying parabolically wi thin the small- time interval.. The result 

22. Houbolt, J.e., flA Recurrence-Matrix Solution for the Dynamic Respons 
of Elastic Aircraft" NACA TN 2060 J March, 1950. 

23. Newmark, N.M .. and Chan, S.P., "A Comparison of Numerical Methods for 
Analyzing the Dynamic Response of Str~ctUres", Civil Engineering 
Studies, Structural Research Series No. 36, University of ·Illinois, 
pp. 16-190 



cbaracteristic equation is again cubic, but the real root is not always 

less than one, and the complex roots alone do not produce an amplitude­

conserving sinusoidal solution as they should. 

The foregoing example may suggest that higher orderdif't'erences 

might be included only up to an even order 0 This will produce a cha.ra.cteJ 

istic equation of even order. Here~ then, is the possibility of suppress: 

all the real roots and leaving the roots complex conjugates with, the furtl 

requirements that the absolute value of the roots should be equal to unit~ 

Even if all these could be achieved the numerical solution would be a mix­

ture of several sinusoidal waves each baving a particular frequency, 

instead of a single wave. 

It seems that influence of using higher order differences is no1 

always beneficial, despite the theoretical support which claims to reduce 

truncational error by inclusion of the differences. Ho'Wever J it can be 

shown that the theoretical reasoning is correct if a proper process is 

used. One of the processes is the method of iterative numerical inte­

gration discussed in section 5. The truncational error, computed in ter~ 

of higher order differences of values in previous trial, is considered as 

known and put at the right~hand side of the difference equations. This 

leaves the homogeneous difference equations of the difference equations 

always of second order; consequently, removing the possibility of 

appearance of extraneous roots corresponding to unwanted solutions. This 

may be called a Picard process; the particular solution of the difference 

equation is improved each trial. 

In the following are two examples, in which the same problem 

is worked out by two different procedures, the time interval, h, is so 
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chosen that one of these procedures leads to an unstable solution. But 

later on the instability is suppressed; after correction the unstable 

scheme shows a better result than the stable one. 

The first procedure is the Timoshenko's modified method, (24) 

for a given problem 
n 2 

Y + P Y = 0 

the equivalent difference equation is 

(9-: 

The second scheme is the famous Fox method (25); ,the equivalent difference 

equation is 

(9-~ 

Now take ph = 2.5, and p = 10 This will make the second solution unstable 

to begin with, while Timoshenko's method will always give a stable so-

lution. The initial conditions are given with y~ = 0 and Y1 = cos h, 

which corresponds to unit initial velocity. Since the differential equatj 

24. Timoshenko, S. , "Vibration Problems in Engineeringn
, 2nd Edition D. 

Van Nostrand Co., Inco, New York, 1937, pp. 126-128. 

25. Fox, L., and Goodwin, E.T .. , f'Some New Methods for the Numerical 
Integration of Ordinary Differential Equations 11, Proc. Camb .. Phil. 
Soc., 45, p. 381,1949. 



consists of members of even order, the central differences can be 

assigned without guessing 0 .A.f'ter the first trial, (see Table I and II) 

the result shows that the unstable solution, computed by Fox's method, 

comes closer to the exact solution. But the divergent oscillation of 

higher order differences j with ever increasing magnitude; constitutes 

a serious dravback to the method, and limits its application. In parti-

cular, if the process is going to be carried out on digital computing 

machinery, the divergence in the values of differences will eventually 

run the number out of boundo Even if the scale of numbers is changed, 

the round-off error will cause a serious concern. The exa~les merely 

show that a procedure with smaller trunca tiona,l error could yield a 

better answer despite the fact that it has to start with an unstable 

solution. 

In view of the oscillatory property of the unstable solution 

it may be inferred that a method of averaging the successive value might 

bring down the magnitude of the figure without impairing the accuracy. 

(This idea 1s suggested in Lowdin's paper(15))0 

It would be helpful t~ view the method by studying the followinE 

difference equation 

,..,,2 __ J2p~2 
where u. -

12 + JJ~2 
This equation replaces Eqo (9-1) after the 

Fox's method is used, see Eq. (9-3)0 The instability criterion for the 

method is p~2< 6. After Yn-l' and Yn are given, Yn+l and Yn+2 can be 

computed by the recurrence formulas, Eq 0 (9-4), now instead of carrying 

out the routine, the required y +1 is computed by averaging Yn, Yn+l , and 
.n 

y 2' i .. e. n+ 



Algebraically this is equivalent to a modification of Eq .. (9-4) to the 

following difference equation 

(9-~ 

In the case of a mnlti-degree-of-freedom system the time interval,h, may 

be fine enough to give accurate ansver for lover modes but still not meet 

the instability requirement for higher modes, then the average procedure 

will not impair the accuracy for the lover modes but can postpone the 

starting of instability, as can be seen in the following derivation. The 

characteristic equation in this case is 

(9-' 

If the A!S whicn cause the instability before average and after average 

are plotted against iin Fig. 1, it is apparent that the root which causes 

instability has its magnitude reduced; this implies a delay in starting 

instability. But for CB~O the root for average procedure becomes greater 

than that for Fox's methodo Moreover, another unfortunate feature of this 

procedure is the fact that the amplitude is not conserved since 
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IV ANALYSIS OF ERROR 

10. Interpretation o~ Errors 

It is not d~ficult to formulate a numerical method of integrati l 

but to analyze the error involved in the method and its sequential e~fect 

is not a simple task~ The present discussion ~ error is limited only to 

truncational error and its cumulat,ive influences. The investigation of 

round-o~~ error will not be considered because ~ its complicated and 

random nature, and its dependence on every detail of the particular com­

puting process by which the method is carried out. A rigorous mathematica 

treatment of round-off is not impossible but usually it leads to an over­

estimated bound o~' error which is far on the s~e side; yet, a statistical 

analysis o~ the error based on the random character of round-off, sometime 

would underestimate the actual error. 

However, to analyze the influence of truncational error o~ a 

numerical method in a generalized way is by no means easy. Qui te often 

the results are not reliable and devoid of physical sign~icance.· Numerou 

analyses o~ errors have been made, most of them are subject to two serious 

defects shown from the following points~ 

(1) analysis always tend to cover a great variety of integrand 

functions but lack the means of depicting its behavior, thus leave the 

class of functions described by few parameters or the bounds o~ the para­

meters. For instance, two problems with the same bound for the Li~schitz 

constant for their integrand functions may have radically d~ferent 

solutions even if the same numerical method is used to get the solutions 0 



Sometimes two different numerical procedures may have their performance 

compared with respect to a certain class of integrand functions j but the 

indications would be completely reversed if a problem, the integrand 

function of which belongs to the class, is solved numerically by the two 

methods. 

(2) On account of the complicated form of the resulting differ-

ence equations the study of propagation of error is often reduced to a 

study of bound of error in each step. After simplifying a few undesirable 

terms of the expressions, this oversimplification may lead to unreliable 

and controversial results. In the course of this simplification it may 

happen that an accurate procedure gets a larger bound for its error than 

a less accurate method. 

To avoid incorrect estimates of error the present investigation 

is made on a realistic basis. Instead of estimating error or its bound 

the intention is to find out how truncational error manifests itself in a 

different part of the numerical solution. Since the nature of the differ .... 

ential equations of problems of dynamic structural response is fairly well 

known, the numerical method is applied to such a standard problem that 

generalization of the characteristics of the numerical solution may be 

possible. 

11. Manifestation of Truncational Error in Various Methods 

Without loss of generality the standard problem is taken as 

n 2 + p y = 0 (ll-l) y 

with initial condition y and v. Separate discussion will be given in th o 0 

next chapter for cases involving viscous damping. 



The Milne-Lotkin 6 order method, Eq. (3-10) is applied to the 

system 

2 
v = -p y 

(11-2) 
y = v 

The replacement difference equations are 

after the derivatives are eliminated by the following equations, obtained 

by differentiating Eqs. (11-1), 

2 1 2 v" = - p y = - p v, 

m 2 1 4 
V= - P v = P Y1 

2 1 2 y"'= - P Y = - P v, etc. 

Now let ph = e and simplify the expression, then 

2 1. e2 e2 
= -Y e (-""" -)+ v h(l - -1.0) o 2 120 0 

Metz R0fe-~~once Room 
C1 viI Engineering Department 
BI06 C. E. Building 
University of Illinois 
Urbana .• .; .Illinois 61801 

(ll-~ 



From the results in the previous analysis it can be inferred directly 

that the solution of the difference equations is always sinusoidal and 

conserves the amplitude, the ~ in the present case is 

82 2 2 l e2 . e2 82 
Dl = (l - 10) - e('2 ... l20) .± ~e (1 ... 10)(1 .. bo) 

82 2 2 1 82 2 
where D = (1 - 10) + e ('2 - 120) 

After the initial conditions are incorporated into the solution,. it is 

found that: y = y cos DJ.I. + :0 sin n~ 
n 0 .J:' 

v = - y p sin DJ.l + Vo cos nil n 0 
(11 .... 

where J.l/h is defined as the pseudo-circular frequency of the response anI 

Then the pseudo period of the solution can be computed, Ts = 2nh/f and 

compared with the actual period, T = 2n/p. In Fig. 2. Ts/T is plotted 

against e, the error is only 10 percent when an interval as long as the 

period·of the system is used. 

In the following a 6-order formula for double integration and a 

6-order simple integration formula Eqs. (15) and (16) are applied to 

Eq. (11-1); the replacement difference equations are 

h2 2 2 li3 2 2 h4 4 4 
Y1= Yo+ voh + T< ... p Yo'" p Y1) - '20(P vo- P .v1 ) + 2IiQ(p Yo+ P YJ) 
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(11;.; 

From previous analysis (see page 24) thenumericaJ. solution is condition .... 

a.l.1y stable with a conserved: amplitude. The AI s are given as 

and 

The complete solution is ~2 
v 1 --0 o .1 

y =Y cos D.J..L + - 2 
n 0 p e 

.1 - bO 

sin llf.l 

~
2 

1 ... ~ . 00 
v = y P 2· sin IlJ.1 + v cos np. 

n 0 e 0 
. .1- -10 

In the plot of T IT, Fig. 2, this method. gives consideratle error in s . 

(11-

(ll-

freqnency, sometimes as high as 15 1?aercen;2 

1 - 20 

MOreover, another annoying 

f'eature is the presence of' f'actors . e
2 

1 ... bo 

in the coefficient of v in 
o 

expression f'or y. ~1 -~ ·in the coef'f'icient of' y 
~ e 0 

1 - 10 

in expression for v • 
n 

Both factors should be". unity but this can olily be achieved by using 



40. 

By using a similar technique, the 4th order formulas for doubie 

and simple integration can be obtained, namely 

(11-: 

(11-: 

n 

This formulas have the advantage of saving the trouble of computing f 

but at the expense of introducing higher truncational error. If Eq. (11-~ 

is used for the system of first order differential equations, Eq. (7-2), tl 

replacement difference equations are 

e2 v1h e2 
Y

1 
(1. - -) - - = Y (1 ..... _) 12 2 0 12 

vh 
+ .....2..... 

2 

e2 e2 
- - Y + v h (1 - "1 f"\ ) 2 0 0 ..L.C. 

and the pseudo frequency J.l/h is given as 

e2 

tan J.l = 
e (1.- 12) 

. 5eg· . e4 
1- 12 + jJi.1i:' 

(11-: 

(ll ... : 

the numerical solution is similar to that of the 6th order method except 

for a larger error in frequency, as can be seen in Figc 2, where the 

error is about 40 percent if & is taken as 6. 
v o 0 

Y n = Yo cos nJ.l + p sm DJ.l 

v =-y P sin nJ.l' + v cos nf.L n 0 0 

(11-: 
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If both Eqs .. (11-10) and (11-11) are used to integrate Eq. (11-1 
II 2 

Y = -p y 

to obtain Yl and vI' it is found the replacement difference equations take 

the following form 

and the numerical solution is 

with 

+ v cos nil o 

2.l. 2 1 
Again this time, erroneous factors (1 _ ~)2 and (1 .... ~) 2 

. 12 12 

are present in the equations. 

(11-1 

(11 .... 16 

(11-17 

The truncational error in a Runge-Kutta Fourth order method can 

be easily seen from the result of a stability analysis made in the last 

chapter, Eq. (7-7). It must be remarked that although there are several 

Runge-Kutta 4th order rules, depending upon the choice of numerical values 

for the parameters, that are satisfying equations (4-7), the numerical 
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coefficients in the replacement difference equations, Eqs. (7-4), are 

independent of the numerical values of the parameters. It can be shown 

that the parameters appearing in the coefficients are so grouped that 

they take precisely the same functional forms as those in Eqs. (4-7). 

This leaves no choice of numerical values for the parameters on the basis 

of minimizing truncational errors. 

Vn = IAI n ( -yaP sin IlJ.l 

with 

~ 
-l eY1 ... -5 

Il = tan 2 I . 4 
1-f!. +~ 

2 2l1-

v 
+ ....£ sin nJ1 ) 

1> 

+ v cos n Il) o 

(11-1 

The numerical solution of Runge-Kutta method is sinusoidal; 

nevertheless, it does not conserve amplitude. In Fig. 3 the amplifi-

cation factor is plotted against ph. It seems that in the usable range 

for e , is e< 2.8. Beyond that, an undesirable divergent oscillation 

will result. The pseudo period, T IT, of Runge-Kutta solution is also s 

plotted in Fig. 2 for comparison. 

In the f,?llowing, one of the Nystrom method Eqo (4-10) is 

demonstrated for ft 2 
Y = -p Y 

After the k-functions have been successively eliminated the difference 



equations take a simple form 

(}2 (}4 (}6 (}2 84 
Yl = Yo (1 ... 2 + 24 .... 600) + voh (1 - b +120) 

2 (}2 (}4 (}2 (}4 
v1h = - (} Yo (1 co b + 120) + voh (1 .... 2' + 2'4) 

The eigen-value of the matrix, 'A, in this case, is given as 

(}2 (}4 (}6 J. e2 (}4 2 (}10 
A = 1 ... - + ~ ... -.- + ie (1 CD ,... + -) --~ 

2 2I+ 1200 - 0 120 12002 

This time the solution can sinusoidal only when 

e2 e4 85 
1 - 0+ 120 :> l2OO' ' i .. eo (} < 2 0 9394 

The solution of the difference equations takes a com;plicated form 

v = n 

+ v 0 {cos ~ - l~~ • ~ sm 2 ~ 4 ~o } ] 
e (} )2 8 

: (1 - b + 120 - 2 
: 1200 

(11 .... 20: 

(11-23) 

~e amplitude is l.onger conserved, besides:; there are errors in the 

phase and the coefficients, which can only be minimized by using a small 

interval.. So far as the errors in the ~litude and. in the period are 

concerned the Nystrom method. shows better performance than the Runge-Kutta 

Fourth Order Rule if' the intervaJ. is kept within. the stability limito 



From the foregoing analysis it can be seen that the truncational 

error can conceal itself in the frequency, or in the amplitude, or in both 

and it can also introduce an erroneous phase·angle as well as an erroneous 

coefficient modifying the amplitude to some extent 0 However 3 it will be 

verified in the following that the coefficients can be kept free from 

errors by the using of the same formulas of simple integration for the 

system of two first order differential equations Eqso (11-2). 
t + h 

Let [:d-r = A fo +:B fl 
o 

Af'ter applying the formula to Eq. (11-2) one obtains a system of two first 

difference equations, namely 

If y and v h are assumed as 
n n 

then 
_l!iPA 

~,2 - 1 ~ i P B 

therefore the :final solution is 

where 

Yn = An [Yo cos nfl + f sin nfl ] 

v = n A n [-yo P sin nfl + v 0 cos nfl ] 

tan I.L = P (A + B) 
1 - p2AB 

(ll-2 

(1.1-2 



v 0 t3 :METHOD 

12. General Description 

One of the most versatile methods of numerical integration is 

the ~ method, in which the value of ~ can be changed so that the method 

will give the' best· possible result under the particular condition.. The 

formulas are simple to use and the numerical operations and sequence of 

operations are convenient for most computing facilities, namely 

where the differential equation to be integrated is of the type 

The properties and practicability of the method have been extensively 

explored (26,27)0 When ~ is taken as 0, the method reduces to Levy's 

(12-1 

procedure; ~ = 1/43 it is the Timoshenko's modified method; ~ = 1/6, it 

implies the assumption that the variation of acceleration is linear within 

the interval; for t3 = 1/12~ the method is equivalent to the Fox 8 s method 

(or the Colla tz method of Central Difference). 

26. N .Mo Newmark, "Computation of Dynamic Structural Response in the 
Range Approaching Failure Jl

, Froe 0 Symposium on Earthquake and Blast 
Effects on Structures, University of California, Los Angles, Calc, 
June, 1952. ppo 116-126. 

27. N. M. Newmark and So P .. Chan "Comparison of Numerical Methods for 
Analyzing the Dynamic Response of Structures if Civil Engineering 
Studies, Structural Research Group, Noo 36, 19520 



2. When the function f is !taken as -p y, the replacement difference 

equation is found to be 

82 
Yn+l ... (2 - ). + t3e2.) Yn + Yn - l = 0 

and the numerical solution is 

where 

12 
e2 

tan ~ 
+ ~e2 

= 
2 "" 

2 
(4 CD e. ) 

1 + t3e2 

82 

1 + f3e2 

+ v cos nJ.1. o 

(J.2-~ 

Therefrom it is claimed that the solution conserves amplitude but is only 

conditionally sinusoidal and subjected to the restriction 

e2 < 4 
1 "" 4t3 

Furthermore the velocity-response and the velocity, due to tbe initial 
). 

displacement, Yo' are both in error by factors, [1 - (~ - ~)e2):2 

and [1 (i - ~)e2~ respectively. If ~ = 1/4, these factors reduce to 

unity and the choice of time interval is no longer restricted by the 

criterion for instability 0 In this case, where instability is no longer 

to be feared, this leaves the truncational error in the frequency of 

the response 0 The t3 = 1/4 method has the largest error of all. the f3 

methods as can be seen in Fig. 40 Perhaps this is less ob jectionable 

~ comparison to the errors in other parts of the solutionp but in a 

multi-degree-of-freedom system if the solution is the super-position of 



several participating modes:; thenj the error in phase will yield an 

erroneous peak value. 

130 A Modified ~ = 1/4 Method 

It would be of practical value if the ~ = 1/4 method could be 

modified to have the error in frequency reduced without changing other 

parts of the solution 0 To explore this possibility it is suggested tbat 

the solution produced by the ~ = 1/4 procedure by reviewed, ioe., 

v 
y = y cos I41 +....2. sin IlJ.1 n 0 p 

(13 .... : 

Since (13-~ 

it is inferred that, instead of using p in the given differential equatioI 
2 

q = p (llf~)' is used in all numerical operations., This reduces the 

truncational error in the frequency and the modified frequency ~/h, is 

given as 

tan ! = 9!! 113 .... 4. 2 2 \ 

Numerical values for T IT are plotted against ph in Figo 40 Considerable 
s 

improvement can be seen within the stable zone for other ~ procedures wbiJ 

higher modes are kept from growing wildo In doing so, an error is intro .... 

duced into terms involving velocity since q is in the place where p wasp j 

Yn = Yo cos nq> + -: sin DIP 



However this can be remedied by modifY~ the velocity by a factor- Vp, 

in other words v 0 bas to be multiplied by q/p before it enters in the 

numerical. operations, the relation between the pseudo velocity , v, and 

the actual velocity j v, is 

v = v (qjp) {13-t 

Upon substituting the above expression f'or v in eqs .. (~3-5) one can obtain 

the right result .. 

A further improved result can be obtained if higher order terms 

e 
in the series expansion of tan '2 are added • 

. .All. of this seems quite obvious, but this can also be done for a. 

mul.ti-degree of freedom system without knowing the actual. values of fre ... 

quencies of' system 0 Without loss of general.ity the equations of equil.i-

brium can be assumed as 

(13 ... t 

2 From theory of matrices, if p.'>j has p , n = ]. ...... N.9 as its eigen-val.uesS' 
.~ n 

then, ~j 

will have ~, n = 1 ....... N ~ as the eigen ... values, since 

q2 = l (~ + p~2)2 (~3-9 

Therefore P ij. is replaced by ~j in ~tual xrumericaJ. opera.tions.. S:imilarl;y 

the factor qfp is equivalent to a matrix Aij with 

h2 
Aij = 8ij + II Pij 

where 8ij is the unit matrix, or the Kronecker's delta.. The pseudo velocit~ 

~ector v. is them obtained by 
fr·: ~ 

Vi =L 
j 

Ao. v; 
l.J f/J 

(13-10: 



This modified t3 = 1/4 procedure is certainly not-convenient 

to use in case of time-dependent or non-linear elements in the matrix 

because of the necessary modifications to be made in the matrix, in each 

step of integration. For problems with insignificant higher modes 

this modified method may lead to a correct solution, without 

introducing serious error in peak values. 

14. ~ Method as Applied to System with Viscous Damping 

In an actual vibration system damping is always present but onlj 

to some extent. Therefore, it is imperative to study different integratic 

methods for a damped system and to examine the respective merits of the 

various methods. In the following, a viscous damping force is added to 

the test differential equation and only the ~ methods are used to study 

the result. 

Let the test equation be 

the exact solution is 

y (t) 
v+:py 

= e -rpt(y cos qt + 0 0 sin qt) 
o q 

where 222 
q = p (l-r ) 

The replacement difference equation is 

y 1 (1 + c) = y '\2= 0
2

,' + Yn-J.(\l n+..L. " - n -

with c = rph 

]. + f3:p2n2 

c) == 0 

(14-J 



The characteristic equation is therefore 

and 
l. = 2 - rl ±J (2. - a2

) 2. - 4- (~ - c) 
2 

2 (1 + c) 

The truncational error of the ~ method creeps into the criterion for 

critical damping of the system3 which is 

4- c2. co 4- r1 + a4 = 0 

more precisely, 4- r~~2 "" 4 p~2.{l. + ~ p2n2 ) + P 4h 4 = 0 

The system is supposed to be in a state of critical damping if r = 1, 

but now this criterion is dependent upon the value of ~ and the time 

{14-4 

interval used in the analysiso It can be seen that the criterion coin-

cides with the exact one by taking ~ = 1/40 Again this suggests a 

speculation that if the same simple integration formula is app~ied to 
, 2 

v = -8v-p y (14-6) 
y = v 

the truncational error of the formula will not enter into the condition 

for critical camping 0 

Let the integration formula be 
t + h 

~fOdT =A fo + B fl 
o 

Having carried out the substitution one obtains the following replacement 

difference equations 

v1 ... Vo = "" 8(A vl+B v 0) - p2(A Yl+ Byci) (1.4=8) 



and A-determinant 

1 - A B + Al. 

1 - A - 8 (B + A 'A 

Therefore the characteristic equation is 

hence 

The solution begins to behave aperiodically when 

82 ... 4 p2,> 0 

Hence the critical damping of the system is 2p. 

Now if 

o 

(14-

~ 

(14-1 

(14-1 

The numerical periodic solution of the difference equation then can be 

compared with the exact one in two respects, ~mely the pseudo frequency 

and pseudo attentuation factor. The exact solution is 

v + r:P Y 
Y = e ... rpt(yo cos qt + 0 q 0 sin q t) 
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while the numerical solution takes following form 

2 2 82 

[ 
vo(l - r e (1 - ~») + Yorp{l - 1r(1-~») ] 

Y = If Y cos 'l"Vn + sin mp 
no""" PV1 _. <! _ l3)e2 .. r2 

(14-1~: 

with tan cp = 
~ 

r.r-:c 
and R =V~ · 

It is of interest to note that the truncational error of the 

method enters into different parts of the numerical solution, besides 

the errors in frequency and a ttenua tion factor. Errors also --appear in 

the coefficients as happened in the case of undamped system. However if 

~ is taken as 1/4, these errors disappear, and the numerical solution 

takes exactly the same form as the exact solution except the errors in 

frequency and attenuation factor. 

To compare the pseudo frequency of the response with respect 

to the exact value, values of T /T (=qh!tp) are plotted against the s 

different values of ph in Fig. 5, for ~ = 0, 1/12, 1/8 j 1/6, and 1/4. 

Except for ~ = 1/4, the validity of the curves is limited by the aperiodic 

boundary beyond which aperiodic response will result despite the fact 

that ·physically the response should behave periodically_ 
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In Fig. 6, the ratio between the actual attenuation factor and 

that of the numerical solution is plotted against different-values of' ph~ 

for ~ = 1/4, the curves show the numerical solutions are all under-damped; 

for ~ = 0, the numerical solutions are allover-damped; for the rest value I 

of ~, solution for r = 3/4 show over-damped trend; r = 1/2, 1/4, under­

damped. 

So far as the aperiodic response is concerned the performance 

of ~ method can not be seen clearly just by comparing a few quantitieso 

Since the exact solution behaves monotonically decreasing as time is 

increasing it is imperative to have Ataking positive values less than one, 

where 
2 i 2)2 2 A = 2 - 0; ± (2 - a - 4 (1 - c ) 

a (~ + c) 
(4.4 ... 14 

To achieve that tAl < I, it is found that 

12 - (l ± ~{2 - rJ-)2_ 4 (1 - c
2) 1<2 (1 + c) 

It is sufficient to take the negative sign~ thus 

J( 22 2 2 2 - a ) - 4 (~ ~ e ) + a - 2 < 2 (~ + c) 

It follows immediately that .0;2<4 , after a few algebraic operationso 

If the positive sign is taken it is found thata.2x> which is auto-

matically satisfied for any choice of ph and ~o 

The above condition limits the numerical aperiodic solution 

from growing divergently either monotonically or in an oscillatory manner. 

To make sure that l. be positive it can be proved that cl<2 is a sufficien' 

criterion, that is 



2 Thus it can be concluded -tbat1f'(3 and -ph -are.: so- chosen·--that ex is ' larger 

than 2, the solution may become oscillatory but convergent if of is larger 

than 4, the oscillation becomes divergent. 

The performance of the f3 method is best illustrated in the 

fol~owing examples in which different values for (3, ph, and r are chosen 

to cover a wide range, for the sake of comparison a The differential 

equation is taken as 

y" + 4ry! + 4y = 0 

with initial conditions: y = 1, v = 10 The damping coefficient j r, 
o 0 

takes on values 1, 105, and 2; f3 takes on OJ 1/12$ 1/8, 1/6~ and 1/4. 

Numerical analysis is made by using h taking on 1/4~ 1/2, and 10 Numeri-

cal results are plotted in Figc 7, and compared with the exact solutions. 

It seems the comparison gives favorable consideration to f3 = 1/4, and 1/6 

procedures provided the criterion a2
<2 is satisfied. Otherwise undesirab 

oscillation would resulto 

15'. f3 Method as Applied to System with Negative Spring Constant 

In studying dynamic response of structures realistically, certai 

secondary influences which were usually neglected in the classical approac 

because of their insignificance and their hindrance to elegant mathematica 

methods, may have to be included» especially when the structure is to be 

analyzed in the range approaching failure. For example.? besides non-linea 

behavior of structural members and joints» a secondary effect of excessive 

deflection and axial thrust may gain practical significance in the analysi 

This raises the possibility that certain components of the structure might 

behave as if the restoring force of the component were not tending to ob-

struct the motion but to aggravate the motiono This situation may be 



idealized as one in which a negative spring constant bas been inserted for 

the component. 

To investigate the performance of ~ method for problems of this 

nature the test differential equation is simply set up as 

" 2 
Y -ky=O (15-1) 

its exact solution is 

v 
y = Yo cosh kt + :. sinh kt 

The replacement difference equation is then 

Since ... a monotone solution is expected the roots 

positive, where A is now given as 

l. .. -
1,2 

should be real and 

This can be easily achieved by maintaining 7>0 ,which means 

as the criterion for a non-oscillatory numerical solutiono 

However this does not insure that the numerical solution is 

(J.5-2 

(J.5-3 

(J.5-4 

(15-5 

always increasing in magnitude as it should be expected; it may become 

monotonically decreasing if' il,l is less than oneo 

.etz Reference R 
Cl ·1 oom 

V1. Engineer' 
13106 C. E B . In.g Department 
U - . Ulldlng 

nJ. versi ty of Ill. . 
Urb .' ln01S 

ana, IlllnOis 61801 



The complete solution to the difference equation is 

v 
Yn = Yo cosh (n lnl) + 0 2 sinh (n lnl) 

k {l. + <t - ~) kii 
(15-6: 

v = Y k l~ + <* - t')~ ~inh (n lIlA) + v cosh (n In l,) n 0 ~ 4· 0 

where l. = 2 + Z + 9(4 + z'l 
2 ; 

In order to compare the over-all performance of the different solutions, 

values of In l./kh is plotted in F~g. 8 against different values of kho 

This ratio, In A /kh, is called the growth factor which gives an indicatioI 

of how fast the numerical solution is growing in comparison with the exac1 

rate. It is interesting to note that t' = 0 is free from the restriction 

for an oscillisory solution and its numerical solution grows more slowly 

than the exact solution. For other values of t3, namely 1/4, 1/6, 1/8, 

and 1/12, the numerical solutions are always growing with a faster rate 

and erroneous solutions will result if the time interval used is approach­

ing the critical limit, l;'kil3. 

So far as the growth ratio is concerned a best choice of t3 is 

to make In l. = kh, tba t' is 

After a few algebraic operations one arrives at the following expression 



for ~ which will preserve the growth rate for a given kh. 

~ = (ekh _ 1)2 _ (kh)2 e kh 

(kh)2 (ekh ~ 1)2 

57. 

Fig. 9 shows the general trend of ~ as a function of kh. As kh takes on 

very small values the asymptotic value of ~ is 1/120 



OONCWSIONS 

As a result of the present study the ~ method is suggested for 

obtaining solutions to problems of dynamic structural response because of 

its simplicity and flexibility in various applications. Amop.g them the 

~ = 1/4 procedure is recommended for its being not restricted by insta­

bility for unda~edv1brationand possessing correct critical damping in 

damped system. This is important for ::ana.ly~g:.;8e. system 'With a large 

number of degree·-of freedom; but for aperiodically damped systems and 

systems with negative spring constant the use of ~ = 1/4 would encounter 

limitations on the choice of time interval. 

For a system baving only a few number of degree-of-freedom bett 

accuracy may be obtained by introducing the derivatives in the formulatio 

as bas been done in the Milne-Lotkin Methods 0 The methods share all the 

advantages of the ~ = 1/4 method and improve their accuracy by taking in 

the derivative if the computations of the derivatives do not entail 

laborious worko However, it must be noted that sometimes a cut-down of 

time interval would give better accuracy and need less work than the 

innovation made by introducing derivativeso 

In case the problems are so proposed that the iterative procedu 

is highly undesirable, one bas to resort to methods like the Runge-Kutta 

Method, the Nystrom Method, or the Bla.ssMethod. All these methods have t 

annoying feature of not conserving amplitude of the motion; on that accou 

it seems that the ~ = 0 procedure is preferable except that the time inte 

. val bas to be chosen within the stable limito 
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To perfect a numerical procedure by means of higher order diffeI 

ences is a well .... known-·-t'act, but the contributionof'higher--order differenc 

can become beneficial only when the used time interval is within··certa.in 

1imi ts 0 Due to the presence of extraneous so1utions 3 produced by the higt 

degree of the characteristic polynomial by the introducing of higher orde:r 

differences~ the regular introducing of higher order differences is not 

recommended provided a compatib1e time interval is used 0 

If the functio~l form of the diff'erential equations does not 

change during the-coprse of analysis and if a bigh1yaccurate result is 

expected, the iterative integration method9 namely Fox~ LowdinBs methods, 

is suggested for usingo The method can eliminate the truncationa1 error 1 

the desired significant figureso 

The investigation of instabi1ity of numerical so1ution with 

respect to an undamped system is made under two different. requirements; 

namely, sinuosity of the so1ution and conservation of amplitudeo It is 

found that a symmetric use of the same simple integration formula for the 

two first order differential equations always leads to a sinusoidal solutj 

but the conservation of amplitude 1s achieved only in. some methods, for 

instance, MiJ.ne-Lotkin methods and ~ methods 0 

For the case of damped system there exists a criterion similar 

to that for instability in undamped system~ namelY3 criterion for critics 

damping 0 If the interval,9 h, is not properly chosen, an under-damped 

system may have a numerical solution showing over-damped response 0 If 

~ is taken as 1/4, this criterion is automatically satisfiedc 

If the given system will show a~eriodic response~ the analysis 

of ~ method finds that the choice of time interval and the parameter ~ 



.~ 6Q. 

bas to comply with the following criterion 

2 2 
(ph) < 1 _ $ 

in order to remove any oscillation that may result in the numerical 

solution. 

If a system bappens to bave a negat"ive spring constant, the 

choice of time interval is limited by 

h<.yk4 
It seems the ~ = 0 procedure would be free from this restriction, but the 

use of ~ = 1/4 procedure can eliminate some truncational errors appearing 

in tbe coefficients as usually happened in the damped and undamped cases 0 

But in Figs. 8 and 9, it seems that a best choice of ~ will take value 

between 0 and 1/12, which is also depending on the given value on k and ho 

Un i -\:r" E) ~\. 3 ~ -~. :;.~. (~~: ~_ ~I_ :.~ =- ~~~ .'~:: :~_ ~, 

Urbana, Il2.i.~~c i;:.;, '~l2C~ 
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APPENDIX A 

If Yn and vn are connected to Yn~l by the following relation 

= (A-J 

and ~ y and v are supposed to exhibit an oscillatory motion then the n n 

motion will be of amplitude-conserving type if the determinant of the 

IDa trix is equal to uni ty . 

Let 

therefore 

or ad - (d + a) A + 12 - b c = 0 

1 = a + d ± J(a + d)2 - 4 (ad - be) 
2 

= a~+ d ± i J4 (ad - be) - (a + d)2 
2 

(A-~ 

Since y aDd v represent deflection and velocity of a sinusoidal motion, 

A must be a eompJ.ex number.. Now if .1 A I = 1. then ad - be = 1.. Therefore 

the statement is provedo 
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APPENDIX B 

In this appendix it is proved that the double integration 

. rt +h r 
formula 9 Jt 0 J dT2 f(T) and the simple integration formula, 

o 

ito +hd T f ( ~) of function f are in a: s1inp~e' rela.ti9n,:~;Ly, 
t o 

!!dT2f(T) =~!dTf(T) " (B-l 

where the two integration formulas are constructed by the Milne-Lotkin 

Method and involving the same terms. Inconstruct1ng the integration 

formulas it bas been found that the following nnull n function, g are 
n 

quite useful, in eliminating superfluous terms. 

i = 1, 3, 5 

+ .' 

(B ... ~ 

see Eqs. (3-4) to (3-9). Therefore, to prove the fore-mentioned state-

ment it is sufficient to prove the following equivalent arguement that 

fined forms, namely, 
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Now 

(B-4) 

/After Eqs. (B-2) are substituted for gi1s in Eq. (B-3) and the coefficient 

of h of the same power on both right-hand and left-hand sides are equated, 

two sets of linear algebraic equations for c. are obtained, depending on 
~ 

odd or even power of h, as follows, 

C
1 

1 (1-
= 1+ 2! .. g!) 

3· 

11 1 1 2 2'-2' c1+ c
2 = 1+ ('4! - 5!) 

11 11 1. 1 2 
2'<>1+!c1 + 2'°2!c2 + c3 = 1+ (b'! .. 7!) 

(B-
.. .. , 

and 

1. 2 4 c1 = '4 (-,1 .. 1+1) 30 

1. 1 2 4 
3!c1 + c2 = 'Ii-" (-, ... b!) 5· 

1 1. 1. 2 4 
5!c1 + 3!c2 + c3 = '4 (-. - "8"1) 7 .. 

(B-E 
# • .. r II , 

It can be seen that the first few values of c., obtained from the first 
1. 

set of equations, satisfies the second set, and vice versa. However the 

existence of c. needs the proof that these two sets of equations share 
~ 
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the same unique solution. 

In order that the arguement will not be confused by the presenc~ 

of the same notation in both sets of equations, it is suggested to use a i 

for c. in the first set and b. for c. in the second set, then proceed to 
~ ~ ~ 

prove that 

a, = b. 
~ ~ 

for all values of io 

If the first equation of Eqs. (B-5) remains unmodified; the 

second one is multiplied by _x2, where x is an arbitrary number; and the 

third one is multiplied by +x4; the fourth~ by _x6, and so forth; the 

operation proceeds according to this rule, then sum all the equations, 

the following equation is obtained 

]. 1 2 1 x~ 1 x6 2 4 6 
(1 - 2 "2'! x + '2 0 '4! - '2 0 b! + 0 ..... ) (a:l-a;~ + ~x - a4x + ...... ) 

after transposing and simplifying, one arrives at a clear expression, 

2 4 2 sin x - x (1 + cos x) 
~ ~ a2 x + ~ x -" o. = 2 i3 ( 0{- cos x) 

Similarly, if the first equation of Eqo (B-6) is multiplied 

by x; the second, by _x3; the third by +x5; the fourth, by _x7, and so 

forth; the summation of all these modified equations yields, 

x3 x5 x7 2 4 6 ex ... 3! + 5! ... 7! + 0"") (b1 ~ b2 x + b3 x - b4 x + .... e) 

(B-
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which reduces to 

Since the right hand side of both Eqs. (B-7) and (B-5) are identical, the 

following is, then, true for any value of x, 

Hence 

for all values of i. 



TABLE I TIMOSHENKO MODIFIED METHOD 
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8
4 
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6 
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