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Abstract: Background: We investigated and compared the osteogenic potential and bone regeneration
capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs). Method:
We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture
method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were
incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and
RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the
osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were
incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then
implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining
and immunostaining for GFP and osteocalcin. Results: The alizarin red-stained areas in DFAT cells
showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar
to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant
difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after
12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and
ASCs were higher after osteogenic differentiation culture. Conclusion: DFAT cells are easily isolated
from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells
are applicable to many tissue-engineering strategies and cell-based therapies.

Keywords: dedifferentiated fat cells (DFAT cells); adipose-derived stem cells (ASCs); bone regenera-
tion; mesh culture method

1. Introduction

Cell-based tissue-engineering approaches are potential therapeutic strategies for bone
repair and bone regeneration. Identifying an optimal cell source for generating functional
osteoblasts is critical to achieve clinical success with bone regeneration strategies. Cells
for tissue engineering in bone regeneration ideally need to possess pluripotency, high cell
proliferation ability, and high purity. Recently, various cell types for tissue regeneration
have been identified, but the proper selection of the cell source is still important for
clinical applications.
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Mesenchymal stem cells (MSCs) are multipotent somatic stem cells that can differ-
entiate into a variety of cell types such as osteoblasts, chondrocytes, adipocytes, and
myocytes [1–4]. MSCs were originally isolated from bone marrow, adipose tissue, perios-
teum, synovium, and dental pulp [5,6].

Bone marrow mesenchymal stem cells (BMDCs) are readily available and possess
high osteogenic capacity; as such, they are considered an appropriate stem cell populations
for bone regeneration. Thus, they are widely used for efficiency comparisons with other
cell sources [7–12]. BMDCs can be collected from bone marrow aspirate, but the method
of harvesting BMDCs is invasive. Although there are advantages to their use, these cells
have limitations.

Adipose-derived stem cells (ASCs) show a multilineage potential similar to BMDCs
and can be easily harvested from mature adipose tissue. ASCs can differentiate along
multiple lineages, resulting in adipocytes, osteoblasts, chondrocytes, myocytes, endothelial
cells, and hepatocytes [13–17]. In addition, ASCs are readily available in large quantities
with minimal morbidity and discomfort associated with their harvest [13–16]. ASCs are
extensively used for bone tissue engineering, and their utility has been reported in various
studies [17–21].

However, ASCs are a heterogeneous cell population because they are obtained from
the non-adipocyte fraction in adipose tissue, including the stromal vascular fraction
(SVF) [13–15]. In addition, ASCs at early passages include contaminating endothelial
and smooth muscle cells and pericytes [13]. Therefore, for these stem cells to be widely
used in clinical applications, cell sources with high purity are needed.

Mature adipocytes are the most abundant cell type in adipose tissue [22]. Mature
adipocytes that contain a large single lipid droplet are generally considered to be stable
cells that have reached the terminal stage of differentiation, and these cells are considered
to have already lost their proliferative ability. Yagi et al. established a preadipocyte cell line
derived from mature adipocytes of ddY mice and designated these cells as dedifferentiated
fat (DFAT) cells [23]. They reported that DFAT cells have high proliferative activity and,
similar to BMDCs, have the potential to differentiate into mesenchymal tissue lineages [22].

Some previous research has found that DFAT cells generated in specific culture con-
ditions can differentiate into adipocytes, osteoblasts, chondrocytes, myofibroblasts, and
cardiomyocytes [20,24–26]. Transplantation of DFAT cells into injured tissue contributes to
the regeneration of damaged tissues, including of the bladder, urethra, heart, and spinal
cord [24,26,27]. Because adipose tissue, which is the source of DFAT cells, can be collected
from small amounts of subcutaneous fat and can be generated from anyone regardless of
donor age, DFAT cells have potential applications in cell-based therapies for a variety of
diseases, including metabolic bone disorders, such as osteoporosis, that commonly affect
elderly subjects.

Previous methods of generating DFAT cells have not included adipocytes that do not
attach to plastic surfaces [22,28–31]. In fact, DFAT cell used for tissue engineering are now
cultured using ceiling culture methods. However, we have devised a mesh method that
uses floating mature fat cells for a more efficient collection method.

The purpose of the present study was to evaluate the bone differentiation ability of
DFAT cells collected by our newly developed mesh method. In addition, we compared the
osteoblastic differentiation abilities of DFAT cells and ASCs in vitro and in vivo.

2. Results
2.1. Isolation of DFAT Cells and ASCs from Adipose Tissue

The mesh culture method is illustrated in Figure 1. In this method, DFAT cells are
isolated from small pieces of subcutaneous adipose tissue that include a large single lipid
droplet and washed repeatedly with phosphate-buffered saline (PBS) until the washes are
clear. Approximately 1 g of adipose tissue was isolated from the subcutaneous fat of GFP
mice and digested in a solution of 1 mg/mL collagenase type II and 1 mg/mL dispase
for 2 h at 37 ◦C. After filtration through 100-µm nylon filters and centrifugation (135× g,
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10 min), we collected the floating top layer of adipocytes for DFAT cells and the settled cell
pellet for SVFs. The cultured adipocytes were added to control medium plates fitted with
40-µm meshes and incubated for five days. DFAT cells generated from adipocytes passed
through the mesh and attached to the bottom of the dishes. After five days, the meshes
with remaining adipocytes were removed. This method of collecting DFAT cells did not
include the attachment of the adipocytes to plastic surfaces or ceiling culture.
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Figure 1. Isolation of DFAT cells and ASCs. The adipose tissue was minced into small pieces and then dissociated in a collagenase
and dispase solution. After centrifugation, adipose tissue was separated into two layers. One was the upper layer containing mature
adipocytes, and the other was the bottom layer containing cells of the stromal vascular fraction (SVF). Each layer of collected cells
was cultured.

In DFAT cell culture, mature adipocytes divided asymmetrically into large lipid-filled
adipocytes and small daughter cells without lipids, and the new lipid-free cells proliferated.
The new lipid-free cells showed a fibroblast-like shape. In ASC culture, there was no lipid
content, and ASCs also exhibited a fibroblast-like morphology (Figure 2).

2.2. Osteoblastic Differentiation of DFAT Cells and ASCs In Vitro
2.2.1. Comparison of Calcification Ability by Alizarin Red Staining

Alizarin red staining was used to quantify the mineral matrix depositions of DFAT
cells and ASCs after 1, 2, and 3 weeks of osteogenic induction culture. The mineral matrix
deposition of the ASCs was found to be significantly higher than that of the DFAT cells
up to 2 weeks. However, after 3 weeks of culture, no obvious difference was observed
between the DFAT cell group and the ASC group (Figure 3A).
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Figure 3. Comparison of osteogenic differentiation capacities by alizarin red staining and ALP
activity of DFAT cells and ASCs. (A) Mineral depositions of DFAT cells and ASCs were detected by
alizarin red staining following 1, 2, and 3 weeks of osteogenic induction. Red areas stained by alizarin
red indicate calcium deposition. The well containing DFAT cells cultured in osteogenic medium
for 3 weeks and ASCs cultured in osteogenic medium for 2 or 3 weeks were stained by alizarin red,
whereas those containing ASCs cultured in osteogenic medium were stained strongly by alizarin red;
(B) The ALP level of ASCs increased earlier than that of DFAT cells and was significantly different
(* p < 0.05) on days 6 and 9. The ALP level of DFATs was higher than that of ASCs after day 12.
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2.2.2. Comparison of Alkaline Phosphatase (ALP) Activity

Protein levels of ALP were measured by ELISA in DFAT cells and ASCs after exposure
to osteogenic medium. ALP activity of the ASCs was significantly higher than that of the
DFAT cells at 6 and 9 days. However, after 12 days, DFAT cells displayed stronger ALP
activity than ASCs in vivo during the late differentiation period (Figure 3B).

2.2.3. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Analysis

The expression of osteoblastic marker genes of DFAT cells and ASCs was analyzed
by RT-PCR before (0 weeks) and after osteogenic differentiation (1–3 weeks). RUNX2 and
osteopontin were higher in ASCs than in DFAT cells at 2 and 3 weeks, but at 3 weeks they
were at the same level. DLX5 was markedly higher for ASCs than for DFAT cells at 1, 2,
and 3 weeks. Osterix was the same between DFAT cells and ASCs; however, osteocalcin
was higher in DFAT cells than in ASCs at 2 and 3 weeks (Figure 4).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 4. Comparison of osteoblast marker genes (RUNX2, osteopontin, DLX5, osterix, osteocalcin) 
of DFATs and ASCs as assessed by RT-PCR before (0 weeks) and after osteogenic differentiation 
culture (1–3 weeks). * p < 0.05 

2.3. Formation of Osteoid Tissue by Transplanted DFAT Cells and ASCs 
We examined whether DFAT cells and ASCs could form osteoid tissue in vivo. At 4 

weeks after implantation, HE staining and histological analyses were performed. At low 
magnification, new bone formation was observed in both the DFAT cell group and ASC 
group. At high magnification, lamellar bone was readily observed in all samples in both 
groups. In all samples of both groups, osteoblasts lining the bone matrix and numerous 
osteocytes incorporated in the lacunae of the newly generated bone structure were ob-
served. In addition, osteocalcin- and GFP-positive cells were present in bone tissue in both 
groups. Thus, newly formed bone tissue was derived from implanted cells (Figure 5). 

Figure 4. Comparison of osteoblast marker genes (RUNX2, osteopontin, DLX5, osterix, osteocalcin) of DFATs and ASCs as
assessed by RT-PCR before (0 weeks) and after osteogenic differentiation culture (1–3 weeks). * p < 0.05.

2.3. Formation of Osteoid Tissue by Transplanted DFAT Cells and ASCs

We examined whether DFAT cells and ASCs could form osteoid tissue in vivo. At
4 weeks after implantation, HE staining and histological analyses were performed. At
low magnification, new bone formation was observed in both the DFAT cell group and
ASC group. At high magnification, lamellar bone was readily observed in all samples
in both groups. In all samples of both groups, osteoblasts lining the bone matrix and
numerous osteocytes incorporated in the lacunae of the newly generated bone structure
were observed. In addition, osteocalcin- and GFP-positive cells were present in bone
tissue in both groups. Thus, newly formed bone tissue was derived from implanted cells
(Figure 5).
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3. Discussion

To the best of our knowledge, the present study is the first attempt using a mesh
method to evaluate the osteogenic differentiation abilities of DFAT cells in vitro and to
investigate new bone formation efficiency by comparing them with ASCs. Overall, the
in vitro results showed that these DFAT cells possess high osteogenic differentiation po-
tential, similar to that of ASCs. In addition, the in vivo results showed that the bone
regenerative capacity of the DFAT cells is similar to that of the ASCs.

ASCs have been already widely investigated as a cellular source of potential MSCs
in regenerative medicine. In previous studies, DFAT cells showed better MSC properties
than ASCs generated from the same adipose tissue [32,33]. In addition, compared with
ASCs, DFAT cells are a more homogeneous cell population [22]. Furthermore, these studies
indicated that the osteoblastic differentiation potential was greater for DFAT cells than for
ASCs [32,34]. DFAT cells have more than 99.5% homology with ASCs in comprehensive
gene expression analysis, and the secretion profile of humoral factors of DFAT cells is
similar to that of ASCs, but HGF, VEGF, SDF-1, and leptin secretion tends to be high, and
there is a stable and high angiogenesis effect in DFAT cells. Accordingly, some studies
have reported that DFAT cells are a homogeneous cell population because they are isolated
due to the buoyancy of adipocytes in ceiling culture [14,22,35,36]. In contrast, ASCs are
a heterogeneous cell population because they are isolated from the SVF, which contains
various cell types without mature adipocytes.
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In the present study, the cell calcification ability, osteogenic differentiation potential,
and osteogenic gene expression of DFAT cells and ASCs were compared by in vitro as-
says. Our findings revealed that both cell types had osteogenic differentiation properties;
however, the in vitro results showed that ASCs possessed higher and earlier osteogenic
differentiation potential than DFAT cells (Figure 3). In addition, ASCs showed higher
expression of early osteoblast marker genes than DFAT cells (Figure 4). Other studies have
indicated that DFAT cells have a higher proliferation rate, availability, and cell number
than ASCs [22,34]. The cell population heterogeneity could be induced by local variations
in cell density, local buildup of extracellular matrix, and be amplified as the cells grow.
Additionally, cell growth and local cell death may trigger some cell differentiation and
the loss of all or some pluripotency markers. Therefore, differences between DFAT cells
and ASCs in their rate of differentiation into bone tissue and differences in expression
markers are thought to be due to the composition of these cell populations. Additionally,
we introduced additional steps to enhance DFAT cell preparation, in which DFAT cells
were separated from the floating adipocytes and passed through a mesh on the way to the
dish bottom. In this way, we addressed disadvantages such as the potential attachment
of contaminating cells to the ceiling [22,32–35]. This mesh method, and the separation of
DFAT cells from adipocytes during preparation improved the homogeneity of DFAT cells.

Our results in vitro suggest that DFAT cells collected by the mesh method used in
this study may be more mature than DFAT cells collected in ceiling culture, and DFAT
cells collected by the mesh method may be a homogenous population with a more defined
tendency for osteogenic differentiation rather than multilineage potential. However, there
may be some possible limitations in investigation of DFAT osteogenic differentiation of
this study. To examine the biological character of DFAT cells in more detail, it is necessary
to investigate the surface markers using fluorescence-activated cell sorting.

In addition, our results in vivo showed osteoid formation in the removed implants of
both DFAT and ASC groups, and that osteocalcin and GFP were positive in both groups.
These results suggest that our newly generated DFAT cells have the same osteogenic
potential in vivo as ASCs and are a cell source that can be effectively applied clinically.

4. Materials and Methods
4.1. Isolation and Culture of DFAT Cells and ASCs

Approximately 1 g of adipose tissue was isolated from the subcutaneous fat of GFP
mice and digested in a solution of 1 mg/mL collagenase type II and 1 mg/mL dispase
for 2 h at 37 ◦C. After filtration through 100-µm nylon filters and centrifugation (135× g,
10 min), we collected the floating top layer of adipocytes as DFAT cells and the settled cell
pellet as SVFs. The cultured adipocytes were added to control medium plates fitted with
40-µm meshes (BD, Franklin Lakes, NJ, USA) and incubated for five days (Figure 1).

4.2. Mineralization Assay by Alizarin Red Staining

To assess osteogenic differentiation, DFAT cells and ASCs were cultured in 12-well
plates for 1, 2, and 3 weeks in osteogenic medium consisting of DMEM, 10% FBS, 10 mM
β-glycerophosphate (Sigma-Aldrich, St. Louis, MO, USA), and 0.05 mM L-ascorbic acid
(Sigma-Aldrich, St. Louis, MO, USA). The cultured cells were washed once with PBS and
fixed with 95% ethanol at 37 ◦C for 15 min. The fixed cells were washed with distilled
water and subsequently stained for 15 min with 1% alizarin red S (Katayama chemical
Industries, Co. Ltd., Osaka, Japan) solution.

4.3. ELISA for Quantification of Alkaline Phosphatase

After reaching confluence, the culture medium was replaced by osteogenic medium.
Alkaline phosphatase activity was measured by the p-Nitrophenyl Phosphatase Substrate
method (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) according to the
manufacturer’s instructions at 0, 3, 6, 9, 12, and 15 days.
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4.4. Immunohistochemical Staining of GFP and Osteocalcin

In this study, rabbit polyclonal anti-GFP antibody (MBL, Nagoya, Japan) and rabbit
polyclonal anti-osteocalcin (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) were used.
The sections were deparaffinized in a series of xylene solutions for 15 min and then
rehydrated, and incubated in 0.1% trypsin (Difco Laboratories, Detroit, MI, USA) for 5 min
at 37 ◦C. Immunohistochemistry was performed using anti-GFP polyclonal rabbit antibody
at a dilution of 1:1000 or anti-osteocalcin polyclonal rabbit antibody at a dilution of 1:100 for
120 min at room temperature. The tagging of primary antibody was achieved by subsequent
application of anti-goat antibody using the Histofine SAB-Po® Kit (Nichirei, Tokyo, Japan)
following the instructions of the manufacturer. Immunoreactivity was visualized using
diaminobenzidine (DAB)/H2O2 solution (Histofine DAB substrate; Nichirei, Tokyo, Japan),
and the sections were counterstained with Mayer’s hematoxylin.

4.5. Transplantation and Histological Evaluation

All animal experiments were performed in accordance with relevant guidelines and
regulations and were approved by the institutional committees at Okayama University
(OKU-2015118, 18 April 2015). BALB-c nu-nu mice were subjected to intramuscular anes-
thesia with ketamine (Fuji Chemical Industry Co., Ltd., Tokyo, Japan) and Dormitol (Meiji
Co., Ltd., Tokyo, Japan). The DFATs and ASCs were incubated in osteogenic medium for
four weeks, and then 1 × 107 cells were seeded on a collagen composite scaffold (AteloCell,
KOKEN, Tokyo, Japan). At four weeks, the animals were euthanized with an overdose of
isoflurane and implants were removed. All samples were fixed by 4% paraformaldehyde
and were decalcified with 10% EDTA. After decalcification, the samples were embedded in
paraffin, sectioned at 5 µm in thickness, and stained by hematoxylin-eosin (H&E).

4.6. Reverse Transcription-Polymerase Chain Reaction (PCR) Analysis

Total RNA was extracted using TRIzol (Invitrogen). The cDNAs were synthesized
with the use of a PrimeScript® II first-strand cDNA synthesis kit (Takara Bio Inc., Otsu,
Shiga, Japan) after 10 µg of total RNA obtained from the individual samples were reverse-
transcribed separately with Superscript II RT. Briefly, 1 µL of each cDNA was diluted in
25 µL of reaction mixture including 1 × PCR buffer, 1.5 mM MgCl2, 200 µM of each dNTP,
0.5 units of Platinum Taq DNA polymerase (TAKARA Bio, Shiga, Japan), and 0.5 µM of
each specific primer set.

Primers for RUNX2, osteopontin, DLX5, osterix, and osteocalcin were used as follows:
RUNX2: sense 5′-GATGACACTGCCACCTCTGA-3′, antisense 5′-CAGCGTCAACACCA
TCATTC-3′; osteopontin: sense 5′-TCTGATGAGACCGTCACTGC-3′, antisense 5′-TGTCCT
TGTGGCTGTGAAAC-3′; DLX5: sense 5′-TCTCTAGGACTGACGCAAACA-3′, antisense
5′-GTTACACGCCATAGGGTCGC-3′; ssterix: sense 5′-GATAGTGGAGACCTTGCTCGTAG-
3′, antisense 5′-GAGGTCACAGGGTATGAGAAGAG-3′; osteocalcin: sense 5′-AGGACCAT
CTTTCTGCTCACTC, antisense 5′-CTGCCAGAGTTTGGCTTTAG.

4.7. Statistical Analysis

All values are the mean ± standard deviation. Statistical analysis in this study was
performed using one-way ANOVA and Tukey’s test. p < 0.05 was considered significant.
All calculations were analyzed using PASW Statistics 18 (SPSS Inc., Chicago, IL, USA).

5. Conclusions

In this study, we established a new mesh method to collect DFAT cells. Our results
demonstrated that our newly isolated DFAT cells possess osteogenic differentiation po-
tential, and autologous implantation of DFAT cells can contribute to bone regeneration.
Our newly established method for isolating DFAT cells may be an attractive source for
cell-based bone tissue engineering.
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