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QUANTUM SYLVESTER-FRANKE THEOREM

Kazuya Aokage, Sumitaka Tabata and Hiro-Fumi Yamada

Abstract. A quantum version of classical Sylvester-Franke theorem is
presented. After reviewing some representation theory of the quantum
group GLq (n,C), the commutation relations of the matrix elements are
verified. Once quantum determinant of the representation matrix is
defined, the theorem follows naturally.

1. Introduction

It is a fundamental fact of invariants of the general linear group that
a one-dimensional rational representation of GL(n,C) is of the form (det)k

with k ∈ Z. Given an irreducible (polynomial) representation ρλ of GL(n,C)
corresponding to a partition λ with ℓ(λ) ≤ n, the determinant of the rep-
resentation matrix ρλ(g) (g ∈ GL(n,C)) gives a one-dimensional represen-
tation. By counting the degree of the polynomials, one has det ρλ(g) =

(det g)
|λ|
n

dim ρλ . This result is called the Sylvester-Franke theorem (cf. [1]
and [4]).

One may expect that there exists a q-analogue of this theorem in the
framework of quantum groups. In this note we prove the quantum Sylvester-
Franke theorem in the simplest case λ = (1n−1) for the quantum GL(n,C).
The point is that the representation matrix of λ = (1n−1) is a quantum
matrix in the sense that the entries satisfy the same commutation relations
as those of quantum GL(n,C). The general commutation relations of the
quantum minor determinants are fully described by Goodearl in [2]. We use
a portion of his results to prove our quantum determinant formula.

In this paper, [n] denotes the set {1, · · · , n}.

2. Classical case

Let An = C [xij |1 ≤ i, j ≤ n] be the polynomial algebra of n2 variables xij
(1 ≤ i, j ≤ n). This is regarded as the coordinate ring of the matrix space
Mn = Mat (n,C), namely, xij is the coordinate function xij (a) = aij for
a = (aij)i,j ∈ Mn. Let X = (xij)i,j denote the matrix of these coordinate

functions.
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Since Mn is a C-algebra, An has a coalgebra structure with coproduct ∆
and counit ε defined as follows:

∆ (xij) =

n∑

k=1

xik ⊗ xkj, ε (xij) = δij (1 ≤ i, j ≤ n) .(2.1)

Let

det = detX :=
∑

σ∈Sn

(−1)ℓ(σ) xσ(1)1 · · · xσ(n)n ∈ An.(2.2)

Appending the inverse det−1 to An, one has the coordinate ring An of Gn =
GL (n,C):

An :=C
[
xij,det

−1
∣∣1 ≤ i, j ≤ n

]
= An

[
det−1

]
(2.3)

with

∆
(
det±1

)
= det±1 ⊗ det±1, ε

(
det±1

)
= 1.(2.4)

Moreover An has a Hopf algebra structure with antipode S defined by

S (xij) = x̃ji · det
−1 (1 ≤ i, j ≤ n) ,(2.5)

where x̃ji = (−1)i−j ξ
ĵ

î
is the (j, i)-cofactor. Here ξ

ĵ

î
is the minor deter-

minant of a submatrix of X consisting of rows ĵ = [n] \ {j} and columns

î = [n] \ {i}.

For an irreducible polynomial representation (ρ, V ) of Gn, the alternating
tensor representation Altd (ρ) : Gn → GL

(
Altd (V )

)
is also irreducible. It is

well-known that an irreducible polynomial representation of Gn appears as a
constituent of the tensor product of some alternating tensor representation,
and irreducible polynomial representations are in one-to-one correspondence
with Young diagrams of length less than or equal to n. We denote the
representation by λ if it corresponds to the Young diagram λ. As explained
in Introduction we know the following theorem:

Theorem 2.1 (Sylvester-Franke theorem).

detλ (g) = (det g)
|λ|
n

dimλ (g ∈ Gn)(2.6)

The original version of Sylvester-Franke theorem is for the case λ =
(
1d
)

(1 ≤ d ≤ n). The representation matrix Ξd consisits of minor determinants
ξIJ of rows I = {i1 < · · · < id} and columns J = {j1 < · · · < jd}:

Theorem 2.2 (Original Sylvester-Franke theorem).

det Ξd = (detX)(
n−1
d−1) .(2.7)
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Let (ϕ, V ) be a d-dimensional rational representation of Gn. Taking a

basis {vi}
d
i=1 for V , one has a matrix representation (ϕij)i,j=1,··· ,d defined

by

ϕ (g) (vj) =
m∑

i=1

ϕij (g) vi (1 ≤ j ≤ m) .(2.8)

This gives V an An-comodule structure as follows. There exists a comodule
map ω : V → V ⊗ An defined by

ω (vj) =
m∑

i=1

vi ⊗ ϕij (1 ≤ j ≤ m) .(2.9)

Conversely, a finite dimensional An- comodule V affords a rational rep-
resentation of Gn.

3. Quantum case

Let q ∈ C× be generic, i.e., not a root of unity. A q-analogue An (q) of
the algebra An is a C-algebra generated by xij (1 ≤ i, j ≤ n) subject to the
fundamental relations:

(i) xijxiℓ = qxiℓxij (j < ℓ),
(ii) xijxkj = qxkjxij (i < k),
(iii) xiℓxkj = xkjxiℓ (i < k, j < ℓ),
(iv) xijxkℓ − xkℓxij =

(
q − q−1

)
xiℓxkj (i < k, j < ℓ).

(3.1)

We set X (q) = (xij)i,j.

We regard An (q) as the coordinate ring of the ”quantum space” Mn (q) =
Matq (n,C). The algebra structure of Mn (q) reflects to the coalgebra struc-
ture of An (q):

∆ (xij) =
n∑

k=1

xik ⊗ xkj, ε (xij) = δij (1 ≤ i, j ≤ n) .(3.2)

The quantum determinant is defined as

detq = detqX (q) :=
∑

σ∈Sn

(−q)ℓ(σ) xσ(1)1 · · · xσ(n)n ∈ An (q) .(3.3)

The following result due to Reshetikhin-Takhtajan-Faddeev [5] is very im-
portant for our purpose:

Lemma 3.1 ([5], see also [3]). The quantum determinant detq belongs
the center ZAn (q) of An (q). Furthermore ZAn (q) is the polynomial ring
C [detq].
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The coordinate ring An (q) of the ”quantum group” Gn (q) = GLq (n,C)
is defined by

An (q) :=An (q)
[
det−1

q

]
(3.4)

with

∆
(
det±1

q

)
= det±1

q ⊗ det±1
q , ε

(
det±1

q

)
= 1.(3.5)

A detailed account of the structure of An (q) and the finite dimensional
comodules over it is found in [3]. An important family of elements in An (q)
is quantum minor determinants: for d-sets I = {i1 < i2 < · · · < id}, J =
{j1 < j2 < · · · < jd} in [n], we define

ξIJ (q) :=
∑

σ∈Sd

(−q)ℓ(σ) xiσ(1)j1 · · · xiσ(d)jd ∈ An (q) .(3.6)

The bialgebra An (q) has a Hopf algebra structure with the antipode

S (xij) = x̃ji · det
−1
q (1 ≤ i, j ≤ n) ,(3.7)

where x̃ji = (−q)i−j ξ
ĵ

î
(q) is the (j, i)-cofactor of the matrix X (q). If we

put X̃ (q) := (x̃ji)1≤i,j≤n, then we have

X̃ (q)X (q) = detq · In = X (q) X̃ (q) .(3.8)

A finite dimensional rational representation of Gn (q) is, by definition,
an An (q)-comodule. The alternating tensor representation is realized as
follows. Let E be a C-algebra generated by n letters y1, · · · , yn subject to
the relations:

yjyi = −qyiyj (1 ≤ i < j ≤ n) and y2i = 0 (1 ≤ i ≤ n) .(3.9)

It is a graded algebra E =
⊕n

d=0 Ed, where Ed is the space of all homoge-
neous elements of degree d. The space Ed is an irreducible An (q)-comodule
through the algebra homomorphism

ωE (yj) =
n∑

i=1

yi ⊗ xij .(3.10)

For J = {j1 < · · · < jd} ⊆ [n], put yJ = yj1 · · · yjd . It is verified that

ωE (yJ) =
∑

|I|=d

yI ⊗ ξIJ .(3.11)

Namely the representation matrix for Ed is

Ξd (q) =
(
ξIJ (q)

)
I,J⊆[n]

|I|=|J |=d

.(3.12)
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We will show the quantum version of Theorem 2.2 for the case d = n− 1.
To this end we first show that the quantum determinant of the representation
matrix Ξn−1 (q) makes sense, that is, the following commutation relations
hold:

Proposition 3.2.

(I) ξijξiℓ = qξiℓξij (j < ℓ)
(II) ξijξkj = qξkjξij (i < k)
(III) ξiℓξkj = ξkjξiℓ (i < k, j < ℓ)
(IV) ξijξkℓ − ξkℓξij =

(
q − q−1

)
ξiℓξkj (i < k, j < ℓ)

(3.13)

Here, we put ξij = ξn̂−i+1

n̂−j+1
(q). Note that Ξn−1 (q) = (ξij)1≤i,j≤n.

We verify the above commutation relations by using the results of Good-
earl [2]. First recall some notations. For r ∈ [n], Nr denotes the set of
r-subsets of [n].
Definition of I ≤ J. We define the following partial order ≤ on Nr. For
I = {i1 < · · · < ir} , J = {j1 < · · · < jr} ∈ Nr, we denote by I ≤ J if and
only if iℓ ≤ jℓ for 1 ≤ ℓ ≤ r. Furthermore, if I 6= J , then we write I < J .
On the other hand, we use the notation ≺ for the lexicographic order on Nr.
Note that, for i, j ∈ [n], following relation hold:

i > j ⇔ î ≺ ĵ ⇔ î < ĵ(3.14)

Definition of ξq (I;J). For d ∈ N, we define the −q-analogue of d by

[d]−q :=
(−q)d − (−q)−d

(−q)− (−q)−1

= (−q)1−d
(
1 + q2 + q4 + · · ·+ q2d−2

)
.(3.15)

In addition, for I = {i1 < · · · < ir} ∈ Nr, J ∈ Nr with I ≥ J , we set
dℓ := |[1, iℓ] ∩ J | − ℓ+ 1 ∈ N for 1 ≤ ℓ ≤ r, and

ξq (I;J) :=
r∏

ℓ=1

[dℓ]−q(3.16)

with the convention that ξq (∅; ∅) = 1.

Definitions of {< X ‖ Y }, {> X ‖ Y }, L (U,X, Y ), and L♮ (V,X, Y ).
For X,Y ∈ Nr, we define the set {< X ‖ Y } and {> X ‖ Y } as follows:

{< X ‖ Y } := {U ⊆ X ∪ Y |X ∩ Y ⊆ U, |X| = |U | , U < X} ,(3.17)

{> X ‖ Y } := {V ⊆ X ∪ Y |X ∩ Y ⊆ V, |X| = |V | , V > X} .(3.18)
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Moreover, for U, V ∈ Nr, the integers L (U,X, Y ) and L♮ (V,X, Y ) are
defined by

L (U,X, Y ) :=ℓ
((

U \ U ♮
)
∪ (Y \X) ;X \ U

)
− ℓ

((
U \ U ♮

)
∪ (Y \X) ;U \X

)
,

(3.19)

L
♮ (V,X, Y ) :=ℓ

((
V ♮ \ V

)
∪ (X \ Y ) ;V \X

)
− ℓ

((
V ♮ \ V

)
∪ (X \ Y ) ;X \ V

)
,

(3.20)

where

• W ♮ := (X ∩ Y ) ⊔ ((X ∪ Y ) \W ) for W ∈ Nr with X ∩ Y ⊆ W ⊆
X ∪ Y ,

• ℓ (S;T ) :=♯ {(s, t) ∈ S × T |s > t} for S, T ∈ Nr.

Note that W ♮ = X♮ = Y
(
resp. W ♮ = Y ♮ = X

)
if W = X (resp. W = Y ).

We are ready to state the theorem of Goodearl which we need to verify
Propsition 3.2.

Theorem 3.3 ([2],Corollary 6.8.). For I, J,K,L ∈ Nr, we have

q|I∩K|ξIJξ
K
L + q|I∩K|

∑

P∈{>J‖L}

µ̃P ξ
I
P ξ

K
P ♮ = q|J∩L|ξKL ξIJ + q|J∩L|

∑

Q∈{<I‖K}

λ̃Qξ
Q♮

L ξ
Q
J ,

(3.21)

where

µ̃P :=
(
−q + q−1

)|P\J |
(−q)−L♮(P,J,L) ξq (P \ J ;J \ P ) ,(3.22)

λ̃Q :=
(
−q + q−1

)|I\Q|
(−q)−L(Q,I,K) ξq (I \Q;Q \ I)(3.23)

for P ∈ {> J ‖ L} , Q ∈ {< I ‖ K}.

In the following proof of Proposition 3.2, we put i∗ = n− i+1 for i ∈ [n].

Proof of (I) of Proposition 3.2. Let i, j, and ℓ ∈ [n] satisfy j < ℓ and sup-

pose I = K = î∗, J = ĵ∗, and L = ℓ̂∗ in Theorem 3.3.
The set {< I ‖ K} = {< I ‖ I} is empty. In fact, if an element Q ∈

{< I ‖ I} exists, then I∩I ⊆ Q ⊆ I∪I and |I| = |Q| holds by the definition
of {< I ‖ I} and Q is equal to I. This contradicts to Q < I. Therefore, the
summation of the right hand side of Theorem 3.3 is empty.

Suppose P ∈ {> J ‖ L}. Then J ∩ L ⊆ P ⊆ J ∪ L = [n] and |P | = |J | =
n−1 hold by the definition of {> J ‖ L}, and we see that J∩L = [n]\{j∗, ℓ∗}
since j∗ > ℓ∗. Thus, since P is the n−1-subset of [n] containing n−2 elements
of [n] other than j∗ and ℓ∗, we see that P = J or P = L. However, we must
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have P > J since P ∈ {> J ‖ L}. Furthermore, we have J = ĵ∗ < ℓ̂∗ = L

by (3.14). Hence, we see that P = L and {> J ‖ L} = {L}. Moreover,

µ̃P = µ̃L =
(
−q + q−1

)1
(−q)0 · 1 = q−1 − q.(3.24)

By the above discussion, we see that

qn−2ξIJξ
I
L = qn−1ξILξ

I
J ,(3.25)

that is,

ξijξiℓ = qξiℓξij(3.26)

by Theorem 3.3. �

Proof of (IV) of Proposition 3.2. Let i, j, k, and ℓ ∈ [n] satisfy i < k, j < ℓ,

and suppose I = î∗, J = ĵ∗,K = k̂∗, and L = ℓ̂∗ in Theorem 3.3.
Then the left hand side of Theorem 3.3 is equal to

qn−2ξIJξ
K
L + qn−2

∑

P∈{>J‖L}

µ̃P ξ
I
P ξ

K
P ♮ .(3.27)

However, we see that the set {> J ‖ L} is the singleton {L} for the same
reason of the third paragraph of the above proof of (I). Since

µ̃P = µ̃L =
(
−q + q−1

)1
(−q)0 · 1 = q−1 − q,(3.28)

(3.27) is equal to

qn−2ξIJξ
K
L + qn−2

(
q−1 − q

)
ξILξ

K
J .(3.29)

Furthermore, the right hand side of Theorem 3.3 is equal to

qn−2ξKL ξIJ + qn−2
∑

Q∈{<I‖K}

λ̃Qξ
Q♮

L ξ
Q
J .(3.30)

Nevertheless, we see that the set {< I ‖ K} is empty for the same reason of
the second paragraph of the above proof of (I). Thus, (3.30) is equal to

qn−2ξKL ξIJ .(3.31)

Hence, we see that

qn−2ξIJξ
K
L + qn−2

(
q−1 − q

)
ξILξ

K
J = qn−2ξKL ξIJ ,(3.32)

that is,

ξijξkℓ − ξkℓξij =
(
q − q−1

)
ξiℓξkj.(3.33)

�

We omit the proof of the others of Proposition 3.2 because they are similar
to the above. In the following we write X and Ξn−1 in the place of X (q)
and Ξn−1 (q).
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Theorem 3.4.

detqΞn−1 = (detqX)n−1 .(3.34)

Proof. Let Bn (q) be the subalgebra ofAn (q) generated by {ξij | 1 ≤ i, j ≤ n}.
Then Dq :=detqΞn−1 belongs to the center ZBn (q) of Bn (q). We have

XX̃



Dq

. . .

Dq


 = X



Dq

. . .

Dq


 X̃.(3.35)

On the other hand, we see that

XX̃



Dq

. . .

Dq


 =



detq

. . .

detq






Dq

. . .

Dq




=



Dq

. . .

Dq






detq

. . .

detq




=



Dq

. . .

Dq


XX̃.(3.36)

By the above two equations, we obtain

X



Dq

. . .

Dq


 =



Dq

. . .

Dq


X,(3.37)

that is, Dq ∈ ZAn (q). Therefore, we see that

Dq = α (detqX)k(3.38)

with some α ∈ C and k ∈ N. Comparing the degree and the ”leading term”
of both sides, we see that α = 1, k = n− 1. �
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Added in proof. After completion of the manuscript, the following paper drew our
attention: B. Parshall and J. P. Wang, Quantum linear groups, Mem. Amer. Math. Soc.
89 (1991), no. 439. Lemma 4.2.3 and Corollary 5.2.2 of Parshall-Wang can be used to
prove quantum Sylvester-Franke theorem of the present paper.


