QUANTUM SYLVESTER-FRANKE THEOREM

Kazuya Aokage, Sumitaka Tabata and Hiro-Fumi Yamada

Abstract

A quantum version of classical Sylvester-Franke theorem is presented. After reviewing some representation theory of the quantum group $G L_{q}(n, \mathbb{C})$, the commutation relations of the matrix elements are verified. Once quantum determinant of the representation matrix is defined, the theorem follows naturally.

1. Introduction

It is a fundamental fact of invariants of the general linear group that a one-dimensional rational representation of $G L(n, \mathbb{C})$ is of the form (det) ${ }^{k}$ with $k \in \mathbb{Z}$. Given an irreducible (polynomial) representation ρ_{λ} of $G L(n, \mathbb{C})$ corresponding to a partition λ with $\ell(\lambda) \leq n$, the determinant of the representation matrix $\rho_{\lambda}(g)(g \in G L(n, \mathbb{C}))$ gives a one-dimensional representation. By counting the degree of the polynomials, one has $\operatorname{det} \rho_{\lambda}(g)=$ $(\operatorname{det} g)^{\frac{|\lambda|}{n} \operatorname{dim} \rho_{\lambda}}$. This result is called the Sylvester-Franke theorem (cf. [1] and [4]).

One may expect that there exists a q-analogue of this theorem in the framework of quantum groups. In this note we prove the quantum SylvesterFranke theorem in the simplest case $\lambda=\left(1^{n-1}\right)$ for the quantum $G L(n, \mathbb{C})$. The point is that the representation matrix of $\lambda=\left(1^{n-1}\right)$ is a quantum matrix in the sense that the entries satisfy the same commutation relations as those of quantum $G L(n, \mathbb{C})$. The general commutation relations of the quantum minor determinants are fully described by Goodearl in [2]. We use a portion of his results to prove our quantum determinant formula.

In this paper, $[n]$ denotes the set $\{1, \cdots, n\}$.

2. Classical case

Let $A_{n}=\mathbb{C}\left[x_{i j} \mid 1 \leq i, j \leq n\right]$ be the polynomial algebra of n^{2} variables $x_{i j}$ $(1 \leq i, j \leq n)$. This is regarded as the coordinate ring of the matrix space $M_{n}=\operatorname{Mat}(n, \mathbb{C})$, namely, $x_{i j}$ is the coordinate function $x_{i j}(a)=a_{i j}$ for $a=\left(a_{i j}\right)_{i, j} \in M_{n}$. Let $X=\left(x_{i j}\right)_{i, j}$ denote the matrix of these coordinate functions.

[^0]Since M_{n} is a \mathbb{C}-algebra, A_{n} has a coalgebra structure with coproduct Δ and counit ε defined as follows:

$$
\begin{equation*}
\Delta\left(x_{i j}\right)=\sum_{k=1}^{n} x_{i k} \otimes x_{k j}, \quad \varepsilon\left(x_{i j}\right)=\delta_{i j} \quad(1 \leq i, j \leq n) . \tag{2.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
\operatorname{det}=\operatorname{det} X:=\sum_{\sigma \in \mathfrak{G}_{n}}(-1)^{\ell(\sigma)} x_{\sigma(1) 1} \cdots x_{\sigma(n) n} \in A_{n} . \tag{2.2}
\end{equation*}
$$

Appending the inverse det^{-1} to A_{n}, one has the coordinate ring \mathscr{A}_{n} of $G_{n}=$ $G L(n, \mathbb{C})$:

$$
\begin{equation*}
\mathscr{A}_{n}:=\mathbb{C}\left[x_{i j}, \operatorname{det}^{-1} \mid 1 \leq i, j \leq n\right]=A_{n}\left[\operatorname{det}^{-1}\right] \tag{2.3}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta\left(\operatorname{det}^{ \pm 1}\right)=\operatorname{det}^{ \pm 1} \otimes \operatorname{det}^{ \pm 1}, \quad \varepsilon\left(\operatorname{det}^{ \pm 1}\right)=1 . \tag{2.4}
\end{equation*}
$$

Moreover \mathscr{A}_{n} has a Hopf algebra structure with antipode S defined by

$$
\begin{equation*}
S\left(x_{i j}\right)=\widetilde{x}_{j i} \cdot \operatorname{det}^{-1} \quad(1 \leq i, j \leq n), \tag{2.5}
\end{equation*}
$$

where $\widetilde{x}_{j i}=(-1)^{i-j} \xi_{\hat{i}}^{\hat{j}}$ is the (j, i)-cofactor. Here $\xi_{\hat{i}}^{\hat{j}}$ is the minor determinant of a submatrix of X consisting of rows $\hat{j}=[n] \backslash\{j\}$ and columns $\hat{i}=[n] \backslash\{i\}$.

For an irreducible polynomial representation (ρ, V) of G_{n}, the alternating tensor representation $A l t^{d}(\rho): G_{n} \rightarrow G L\left(A l t^{d}(V)\right)$ is also irreducible. It is well-known that an irreducible polynomial representation of G_{n} appears as a constituent of the tensor product of some alternating tensor representation, and irreducible polynomial representations are in one-to-one correspondence with Young diagrams of length less than or equal to n. We denote the representation by λ if it corresponds to the Young diagram λ. As explained in Introduction we know the following theorem:

Theorem 2.1 (Sylvester-Franke theorem).

$$
\begin{equation*}
\operatorname{det} \lambda(g)=(\operatorname{det} g)^{\left.\frac{|\lambda|}{n} \right\rvert\, \operatorname{dim} \lambda} \quad\left(g \in G_{n}\right) \tag{2.6}
\end{equation*}
$$

The original version of Sylvester-Franke theorem is for the case $\lambda=\left(1^{d}\right)$ $(1 \leq d \leq n)$. The representation matrix Ξ_{d} consisits of minor determinants ξ_{J}^{I} of rows $I=\left\{i_{1}<\cdots<i_{d}\right\}$ and columns $J=\left\{j_{1}<\cdots<j_{d}\right\}$:

Theorem 2.2 (Original Sylvester-Franke theorem).

$$
\begin{equation*}
\operatorname{det} \Xi_{d}=(\operatorname{det} X)^{\binom{n-1}{d-1}} . \tag{2.7}
\end{equation*}
$$

Let (φ, V) be a d-dimensional rational representation of G_{n}. Taking a basis $\left\{v_{i}\right\}_{i=1}^{d}$ for V, one has a matrix representation $\left(\varphi_{i j}\right)_{i, j=1, \cdots, d}$ defined by

$$
\begin{equation*}
\varphi(g)\left(v_{j}\right)=\sum_{i=1}^{m} \varphi_{i j}(g) v_{i} \quad(1 \leq j \leq m) \tag{2.8}
\end{equation*}
$$

This gives V an \mathscr{A}_{n}-comodule structure as follows. There exists a comodule $\operatorname{map} \omega: V \rightarrow V \otimes \mathscr{A}_{n}$ defined by

$$
\begin{equation*}
\omega\left(v_{j}\right)=\sum_{i=1}^{m} v_{i} \otimes \varphi_{i j} \quad(1 \leq j \leq m) \tag{2.9}
\end{equation*}
$$

Conversely, a finite dimensional $\mathscr{A}_{n^{-}}$comodule V affords a rational representation of G_{n}.

3. Quantum case

Let $q \in \mathbb{C}^{\times}$be generic, i.e., not a root of unity. A q-analogue $A_{n}(q)$ of the algebra A_{n} is a \mathbb{C}-algebra generated by $x_{i j}(1 \leq i, j \leq n)$ subject to the fundamental relations:

$$
\begin{array}{lll}
\text { (i) } & x_{i j} x_{i \ell}=q x_{i \ell} x_{i j} & (j<\ell), \\
\text { (ii) } & x_{i j} x_{k j}=q x_{k j} x_{i j} & (i<k), \\
\text { (iii) } & x_{i \ell} x_{k j}=x_{k j} x_{i \ell} & (i<k, j<\ell), \tag{3.1}\\
\text { (iv) } & x_{i j} x_{k \ell}-x_{k \ell} x_{i j}=\left(q-q^{-1}\right) x_{i \ell} x_{k j} & (i<k, j<\ell) .
\end{array}
$$

We set $X(q)=\left(x_{i j}\right)_{i, j}$.
We regard $A_{n}(q)$ as the coordinate ring of the "quantum space" $M_{n}(q)=$ $M a t_{q}(n, \mathbb{C})$. The algebra structure of $M_{n}(q)$ reflects to the coalgebra structure of $A_{n}(q)$:

$$
\begin{equation*}
\Delta\left(x_{i j}\right)=\sum_{k=1}^{n} x_{i k} \otimes x_{k j}, \quad \varepsilon\left(x_{i j}\right)=\delta_{i j} \quad(1 \leq i, j \leq n) \tag{3.2}
\end{equation*}
$$

The quantum determinant is defined as

$$
\begin{equation*}
\operatorname{det}_{q}=\operatorname{det}_{q} X(q):=\sum_{\sigma \in \mathfrak{S}_{n}}(-q)^{\ell(\sigma)} x_{\sigma(1) 1} \cdots x_{\sigma(n) n} \in A_{n}(q) \tag{3.3}
\end{equation*}
$$

The following result due to Reshetikhin-Takhtajan-Faddeev [5] is very important for our purpose:

Lemma 3.1 ([5], see also [3]). The quantum determinant det_{q} belongs the center $Z A_{n}(q)$ of $A_{n}(q)$. Furthermore $Z A_{n}(q)$ is the polynomial ring $\mathbb{C}\left[\operatorname{det}_{q}\right]$.

The coordinate ring $\mathscr{A}_{n}(q)$ of the "quantum group" $G_{n}(q)=G L_{q}(n, \mathbb{C})$ is defined by

$$
\begin{equation*}
\mathscr{A}_{n}(q):=A_{n}(q)\left[\operatorname{det}_{q}^{-1}\right] \tag{3.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta\left(\operatorname{det}_{q}^{ \pm 1}\right)=\operatorname{det}_{q}^{ \pm 1} \otimes \operatorname{det}_{q}^{ \pm 1}, \quad \varepsilon\left(\operatorname{det}_{q}^{ \pm 1}\right)=1 \tag{3.5}
\end{equation*}
$$

A detailed account of the structure of $\mathscr{A}_{n}(q)$ and the finite dimensional comodules over it is found in [3]. An important family of elements in $\mathscr{A}_{n}(q)$ is quantum minor determinants: for d-sets $I=\left\{i_{1}<i_{2}<\cdots<i_{d}\right\}, J=$ $\left\{j_{1}<j_{2}<\cdots<j_{d}\right\}$ in $[n]$, we define

$$
\begin{equation*}
\xi_{J}^{I}(q):=\sum_{\sigma \in \mathfrak{S}_{d}}(-q)^{\ell(\sigma)} x_{i_{\sigma(1)} j_{1}} \cdots x_{i_{\sigma(d)} j_{d}} \in A_{n}(q) \tag{3.6}
\end{equation*}
$$

The bialgebra $\mathscr{A}_{n}(q)$ has a Hopf algebra structure with the antipode

$$
\begin{equation*}
S\left(x_{i j}\right)=\widetilde{x}_{j i} \cdot \operatorname{det}_{q}^{-1} \quad(1 \leq i, j \leq n) \tag{3.7}
\end{equation*}
$$

where $\widetilde{x}_{j i}=(-q)^{i-j} \xi_{\widehat{i}}^{\widehat{j}}(q)$ is the (j, i)-cofactor of the matrix $X(q)$. If we put $\widetilde{X}(q):=\left(\widetilde{x}_{j i}\right)_{1 \leq i, j \leq n}$, then we have

$$
\begin{equation*}
\widetilde{X}(q) X(q)=\operatorname{det}_{q} \cdot I_{n}=X(q) \widetilde{X}(q) \tag{3.8}
\end{equation*}
$$

A finite dimensional rational representation of $G_{n}(q)$ is, by definition, an $\mathscr{A}_{n}(q)$-comodule. The alternating tensor representation is realized as follows. Let E be a \mathbb{C}-algebra generated by n letters y_{1}, \cdots, y_{n} subject to the relations:

$$
\begin{equation*}
y_{j} y_{i}=-q y_{i} y_{j} \quad(1 \leq i<j \leq n) \text { and } y_{i}^{2}=0 \quad(1 \leq i \leq n) \tag{3.9}
\end{equation*}
$$

It is a graded algebra $E=\bigoplus_{d=0}^{n} E_{d}$, where E_{d} is the space of all homogeneous elements of degree d. The space E_{d} is an irreducible $A_{n}(q)$-comodule through the algebra homomorphism

$$
\begin{equation*}
\omega_{E}\left(y_{j}\right)=\sum_{i=1}^{n} y_{i} \otimes x_{i j} \tag{3.10}
\end{equation*}
$$

For $J=\left\{j_{1}<\cdots<j_{d}\right\} \subseteq[n]$, put $y_{J}=y_{j_{1}} \cdots y_{j_{d}}$. It is verified that

$$
\begin{equation*}
\omega_{E}\left(y_{J}\right)=\sum_{|I|=d} y_{I} \otimes \xi_{J}^{I} \tag{3.11}
\end{equation*}
$$

Namely the representation matrix for E_{d} is

$$
\begin{equation*}
\left.\Xi_{d}(q)=\left(\xi_{J}^{I}(q)\right)\right)_{\substack{I, J \subseteq[n] \\|I|=|J|=d}} . \tag{3.12}
\end{equation*}
$$

We will show the quantum version of Theorem 2.2 for the case $d=n-1$. To this end we first show that the quantum determinant of the representation matrix $\Xi_{n-1}(q)$ makes sense, that is, the following commutation relations hold:

Proposition 3.2.

$$
\begin{array}{lll}
\text { (I) } & \xi_{i j} \xi_{i \ell}=q \xi_{i \ell} \xi_{i j} & (j<\ell) \\
\text { (II) } & \xi_{i j} \xi_{k j}=q \xi_{k j} \xi_{i j} & (i<k) \tag{3.13}\\
\text { (III) } & \xi_{i i} \xi_{k j}=\xi_{k j} \xi_{i \ell} & (i<k, j<\ell) \\
\text { (IV) } & \xi_{i j} \xi_{k \ell}-\xi_{k \ell} \xi_{i j}=\left(q-q^{-1}\right) \xi_{i \ell} \xi_{k j} & (i<k, j<\ell)
\end{array}
$$

Here, we put $\xi_{i j}=\widehat{\xi_{n-j+1}^{n-i+1}}(q)$. Note that $\Xi_{n-1}(q)=\left(\xi_{i j}\right)_{1 \leq i, j \leq n}$.
We verify the above commutation relations by using the results of Goodearl [2]. First recall some notations. For $r \in[n], \mathcal{N}_{r}$ denotes the set of r-subsets of $[n]$.
Definition of $I \leq J$. We define the following partial order \leq on \mathcal{N}_{r}. For $I=\left\{i_{1}<\cdots<i_{r}\right\}, J=\left\{j_{1}<\cdots<j_{r}\right\} \in \mathcal{N}_{r}$, we denote by $I \leq J$ if and only if $i_{\ell} \leq j_{\ell}$ for $1 \leq \ell \leq r$. Furthermore, if $I \neq J$, then we write $I<J$. On the other hand, we use the notation \prec for the lexicographic order on \mathcal{N}_{r}. Note that, for $i, j \in[n]$, following relation hold:

$$
\begin{equation*}
i>j \Leftrightarrow \widehat{i} \prec \widehat{j} \Leftrightarrow \widehat{i}<\widehat{j} \tag{3.14}
\end{equation*}
$$

Definition of $\xi_{q}(I ; J)$. For $d \in \mathbb{N}$, we define the $-q$-analogue of d by

$$
\begin{align*}
{[d]_{-q} } & :=\frac{(-q)^{d}-(-q)^{-d}}{(-q)-(-q)^{-1}} \\
& =(-q)^{1-d}\left(1+q^{2}+q^{4}+\cdots+q^{2 d-2}\right) \tag{3.15}
\end{align*}
$$

In addition, for $I=\left\{i_{1}<\cdots<i_{r}\right\} \in \mathcal{N}_{r}, J \in \mathcal{N}_{r}$ with $I \geq J$, we set $d_{\ell}:=\left|\left[1, i_{\ell}\right] \cap J\right|-\ell+1 \in \mathbb{N}$ for $1 \leq \ell \leq r$, and

$$
\begin{equation*}
\xi_{q}(I ; J):=\prod_{\ell=1}^{r}\left[d_{\ell}\right]_{-q} \tag{3.16}
\end{equation*}
$$

with the convention that $\xi_{q}(\emptyset ; \emptyset)=1$.
Definitions of $\{<X \| Y\},\{>X \| Y\}, \mathscr{L}(U, X, Y)$, and $\mathscr{L}^{\natural}(V, X, Y)$. For $X, Y \in \mathcal{N}_{r}$, we define the set $\{<X \| Y\}$ and $\{>X \| Y\}$ as follows:

$$
\begin{align*}
& \{<X \| Y\}:=\{U \subseteq X \cup Y|X \cap Y \subseteq U,|X|=|U|, U<X\} \tag{3.17}\\
& \{>X \| Y\}:=\{V \subseteq X \cup Y|X \cap Y \subseteq V,|X|=|V|, V>X\} \tag{3.18}
\end{align*}
$$

Moreover, for $U, V \in \mathcal{N}_{r}$, the integers $\mathscr{L}(U, X, Y)$ and $\mathscr{L}^{\natural}(V, X, Y)$ are defined by
$\mathscr{L}(U, X, Y):=\ell\left(\left(U \backslash U^{\natural}\right) \cup(Y \backslash X) ; X \backslash U\right)-\ell\left(\left(U \backslash U^{\natural}\right) \cup(Y \backslash X) ; U \backslash X\right)$,
$\mathscr{L}^{\natural}(V, X, Y):=\ell\left(\left(V^{\natural} \backslash V\right) \cup(X \backslash Y) ; V \backslash X\right)-\ell\left(\left(V^{\natural} \backslash V\right) \cup(X \backslash Y) ; X \backslash V\right)$,
where

- $W^{\natural}:=(X \cap Y) \sqcup((X \cup Y) \backslash W)$ for $W \in \mathcal{N}_{r}$ with $X \cap Y \subseteq W \subseteq$ $X \cup Y$,
- $\ell(S ; T):=\sharp\{(s, t) \in S \times T \mid s>t\}$ for $S, T \in \mathcal{N}_{r}$.

Note that $W^{\natural}=X^{\natural}=Y\left(\right.$ resp. $\left.W^{\natural}=Y^{\natural}=X\right)$ if $W=X($ resp. $W=Y)$.
We are ready to state the theorem of Goodearl which we need to verify Propsition 3.2.

Theorem 3.3 ([2],Corollary 6.8.). For $I, J, K, L \in \mathcal{N}_{r}$, we have
$q^{|\cap \cap K|} \xi_{J}^{I} \xi_{L}^{K}+q^{|I \cap K|} \sum_{P \in\{>J \| \mid L\}} \widetilde{\mu}_{P} \xi_{P}^{I} \xi_{P}^{K}=q^{|J \cap L|} \xi_{L}^{K} \xi_{J}^{I}+q^{|J \cap L|} \sum_{Q \in\{<I \| K\}} \widetilde{\lambda}_{Q} \xi_{L}^{Q} \xi_{J}^{Q}$,
where

$$
\begin{align*}
& \widetilde{\mu}_{P}:=\left(-q+q^{-1}\right)^{|P \backslash J|}(-q)^{-\mathscr{L}^{\natural}(P, J, L)} \xi_{q}(P \backslash J ; J \backslash P), \tag{3.22}\\
& \tilde{\lambda}_{Q}:=\left(-q+q^{-1}\right)^{|I \backslash Q|}(-q)^{-\mathscr{L}(Q, I, K)} \xi_{q}(I \backslash Q ; Q \backslash I) \tag{3.23}
\end{align*}
$$

for $P \in\{>J \| L\}, Q \in\{<I \| K\}$.
In the following proof of Proposition 3.2, we put $i^{*}=n-i+1$ for $i \in[n]$.
Proof of (I) of Proposition 3.2. Let i, j, and $\ell \in[n]$ satisfy $j<\ell$ and suppose $I=K=\widehat{i^{*}}, J=\widehat{j^{*}}$, and $L=\widehat{\ell^{*}}$ in Theorem 3.3.

The set $\{<I \| K\}=\{<I \| I\}$ is empty. In fact, if an element $Q \in$ $\{<I \| I\}$ exists, then $I \cap I \subseteq Q \subseteq I \cup I$ and $|I|=|Q|$ holds by the definition of $\{<I \| I\}$ and Q is equal to I. This contradicts to $Q<I$. Therefore, the summation of the right hand side of Theorem 3.3 is empty.

Suppose $P \in\{>J \| L\}$. Then $J \cap L \subseteq P \subseteq J \cup L=[n]$ and $|P|=|J|=$ $n-1$ hold by the definition of $\{>J \| L\}$, and we see that $J \cap L=[n] \backslash\left\{j^{*}, \ell^{*}\right\}$ since $j^{*}>\ell^{*}$. Thus, since P is the $n-1$-subset of $[n]$ containing $n-2$ elements of $[n]$ other than j^{*} and ℓ^{*}, we see that $P=J$ or $P=L$. However, we must
have $P>J$ since $P \in\{>J \| L\}$. Furthermore, we have $J=\widehat{j^{*}}<\widehat{\ell^{*}}=L$ by (3.14). Hence, we see that $P=L$ and $\{>J \| L\}=\{L\}$. Moreover,

$$
\begin{equation*}
\widetilde{\mu}_{P}=\widetilde{\mu}_{L}=\left(-q+q^{-1}\right)^{1}(-q)^{0} \cdot 1=q^{-1}-q . \tag{3.24}
\end{equation*}
$$

By the above discussion, we see that

$$
\begin{equation*}
q^{n-2} \xi_{J}^{I} \xi_{L}^{I}=q^{n-1} \xi_{L}^{I} \xi_{J}^{I} \tag{3.25}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\xi_{i j} \xi_{i \ell}=q \xi_{i \ell} \xi_{i j} \tag{3.26}
\end{equation*}
$$

by Theorem 3.3.
Proof of (IV) of Proposition 3.2. Let i, j, k, and $\ell \in[n]$ satisfy $i<k, j<\ell$, and suppose $I=\widehat{i^{*}}, J=\widehat{j^{*}}, K=\widehat{k^{*}}$, and $L=\widehat{\ell^{*}}$ in Theorem 3.3.

Then the left hand side of Theorem 3.3 is equal to

$$
\begin{equation*}
q^{n-2} \xi_{J}^{I} \xi_{L}^{K}+q^{n-2} \sum_{P \in\{>J \| L\}} \widetilde{\mu}_{P} \xi_{P}^{I} \xi_{P}^{K} \tag{3.27}
\end{equation*}
$$

However, we see that the set $\{>J \| L\}$ is the singleton $\{L\}$ for the same reason of the third paragraph of the above proof of (I). Since

$$
\begin{equation*}
\widetilde{\mu}_{P}=\widetilde{\mu}_{L}=\left(-q+q^{-1}\right)^{1}(-q)^{0} \cdot 1=q^{-1}-q \tag{3.28}
\end{equation*}
$$

(3.27) is equal to

$$
\begin{equation*}
q^{n-2} \xi_{J}^{I} \xi_{L}^{K}+q^{n-2}\left(q^{-1}-q\right) \xi_{L}^{I} \xi_{J}^{K} \tag{3.29}
\end{equation*}
$$

Furthermore, the right hand side of Theorem 3.3 is equal to

$$
\begin{equation*}
q^{n-2} \xi_{L}^{K} \xi_{J}^{I}+q^{n-2} \sum_{Q \in\{<I \| K\}} \tilde{\lambda}_{Q} \xi_{L}^{Q^{\natural}} \xi_{J}^{Q} \tag{3.30}
\end{equation*}
$$

Nevertheless, we see that the set $\{<I \| K\}$ is empty for the same reason of the second paragraph of the above proof of (I). Thus, (3.30) is equal to

$$
\begin{equation*}
q^{n-2} \xi_{L}^{K} \xi_{J}^{I} \tag{3.31}
\end{equation*}
$$

Hence, we see that

$$
\begin{equation*}
q^{n-2} \xi_{J}^{I} \xi_{L}^{K}+q^{n-2}\left(q^{-1}-q\right) \xi_{L}^{I} \xi_{J}^{K}=q^{n-2} \xi_{L}^{K} \xi_{J}^{I} \tag{3.32}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\xi_{i j} \xi_{k \ell}-\xi_{k \ell} \xi_{i j}=\left(q-q^{-1}\right) \xi_{i \ell} \xi_{k j} \tag{3.33}
\end{equation*}
$$

We omit the proof of the others of Proposition 3.2 because they are similar to the above. In the following we write X and Ξ_{n-1} in the place of $X(q)$ and $\Xi_{n-1}(q)$.

Theorem 3.4.

$$
\begin{equation*}
\operatorname{det}_{q} \Xi_{n-1}=\left(\operatorname{det}_{q} X\right)^{n-1} \tag{3.34}
\end{equation*}
$$

Proof. Let $B_{n}(q)$ be the subalgebra of $A_{n}(q)$ generated by $\left\{\xi_{i j} \mid 1 \leq i, j \leq n\right\}$. Then $D_{q}:=\operatorname{det}_{q} \Xi_{n-1}$ belongs to the center $Z B_{n}(q)$ of $B_{n}(q)$. We have

$$
X \widetilde{X}\left(\begin{array}{ccc}
D_{q} & & \tag{3.35}\\
& \ddots & \\
& & D_{q}
\end{array}\right)=X\left(\begin{array}{ccc}
D_{q} & & \\
& \ddots & \\
& & D_{q}
\end{array}\right) \widetilde{X}
$$

On the other hand, we see that

$$
\begin{aligned}
X \widetilde{X}\left(\begin{array}{ccc}
D_{q} & & \\
& \ddots & \\
& & D_{q}
\end{array}\right) & =\left(\begin{array}{ccc}
\operatorname{det}_{q} & & \\
& \ddots & \\
& & \operatorname{det}_{q}
\end{array}\right)\left(\begin{array}{lll}
D_{q} & & \\
& \ddots & \\
& & D_{q}
\end{array}\right) \\
& =\left(\begin{array}{lll}
D_{q} & & \\
& \ddots & \\
& & D_{q}
\end{array}\right)\left(\begin{array}{lll}
\operatorname{det}_{q} & & \\
& \ddots & \\
& & \operatorname{det}_{q}
\end{array}\right) \\
& =\left(\begin{array}{lll}
D_{q} & & \\
& \ddots & \\
& & D_{q}
\end{array}\right) X \widetilde{X} .
\end{aligned}
$$

By the above two equations, we obtain

$$
X\left(\begin{array}{ccc}
D_{q} & & \tag{3.37}\\
& \ddots & \\
& & D_{q}
\end{array}\right)=\left(\begin{array}{lll}
D_{q} & & \\
& \ddots & \\
& & D_{q}
\end{array}\right) X
$$

that is, $D_{q} \in Z A_{n}(q)$. Therefore, we see that

$$
\begin{equation*}
D_{q}=\alpha\left(\operatorname{det}_{q} X\right)^{k} \tag{3.38}
\end{equation*}
$$

with some $\alpha \in \mathbb{C}$ and $k \in \mathbb{N}$. Comparing the degree and the "leading term" of both sides, we see that $\alpha=1, k=n-1$.

Acknowledgements

The third author was supported by JSPS KAKENHI Grant Number 17K05180.

References

[1] H. Flanders. A note on the Sylvester-Franke theorem. Amer. Math. Monthly, 60(8):543-545, 1953.
[2] K. R. Goodearl. Commutation relations for arbitrary quantum minors. Pacific J. Math., 228(1):63-102, 2006.
[3] M. Noumi, H. Yamada, and K. Mimachi. Finite dimensional representations of the quantum group $G L_{q}(n ; \mathbb{C})$ and the zonal spherical functions on $U_{q}(n-1) \backslash U_{q}(n)$. Japan. J. Math., 19(1):31-80, 1993.
[4] G. B. Price. Some identities in the theory of determinants. Amer. Math. Monthly, 54(2):75-90, 1947.
[5] N.Yu. Reshetikhin, L.A. Takhtajan, and L.D. Faddeev. Quantization of Lie groups and Lie algebras. Algebra i Analiz, 1(1):178-206, 1989.

Kazuya Aokage
Department of Mathematics
National Institute of Technology
Ariake College
Fukuoka 836-8585, Japan
e-mail address: aokage@ariake-nct.ac.jp
Sumitaka Tabata
Department of Mathematics
Kumamoto University
Kumamoto 860-8555, Japan
e-mail address: 217d9001@st.kumamoto-u.ac.jp
Hiro-Fumi Yamada
Department of Mathematics
Kumamoto University
Kumamoto 860-8555, Japan
e-mail address: hfyamada@kumamoto-u.ac.jp
(Received July 27, 2020)
(Accepted August 12, 2021)

[^1]
[^0]: Mathematics Subject Classification. Primary 20G42; Secondary 81R50.
 Key words and phrases. Quantum general linear group, Sylvester-Franke theorem.

[^1]: Added in proof. After completion of the manuscript, the following paper drew our attention: B. Parshall and J. P. Wang, Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), no. 439. Lemma 4.2.3 and Corollary 5.2.2 of Parshall-Wang can be used to prove quantum Sylvester-Franke theorem of the present paper.

