τ-TILTING FINITENESS OF TWO-POINT ALGEBRAS I

Qi Wang

Abstract

As the first attempt to classify τ-tilting finite two-point algebras, we have determined the τ-tilting finiteness for minimal wild two-point algebras and some tame two-point algebras.

1. Introduction

In this paper, we always assume that Λ is a finite-dimensional basic algebra over an algebraically closed field K. In particular, the representation type of Λ is divided into representation-finite, (infinite-)tame and wild.
τ-tilting theory is introduced by Adachi, Iyama and Reiten , in which they constructed support τ-tilting modules as a generalization of the classical tilting modules. We recall that a right Λ-module M is called support τ-tilting if $\operatorname{Hom}_{\Lambda_{M}}(M, \tau M)=0$ and $|M|=\left|\Lambda_{M}\right|$ taking over $\Lambda_{M}:=$ $\Lambda / \Lambda(1-e) \Lambda$, where e is an idempotent of Λ such that the simple summands of $e \Lambda /(\operatorname{erad} \Lambda)$ are exactly the simple composition factors of M. Moreover, a support τ-tilting Λ-module M is called τ-tilting if $\Lambda_{M}=\Lambda$. This wider class bijectively corresponds to the class of two-term silting complexes, func. torially finite torsion classes, left finite semibricks and so on. We refer to and for details.

We are interested in τ-tilting finite algebras studied in \quad, that is, algebras with only finitely many pairwise non-isomorphic basic (support) τ tilting modules. It is obvious that a representation-finite algebra is τ-tilting finite. Also, it is not difficult to find a tame or a wild algebra which is τ-tilting finite. The τ-tilting finiteness for several classes of algebras has been determined, such as aloohras with radical square zoro , preprojective algebras of Dynkin type - Brauer graph algebras , biserial algebras " and classical Schur algebras , . In particular, it has been proved in some cases that τ-tilting finiteness coincides with renresentation-finiteness, including gentle aloebras , , cycle-finite algebrac , , tilted and clustertilted algebras , , simply connected algebras , , quasi-tilted algebras, locally hereditary algebras, etc.

We notice that local algebras, i.e., algebras with only one simple module, are always τ-tilting finite. This motivates us to study the algebras with exactly two simple modules (up to isomorphism), which are called twonoint algebras in this paper. We point out that Aihara-Kase and Kase r have

[^0]got some interesting results. For example, Kase " Theorem 6.1] showed that one can always find a τ-tilting finite two-point algebra such that the Hasse quiver of the poset of pairwise non-isomorphic basic support τ-tilting modules, is isomorphic to a t-gon $(t \geqslant 4)$. Besides, it is well-known that Kronecker algebra $K(\bullet \Longrightarrow \bullet$) is τ-tilting infinite (we present a proof in Lemma - for the convenience of readers). Thus, Λ is τ-tilting infinite if the quiver of Λ contains multiple arrows.

It is worth mentioning that two-point algebras are fundamental if we consider the representation type of general algebras, and the representation type of two-point algebras has been determined for many years. We may review these results here: the maximal renrosentation-finite two-point algebras are classified by Bongartz and Cahriel , the tame two-point algebras are classified by several authors in \quad - \quad, and the minimal wild two-point algebras are classified by Han \quad.

As we mentioned above, τ-tilting finiteness is related to representation type in some classes of algebras. Thus, in order to find a complete classification of τ-tilting finite two-point algebras, it will be useful to determine the τ-tilting finiteness of all minimal wild two-point algebras. We recall that a complete list of minimal wild two-point algebras is given by Han \quad, which is displayed by Table W in his paper. (See also Appendix A of this paper.) Then, the first main result in this paper is presented as follows.
Theorem 1.1. Let W_{i} be a minimal wild two-point algebra from Table W.
(1) W_{1}, W_{2}, W_{3} and W_{5} are τ-tilting infinite.
(2) W_{4} and $W_{6} \sim W_{34}$ are τ-tilting finite. Moreover, we have

W_{i}	W_{4}	W_{6}	W_{7}	W_{8}	W_{9}	W_{10}	W_{11}	W_{12}	W_{13}	W_{14}
$\# \mathbf{s} \tau$-tilt W_{i}	5	6	8		6		7	5		10
Type	$\mathcal{H}_{1,2}$	$\mathcal{H}_{1,3}$	$\mathcal{H}_{1,5}$		$\mathcal{H}_{1,3}$		$\mathcal{H}_{1,4}$	$\mathcal{H}_{1,2}$		$\mathcal{H}_{3,5}$
W_{i}	W_{15}	W_{16}	W_{17}	W_{18}	W_{19}	W_{20}	W_{21}	W_{22}	W_{23}	W_{24}
$\# \mathrm{~s} \tau$-tilt W_{i}	9	8	9	8	7				8	10
Type	$\mathcal{H}_{2,5}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,5}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,3}$				$\mathcal{H}_{3,3}$	$\mathcal{H}_{3,5}$
W_{i}	W_{25}	W_{26}	W_{27}	W_{28}	W_{29}	W_{30}	W_{31}	W_{32}	W_{33}	W_{34}
$\# \mathrm{~s} \tau$-tilt W_{i}	7		8				6			
Type	$\mathcal{H}_{2,3}$		$\mathcal{H}_{2,4}$	$\mathcal{H}_{3,3}$		$\mathcal{H}_{2,4}$	$\mathcal{H}_{2,2}$			

where $\# \mathrm{~s} \tau$-tilt W_{i} is the number of isomorphism classes of basic support τ-tilting W_{i}-modules and the type of $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.W_{i}\right)$ is defined in Definition

According to Theorem - most of the minimal wild two-point algebras are τ-tilting finite so that one may expect to give a complete classification of
τ-tilting finite tame two-point algebras. This should also be useful toward the complete classification of τ-tilting finite two-point algebras. However, it is difficult at this moment to give a complete result on tame two-point algebras, because the tameness of two-point algebras depends on the technique called degeneration, and it is still open to finding the relation between τ-tilting finiteness and degeneration.
We may give a partial result on tame two-point algebras. We recall from

- (see also Proposition - of this paper) that all tame two-point algebras can degenerate to a finite set (Table T in ${ }^{\text {r }}$) of two-point algebras. Then, we check the τ-tilting finiteness for algebras in Table ${ }^{7}$ as follows. This is the second main result in this paper.

Theorem 1.2. Let T_{i} be an algebra from Table T.
(1) T_{1}, T_{3} and T_{17} are τ-tilting infinite.
(2) Others are τ-tilting finite. Moreover, we have the following posets,

T_{i}	T_{2}	T_{4}	T_{5}	T_{6}	T_{7}	T_{8}	T_{9}	T_{10}	T_{11}
\#s τ-tilt T_{i}	6		5	6	5		8	12	8
Type	$\mathcal{H}_{1,3}$		$\mathcal{H}_{1,2}$	$\mathcal{H}_{1,3}$	$\mathcal{H}_{1,2}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{5,5}$	$\mathcal{H}_{3,3}$	
T_{i}	T_{12}	T_{13}	T_{14}	T_{15}	T_{16}	T_{18}	T_{19}	T_{20}	T_{21}
\#s τ-tilt T_{i}	7	6	8	7	9	8	6	7	6
Type	$\mathcal{H}_{2,3}$	$\mathcal{H}_{2,2}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,3}$	$\mathcal{H}_{2,5}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,2}$	$\mathcal{H}_{2,3}$	$\mathcal{H}_{2,2}$

We observe that Theorem - and Theorem - are useful to determine the τ-tilting finiteness for soveral other classes of algebras, such as tame twonoint distributive algebras - , two-point symmetric special biserial algebras and so on. We have given an easy observation in Proposition --
This paper is organized as follows. In Section 2, we review some basic concepts of τ-tilting theory and silting theory. Besides, we list some reduction theorems that we will use and carry out several explicit computations. In Section 3, we give the proofs of Theorem - and Theorem -

2. Preliminaries

We refer to for the background on the representation theory of finitedimensional algebras and the basic knowledge of quiver representations.

Let $\bmod \Lambda$ be the category of finitely generated right Λ-modules and proj Λ the full subcategory of $\bmod \Lambda$ consisting of projective Λ-modules.

[^1]For any $M \in \bmod \Lambda$, we denote by $\operatorname{add}(M)$ (respectively, $\operatorname{Fac}(M)$) the full subcategory of mod Λ whose objects are direct summands (respectively, factor modules) of finite direct sums of copies of M. We often describe Λ modules via their composition series. For example, each simple module S_{i} is written as i, and then ${ }_{2}^{1}={ }_{S_{2}}^{S_{1}}$ is an indecomposable Λ-module M with a unique simple submodule S_{2} such that $M / S_{2} \simeq S_{1}$.

We denote by Λ^{op} the opposite algebra of Λ and by $|M|$ the number of isomorphism classes of indecomposable direct summands of M. Let τ be the Auslander-Reiten translation on the module category. Note that it is not functorial.

Definition $1($ Definition 0.1]). Let $M \in \bmod \Lambda$. Then,
(1) M is called τ-rigid if $\operatorname{Hom}_{\Lambda}(M, \tau M)=0$.
(2) M is called τ-tilting if M is τ-rigid and $|M|=|\Lambda|$.
(3) M is called support τ-tilting if there exists an idempotent e of Λ such that M is a τ-tilting $(\Lambda / \Lambda e \Lambda)$-module.

Let (M, P) be a pair with $M \in \bmod \Lambda$ and $P \in \operatorname{proj} \Lambda$. We recall that (M, P) is said to be a support τ-tilting pair if M is τ-rigid, $\operatorname{Hom}_{\Lambda}(P, M)=0$ and $|M|+|P|=|\Lambda|$. This is actually an equivalent definition for support τ-tilting modules, i.e., (M, P) is a support τ-tilting pair if and only if M is a τ-tilting $(\Lambda / \Lambda e \Lambda)$-module and $P=e \Lambda$.

We denote by τ-rigid Λ (respectively, s τ-tilt Λ) the set of isomorphism classes of indecomposable τ-rigid (respectively, basic support τ-tilting) Λ modules. It is known from that any τ-rigid Λ-module is a direct summand of some τ-tilting Λ-module.

Definition 2. A finite-dimensional algebra Λ is called τ-tilting finite if it has only finitely many pairwise non-isomorphic basic τ-tilting modules. Otherwise, Λ is called τ-tilting infinite.

Let \mathcal{C} be an additive category and X, Y objects of \mathcal{C}. A morphism f : $X \rightarrow Z$ with $Z \in \operatorname{add}(Y)$ is called a minimal left $\operatorname{add}(Y)$-approximation of X if it satisfies:

- every $h \in \operatorname{Hom}_{\mathcal{C}}(Z, Z)$ that satisfies $h \circ f=f$ is an automorphism,
- $\operatorname{Hom}_{\mathcal{C}}\left(f, Z^{\prime}\right): \operatorname{Hom}_{\mathcal{C}}\left(Z, Z^{\prime}\right) \longrightarrow \operatorname{Hom}_{\mathcal{C}}\left(X, Z^{\prime}\right)$ is surjective for any $Z^{\prime} \in \operatorname{add}(Y)$,
where $\operatorname{add}(Y)$ is the category of all direct summands of finite direct sums of copies of Y.

We recall the concept of left mutation which is the core of τ-tilting theory.
summand M satisfying $M \notin \operatorname{Fac}(N)$. We take an exact sequence with a minimal left $\operatorname{add}(N)$-approximation f :

$$
M \xrightarrow{f} N^{\prime} \longrightarrow \operatorname{coker} f \longrightarrow 0
$$

We call $\mu_{M}^{-}(T):=($ coker $f) \oplus N$ the left mutation of T with respect to M, which is again a basic support τ-tilting Λ-module. (The right mutation $\mu_{M}^{+}(T)$ can be defined dually.)

In the above, Zhang has shown in " that coker f is either 0 or indecomposable. Moreover, one can show that coker f cannot be projective.

We may construct a directed graph $\mathcal{H}(\mathrm{s} \tau$-tilt $\Lambda)$ by drawing an arrow from T_{1} to T_{2} if T_{2} is a left mutation of T_{1}. On the other hand, we can regard $\mathrm{s} \tau$-tilt Λ as a poset with respect to a partial order \leq. For any $M, N \in$ s τ-tilt Λ, we say that $N \leq M$ if $\operatorname{Fac}(N) \subseteq \operatorname{Fac}(M)$. Then, the directed graph $\mathcal{H}(\mathrm{s} \tau$-tilt $\Lambda)$ is exactly the Hasse quiver on the poset $\mathrm{s} \tau$-tilt Λ, see Corollary 2.34].

The following statement implies that an algebra Λ is τ-tilting finite if we can find a finite connected component of $\mathcal{H}(\mathrm{s} \tau$-tilt $\Lambda)$.
Proposition 2.2 (Corollary 2.38]). If the Hasse quiver $\mathcal{H}(\mathbf{s} \tau$-tilt Λ) contains a finite connected component Δ, then $\mathcal{H}(\mathbf{s} \tau$-tilt $\Lambda)=\Delta$.
2.1. Silting theory. We denote by $C^{b}(\operatorname{proj} \Lambda)$ the category of bounded complexes of projective Λ-modules and by $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$ the corresponding homotopy category which is triangulated. Besides, we denote by \sim_{h} the homotopy equivalence in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$. For any $T \in \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$, let thick T be the smallest full subcategory of $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$ containing T, which is closed under cones, $[\pm 1]$, direct summands and isomorphisms.

Definition $3\left(\right.$ Definition 2.1]). A complex $T \in \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$ is called presilting if

$$
\operatorname{Hom}_{K^{\mathrm{b}}(\operatorname{proj} \Lambda)}(T, T[i])=0 \text { for any } i>0
$$

A presilting complex T is called silting if thick $T=\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$.
Similar to the left mutation of cupport τ-tilting modules, we recall the irreducible left silting mutation (Definition 2.30]) of silting complexes. Let $T=X \oplus Y$ be a basic silting complex in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$ with an indecomposable summand X. We take a minimal left $\operatorname{add}(Y)$-approximation π and a triangle

$$
X \xrightarrow{\pi} Z \longrightarrow \operatorname{cone}(\pi) \longrightarrow X[1] .
$$

Then, cone (π) is indecomposable and $\mu_{X}^{-}(T):=\operatorname{cone}(\pi) \oplus Y$ is again a basic silting complex in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$, see Theorem 2.31]. We call $\mu_{X}^{-}(T)$ the irreducible left mutation of T with respect to X.

A complex in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$ is called two-term if it is homotopy equivalent to a complex T concentrated in degree 0 and -1 , i.e.,

$$
\left(T^{-1} \xrightarrow{d_{T}^{-1}} T^{0}\right):=\ldots \longrightarrow 0 \longrightarrow T^{-1} \xrightarrow{d_{T}^{-1}} T^{0} \longrightarrow 0 \longrightarrow \ldots
$$

We denote by 2 -silt Λ the set of isomorphism classes of basic two-term silting complexes in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$. Similarly, there is a partial order \leq on the set 2 -silt Λ which is introduced by Theorem 2.11]. For any $S, T \in 2$-silt Λ, we say that $S \leq T$ if $\operatorname{Hom}_{\mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)}(T, S[i])=0$ for any $i>0$. We denote by $\mathcal{H}(2$-silt $\Lambda)$ the Hasse quiver of 2 -silt Λ, which is compatible with the irreducible left mutations of silting complexes.
Proposition 2.3 (Theorem 3.2]). There exists a poset isomorphism between $\mathbf{s} \tau$-tilt Λ and 2 -silt Λ. More precisely, the bijection is given by

$$
M \longmapsto\left(P_{1} \oplus P \xrightarrow{[f, 0]} P_{0}\right)
$$

where (M, P) is the corresponding support τ-tilting pair and $P_{1} \xrightarrow{f} P_{0} \longrightarrow$ $M \longrightarrow 0$ is a minimal projective presentation of M.

Since the poset $\boldsymbol{s} \tau$-tilt Λ has the unique maximal element Λ and the unique minimal element 0 , we can define the type of $\mathcal{H}(\mathbf{s} \tau$-tilt Λ) (equivalently, $\mathcal{H}(2$-silt $\Lambda))$ as follows.
Definition 4. Let Λ be a τ-tilting finite algebra. We say that the Hasse quiver $\mathcal{H}(\mathrm{s} \tau$-tilt $\Lambda)$ is of type $\mathcal{H}_{m, n}$ if it is of the form

Moreover, we have $\mathcal{H}_{m, n} \simeq \mathcal{H}_{n, m}$.
We have the following equivalent condition for Λ to be τ-tilting finite.
Proposition 2.4 (Corollary 2.9]). An algebra Λ is τ-tilting finite if and only if one of (equivalently, any of) the sets τ-rigid $\Lambda, \mathrm{s} \tau$-tilt Λ and 2 -silt Λ is finite.
2.2. Reduction theorems. There are some reduction theorems. First, we review the brick- τ-rigid correspondence introduced by Demonet, Iyama and Jasso r. Recall that $M \in \bmod \Lambda$ is called a brick if $\operatorname{End}_{\Lambda}(M)=K$. We denote by brick Λ the set of isomorphism classes of bricks in mod Λ.

Lemma 2.5 (- Theorem 4.2]). Let Λ be a finite-dimensional algebra. Then, Λ is τ-tilting finite if and only if the set brick Λ is finite.

Let Λ_{1}, Λ_{2} be two algebras. We call Λ_{2} a quotient or quotient algebra of Λ_{1} if there exists a surjective K-algebra homomorphism $\phi: \Lambda_{1} \rightarrow \Lambda_{2}$.

Corollary 2.6. Suppose that Λ_{2} is a quotient algebra of Λ_{1}. If Λ_{2} is τ-tilting infinite, then Λ_{1} is also τ-tilting infinite.

Proof. There exists a K-linear fully-faithful functor $\mathcal{F}: \bmod \Lambda_{2} \rightarrow \bmod \Lambda_{1}$, and \mathcal{F} sends a brick in $\bmod \Lambda_{2}$ to a brick in $\bmod \Lambda_{1}$. Then, the statement follows from Lemma -

Lemma 2.7 (Theorem 2.14]). There exists a poset anti-isomorphism between $\mathbf{s} \tau$-tilt Λ and $\mathbf{s} \tau$-tilt Λ^{op}.

Lemma 2.8 (Theorem 1]). Let I be a two-sided ideal generated by central elements which are contained in the Jacobson radical of Λ. Then, there exists a poset isomorphism between $\mathbf{s} \tau$-tilt Λ and $\mathbf{s} \tau$-tilt (Λ / I).

Lemma 2.9. If $Y \neq 0$ and

$$
\begin{aligned}
& T_{1}:=\left(0 \longrightarrow X \xrightarrow{\binom{1}{f}} X \oplus Y \xrightarrow{(-g \circ f, g)} Z \longrightarrow 0\right) \in \mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda), \\
& T_{2}:=\left(0 \longrightarrow X \oplus Y \xrightarrow{\left(\begin{array}{cc}
f_{1} & f_{2} \\
1 & g \\
h_{1} & h_{2}
\end{array}\right)} Z \oplus X \oplus M \longrightarrow 0\right) \in \mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda),
\end{aligned}
$$

then $T_{1} \sim_{h} T_{1}^{r}$ and $T_{2} \sim_{h} T_{2}^{r}$, where

$$
\begin{gathered}
T_{1}^{r}:=(0 \longrightarrow Y \xrightarrow{g} Z \longrightarrow 0) \in \mathrm{K}^{\mathrm{b}}(\operatorname{proj} \Lambda), \\
T_{2}^{r}:=\left(0 \longrightarrow \left(\begin{array}{c}
\binom{f_{2}-f_{1} \circ g}{h_{2}-h_{1} \circ g} \\
\longrightarrow
\end{array} M \longrightarrow \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} \Lambda) .\right.\right.
\end{gathered}
$$

Proof. (1) We define $\varphi: T_{1} \rightarrow T_{1}^{r}$ and $\psi: T_{1}^{r} \rightarrow T_{1}$ as follows,

Then, $\varphi \circ \psi=\operatorname{Id}_{T_{1}^{r}}$ and

$$
\psi \circ \varphi=\left(0,\left(\begin{array}{cc}
0 & 0 \\
-f & 1
\end{array}\right), 1\right) \sim_{h} \operatorname{Id}_{T_{1}},
$$

because the difference $\operatorname{Id}_{T_{1}}-\psi \circ \varphi$ is null-homotopic as follows.
$T_{1}:$
$T_{1}:$

(2) We define $\varphi: T_{2} \rightarrow T_{2}^{r}$ and $\psi: T_{2}^{r} \rightarrow T_{2}$ as follows,

Then, $\varphi \circ \psi=\operatorname{Id}_{T_{2}^{r}}$ and

$$
\psi \circ \varphi=\left(\left(\begin{array}{cc}
0 & -g \\
0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & -f_{1} & 0 \\
0 & 0 & 0 \\
0 & -h_{1} & 1
\end{array}\right)\right) \sim_{h} \operatorname{Id}_{T_{2}} .
$$

In fact, the difference $\operatorname{Id}_{T_{2}}-\psi \circ \varphi$ is null-homotopic as follows.

Therefore, we have $T_{1} \sim_{h} T_{1}^{r}$ and $T_{2} \sim_{h} T_{2}^{r}$.

3. Main Results

In this section, we will prove our main results mentioned in the introduction. But before that, let us review the complete classification for the representation type of two-point algebras. We refer to Appendix A for Table T and Table W.

Proposition 3.1 (Theorem 1, Theorem 2]). Let Λ be a two-point algebra. Up to isomorphism and duality, Λ is representation-finite or tame if and only if Λ degenerates to a quotient algebra of an algebra from Table T, and Λ is wild if and only if Λ has a minimal wild algebra from Table W as a quotient algebra.

We denote by rad (Λ) the Jacobson radical of Λ and by $C(\Lambda)$ the center of Λ. As explained in - , although Λ has a complicated structure, its quotient algebra

$$
\widetilde{\Lambda}:=\Lambda /<C(\Lambda) \cap \operatorname{rad}(\Lambda)>
$$

Table Λ
$\begin{aligned} & \Lambda_{1}=K(1 \longrightarrow 2) \\ & \Lambda_{2}=K(1 \longrightarrow 2)\end{aligned}$
$Q: 1 \longrightarrow 2 \supset^{\mu}$
(3) $\beta^{2}=0$;
(4) $\beta^{3}=0$;
$Q:{ }^{\alpha} 1 \xrightarrow{\mu} 2 \bigcirc \beta$
(5) $\alpha^{2}=\beta^{2}=0$;
$Q: 1 \underset{\nu}{\stackrel{\mu}{\rightleftarrows}} 2$
(6) $\mu \nu=\nu \mu=0$;
$Q: \alpha C 1 \underset{\nu}{\stackrel{\mu}{\rightleftarrows}} 2$
(7) $\alpha^{2}=\mu \nu=\nu \mu=\nu \alpha=0$;
(8) $\alpha^{2}=\mu \nu=\nu \mu=\nu \alpha \mu=0$;
(9) $\alpha^{3}=\mu \nu=\nu \mu=\nu \alpha=0$;
(10) $\alpha^{3}=\mu \nu=\nu \mu=\nu \alpha \mu=\nu \alpha^{2} \mu=0$;
$Q:{ }^{\alpha}{ }^{-} 1 \underset{\nu}{\underset{~}{\leftrightarrows}} 2 \bigcirc \beta$
(11) $\alpha^{2}=\beta^{2}=\mu \nu=\nu \mu=\alpha \mu=\beta \nu=0$;
(12) $\alpha^{2}=\beta^{2}=\mu \nu=\nu \mu=\beta \nu=\nu \alpha=\alpha \mu \beta=0$.
may have a simpler structure. Moreover, by Lemma - we know that $\# \mathrm{~s} \tau$-tilt $\Lambda=\# \mathrm{~s} \tau$-tilt $\widetilde{\Lambda}$ and the Hasse quivers $\mathcal{H}(\mathrm{s} \tau$-tilt $\Lambda)$ and $\mathcal{H}(\mathrm{s} \tau$-tilt $\widetilde{\Lambda})$ are of the same type. Then, by using this strategy and Corollary -- we can restrict the algebras (except for W_{4}, T_{20} and T_{21}) in Table W and Table T to a small list (i.e., Table Λ) of two-point algebras. (In Table Λ, by an algebra Λ_{i}, we mean the bound quiver algebra $K Q / I_{i}$, where I_{i} is the admissible ideal generated by the relation (i).)

As a preparation for proving Theorem - and Theorem - we need to determine the τ-tilting finiteness of Λ_{i} in Table Λ. We remark that $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\Lambda_{1}\right)$ is of type $\mathcal{H}_{1,2}$ and $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\Lambda_{6}\right)$ is of type $\mathcal{H}_{2,2}$, and we omit the details to show this.

It is well-known that the Kronecker algebra Λ_{2} admits infinitely many (classical) tilting modules, so that it is obviously τ-tilting infinite. Since the construction of tilting modules is not mentioned in this paper, we give a different proof here for the convenience of readers.

Similar to the notion of minimal representation-infinite algebra, we call an algebra Λ minimal τ-tilting infinite if Λ is τ-tilting infinite, but any proper quotient algebra of Λ is τ-tilting finite.

Lemma 3.2. The Kronecker algebra Λ_{2} is minimal τ-tilting infinite.
Proof. It is easy to check that

$$
M_{k}=K \underset{1}{\stackrel{k}{\rightrightarrows}} K
$$

with $k \in K$ is a brick in mod Λ_{2}. Since the family $\left(M_{k}\right)_{k \in K}$ consists of infinitely many pairwise non-isomorphic bricks, Λ_{2} is τ-tilting infinite by Lemma - Besides, the minimality is obvious.
Lemma 3.3. The two-point algebras Λ_{3} and Λ_{4} are τ-tilting finite.
Proof. Since Λ_{3} is a quotient algebra of Λ_{4}, by Corollary -- it suffices to show that Λ_{4} is τ-tilting finite. We show that the poset 2 -silt Λ_{4} has a finite connected component and hence, it exhausts all two-term silting complexes in $\mathrm{K}^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)$ by Proposition - and Proposition - Then, Λ_{4} is τ-tilting finite following from Proposition - Let P_{1} and P_{2} be the indecomposable projective Λ_{4}-modules. We have

$$
P_{1}=\stackrel{e_{1}}{\mu \beta} \underset{\mu \beta^{2}}{\mu} \simeq \stackrel{1}{2} \text { 2 } \text { and } P_{2}=\stackrel{e_{2}}{\beta} \simeq \stackrel{2}{\beta^{2}} \simeq \underset{2}{2} .
$$

We show that $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{4}\right)$ is of type $\mathcal{H}_{1,5}$ as follows,

where

$$
f_{1}=\left(\begin{array}{c}
\mu \\
\mu \beta \\
\mu \beta^{2}
\end{array}\right), f_{2}=\binom{\mu}{\mu \beta}, f_{3}=\left(\begin{array}{cc}
\mu & 0 \\
-\mu \beta & \mu \\
0 & \mu \beta
\end{array}\right) .
$$

Since $\operatorname{Hom}_{\Lambda_{4}}\left(P_{2}, P_{1}\right)=e_{1} \Lambda_{4} e_{2}=K \mu \oplus K \mu \beta \oplus K \mu \beta^{2}$ and $\operatorname{Hom}_{\Lambda_{4}}\left(P_{1}, P_{2}\right)=$ 0 , it is not difficult to compute the left mutations $\mu_{D_{-}}^{-}\left(\Lambda_{4}\right)$ and $\mu_{P_{2}}^{-}\left(\Lambda_{4}\right)$. According to the bijection introduced in Proposition - one can find the corresponding two-term silting complexes. We only show details for the rest of the steps.
(1) Let $T_{2}=X \oplus Y:=\left(0 \longrightarrow P_{1}\right) \oplus\left(P_{2} \xrightarrow{f_{1}} P_{1}^{\oplus 3}\right)$. Then, $\mu_{Y}^{-}\left(T_{2}\right)$ does not belong to 2 -silt Λ_{4} and therefore, we ignore this mutation. To compute $\mu_{X}^{-}\left(T_{2}\right)$, we take a triangle

$$
X \xrightarrow{\pi} Y \longrightarrow \operatorname{cone}(\pi) \longrightarrow X[1] \text { with } \pi=\left(0,\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) .
$$

We may check that π is a minimal left add (Y)-approximation. In fact,

- if we compose π with the endomorphism

$$
\begin{aligned}
& Y: \quad P_{2} \xrightarrow{f_{1}} P_{1}^{\oplus 3} \\
& k_{1} e_{2}+k_{2} \beta+k_{3} \beta^{2} \mid \\
& Y:\left.\quad P_{2} \xrightarrow{f_{1}}\right|_{1} ^{\left(\begin{array}{ccc}
k_{1} & k_{2} & k_{3} \\
0 & k_{1} & k_{2} \\
0 & 0 & k_{1}
\end{array}\right)} \text {, where } k_{1}, k_{2}, k_{3} \in K,
\end{aligned}
$$

then all elements of $\operatorname{Hom}_{\mathrm{K}^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)}(X, Y)$ are obtained;

- if $\left(\begin{array}{ccc}k_{1} & k_{2} & k_{3} \\ 0 & k_{1} & k_{2} \\ 0 & 0 & k_{1}\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, then $k_{1}=1$ and $k_{2}=k_{3}=0$.

Hence, π is indeed a minimal left $\operatorname{add}(Y)$-approximation. By Lemma

$$
\operatorname{cone}(\pi)=\left(P_{1} \oplus P_{2} \xrightarrow{\left(\begin{array}{cc}
0 & \mu \\
0 & \mu \beta \\
1 & \mu \beta^{2}
\end{array}\right)} P_{1}^{\oplus 3}\right) \sim_{h}\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) .
$$

Thus, $\mu_{X}^{-}\left(T_{2}\right)=\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) \oplus\left(P_{2} \xrightarrow{f_{1}} P_{1}^{\oplus 3}\right)$.
(2) Let $T_{21}=X \oplus Y:=\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) \oplus\left(P_{2} \xrightarrow{f_{1}} P_{1}^{\oplus 3}\right)$. Then, $\mu_{X}^{-}\left(T_{21}\right) \notin$ 2-silt Λ_{4}. To compute $\mu_{Y}^{-}\left(T_{21}\right)$, we take a triangle

$$
Y \xrightarrow{\pi} X^{\oplus 3} \longrightarrow \operatorname{cone}(\pi) \longrightarrow Y[1] \text { with } \pi=\left(\left(\begin{array}{c}
e_{2} \\
\beta \\
\beta^{2}
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\right) .
$$

Then, π is a minimal left $\operatorname{add}(X)$-approximation. (In fact, we have

$$
\operatorname{End}_{\mathrm{K}^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)}(X)=K
$$

since $\operatorname{End}_{\Lambda_{4}}\left(P_{1}\right)=K$. Furthermore,

$$
\operatorname{End}_{K^{b}\left(\operatorname{proj} \Lambda_{4}\right)}\left(X^{\oplus 3}\right) \simeq \operatorname{Mat}(3,3, K)
$$

Secondly, $\lambda \circ \pi=\pi$ for $\lambda \in \operatorname{Mat}(3,3, K)$ implies that λ is the identity. Thus, π is indeed a minimal left $\operatorname{add}(X)$-approximation.) By applying Lemma twice, we have

$$
\operatorname{cone}(\pi)=\left(P_{2} \xrightarrow{\left(\begin{array}{c}
-\mu \\
-\mu \beta \\
-\mu \beta^{2} \\
e_{2} \\
\beta \\
\beta^{2}
\end{array}\right)} \underset{\sim_{h}\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right) .}{ } P_{2}^{\oplus 3} \xrightarrow{\left(\begin{array}{cccccc}
1 & 0 & \mu & 0 & 0 \\
0 & 1 & 0 & \mu \beta & 0 & 0 \\
0 & 1 & 0 & 0 & \mu & 0 \\
0 & 0 & 1 & 0 & \mu \beta & 0 \\
0 & 0 & 1 & 0 & 0 & \mu \\
0 & 0 & 0 & 0 & 0 & \mu \beta
\end{array}\right)} P_{1}^{\oplus 6}\right)
$$

Thus, $\mu_{Y}^{-}\left(T_{21}\right)=\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) \oplus\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right)$.
(3) Let $T_{212}=X \oplus Y:=\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) \oplus\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right)$. Then, $\mu_{Y}^{-}\left(T_{212}\right) \notin 2$-silt Λ_{4}. To compute $\mu_{X}^{-}\left(T_{212}\right)$, we take a triangle

$$
X \xrightarrow{\pi} Y \longrightarrow \operatorname{cone}(\pi) \longrightarrow X[1] \text { with } \pi=\left(\binom{0}{e_{2}},\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)\right) .
$$

Then, π is a minimal left $\operatorname{add}(Y)$-approximation. (If we compose π with

$$
\begin{aligned}
& Y: \quad P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3} \\
& \left(\begin{array}{cc}
k_{1} e_{2}-k_{2} \beta & k_{2} e_{2} \\
-k_{2} \beta^{2} & k_{1} e_{2}
\end{array}\right) \downarrow^{\left\lvert\,\left(\begin{array}{ccc}
k_{1} & k_{2} & 0 \\
0 & k_{1} & -k_{2} \\
0 & 0 & k_{1}
\end{array}\right)\right.} \begin{array}{l}
Y: \text { where } k_{1}, k_{2} \in K, \\
Y: \\
P_{2}^{\oplus 2} \xrightarrow{f_{3}}
\end{array} P_{1}^{\oplus 3}
\end{aligned}
$$

then all elements of $\operatorname{Hom}_{\mathrm{K}^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)}(X, Y)$ are obtained; if

$$
\left(\begin{array}{ccc}
k_{1} & k_{2} & 0 \\
0 & k_{1} & -k_{2} \\
0 & 0 & k_{1}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right),
$$

then $k_{1}=1$ and $k_{2}=0$.) By applying Lemma - wice, we have

$$
\operatorname{cone}(\pi)=\left(P_{2} \xrightarrow{\left(\begin{array}{c}
-\mu \\
-\mu \beta \\
0 \\
e_{2}
\end{array}\right)} P_{1}^{\oplus 2} \oplus P_{2}^{\oplus 2} \xrightarrow{\left(\begin{array}{cccc}
0 & 0 & \mu & 0 \\
1 & 0 & -\mu \beta & \mu \\
0 & 1 & 0 & \mu \beta
\end{array}\right)} P_{1}^{\oplus 3}\right)
$$

Thus, $\mu_{X}^{-}\left(T_{212}\right)=\left(P_{2} \xrightarrow{\mu} P_{1}\right) \oplus\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right)$.
(4) Let $T_{2121}=X \oplus Y:=\left(P_{2} \xrightarrow{\mu} P_{1}\right) \oplus\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right)$. Then, $\mu_{X}^{-}\left(T_{2121}\right) \notin 2$-silt Λ_{4}. To compute $\mu_{Y}^{-}\left(T_{2121}\right)$, we take a triangle

$$
Y \xrightarrow{\pi} X^{\oplus 3} \longrightarrow \operatorname{cone}(\pi) \longrightarrow Y[1] \text { with } \pi=\left(\left(\begin{array}{cc}
e_{2} & 0 \\
-\beta & e_{2} \\
0 & \beta
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) .
$$

Then, π is a minimal left $\operatorname{add}(X)$-approximation because of

$$
\operatorname{End}_{K^{b}\left(\operatorname{proj} \Lambda_{4}\right)}(X)=K
$$

Then, we have
$\operatorname{cone}(\pi)=\left(P_{2}^{\oplus 2} \xrightarrow{\left(\begin{array}{ccc}-\mu & 0 \\ \mu \beta & -\mu \\ 0 & -\mu \beta \\ e_{2} & 0 \\ -\beta & e_{2} \\ 0 & \beta\end{array}\right)} P_{1}^{\oplus 3} \oplus P_{2}^{\oplus 3} \xrightarrow{\left(\begin{array}{ccccc}1 & 0 & \mu & 0 & 0 \\ 0 & 1 & 0 & 0 & \mu \\ 0 & 0 & 1 & 0 & 0\end{array}\right)} P_{1}^{\oplus 3}\right) \sim_{h}\left(P_{2} \longrightarrow 0\right)$.
Thus, $\mu_{Y}^{-}\left(T_{2121}\right)=\left(P_{2} \xrightarrow{\mu} P_{1}\right) \oplus\left(P_{2} \longrightarrow 0\right)$.
(5) Let $T_{21212}=X \oplus Y:=\left(P_{2} \xrightarrow{\mu} P_{1}\right) \oplus\left(P_{2} \longrightarrow 0\right)$. Then, it is clear that $\mu_{Y}^{-}\left(T_{21212}\right)$ does not belong to 2-silt Λ_{4} and

$$
\mu_{X}^{-}\left(T_{21212}\right)=\left(P_{1} \longrightarrow 0\right) \oplus\left(P_{2} \longrightarrow 0\right)
$$

To sum up the above, we have constructed a finite connected component in $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{4}\right)$. We deduce that $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{4}\right)$ is of type $\mathcal{H}_{1,5}$. By Proposition this is equivalent to saying that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{4}\right)$ is of type $\mathcal{H}_{1,5}$.

Remark. Let P_{1} and P_{2} be the indecomposable projective Λ_{3}-modules. Then,

$$
P_{1}=\stackrel{e_{1}}{\mu \beta} \underset{\mu}{\mu} \simeq \frac{1}{2} \text { and } P_{2}={ }_{\beta}^{e_{2}} \simeq \frac{2}{2} .
$$

The Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{3}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{3}\right)$ is of type $\mathcal{H}_{1,3}$ as follows,

Lemma 3.4. The two-point algebra Λ_{5} is minimal τ-tilting infinite.
Proof. Note that Λ_{5} is a gentle algebra and it is representation-infinite hv Hoshino and Miyachi's result " Theorem A]. Besides, Plamondon , Theorem 1.1] showed that a gentle algebra is τ-tilting finite if and only if it is representation-finite. Therefore, Λ_{5} is τ-tilting infinite.

For the minimality, we may consider

$$
\hat{\Lambda}_{5}:=\Lambda_{5} /<\alpha \mu \beta>
$$

since the socle of Λ_{5} is $K \alpha \mu \beta \oplus K \mu \beta \oplus K \beta$ and any proper quotient Λ_{5} / I of Λ_{5} satisfies $\alpha \mu \beta \in I$. We denote by P_{1} and P_{2} the indecomposable projective $\hat{\Lambda}_{5}$-modules, then

$$
P_{1}=\underset{\alpha \mu}{\alpha} \quad \stackrel{e_{1}}{\mu \beta} \underset{\mu}{\mu} \text { and } P_{2}={ }_{\beta}^{e_{2}} .
$$

By direct calculation, we find that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\hat{\Lambda}_{5}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\left.\hat{\Lambda}_{5}\right)\right)$ is of type $\mathcal{H}_{1,4}$ as follows,

This implies that $\hat{\Lambda}_{5}$ is τ-tilting finite and Λ_{5} is minimal τ-tilting infinite.
Lemma 3.5. The two-point algebras $\Lambda_{7}, \Lambda_{8}, \Lambda_{9}$ and Λ_{10} are τ-tilting finite.
Proof. Note that Λ_{7}, Λ_{8} and Λ_{9} are quotient algebras of Λ_{10}. By Corollary it suffices to show that Λ_{10} is τ-tilting finite. The indecomposable projective modules of Λ_{10} are

Since

$$
\operatorname{Hom}_{\Lambda_{10}}\left(P_{1}, P_{2}\right)=e_{2} \Lambda_{10} e_{1}=K \nu \oplus K \nu \alpha \oplus K \nu \alpha^{2}
$$

and

$$
\operatorname{Hom}_{\Lambda_{10}}\left(P_{2}, P_{1}\right)=e_{1} \Lambda_{10} e_{2}=K \mu \oplus K \alpha \mu \oplus K \alpha^{2} \mu
$$

we know that the computation of the left mutation sequence started at P_{1} is similar to that of Λ_{4}, and the computation of the left mutation sequence started at P_{2} is similar to that of $\Lambda_{4}^{\mathrm{op}}$. By Lemma - and the calculation in Lemma - we deduce that the Hasse quiver $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{10}\right)$ is as follows,

where $f_{1}=\left(\begin{array}{ccc}\alpha \mu & \mu & 0 \\ 0 & -\alpha \mu & \mu\end{array}\right), f_{2}=(\alpha \mu \mu), f_{3}=\left(\alpha^{2} \mu \alpha \mu \mu\right)$ and

$$
g_{1}=\left(\begin{array}{c}
\nu \\
\nu \alpha \\
\nu \alpha^{2}
\end{array}\right), g_{2}=\binom{\nu}{\nu \alpha}, g_{3}=\left(\begin{array}{cc}
\nu & 0 \\
-\nu \alpha & \nu \\
0 & \nu \alpha
\end{array}\right) .
$$

We conclude that $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\Lambda_{10}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{10}\right)$ is of type $\mathcal{H}_{5,5}$. Thus, $\Lambda_{7}, \Lambda_{8}, \Lambda_{9}$ and Λ_{10} are τ-tilting finite. Next, we determine the type of the Hasse quiver $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\Lambda_{i}\right)$ for $i=7,8,9$.
(1) The indecomposable projective Λ_{7}-modules are

$$
P_{1}={\underset{\alpha \mu}{\alpha}{ }^{e_{1}} \mu \text { and } P_{2}=\stackrel{e_{2}}{\nu} ~}_{\text {. }}
$$

We give the Hasse quiver $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{7}\right)$ by direct calculation as follows,

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \longrightarrow P_{1} \\
0 \xrightarrow{\oplus} P_{2}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{1} \xrightarrow{\stackrel{\nu}{\oplus}} P_{2} \\
0 \xrightarrow{\longrightarrow} P_{2}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{1} \xrightarrow{\nu} P_{2} \\
P_{1} \xrightarrow{\oplus} 0
\end{array}\right]} \\
& {\left[\begin{array}{c}
0 \longrightarrow P_{1} \\
P_{2} \xrightarrow{\oplus} P_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{2}^{\oplus 2(\mu, \alpha \mu)} \\
\underset{\oplus}{\oplus} \\
P_{2} \xrightarrow{\mu} P_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{2}^{\oplus 2(\mu, \alpha \mu)} \\
P_{2} \xrightarrow{\oplus} P_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{1} \longrightarrow 0 \\
P_{2} \xrightarrow{\oplus} 0
\end{array}\right]}
\end{aligned}
$$

Hence, $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\Lambda_{7}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{7}\right)$ is of type $\mathcal{H}_{2,3}$.
(2) The indecomposable projective Λ_{8}-modules are

$$
P_{1}=\underset{\alpha \mu}{\alpha}{ }^{e_{1}} \mu \text { and } P_{2}=\stackrel{e_{2}}{\nu \alpha},
$$

and the Hasse quiver $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{8}\right)$ is given as follows,

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \xrightarrow{0} P_{1} \\
P_{2} \xrightarrow{\mu} P_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{2}^{\oplus 2(\mu, \alpha \mu)} \\
\stackrel{\oplus}{\oplus} \\
P_{2} \xrightarrow{\mu} P_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{2}^{\oplus 2(\mu, \alpha \mu)} \\
\underset{P_{2} \xrightarrow{\oplus}}{\longrightarrow}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{1} \xrightarrow{\longrightarrow} \\
P_{2} \xrightarrow{\oplus}
\end{array}\right]}
\end{aligned}
$$

Hence, $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\Lambda_{8}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{8}\right)$ is of type $\mathcal{H}_{3,3}$.
(3) Let Q_{1} and Q_{2} be the indecomposable projective Λ_{9}-modules. Then,

$$
Q_{1}=e_{1} \Lambda_{9}=\underset{\alpha^{\alpha^{2}} \mu}{\stackrel{\alpha}{\alpha \mu}} \stackrel{e_{1}}{\mu} \simeq{\underset{1}{1}}_{\frac{1}{2}}^{2} \text { and } Q_{2}=e_{2} \Lambda_{9}={\underset{\nu}{e_{2}} \simeq}_{1}^{2} .
$$

Since $\operatorname{Hom}_{\Lambda_{9}}\left(Q_{1}, Q_{2}\right)=e_{2} \Lambda_{9} e_{1}=K \nu$ and

$$
\operatorname{Hom}_{\Lambda_{9}}\left(Q_{2}, Q_{1}\right)=e_{1} \Lambda_{9} e_{2}=K \mu \oplus K \alpha \mu \oplus K \alpha^{2} \mu,
$$

the computation of the left mutation sequence started at Q_{2} is similar to that of $\Lambda_{4}^{\mathrm{op}}$. Then, by Lemma - and the calculation in Lemma - we deduce that $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{9}\right)$ is presented as follows,

where $f_{1}=\left(\begin{array}{ccc}\alpha \mu & \mu & 0 \\ 0 & -\alpha \mu & \mu\end{array}\right), f_{2}=(\alpha \mu \mu)$ and $f_{3}=\left(\alpha^{2} \mu \alpha \mu \mu\right)$. By Proposition - we conclude that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{9}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{9}\right)$ is of type $\mathcal{H}_{2,5}$.

Lemma 3.6. The two-point algebras Λ_{11} and Λ_{12} are τ-tilting finite.
Proof. (1) The indecomposable projective Λ_{11}-modules are

$$
P_{1}=\alpha^{e_{1}} \underset{\mu \beta}{\mu} \text { and } P_{2}=\beta^{e_{2}} \stackrel{\nu \alpha}{\nu} .
$$

We calculate the Hasse quiver $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{11}\right)$ directly as follows,

Thus, $\mathcal{H}\left(\right.$ s τ-tilt $\left.\Lambda_{11}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{11}\right)$ is of type $\mathcal{H}_{3,3}$.
(2) The indecomposable projective Λ_{12}-modules are

$$
P_{1}=\underset{\alpha \mu}{\alpha}{ }_{\mu \beta}^{\mu} \text { and } P_{2}=\beta_{\beta}^{e_{1}}{ }_{\nu}^{\mu}
$$

and the Hasse quiver $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{12}\right)$ is shown as follows,

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \longrightarrow P_{1} \\
0 \xrightarrow{\oplus} P_{2}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{1} \xrightarrow{\nu} P_{2} \\
0 \xrightarrow{\longrightarrow} P_{2}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{1} \xrightarrow{\nu} P_{2} \\
P_{1} \xrightarrow{\oplus} 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
P_{2} \xrightarrow{\mu} P_{1} \\
P_{2} \xrightarrow{(\mu)}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{2} \xrightarrow{\mu} P_{1}^{\oplus 2}
\end{array}\right]\left[\begin{array}{c}
\oplus \\
P_{2}^{\oplus 2} \xrightarrow{(\mu, \alpha \mu)} P_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{2} \xrightarrow{\oplus} 0 \\
P_{2}^{\oplus 2} \xrightarrow{(\mu, \alpha \mu)} P_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{1} \xrightarrow{\oplus} 0 \\
P_{2} \xrightarrow{\oplus} 0
\end{array}\right]}
\end{aligned}
$$

Thus, $\mathcal{H}\left(\right.$ s τ-tilt $\left.\Lambda_{12}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{12}\right)$ is of type $\mathcal{H}_{2,4}$.
Lastly, we summarize the number $\# \mathbf{s} \tau$-tilt Λ_{i} and the type of $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{i}\right)$ for Λ_{i} with $i \neq 2,5$ as follows,

Λ_{i}	Λ_{1}	Λ_{3}	Λ_{4}	Λ_{6}	Λ_{7}	Λ_{8}	Λ_{9}	Λ_{10}	Λ_{11}	Λ_{12}
\#s τ-tilt Λ_{i}	5	6	8	6	7	8	9	12	8	8
Type	$\mathcal{H}_{1,2}$	$\mathcal{H}_{1,3}$	$\mathcal{H}_{1,5}$	$\mathcal{H}_{2,2}$	$\mathcal{H}_{2,3}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,5}$	$\mathcal{H}_{5,5}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,4}$

3.1. The proof of Theorem - First, one can easily find that W_{1}, W_{2}, W_{3} and W_{5} have Λ_{2} as a quotient algebra and therefore, they are τ-tilting infinite. It is also not difficult to find that W_{4} is τ-tilting finite and $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.W_{4}\right)$ is of type $\mathcal{H}_{1,2}$.

We may distinguish the case W_{14}. Note that $\nu \alpha \mu \in C\left(W_{14}\right)$ and the indecomposable projective modules of $\widetilde{W}_{14}:=W_{14} /<\nu \alpha \mu>$ are

$$
P_{1}={ }_{\alpha^{2}}{ }_{\alpha \mu}^{\alpha}{ }_{\alpha \mu}^{e_{1}} \mu \text { and } P_{2}=\stackrel{\substack{\nu \alpha \\ \nu \alpha^{2}}}{\substack{\nu \\ \nu}} .
$$

Then, we find that \widetilde{W}_{14} is a quotient algebra of Λ_{10} by $\alpha^{2} \mu$. Thus, by similar calculation with Λ_{10} in the proof of Lemma - one can check that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\widetilde{W}_{14}\right)$ is of type $\mathcal{H}_{3,5}$. By Lemma - we deduce that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.W_{14}\right)$ is of type $\mathcal{H}_{3,5}$.

Next, we show that $W_{6} \sim W_{34}$ (except for W_{14}) are τ-tilting finite by determining the type of $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.W_{i}\right)$ for $i=6,7, \ldots, 34(i \neq 14)$. In order to do this, we can apply Lemma - o construct a two-sided ideal I generated by elements in $C\left(W_{i}\right) \cap \operatorname{rad}\left(W_{i}\right)$ such that $\mathbf{s} \tau$-tilt $A \simeq \mathrm{~s} \tau$-tilt $\left(W_{i} / I\right)$. Then, we can find the type of $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.W_{i}\right)$ following Table Λ. Here, we compute the center of an algebra by GAP as follows, see "

W_{i}	I	A
W_{6}	α^{2}	$\Lambda_{3}^{\text {op }}$
W_{7}	α^{3}	$\Lambda_{4}^{\text {op }}$
W_{8}	α	Λ_{4}
W_{9}	α, β^{2}	Λ_{3}
W_{10}		
W_{11}	β^{2}	$\hat{\Lambda}_{5}$
W_{12}	α, β	Λ_{1}
W_{13}		
W_{15}	$\nu \mu$	$\Lambda_{9}^{\text {op }}$
W_{16}	$\alpha^{2}, \nu \mu$	Λ_{8}
W_{17}	α^{3}	$\Lambda_{9}^{\text {op }}$
W_{18}	α^{2}	Λ_{8}
W_{19}		Λ_{7}
W_{20}	$\mu \nu+\nu \mu$	

W_{i}	I	A
W_{21}	$\alpha \mu \nu$	Λ_{7}
W_{22}	$\alpha^{2}, \mu \nu$	
W_{23}	$\alpha^{2}+\nu \mu, \nu \alpha \mu$	Λ_{8}
W_{24}	$\mu \nu$	$\widehat{W}_{14}^{\text {op }}$
W_{25}	α^{2}, β	Λ_{7}
W_{26}	$\alpha, \mu \nu$	$\Lambda_{7}^{\text {op }}$
W_{27}	$\mu \nu$	$\Lambda_{12}^{\mathrm{op}}$
W_{28}		Λ_{11}
W_{29}		$\Lambda_{11}^{\text {op }}$
W_{30}		Λ_{12}
W_{31}	$\alpha+\beta, \nu \mu$	Λ_{6}
W_{32}	$\alpha+\beta, \nu \mu, \mu \nu$	
W_{33}	$\alpha+\beta$	
W_{34}	$\alpha+\beta, \mu \nu$	

In particular, we point out that although $\Lambda_{7} \not \not \widetilde{W}_{21}:=W_{21} / I$, but s τ-tilt $\Lambda_{7} \simeq$ s τ-tilt \widetilde{W}_{21}. To see this, one may check that $\nu \mu+\mu \nu \in C\left(\widetilde{W}_{21}\right)$ and therefore,

$$
\mathrm{s} \tau \text {-tilt } \widetilde{W}_{21} \simeq \mathrm{~s} \tau \text {-tilt }\left(\widetilde{W}_{21} /<\mu \nu, \nu \mu>\right) \simeq \mathrm{s} \tau \text {-tilt } \Lambda_{7}
$$

3.2. The proof of Theorem - Similar to the proof of Theorem

 one can check that T_{1} has Λ_{2} as a quotient algebra, T_{3} and T_{17} have Λ_{5} as a quotient algebra. Hence, T_{1}, T_{3} and T_{17} are τ-tilting infinite.We may also apply Lemma - o construct a two-sided ideal I generated by elements in $C\left(T_{i}\right) \cap \operatorname{rad}\left(T_{i}\right)$ such that $\mathbf{s} \tau$-tilt $B \simeq \mathbf{s} \tau$-tilt $\left(T_{i} / I\right)$. We have

T_{i}	I	B
T_{2}	α^{2}	$\Lambda_{3}^{\mathrm{op}}$
T_{4}	β	
T_{5}	α, β	Λ_{1}
T_{6}	$\alpha+\beta^{2}$	Λ_{3}
T_{7}	$\alpha+\beta$	Λ_{1}
T_{8}		
T_{10}	$\nu \alpha^{2} \mu$	Λ_{10}
T_{11}	$\alpha^{2}, \nu \alpha \mu$	Λ_{8}

T_{i}	I	B
T_{12}	$\alpha^{2}, \nu \mu$	Λ_{7}
T_{13}	$\alpha, \mu \nu+\nu \mu$	Λ_{6}
T_{14}	$\alpha^{2}+\nu \mu$	Λ_{8}
T_{15}	$\alpha^{2}, \nu \mu$	Λ_{7}
T_{16}	$\mu \nu$	Λ_{9}
T_{18}	$\beta, \nu \alpha \mu+$ $\alpha \mu \nu+\mu \nu \alpha$	\widetilde{T}_{9}
T_{19}	$\alpha, \beta, \mu \nu+\nu \mu$	Λ_{6}

for $i \neq 9,20,21$. Then, we look at the remaining cases as follows.
Case $\left(T_{9}\right)$. Since $\nu \mu, \alpha \mu \nu+\mu \nu \alpha+\nu \alpha \mu \in C\left(T_{9}\right)$ and $\alpha \mu \nu \in C\left(\widetilde{T}_{9}\right)$ with

$$
\widetilde{T}_{9}:=T_{9} /<\nu \mu, \nu \alpha \mu, \alpha \mu \nu+\mu \nu \alpha>.
$$

Then, we have $\mu \nu \in C\left(\widetilde{T}_{9} /<\alpha \mu \nu>\right)$ and therefore,

$$
\mathbf{s} \tau \text {-tilt } T_{9} \simeq \mathbf{s} \tau \text {-tilt }\left(T_{9} /<\mu \nu, \nu \mu, \nu \alpha \mu>\right) \simeq \mathbf{s} \tau \text {-tilt } \Lambda_{8}
$$

Case $\left(T_{20}\right)$. For any $k \in K /\{0\}$, we have $\mu \nu+\nu \mu \in C\left(T_{20}\right)$ such that

$$
\mathbf{s} \tau \text {-tilt } T_{20} \simeq \mathbf{s} \tau \text {-tilt } \widetilde{T}_{20} \text { with } \widetilde{T}_{20}:=T_{20} /<\mu \nu, \nu \mu>
$$

Then, the indecomposable projective \widetilde{T}_{20}-modules are

$$
P_{1}={ }_{\mu \beta}^{e_{1}} \mu \text { and } P_{2}=\beta_{\nu \alpha}^{e_{2}}{ }_{\nu \alpha}^{\nu}
$$

and the Hasse quiver $\mathcal{H}\left(2\right.$-silt $\left.\widetilde{T}_{20}\right)$ is given as follows,

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \xrightarrow{0} P_{1} \\
P_{2} \xrightarrow{\stackrel{\mu}{\longrightarrow}} P_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
P_{2} \xrightarrow{\mu} P_{1} \\
P_{2} \xrightarrow{\oplus} 0
\end{array}\right] \longrightarrow\left[\begin{array}{l}
P_{1} \longrightarrow 0 \\
P_{2} \xrightarrow{\oplus} 0
\end{array}\right]}
\end{aligned}
$$

Thus, $\mathcal{H}\left(\right.$ s τ-tilt $\left.T_{20}\right) \simeq \mathcal{H}\left(\right.$ s τ-tilt $\left.\widetilde{T}_{20}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\widetilde{T}_{20}\right)$ is of type $\mathcal{H}_{2,3}$.
Case $\left(T_{21}\right)$. For any $k_{1}, k_{2} \in K /\{0\}$, we have $\mu \nu+\nu \mu \in C\left(T_{21}\right)$. Similarly, we have $\mathbf{s} \tau$-tilt $T_{21} \simeq \mathbf{s} \tau$-tilt $\left(T_{21} /<\mu \nu, \nu \mu>\right)$ and the corresponding Hasse quiver is of type $\mathcal{H}_{2,2}$.
3.3. Other applications. At the end of this paper, we give two easy observations. First, we have

Proposition 3.7. Let Λ be a connected two-point algebra without loops. Then, Λ is τ-tilting finite if and only if it is representation-finite.

Proof. By our assumption, the quiver Q of Λ does not contain loops. If Q contains multiple arrows, then Λ has the Kronecker algebra Λ_{2} as a quotient algebra and hence, Λ is τ-tilting infinite. Then, we deduce that if Λ is τ-tilting finite, then Q is either $\bullet \rightleftarrows \bullet$ or $\bullet \longrightarrow \bullet$. On the other hand, any finite-dimensional algebra with quiver $\bullet \rightleftarrows \bullet$ or $\bullet \longrightarrow \bullet$ is representation-finite from Bongartz and Gabriel ।

Second, we determine the τ-tiltino finiteness of two-point symmetric special biserial algebras. We refer to " for the basic concepts and properties of symmetric special biserial algebras, or equivalently, Brauer graph algebras. In , the authors classified two-point symmetric special biserial algebras up to Morita equivalence, so that we can determine their τ-tilting finiteness.
Proposition 3.8 (Theorem 7.1]). Let Λ be a two-point symmetric special biserial algebra. Then, Λ is Morita equivalent to one of $B_{i}=K Q / I_{i}$ below.

$I_{6}: \alpha \mu=\mu \beta=\beta \nu=\nu \alpha=0$, $\alpha^{m}=(\mu \nu)^{n}, \beta^{r}=(\nu \mu)^{n}, m, r \geqslant 2, n \geqslant 1$.
$I_{7}: \alpha^{2}=\nu \mu=\mu \beta=\beta \nu=0$,
$(\alpha \mu \nu)^{n}=(\mu \nu \alpha)^{n}, \beta^{m}=(\nu \alpha \mu)^{n}, m \geqslant 2, n \geqslant 1$.
$I_{8}: \alpha^{2}=\beta^{2}=\mu \nu=\nu \mu=0$,
$(\nu \alpha \mu \beta)^{n}=(\beta \nu \alpha \mu)^{n},(\alpha \mu \beta \nu)^{n}=(\mu \beta \nu \alpha)^{n}, n \geqslant 1$.
In the above, we assume that $m, n, r \in \mathbb{N}$.

Proposition 3.9. Let B_{i} be a two-point symmetric special biserial algebra. Then, B_{i} is τ-tilting finite if $i=1,4,5,6,7 ; \tau$-tilting infinite if $i=2,3,8$. Moreover, we have

B_{i}	B_{1}	B_{4}	B_{5}	B_{6}	B_{7}
$\# \mathbf{s} \tau$-tilt B_{i}	6	8	6	8	
Type	$\mathcal{H}_{2,2}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,2}$	$\mathcal{H}_{3,3}$	

Proof. One can easily check that B_{2} and B_{3} have Λ_{2} as a quotient algebra, and B_{8} has Λ_{5} as a quotient algebra. Therefore, B_{2}, B_{3} and B_{8} are τ-tilting infinite. We show the remaining case by case.

Case $\left(B_{1}\right)$. If $n=1$, then $\mu \nu, \nu \mu \in C\left(B_{1}\right)$. If $n \geqslant 2$, then $\mu \nu+\nu \mu \in C\left(B_{1}\right)$. Both of them satisfy

$$
\mathbf{s} \tau \text {-tilt } B_{1} \simeq \mathbf{s} \tau \text {-tilt }\left(B_{1} /<\mu \nu, \nu \mu>\right) \simeq \mathbf{s} \tau \text {-tilt } \Lambda_{6} .
$$

Case $\left(B_{4}\right)$. If $n=1$, then $\alpha, \nu \mu \in C\left(B_{4}\right)$. If $n \geqslant 2$, then $\alpha, \mu \nu+\nu \mu \in$ $C\left(B_{4}\right)$. Both of them satisfy

$$
\mathbf{s} \tau \text {-tilt } B_{4} \simeq \mathbf{s} \tau \text {-tilt }\left(B_{4} /<\alpha, \mu \nu, \nu \mu>\right) \simeq \mathbf{s} \tau \text {-tilt } \Lambda_{6} .
$$

Case (B_{5}). If $n=1$, then $\mu \nu, \nu \alpha \mu \in C\left(B_{5}\right)$. If $n \geqslant 2$, then $\alpha \mu \nu+\mu \nu \alpha+$ $\nu \alpha \mu \in C\left(B_{5}\right)$ and $\alpha \mu \nu \in C\left(\widetilde{B}_{5}\right)$ such that $\mu \nu \in C\left(\widetilde{B}_{5} /<\alpha \mu \nu>\right)$, where

$$
\widetilde{B}_{5}:=B_{5} /<\nu \alpha \mu, \alpha \mu \nu+\mu \nu \alpha>.
$$

Hence, $\mathbf{s} \tau$-tilt $B_{5} \simeq \mathbf{s} \tau$-tilt $\left(B_{5} /<\mu \nu, \nu \alpha \mu>\right) \simeq \mathbf{s} \tau$-tilt Λ_{8}.
Case (B_{6}). If $n=1$, then $\alpha, \beta \in C\left(B_{6}\right)$. If $n \geqslant 2$, then $\alpha, \beta, \mu \nu+\nu \mu \in$ $C\left(B_{6}\right)$. Both of them satisfy

$$
\mathbf{s} \tau \text {-tilt } B_{6} \simeq \mathbf{s} \tau \text {-tilt }\left(B_{6} /<\alpha, \beta, \mu \nu, \nu \mu>\right) \simeq \mathbf{s} \tau \text {-tilt } \Lambda_{6} .
$$

Case $\left(B_{7}\right)$. If $n=1$, then $\beta, \mu \nu \in C\left(B_{7}\right)$. If $n \geqslant 2$, then $\beta, \alpha \mu \nu+\mu \nu \alpha+$ $\nu \alpha \mu \in C\left(B_{7}\right)$ and $\alpha \mu \nu \in C\left(\widetilde{B}_{7}\right)$ such that $\mu \nu \in C\left(\widetilde{B}_{7} /<\alpha \mu \nu>\right)$, where

$$
\widetilde{B}_{7}:=B_{7} /<\beta, \nu \alpha \mu, \alpha \mu \nu+\mu \nu \alpha>.
$$

Thus, $\mathbf{s} \tau$-tilt $B_{7} \simeq \mathbf{s} \tau$-tilt $\left(B_{7} /<\beta, \mu \nu, \nu \alpha \mu>\right) \simeq \mathbf{s} \tau$-tilt Λ_{8}.

Appendix A. Table T and Table W introduced in

Table T

(1) $\nu_{1} \mu_{1}=\nu_{2} \mu_{2}=\left(\ell_{1} \mu_{1}+\ell_{2} \mu_{2}\right)\left(k_{1} \nu_{1}+k_{2} \nu_{2}\right)=\left(\ell_{3} \mu_{1}+\ell_{4} \mu_{2}\right)\left(k_{3} \nu_{1}+k_{4} \nu_{2}\right)=0$, where $k_{1}, k_{2}, k_{3}, k_{4}, \ell_{1}, \ell_{2}, \ell_{3}, \ell_{4} \in K$ and $k_{1} k_{4} \neq k_{2} k_{3}, \ell_{1} \ell_{4} \neq \ell_{2} \ell_{3}$.

(2) $\alpha^{6}=\alpha^{2} \mu=0$;

(9) $\alpha^{2}=\mu \nu \mu=\nu \mu \nu=(\nu \alpha \mu)^{n}=0$, $n \geqslant 1, n \in \mathbb{N}$
(10) $\alpha^{3}=\mu \nu=\nu \mu=\nu \alpha \mu=0$;
(11) $\alpha^{3}=\mu \nu, \nu \mu=\nu \alpha^{2}=\alpha^{2} \mu=0$;
(12) $\alpha^{4}=\mu \nu, \nu \alpha=\alpha^{2} \mu=0$;
(13) $\alpha^{m}=\nu \alpha=\alpha \mu=(\mu \nu)^{n}=0$,
$m \geqslant 2, n \geqslant 1, m, n \in \mathbb{N} ;$
(14) $\alpha^{2}=\mu \nu, \nu \alpha \mu=0$;
(15) $\alpha^{3}=\mu \nu, \nu \alpha=\alpha^{2} \mu=0$;
(16) $\alpha^{3}=\mu \nu, \nu \alpha=\nu \mu=0$;
(3) $\alpha^{2}=\beta^{2}=0$;
(4) $\alpha^{2}=\beta^{n}=\mu \beta=0$,
$n \geqslant 2, n \in \mathbb{N}$
(5) $\alpha^{m}=\beta^{n}=\alpha \mu=\mu \beta=0$,
$m, n \geqslant 2, m, n \in \mathbb{N}$
(6) $\alpha^{2}=\beta^{3}=0, \alpha \mu=\mu \beta^{2}$;
(7) $\alpha^{3}=\beta^{6}=0, \alpha \mu=\mu \beta$;
(8) $\alpha^{4}=\beta^{4}=0, \alpha \mu=\mu \beta$;

(17) $\alpha^{2}=\beta^{2}=\nu \mu=\mu \nu=0$;
(18) $\alpha^{2}=\beta^{m}=\nu \mu=\mu \beta=\beta \nu=(\nu \alpha \mu)^{n}=0, m \geqslant 2, n \geqslant 1, m, n \in \mathbb{N}$;
(19) $\alpha^{m}=\beta^{n}=(\nu \mu)^{r}=\alpha \mu=\nu \alpha=\mu \beta=\beta \nu=0$,
$m, n \geqslant 2, r \geqslant 1, m, n, r \in \mathbb{N}$
(20) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu, \beta \nu=0, \alpha \mu=k \mu \beta, k \in K /\{0\}$;
(21) $\alpha^{m}=\beta^{n}=0, \beta^{2}=\nu \mu, \nu \alpha=\beta \nu, k_{1} \alpha^{2}=\mu \nu, \alpha \mu=k_{2} \mu \beta$,
$k_{1}, k_{2} \in K /\{0\}, m, n \geqslant 2, m, n \in \mathbb{N}$.

Table W

(1) $K Q$;

(2) $\mu_{1} \nu=\mu_{2} \nu=0$;

(3) $\nu_{2} \mu_{1}=\nu_{1} \mu_{2}, \mu_{1} \nu_{1}=\mu_{2} \nu_{1}=\mu_{1} \nu_{2}=\mu_{2} \nu_{2}=\nu_{1} \mu_{1}=0$;

(4) $\alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{1} \alpha_{2}=0$,

(5) $\alpha^{2}=\alpha \mu_{1}=\alpha \mu_{2}=0$;

(6) $\alpha^{7}=\alpha^{2} \mu=0$;
(7) $\alpha^{4}=\alpha^{3} \mu=0$;

(8) $\alpha^{2}=\beta^{3}=\alpha \mu=0$;
(9) $\alpha^{3}=\beta^{3}=\alpha \mu=\mu \beta^{2}=0$;
(10) $\alpha^{2}=\beta^{4}=\alpha \mu=\mu \beta^{2}=0$;
(11) $\alpha^{2}=\beta^{3}=\alpha \mu \beta=\mu \beta^{2}=0$;
(12) $\alpha^{4}=\beta^{5}=\mu \beta^{2}=0, \alpha \mu=\mu \beta$;
(13) $\alpha^{3}=\beta^{7}=\mu \beta^{2}=0, \alpha \mu=\mu \beta$;
(23) $\alpha^{2}=\mu \nu, \alpha^{3}=\alpha^{2} \mu=0$;
(24) $\alpha^{4}=\nu \mu=\nu \alpha \mu=\nu \alpha^{2}=0$,
$\alpha^{3}=\mu \nu ;$

(25) $\alpha^{3}=\beta^{2}=\nu \mu=\mu \nu=\nu \alpha=\mu \beta=\beta \nu=\alpha^{2} \mu=0$;
(26) $\alpha^{2}=\beta^{2}=\nu \mu=\alpha \mu=\nu \alpha=\beta \nu=0$;
(27) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu=\alpha \mu=\mu \beta=\beta \nu \alpha=0$;
(28) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu=\alpha \mu=\beta \nu=0$;
(29) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu=\nu \alpha=\mu \beta=0$;
(30) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu=\nu \alpha=\beta \nu=\alpha \mu \beta=0$;
(31) $\alpha \mu=\mu \beta, \alpha^{2}=\beta^{3}=\mu \nu=\nu \alpha=\beta \nu=\mu \beta^{2}=0$;
(32) $\alpha \mu=\mu \beta, \alpha^{2}=\beta^{2}=\nu \alpha=\beta \nu=\mu \nu \mu=\nu \mu \nu=0$;
(33) $\alpha \mu=\mu \beta, \alpha^{3}=\beta^{3}=\nu \mu=\mu \nu=\nu \alpha=\beta \nu=\mu \beta^{2}=\alpha^{2} \mu=0$;
(34) $\alpha \mu=\mu \beta, \alpha^{3}=\beta^{2}=\nu \mu=\nu \alpha=\beta \nu=\alpha^{2} \mu=0$;

Acknowledgement

I am grateful to my supervisor Prof. Susumu Ariki for suggesting this project and for his kind guidance during the writing of this paper. A lot of thanks to Dr. Kengo Miyamoto for teaching me numerous knowledge of τ-tilting theory, to Prof. Takuma Aihara and Prof. Ryoichi Kase for many useful discussions. I appreciate the anonymous referee very much for being patient with me and giving me many useful suggestions. Finally, I would like to mention my sincere gratitude to Prof. Toshiaki Shoji. Without his recommendation, I could not imagine studying abroad.

References

[1] T. Adachi, Characterizing τ-tilting finite algebras with radical square zero, Proc. Amer. Math. Soc., 144, no. 11 (2016), 4673-4685.
[2] S. Asai, Semibricks, Int. Math. Res. Not. IMRN, no. 16 (2020), 49935054.
[3] T. Adachi, T. Aihara and A. Chan, Classification of two-term tilting complexes over Brauer graph algebras, Math. Z., 290, no. 1-2 (2018), 1-36.
[4] T. Aihara, T. Honma, K. Miyamoto and Q. Wang, Report on the finiteness of silting objects, Proc. Edinb. Math. Soc. (2), 64, no. 2 (2021), 217-233.
[5] T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc., 85, no. 3 (2012), 633-668.
[6] T. Aihara and R. Kase, Algebras sharing the same support τ-tilting poset with tree quiver algebras, Q. J. Math., 69, no. 4 (2018), 1303-1325.
[7] T. Adachi, O. Iyama and I. Reiten, τ-tilting theory, Compos. Math., 150, no. 3 (2014), 415-452.
[8] S. Ariki, K. Iijima and E. Park, Representation type of finite quiver Hecke algebras of type $A_{\ell}^{(1)}$ for arbitrary parameters, Int. Math. Res. Not. IMRN, no. 15 (2015), 6070-6135.
[9] I. Assem, D. Simson and A. Skowronski, Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65, Cambridge University Press, 2006.
[10] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math., 65, no. 3 (1981), 331-378.
[11] Th. Brüstle and Y. Han, Two-point algebras without loops, Comm. Algebra, 29, no. 10 (2001), 4683-4692.
[12] P. Dräxler and Ch. Geiß, On the tameness of certain 2-point algebras, CMS Conf. Proc. Amer. Math. Soc., Providence, RI, 1996.
[13] L. Demonet, O. Iyama and G. Jasso, τ-tilting finite algebras, bricks and g-vectors, Int. Math. Res. Not. 2019, (3), (2019), 852-892.
[14] F. Eisele, G. Janssens and T. Raedschelders, A reduction theorem for τ-rigid modules, Math. Z., 290, no. 3-4 (2018), 1377-1413.
[15] Ch. Geiß, Tame distributive two-point algebras, CMS Conf. Proc., 14, (1993), 193-204.
[16] Y, Han, Wild two-point algebras, J. Algebra, 247, no. 1 (2002), 57-77.
[17] M. Hoshino and J. Miyachi, Tame two-point algebras, Tsukuba J. Math., 12, no. 1 (1988), 65-96.
[18] R. Kase, From support τ-tilting posets to algebras, Preprint (2017), arXiv: 1709.05049.
[19] Y. Mizuno, Classifying τ-tilting modules over preprojective algebras of Dynkin type, Math. Z., 277, no. 3-4 (2014), 665-690.
[20] K. Mousavand, τ-tilting finiteness of biserial algebras, Preprint (2019), arXiv: 1904.11514.
[21] P. Malicki and A. Skowroński, Cycle-finite algebras with finitely many τ-rigid indecomposable modules, Comm. Algebra, 14, no. 5 (2016), 20482057.
[22] P.G. Plamondon, τ-tilting finite gentle algebras are representationfinite, Pacific J. Math., 302, no. 2 (2019), 709-716.
[23] S. Schroll, Brauer graph algebras: a survey on Brauer graph algebras, associated gentle algebras and their connections to cluster theory. Homological methods, representation theory, and cluster algebras, (2018), 177-223,
[24] Q. Wang, On τ-tilting finite simply connected algebras, Preprint (2019), arXiv: 1910.01937.
[25] Q. Wang, On τ-tilting finiteness of the Schur algebra. J. Pure Annl. Algebra. 226. no. 1 (2022), 106818. itms://aol.org/lu.lumb/l.inaa.zUzl.IUnstг
[26] y. Lnang, on mutation of τ-tuting moautes, Comm. Algebra, 45, no. 6 (2017), 2726-2729.
[27] S. Zito, τ-tilting finite cluster-tilted algebras, Proc. Edinb. Math. Soc. (2), 63, no. 4 (2020), 950-955.
[28] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.11.1.

Qi Wang
Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology
Osaka University
1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
e-mail address: q.wang@ist.osaka-u.ac.jp
(Received June 4, 2020)
(Accepted August 13, 2021)

[^0]: Mathematics Subject Classification. Primary 16G20; Secondary 16G60.
 Key words and phrases. Support τ-tilting modules, τ-tilting finite, two-point algebras.

[^1]: ${ }^{1}$ We mention that some relations are omitted in the original Table T in . so that several algebras (e.g., T_{4} and T_{5}) in the original Table T are not finite-dimensional. However, we have added these omitted relations in this paper so that all algebras in Table T are finite-dimensional, see Appendix A.

