
Math. J. Okayama Univ. 64 (2022), 75–107

CRITERIA FOR GOOD REDUCTION OF HYPERBOLIC

POLYCURVES

Ippei Nagamachi

Abstract. We give good reduction criteria for hyperbolic polycurves,
i.e., successive extensions of families of curves, under some assumptions.
These criteria are higher dimensional versions of the good reduction
criterion for hyperbolic curves given by Oda and Tamagawa.
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1. Introduction

Let K be a discrete valuation field, OK the valuation ring of K, p (≥ 0)
the residual characteristic of K, Ksep a separable closure of K, GK the
absolute Galois group Gal(Ksep/K) of K, and IK an inertia subgroup of
GK . (Note that IK , as a subgroup of GK , depends on the choice of a
prime ideal in the integral closure of OK in Ksep over the maximal ideal of
OK , but it is independent of this choice up to conjugation.) Let X be a
proper smooth variety over K. X is said to have good reduction if there
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76 I. NAGAMACHI

exists a proper smooth scheme X over OK whose generic fiber is isomorphic
to X over OK . (Such a scheme X is called a smooth model of X.) In
arithmetic geometry, it is important to know criteria to determine whether
X has good reduction. Various criteria for good reduction in terms of Galois
representations have been established for certain classes of varieties. Néron,
Ogg, and Shafarevich established a criterion in the case of elliptic curves,
and Serre and Tate generalized this criterion to the case of abelian varieties
[17]. Their criterion claims that an abelian variety has good reduction if
and only if the action of IK on the first l-adic étale cohomology group of
X ⊗K Ksep is trivial for some prime number l 6= p.

As a non-abelian version of the above result, Oda showed that a proper
hyperbolic curve has good reduction if and only if the outer action of IK on
the pro-l fundamental group of X ⊗K Ksep is trivial (cf. [12] and [13]). To
state Oda’s result precisely, we fix some notations. For a profinite group G
and p as above (resp. a prime number l), we denote the pro-p′ (resp. pro-l)
completion of G, which is defined to be the limit of the projective system of
quotient groups of G with finite order prime to p (resp.with finite l-power

order) by Gp′ (resp.Gl). Here, if p = 0, the order of every finite group is
considered to be prime to 0.

Suppose that X is a proper hyperbolic curve (i.e., a geometrically con-
nected proper smooth curve of genus≥ 2) overK. Then the pro-l completion
π1(X ⊗K Ksep, t)l of the étale fundamental group π1(X ⊗K Ksep, t) (with a
base point t) admits a continuous homomorphism

ρ : GK →Out(π1(X ⊗K Ksep, t)l)

:=Aut(π1(X ⊗K Ksep, t)l)/Inn(π1(X ⊗K Ksep, t)l).
(1.1)

We refer to this outer representation as the outer Galois representation asso-
ciated with X. Here, Aut(π1(X ⊗K Ksep, t)l) (resp. Inn(π1(X ⊗K Ksep, t)l))
is the group of continuous automorphisms of the profinite group π1(X ⊗K

Ksep, t)l (resp. the group of inner automorphisms of the profinite group
π1(X ⊗K Ksep, t)l). Oda proved that X has good reduction if and only
if the restriction of ρ to IK is trivial. Tamagawa generalized this criterion
to (not necessarily proper) hyperbolic curves [19] (cf. Definition 2). Further
research has been done using the weight filtration on π1(X⊗KK

sep, t)l) (see,
for example, [2], [21, §17]).

Oda and Tamagawa’s criterion can be regarded as a result in anabelian
geometry. Indeed, a hyperbolic curve is a typical example of an anabelian
variety, i.e., a variety which is determined by its outer Galois representation
GK → Outπ1(X⊗KK

sep, t) (under a suitable assumption onK) (cf. [19] and
[7]). Therefore, it would be natural to expect that we can obtain information
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on the reduction of X from the outer Galois representation associated with
X.

The class of hyperbolic polycurves, that is, varieties X which admit a
structure of successive smooth fibrations (called a sequence of parameteriz-
ing morphisms (cf. Definition 3))

(1.2) X = Xn
fn
→ Xn−1

fn−1
→ · · ·

f2
→ X1

f1
→ SpecK

whose fibers are hyperbolic curves, is considered to be anabelian. Indeed,
the Grothendieck conjecture for hyperbolic polycurves of dimension up to
4 holds under suitable assumptions on K [7] [5]. Moreover, in the case
where X is a strongly hyperbolic Artin neighborhood (of any dimension)
(cf. [16, Definition 6.1]) and K is finitely generated over Q, the Grothendieck
conjecture for such a variety holds [16]. Thus, we can expect that there exists
a good reduction criterion for hyperbolic polycurves analogous to that of
Oda and Tamagawa.

In [9], we studied a good reduction criterion for proper hyperbolic poly-
curves under some assumptions. In this paper, we improve the main theorem
of [9] and discuss not necessarily proper cases. The main results of this paper
are as follows:

Theorem 1.1. Let K,OK , p,K
sep, GK , and IK be as above. Let X be

a proper hyperbolic polycurve over K and gX the maximum genus of X
(cf. Definition 3.3). Consider the following conditions:

: (A) X has good reduction.

: (B) The outer Galois representation IK → Out(π1(X ⊗K Ksep, t)p
′

)
is trivial.

Then we have the following:

(1) (A) implies (B).
(2) If p = 0, (B) implies (A).
(3) If p > 2gX + 1 and the dimension of X is 2, (B) implies (A).
(4) Suppose that p > 2gX + 1, X has a K-rational point x, and the

Galois representation IK(x) → Aut(π1(X ⊗K Ksep, x)p
′

) defined as
(2.4) in Section 2 is trivial. Then (A) holds.

Theorem 1.2. Let K, OK , p,K
sep, and IK be as in Theorem 1.1. Let X be

a hyperbolic polycurve over K with a sequence of parameterizing morphisms

(1.3) S : X = Xn → Xn−1 → . . .→ X1 → X0 = SpecK.

Write bS for the maximal first Betti number of S (cf. Definition 3.3). Con-
sider the following conditions:
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: (A) There exists a hyperbolic polycurve X → SpecOK with a sequence
of parameterizing morphisms

(1.4) X = Xn → Xn−1 → . . . → X1 → X0 = SpecOK

whose generic fiber is isomorphic to (X,S) (cf. Definition 3.1).

: (B) The outer Galois representation IK → Out(π1(X ⊗K Ksep, x)p
′

)
is trivial.

Then we have the following:

(1) (A) implies (B).
(2) If p = 0, (B) implies (A).
(3) Suppose that p > bS + 1 and the dimension of X is 2. Then (B)

implies (A).

Remark. At the time of writing, the author does not know whether or not
the lower bound p > 2gX +1 in Theorem 1.1.3 and Theorem 1.1.4 (resp. p >
bS + 1 in Theorem 1.2.3) is best possible.

If we assume a very strong condition on bS and p, (B) implies (A) in the
case where dimX ≥ 3.

Theorem 1.3. Let K, OK , IK , X, S, bS , and n be as in Theorem 1.2.
Suppose that n ≥ 3. Define a function fbS (m) for m ≥ 3 in the following
way:

• For m = 3, fbS (3) = 2b
2
S .

• For m ≥ 3,

fbS (m+ 1) = (fbS (m))× (2b
2
S
×fbS (m)2)fbS (m).

Consider the conditions (A) and (B) in Theorem 1.2. If p > 2bS×fbS (n), (B)
implies (A).

Remark. The main result of [9] is described as follows: Let K, OK , and IK
be as in Theorem 1.1. Let X be a proper hyperbolic polycurve over K which
has a sequence of parameterizing morphisms

X = Xn → . . .→ X0 = SpecK

such that, for each 1 ≤ i ≤ n, Xi → Xi−1 has a section. Write gX for
the minimum of the maximal genera of such sequences of parameterizing
morphisms of X (cf. Definition 3). Consider the condition (A) in Theorem
1.1 and the following condition:
(B)’ Let x be a closed point of X, OK(x) a valuation ring of the residual
field K(x) of x over OK , K(x)sep a separable closure of K(x), and IK(x) an
inertia subgroup of OK(x) in the absolute Galois group Gal(K(x)sep/K(x)).

Then the action of IK(x) on π1(X ⊗K K(x)sep, x)p
′

is trivial.
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Then (A) implies (B)’. If p = 0 or p > 2gX + 1, (B)’ implies (A).
The condition (B)’ is stronger than the condition (B) in Theorem 1.1 or

the condition given in Theorem 1.1.4. Hence, the main result of [9] is weaker
than Theorem 1.1 because we need to assume that each Xi → Xi−1 has a
section and that the condition (B)’ is satisfied.

To prove the implication (B) ⇒ (A) or (B)’ ⇒ (A) by induction on the
dimension of X, we need a homotopy exact sequence of étale fundamental
groups of hyperbolic curves. In the previous paper [9], we constructed homo-
topy exact sequences of Tannakian fundamental groups of certain categories
of smooth Ql-sheaves by using the existence of a section of each morphism
Xi → Xi−1. Also, we needed the assumption (B)’, which is stronger than
(B), because we used a criterion for smoothness of Ql-sheaves which is due
to Drinfeld [4].

In this paper, we use different arguments from those of [9] to obtain
stronger results. Since the implication (A) ⇒ (B) follows from a standard
specialization argument, we explain key ingredients of the proof of the impli-
cation (B)⇒ (A) (assuming the condition on p, gX , and bS in the assertions),
which enables us to improve the result of [9]. Let X be as in Theorem 1.1,
Theorem 1.2, or Theorem 1.3. Take a geometric point of X ⊗K Ksep and
write ∆ (resp.Π) for the étale fundamental group of the scheme X ⊗K Ksep

(resp.X) determined by this geometric point.

(1) A decomposition of Π
If p = 0, we can obtain a decomposition Π ∼= ∆ × ZΠ(∆), where

ZΠ(∆) is the centralizer subgroup of ∆ in Π by using the assumption
that the outer Galois action of IK is trivial and the homotopy exact
sequences in [5, PROPOSITION 2.5] (in the case where p = 0). We
can prove the implication (B) ⇒ (A) by using this decomposition.

(2) Intermediate quotient groups
Note that we do not have appropriate homotopy exact sequences

associated with the fibrations Xi → Xi−1 (2 ≤ i ≤ n) if p > 0.
Indeed, the functor of taking pro-p′ completion (of profinite groups)
is not exact. Moreover, in the case the characteristic of K is positive,
the sequence in [5, PROPOSITION 2.5] is no longer exact. In this
paper, we consider an intermediate quotient group of ∆ (which we

will write ∆(l,p′) for) between ∆p′ and ∆l, for which we can obtain a
homotopy exact sequence. If the dimension of X is 2, we can show
the implication (B) ⇒ (A) by using the center-freeness of ∆(l,p′) and
applying an argument similar to that in 1. If X admits a K-rational
point x, we can use IK(x) instead of ZΠ(∆). Then we can prove
Theorem 1.1.4.

(3) Further intermediate quotient groups
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If the dimension of X is equal to or greater than 3, we do not know
whether the group ∆(l,p′) is center-free or not. However, if p is big
enough, we can find a certain quotient ∆ of ∆ which is center-free
and for which there exists a homotopy exact sequence. Thus, we can
prove the implication (B) ⇒ (A) in higher-dimensional cases if p is
big enough.

The content of each section is as follows: In Section 2, we give a review
of outer Galois representations associated with homotopy exact sequences
of étale fundamental groups of hyperbolic curves. In Section 3, we give a
precise definition of a hyperbolic polycurve and a first step of the proof of
Theorem 1.1 and Theorem 1.2. In Section 4, we give a proof of Theorem
1.1 and Theorem 1.2 in the case of residual characteristic 0. In Section 5,
we give a proof of Theorem 1.1 and 1.2 in the case of residual characteristic
p > 0. In Section 6, we give a proof of Theorem 1.3. In Section 7, we review
the property of an extension of a family of proper hyperbolic curves proved
in [8] and prove a non-proper version of it. In Section 8, we give an example
of a hyperbolic polycurve for which the naive analogue of the criterion of
Oda and Tamagawa does not hold.

2. Good reduction criterion for hyperbolic curves

In this section, we recall the good reduction criterion for hyperbolic curves
proven by Oda and Tamagawa. Let K,OK , p,K

sep, GK , and IK be as in
Section 1.

Definition 1. Let S be a scheme, X a scheme over S, and D an effective
divisor on X . We shall say that the pair (X,D) is a hyperbolic curve over
S if the following three conditions are satisfied:

• The morphism X → S is proper, smooth, with geometrically con-
nected fibers of dimension one and genus g.

• The morphism D → S is finite étale of degree n.
• 2g + n− 2 > 0.

If n = 0 (resp.n > 0), we call the number 2g (resp. 2g+n−1) the first Betti
number of the curve.

Definition 2. (1) Let X be a proper smooth scheme geometrically con-
nected over K. We say that X has good reduction if there exists a
proper smooth OK -scheme X whose generic fiber X ⊗OK

K is iso-
morphic to X over K. We refer to X as a smooth model of X.

(2) Let (X,D) be a hyperbolic curve over K. We shall say that (X,D)
has good reduction if there exists a hyperbolic curve (X,D) over
SpecK whose generic fiber (X ⊗OK

K,D ⊗OK
K) is isomorphic to

(X,D) over K. We refer to (X,D) as a smooth model of (X,D).
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Remark. If a smooth model of a hyperbolic curve exists, it is unique up to
canonical isomorphism by [3] and [6].

Let (X,D) be a hyperbolic curve K, X the open subscheme X \D of X ,
and t a geometric point of X⊗KK

sep. We have the following exact sequence
of profinite groups:

1 → π1(X ⊗K Ksep, t) → π1(X, t) → GK → 1.(2.1)

This exact sequence yields an outer Galois action

GK → Out(π1(X ⊗K Ksep, t)).(2.2)

Then, for any prime number l 6= p, we have natural homomorphisms

IK →֒ GK → Out(π1(X ⊗K Ksep, t))

→ Out(π1(X ⊗K Ksep, t)p
′

)

→ Out(π1(X ⊗K Ksep, t)l).

(2.3)

Oda and Tamagawa gave the following criterion:

Proposition 2.1 ([12], [13], and [19, Section 5]). The following are equiv-
alent:

(1) (X,D) has good reduction.

(2) The outer action IK → Out(π1(X ⊗K Ksep, t)p
′

) defined by (2.3) is
trivial.

(3) There exists a prime number l 6= p such that the outer action IK →
Out(π1(X ⊗K Ksep, t)l) defined by (2.3) is trivial.

Suppose that X is a proper hyperbolic curve over K and there exists a
section s : SpecK → X. Consider the geometric point s : SpecKsep →
X ⊗K Ksep induced by s. Then we have the exact sequence (2.1) with
t replaced by s. The section s defines a section of the homomorphism
π1(X, s) → GK in the homotopy exact sequence (2.1). This induces a homo-
morphism GK → Aut(π1(X⊗KK

sep, s)) such that the composite homomor-
phism GK → Aut(π1(X ⊗K Ksep, s)) → Out(π1(X ⊗K Ksep, s)) coincides
with outer representation GK → Out(π1(X ⊗K Ksep, s)) in (2.3). For a
prime number l 6= p, we obtain homomorphisms

IK →֒ GK → Aut(π1(X ⊗K Ksep, s))

→ Aut(π1(X ⊗K Ksep, s)p
′

)

→ Aut(π1(X ⊗K Ksep, s)l).

(2.4)

Proposition 2.2. The following are equivalent:

(1) X has good reduction.

(2) The action of IK on π1(X ⊗K Ksep, s)p
′

defined by (2.4) is trivial.
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(3) The action of IK on π1(X ⊗K Ksep, s)l defined by (2.4) is trivial.

Proof. For the proof of the implication 1 ⇒ 2, see Remark after Proposition
2.2. The implication 2 ⇒ 3 is trivial. Assume that the action of IK on
π1(X ⊗K Ksep, s)l is trivial. Then the outer action IK → Out(π1(X ⊗K

Ksep, s)l) is trivial. Therefore, X has good reduction by Proposition 2.1. �

Remark. In Proposition 2.2, to prove the implication 1 ⇒ 2, we only need
the hypothesis that the morphism X → SpecK is proper, smooth, and
geometrically connected. We show this assertion in the first part of the
proof of Theorem 1.1.1 and Theorem 1.2.1.

3. First reduction

In this section, we give a precise definition of a hyperbolic polycurve and
the first step of the proof of Theorem 1.1, 1.2, and 1.3. LetK,OK , p,K

sep, GK ,
and IK be as in Section 1. LetOh

K (resp.Osh
K ) be the henselization (resp. strict

henselization) of OK contained in Ksep defined by IK .

Definition 3. Let S be a scheme and X a scheme over S.

(1) We shall say that X is a hyperbolic polycurve (of relative dimension
n) over S if there exists a (not necessarily unique) factorization of
the structure morphism X → S

(3.1) S : X = Xn → Xn−1 → . . .→ X1 → X0 = S

such that, for each i ∈ {1, . . . , n}, there exists a hyperbolic curve
(X i,Di) over Xi−1 (cf. Definition 1) and the scheme X i \Di is iso-
morphic to Xi over Xi−1. We refer to the above factorization of
X → S as a sequence of parameterizing morphisms. In the case
where we consider a pair of a hyperbolic polycurve X over S and
a sequence of parametrizing morphisms S of X, we write (X,S).
We refer to such a pair as a hyperbolic polycurve with a sequence of
parametrizing morphisms. We shall say that two hyperbolic poly-
curves (over S) with a sequence of parametrizing morphisms (X,S)
and (X ′,S ′) are isomorphic if there exists an S-isomorphism between
hyperbolic polycurves of relative dimension i over S defined by S and
S ′ for each 1 ≤ i ≤ n such that these isomorphisms are compatible
with the sequence of parametrizing morphisms S and S ′.

(2) For a hyperbolic polycurve X over S, the following are equivalent:
: (a) The structure morphism X → S is proper.
: (b) For any sequence of parameterizing morphisms

X = Xn → Xn−1 → . . .→ X1 → X0 = S,

the morphism Xi → Xi−1 is proper for each 1 ≤ i ≤ n.
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: (c) There exists a sequence of parameterizing morphisms

X = Xn → Xn−1 → . . .→ X1 → X0 = S

such that the morphismXi → Xi−1 is proper for each 1 ≤ i ≤ n.
We call such X → S a proper hyperbolic polycurve.

(3) Let X be a hyperbolic polycurve (resp. proper hyperbolic polycurve)
of relative dimension n over S. For a sequence of parameterizing
morphisms

(3.2) S : X = Xn → Xn−1 → . . .→ X1 → X0 = S,

we write bS (resp. gS) for the maximum of the first Betti numbers
(resp. the genera) of fibers of all the morphisms Xi → Xi−1 and
refer to bS (resp. gS) the maximal first Betti number (resp. the max-
imal genus) of S. We write for bX (resp. gX) the minimum of the
maximal first Betti numbers (resp. the maximal genera) of sequences
of parameterizing morphisms of X and refer to bX (resp. gX) as the
maximum first Betti number (resp. the maximum genus) of X.

Notation-Propositoin 3.1. Let 1 → N → G → Q → 1 be an exact
sequence of profinite groups and l 6= p a prime number. Then Ker (N → Np′)

(resp.Ker (N → N l)) is a characteristic subgroup of N . We write G(p′)

(resp.G(l)) for the quotient group G/Ker (N → Np′) (resp.G/Ker (N →
N l)). Moreover, we have the following commutative diagram with exact
horizontal lines:

(3.3) 1 // N

��

// G

��

// Q

��

// 1 (resp. 1 // N

��

// G

��

// Q

��

// 1

1 // Np′ // G(p′) // Q // 1 1 // N l // G(l) // Q // 1).

Proof. Since every continuous homomorphism from N to a pro-p′ profinite
group factors N → Np′ (resp.N → N l), Ker (N → Np′) (resp.Ker (N →
N l)) is a characteristic subgroup of N . �

We start the proof of Theorem 1.1, 1.2, and 1.3.

Proofs of Theorem 1.1.1 and Theorem 1.2.1 (cf. Remark 2). Suppose that (A)
holds. Take a smooth model X of X (resp. the scheme X in the condition
(B)) if we are in the situation of Theorem 1.1.1 (resp.Theorem 1.2.2). We
have the following diagram:

X ⊗K Ksep

��

// X ⊗K FracOh
K

��

// Spec (FracOh
K)

��

SpecKsepoo

��

X⊗OK
Osh

K
// X⊗OK

Oh
K

// SpecOh
K SpecOsh

K .
oo
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Take a geometric point η of X ⊗K Ksep. By Notation-Proposition 3.1, [15,
Exposé IX, Theorem 6.1], and the same argument as the proof of [15, Exposé
IX, Theorem 6.1], we have the following commutative diagram of profinite
groups with exact horizontal lines:
(3.4)

1 // π1(X ⊗K Ksep, η)p
′

��

// π1(X ⊗K FracOh
K , η)

(p′)

��

// Gal(Ksep/FracOh
K)

��

// 1

1 // π1(X⊗OK
Osh

K , η)
p′ // π1(X⊗OK

Oh
K , η)

(p′) // π1(SpecO
h
K , η)

// 1.

Since the first vertical arrow in the diagram (3.4) is an isomorphism by

Theorem [11, Theorem 8.3] and the action IK on π1(X ⊗OK
Osh

K , η)
p′ is

trivial by the above diagram, the action of IK on π1(X ⊗K Ksep, η)p
′

is also
trivial. Hence, we finished the proof of Theorem 1.1.1 and 1.2.1. �

To prove Theorem 1.3 and the rest of the assertions in Theorem 1.1 and
1.2, we need the following proposition:

Proposition 3.2. Let T be a regular integral separated scheme. Let Y be a
scheme over T satisfying the following condition: There exists a factoriza-
tion

Y = Yn → . . . → Y0 = SpecOK

such that there exist a proper smooth morphism Y i+1 → Yi with geomet-
rically connected fibers and a normal crossing divisor Ei+1 ⊂ Y i+1 of the
scheme Y i+1 relative to Yi satisfying that the complement Y i+1 \ Ei+1 is
isomorphic to Yi+1 for each 0 ≤ i ≤ n − 1. Suppose that T is a scheme
over Z(p) (resp.Q) if p > 0 (resp. p = 0). Let η = SpecK(T ) be the generic
point of T , K(T )sep a separable closure of K(T ), η the scheme SpecK(T )sep,
and s a geometric point of Y ×T η. By [15, Exposé IX, Theorem 6.1] and
[10, Theorem 0.2], we have the following commutative diagram with exact
horizontal lines:

1 // π1(Y ×T η, s)

��

// π1(Y ×T η, s)

��

// π1(η, s)

��

// 1

π1(Y ×T η, s) // π1(Y, s) // π1(T, s) // 1.

Then the conjugate action of π1(Y ×T η, s) on π1(Y ×T η, s) induces a natural

action π1(Y, s) → Aut(π1(Y ×T η, s)
p′). Thus, we also obtain a natural outer

action π1(T, s) → Out(π1(Y ×T η, s)
p′).

Proof. We need to show that the action π1(Y ×T η, s) → Aut(π1(Y ×T η, s)
p′)

factors through π1(Y ×T η, s) → π1(Y, s).
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First, we show that we can reduce to the case where the scheme T is the
spectrum of a strictly henselian discrete valuation ring. Since the scheme Y
is regular, the kernel of the morphism π1(Y ×T η, s) → π1(Y, s) is generated
by inertia subgroups at points of codimension 1 in Y \ (Y ×T η). Consider
such a point y and write t for the image of y in T . Since Y is flat over T , t
is codimension 1 in T . Choose a strict henselization Osh

T,t ⊂ K(T )sep of the

discrete valuation ring OT,t and write ηsh for the scheme SpecFrac(Osh
T,t).

Then the Galois group Gal(K(T )sep/Frac(Osh
T,t)) is an inertia subgroup of

t in π1(η, s). Fix a separable closure K(Y ×T η)
sep of the function field of

Y ×T η. Take a strict henselization Osh
Y,y of the local ring OY,y such that the

diagram

SpecK(Y ×T η)
sep

��

// SpecOY,y ×T η

��

SpecOsh
Y,y

// SpecOY,y ×T SpecOsh
T,t

commutes. Then the inertia subgroup of y in π1(Y ×T η, s) associated with
SpecOsh

Y,y is sent into Gal(K(T )sep/Frac(Osh
T,t)) ⊂ π1(η, s). Therefore, we

have a commutative diagram

1 // π1(Y ×T η, s) // π1(Y ×T η
sh, s)

� _

�

// π1(η
sh, s)
� _

�

// 1

1 // π1(Y ×T η, s) // π1(Y ×T η, s) // π1(η, s) // 1.

The inertia subgroup of y in π1(Y ×T η, s) associated with Osh
Y,y is con-

tained in π1(Y ×T η
sh, s) and coincides with the inertia subgroup in π1(Y ×T

ηsh, s) associated with the strict localization SpecOsh
Y,y → Y ×T SpecOsh

T,t.
Thus, to prove this proposition, it suffices to show that the homomorphism
π1(Y ×T η

sh, s) → Aut(π1(Y ×T η)
p′) factors through π1(Y ×T η

sh, s) →
π1(Y ×T SpecOsh

T,t, s). Therefore, we can reduce 3.2 to the case where T is
the spectrum of a strictly henselian discrete valuation ring.

Suppose that T is the spectrum of a strictly henselian discrete valuation
ring. We have a commutative diagram with an exact horizontal line

1 // π1(Y ×T η, s)
p′ //

��

π1(Y ×T η, s)
(p′)

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

// π1(η, s) // 1

π1(Y, s)
p′ .
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by Notation-Proposition 3.1. Since the specialization homomorphism π1(Y×T

η, s)p
′

→ π1(Y, s)
p′ is an isomorphism by Theorem [11, Theorem 8.3], the

assertions follow. �

We start the proof of Theorem 1.3 and the rest of the assertions in Theo-
rem 1.1 and 1.2. When we are in the situation of Theorem 1.1, fix a sequence
of parameterizing morphisms

X = Xn
fn
→ Xn−1

fn−1
→ . . .

fi+1
→ Xi

fi
→ Xi−1

fi−1
→ . . .

f2
→ X1

f1
→ X0 = SpecK

of X → SpecK whose maximal genus is gX and write b for 2gX . When
we are in the situation of Theorem 1.2 or 1.3, we write b for bS . Take a
geometric point ∗ of the scheme X⊗KK

sep. Write ∆i (resp.Πi) for the étale
fundamental group π1(Xi ⊗K Ksep, ∗) (resp.π1(Xi, ∗)). By [15, Exposé IX,
Theorem 6.1], we have the following homotopy exact sequences of profinite
groups

(3.5) 1 → ∆i → Πi → GK → 1.

Assume that (B) or the conditions in Theorem 1.1.4 holds. Under the
hypotheses given in Theorem 1.1 and Theorem 1.2, we will show that (A)
holds by induction on n. For n = 1, this is proved in Proposition 2.1 and
2.2. Hence, we assume that n ≥ 2.

First, we prove that (A) holds for Xn−1. Since the morphism Xn−1 →
SpecK has a structure of a hyperbolic polycurve associated with the above
sequence of parameterizing morphisms, we can apply the main theorems by
the induction hypothesis if we show that the outer Galois representation

(3.6) IK → Out(∆p′

n−1)

is trivial. Since Xn → Xn−1 has geometrically connected fibers, the ho-
momorphism ∆n → ∆n−1 is surjective. Then we can show that the outer
Galois representation (3.6) is trivial by using the commutative diagram of
profinite groups with exact horizontal lines

1 // ∆n

����

// Πn

����

// GK
// 1

1 // ∆n−1
// Πn−1

// GK
// 1.

When we are in the situation of Theorem 1.1, we may assume that there
exists a smooth model Xn−1 of Xn−1. When we are in the situation of
Theorem 1.2, we may assume that there exists a hyperbolic polycurve

(3.7) Xn−1 → . . .→ X1 → X0 = SpecOK
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whose generic fiber is isomorphic to the sequence of parameterizing mor-
phisms

(3.8) Xn−1
fn−1
→ . . .

f2
→ X1

f1
→ SpecK.

Consider the following diagram:

Xn ×Xn−1 SpecK(Xn−1) //

f ′
n

��

Xn

fn

��

//

��

oo

��

SpecK(Xn−1) // Xn−1
// Xn−1 SpecOXn−1,ξ,

oo

where K(Xn−1) is the function field of Xn−1, ξ is the generic point of the
special fiber Xn−1 \ Xn−1, f

′
n is the base change of fn, and OXn−1,ξ is the

local ring of Xn−1 at ξ. It suffices to show that there exists a hyperbolic
curve (Xn,Dn) over Xn−1 such that the scheme (Xn \ Dn) ×Xn−1 Xn−1 is
isomorphic to Xn over Xn−1. By Proposition 7.1 (cf. [8]), it suffices to show
that there exists a hyperbolic curve (X,D) over SpecOXn−1,ξ such that the

scheme (X \D)⊗OXn−1,ξ
K(Xn−1) is isomorphic to Xn×Xn−1 SpecK(Xn−1)

over SpecK(Xn−1). Let Iξ ⊂ GK(Xn−1) be an inertia subgroup ξ and t
a geometric point of Xn ×Xn−1 SpecK(Xn−1). Write ∆n,n−1 for the étale
fundamental group π1(Xn ×Xn−1 t, t). To complete the proof, it suffices to

show that the outer representation of Iξ on ∆l
n,n−1 is trivial for some prime

number l 6= p by Proposition 2.1. Note that the homomorphism

Iξ → Out∆l
n,n−1

is the composite of the natural morphisms

(3.9) Iξ → GK(Xn−1) → π1(Xn−1, t)

and the outer representation π1(Xn−1, t) → Out∆l
n,n−1 constructed in Propo-

sition 3.2. Write I for the image of the inertia subgroup Iξ in (3.9) to
π1(Xn−1, t), which coincides with an inertia subgroup of π1(Xn−1, t) at ξ.
Therefore, we have

Ker(Πn−1 → π1(Xn−1, t)) = (the subgroup topologically normally generated by I).

Then we have the following proposition in summary:

Proposition 3.3. To prove Theorem 1.1.2, 3, 4 and Theorem 1.2.2, 3, it
suffices to show that the outer action I → Out∆l

n,n−1 is trivial for some
prime number l 6= p.

By the argument as in the proof of Proposition 3.2, the image of I by the
homomorphism Πn−1 → GK is contained in some inertia subgroup of GK .
Therefore, we may assume that K is strictly henselian.



88 I. NAGAMACHI

4. The case of residual characteristic 0

We prove Theorem 1.1.2 and Theorem 1.2.2 in this section. Hence, we
may assume that p = 0 and the field K is strictly henselian. By Proposition
3.3, it suffices to show that the outer action I → Out∆n,n−1 is trivial.

Since the characteristic of the field K is also 0, we have homotopy exact
sequences

1 → ∆n,n−1 → Πn → Πn−1 → 1

and

(4.1) 1 → ∆n,n−1 → ∆n → ∆n−1 → 1

by [5, PROPOSITION 2.5]. Note that ∆n is center-free, which follows from
[19, Proposition 1.11], the homotopy exact sequence (4.1), and the fact that
an extension group of center-free groups is also center-free. For a group G
and a subgroup H of G, we write ZG(H) for the centralizer subgroup of H
in G.

Lemma 4.1. There exist decompositions of profinite groups

Πn = ∆n × ZΠn(∆n)

and

Πn−1 = ∆n−1 × ZΠn−1(∆n−1),

which are compatible with the natural surjection Πn → Πn−1.

Proof. Since ∆n is center-free, we have

∆n ∩ ZΠn(∆n) = {1}.

Moreover, since K is strictly henselian and the outer action

IK(∼= Πn/∆n) → Out (∆n)

is trivial, we have a canonical decomposition Πn = ∆n × ZΠn(∆n). By
the same argument, we obtain a canonical decomposition Πn−1 = ∆n−1 ×
ZΠn−1(∆n−1). The homomorphism Πn → Πn−1 is compatible with the
homomorphism ∆n → ∆n−1, and hence ZΠn(∆n) → ZΠn(∆n−1) is well-
defined. Therefore, these decompositions of the groups are compatible. �

Lemma 4.2.

I ⊂ ZΠn−1(∆n−1).
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Proof. We have the following commutative diagram with exact horizontal
line:

I � _

�

1 // ∆n−1
//

&&▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

Πn−1

��

// GK
// 1

π1(Xn−1, t).

Here, the homomorphism ∆n−1 → π1(Xn−1, t) is an isomorphism by Theo-
rem [11, Theorem 8.3]. Then we obtain a decomposition

(4.2) Πn−1
∼= ∆n−1 ×Ker(Πn−1 → π1(Xn−1, t)).

Therefore, I ⊂ Ker(Πn−1 → π1(Xn−1, t)) ⊂ ZΠn−1(∆n−1) holds. �

Now, we prove Theorem 1.1.2 and Theorem 1.2.2.

Proofs of Theorem 1.1.2 and Theorem 1.2.2. By Lemma 4.2, it suffices to
show that the outer action

ZΠn−1(∆n−1) → Out∆n,n−1

is trivial. By Lemma 4.1, the homomorphism ZΠn(∆n) → ZΠn−1(∆n−1) is
surjective. Therefore, the outer action (4.2) is trivial. We finished the proof
of Theorem 1.1.2 and Theorem 1.2.2. �

5. The case of residual characteristic p > 0

We maintain the notation of Section 3. In this section, we will prove
Theorem 1.1.3, 4 and Theorem 1.2.3. Hence, we assume that p > b+ 1. It
suffices to prove that the outer action I → Out∆l

n,n−1 is trivial for some
prime number l 6= p by Proposition 3.3. Let us take a prime number l which
is a generator of the cyclic group (Z/pZ)∗, whose existence follows from the
theorem on arithmetic progression. Since l, l2, . . . , lb are not 1 ∈ (Z/pZ)∗ by
the hypothesis p > b+1, the order of the group GL(b,Fl) is not divisible by p.
Also, the profinite group Ker(Aut(∆l

n,n−1) → Aut((∆l
n,n−1)

ab/l(∆l
n,n−1)

ab))
is pro-l by a well-known theorem of P.Hall. Here, the superscript “ab”
denotes the abelianization of the profinite group. Therefore, the profinite
groups Aut(∆l

n,n−1) and Out(∆l
n,n−1) are pro-prime-to-p.

Note that we have two exact sequences of profinite groups

∆n,n−1 → Πn → Πn−1 → 1

and
∆n,n−1 → ∆n → ∆n−1 → 1



90 I. NAGAMACHI

by [5, PROPOSITION 1.10]. Unfortunately, if the characteristic of K is
equal to p, the homomorphism ∆n,n−1 → ∆n is not always injective (cf. [20,
Theorem (0.3)]).

We have the following commutative diagram with exact horizontal lines:

∆n,n−1

��

// ∆n

��

// ∆n−1

��

// 1

1 // Inn(∆l
n,n−1)

// Aut(∆l
n,n−1)

// Out(∆l
n,n−1)

// 1.

Here, the homomorphism ∆n → Aut(∆l
n,n−1) is constructed in Proposition

3.2. Since the profinite group Out(∆l
n,n−1) is a pro-prime-to-p group, the

outer action ∆n−1 → Out(∆l
n,n−1) factors through ∆p′

n−1. We write ∆
(l,p′)
n

for the pull-back Aut(∆l
n,n−1)×Out(∆l

n,n−1)
∆p′

n−1. Then we have the following

commutative diagram with exact horizontal lines:

∆n,n−1

��

// ∆n

��

// ∆n−1

��

// 1

1 // Inn(∆l
n,n−1)

//

��

∆
(l,p′)
n

//

��

∆p′

n−1
//

��

1

1 // Inn(∆l
n,n−1)

// Aut(∆l
n,n−1)

// Out(∆l
n,n−1)

// 1.

Since the profinite group ∆l
n,n−1 is center-free, the homomorphism ∆l

n,n−1 →

Inn(∆l
n,n−1) is an isomorphism. Therefore, we obtain an exact sequence

(5.1) 1 → ∆l
n,n−1 → ∆(l,p′)

n → ∆p′

n−1 → 1.

Next, consider the following diagram of exact sequences with exact hori-
zontal lines:

∆n,n−1

��

// Πn

��

// Πn−1

��

// 1

1 // Inn(∆l
n,n−1)

// Aut(∆l
n,n−1)

// Out(∆l
n,n−1)

// 1.

Here, the homomorphism Πn → Aut(∆l
n,n−1) is constructed in Proposition

3.2. By applying Notation-Proposition 3.1 to the exact sequences (3.5), we
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have an exact sequence of profinite groups

(5.2) 1 → ∆p′

n−1 → Π
(p′)
n−1 → GK → 1.

We write Π
((l,p′))
n for the pull-back Aut(∆l

n,n−1)×Out(∆l
n,n−1)

Π
(p′)
n−1. Then we

have the following commutative diagram with exact horizontal lines:

∆n,n−1

��

// Πn

��

// Πn−1

��

// 1

1 // Inn(∆l
n,n−1)

//

��

Π
((l,p′))
n

//

��

Π
(p′)
n−1

//

��

1

1 // Inn(∆l
n,n−1)

// Aut(∆l
n,n−1)

// Out(∆l
n,n−1)

// 1.

Therefore, we obtain an exact sequence

(5.3) 1 → ∆l
n,n−1 → Π((l,p′))

n → Π
(p′)
n−1 → 1.

From the three exact sequences (5.1), (5.2), and (5.3), we have an exact
sequence

1 → ∆(l,p′)
n → Π((l,p′))

n → GK → 1.

Proofs of Theorem 1.1.3 and Theorem 1.2.3. If n = 2, the profinite groups

∆l
2,1 and ∆p′

1 are center-free. Therefore, the profinite group ∆
(l,p′)
2 is also

center-free. Since Lemma 4.1 and Lemma 4.2 work if we replace Πn,∆n,Πn−1

and ∆n−1 by Π
((l,p′))
2 ,∆

(l,p′)
2 ,Π

(p′)
1 and ∆p′

1 , we can prove that the outer ac-
tion I → Out∆l

2,1 is trivial. Thus, we finished the proofs of Theorem 1.1.3
and Theorem 1.2.3. �

Proof of Theorem 1.1.4. Suppose that X has a K-rational point x and that
the Galois representation IK(x) → Aut(π1(X ⊗K Ksep, x)p

′

) defined as in
(2.4) in Section 2 is trivial. Take a path from the fundamental functor
defined by x → X ⊗K Ksep to that defined by t → X ⊗K Ksep. Then we
have an induced homomorphism IK(x) → Πn and the induced action of IK(x)
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on ∆p′
n is trivial. We have a commutative diagram with exact horizontal lines

IK(x)

��

I

��

∆n,n−1

��

// Πn

��

// Πn−1

��

// 1

1 // ∆l
n,n−1

//
� _

�

Π
((l,p′))
n

//

��

Π
(p′)
n−1

//

��

1

1 // ∆
(l,p′)
n

// Π
((l,p′))
n

// GK
// 1.

Since the action of IK(x) on ∆p′
n is trivial, the action of IK(x) on ∆

(l,p′)
n is

also trivial. Hence, the action of IK(x) on ∆l
n,n−1 is trivial. Since the image

of I in Π
(p′)
n−1 is contained in Ker(Π

(p′)
n−1 → π1(Xn−1, t)

p′), it suffices to show

that the image of IK(x) in Π
(p′)
n−1 coincides with Ker(Π

(p′)
n−1 → π1(Xn−1, t)

p′)

to show that the outer action I → Out∆l
n,n−1 is trivial.

By valuative criterion, the composite morphism SpecK(x) → Xn−1 →
Xn−1 factors the morphism SpecK(x) → SpecOK(x). Therefore, we have

a natural homomorphism (IK(x) =)GK(x) → Ker(Π
(p′)
n−1 → π1(Xn−1, t)

p′).

Since the composite morphism ∆p′

n−1 → Π
(p′)
n−1 → π1(Xn−1, t)

p′ is an iso-
morphism by Theorem [11, Theorem 8.3], the composite homomorphism

Ker(Π
(p′)
n−1 → π1(Xn−1, t)

p′) →֒ Π
(p′)
n−1 → GK is an isomorphism by the exact-

ness of the sequence (5.2). Therefore, the homomorphism (IK(x) =)GK(x) →

Ker(Π
(p′)
n−1 → π1(Xn−1, t)

p′) is an isomorphism. Thus, we finished the proof
of Theorem 1.1.4. �

6. The case of residual characteristic p≫ 0

In this section, we prove Theorem 1.3. To prove Theorem 1.3, we need
a very strong condition on p. In this section, we maintain the notation of
Section 5 and suppose that the outer Galois representation IK → Out∆l

X
is trivial.
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Lemma 6.1 (cf. [14, Lemma 2.18] and [1, Proposition 3]). Let

(6.1) 1 // N // G̃

��

// H̃

��

// 1

N // G // H // 1

be a commutative diagram of profinite groups with exact horizontal lines such
that the middle and the right vertical lines are surjective. Suppose that the
conjugate action G̃→ Aut(N l) admits a factorization

(6.2) G̃→ G→ Aut(N l).

Moreover, suppose that N l is topologically finitely generated and center-free.
Then the following are equivalent:

(1) The pro-l completion of the sequence

1 → N l → Gl → H l → 1

induced by the lower line of (6.1) is exact.
(2) The induced homomorphism N l → Gl is injective.
(3) The action G→ Aut(N l) given in (6.2) factors through G→ Gl.
(4) The outer action H → Out(N l) induced by (6.2) factors through

H → H l.
(5) The action H → Aut(Nab,l/lNab,l) induced by (6.2) factors through

H → H l.

Proof. The implications 1⇒ 2⇒ 3⇒ 4⇒ 5 are trivial. SinceN l is topologi-
cally finitely generated, the profinite group Ker(Aut(N l) → Aut((Nab/l(N l)ab))
is pro-l by a well-known theorem of P.Hall. Therefore, the implication 5 ⇒
4 holds. The image of the homomorphism G → Aut(N l) is pro-l if and
only if the image of the homomorphism H → Out(N l) is pro-l. There-
fore, the implication 4 ⇒ 3 holds. Since N l is center-free, the homomor-
phismN l → Inn(N l) is isomorphic, and hence the composite homomorphism
N l → Inn → Aut(N l) is injective. Therefore, the implication 3 ⇒ 2 holds.
Since taking pro-l completion is a right exact functor, the implication 2 ⇒
1 holds. �

Proposition 6.2. If there exist a quotient group ∆
(l,p′)
n → ∆n and a center-

free quotient group ∆p′

n−1 → ∆n−1 such that the diagram

1 // ∆l
n,n−1

//

��

∆
(l,p′)
n

//

��

∆p′

n−1
//

��

1

1 // ∆l
n,n−1

// ∆n
// ∆n−1

// 1
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commutes and the second horizontal line is exact, then the outer action
I → Out(∆l

n,n−1) is trivial.

Proof. Since the outer actions IK → Out(∆p′
n ) and IK → Out(∆p′

n−1) are

trivial, we have Π
((l,p′))
n = ∆

(l,p′)
n Z

Π
((l,p′))
n

(∆
(l,p′)
n ) and Π

(p′)
n−1 = ∆p′

n−1ZΠ
(p′)
n−1

(∆p′

n−1).

Therefore, the normal subgroup Kn
def
= Ker(∆

(l,p′)
n → ∆n) (resp.Kn−1

def
=

Ker(∆p′

n−1 → ∆n−1)) of ∆
(l,p′)
n (resp.∆p′

n−1) is also a normal subgroup of

Π
((l,p′))
n (resp. Π

(p′)
n−1). Thus, we have quotient groups Πn

def
= Π

((l,p′))
n /Kn and

Πn−1
def
= Π

(p′)
n−1/Kn−1 such that the diagram

1 // ∆l
n,n−1

//

��

∆n
//

��

∆n−1
//

��

1

1 // ∆l
n,n−1

// Πn
// Πn−1

// 1

commutes. Since the group ∆n−1 is center-free, we have a decomposition
Πn−1 = ∆n−1 × ZΠn−1

(∆n−1). If we replace ∆n−1, Πn−1, and π1(Xn−1, t)

in Lemma 4.2 by ∆n−1, Πn−1, and π1(Xn−1, t)/Im(Kn−1 → π1(Xn−1, t)), it
follows that the image of the group I in Πn−1 is contained in ZΠn−1

(∆n−1).

Since the homomorphism Πn → Πn−1 is surjective and compatible with
the homomorphism ∆n → ∆n−1, the image of ZΠn

(∆n) in Πn−1 coincides

with ZΠn−1
(∆n−1). Thus, the outer action I → Out∆l

n,n−1, which factors

through ZΠn−1
(∆n−1) → Out∆l

n,n−1, is trivial (cf. the proof at the end of

Section 4). �

Lemma 6.3. Assume that n ≥ 3. Let ∆′
n−1 be an open normal subgroup

of ∆n−1. Write ∆′
i (resp.∆′

n) for the images of ∆′
n−1 in ∆i for 1 ≤ i ≤

n−2 (resp. the inverse image of ∆′
n−1 in ∆n), ∆

′
i,i−1 for the inverse images

of ∆′
i in ∆i,i−1 for 2 ≤ i ≤ n − 1, Γi (resp. Γi,i−1) for the group ∆i/∆

′
i

(resp.∆i,i−1/∆
′
i,i−1) for 1 ≤ i ≤ n (resp. 2 ≤ i ≤ n − 1), ∆

(l)
i (resp.∆

(l)
i,i−1)

for the quotient group of ∆i (resp.∆i,i−1) defined by Notation-Proposition
3.1 and the exact sequence 1 → ∆′

i → ∆i → Γi → 1 (resp. 1 → ∆′
i,i−1 →

∆i,i−1 → Γi,i−1 → 1 ) for 1 ≤ i ≤ n (resp. 2 ≤ i ≤ n − 1). Suppose

that the sequence 1 → (∆′
i,i−1)

l → (∆′
i)
l → (∆′

i−1)
l → 1 is exact for each

2 ≤ i ≤ n− 1.

(1) The profinite group (∆′
i)
l is center-free for each 2 ≤ i ≤ n− 1.

(2) Write X̃ ′
i for the Galois covering of X̃i

def
= Xi⊗KK

sep corresponding
to the normal subgroup ∆′

i of ∆i. Then the composite homomorphism



CRITERIA FOR GOOD REDUCTION OF POLYCURVES 95

Γi(= Aut(X̃ ′
i/X̃i)) →֒ Aut(X̃ ′

i/SpecK
sep) → Out((∆′

i)
l) is injective

for each 1 ≤ i ≤ n− 1.
(3) Suppose moreover that the composite homomorphism

∆′
n−1 →֒ ∆n−1 → Out(∆l

n,n−1) → Aut(∆l,ab
n,n−1/l∆

l,ab
n,n−1),

where ∆n−1 → Out(∆l
n,n−1) is constructed in Proposition 3.2, is

trivial and Γn−1 is of order prime-to-p. Then the group ∆
(l)
n−1 is

center-free and we have the following commutative diagram with ex-

act horizontal lines: 1 // ∆l
n,n−1

//

��

∆
(l,p′)
n

//

��

∆p′

n−1
//

��

1

1 // ∆l
n,n−1

// ∆
(l)
n

// ∆
(l)
n−1

// 1.

Proof. Assertion 1 follows from [19, Proposition 1.11] and the fact that an
extension group of center-free groups is also center-free.

Next, We prove assertion 2. Note that, if the characteristic of K is 0,
this is a special case of [14, Proposition 3.2]. We will show the injectivity
of the outer action Γi → Out((∆′

i)
l) by induction on i. To show that the

outer action Γ1 → Out((∆′
1)

l) is injective, it suffices to show that the action
Γ1 → Aut((∆′

1)
l,ab) is injective. Let Kalg be an algebraic closure of Ksep and

write Y (resp. Y ′) for the scheme X̃1⊗KsepKalg (resp. X̃ ′
1⊗KsepKalg). There

exists a hyperbolic curve (Y ′, E′) over Kalg such that Y ′ \ E′ is isomorphic
to Y ′ over Kalg. Such a pair always exists since we work over Kalg. Let φ
be an element of the group Γ1(= Aut(X̃ ′

1/X̃1) = Aut(Y ′/Y )) whose image
in the group

Aut((∆′
1)

l,ab)(= Aut((π1(X̃
′
1, ∗)

l,ab) = Aut((π1(Y
′, ∗)l,ab))

is trivial. Here, ∗ is a geometric point of Y ′. Then φ induces the identity on
E′. Therefore, if the genus of Y ′ is equal to or less than 1 (resp. equal to or
more than 2), φ is the identity by the theory of automorphisms of rational
curves and elliptic curves (resp. by [3, Theorem 1.13]).

Suppose that assertion 2 holds for each 1 ≤ i ≤ n−2. Write Aut((∆′
n−1)

l, (∆′
n−2)

l)

for the subgroup of Aut((∆′
n−1)

l) consisting of automorphisms of (∆′
n−1)

l in-

ducing automorphisms of the quotient group (∆′
n−2)

l and Out((∆′
n−1)

l, (∆′
n−2)

l)

for the quotient group of Aut((∆′
n−1)

l, (∆′
n−2)

l) by the inner subgroup Inn((∆′
n−1)

l).
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Then we have the following diagram:

Γn−1
//

��

Out((∆′
n−1)

l, (∆′
n−2)

l) �
�

/

��

Out((∆′
n−1)

l)

Γn−2
// Out((∆′

n−2)
l),

where the homomorphism Γn−2 → Out((∆′
n−2)

l) is injective by the induc-
tion hypothesis. Write ζ ′ for the spectrum of a separable closure of the func-
tion field of X̃ ′

n−2, X̃n−1,n−2 for the scheme X̃n−1×X̃n−2
ζ ′, and X̃ ′

n−1,n−2 for

the scheme X̃ ′
n−1 ×X̃′

n−2
ζ ′. Then the Galois covering X̃ ′

n−1,n−2 → X̃n−1,n−2

corresponds to the normal subgroup ∆′
n−1,n−2 ⊂ ∆n−1,n−2. Therefore, we

obtain the following diagram:

Aut(X̃ ′
n−1,n−2/X̃n−1,n−2)

� � / Aut(X̃ ′
n−1/X̃n−1) // Out((∆′

n−1)
l)

1 // Γn−1,n−2
// Γn−1

// Γn−2,

where the lower horizontal line is exact. Thus, it suffices to show that the
composite homomorphism Γn−1,n−2 → Γn−1 → Out((∆′

n−1)
l) is injective.

Consider the following diagram with exact horizontal lines and vertical
lines:

(6.3) 1

��

1

��

1

��

1 // (∆′
n−1,n−2)

l //

��

(∆′
n−1)

l //

��

(∆′
n−2)

l //

��

1

1 // (∆n−1,n−2)
(l) //

��

(∆n−1)
(l) //

��

(∆n−2)
(l) //

��

1

1 // Γn−1,n−2
//

��

Γn−1
//

��

Γ,n−2
//

��

1

1 1 1.

Here, the second horizontal line in the diagram (6.3) is exact by nine lemma.
Since the homomorphism Γn−1,n−2 → Out((∆′

n−1,n−2)
l) is injective by the

argument of the first step of the induction, it suffices to show that an element
g of (∆n−1,n−2)

(l), whose action on (∆′
n−1)

l is same as the inner action of

some h ∈ (∆′
n−1)

l, induces an inner action on (∆′
n−1,n−2)

l. The image of

g in (∆n−2)
(l) is trivial, which induces a trivial action on (∆′

n−2)
l. Since

(∆′
n−2)

l is center-free, h is in (∆′
n−1,n−2)

l. Hence, we finished the proof of
assertion 2.
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Finally, we prove assertion 3. We have a diagram with exact horizontal
lines

∆n,n−1
// ∆′

n
//

��

∆′
n−1

//

��

1

∆n,n−1
// ∆n

//

��

∆n−1
//

��

1

Γn−1 Γn−1,

which induces a commutative diagram

(6.4) 1 // ∆l
n,n−1

//

��

(∆′
n)

l //

��

(∆′
n−1)

l //

��

1

1 // ∆l
n,n−1

// ∆
(l)
n

//

��

∆
(l)
n−1

//

��

1

Γn−1 Γn−1.

Since the homomorphism ∆′
n−1 → Aut(∆l,ab

n,n−1/l∆
l,ab
n,n−1) is trivial and the

group ∆l
n,n−1 is center-free, the first horizontal line of the diagram (6.4) is

exact by Lemma 6.1. (Note that we can construct the diagram of the form
(6.1) as in the statement of Proposition 3.2 with N = ∆n−1,n, G = ∆′

n, and
H = ∆′

n−1.) Hence, we see the exactness of the second line by diagram

chasing. Since (∆′
n−1)

l is center-free by assertion 1 and the outer action

Γn−1 → Out((∆′
n−1)

l) is injective by assertion 2, the group ∆
(l)
n−1 is center-

free. The order of Γn−1 is prime to p, and hence ∆
(l)
n−1 is a pro-p′ group.

Therefore, we obtain the surjective homomorphisms ∆p′

n−1 → ∆
(l)
n−1 and

∆
(l,p′)
n → ∆

(l)
n . Thus, we have the desired commutative diagram with exact

horizontal lines

1 // ∆l
n,n−1

//

��

∆
(l,p′)
n

//

��

∆p′

n−1
//

��

1

1 // ∆l
n,n−1

// ∆
(l)
n

// ∆
(l)
n−1

// 1.

�

Now we prove Theorem 1.3.
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Proposition 6.4. Assume that n ≥ 3 and p 6= 2. Let l 6= p be a prime
number. Define a function fb,l(m) for m ≥ 3 in the following way:

• For m = 3, fb,l(3) = lb
2
.

• For m ≥ 3,

fb,l(m+ 1) = (fb,l(m))× (lb
2×fb,l(m)2)fb,l(m).

If p > lb×fb,l(n), (B) of Theorem 1.3 implies (A) of Theorem 1.3.

Proof. If we can find an open normal subgroup ∆′
n−1 of ∆n−1 satisfying the

assumptions of Lemma 6.3.3, the groups ∆
(l)
n and ∆

(l)
n−1 in Lemma 6.3.3 work

as ∆n and ∆n−1 in Proposition 6.2, and hence (A) holds by Proposition 3.3.
Let us construct ∆′

n−1 in the following. Fix 2 ≤ i ≤ n−1 and assume that

there exists an open normal subgroup ∆i
n−1 of ∆n−1 such that the images

∆i
j of ∆i

n−1 in ∆j for i ≤ j ≤ n− 1 and the inverse images ∆i
j,j−1 of ∆i

j in
∆j,j−1 for i ≤ j ≤ n− 1 induce exact sequences

1 → (∆i
j,j−1)

l → (∆i
j)

l → (∆i
j−1)

l → 1

for all i + 1 ≤ j ≤ n − 1. Write ∆̃i
i−1 for the image of ∆i

n−1 in ∆i−1. By
Proposition 3.2, the exact sequence

∆i
i,i−1 → ∆i

i → ∆̃i
i−1 → 1

induces homomorphisms ∆̃i
i−1 → Out((∆i

i,i−1)
l). Write α for the compos-

ite homomorphism ∆̃i
i−1 → Out((∆i

i,i−1)
l) → Aut((∆i

i,i−1)
l,ab/l(∆i

i,i−1)
l,ab),

∆i−1
i−1 for the maximum normal subgroup of ∆i−1 contained in Kerα, ∆i−1

n−1

for the inverse image of ∆i−1
i−1 in ∆i

n−1, ∆
i−1
j for the image of ∆i−1

n−1 in ∆i
j for

each i ≤ j ≤ n, and ∆i−1
j,j−1 for the inverse image of ∆i−1

j in ∆i
j,j−1 for each

i ≤ j ≤ n. Note that ∆i−1
j coincides with the inverse image of ∆i−1

i−1 in ∆i
j

for any i ≤ j ≤ n, ∆i
j,j−1 = ∆i−1

j,j−1 for any i ≤ j ≤ n, and ∆i−1
j is a normal

subgroup of ∆j for any i ≤ j ≤ n − 1. Thus, we have exact sequences of
profinite groups

∆i
j,j−1 → ∆i−1

j → ∆i−1
j−1 → 1

which induce the exact sequences

1 → (∆i
j,j−1)

l → (∆i−1
j )l → (∆i−1

j−1)
l → 1

for all i ≤ j ≤ n− 1 by the same argument of the proof of the exactness of
the first line of the diagram (6.4).

Starting from ∆n−1
n−1 = Ker(∆n−1 → Aut((∆n−1

n,n−1)
l,ab/l(∆n−1

n,n−1)
l,ab), we

reach the construction of ∆1
j for 1 ≤ j ≤ n − 1. Then we define ∆′

n−1 to

be ∆1
n−1. To finish the proof of Proposition 6.4, it suffices to show that the

quotient group Γn−1 = ∆n−1/∆
1
n−1 is of order prime to p.
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We recall the structure of the group Γn−1 = ∆n−1/∆
1
n−1 and show the

order of Γn−1 is prime to p. Since we have

∆1
n−1 =

⋂

1≤i≤n−1

∆i
n−1

=
⋂

1≤i≤n−2

(the inverse image of∆i
i in∆n−1),

it suffices to show that the order of the group ∆i/∆
i
i is prime-to-p for any

1 ≤ i ≤ n− 2.

Claim 6.5. For each 1 ≤ j ≤ n − 1, the order of the group ∆n−j/∆
n−j
n−j is

prime-to-p and ≤ fb,l(j + 2).

We show Claim 6.5 by induction on j. First, we consider the case j = 1.
It holds that

dimFl
((∆n,n−1)

l,ab/l(∆n,n−1)
l,ab ≤ b.

Write A♯ for the number #Aut((∆n,n−1)
l,ab/l(∆n,n−1)

l,ab). Then we have

A♯ =
∏

0≤j≤dimFl
(∆n,n−1)l,ab/l(∆n,n−1)l,ab−1

(ldimFl
(∆n,n−1)l,ab/l(∆n,n−1)l,ab − lj)

and hence

A♯ |
∏

0≤j≤b−1

(lb − lj).

Here, the notation a | c means that a divides c. Since we have
∏

0≤j≤b−1

(lb − lj) = l(b−1)b/2 ×
∏

1≤j≤b

(lj − 1)

≤l(b−1)b/2 × lb(b+1)/2 = lb
2
= fb,l(3),

it holds that A♯ ≤ fb,l(3). Since l
b < p, the group

∆n−1/∆
n−1
n−1(→֒ Aut((∆n,n−1)

l,ab/l(∆n,n−1)
l,ab))

is of order prime-to-p and ≤ fb,l(3).
Fix 1 ≤ j ≤ n − 2 and assume that Claim 6.5 holds for each i satisfying

that 1 ≤ i ≤ j. We show that the order of the group ∆n−j−1/∆
n−j−1
n−j−1 is

prime-to-p and ≤ fb,l(j + 3). We have a surjection

∆n−j/∆
n−j
n−j → ∆n−j−1/∆̃

n−j
n−j−1,

which shows that the order of ∆n−j−1/∆̃
n−j
n−j−1 is prime-to-p. Recall that

the group ∆n−j−1
n−j−1 is the maximum normal subgroup of ∆n−j−1 contained

in Ker(∆̃n−j
n−j−1 → Aut((∆n−j

n−j,n−j−1)
l,ab/l(∆n−j

n−j,n−j−1)
l,ab)). To see that the
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group ∆n−j−1/∆
n−j−1
n−j−1 is of order prime-to-p, it suffices to show that the

image of the homomorphism

∆̃n−j
n−j−1 → Aut((∆n−j

n−j,n−j−1)
l,ab/l(∆n−j

n−j,n−j−1)
l,ab)

is of order prime-to-p. We have inequalities

dimFl
(∆n−j

n−j,n−j−1)
l,ab/l(∆n−j

n−j,n−j−1)
l,ab ≤ b× (∆n−j,n−j−1 : ∆

n−j
n−j,n−j−1)

≤ b× (∆n−j : ∆
n−j
n−j)

= b× fb,l(j + 2).

Therefore, it holds that

#Aut((∆n−j
n−j,n−j−1)

l,ab/l(∆n−j
n−j,n−j−1)

l,ab)

divides

(Π1 :=)
∏

0≤i≤b×(∆n−j,n−j−1 :∆
n−j
n−j,n−j−1)−1

(lb×(∆n−j,n−j−1 :∆
n−j
n−j,n−j−1) − li),

Π1 divides

(Π2 :=)
∏

0≤i≤b×(∆n−j :∆
n−j
n−j)−1

(lb×(∆n−j :∆
n−j
n−j) − li),

and Π2 divides ∏

0≤i≤b×fb,l(j+2)−1

(lb×fb,l(j+2) − li).

Then we have inequalities
∏

0≤i≤b×fb,l(j+2)−1

(lb×fb,l(j+2) − li)

=l(b×fb,l(j+2)−1)(b×fb,l(j+2))/2 ×
∏

1≤i≤b×fb,l(j+2)

(li − 1)

≤lb
2×fb,l(j+2)2 .

and hence

#Aut((∆n−j
n−j,n−j−1)

l,ab/l(∆n−j
n−j,n−j−1)

l,ab) ≤ lb
2×fb,l(j+2)2 .

Since lb×fb,l(j+2) ≤ lb×fb,l(n) < p, the group ∆̃n−j
n−j−1/∆

n−j−1
n−j−1 is of order

prime-to-p, and hence ∆n−j−1/∆
n−j−1
n−j−1 is also of order prime-to-p. The

desired estimate of the order of ∆n−j−1/∆
n−j−1
n−j−1 is obtained in the following

way:

(∆n−j−1 : ∆
n−j−1
n−j−1)
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≤ (∆n−j−1 : ∆̃
n−j
n−j−1)

×#Im(∆̃n−j
n−j−1 → Aut((∆i

i,i−1)
l,ab/l(∆i

i,i−1)
l,ab))(∆n−j−1:∆̃

n−j
n−j−1)

≤ (∆n−j−1 : ∆̃
n−j
n−j−1)× (#Aut((∆n−j

n−j,n−j−1)
l,ab/l(∆n−j

n−j,n−j−1)
l,ab))(∆n−j−1:∆̃

n−j
n−j−1)

≤ (∆n−j−1 : ∆̃
n−j
n−j−1)× (lb

2×fb,l(j+2)2)(∆n−j−1:∆̃
n−j
n−j−1)

≤ (∆n−j : ∆
n−j
n−j)× (lb

2×fb,l(j+2)2)(∆n−j :∆
n−j
n−j

)

≤ fb,l(j + 2)× (lb
2×fb,l(j+2)2)fb,l(j+2) = fb,l(j + 3).

Therefore, Claim 6.5 holds. �

7. Appendix 1: Notes on extensions of smooth curves

In this section, we review the extension property of families of proper hy-
perbolic curves proved in [8] and prove a non-proper version of this property
(cf. Remark 7). Hoshi informed the author of the proof of Proposition 7.1.

Proposition 7.1 (cf. [8]). Let S be a connected regular Noetherian scheme,
U an open subscheme of S such that the codimension of S \ U in S is ≥ 2,
(XU ,DU ) → U a hyperbolic curve, and g the genus of XU . Then there exists
a hyperbolic curve (X,D) → S such that (X ×S U,D ×S U) is isomorphic
to (XU ,DU ) over U , which is unique up to unique isomorphism.

Proof. The uniqueness follows from the separatedness of the moduli stacks
of hyperbolic curves (cf. [3] and [6]).

If DU is zero, the assertion follows from [8, Théorème (ii)]. Suppose that
the étale morphism DU → U is of degree r ≥ 1. By Galois descent, we may
assume that the scheme DU is the disjoint union

∐
1≤i≤r

Di,U of r copies of

S. Let us assume that the extension X → S and Di → X of XU → U and
Di,U → XU exist. Then Di and Dj are disjoint if i 6= j. Otherwise, if we
denote the diagonal of X×SX by ∆X/S , ∆X/S ∩ (Di×SDj) is codimension
1 in Di ×S Dj

∼= S, which is a contradiction. Thus, it suffices to show that

the extension X → S (resp. Di → X) of XU → U (resp. Di,U → XU )
exists.

If g ≥ 1, we have an extension X → S of XU → U by [8, Théorème
(ii)]. From [8, Lemme1], we have an extension Di → X → S of the section
Di,U → XU → U for each i.

If g = 0, there exists an isomorphism between XU and P1
U over U such

that the sections D1,U ,D2,U , and D3,U correspond to 0,1, and ∞. Therefore,

we consider the extension X = P1
S → S and we will show that extensions

Di → S of Di,U → U exist for all i ≥ 4. To give the divisors Di,U → P1
U for
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i ≥ 4 is equivalent to give a section si of Γ(U,OU ) other than 0, 1, and to give
their extensions Di → P1

S is equivalent to give extensions of si to elements
of Γ(S,OS). Since S \ U is of codimension ≥ 2 in the normal scheme S, we
have Γ(S,OS) ∼= Γ(U,OU ), and hence the morphisms Di,U → P1

U extend to
Di → P1

S. �

Remark. It is mentioned in [18, Remarks 2.6 (d)] that Proposition 7.1 is
shown in [8]. Actually, in [8], only the case where D is empty is treated.
As mentioned in [18, Remarks 2.6 (d)], Proposition 7.1 is equivalent to [18,
Theorem 1.1] by the Zariski-Nagata purity theorem, under the hypothesis
of Proposition 7.1. Here, we gave an elementary and direct proof.

8. Appendix 2: An example of the fundamental group of a

hyperbolic polycurve

In this section, we give an example of a hyperbolic polycurve with bad
reduction such that the pro-l outer Galois representation of the inertia sub-
group is trivial for all but one prime l.

Lemma 8.1. Let 1 → N → G → H → 1 be an exact sequence of profinite
groups.

(1) We have an exact sequence

(N/[N,Ker(G→ Gl)])l → Gl → H l → 1.

Here, [−,−] denotes the closure of the commutator subgroup.
(2) Suppose that we have a section s of the homomorphism G → H.

Write NKer(H→Hl) for the maximal quotient group of N on which

Ker(H → H l) acts trivially. Then we have an exact sequence

(NKer(H→Hl))
l → Gl → H l → 1.

Proof. Since the image of [N,Ker(G→ Gl)] in Gl is trivial, we have an exact
sequence

N/[N,Ker(G→ Gl)] → Gl → H l → 1,

and hence also the desired exact sequence

(N/[N,Ker(G→ Gl)])l → Gl → H l → 1.

Thus, assertion 1 holds. Since we have s(Ker(H → H l)) ⊂ Ker(G → Gl),
assertion 2 follows from assertion 1. �

Example 8.2. Let K,OK , p,K
sep, GK , and IK be as in Section 1. Sup-

pose that OK is strictly henselian and p = 0. Note that the Galois group

GK = IK is isomorphic to the profinite completion Ẑ of Z. We give an
example of hyperbolic polycurve Z of bad reduction over a K whose pro-l



CRITERIA FOR GOOD REDUCTION OF POLYCURVES 103

outer Galois representation is trivial for all but one prime l. This example
shows that, unlike the case of hyperbolic curves, to look at the pro-l outer
Galois representation for a single prime number l is not enough to determine
whether the hyperbolic polycurve has good reduction or not.

Fix a prime number l1. Let X1 and X2 be proper hyperbolic curves over
K which have good reduction. Suppose that there exist an automorphism ι2
of X2 over K of order l1 and a rational point x2 of X2 fixed by ι2. Take a
geometric point ∗1 of X1 ⊗K Ksep and write Π′

X1
(resp.∆′

X1
) for π1(X1, ∗1)

(resp. π1(X1 ⊗K Ksep, ∗1)). By Lemma 4.1, we have a canonical decomposi-
tion Π′

X1
∼= ∆′

X1
×GK . Take surjective group homomorphisms Π′

X1
→ Z/l1Z

and GK → Z/l1Z. Let (Π′
X1

∼=)∆′
X1

×GK → Z/l1Z be the sum of these ho-

momorphisms. Write X ′
1 for the étale covering space of X1 corresponding

to Ker (Π′
X1

→ Z/l1Z) and ι1 for a generator of Aut(X ′
1/X1). Consider the

action of Z/l1Z on X2 ×SpecK X ′
1 induced by (ι2, ι1), and write Z for the

quotient scheme of X2 ×SpecK X ′
1 by this Z/l1Z-action.

Let l be a prime number. We will show that the pro-l outer Galois ac-
tion IK → Out(∆l

Z) is trivial if and only if l 6= l1. Since the outer pro-l1
Galois action IK → Out(∆l1

Z ) is nontrivial, the outer pro-l1 Galois action
IK → Out(∆Z) is also nontrivial and Z has bad reduction by Theorem 1.1.1.
On the other hand, if l 6= l1, we cannot judge whether or not Z has good
reduction from the pro-l outer Galois action IK → Out(∆l

Z).
By construction, we have a Cartesian diagram

X2 ×SpecK X ′
1

//

��

X ′
1

��

Z // X1.

Let L′′ be an algebraic closure of the function field of X ′
1 and ∗ a geometric

point of {x2} ⊗K L′′. Write ΠZ (resp.ΠX1 ; ∆X1 ; ∆X2) for the étale funda-
mental group π1(Z, ∗) (resp. π1(X1, ∗); π1(X1 ⊗K L′′, ∗); π1(X2 ⊗K L′′, ∗)).
By [5, PROPOSITION 2.5], the sequence

(8.1) 1 → ∆X2 → ΠZ → ΠX1 → 1

is exact and ∆X2 is isomorphic to π1(X2⊗KK
sep, ∗). Moreover, the sequence

(8.2) 1 → ∆X2 → ∆Z → ∆X1 → 1.

is also exact. Since the section of X2 ×SpecK X ′
1 → X ′

1 determined by the
point x2 is compatible with the actions of Z/l1Z, we obtain a section of
Z → X1 by taking the quotient schemes by Z/l1Z. This section defines a
canonical section of ΠZ → ΠX1 (resp.∆Z → ∆X1) in (8.1) (resp. (8.2)).
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We calculate the action

(8.3) ΠX1 → Aut(∆X2)

induced by the section. Write AutK(X2, x2) for the subgroup of the group
of automorphisms of X2 over K consisting of automorphisms fixing x2.
Write ψ for the composite homomorphism of the natural surjection ΠX1 →
ΠX1/ΠX′

1
(= 〈ι1〉), two isomorphisms 〈ι1〉 ∼= Z/l1Z ∼= 〈ι2〉, the inclusion

〈ι2〉 →֒ AutK(X2, x2), and the action AutK(X2, x2) → ∆X2 defined by the
fixed point x2. Write φ for the homomorphism ΠX1 → Aut(∆X2) defined by
the splitting of the exact sequence

1 → ∆X2 → π1(X2 ×SpecK X1, ∗) → ΠX1 → 1

(, the exactness of which follows from [5, PROPOSITION 2.5],) determined
by x2. Then φ coincides with the composite homomorphism ΠX1 → GK →
Aut(∆X2), where the second homomorphism is induced by x2. Since X2

has good reduction, φ is trivial. By the construction of Z, the action (8.3)
coincides with φ+ ψ(= ψ).

First, we assume that l 6= l1. By taking pro-l completion of the exact
sequence (8.2), we obtain a commutative diagram with exact horizontal lines

∆l
X2

//

��

∆l
Z

// ∆l
X1

// 1

1 // ∆ // ∆l
Z

// ∆l
X1

// 1.

Here, we write ∆ for the image of ∆l
X2

→ ∆l
Z. Since the composite homo-

morphism Ker(∆X1 → ∆l
X1

) →֒ ∆X1 →֒ ΠX1 → 〈ι2〉 is surjective by the as-

sumption l 6= l1, ∆ is a quotient group of (∆X2)〈ι2〉 by Lemma 8.1. Write Π
(l)
Z

(resp.Π
(l)
X1

) for the quotient group ΠZ/Ker(∆Z → ∆l
Z) (resp.ΠX1/Ker(∆X1 →

∆l
X1

)). We have a commutative diagram with exact horizontal lines

(8.4) 1 // ∆ // ∆l
Z

//

��

∆l
X1

��

// 1

1 // ∆ // Π
(l)
Z

// Π
(l)
X1

// 1.

Both horizontal lines of (8.4) have a section determined by the point x2,

which induces an action of Π
(l)
X1

on Aut(∆) compatible with (8.3). Since

∆ is a quotient group of (∆X2)〈ι2〉, this action is trivial. Hence, we have

a canonical decomposition Π
(l)
Z

∼= ∆ × Π
(l)
X1

. Moreover, since X1 has good
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reduction, we have a canonical decomposition Π
(l)
X1

∼= ∆l
X1

× GK by [19,

Proposition 1.11] and the proof of Lemma 4.1. Therefore, we can show that
the outer Galois action IK → Out(∆l

Z) is trivial by using these decomposi-
tions.

Next, we assume that l = l1 and show that the pro-l outer Galois repre-
sentation

IK → Out(∆l
Z)

is nontrivial. Since the outer action ∆X1 → Out(∆l
X2

) factors through

∆X1 → ∆l
X1

, we have an exact sequence 1 → ∆l
X2

→ ∆l
Z → ∆l

X1
→ 1 by

Lemma 6.1.4. We have a commutative diagram with exact horizontal lines

(8.5) 1 // ∆l
X2

//
� _

�

Π
(l)
Z

//

��

Π
(l)
X1

��

// 1

1 // ∆l
Z

// Π
(l)
Z

// GK
// 1.

Since X1 has good reduction, we have a decomposition Π
(l)
X1

= ∆l
X1

×Z
Π

(l)
X1

(∆l
X1

)

and Z
Π

(l)
X1

(∆l
X1

) is isomorphic to GK by [19, Proposition 1.11] and the proof

of Lemma 4.1. If the outer action IK → Out∆l
Z is trivial, we would have

a decomposition Π
(l)
Z = ∆l

Z × Z
Π

(l)
Z

(∆l
Z) by the proof of Lemma 4.1 and the

center-freeness of ∆l
Z , and the homomorphism Π

(l)
Z → Π

(l)
X1

would induce

a surjection Z
Π

(l)
Z

(∆l
Z) → Z

Π
(l)
X1

(∆l
X1

). Therefore, it suffices to show that

the outer action Z
Π

(l)
X1

(∆l
X1

) → Out (∆l
X2

) associated with the first horizon-

tal line of the diagram (8.5) is nontrivial. We have a diagram with exact
horizontal lines

(8.6) 1 // ∆X2
// ΠZ ×ΠX1

ZΠX1
(∆X1) //

��

ZΠX1
(∆X1) //

��

1

1 // ∆X2
// ΠZ

// ΠX1
// 1.

Write X1 for the smooth model of X1 and ξ1 for the generic point of the
special fiber of X1. Let L be the field of fractions of a strict henselization of
the local ring of X1 at ξ1 in L′′. By Lemma 4.2, the natural homomorphism
(GL :=)Gal(L′′/L) → ΠX1 induces GL → ZΠX1

(∆X1)(
∼= GK). Since a uni-

formizer of K is a uniformizer of L, GL → ZΠX1
(∆X1) is an isomorphism.

Let L′ be the finite extension field of L defined by Ker(GL → ΠX1 → Z/lZ)
and ι a generator of Gal(L′/L). Consider the action of Z/lZ on X2 ⊗K L′
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induced by (ι2, ι) and write X ′
2 for the quotient scheme. Write ΠX′

2
for the

étale fundamental group π1(X2, ∗). Then we have an exact sequence

1 → ∆X2 → ΠX′
2
→ GL(∼= ZΠX1

(∆X1)) → 1.

Since we have a diagram

X2 ⊗K L′ //

��

SpecL′

��

X2 ×SpecK X ′
1

// X ′
1

compatible with the actions of Z/lZ, we obtain a commutative diagram with
exact horizontal lines

(8.7) 1 // ∆X2
// ΠX′

2

//

��

GL
//

��

1

1 // ∆X2
// ΠZ ×ΠX1

ZΠX1
(∆X1)

// ZΠX1
(∆X1)

// 1.

Therefore, it suffices to show that the outer action GL → Out(∆l
X2

) defined
by the first line of (8.7) is nontrivial. As the calculation of the action (8.3),
we can calculate the action of GL on ∆l

X2
determined by the rational point

of X ′
2 defined by x2. By [3, Theorem 1.13], the action of GL on ∆ab,l

X2
is

nontrivial, and hence the outer action GL → Out(∆l
X2

) is also nontrivial.

Remark. Let p be a prime number andK,OK ,K
sep, GK , and IK as in Exam-

ple 8.2. We can give an example of hyperbolic polycurve Z of bad reduction
over a K whose pro-l outer Galois representation is trivial for all but one
prime l (6= p) in a similar way to that given in Example 8.2. In this case,

we need to consider ∆p′

− (resp. Π
(p′)
− ) in place of ∆− (resp.Π−) and use [15,

Exposé XIII, Proposition 4.6] in place of [5, PROPOSITION 2.5].
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