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ON WEAKLY SEPARABLE POLYNOMIALS IN SKEW

POLYNOMIAL RINGS

Satoshi Yamanaka

Abstract. The notion of weakly separable extensions was introduced
by N. Hamaguchi and A. Nakajima as a generalization of separable ex-
tensions. The purpose of this article is to give a characterization of
weakly separable polynomials in skew polynomial rings. Moreover, we
shall show the relation between separability and weak separability in
skew polynomial rings of derivation type.

1. Introduction

This paper is the continuation of the author’s previous paper [9].
Let A/B be a ring extension with common identity 1, and M an A-A-

bimodule. An additive map δ : A → M is called a B-derivation of A to

M if δ(zw) = δ(z)w + zδ(w) for any z, w ∈ A and δ(B) = {0}. Moreover,
a B-derivation δ of A to M is called inner if there exists m ∈ M such
that δ(z) = mz − zm for any z ∈ A. We say that A/B is separable if the

A-A-homomorphism of A ⊗B A onto A defined by
∑

j

zj ⊗ wj 7→
∑

j

zjwj

(zj , wj ∈ A) splits. It is well known that A/B is separable if and only if every
B-derivation of A to N is inner for any A-A-bimodule N (cf. [1, Satz 4.2]).
A/B is called weakly separable if every B-derivation of A to A is inner. The
notion of weakly separable extensions was introduced by N. Hamaguchi and
A. Nakajima as a generalization of separable extensions (cf. [2]). Obviously,
a separable extension is weakly separable.

Throughout this article, let B be a ring, ρ an automorphism of B, and
D a ρ-derivation of B (i.e. D is an additive endomorphism of B such
that D(αβ) = D(α)ρ(β) + αD(β) for any α, β ∈ B). By B[X; ρ,D] we
denote the skew polynomial ring in which the multiplication is given by
αX = Xρ(α) + D(α) for any α ∈ B. We write B[X; ρ] = B[X; ρ, 0] and
B[X;D] = B[X; 1,D]. Moreover, by B[X; ρ,D](0) we denote the set of all
monic polynomials f inB[X; ρ,D] such that fB[X; ρ,D] = B[X; ρ,D]f . For
each polynomial f ∈ B[X; ρ,D](0), the quotient ring B[X; ρ,D]/fB[X; ρ,D]
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is a free ring extension of B. A polynomial f in B[X; ρ,D](0) is called sep-

arable (resp. weakly separable) in B[X; ρ,D] if B[X; ρ,D]/fB[X; ρ,D] is
separable (resp. weakly separable) over B.

Let Bρ = {α ∈ B | ρ(α) = α}. In the previous paper [9], we studied weakly
separable polynomials over rings. In particular, we showed a necessary and
sufficient condition for a polynomial f ∈ B[X; ρ](0) ∩ Bρ[X] (resp. a p-
polynomial f ∈ B[X;D](0) with a prime number p) to be weakly separable
in B[X; ρ] (resp. B[X;D]) (cf. [9, Theorem 3.2 and Theorem 3.8]). The
purpose of this paper is to give some improvements and generalizations of
our results for the general skew polynomial ring B[X; ρ,D]. In section 2, we
shall mention briefly on some properties for polynomials in B[X; ρ,D](0). In
section 3, we shall give a necessary and sufficient condition for a polynomial
f in B[X; ρ,D](0) ∩Bρ[X] to be weakly separable in B[X; ρ,D]. Moreover,
we shall show the relation between separability and weak separability in
B[X;D].

2. Polynomials in B[X; ρ,D](0)

In this section, we shall mention briefly on polynomials in B[X; ρ,D](0).
We inductively define additive endomorphisms Φ[i,j] (0 ≤ j ≤ i) of B as

follows:

Φ[i,j] =















1 (= the identity map) (i = j = 0)

Di (j = 0, i ≥ 1)

ρi (i = j ≥ 1)
ρΦ[i−1,j−1] +DΦ[i−1,j] (i ≥ 2, 1 ≤ j ≤ i− 1)

First we shall state the following.

Lemma 2.1. For any α ∈ B, there holds

αXi =
i
∑

j=0

XjΦ[i,j](α) (i ≥ 0).

Proof. We shall show it by induction. It is true when i = 0. Let α be
arbitrary element in B and assume that it is true when i ≥ 0. We have then

αXi+1 = αXi ·X

=





i
∑

j=0

XjΦ[i,j](α)



X

=
i
∑

j=0

Xj
(

XρΦ[i,j](α) +DΦ[i,j](α)
)
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=

i
∑

j=0

Xj+1ρΦ[i,j](α) +

i
∑

j=0

XjDΦ[i,j](α)

=

i+1
∑

j=1

XjρΦ[i,j−1](α) +

i
∑

j=0

XjDΦ[i,j](α)

= Xi+1ρΦ[i,i](α) +

i
∑

j=1

Xj
(

ρΦ[i,j−1] +DΦ[i,j]

)

(α) +DΦ[i,0](α)

= Xi+1Φ[i+1,i+1](α) +

i
∑

j=1

XjΦ[i+1,j](α) + Φ[i+1,0](α)

=

i+1
∑

j=0

XjΦ[i+1,j](α).

This completes the proof. �

Lemma 2.2. Let f be a monic polynomial in B[X; ρ,D] of the form f =
m
∑

i=0

Xiai (m ≥ 1, am = 1). Then f is in B[X; ρ,D](0) if and only if

(1) ajρ
m(α) =

m
∑

i=j

Φ[i,j](α)ai for any α ∈ B (0 ≤ j ≤ m− 1).

(2) D(ai) =

{

ai−1 − ρ(ai−1) + ai
(

ρ(am−1)− am−1

)

(1 ≤ i ≤ m− 1)
a0
(

ρ(am−1)− am−1

)

(i = 0)
.

Proof. Let f =
m
∑

i=0

Xiai (m ≥ 1, am = 1) be in B[X; ρ,D] and α arbitrary

element in B. As was shown in [4, Lemma 1.1], f is in B[X; ρ,D](0) if and

only if αf = fρm(α) and Xf = f(X −
(

ρ(am−1)− am−1)
)

. It follows from
Lemma 2.1 that

αf =
m
∑

i=0

αXiai =
m
∑

i=0





i
∑

j=0

XjΦ[i,j](α)



 ai =
m
∑

j=0

Xj





m
∑

i=j

Φ[i,j](α)ai



 .

Noting that fρm(α) =

m−1
∑

j=0

Xjajρ
m(α), the equation αf = fρm(α) implies

the condition (1), and conversely. Next we see that

f
(

X −
(

ρ(am−1)− am−1

)

)
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=
m
∑

i=0

XiaiX −
m
∑

i=0

Xiai
(

ρ(am−1)− am−1

)

=

m
∑

i=0

Xi
(

Xρ(ai) +D(ai)
)

−

m
∑

i=0

Xiai
(

ρ(am−1)− am−1

)

=

m
∑

i=0

Xi+1ρ(ai) +

m
∑

i=0

XiD(ai)−

m
∑

i=0

Xiai
(

ρ(am−1)− am−1

)

=

m+1
∑

i=1

Xiρ(ai−1) +

m
∑

i=0

Xi
(

D(ai)− ai
(

ρ(am−1)− am−1

)

)

= Xm+1 +Xmam−1 +

m−1
∑

i=1

Xi
(

ρ(ai−1) +D(ai)− ai
(

ρ(am−1)− am−1

)

)

+D(a0)− a0
(

ρ(am−1)− am−1

)

.

Noting that Xf =

m
∑

i=0

Xi+1ai = Xm+1 +Xmam−1 +

m−1
∑

i=1

Xiai−1, the equa-

tion Xf = f(X −
(

ρ(am−1)− am−1)
)

implies that
{

ai−1 = ρ(ai−1) +D(ai)− ai
(

ρ(am−1)− am−1

)

(1 ≤ i ≤ m− 1)
0 = D(a0)− a0

(

ρ(am−1)− am−1

) .

Hence we have the condition (2). The converse is obvious. �

Recall that Bρ = {α ∈ B | ρ(α) = α}. In addition, let BD = {α ∈

B |D(α) = 0}, Bρ,D = Bρ ∩BD, and C(Bρ,D) the center of Bρ,D. We have
then the following.

Corollary 2.3. Let f =

m
∑

i=0

Xiai (m ≥ 1, am = 1) be in B[X; ρ,D](0). If

f ∈ Bρ[X] then f ∈ C(Bρ,D)[X].

Proof. Let f =

m
∑

i=0

Xiai (m ≥ 1, am = 1) be in B[X; ρ,D](0) and assume

that f ∈ Bρ[X]. Then, by Lemma 2.2 (2), we have

D(ai) = ai−1 − ρ(ai−1) + ai
(

ρ(am−1)− am−1

)

= ai−1 − ai−1 + ai
(

am−1 − am−1

)

= 0 (1 ≤ i ≤ m− 1),

D(a0) = a0
(

ρ(am−1)− am−1

)
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= a0
(

am−1 − am−1

)

= 0.

Hence ai ∈ BD, that is, ai ∈ Bρ,D (0 ≤ i ≤ m − 1). Let β be arbitrary

element in Bρ,D. It is clear that Φ[i,j](β) =

{

β (i = j)

0 (i > j)
. Therefore it

follows from Lemma 2.2 (1) that

ajβ = ajρ
m(β) =

m
∑

i=j

Φ[i,j](β)ai = βaj (0 ≤ j ≤ m− 1).

Thus aj ∈ C(Bρ,D) (0 ≤ j ≤ m− 1). �

3. Weakly separable polynomials in B[X; ρ,D]

The conventions and notations employed in the preceding section will be
used in this section. Throughout this section, let R = B[X; ρ,D], R(0) =
B[X; ρ,D](0), and f a monic polynomial in R(0) ∩ Bρ[X] of the form f =
m
∑

i=0

Xiai (m ≥ 1, am = 1). Note that f is in C(Bρ,D)[X] by Corollary 2.3.

We shall use the following conventions:

• R1 = {g ∈ R |αg = gρ(α) (∀α ∈ B)}
• A = R/fR (the quotient ring of R modulo fR)
• x = X+ fR ∈ A (i.e. {1, x, x2, · · · , xm−1} is a free B-basis of A and

xm = −
m−1
∑

j=0

xjaj)

• Ix is an inner derivation of A by x (i.e. Ix(z) = zx− xz (∀z ∈ A))
• C(A) is the center of A

• Ak = {u ∈ A |αu = uρk(α) (∀α ∈ B)} (k ∈ Z)
• V = A0 = {z ∈ A |αz = zα (∀α ∈ B)} (i.e. V is the centralizer of
B in A)

Moreover, we define polynomials Yj ∈ R ∩ C(Bρ,D)[X] (0 ≤ j ≤ m − 1) as
follows:

Y0 = Xm−1 +Xm−2am−1 + · · · +Xa2 + a1,

Y1 = Xm−2 +Xm−3am−1 + · · · +Xa3 + a2,

· · · · ·
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Yj = Xm−j−1 +Xm−j−2am−1 + · · ·+Xaj+2 + aj+1



=
m−1
∑

k=j

Xk−jak+1



 ,

· · · · ·

Ym−2 = X + am−1,

Ym−1 = 1.

It is obvious that

XYj =

{

Yj−1 − aj (1 ≤ j ≤ m− 1)
f − a0 (j = 0)

.(3.1)

The polynomials Yj (0 ≤ j ≤ m − 1) were introduced by Y. Miyashita to
characterize separable polynomials in B[X; ρ,D] (cf. [6]). Now let yj =
Yj + fR ∈ A (0 ≤ j ≤ m− 1). Since the equality (3.1), the following lemma
is obvious.

Lemma 3.1.

xyj =

{

yj−1 − aj (1 ≤ j ≤ m− 1)
−a0 (j = 0)

.

So we define a map τ : A → A by

τ (z) =

m−1
∑

j=0

yjzx
j (z ∈ A).

Obviously, τ is a C(A)-C(A)-endomorphism of A. By making use of τ ,
separable polynomials in R are characterized as follows:

Lemma 3.2. ([6, Theorem 1.8] or [8, Theorem 1.3]) f is separable in R if

and only if there exists u ∈ A1−m (that is, ρm−1(α)u = uα for any α ∈ B)
such that τ(u) = 1.

Remark. Needles to say, each ai (0 ≤ i ≤ m − 1) satisfies that aix = xai
and aiu = uai for any u ∈ Ak (k ∈ Z). In particular, we see that yix = xyi
(0 ≤ i ≤ m− 1).

First we shall prove the following lemma concerning the inner derivation
Ix and the C(A)-C(A)-endomorphism τ .

Lemma 3.3. (1) Ix(Ak) ⊂ Ker(τ) for any integer k.
(2) Ix(V ) ⊂ Ker(τ) ∩A1.
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Proof. (1) Let k be arbitrary integer and u ∈ Ak. We obtain then

τ(Ix(u)) = τ(ux− xu)

=

m−1
∑

j=0

yj(ux− xu)xj

=





m−1
∑

j=0

yjux
j



x− x





m−1
∑

j=0

yjux
j





= τ(u)x− xτ(u).

Therefore it suffice to prove that τ(u)x = xτ(u). By Lemma 3.1, we have

xτ(u) = x





m−1
∑

j=0

yjux
j





= xy0u+
m−1
∑

j=1

xyjux
j

= −a0u+

m−1
∑

j=1

(−aj + yj−1)ux
j

= −ua0 − u

m−1
∑

j=1

xjaj +

m−1
∑

j=1

yj−1ux
j

= u



−

m−1
∑

j=0

xjaj



+

m−2
∑

j=0

yjux
j+1

= uxm +





m−2
∑

j=0

yjux
j



x

= (ym−1ux
m−1)x+





m−2
∑

j=0

yjux
j



x

=





m−1
∑

j=0

yjux
j



x

= τ(u)x.
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(2) Since the condition (1), it suffice to show that Ix(V ) ⊂ A1. For any
α ∈ B and u ∈ V , we obtain

αIx(u) = α(ux− xu)

= uαx− αxu

= u(xρ(α) +D(α))− (xρ(α) +D(α))u

= uxρ(α) + uD(α) − xuρ(α)− uD(α)

= (ux− xu)ρ(α)

= Ix(u)ρ(α).

Thus Ix(V ) ⊂ A1. �

To show the subsequent lemma (Lemma 3.6), we need the following two
lemmas.

Lemma 3.4. Let g1 be arbitrary element in R. We define g0 = 0 and

gj+1 = gjX +Xjg1 (j ≥ 1), inductively.

(1) gi+k = giX
k +Xigk (i, k ≥ 0).

(2) If g1 ∈ R1 then αgj =

j
∑

k=1

gkΦ[j,k](α) (j ≥ 1) for any α ∈ B.

Proof. (1) Fix i ≥ 0 and we shall show it by induction for k. It is true when
k = 0. Assume that it is true when k ≥ 1. So we obtain

gi+k+1 = gi+kX +Xi+kg1

=
(

giX
k +Xigk

)

X +Xi+kg1

= giX
k+1 +XigkX +Xi+kg1

= giX
k+1 +Xi

(

gkX +Xkg1

)

= giX
k+1 +Xigk+1.

This completes the proof.
(2) Let g1 be arbitrary element in R1. We shall show it by induction. It

is true when j = 1. Assume that it is true when j ≥ 1. Then, by Lemma
2.1, we have

αgj+1 = α
(

gjX +Xjg1
)

= αgjX + αXjg1

=

j
∑

k=1

gkΦ[j,k](α)X +

j
∑

k=0

XkΦ[j,k](α)g1
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=

j
∑

k=1

gk
(

XρΦ[j,k](α) +DΦ[j,k](α)
)

+

j
∑

k=0

Xkg1ρΦ[j,k](α)

=

j
∑

k=1

gkXρΦ[j,k](α) +

j
∑

k=1

gkDΦ[j,k](α) +

j
∑

k=0

Xkg1ρΦ[j,k](α)

=

j
∑

k=0

(

gkX +Xkg1

)

ρΦ[j,k](α) +

j
∑

k=1

gkDΦ[j,k](α)

=

j
∑

k=0

gk+1ρΦ[j,k](α) +

j
∑

k=1

gkDΦ[j,k](α)

=

j+1
∑

k=1

gkρΦ[j,k−1](α) +

j
∑

k=1

gkDΦ[j,k](α)

= gj+1ρΦ[j,j](α) +

j
∑

k=1

gk
(

ρΦ[j,k−1] +DΦ[j,k]

)

(α)

= gj+1Φ[j+1,j+1](α) +

j
∑

k=1

gkΦ[j+1,k](α)

=

j+1
∑

k=1

gkΦ[j+1,k](α).

This completes the proof. �

Lemma 3.5. For any g ∈ R1, there exists a B-derivation ∆ of R such that

∆(X) = g.

Proof. Let g be arbitrary element in R1. We define g0 = 0, g1 = g,
and gj+1 = gjX + Xjg1 (j ≥ 1), inductively. Moreover, let ∆ be a

right B-endomorphism of R defined by ∆(Xj) = gj (j ≥ 0) (that is,

∆





∑

j

Xjcj



 =
∑

j

gjcj (cj ∈ B, j ≥ 0)). For any i, j ≥ 1 and α, β ∈ B,

it follows from Lemma 2.1 and Lemma 3.4 that

∆(XiαXjβ) = ∆

(

Xi

(

j
∑

k=0

XkΦ[j,k](α)

)

β

)

= ∆

(

j
∑

k=0

Xi+kΦ[j,k](α)β

)
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=

j
∑

k=0

gi+kΦ[j,k](α)β

=

j
∑

k=0

(

giX
k +Xigk

)

Φ[j,k](α)β

= gi

j
∑

k=0

XkΦ[j,k](α)β +Xi

j
∑

k=1

gkΦ[j,k](α)β

= giαX
jβ +Xiαgjβ

= ∆(Xiα)Xjβ +Xiα∆(Xjβ).

This implies that ∆(h1h2) = ∆(h1)h2 +h1∆(h2) for any h1, h2 ∈ R, that is,
∆ is a derivation of R. �

Now we shall characterize B-derivations of A as follows:

Lemma 3.6. If δ is a B-derivation of A then δ(x) ∈ A1 ∩ Ker(τ). Con-

versely, if u ∈ A1 ∩Ker(τ) then there exists a B-derivation δ of A such that

δ(x) = u.

Proof. Let δ be a B-derivation of A. We have αδ(x) = δ(αx) = δ(xρ(α) +
D(α)) = δ(x)ρ(α) for any α ∈ B, and hence δ(x) ∈ A1. An easy induction
shows that

δ(xk+1) =

k
∑

j=0

xk−jδ(x)xj (k ≥ 0).

Then, since 0 =

m
∑

k=0

xkak and yj =

m−1
∑

k=j

xk−jak+1, we see that

0 = δ

(

m
∑

k=0

xkak

)

=
m
∑

k=1

δ(xk)ak

=

m−1
∑

k=0

δ(xk+1)ak+1

=

m−1
∑

k=0





k
∑

j=0

xk−jδ(x)xj



 ak+1
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=
m−1
∑

j=0





m−1
∑

k=j

xk−jak+1



 δ(x)xj

=

m−1
∑

j=0

yjδ(x)x
j

= τ(δ(x)).

Therefore δ(x) ∈ Ker(τ).
Conversely, assume that u ∈ A1 ∩ Ker(τ). Let u0 be in R such that

u = u0 + fR and deg(u0) < m. Obviously, u0 ∈ R1 because u ∈ A1. Hence,
by Lemma 3.5, there exists a B-derivation ∆ of R such that ∆(X) = u0.
Since u ∈ Ker(τ), we have

0 = τ(u) =

m−1
∑

j=0

yjux
j =

m−1
∑

j=0

Yju0X
j + fR.

This means that

m−1
∑

j=0

Yj∆(X)Xj ∈ fR. So we obtain

∆(f) =

m
∑

k=1

∆(Xk)ak

=

m−1
∑

k=0

∆(Xk+1)ak+1

=

m−1
∑

k=0





k
∑

j=0

Xk−j∆(X)Xj



 ak+1

=

m−1
∑

j=0





m−1
∑

k=j

Xk−jak+1



∆(X)Xj

=
m−1
∑

j=0

Yj∆(X)Xj

∈ fR.

This implies that ∆(fg) = ∆(f)g + f∆(g) ∈ fR for any g ∈ R, namely,
∆(fR) ⊂ fR. Thus there exists a B-derivation δ of A such that δ(x) = u
which is naturally induced by ∆. �
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Now we shall state the following theorem which is a generalization of [9,
Theorem 3.2] and [9, Theorem 3.8].

Theorem 3.7. f is weakly separable in R if and only if

A1 ∩Ker(τ) = Ix(V ).

Proof. Note that Ix(V ) ⊂ Ker(τ) ∩ A1 by Lemma 3.3 (2).
Assume that f is weakly separable in R, that is, every B-derivation of A

is inner. Let u ∈ A1 ∩ Ker(τ). By Lemma 3.6, there exists a B-derivation
δ of A such that δ(x) = u. Since δ is inner, we have u = δ(x) = vx − xv
for some fixed element v ∈ A. In particular, we see that v ∈ V because
0 = δ(α) = vα−αv for any α ∈ B. We have then u = δ(x) ∈ Ix(V ), namely,
A1 ∩Ker(τ) ⊂ Ix(V ). Therefore A1 ∩Ker(τ) = Ix(V ) by Lemma 3.3 (2).

Conversely, assume that A1∩Ker(τ) = Ix(V ), and let δ be a B-derivation
of A. By Lemma 3.6, we see that δ(x) ∈ A1 ∩ Ker(τ) = Ix(V ). Hence
δ(x) = vx− xv for some v ∈ V . An easy induction shows that

δ(xj) = vxj − xjv (j ≥ 0).

So, for any z =
m−1
∑

j=0

xjcj ∈ A (cj ∈ B), we have

δ(z) = δ





m−1
∑

j=0

xjcj





=
m−1
∑

j=0

δ(xj)cj

=
m−1
∑

j=0

(vxj − xjv)cj

= v
m−1
∑

j=0

xjcj −
m−1
∑

j=0

xjcjv

= vz − zv.

Therefore δ is inner, and hence f is weakly separable in R. �

In virtue of Theorem 3.7, we have the following.

Corollary 3.8. f is weakly separable in R if and only if the following se-

quence of C(A)-C(A)-homomorphisms is exact:

V
Ix−→ A1

τ
−→ A.
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Proof. It is obvious by Theorem 3.7. �

Remark. There always holds Ker(Ix : V → A1) = C(A). Hence f is
weakly separable in R if and only if the following sequence of C(A)-C(A)-
homomorphisms is exact:

0 −→ C(A)
inclusion
−→ V

Ix−→ A1
τ

−→ A.

Concerning the relation between separability and weak separability in
B[X;D], we shall state the following theorem which is an improvement of
[9, Theorem 3.10].

Theorem 3.9. Let R = B[X;D], R(0) = B[X;D](0), and f a monic poly-

nomial in R(0) of the form f =
m
∑

i=0

Xiai (am = 1,m ≥ 1).

(1) f is weakly separable in R if and only if the following sequence of

C(A)-C(A)-homomorphisms is exact:

V
Ix−→ V

τ
−→ C(A).

(2) f is separable in R if and only if the following sequence of C(A)-
C(A)-homomorphisms is exact:

V
Ix−→ V

τ
−→ C(A) −→ 0.

Proof. Note that Ak = V (k ∈ Z) in this case. First we shall show that
τ(V ) ⊂ C(A). Let ϕ be an A-A-homomorphism of A ⊗B A onto A defined

by
∑

j

zj⊗wj 7→
∑

j

zjwj (zj , wj ∈ A) and (A⊗BA)A = {µ ∈ A⊗BA | zµ =

µz (∀z ∈ A)}. It is obvious that ϕ
(

(A⊗B A)A
)

⊂ C(A). Let v be arbitrary
element in V . As was shown in [8, Lemma 3.1], we have already known that
m−1
∑

j=0

yjv ⊗ xj ∈ (A⊗B A)A, and hence

τ(v) =

m−1
∑

j=0

yjvx
j = ϕ





m−1
∑

j=0

yjv ⊗ xj



 ∈ C(A).

Therefore τ(V ) ⊂ C(A).
(1) It is obvious by Corollary 3.8.
(2) If f is separable in R then f is always weakly separable in R, and

therefore it suffices to show that τ(V ) = C(A). By Lemma 3.2, f is separable
in R if and only if there exists v ∈ V such that τ(v) = 1. This means that
τ(V ) = C(A) because τ is a C(A)-C(A)-homomorphism. �
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Example. Let B =

[

Z Z

0 Z

]

(the upper triangular matrix over Z), D a

derivation of B defined by D

([

b1 b2
0 b3

])

=

[

0 b2
0 0

]

(b1, b2, b3 ∈ Z), R =

B[X;D], and R(0) = B[X;D](0). We put here a =

[

3 0
0 1

]

∈ B and f =

X2 + Xa + a ∈ R. It is easy to see that αf = fα for any α ∈ B and
Xf = fX, and hence f ∈ R(0). Now let A = R/fR and x = X + fR. One
easily see that

V = C(A) =

{

x

[

s 0
0 s

]

+

[

s+ t 0
0 t

] ∣

∣

∣

∣

s, t ∈ Z

}

.

Let v = xb+c be arbitrary element in V such that b =

[

s 0
0 s

]

, c =

[

s+ t 0
0 t

]

(s, t ∈ Z). Since xb = bx and xc = cx, we obtain

Ix(v) = vx− xv = (xb+ c)x− x(xb+ c) = 0.

Thus Ix(V ) = {0}. Recall that y0 = x+ a and y1 = 1 in this case. We have
then

τ(v) = y0v + y1vx

= (x+ a)(xb+ c) + (xb+ c)x

= x2b+ x(ab+ c) + ac+ x2b+ xc

= x22b+ x(ab+ 2c) + ac

= (−xa− a)2b+ x(ab+ 2c) + ac

= x(2c − ab) + ac− 2ab

= x

([

2(s + t) 0
0 2t

]

−

[

3 0
0 1

] [

s 0
0 s

])

+

[

3 0
0 1

] [

s+ t 0
0 t

]

− 2

[

3 0
0 1

] [

s 0
0 s

]

= x

[

2t− s 0
0 2t− s

]

+

[

3t− 3s 0
0 t− 2s

]

.

So we see that s = t = 0 (i.e. v = 0) if v ∈ Ker(τ). Therefore Ker(τ) ∩ V =
{0} = Ix(V ), and hence f is weakly separable in R by Theorem 3.9 (1).
However, it is obvious that τ(V ) ( C(A) (for example, there are no elements

u ∈ V such that τ(u) =

[

1 0
0 1

]

∈ C(A)). Thus f is not separable in R by

Theorem 3.9 (2).
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