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THE d-SMITH SETS OF CARTESIAN PRODUCTS OF

THE ALTERNATING GROUPS AND

FINITE ELEMENTARY ABELIAN 2-GROUPS

Kohei Seita

Abstract. Let G be a finite group. In 1970s, T. Petrie defined the
Smith equivalence of real G-modules. The Smith set of G is the subset of
the real representation ring consisting of elements obtained as differences
of Smith equivalent real G-modules. Various results of the topic have
been obtained. The d-Smith set of G is the set of all elements [V ]− [W ]
in the Smith set of G such that the H-fixed point sets of V and W have
the same dimension for all subgroups H of G. The results of the Smith
sets of the alternating groups and the symmetric groups are obtained
by E. Laitinen, K. Pawa lowski and R. Solomon. In this paper, we give
the calculation results of the d-Smith sets of the alternating groups and
the symmetric groups. In addition, we give the calculation results of the
d-Smith sets of Cartesian products of the alternating groups and finite
elementary abelian 2-groups.

1. Introduction

Throughout this paper, let G be a finite group. Let S(G) denote the set of
all subgroups of G and P(G) the set of all subgroups with prime power order
of G. Let Q, R, and C denote the rational, real, and complex number fields,
respectively, and let N and Z denote the set of natural numbers and the
ring of integers, respectively. For a subfield F of C, let R(G,F ) denote the
F -representation ring of G. In particular, We denote R(G,R) and R(G,C)
by RO(G) and R(G), respectively. By canonical homomorphisms, we regard

R(G,Q) ⊂ RO(G) ⊂ R(G).

For an algebra A, we mean by an A-module a finitely generated module over
A. For a commutative ring R, we denote by R[G] the group algebra of G
over R. Since Z ⊂ Q ⊂ R ⊂ C, we regard Z[G] ⊂ Q[G] ⊂ R[G] ⊂ C[G]. We
refer to a Q[G]-module, an R[G]-module and a C[G]-module as a rational G-
module, a real G-module and a complex G-module, respectively. We say that
real G-modules V and W are dim-equivalent if dimV H = dimWH holds for
any subgroup H of G. T. tom Dieck [6, p. 229] defined RO0(G) to be the set
of all elements [V ] − [W ] ∈ RO(G) such that V and W are dim-equivalent.
Clearly, RO0(G) is a submodule of RO(G).
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In 1960, P. A. Smith [22] asked whether the tangent spaces Ta(S) and
Tb(S) are isomorphic as real G-modules for any sphere S with smooth G-
action such that the G-fixed point set SG consists of exactly two points a and
b, in other words he asked whether the element [Ta(S)] − [Tb(S)] ∈ RO(G)
is trivial. This isomorphism problem motivates various researchers to study
transformation groups on spheres with finite fixed points. T. Petrie [17, 18]
called real G-modules V and W Smith equivalent if there is a homotopy
sphere Σ with a smooth G-action such that ΣG = {a, b}, a 6= b, and the
tangent spaces Ta(Σ) and Tb(Σ) are isomorphic to V and W as real G-
modules, respectively. If V and W are Smith equivalent, we write V ∼S W .
In this paper, we call V and W d-Smith equivalent if V and W are Smith
equivalent and dim-equivalent. If V and W are d-Smith equivalent, we
write V ∼dS W . Define the Smith set S(G), and the d-Smith set dS(G),
respectively, by

S(G) = {[V ] − [W ] ∈ RO(G) | V ∼S W},
dS(G) = {[V ] − [W ] ∈ RO(G) | V ∼dS W}.

By definition, it holds that

dS(G) ⊂ S(G).

In this paper, let Cn, An, and Sn denote a cyclic group of order n, the
alternating group of degree n, and the symmetric group of degree n, respec-
tively. For a natural number n, let Cn2 = C2×· · ·×C2 (n-fold). M. F. Atiyah–
R. Bott [1, Theorem 7.15], and J. W. Milnor [12], proved S(Cp) = 0 for any
prime p, and C. U. Sanchez [20, Corollary 1.11] proved S(Cqk) = 0 for any
odd prime q and any natural number k. Let P∗(G) denote the set of all
subgroups H of G of which the order |H| is either an odd prime power, 2, or
4. T. Petrie remarked that if real G-modules V and W are Smith equivalent
then dimV G = 0 = dimWG and resGH V ∼= resGH W for all H ∈ P∗(G), cf.
[18, p. 61], [19, Section 4, Theorem 0.4].

On the other hand, T. Petrie [16, Theorem B], [17, 18] proved S(G) 6= 0
for abelian groups G having at least 4 noncyclic Sylow subgroups, and so
did S. E. Cappell–J. L. Shaneson [4, Theorem A], [5] for G = C4k, where
k ∈ N with k ≥ 2. In general, the sets S(G), and dS(G) are not additively
closed subsets of RO(G), see [14, p. 62].

The next results related to the Smith sets of finite groups Sm, Am, Sm×Cn2
and Am×Cn2 are well known. It follows that S(G) is trivial for each G = Am,
Sm with m ≤ 5, cf. [11, Lemma 1.4], [15, Theorem C3]. Furthermore,
K. Pawa lowski and R. Solomon [15, Theorem C3] proved that S(Sm) (resp.
S(Am)) is trivial if and only if m ≤ 5 (resp. m ≤ 7). X. -M. Ju [8,
Theorems A and B] proved that S(S5 × Cn2 ) (resp. S(A5 × Cn2 )) is a free
module over Z with rank 2n−1 (resp. 2(2n−1)). In this paper, we determine
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dS(G) and RO0(G) when G = Sm, Am, Sm × Cn2 or Am × Cn2 for natural
numbers m and n.

For a subset G of S(G), let RO0(G)G denote the set of all elements x ∈
RO0(G) such that resGH x = 0 for all H ∈ G. Clearly RO0(G)G is a direct
summand of RO(G) as a Z-module.

E. Laitinen and M. Morimoto [10] called a finite group G an Oliver group
if there is no normal series P EH EG such that P ∈ P(G), H/P is cyclic,
and G/H is of prime power order. The next theorem is useful to compute
the d-Smith sets of various finite Oliver groups G.

Theorem 1.1. For an arbitrary Oliver group G such that Gnil = G∩2, it
holds that

RO0(G)P(G) ⊂ dS(G) ⊂ RO0(G)P∗(G).

Next we give basic facts.

Theorem 1.2. Let m be a natural number and G = Sm. Then RO0(G) is
trivial, and hence so is dS(G), for any m.

Theorem 1.3. Let m and n be natural numbers and G = Sm × Cn2 . Then
RO0(G) is trivial, and hence so is dS(G), for any m and n.

Let m be a natural number. A partition of m is a tuple t = (t1, t2, . . . , tr)
consisting of natural numbers t1 ≥ t2 ≥ · · · ≥ tr that add up to m. One
usually denotes the partition t by m = t1 + t2 + · · ·+ tr. We call the natural
number r the length of t. For m ≥ 2, let π(m) denote the number of all
partitions t = (t1, t2, . . . , tr) satisfying the conditions (P1)–(P3):

(P1) t1, t2, . . . , tr are odd natural numbers.
(P2) t1 > t2 > · · · > tr.
(P3) m− r ≡ 0 mod 4.

For convenience, we define π(1) = 0. Let ρ(m) denote the number of all
partitions t = (t1, t2, . . . , tr) satisfying the above three conditions (P1)–(P3)
and the next condition (P4):

(P4) t1t2 · · · tr is not any prime power.

For m ≤ 27, π(m) and ρ(m) are as in the next table.

m ≤ 4 5 6 7 8 9 10 11 12 13 14 15
π(m) 0 1 1 0 0 1 2 1 0 1 3 3
ρ(m) 0 0 0 0 0 0 1 1 0 0 2 3

m 16 17 18 19 20 21 22 23 24 25 26 27
π(m) 1 1 4 5 2 1 5 8 5 2 6 12
ρ(m) 1 0 3 5 2 1 5 8 5 1 5 12

Table 1.1. The values of π(m) and ρ(m)
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Theorem 1.4. Let m be a natural number and G = Am. Then dS(G)
coincides with RO0(G)P(G) and the Z-rank of RO0(G)P(G) is equal to ρ(m).

Corollary 1.5. The set dS(Am) is trivial if and only if m ≤ 9 or m ∈
{12, 13, 17}.

Remark. For a natural numberm, π(m) = 0 if and only ifm ∈ {1, 2, 3, 4, 7, 8, 12}.

For natural numbers m and n, let κ(m,n) denote the number (2n −
1)π(m) + ρ(m). We exhibit the values κ(m,n) for (m,n) ∈ {1, 2, . . . , 18}×
{1, 2, . . . , 6} in the next table.

❍
❍
❍
❍
❍❍

n
m ≤ 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 1 1 0 0 1 3 2 0 1 5 6 2 1 7
2 0 3 3 0 0 3 7 4 0 3 11 12 4 3 15
3 0 7 7 0 0 7 15 8 0 7 23 24 8 7 31
4 0 15 15 0 0 15 31 16 0 15 47 48 16 15 63
5 0 31 31 0 0 31 63 32 0 31 95 96 32 31 127
6 0 63 63 0 0 63 127 64 0 63 191 192 64 63 255

Table 1.2. The values of κ(m,n)

Theorem 1.6. Let m and n be natural numbers and G = Am × Cn2 . Then
dS(G) coincides with RO0(G)P(G), and the Z-rank of RO0(G)P(G) is equal
to κ(m,n).

Corollary 1.7. Let m and n be natural numbers and G = Am×Cn2 . Then,
the set dS(G) is trivial if and only if m ∈ {1, 2, 3, 4, 7, 8, 12}.

We prove Theorem 1.1 in Section 4, Theorems 1.2, 1.3 and 1.4 in Section 5,
Corollary 1.5 in Section 6, Theorem 1.6 in Section 7, and Corollary 1.7 in
Section 8. The proofs will be understood without difficulties by readers with
basic knowledge of the representation theory of finite groups.
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2. Preparation of notation and terminology

For subfields K ⊂ F of C, let ϕK,F : R(G,K) → R(G,F ) denote the
ring homomorphism of changing rings, i.e. ϕK,F ([V ]) = [V ⊗K F ] for K[G]-
modules V . Here we recall that ϕK,F is a monomorphism. Set

ROQ(G) = ϕQ,R(R(G,Q)),

RQ(G) = ϕQ,C(R(G,Q)),

RR(G) = ϕR,C(R(G,R)),

ROQ(G) = {x ∈ R(G) | kx ∈ ROQ(G) for some k ∈ N},
RQ(G) = {x ∈ R(G) | kx ∈ RQ(G) for some k ∈ N},
RR(G) = {x ∈ R(G) | kx ∈ RR(G) for some k ∈ N}.

For a subset A of RO(G) and subsets F and G of S(G), set

AF = {[V ] − [W ] ∈ A | V H = 0, WH = 0 for all H ∈ F},
AG = {[V ] − [W ] ∈ A | resGKV

∼= resGKW for all K ∈ G},
AF

G = (AF )G .

We call a real G-module V F-free if V H = 0 for all H ∈ F , and we call
real G-modules V and W G-matched if resGK V ∼= resGK W for all K ∈ G. In
the current paper, let E denote the trivial group, i.e. E = {e}, and use the
notation:

G{p} : the smallest normal subgroup H ≤ G such that |G/H| is a power of p.

L(G) = {H ∈ S(G) | H ⊃ G{p} for some prime p}.
Gnil : the smallest normal subgroup H of G such that G/H is nilpotent.

G∩2 : the intersection of all normal subgroups H of G such that |G/H| ≤ 2.

The group Gnil coincides with
⋂

pG
{p}, where p runs over the set of all

primes dividing |G|.
Let Gal(G) denote the group of field automorphisms Q(ζ) → Q(ζ), where

ζ = exp(2π
√
−1/|G|). For ψ ∈ Gal(G) and a complex G-module V , there is

a complex G-module ψV such that χψV (g) = ψ(χV (g)) for all g ∈ G, where
χV is the character function associated with V . This induces Gal(G)-actions
on R(G,Q(ζ)) and R(G), see [21, Section 12.4], and ϕQ(ζ),C : R(G,Q(ζ)) →
R(G) is a Gal(G)-isomorphism. The action of Gal(G) on R(G) factors
through a homomorphism Gal(G) → Z×

|G|, where Z×
|G| stands for the group

of units in Z|G| = Z/(|G|), hence for ψ ∈ Gal(G), there is an element

t ∈ Z×
|G| such that χψV (g) = χV (gt) for all g ∈ G and complex G-modules

V . Let σ : C → C be the field automorphism of complex conjugation, i.e.
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σ(
√
−1) = −

√
−1 and σ(x) = x for x ∈ R. Then RR(G) and RQ(G) coincide

with the fixed point sets R(G)σ and R(G)Gal(G), respectively. In particu-
lar, RR(G) is Gal(G)-invariant, furthermore RR(G) is also Gal(G)-invariant.

Therefore Gal(G) acts on RO(G) and RO(G)Gal(G) = ROQ(G). We call real
G-modules V and W Galois conjugate if there is ψ ∈ Gal(G) such that W
is isomorphic to ψV as real G-modules.

For an element g of G, we denote by (g)G the G-conjugacy class of g in
G, i.e.

(g)G = {xgx−1 | x ∈ G},
which is a subset of G. We mean by the real G-conjugacy class the set
(g)±G = (g)G ∪ (g−1)G.

3. Elements from the representation theory

Let Γ be a finite group, e.g. a quotient group of Gal(G). Let Z[Γ] denote
the integral group ring of Γ, let εΓ : Z[Γ] → Z be the augmentation homo-
morphism, i.e. εΓ(

∑

h∈Γ ahh) =
∑

h∈Γ ah, where ah ∈ Z, and let IΓ be the

augmentation ideal, i.e. IΓ = ker(εΓ). We remark that

IΓ = 〈(1 − h)x | h ∈ Γ, x ∈ Z[Γ]〉Z.
The next lemma immediately follows.

Lemma 3.1. Let Γ and IΓ be as above. Then IΓ is a direct summand of
Z[Γ] as a Z-module.

Let B = {[Vi]}i be the set of all isomorphism classes of irreducible real G-
modules. The group Gal(G) acts on B as permutations. The Gal(G)-orbit
Gal(G)[Vi] of [Vi] is isomorphic to a quotient group Γi of Gal(G).

By Lemma 3.1, IGal(G)RO(G) is a direct summand of RO(G) as a Z-

module. Therefore IGal(G)RO(G), RO0(G), RO(G)Gal(G) and ROQ(G) all
are direct summands of RO(G). The next lemma is a known fact, but we
give a proof for the reader’s convenience.

Lemma 3.2 ([6, Proposition 9.2.6]). Let Γ = Gal(G). Then IΓRO(G) and
RO(G)Γ coincide with RO0(G) and ROQ(G), respectively, and RO(G) =

RO0(G) ⊕ ROQ(G).

Proof. The equality RO(G)Γ = ROQ(G) is shown in [21, Section 12.4].
For a real G-module V and a subgroup H, the formula

dimV H =
1

|H|
∑

g∈H

χV (g),

implies the equality dimV H = dim(ψV )H for any ψ ∈ Gal(G), hence we see
the inclusion IΓRO(G) ⊂ RO0(G).
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Rational G-modules V and W are isomorphic if and only if dimV C =
dimWC for all cyclic subgroups C of G. This implies RO0(G)∩ROQ(G) = 0,

hence IΓRO(G)∩ROQ(G) = 0. Let A be the submodule IΓRO(G)⊕ROQ(G)
of RO(G). By the structure theorem of finitely generated free abelian groups,
A is a direct summand of RO(G). For an element x ∈ RO(G), we have

|Γ|x =
∑

ψ∈Γ

(1 − ψ)x+





∑

ψ∈Γ

ψ



x ∈ IΓRO(G) + RO(G)Γ,

which implies

RO(G) ⊗Z Q = 〈IΓRO(G)〉Q + 〈ROQ(G)〉Q.
Therefore the Z-rank of A is equal to the Z-rank of RO(G), which shows
RO(G) = A (= IΓRO(G) ⊕ ROQ(G)).

Furthermore, since IΓRO(G) ⊂ RO0(G) and RO0(G) ∩ ROQ(G) = 0, we
get RO0(G) = IΓRO(G). �

4. Corollary and proof of Theorem 1.1

We begin the section with a corollary which immediately follows from
Theorem 1.1.

Corollary 4.1. Let G be an arbitrary Oliver group with Gnil = G∩2. Sup-
pose

(1) G∩2 is of odd order, or
(2) resGCRO0(G) = 0 for all cyclic subgroups C ∈ S(G) of 2-power order.

Then dS(G) coincides with RO0(G)P(G).

The next lemma is well-known but we give a proof for the sake of reader’s
convenience.

Lemma 4.2. Let G be a finite group and H a subgroup of G with order 1,
2, or 4. If real G-modules V and W are Smith equivalent, then resGH V and
resGH W are isomorphic.

Proof. Let Σ be a homotopy sphere with G-action such that ΣG = {x, y},
V ∼= Tx(Σ), and W ∼= Ty(Σ). Let K be a subgroup of H. Since |K| is a power
of 2, P. A. Smith’s theorem says that ΣK is a Z2-homology sphere, and hence
ΣK is either connected or equal to {x, y}, which implies dimV K = dimWK .
Since |H| = 1, 2, or 4, we see that resGH V ∼= resGH W . �

For a real G-module V , let V L(G) denote the submodule
∑

L∈L(G) V
L and

let VL(G) denote the orthogonal complement of V L(G) in V , with respect to
a G-invariant inner-product on V .
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Lemma 4.3. Let G be an Oliver group and let V and W be L(G)-free real
G-modules. If V and W are dim-equivalent and P(G)-matched, then the
element x = [V ]− [W ] belongs to dS(G) (furthermore there exists an L(G)-
free real G-module U such that V ⊕ U ⊕ R[G]⊕mL(G) and W ⊕ U ⊕ R[G]⊕mL(G)

are Smith equivalent for any m ∈ N).

Proof. By definition, dS(G) coincides with S(G)∩RO0(G). Since V and W
are dim-equivalent, x = [V ]− [W ] belongs to RO0(G). By [13, Theorem 6.7]
(obtained by equivariant surgery theory [2, 3]), the element x belongs to
S(G). �

Proof of Theorem 1.1. LetG be an Oliver group. By Lemma 4.3, RO0(G)
L(G)
P(G)

is contained in dS(G). By Lemma 4.2 and C. U. Sanchez [20, Corollary 1.11],
S(G) is contained in RO(G)P∗(G). Therefore we obtain

RO0(G)
L(G)
P(G) ⊂ dS(G) ⊂ RO0(G)P∗(G).

Since RO0(G) = RO0(G/G
∩2)⊕RO0(G){G

∩2} and RO0(G/G
∩2) = 0, RO0(G){G

∩2}

coincides with RO0(G). SinceGnil = G∩2, we have RO0(G)
L(G)
P(G) = RO0(G)

{G∩2}
P(G) ,

and hence
RO0(G)P(G) ⊂ dS(G) ⊂ RO0(G)P∗(G).

�

5. Proofs of Theorems 1.2, 1.3 and 1.4

Let m be a natural number. In this section, we recall basics of the repre-
sentation theory of Sm and Am. Details of the theory are given in [7, 9].

First, let g be an element of Sm. We call a product g1g2 · · · gr of disjoint
cycles gi = (gi,1, gi,2, . . . , gi,τi) the cycle decomposition of g if the conditions
g = g1g2 · · · gr, τ1 ≥ τ2 ≥ · · · ≥ τr, and m = τ1 + τ2 + · · · + τr all are
fulfilled. By virtue of cycle decomposition, each element g ∈ Sm determines
a partition τ(g) = (τ1, τ2, . . . , τr) of m for some r ∈ N. Clearly an arbitrary
partition t of m is obtainable as τ(g) for some g ∈ Sm. A partition t
of m determines a Young diagram Y D(t), (as well as a typical standard
Young tableau Y T (t),) and a Young symmetrizer ct ∈ Z[Sm], see [7, p.46,
(4.2)]. For a subfield F of C, we mean by F [Sm]ct the image of ct by right
multiplication on F [Sm]. By [7, Theorem 4.3], we have c2t = ntct for some
nt ∈ N and Vt = C[Sm]ct is an irreducible complex Sm-module. Here we
remark that Vτ(g) and Vτ(h), where g, h ∈ Sm, are isomorphic if and only
if the Sm-conjugacy classes (g)Sm of g and (h)Sm of h coincide with each
other. Let FSm be a complete set of representatives of Sm-conjugacy classes
of elements of Sm. Then the set {[Vτ(g)] | g ∈ FSm} is a basis of the free
module R(Sm) over Z. It is easy to see the next fact.
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Proposition 5.1. Let FSm be as above. Then the sets {[Q[Sm]cτ(g)] | g ∈
FSm} and {[R[Sm]cτ(g)] | g ∈ FSm} are bases of R(Sm,Q) and RO(Sm),
respectively. Therefore ROQ(Sm) = RO(Sm) and RO0(Sm) = 0.

Theorem 1.2 immediately follows from Proposition 5.1.
For any x ∈ RO(Sm), y ∈ RO(Cn2 ) and ψ ∈ Gal(Sm × Cn2 ), ψ(x ⊗ y) is

isomorphic to x⊗y, because the character of x⊗y has values in Q. Therefore,
we obtain Theorem 1.3.

For a partition t of m, the conjugate partition t′ of m to t is defined by
interchanging rows and columns in the Young diagram. We remark that
Vt′ is isomorphic to Vt ⊗C C± as complex Sm-modules, where C± is the 1-
dimensional nontrivial complex Sm-module. The set T of all partitions of
m has the C2-action given by conjugations. Let Λs-conj be the set of self-
conjugate partitions of m, i.e. Λs-conj = T C2 , and let Λ∗ (⊂ T ) be a complete
set of representatives of the C2-orbit set (T r Λs-conj)/C2, e.g.

Λ∗ = {t ∈ T | t > t′},

with respect to the lexicographic order [7, Part I (4.22)].
Since A1 is the trivial group, dS(A1) = RO0(A1)P(A1) = 0. In the rest

of this section, let m be a natural number satisfying m ≥ 2, and let g
be an element of Am and a an odd permutation in Sm. We call g, or
more precisely the Sm-conjugacy class (g)Sm of g, split if (g)Sm 6= (g)Am ,
where (g)Am stands for the Am-conjugacy class of g. If g is split then
(g)Sm = (g)Am ∐ (aga−1)Am . We call g real if (g)Am = (g−1)Am . If g is
not real then we call g complex. If g is complex then clearly, g is split and
(g−1)Am = (aga−1)Am . We call g rational if (g)Am = (aga−1)Am . Therefore
g is rational if and only if g is not split. We use the notation:

A1 = {(x)Sm | x ∈ Am, x is split and real}.
A2 = {(x)Sm | x ∈ Am, x is complex}.
A3 = {(x)Sm | x ∈ Am, x is rational}.

For each i = 1, 2, 3, let Fi (⊂ Am) be a complete set of representatives of
Sm-conjugacy classes belonging to Ai.

Let t = (t1, t2, . . . , tr) be a partition of m. We call t split if t1, t2, . . . ,
tr are distinct odd natural numbers, therefore t1 > t2 > · · · > tr. The
next two lemmas are classical results, see [7, Section 5.1], particularly see
[7, Proposition 5.3].

Lemma 5.2. Let g be an element of Am and let τ be the partition of m
obtained from (the cycle decomposition of) g. Then the following holds.

(1) The element g is split if and only if τ is split.
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(2) Suppose g is split. Then the element g is real if and only if m−r ≡ 0
mod 4, where r is the length of τ .

Let Λsp be the set of all split partitions of m. For t = (t1, t2, . . . , tℓ) ∈
Λs-conj, taking the hook lengths of Y D(t), we obtain a split partition ω
(= ω(t)) = (ω1, ω2, . . . , ωr) of m, hence we have ω1 = 2t1− 1, ω2 = 2t2 − 3,
ω3 = 2t3 − 5, . . . . Conversely, for t ∈ Λsp, there is a unique partition
λ (= λ(t)) ∈ Λs-conj such that ω(λ) = t. Therefore the correspondences

Λs-conj
ω−→ Λsp and Λsp

λ−→ Λs-conj are bijective.

Lemma 5.3. Let g be an element of Am and let a be an odd permutation
in Sm. Then the following holds.

(1) Suppose g is split and real, and set λ = λ(τ(g)). Then resSm

Am
Q[Sm]cλ

is irreducible, and resSm

Am
R[Sm]cλ is the direct sum of non-isomorphic

irreducible real Am-modules Ug,+ and Ug,− such that

resSm

Am
Vλ = (Ug,+ ⊗R C) ⊕ (Ug,− ⊗R C).

In addition, for the character χUg,±
of Ug,±, χUg,+

(aha−1) = χUg,−
(h)

for h ∈ Am, χUg,+
(h) = χUg,−

(h) for h ∈ Am such that (h)Sm 6=
(g)Sm , and

χUg,+
(g) =

1

2

(

1 +
√

q(g)
)

, χUg,−
(g) =

1

2

(

1 −
√

q(g)
)

,

for certain q(g) ∈ N satisfying
√

q(g) /∈ Q.

(2) Suppose g is complex, and set λ = λ(τ(g)). Then resSm

Am
Q[Sm]cλ and

resSm

Am
R[Sm]cλ are irreducible, and resSm

Am
Vλ is the direct sum of non-

isomorphic irreducible complex Am-modules Wg,+ and Wg,− such

that Wg,+ and Wg,− are of complex type and W g,+
∼= Wg,−, where

W g,+ is the complex conjugate ofWg,+. In addition, χWg,+
(aha−1) =

χWg,−
(h) for h ∈ Am, χWg,+

(h) = χWg,−
(h) for h ∈ Am such that

(h)Sm 6= (g)Sm , and

χWg,+
(g) =

1

2

(

−1 +
√

−q(g)
)

, χWg,−
(g) =

1

2

(

−1 −
√

−q(g)
)

,

for certain q(g) ∈ N.
(3) Let t be a partition of m which is not self-conjugate, i.e. t /∈ Λs-conj.

Then resSm

Am
Q[Sm]ct, resSm

Am
R[Sm]ct, and resSm

Am
Vt all are irreducible.

The q(g) in the lemma above is determined by τ(g) = (τ1, τ2, . . . , τr) with
the formula q(g) = τ1τ2 · · · τr.

We can prove the next proposition without difficulties.

Proposition 5.4. The following holds.
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(1) The set

{[resSm

Am
Q[Sm]cλ(τ(g))] | g ∈ F1 ∪ F2} ∪ {[resSm

Am
Q[Sm]ct] | t ∈ Λ∗}

is a basis of R(Am,Q).
(2) The set

{[Ug,+], [Ug,−] | g ∈ F1} ∪ {[Wg,+R
] | g ∈ F2}

∪ {[resSm

Am
R[Sm]ct] | t ∈ Λ∗}

is a basis of RO(Am), where Wg,+R
is the realification of Wg,+.

(3) The set

{[Ug,+ ⊗R C], [Ug,− ⊗R C] | g ∈ F1} ∪ {[Wg,+], [Wg,−] | g ∈ F2}
∪ {[resSm

Am
Vt] | t ∈ Λ∗}

is a basis of R(Am).

By virtue of Proposition 5.4 (3), we get |Λ∗| = |A3| = |F3|. We wonder
which map F3 → Λ∗ is a ‘natural’ one-to-one correspondence.

Proposition 5.5. Let g ∈ F1. For any element h of Am of even order, the
equality χUg,+

(h) = χUg,−
(h) holds.

Proof. Let a be an odd permutation in Sm. Since h is of even order, h is
rational, and hence (h)Am = (aha−1)Am . This implies

χUg,+
(h) = χUg,+

(aha−1) = χUg,−
(h).

�

Now we are ready to see the next proposition which we need in the study
of the d-Smith set of Am.

Proposition 5.6. Let P be the set of all natural numbers being prime pow-
ers.

(1) The set {[Ug,+] − [Ug,−] | g ∈ F1} is a basis of RO0(Am).
(2) The set {[Ug,+]−[Ug,−] | g ∈ F1 and ord(g) /∈ P} is a basis of RO0(Am)P(Am).

Proof. (1) Recall RO(Am) = RO0(Am) ⊕ ROQ(Am). By Proposition 5.4,
the set

{[Ug,+] − [Ug,−], [Ug,+] | g ∈ F1} ∪ {[Wg,+R
] | g ∈ F2}

∪ {[resSm

Am
R[Sm]ct] | t ∈ Λ∗}

is a basis of RO(Am). The set U = {[Ug,+] − [Ug,−] | g ∈ F1} is contained
in RO0(Am), because Ug,+ and Ug,− are Galois conjugate to each other, cf.
[21, Section 12.4]. Since

rank RO0(Am) = rank RO(Am) − rank ROQ(Am) = |F1|,
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U is a basis of RO0(Am).
(2) Let UP be the set consisting of [Ug,+] − [Ug,−] for g ∈ F1 such that g

is not of prime power order. Let Xm be the set of real Am-conjugacy classes
of elements in Am. We have the isomorphism

Ψ : RO(Am) ⊗Z R −→ Map(Xm,R)

of R-modules with the formula

Ψ([U ])((h)±Am
) = χU (h)

for real Am-modules U and h ∈ Am. Let g ∈ F1 and a ∈ Sm r Am. By
Lemma 5.3, we get

Ψ([Ug,+] − [Ug,−])(h) =

{

0 if (h)Sm 6= (g)Sm
√

q(g) if (h)Sm = (g)Sm ,

and

Ψ([Ug,+] − [Ug,−])(aha−1) = −Ψ([Ug,+] − [Ug,−])(h)

for h ∈ Am. Let

x =
∑

g∈F1

ag([Ug,+] − [Ug,−])

be an element in RO0(Am)P(Am), where ag ∈ Z. For g ∈ F1 of prime

power order, we have ag = 0, because Ψ(x)(g) = ag
√

q(g) = 0. Therefore,
RO0(Am)P(Am) is contained in the submodule 〈UP〉Z of RO(Am) generated
by UP . Since UP ⊂ RO0(Am)P(Am), we obtain RO0(Am)P(Am) = 〈UP〉Z. �

Recall that g ∈ Am is not of prime power order if and only if τ1τ2 · · · τr is
not any prime power, where τ(g) = (τ1, τ2, · · · , τr).

Corollary 5.7. Let P be the set of all natural numbers being prime powers.

(1) The Z-rank of RO0(Am) is equal to the number of (g)Sm , g ∈ Am,
such that the corresponding partition τ(g) of m consists of distinct
odd integers, and m− r ≡ 0 mod 4, where r is the length of τ(g).

(2) The Z-rank of RO0(Am)P(Am) is equal to the number of conjugacy
classes (g)Sm , g ∈ Am, such that the corresponding partition τ(g) of
m consists of distinct odd integers τi, and m − r ≡ 0 mod 4, and
τ1τ2 . . . τr /∈ P, where τ(g) = (τ1, τ2, . . . , τr).

By Lemma 5.2, Proposition 5.6 (1) and Corollary 5.7 (1), we obtain |F1| =
π(m) and the Z-rank of RO0(Am) is equal to π(m).

We can readily obtain Theorem 1.4 from Corollary 4.1, Proposition 5.5,
and Corollary 5.7 (2). �



THE d-SMITH SETS OF CARTESIAN PRODUCTS OF FINITE GROUP 25

6. Proof of Corollary 1.5

In the case where m ≤ 9 or m ∈ {12, 13, 17}, it is straightforward to
show that ρ(m) = 0, which implies dS(Am) = 0. Let I = {m ∈ N | m ≥
10} r {12, 13, 17}. In the following, we show ρ(m) > 0, which implies
dS(Am) 6= 0, for m ∈ I.

Case 1: m = 4k+ 2 ≥ 10. First, let m = 4k+ 2 ≥ 10, k ∈ N (hence k ≥ 2),
such that m− 3 is not any power of 3. Then the partition t = (m− 3, 3) of
m satisfies the conditions (P1)–(P4) described before Theorem 1.4.

Second, let m = 4k + 2 ≥ 18, k ∈ N (hence k ≥ 4), such that m − 7 is
not any power of 7. Then the partition t = (m − 7, 7) of m satisfies the
conditions (P1)–(P4).

Third, let m = 4k + 2 ≥ 38, k ∈ N (hence k ≥ 9). Then the partition
t = (m− 25, 9, 7, 5, 3, 1) of m satisfies the conditions (P1)–(P4).

Therefore we conclude ρ(m) > 0 for m = 4k + 2 ≥ 10, k ∈ N.

Case 2: m = 4k+ 3 ≥ 11. Let m = 4k+ 3 ≥ 11, k ∈ N (hence k ≥ 2), such
that m− 4 is not any power of 3. Then the partition t = (m− 4, 3, 1) of m
satisfies the conditions (P1)–(P4).

Let m = 4k + 3 ≥ 15, k ∈ N. Then the partition t = (m − 8, 5, 3) of m
satisfies the conditions (P1)–(P4).

Therefore we conclude ρ(m) > 0 for m = 4k + 3 ≥ 11, k ∈ N.

Case 3: m = 4k ≥ 16. Let m = 4k ≥ 16, k ∈ N (hence k ≥ 4). Then the
partition t = (m− 9, 5, 3, 1) of m satisfies the conditions (P1)–(P4), hence
ρ(m) > 0.

Case 4: m = 4k+ 1 ≥ 21. Let m = 4k+ 1 ≥ 21, k ∈ N (hence k ≥ 5), such
that m is not any prime power. Then the partition t = (m) of m satisfies
the conditions (P1)–(P4).

Next let m = 4k + 1 ≥ 25, k ∈ N (hence k ≥ 6). Then the partition
t = (m− 16, 7, 5, 3, 1) satisfies the conditions (P1)–(P4).

Therefore we conclude ρ(m) > 0 for m = 4k + 1 ≥ 21, k ∈ N.

By the investigation in Cases 1–4, we have proved ρ(m) > 0 for all m ∈ I.

7. Proof of Theorem 1.6

Let m and n be natural numbers, and let G = Am × Cn2 . From here to
Proposition 7.2, let m be a natural number satisfying m ≥ 2. For natural
number k, let Ik be the set {1, 2, . . . , k}. Let V1, V2, . . . , V2n denote the all
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non-isomorphic irreducible real Cn2 -modules. Then, the set

{[Ug,+ ⊗ Vi], [Ug,− ⊗ Vi] | g ∈ F1, i ∈ I2n}
∪ {[Wg,+R

⊗ Vi] | g ∈ F2, i ∈ I2n}
∪ {[(resSm

Am
R[Sm]ct) ⊗ Vi] | t ∈ Λ∗, i ∈ I2n}

is a basis of RO(G).

Proposition 7.1. The set

{[Ug,+ ⊗ Vi] − [Ug,− ⊗ Vi] | g ∈ F1, i ∈ I2n}
is a basis of RO0(G).

Proof. Recall RO(G) = RO0(G) ⊕ ROQ(G). The set

{[Ug,+ ⊗ Vi] − [Ug,− ⊗ Vi], [Ug,+ ⊗ Vi] | g ∈ F1, i ∈ I2n}
∪ {[Wg,+R

⊗ Vi] | g ∈ F2, i ∈ I2n}
∪ {[(resSm

Am
R[Sm]ct) ⊗ Vi] | t ∈ Λ∗, i ∈ I2n}

is a basis of RO(G). The set V = {[Ug,+⊗Vi]−[Ug,−⊗Vi] | g ∈ F1, i ∈ I2n} is
contained in RO0(G), because Ug,+⊗Vi and Ug,−⊗Vi are Galois conjugate to
each other. If W is an irreducible Am-module, then ψ(W ⊗Vi) = (ψW )⊗Vi
for any ψ ∈ Gal(G) and i ∈ I2n . Thus an arbitrary element of RO0(G) is
represented as a linear combination over Z of [W ⊗ Vi] − [(ψW ) ⊗ Vi] such
that W is an irreducible real Am-module, i ∈ I2n , and (ψW )⊗Vi is a real G-
module. Furthermore, if W ≇ Ug,± for all g ∈ F1, then (1 −ψ)[W ⊗ Vi] = 0
for any ψ ∈ Gal(G). Therefore, RO0(G) ⊂ 〈V〉Z, i.e. RO0(G) = 〈V〉Z. �

We remark that the Z-rank of RO0(G) is equal to 2nπ(m).
Let F11 (resp. F12) be the set of all elements g ∈ F1 such that the order

of g is prime power (resp. not prime power). For g ∈ F1 and i ∈ I2n , let
ug,i = [Ug,+ ⊗ Vi] − [Ug,− ⊗ Vi].

Proposition 7.2. The set

{ug,i − ug,2n | g ∈ F11, i ∈ I2n−1} ∪ {ug,i | g ∈ F12, i ∈ I2n}
is a basis of RO0(G)P(G).

Proof. Let W = {ug,i−ug,2n | g ∈ F11, i ∈ I2n−1}∪{ug,i | g ∈ F12, i ∈ I2n},
and let Xm,n be the set of real G-conjugacy classes of elements in G. We
have the isomorphism

Ψ : RO(G) ⊗Z R −→ Map(Xm,n,R)

of R-modules with the formula

Ψ([U ])((h)±G) = χU (h)
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for real G-modules U and h ∈ G. Let

x =
∑

g∈F1

2n
∑

k=1

ag,kug,k

be an element in RO0(G)P(G), where ag,k ∈ Z. For i ∈ I2n , let χi be the
character of Vi. By Lemma 5.3, we get

Ψ(x)(h, t) =

{

0 if h /∈ F1
√

q(h)
∑2n

k=1 ah,kχi(t) if h ∈ F1,

for (h, t) ∈ Am × Cn2 = G. For any g ∈ G of 2-power order, Ψ(x)(g) = 0.
For any h ∈ Am of odd prime power order and the unit element e ∈ Cn2 ,

Ψ(x)(h, e) =
√

q(h)
2n
∑

k=1

ah,k = 0,

i.e. ah,2n = −ah,1 − ah,2 − · · · − ah,2n−1. Therefore,

x =
∑

g∈F11

2n−1
∑

k=1

ag,k(ug,k − ug,2n) +
∑

g∈F12

2n
∑

k=1

ag,kug,k ∈ 〈W〉Z,

i.e. RO0(G)P(G) ⊂ 〈W〉Z. Since W ⊂ RO0(G)P(G), we obtain RO0(G)P(G) =
〈W〉Z. �

Proof of Theorem 1.6. If m = 1, then G is isomorphic to Cn2 , and RO0(G)
is trivial. If m ≥ 2, by Proposition 7.2, the Z-rank of RO0(G)P(G) is equal
to κ(m,n). If 2 ≤ m ≤ 4, then RO0(G) is trivial, because π(m) = 0.
Therefore, if 1 ≤ m ≤ 4, then dS(G) and RO0(G)P(G) are both trivial. If
m ≥ 5, dS(G) = RO0(G)P(G) immediately follows from Corollary 4.1. �

8. Proof of Corollary 1.7

Let m and n be natural numbers, and let G = Am×Cn2 . For any m and n,
κ(m,n) = 0 if and only if π(m) = ρ(m) = 0. By Remark and Theorem 1.6,
dS(G) = 0 if and only if m ∈ {1, 2, 3, 4, 7, 8, 12}.
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