

UISCARY CORY OF DOTURN RESELVED LEGOLLORY DELTERSITY OF LEGOLLORY

	HUK	-
周辺	2.20	
STATUS -	50. L	Line and the second
	1000	No.
	APL STOR	-
	N. COL	NATIONAL C
	Market S	
	Service of	Charles and
No.		
		the state of the s
		Contract of the local division of the local
100		States in
	記録	1000000
ETTER I		The second
		N. THERE IS
	17 IKA	No.
NUL N		a name
	1021	-
		141014
	105328	None of the local diversion of the local dive
		reland/set
		-
1000		-
	NEEK.	
	NR.	Charlen of
	STER.	517567
	No.	on a final state
	Ser la	Structure (
	NHC I	- Sector
		YE HY WAR
	時代	1
1	194	9

Meta Isioranda Room Cirril Vroproscing Republicati ECC: Contract Cong University on CLIncis Tribuns, CLINCIS 81801

> By W. H. MUNSE R. J. MOSBORG and R. W. BOHL

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

.

ţ.

by

W. H. Munse R. J. Mosborg and R. W. Bohl

A Summary Report of An Investigation

Conducted by

The University of Illinois Engineering Experiment Station

in Cooperation with

The Copper and Brass Research Association

University of Illinois Urbana, Illinois July 1953

CONTENTS

			Page
Ţ.	INTRODUC	TION	
	lď	Object and Scope of Investigation	1
	2.	Acknowledgments	3
II.	DESCRIPT	ION OF MATERIALS AND TESTS	
	3.	Description of Materials	3
	Ц.	Description of Specimens	<u>)</u>
	5.	Description of Tests	5
III.	PRESENTA	TION AND DISCUSSION OF TEST RESULTS	
	6.	Carbon-Arc Welding Process	8
	7.	Shielded-Arc Welding Process	9
	8.	Inert-Gas-Shielded-Arc Welding Process	10
	9.	Oxy-Acetylene Welding Process	10
	10.	Effect of Temperature on Mechanical Properties	11
IV.	ANALYSIS	AND INTERPRETATION OF TEST RESULTS	
	11.	General Discussion	12
	12.	Carbon-Arc Joints	15
	13.	Shielded-Arc Joints	15
	14.	Inert-Gas-Shielded-Arc Joints	16
	15.	Oxy-Acetylene Joints	17

~>

LIST OF FIGURES

Figure No.	<u>Title</u>
l	Assembly For Tests of Welded Copper Joints
2	Hardness Surveys on Copper Joints Welded by the Carbon- Arc Process
3	Macrostructures of Copper Joints Welded by the Carbon- Arc Process
<u>}</u>	Radiographs of Copper Joints Welded by the Carbon-Arc Process, Series II
5	Hardness Surveys on Copper Joints Welded by the Shielded- Arc Process
6	Macrostructures of Copper Joints Welded by the Shielded- Arc Process
7	Radiographs of Copper Joints Welded by the Shielded-Arc Process, Series II
8	Hardness Surveys on Copper Joints Welded by the Inert- Gas-Shielded-Arc Process
9	Macrostructures of Copper Joints Welded by the Inert-Gas Shielded-Arc Process
10	Radiographs of Copper Joints Welded by the Inert-Gas- Shielded-Arc Process, Series II
11	Hardness Surveys on Copper Joints Welded by the Oxy- Acetylene Process
12	Macrostructures of Copper Joints Welded by the Oxy- Acetylene Process
13	Radiographs of Copper Joints Welded by the Oxy-Acetylene Process, Series II
14	Lack of Bonding at Butt Interface in Joint 54A. Copper Silicon Rod, Shielded-Arc Process. 25X
15	Heavy Gas Porosity and Narrow Heat-Affected Zone in Joint Bl. Copper Silicon Rod, Carbon-Arc Process, 30X

-->

LIST OF FIGURES (CONT*D)

Figure No.

· •

;

Title

16	Comparison of Joints Produced by Shielded-Arc Method Using Different Filler Metals
17	Evidence of Deformation in Weld Metal Due to Thermal Distortion. Shielded-Arc Process
18	Structures Produced by Inert-Gas-Shielded-Arc Process, Deoxidized Copper Rod
19	Effect of Cu ₂ O on Structure of Joints Produced by Oxy- Acetylene Process
20	Copper Oxide Formations in Joint 59A. Brass Rod, Oxy- Acetylene Process
21	Shallow Penetration in Joint B27. Brass Rod, Oxy- Acetylene Process. 25X

LIST OF TABLES

Table No.	Title
1	Welded Copper Joint Descriptions as Proposed in the Initial Program
2	Welded Copper Joint Descriptions as Determined From Actual Weld Fabrication Data
3	Summary of Weld Fabrication Data for Carbon-Arc Process
λ ₄	Summary of Mechanical Properties at Room Temperature of Joints Welded by the Carbon-Arc Process
5	Summary of Metallurgical Examinations of Joints Welded by the Carbon-Arc Process
6	Summary of Weld Fabrication Data for Shielded-Arc Process
7	Summary of Mechanical Properties at Room Temperature of Joints Welded by the Shielded-Arc Process
8	Summary of Metallurgical Examinations of Joints Welded by the Shielded-Arc Process
9	Summary of Weld Fabrication Data for Inert-Gas-Shielded- Arc Process
10	Summary of Mechanical Properties at Room Temperature of Joints Welded by the Inert-Gas-Shielded-Arc Process
11	Summary of Metallurgical Examinations of Joints Welded by the Inert-Gas-Shielded-Arc Process
12	Summary of Weld Fabrication Data for Oxy-Acetylene Process
13	Summary of Mechanical Properties at Room Temperature of Joints Welded by the Oxy-Acetylene Process
14	Summary of Metallurgical Examinations of Joints Welded by the Oxy-Acetylene Process
15	Summary of Mechanical Properties of Joints Tested at -321° F
16	Summary of Mechanical Properties of Joints Tested at $+400^{\circ}$ F

~>

SYNOPSIS

This bulletin presents a summary and brief analysis of the results of an extensive series of tests of welded copper joints prepared by the carbon-arc, shielded-arc, inert-gas-shielded-arc, and oxy-acetylene processes. The joints were made in three base materials: (a) electrolytic tough-pitch, (b) decxidized high-phosphorus, and (c) oxygen-free high conductivity copper. In addition to the mechanical properties and details of the welding procedures, the results from hardness studies and extensive metallurgical studies are presented for each of the joints.

I. INTRODUCTION

During recent years, a great many new procedures and processes have been developed in the art of copper welding. The processes and procedures have not always been well suited to all coppers and, at times, have not been applied properly. Consequently, commercial welds in copper have shown a great variety in quality and properties.

One of the factors which is of paramount importance in the welding of copper is the personal factor. The techniques and abilities of the operators vary considerably and may account for a large part of the variation obtained in the properties of welded copper joints prepared by different individuals.

1. Object and Scope of Investigation

The investigation reported herein was suggested by the Copper and Brass Research Association as a means of obtaining fundamental design data for the various types of welded copper joints in use in the copper industry. Four welding processes have been included in the program: (a) carbon-arc, (b) shielded-arc, (c) inert-gas-shielded-arc, and (d) oxyacetylene. These four processes, using a variety of filler metals, have been applied to three coppers: electrolytic tough-pitch, deoxidized highphosphorous, and oxygen-free high conductivity (OFHC). In the original planning for this investigation, it was considered desirable to test joints prepared by a number of fabricators from the copper industry. These joints are referred to herein as Series I. Each of the fabricators was asked to indicate the types of welded copper joints normally prepared in their shops. The fabrication of the test specimens was then assigned to these various concerns so that each would fabricate joints by a process which he generally employed. In a few cases, however, fabricators were requested to prepare specimens by a procedure with which they were not thoroughly acquainted.

A second series of joints was prepared by one fabricator who was chosen as one of the best qualified in the industry to produce good quality welded copper joints. Although highly qualified, the fabricator of the Series II specimens was not completely familiar with all of the welding procedures included in the program.

It is realized that the welds used in this study were not necessarily prepared with the most desirable welding procedures. However, the results of the laboratory studies and the weld procedure data furnished by the fabricators provide information concerning the expected strength of joints prepared by these procedures. Although the tests reported herein do not include all of the latest developments in the field of copper welding, they do indicate the characteristics of the welds produced by the procedures reported. It is hoped that the tests will help to stimulate improvements in the existing procedures and the development of new procedures for the welding of copper structures in order that the base materials may be used more efficiently and effectively.

2. Acknowledgments

The tests reported in this bulletin are part of an investigation resulting from a cooperative agreement between the Engineering Experiment Station of the University of Illinois and the Copper and Brass Research Association and have been a part of the Structural Research program of the Civil Engineering Department under the general direction of N. M. Newmark, Research Professor of Structural Engineering. The project has been under the general direction of W. H. Munse, Research Associate Professor⁵ of Civil Engineering and R. J. Mosborg, Research Assistant Professor⁵ of Civil Engineering. Messrs. N. A. Weil, Tung Au, and F. L. Howland, Research Assistants in Civil Engineering, conducted the tests and were assisted by Messrs. R. Smith and W. McKenzie, laboratory mechanics of the Civil Engineering Department. The metallurgical studies were made under the direction of R. W. Bohl, Assistant Professor of Metallurgical Engineering.

The assistance and encouragement of an Advisory Committee representing the copper industry has been most helpful in this investigation. The authors would like to acknowledge, in particular, the assistance received from Mr. A. I. Heim, Engineer for the Copper and Brass Research Association and Secretary of the Advisory Committee.

II. DESCRIPTION OF MATERIALS AND TESTS

3. Description of Materials

Three types of copper have been included in this investigation: electrolytic tough-pitch copper, deoxidized high-phosphorus copper and OFHC copper. The three coppers, in 1/8-in. and 1/4-in. thicknesses, were obtained from one copper producer. This was done so that all of the joints produced by the various fabricators would be from the same base materials.

The first series of joints was prepared by ten copper fabricators. Although the procedures used for the preparation of these specimens were the same as those generally used by the fabricators, there were a few instances in which a fabricator was asked to prepare a joint by a procedure with which he was not too well acquainted. The second series of joints was prepared by a single fabricator who was considered to have a great deal of background and experience in the fabrication of welded copper joints.

Each of the fabricators was requested to record the details of the procedure used by his concern in the fabrication of the test material. Although a standard form had been prepared for the weld procedure data, the completeness of this data was found to vary considerably from one fabricator to the next. The details of these procedures will be presented later in order that the reader may correlate the results of the tests with the detailed welding procedures.

The welding procedures reported for the Series II tests are somewhat more consistent than those presented for the Series I tests. Even in this case, however, the information supplied is not complete. In addition to the weld procedure data, the fabricator of the Series II specimens provided radiographs of the welds.

4. Description of Specimens

A total of 42 welded joints was prepared in duplicate from 12 in. by 60 in. copper sheets. These sheets were welded along the 60-in. length, thereby making joints which were 24 in. wide by 60 in. long.

A summary of the type of joint, filler metal, type of copper, and joint number as originally proposed for this program is presented in Table 1. The odd numbers in this table designate joints fabricated from 1/8-in. material, whereas the even numbers represent joints produced from 1/4-in. copper sheet. However, during the fabrication of the test joints, a number of changes were made in the welding processes and filler metals. As a result, it was necessary to reclassify all of the joints in accordance with the weld fabrication data. This latter classification and description of joints are presented in Table 2.

Tensile test specimens comparable to ASTM Designation E8-49 for flat sheet specimens were prepared with a gage length 2 in. long and a reduced section 1-1/2 in. wide. These specimens were cut from the center of each of the welded joints with the weld transverse to the axis of the specimen. One of the specimens assembled in the special pullheads developed for this program is shown in Fig. 1.

In the preparation of the tensile test specimens, all backing strips and weld reinforcements were removed to provide a uniform basis of comparison for all of the joints. Such a procedure was necessary because of the great variety of welds included in the program. In any application of the data presented herein, it must be borne in mind that the strengths represent a joint for which the weld reinforcement has been removed, and that a joint with reinforcement may be somewhat stronger.

5. Description of Tests

The tensile tests of the welded joints were conducted in a 30,000-lb Riehle Universal testing machine. A mechanical extensometer

was used to obtain the elongation over a 2-in. gage length centered on the joints. These measurements combined with the indicated load have been used to obtain what has been called a yield index for the welded joints. The term "yield index", rather than yield strength, has been chosen to indicate the yielding of these joints because yielding may have occurred in the base metal and/or weld metal, and consequently, may not be too significant. However, the value of yield index provides a convenient basis for comparison of the behavior of the welded joints tested. A similar designation, "elongation index", has been used to indicate the total per cent elongation in the specimen.

The tensile tests of welded joints were conducted primarily at room temperature (approximately $80^{\circ}F$). In addition, those joints which exhibited the greater strengths were tested also at temperatures of +400 $^{\circ}F$ and $-321^{\circ}F$. These latter studies were conducted to determine the effect of high and low temperatures on the behavior of the joints.

In conjunction with the tensile tests, extensive studies were made to determine the metallurgical characteristics of the joints. The specimens for these metallurgical studies consisted of small strips which were cut normal to the joint and contained a section of the weld. One of the specimen faces containing the weld section was ground with successively finer grit emery papers through 3/0 grit. The surface was then metallographically polished by an electrolytic method; it was considered inadvisable to polish the surface of this soft material mechanically.

After a suitable metallographic surface had been obtained, a micro-hardness survey was made along a straight-line traverse parallel to the surface of the plate and included the weld metal, heat-affected zone,

and the base metal. The indentations were made with a Tukon Hardness Tester, using a 136 deg. Vickers Diamond Pyramid Indentor under a load of 1,000 gm.

The specimens were then etched and photographed at magnifications of from 2X to ¹4X to obtain a record of the macrostructure of each joint. In some cases, it was extremely difficult to obtain pictures which would reveal both the base metal and weld metal structures because of the difference in their reflectivity.

The specimens were next examined under a microscope and the microstructure of the various parts of the joints noted. Photo-micrographs were made of the significant regions of many of the joints.

III. PRESENTATION AND DISCUSSION OF TEST RESULTS

On the basis of the welding processes, the results of the tests have been divided into four general classifications: carbon-arc, shieldedarc, inert-gas-shielded-arc, and oxy-acetylene. These results are summarized as follows:

		Pro	Cess	
	Carbon-Arc	Shielded- Arc	Inert-Gas- Shielded-Arc	<u>Oxy-</u> Acetylene
Weld Fabrication Data	Table 3	Table 6	Table 9	Table 12
Hardness Survey	Fig. 2	Fig. 5	Fig. 8	Fig. 11
Mechanical Properties	Table 4	Table 7	Table 10	Table 13
Macrostructures	Fig. 3	Fig. 6	Fig. 9	Fig. 12
Metallurgical Examination	Table 5	Table 8	Table 11	Table 14
Radiographic Examination	Fig. 4	Fig. 7	Fig. 10	Fig. 13

6. Carbon-Arc Welding Process

Summaries of the weld fabrication data for the joints prepared by the carbon-arc process are given in Table 3. In general, the joints listed in the first part of this table were made using a copper silicon rod, while those in the second part of the table were made with a phosphorbronze rod. Differences will be noted in some of the procedures and occasionally part of the important information is missing. However, except for joints No. 50A and 50B, the basic information is available.

The mechanical properties determined from room temperature tests of the specimens welded by the carbon-arc process are summarized in Table 4. In the first part of this table, it can be seen that welds prepared with the deoxidized copper base metal gave the greatest strengths while the specimens of electrolytic tough-pitch copper and OFHC copper, in individual cases, gave low strengths. The weld strengths presented in the second part of the table are generally somewhat greater than those in the first part of the table. The lower strengths in the second group seem to have occurred when a phosphor-copper rather than a phosphor-bronze rod was used as the filler metal. The welds prepared with the phosphorbronze filler metal generally provided a considerable amount of ductility in the joints also.

Macrostructures of each of the welds prepared by the carbon-arc process are presented in Fig. 3. An indication of the magnification of each of these weld sections may be obtained readily since the odd-numbered joints were made of 1/8-in. plate while the even-numbered joints were made of 1/4-in. plate.

The summaries of the metallurgical examinations of each of the joints are given in Table 5. In these tables, it can be seen that all of

the joints except 50A showed relatively good continuity. Joint 50A, however, appeared to be lacking in bonding action and as a result exhibited an extremely low tensile strength. The heat-affected zone of the carbon-arc welded joints was large in most cases. This is evident in the macrostructures and in the hardness surveys of the welds.

A majority of the welded joints of Series II exhibited moderate to heavy porosity in the weld metal. The radiographs in Fig. 4 also show the porosity noted in the metallurgical summary of Table 5. Another feature noted in the metallurgical examination was the presence of copper oxide in the grain boundaries of the heat-affected base metal of those joints prepared with tough-pitch copper. This structure resulted from migration of the Cu_0O initially present in the copper.

7. Shielded-Arc Welding Process

The weld fabrication data for the joints prepared by the shielded-arc process are summarized in Table 6. For the most part, the welds summarized in the first part of Table 6 were prepared with a coppersilicon rod while those in the latter part of the table were prepared with a phosphor-bronze rod. In general, these joints were prepared in the flat position, using a backing strip, clamping, and preheating.

The mechanical properties of the joints are listed in Table 7. Most of the specimens made with the shielded-arc process fractured in the heat-affected zone or base metal except for the tough-pitch copper joints made with a copper-silicon rod. In general, the deoxidized copper specimens gave the greatest strengths. With few exceptions, the joints in the 1/4-in. material were consistently weaker than those in the 1/8-in. meterial.

The macrostructures and metallurgical examinations of the shielded-arc welded joints revealed porosity in many of the joints. This is shown also in the radiographs of Fig. 7.

8. Inert-Gas-Shielded-Arc Welding Process

The weld fabrication data for the inert-gas-shielded-arc welded joints are listed in Table 9. All of these joints were welded in the flat position and, in most cases, with a backing strip and clamping. The shield for all of the joints was argon gas, with a DC current.

The mechanical properties of the inert-gas-shielded-arc welded joints are summarized in Table 10. In all cases, the strength and ductility of these joints approached those of the base metal. Except for joint No. 10, the average strength obtained in these tests ranged from 26,000 to 31,000 psi.

The metallurgical examination indicated that these joints were, in general, quite sound and possessed excellent continuity. Some of the joints exhibited poor alignment; however, this did not seem to have any detrimental effect on their properties. The radiographs of Fig. 10 also show the excellent continuity and soundness of the inert-gas-shielded-arc welded joints.

9. Oxy-Acetylene Welding Process

Table 12 summarizes the weld fabrication information for the joints prepared by the oxy-acetylene welding process. In general, the

joints in the first part of this table were fabricated with a bronze rod whereas those in the second part of the table were prepared using a copper rod. Because numerous techniques were used in this process, the detailed weld procedures vary considerably from one joint to the next.

Table 13 presents a summary of the mechanical properties of the specimens fabricated by the oxy-acetylene process. In every case, the specimens exhibited strengths which were less than those of the base metal; a strength of approximately 29,000 psi appeared to be the maximum obtainable. In addition to a relatively low ultimate strength, the joints failed with a small amount of ductility. Several other observations based on the data in Table 13 are as follows: (1) of the two types of rod used, the brass rod produced joints which had the better mechanical properties, (2) the deoxidized copper joints appeared to be the strongest, and (3) many of the specimens failed through the weld.

The metallurgical studies (Fig. 12 and Table 14) indicate that, except in the case of deoxidized copper joints, all of the welds made with a brass rod contained moderate porosity and oxide penetration. A heavyporosity was noted in the joints prepared with a copper rod. In addition, these latter joints did not have good bond or continuity and the base metal contained large heat-affected zones.

10. Effect of Temperature on Mechanical Properties

The joints of Series II which developed the higher strengths were tested at temperatures of $-321^{\circ}F$ and $+400^{\circ}F$. Results of these tests are summarized in Tables 15 and 16 respectively.

The welded joints tested at $-321^{\circ}F$ developed ultimate strengths which were considerably above that obtained at room temperature and ranged from 38,000 to 50,000 psi. However, the lower strengths occurred only in the case of the electrolytic tough-pitch copper; the ultimate strength of the other joints (at $-321^{\circ}F$) was generally in the neighborhood of 46,000 psi. At this same temperature, the base metals had an ultimate strength of approximately 52,000 psi.

The joints tested at +400°F exhibited ultimate strengths between 14,000 and 22,000 psi. The average strength of these joints was approximately 17,000 psi. The base metal strength at +400°F was about 23,000 psi^{*}.

IV. ANALYSIS AND INTERPRETATION OF TEST RESULTS

11. General Discussion

¥

A study has been made of the structural state of the joints and the subsequent changes in the structures resulting from welding. The observations based on this study, in turn, have been used to understand more fully the results of the tensile tests.

Microstructures wholly typical of a particular type of welded joint are difficult to obtain since the technique and skill of the welder are as important as the methods and materials used. This is emphasized by the large variations in the metallurgical structure and mechanical properties exhibited by the joints of supposedly duplicate plates. A great many valid observations, however, can be made on the basis of the metallurgical data from the various joints.

The low physical properties of the joints can generally be attributed to one or more of the following: (1) oxides in the metal,

"Mechanical Properties of Coppers at Various Temperatures", by W. H. Munse and N. A. Weil, Proceedings ASTM, Vol. 51, 1951, p. 996.

(2) weld metal porosity, (3) extreme grain growth in the base metal,
(4) poor penetration and flow of the weld metal, (5) lack of structural sontinuity across the bonding interface, or (6) poor alignment.

Oxides are introduced readily during welding either from oxygen in the atmosphere or some other source, a notable exception being the inert-gas-shielded-arc method. In tough-pitch copper, the oxides are already present in the base metal and, with the addition of heat, may be redistributed into deleterious concentrations at the grain boundaries. The formation of copper oxide during welding or the redistribution of copper oxide which is already present in the base metal can seriously affect the quality of bond in a joint. Its presence also has a serious effect on the ductility of the metal, particularly when it is located in continuous masses.

Porosity in the weld metal is a common defect which is extremely difficult to control. It may be caused by: (a) the presence of gases which dissolve when the metal is molten and rapidly evolve when the melt solidifies, (b) reaction within the melt of oxygen or oxides and dissolved reducing agents, and (c) an entrapment of the surrounding atmosphere in the melt. An excellent correlation was generally found between the mechanical properties of the welded joints and the extent of porosity in the weld metal. In these tests there was no evidence that the type of base metal influenced the extent of weld metal porosity. However, there did appear to be a greater prevalence of shrinkage type porosity in the welds made with copper or brass rods than in the welds made with copper-silicon or bronze rods. The welds made with copper and brass rods solidify through a narrow range of temperature. Hence there is little time for the

dendritic cavities, formed during solidification, to be filled by the molten metal. In addition, the base metal is an excellent conductor of heat and produces a rapid rate of solidification of the melt which also tends to increase the degree of porosity. The rate of cooling, however, can be retarded by preheating the plate, thus decreasing the capacity of the plate to conduct heat away from the weld. The voids formed by shrinkage are small and uniformly distributed. Therefore, they are much less important than the porosity voids resulting from gas evolution.

Many of the welds contained gas (CO) porosity; this was particularly true of the carbon-arc welds, and to a lesser degree, for the oxyacetylene and shielded-arc welds. It is believed that this porosity has been caused by either faulty technique or unfamiliarity with the welding process. Of the procedures used, only the inert-gas-shielded-arc process produced sound weld metal structures consistently.

One of the more important effects of the large amount of heat introduced during welding is the grain growth of the base metal structure in the vicinity of the joint. These coarse grains have a lower strength and hardness, and more important, have less ductility than the finer-grained structure of the base metal. The carbon-arc method of welding, because of its high rate of heat input, does not cause much grain growth. The other methods of welding all have a greater tendency to cause grain coarsening, especially the oxy-acetylene method.

Another defect revealed by the metallurgical examination was the incomplete bonding at many butt interfaces. In order to develop the full strength of the joint, structural continuity must exist across the interface. If this continuity is not obtained, a crack which propagates readily under load is present. This type of structure is illustrated in Fig. 14.

12. Carbon-Arc Joints

In general, the lower mechanical properties of the joints of the carbon-arc group were a direct result of excessive porosity or oxide formation. Gas porosity often occurs when this method of welding is used if precautions are not taken to prevent the highly soluble CO from becoming entrapped in the solidifying melt. An example of such a condition is shown clearly in Fig. 15.

Another factor which may be of considerable importance in this development of gas porosity is the humidity of the surrounding atmosphere at the time of welding. Welds prepared on a humid day may absorb and entrap moisture from the air and thus contain an unusually large degree of porosity. This may account for the lower strengths obtained in some of the joints in this group. Joints No. Bl, B49, and B2 (See Fig. 3) are examples of joints which contained large amounts of porosity and had relatively low strengths.

Joint 50A is another example of a very poor welded joint. This may be attributed to faulty welding technique since carbon-arc welds which were sound and had a strength approaching that of the three base metals were produced.

13. Shielded-Arc Joints

The shielded-arc process, in general, gave better joints with tough-pitch copper than did the carbon-arc process. Nevertheless, this process also provided a number of joints which were relatively weak.

The joints prepared using a phosphor-bronze rod appeared to be superior to those produced with a copper silicon rod. Sounder welds were when filler rods containing a deoxidizing element such as phostrue were used. Welds prepared with these two rods may be compared in 16a and 16b.

Another defect noted in the examinations of the shielded-arc wints was the incomplete bonding at the butt interfaces in a number of eints. If welding does not produce structural continuity across the interface, the junction is, in effect, a crack which propagates readily under face. Figure 16a illustrates incomplete bonding of this type.

Evidence that severe thermal stresses existed in the weld metal is shown in Fig. 17a and 17b. In the former figure, deformation bands in the form of dark parallel lines can be seen in the weld metal. Similar markings are visible in the latter figure around the large gas cavity which appears to provide a stress concentration.

The metallurgical survey indicated that the low strength obtained in joint No. 6 (Series I) may have been the result of incomplete continuity across the butt interface of the joint. This same condition may be noted in the case of joints No. 54A, B22 and B54. The joints of the shieldedarc group exhibited relatively good strengths except where full penetration was not obtained. The porosity in these joints, although quite heavy in some cases, did not reduce the strength of the joints to less than 75 percent of the base metal strength.

14. Inert-Gas-Shielded-Arc Joints

Of the processes considered in this program, the inert-gas-shieldedarc procedure produced the best joints regardless of the base metal. In a number of the cases, it was found that the heat-affected zone of the joints

ه فالل

relatively large. However, the joints exhibited excellent continuity and little micro-porosity (See Fig. 18a), and, although some oxide penetratran did exist, it was found to only a limited degree (See Fig. 18b).

5. Oxy-Acetylene Joints

A defect introduced in the oxy-acetylene method of welding is the absorption of oxygen by the metal at high temperatures and the subsequent precipitation of this oxygen at the grain boundaries as Cu₂0. These particles can seriously reduce the strength and ductility of the joint as their number and continuity increase. If, in addition, the plate is heated in a reducing atmosphere, a reaction occurs between the oxide and the reducing gas to form water vapor. This results in the formation of high internal pressures, which may disrupt the grain boundaries and set up a harmful internal stress system.

The formation of oxides also may prevent bonding at the weld metal-base metal interface. Incomplete bonding of this type is clearly shown in Fig. 19a. Figure 19b shows a narrow penetration of oxide which prohibited grain growth near the weld metal interface. A more serious formation of grain boundary oxides may be seen in Fig. 19c.

An unusual distribution of oxide was noted in joint No. 59A (Fig. 20). The metallurgical specimen showed two types of oxide penetration: in one area, (Fig. 20a), the oxides precipitated at the grain boundary, while in another area, (Fig. 20b), the oxide particles outline a grain structure other than that revealed by the etchant. Apparently, after the oxide precipitation occurred in the grain boundaries, deformation and recrystallization established a new grain structure. When the mechanical

These specimens were cut from this plate, cracks such as that pictured in Fig. 20c were noted. A metallographic specimen, cut to include this crack and polished in a direction perpendicular to the crack, revealed several additional fine fissures as shown by Fig. 20d. In Fig. 20e (magnification of 200X) it can be seen that a heavy precipitation of Cu₂0 at the grain boundaries destroyed the intergranular cohesion of the material.

The structure of the joints prepared with an oxy-acetylene flame and a brass filler rod were quite similar for deoxidized and OFHC copper. However, the tough-pitch copper was characterized by a very slight degree of coarsening of the base metal structure and the precipitation of copper oxide in the grain boundaries of the base metal in the vicinity of the joint. When a brass filler rod was used, the penetration and structural continuity were not as good as expected. Since the melting point of the filler metal is lower than that of the base metal, the filler metal flows freely at a temperature below that at which good penetration of the base metal can occur. This may be seen in Fig. 21.

The weld data and macrostructures of the joints prepared by the Oxy-acetylene process reveal the great variety of procedures and joint details used by the different fabricators. The Series I specimens included beveled (single and double), scarfed and butt type joints. The Series II specimens were prepared by one fabricator and consequently are more consistent. Nevertheless, the 1/8-in. thick joints of Series II exhibited a great deal of misalignment.

Thus, the greatest variation in procedure, strength, and general properties was found in the joints prepared by the oxy-acetylene process. This process probably requires the greatest skill on the part of the operator.

PROCESS	FILLER METAL	JOINT NUMBER	EACH INCLUDES	A AND B PLATES)		
		ELECTROLYTIC Tough Pitch	PHOSPHOROUS DE OX 10 1 ZED	OXYGEN-FREE HIGH CONDUCTIVITY		
ARC	COPPER-SILICON ROD	1, 2	17, 18	¥9, 50		
Anc -	PHOSPHOR-COPPER ROD	3, 4	19, 20	51, 52		
DED-ARC	COPPER-SILICON ROD	5, 6	21, 22	53, 54		
ELDED-ARC	Phosphor-Bronze Rod	7, 8	23, 24	55, 56		
	DEOXIDIZED COPPER ROD	9, 10	25, -26	57, 58		
COCETYLENE	BRASS ROD	11, 12	27, 28	59, 60		
COSTYLENE	COPPER ROD	13, 14	29, 30	61, 62		

WELDED COPPER JOINT DESCRIPTIONS AS PROPOSED IN THE INITIAL PROGRAM

.

TABLE 1

 $\Delta (\mathbf{r}, \mathbf{r}) = \mathbf{r} + \mathbf{r}$ (1) and (1) and (1) are $\mathbf{k} = \mathbf{k} + \mathbf{r}$

	WELDING PROCESS	/ INLER METAL	an a	JOINT-NUMBERS		
	10000000000000000000000000000000000000		ELECTROLYTIC Tough Pitch	PHOSPHORUS Deoxidized	OXYCEN FREE HIGH CONDUCTIVITY	
	Carbon∞Aro Carbon∞Aro	COPPER-SILICON ALLOY (3 0/0) Phosphor-Bronze (Cu-Sn, grade D)	1A,1B,2A,2B \$A,4B	17 A, 17B, 18A, 18B	49A,49B	
•	Carbon⇒Arc Carbon⇒Arc Carbon⇒Arc	COPPER-PHOSPHORUS ALLOY (93-7) Phosphor-Bronze (CU-Sn, Grade Not Known Deoxidized-Copper (Type Not Stated)	3A, 3B	19 A ,19B 20A,20B	52A,52B	
	INERT-GAS-SHIELDED-ARC (Tungsten Electrode)	SILICON DEOXIDIZED COPPER	9A, 9B, 10A, 10B	25A,25B,26A,26B	57A,57B,58A,58B	
	SHIELDED-ARG	COPPER-SILICON ALLOY (3 0/0) (Covered Electrode: AVS-ASTM ECUS1)	5A, 5B, 6A, 6B	21A,21B,22A,22B	54A,53A,53B	
	SHIELDED-ARO	PHOSPHOR-BRONZE (A) (COVERED ELECTRODE; AWS-ASTM ECUSN-A)	7A,7B,8A,8B	24A,24B	55A,55B,56A,56B	
	Oxy-Acetylene Oxy-Acetylene Oxy-Acetylene	SILICON DEOXIDIZED COPPER PHOSPHOR DEOXIDIZED COPPER (SILVER-BEARING) PHOSPHOR AND MANGANESE DEOXIDIZED COPPER (SILVER-BEARING)	14A,14B	30A,30B	62A,62B 61A,61B	
	OXY-ACETYLENE	LOW-FUMING MANGANESE BRONZE (MELTING RANGE		28A,28B	60A, 60B	
	Oxy⊶Acetylene Oxy∞Propane	NAVAL BRASS (MELTING RANGE 1630-1650 ⁰ F) Spelter (Melting Range 1570-1610 ⁰ F)	11A, 11B 12A ₉ 12B	27A,27B	59A,59B	

$ _{\mathcal{L}} = _{\mathcal{L}} + _{$											
			((,),)	ni (agas to na	a instruction						
SEI		COUCHLIZER CON. SERI	E8 11	SERI	(); {();} ()[]() 28-1	n (RHCB Serie	ES 11	SER 1	5125575556(1 ['] E S 1	th(Cases	<u>s n</u>
1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.
1A 1B	2A 2B	B 1	B2	17A 17B	18A 18B	B17	B18	49A 49B	50A 50B	B¥9	B50
Everdur Amerigan	HERCULOY REVERE CO.	OLYMPIC Bronze Chase Co.	OLYMPIC Bronze Chase Co.	Everdur	Ôlympic Bronze W Chase Co.	OLYMPIC BRONZE CHASE CO.	OLYMPIC Bronze Chase Co.	Everdur 1010 American		OLYMPIC Bronze Chase Co.	OLYMPIC Bronze Chase Co.
Brass Co. 5/32	3/16	1/4	5/32-1/4	BRASS CO. 5/32	3/16	5/32-3/16	5/32-1/4	BRASS CO. 5/32		1/4	5/32=1/4
Everflux Shaker	H AND H LIQ. PAINT	Everflux Paste	Everflux Paste	Everflux Shaker	None	Everflux Paste	Everflux Paste	Everflux Shaker		Everflux Paste	Everflux Paste
Square 1/16 Flat Copper Yes	30 ⁰ Bevel 1/16 Flat Steel Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	Square 1/16 Flat Copper Yes	1/8 Flat Copper Yes	\$0 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	Square None Flat Copper Yes	A AVAILABLE	40 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes
9/8 Straight 150,200	3/8 D.C. Straight 38-40 A 375-400 B 550-500	9/8 D.C. Straight 28 210	5/16-3/8 D.C. Straight 28-30 180-240	3/8 D.C. Straight 150,200	D. Ç. Straight 37 260	5/16 D.C. STRAIGHT 25-26 160-150	5/16~9/8 D.C. Straight 28~27 200 ~ 270	3/8 D.C. Straight 125-150	NO DAT	3/8 D. C. Stra i ght 28 210	5/16-3/8 D.C. Straight 25-27 190-260
300	1100	600	600	•		600	600	300		600	600
2 None	2 Yes	None	None	2 None	1 None	None	None	2 Nome		None	None
	SEP 1/8 IN. 1/8 IN. 1/8 IN. 1/8 IN. 1/8 IN. 1/8 Everflux Share Co. 5/32 Everflux Shaker Souare 1/16 FLAT Copper Yes 3/8 Straight 150,200 300 2 None	Il cuirouvanioSERIES I1/8 IN.1/4 IN.1/8 IN.1/4 IN.1/8 IN.1/4 IN.1/8 IN.1/4 IN.1/8 IN.1/4 IN.1/8 IN.1/4 IN.1/8 IN.2A18 2BEverDurHerculoyAmericanRevere Co.Brass Co.3/16EverfluxH AND H Liq.Souare300 Bevel1/161/16FLATFLATCopperSteelYesYes3/83/8D.C.StraightStraightStraight300110022NONEYes	IL COTROUMATION COUCH LA DECHASERTESSERT1/8IN.1/4IN.1/8IN.1/4IN.1/8IN.1/4IN.1/8IN.1/4IN.1/8IN.1/4IN.1/8IN.1/4IN.1/8IN.1/4IN.1/8IN.1/4IN.1/8IN.1/4IN.EVERDURHERCULOY BRONZEOLYMP10 BRONZE CHASE CO.BRONZE BRONZE CHASE CO.American Brass Co. 5/323/161/4EVERFLUX SHAKERH AND H LIQ. PAINTEVERFLUX PASTESOUARE SOUARE 1/16300BEVEL 1/161/161/16 FLAT COPPER YES400 BEVEL FLAT COPPER YES3/83/8 D.C. STRAIGHT 38=403/8 28 2103/83/8 B-500 3003/8 11003001100600221NONEYESNONE	Ith Colspan="2">Colspan="2">Ith Colspan="2">Colspan="2">Ith Colspan="2">Ith Colspan="2" Ith Item Item Item Item Item Item Item Item	(A. DEFIDENTION OF ALL	WARE HERRY LAR FILL SERIES I 10 OUCHING IN COLUMN STRAIGHT SERIES II COLUMN STRAIGHT 1/8 IN. 1/4 IN. INTER TORM REVERE CO. CHASE CO. OLYMPIC EVERDUR BRONZE DLYMPIC EVERDUR BRONZE DLYMPIC EVERDUR BRONZE OLYMPIC EVERDUR BRONZE OLYMPIC AMERICAN REVERDUR BRONZE DLYMPIC EVERDUR BRONZE DLYMPIC AMERICAN REVERFLUX SUPERFLUX AMERICAN SUPER SUPER PASE	VALOR OUCH FLICHS SERIES I SERIES II SERIES SERIES SERIES II SERIES SERIES SERIES SERIES II SERIES SERIES SERIES SERIES II SERIES SERIES SERIES IMA INA INA INA INA INA INA INA INA INA IN	CONTROLUCTION OUGHENTION SERIES 11 1/4 IN. 1/4 IN. 1/8 IN. 1/4 IN. 1/8 IN. 1/4 IN. 1/4 SERIES 1 1/16 ITA 18A IS SERIES 1 ITA 18A BRONZE MERICAL MARCE CO. BRONZE CHASE CO. CO. CHASE CO. CHASE CO. BRONZE CHASE CO. BRONZE CO. CHASE CO. BRONZE CO. CHASE CO. CHASE CO. CHASE CO.	(A. CALL GER 10 CALL FLACK FUNCTION COUGHEAD OUT TO COUCHEAD OUT TO COUCHEA	CONTRACTOR FOR THE PLACE OPER 1 CONTRACTOR FOR THE PLACE OPER 1 SERIES I SERIES I	CAN IN THE DESCRIPTION OF CONSISTENCE OF CONSI

٢

 \sim_{2}

.

t: 1

1

ł

TABLE PROPERTY AND AND ADDRESS

and in the second s	and the second			the state of the second	2 X X						
· · · · · ·		ELECTROLYTI	C TOUGH PIT	CH		D. O. A. HYGH (RHC)					
	SER	IES I	SERIES II		SERIES 1		SERIES UNCOM			ei hat t	
	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 18.	1/8 IN,	1/4 IN.	1/4 m.	YAMI La	illiana,
WELD NO.	3A 3B	¥А ¥В	B3	B¥	19A 19B	20 A 20B	B19	B20	52A 52B	B51	B52
FILLER METAL Source	Deox Copper Revere Co.	Phosphor Bronze 310 American Brass Co.	PHOSPHOR Bronze American Brass Co.	Phosphor Bronze American Brass Co.	Phosphor Copper Vestinghouse	PHOSPHOR Bronze Morris Wheeler	PHOSPHOR Bronze American Brass Co.	Phosphor Bronze American Brass Co.	PHOSPHOR Bronze Morris Wheeler	PHOSPHOR Bronze American Brass Co.	PHOSPHOR BRONZE American Brass Co.
ROD SIZE, IN.	1/8	3/16	1/4	1/4	1/8	1/4	1/4	1/4	1/4	1/4	1/4
Flux Type	None	None	Everflux Paste	Everflux Paste	H AND H LIQ. Paint	Everflux Shaker	Everflux Paste	Everflux Paste	Everflux Shaker	Everflux Paste	Everflux Paste
JOINT DESIGN Edge Prep. Root Space, in. Position Backing Clamping	1/32 Flat None None	45 ⁰ Bevel None Flat Steel Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	SQUARE 1/16 Flat Steel Yes	60 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	60 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes
ARG METHOD Electrode Size, in. Current Polarity Voltage Amperage	1/8 D.C. Reverse 31 215	3/8 D.C. Straight 45 300,350	3/8 D.C. Straight 40 200	1/2 D.C. Straight 36 320	3/16 D.C. Straight 30~35 150~175	1/2, 3/8 D.C. Straight 325,425	3/8 D.C. Straight 38 190	1/2 D.C. Straight 40 370	1/2,3/8 D.C. Straight 325-425	3/8 D.C. Straight 38 190	1/2 D.C. Straight 39 290
PREHEAT TEMP. OF	None	None	600	600	400	300	600	600	300	600	600
PRODEDURE Passes Speed. IN/MIN	1	2 15			2 12	2			2		
PEENING	None	None	None	None	YES	None	None	None	None	None	None
								A second s			

و

1 Hill and the

•

ţ

									ai i				
		EL SERIE	<u>ectrolytic</u> S I	TOUGH PIT SERIES T	CH I	SERIE	DEOX HIG	H PHOS SERIES I	1	Callo SERIES Callo			
		1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/41N.	1/8 IN.	1/4 IN.	178 IN.	1/4 IN.	1/8 18.	
ELD NO.		1 A 1 B	2 A 2B	B 9	B2	17A 17B	18A 18B	B17	B18	49A 49B	50A 50B	849	B50
SP	EC. NO			392-196-9490-1994-1994 (BADA	94-96949494 Carington (949-494)	<u>, , , , , , , , , , , , , , , , , , , </u>			0.0×0400+04000.10+04044	347-480808000000ecece	<u>,</u>	0+0+**- 04020 +0+0+0+0	on Carlon Charlene - Churchér
AX IMUM TRENGTH P.S.I.)	1234	28,3\0 31,650 20,230 <u>25,690</u>	26,590 23,040 25,290 22,730	14,600 13,820	16,460 26,630	31,070 30,530 30,440 <u>31,900</u>	27,000 30,240 17,810 26,700	31,590 31,030	25,970 26,160	28,840 32,080 29,900 23,860	11,070 8,840 8,170 6,990	12,540 17,940	28,380 29,370
AV.		26,480	24,410	14,210	21,540	30,980	25,440	31,310	26,060	28,670	8,770	15,240	28,870
IELD NDEX P.S.I.)	1 2 8	12,920 14,200 12,840 <u>13,930</u>	13,380 11,670 10,570 <u>9,720</u>	10,300	10,950 12,750	14,940 14,190 19,760 <u>14,710</u>	10,420 10,410 12,010 11,560	12,330 12,060	10,760 11,480	12,400 12,990 16,100 14,150	7,560 6,470 5,890 5,270	8,480 13,150	10,060 10,620
AV.		13,470	11,330	10,300	11,850	14,400	11,100	12,190	11,120	13,910	6,300	10,810	10,340
LONGATION NDEX 0/0)	1 2 3	21.5 27.5 7.0 _12.8	18.8 14.7 17.8 16.3	3.1 4.8	6.5 16.0	47.7 40.8 28.5 30.7	23.8 42.7 12.7 33.7	29.0 38.0	21.5 19,5	19.7 31.8 28.7 25.3	4.3 5.0 4.4 3.2	5.1 4.8	28.5 35.5
AV.		17.2	16.9	3,95	11.2	36.9	28.2	33.5	20.5	26.4	4.2	:4;9	32.0
EDUCTION F AREA 0/0)	1 2 3	59.0 49.0 21.0 <u>17.0</u>	28.0 27.0 28.0 19.0	8.0 1%.0	1710 14.0	88.0 84.0 83.0 83.0	¥8.0 77.0 29.0 <u>64.0</u>	52.0 67.0	40.0 43.0	64.0 69.0 70.0 51.0	13.0 10.0	15.0 5.0	51.0 56.0
AV.		36.5	25.5	11.0	15.5	84.5	54.5	59,5	41.5	63.5	8.0	10.0	53,5
OCATION F Racture®	1 2 3 4	E.W. E.W. E.W. É.W.	E.W. H.Z. E.W. E.W.	M.W. M.W.	M.W. B.M.	B.M. H.Z. B.M. H.Z.	M.W. H.Z. M.W. E.W.	8.M. 8.M.	B.M. B.M.	H.Z. H.Z. H.Z. E.W.	M.W. M.W. M.W. M.W.	M.W. E.W.	B.M. B.M.

SUMMARY OF MECHANICAL PORPERTIES AT ROOM TEMPERATURE OF UNITED TO DO DO

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE METAL

* FRACTURE LOCATION

MARCH (BEARD)

SUMMARY OF MECHANICAL PROPERTIES AT ROOM TEMPERATORS OF JULINIES & JULINIES & JULINIES & AUGUST AND A SUMMARY OF

COLOCIATION ACCOUNTS	000000000000000000000000000000000000000						- Devening of the second second second					(x, y, x, γ) ((x, y, γ)	
		annan an a	ELECTROLYTI	C TOUGH P	ITCH	Carding to Decording	DEOX HIC	h phos	ownowe rats	entretret opmonen	QFJ	Ç	Distances
		SE	RIES I	SER	IES II	SER	IES J	SERI	ESIL	SER	IES I	SERIE	<u>s 11</u>
ر بنده در میرون مراجع میروند و میرون مراجع میروند و می		1/8 IN-	1/4 IN.	1/8 IN	1/4 IN.	1/8 IN.	1/4 IN.	<u>1/8' in</u>	1/41W.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.
WELD NO.	0-24020-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	3A 3B	48 48	B3	84	19A 19B	20A 20B	B19	B20		52A 52B	B51	B52
	SPEC. NO.	"······	· ·		· ·		· · ·		· · · ·		····	• • • •	, ,
MAXIMUM Strength (PSI)	1 2 3	23,020 24,150 17,710	30,330 28,530 30,360 20,620	31,790 22,020	18,480 20 ₀ 620	20,990 18,180 32,620	30,690 31,180 30,620	31,150 17,800	27, 540 19,510		30,220 29,850 30,650	26,830 19,640	30,870 26,250
(1.0010) A1	V.	20,420	27,460	26,900	19,550	22,060	30, 770	24,470	23,520		30,300	28,230	28,560
YIELD Index (P.S.I.)	2 3 #	13,420 13,270 12,260 12,960	13,710 12,130 13,540 14,290	10,700 10,690	10,570 10,690	16,210 15,160 16,490 13,840	12,280 11,410 11,380 11,450	11,050 10,850	8,670 8,780		11,380 14,710 10,070 10,650	11,460 11,170	9,480 9,370
A	¥.	12,980	13,420	10,690	10,630	15,420	11,680	10 ₉ 50	8,720		11,700	11,310	9,420
ELONGATION INDEX (0/0)	2 3 4	8°0 8°3 #°2 3°2	30.5 5.7 10.8 11.7	32.3 9.6	7.5 9.5	3.7 3.5 17.8 7.3	36.5 37.7 34.1 28.3	30,6 8,1	22.0 8.0	į	35:0 30:2 28:7 38:2	16.6 8.0	40.5 18.0
A	٨.	6,2	14.7	20.9	8.5	8,1	34.1	19.3	15.0	2	33.0	12.3	29.2
REDUCTION Of Area (0/0)	1 2 3 4	15.0 14.0 11.0 8.0	60.0 60.0 56.0 21.0	56.0 21.0	15.0 10.0	320 3520 8320 3120	83.0 83.0 83.0 83.0 83.0	85.0 12.0	30.0 15.0		83.0 33.0 75.0 85.0	26.0 28.0	83_0 25_0
		12.0	49,2	38,5	12.5	38,0	83,0	48.5	22.5		69.0	24.5	54.0
LOCATION OF Fracture®	1 2 8 4	E.V. E.V. E.V.	B.M. H.Z. H.Z. E.W.	B.M. M. V.	E.V. E.V.	M.W. E.V. (E.V. E.V.	B.M. B.M. B.M. B.M.	B.M. M.V.	M. W. M. V.		H.Z. M.V. FB.M. B.M.	M.¥. M.¥.	B.M. M. W.

* FRACTURE LOCATION

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE

l.

 $|1,10,10,12,10\rangle$

-	99999-09999-0999-099999-099-09-		SERIES I			: E. I.	
WELD No. (1)	BASE METAL (2)	APPEARANCE OF JOINT (3)	MICROSTRUCTURE OF BASE METAL (4)	MICROSTRUCTURE OF WELD METAL (5)	APPEARANCE OF THE H JOINT (6)	Contraction of the second seco	$\begin{array}{cccc} 1 & 1 & 0 & 1 \\ (1, -1)^{1-\frac{1}{2}} & (1+1) & 1 \\ (1, -1)^{1-\frac{1}{2}} & (1+\frac{1}{2}) \\ \end{array}$
1	E leot	STEEP STRUCTURAL GRADIENT AT JOINT, SOME CONTINUITY,	Narrov HAZ, (heat-affected Zone)	Segregation in Concentric rings in M. (Weld Metal)	STRUCTURAL CONTINUITY AND PENETRATION GOOD.	Some oxide pene- Tration in grain Boundary near Joint.	VERY HEAVY POROSITY.
2	Elect	EXCELLENT CONTIN- UITY ACROSS INTER- FACE.	NARROW HAZ.	Sound MM.	POOR CONTINUITY At root of weld.	HEAVY OXIDE PENE- TRATION NEAR JOINT.	HEAVY POROSITY.
17	. DEOX	GOOD BOND.	Large HAZ. Some oxide penetration at edge of plate.	Moderate Extent of Møcro+porosity.	FAIR PENETRATION, GOOD CONTINUITY.	No oxide penetration near joint.	Sound WM.
18	DEOX	CRACKED AT JUNCTION.	MODERATE HAZ.	STRONG COLUMNAR GROWTH, MICRO- Shrinkage porosity,	GOOD CONTINUITY And Fair Penetration.	SMALL OXIDE PENETRATION AT EDGE OF PLATE.	HEAVY POROSITY,
49	0FHC	GOOD CONTINUITY.	MODERATE HAZ. Grain growth Inhibited near Joint.	Moderate Micro-porosity In MM.	GOOD PENETRATION AND CONTINUITY.	Some oxide penetration at edge of plate,	VERY HEAVY Porosity,
50	OFHC	JOINT SHOWS GOOD PENETRATION AND GONTINUITY. BUTT JOINT IS ENTIRELY LACKING IN ANY BONDING: ACTION.	MODERATE HAZ.	HIGHLY CORED, Some Macro-porosity,	GOOD PENETRATION AND CONTINUITY.	No OXIDE PENETRATION.	MODERATE Porosity,

WELD NO. (1)	BASE METAL (2)	APPEARANCE OF Joint (3)	MICROSTRUCTURE OF BASE METAL (%)	OF VELD METAL (5)	APPEARANCE OF JOINT JOINT (6)	MICROSTRUCTURE OF BASE METAL (7)	OF WELD METAL (8)
3	ELECT	Good Bond.	NARROW HAZ.	VERY POROUS WM.	SHARP GRADIENT, LITTLE PENETRATION,	Some oxide, penetration near joint,	Very sound MM
ř.	ELECT .	GOOD BOND.	NARROW HAZ. Some grain growth inhibited along edge at plate.	HEAVILY CORED But Sound.	POOR CONTINUITY ACROSS INTERFACE.	HEAVY OXIDE PENETRATION NEAR. JOINT.	HEAVY POROSITY,
9	DEOX	SHARP BOUNDARY AT JUNCTION.	MODERATE HAZ.	HIGHLY CORED, Extensive Porosity,	GOOD PENETRATION AND CONTINUITY.	NO OXIDE PENETRATION	MODERATE POROSITY.
20	DEOX	SHARP GRADIENT, LITTLE PENETRATION,	Moderate HAZ.	CORED MM. Large amount of Micro-Porosity.	GOOD PENETRATION AND CONTINUITY.	NO OXIDE PENETRATION。	HEAVY POROSITY.
51	OFHC				FAIR PENETRATION AND CONTINUITY.	Some oxide Penetration at Edge of plate.	MODERATE POROSITY.
52	ofhc	LITTLE PENETRATION. Sharp break.	LARGE HAZ.	HEAVY CORING AND POROSITY.	FAIR PENETRATION, GOOD CONTINUITY.	Some OXIDE Penetration at Edge of plate.	Sound. Few pits.

.

Ų

.

SUMMARY OF WELD FABRICATION DATA FOR SHIELDED ARC PROCESS

(AS REPORTED BY FABRICATORS)

	ELEC	TROLYTIC	OUGH PITC	H		DEOX	HIGH PHOS		OFHC				
	SERIES	6	\$ER	IES II	SERIES I		SI	ERIES II	SERIES		8E1	RIES II	
	178 in.	174 IN. 1	78 IN.	174 IN.	178 IN.	1/4 18	N. 178 IN.	174 IN.	178 IN.	1/4 IN. 1/	8 IN.	174 IN.	
WELD NO.	5a 58	6Å 6B	B5	B6	21A 21B	22A 22B	B 21	822	53A 53B	54A	B53	B54	
FILLER METAL	SIL-TRODE	KOP-R-AR(COPPER	COPPER	SIL-TRODE	BRONZEND	COPPER	COPPER	SIL-TRODE	BRONZEND	COPPER	COPPER	
SOURCE	Amp CO Metal	KREMBS AND CO.	ARCOS CORP.	ARCOS CORP.	Ampco Metal	ARCOS Corp.	ARCOS CORP.	ARCOS CORP.	Ampoo Metal	ARCOS Corp.	ARCOS CORP.	ARCOS Corp.	
ROD SIZE, IN.	5/32	3/16	5/32	5/82	5/32	5/32	5/32	5/32	5/32	5/82	5/32	5/82	
Flux Type		Fluxine Paint							•				
JOINT DESIGN EDGE PREP。 ROOT SPACE。 IN。 Position Backing Clamping	Square 1/8 None	Double U 1/16 Flat Steel Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	SQUARE 3/32 Copper Yes	30 ⁰ Bever Tight 150 Angli Copper Yes	L 40 ⁰ Bevel 1/16 E Flat Copper Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	SQUARE 1/8 Copper Yes	BEVEL 3/32 1/8 Flat Steel Yes	40 ⁰ Bevel 1/16 Flat Copper Yes	400 Bevel 1/16 Flat Copper Yes	
ARG METHOD ELECTRODE SIZE, IN. CURRENT POLARITY VOLTAGE AMPERAGE	5/32 D.C. Reverse 26 200	3/16 D.C. Reverse 30-40 175-250	5/32 D.C. Reverse 35-37 160-150	D.C. Reverse 32 170-200	5/32 D.C. Reverse 26 200	5/32 D.C. Reverse 29 140	5/32 D.C. Reverse 32 140	5/32 D.C. Reverse 32-40 190-170	5/32 D.C. Reverse 26 200	5/32 D.C. Reverse 60 225-250	5/32 D.C. Reverse 32-30 140-160	5/32 D.C. Reverse 35~38 190~170	
PREHEAT TEMP. OF	1000	900-1100	800		1000	1000	800		750-800	CHERRY RED	800		
PROCEDURE Passes		2			1				1	2			
PEENING	None	YES	None	None	None	to a tala	None	None	None	None	None	None	
	an a		weighten in the spectrum of	. airde 7. w. et . k. x. et . a	*****	and, Do A Harwitz at some				International Control of Second S			

(現一規制:44年、自由一時4

5

Antonio and a second second second		PATAN NTIA				TRANK OF		minteresting	n de l'én me			
	SERI		SERIE	8 11	SERIES I	SER I	8 11	SERIE				
	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 in.	
WELD NO.	7A 7B	8A 8B	B7	B 8	24A 24B	B23	82%	55A 55B	56A 56B			
FILLER METAL	Bronzend P	Phos=Trode	Phosphor Bronze	PHOSPHOR	Phos-Trode	Phosphor Bronze	PHOSPHOR	BRONZEND P 5060	Phos-Trode	PHOSPHOR	PHOSPHOR	
SOURCE	ARCOS Corp.	Ampco Metal 9 /m	ARCOS CORP. 5/22	ARCOS CORP.	Ampco Metal 1 /h	ARCOS CORP.	ARCOS CORP.	ARCOS Corp.	Ampco Metal 4 /b	ARCOS CORP.	Arcos Corp.	
FLUX Type	170	889	J/ 32	0/10	8 / 7	57.52	0/10	None	177	J] JZ	37 10	
JOINT DESIGN Edge Prep. Root Space, in. Position Bagking Clamping	90 ⁰ Bevel Tight Flat Copper Yes	5/32 Copper Yes	45 ⁰ Bevel 3/ 32 Flat Copper Yes	45 ⁰ Bevel 3/32 Flat Copper Yes	5/32 Copper Yes	45 ⁰ Bevel 3/32 Flat Copper Yes	45 ⁰ Bevel 3/32 Flat Copper Yes	BUTT 1/32 Flat Copper Yes	5/32 Copper Yes	45 ⁰ Bevel 3/32 Flat Copper Yes	45 ⁰ Bevel 3/32 Flat Copper Yes	
ARC METHOD ELECTRODE SIZE, IN., CURRENT POLARITY VOLTAGE AMPERAGE	1/8 D.C. Reverse 29 135	1/4 Reverse 27 350~375	D.C. Reverse 32 140	3/16 D.C. Reverse 40-38 280-260	1/4 D.C. Reverse 27 350-375	5/82 D.C. Reverse 80 - 28 150-160	3/16 D.C. Reverse 35-32 280-260	3/16 D.C. Reverse 37 240	1/4 D.C. Reverse 28 850-475	5/32 D.C. Reverse 30 150	3/16 D.C. Reverse 37 230	
PREHEAT TEMP. ⁰ F	1000	800			800			None	800			
PROGEDURE PASSES		2			2			2				
speed, in/min. Peening		None	None	None	None	None	None	None	None	None	None	

. . . .

(WE REFORMED OF LARRESOLD)

in n Protein notine antin"		<u> </u>	ECTROYTIC	TOUGH PITC	Harriston (* 1997) Harriston	and the second sec	DEOX HIG	H PHOS		OFIO				
		SERIES I SERIES II		S 11	SERIES I SERIES			IES II		SERIES I		SERIES II		
		1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	
ELD NO.		5A 5B	6A 6B	B 5	86	21A 21B	22A 22B	B21	B 22	53A 53B	54 A	B53	B 5¥	
SPI	EC. NO.		and an a										,	
IAX I MLM Trength P.S. I.)	1 2 3	21,680 20,070 19,420 <u>19,320</u>	10,740 11,280 17,980 <u>18,050</u>	25,720 22,560	25,140 31,430	30,890 31,480 31,020 <u>32,280</u>	24,620 28,780 22,450 <u>24,250</u>	25,110 28,850	14,990 29,750	26,520 31,470 30,170 29,990	9,500 9,790	27,950 29,980	18,200 30,580	
AV.		20,120	14,510	24,140	28,280	31,420	25 ,02 0	26,980	22,370	29,540	9,640	28,96 0	24,390	
(IELD INDEX (P_S_I_)	1 2 3	13,860 13,250 14,120 <u>15,580</u>	8,660 10,120 12,570 <u>12,610</u>	11,620 10,580	11,490 10,030	13,830 13,550 14,420 <u>13,760</u>	10,760 10,590 10,220 <u>10,700</u>	11,690 11,770	10,670 11,110	11,620 11,860 12,360 12,710	9,380 9,610	12,410 11,070	9,830 8,350	
AV.		14,200	10,990	11,100	10,730	13,890	10,570	11,730	10,890	12,140	9,940	11,740	9,090	
LONGATION NDEX (0/0)	1 2 8	7.2 5.8 3.0 3.5	₩5 ₩5 7.8 <u>8.7</u>	16.7 11.6	13.5 28.5	18.3 11.7 16.7 28.4	21.3 35.9 19.7 20.7	16.8 31,8	35,5	21_3 30_2 28_5 _28_5	2.5 2.0	17.2 24,2	8,5 38,0	
AV.		4.9	6.4	14.1	21,0	18.8	24.4	24.3	21.0	25,9	2.2	20,7	23.2	
REDUCTION OF AREA (0/0)	1 2 3 4	14.0 22.0 2.0 10.0	18.0 14.0 25.0 19.0	29.0 32.0	22.0 30.0	87.0 45.0 90.0 87.0	31.0 56.0 52.0 36.0	26.0 79.0	12.0 750	28.0 65.0 69.0 38.0	6.0 4,0	26.0 58.0	18.0 37.0	
AV.		12.0	19.0	30,5	26.0	77.2	48.7	52.5	9,5	50,0	5.0	89.5	27.5	
LOCATION DF Fracture®	1 2 3 4	E . V . E . V . E . V . E . V .	M. V. M. V. E. V. E. V.	E.₩. B.M.	E . ¥. B . N.	H.Z. H.Z. H.Z. H.Z.	M.V. H.Z. M.V. E.V.	M. V. B.M.	M. W. B. M.	E。W。 H。Z。 H。Z H。Z。	M.V. M.V.	M. W. B.M.	M. V. B.M.	

EPERTURA OF THE AGENTION CHROMOMORY AND REPORTED TO ALL OF COMPANY AND A DESCRIPTION OF CALL A

* FRACTURE LOCATION

.

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE METAL
ELECTROYTIC TOUGH PITCH DEOX HIGH PHOS OFHC -----SERIES I SERIES 1 SERIES II SERIES I SERIES 11 SERIES II 1/4 IN. 1/8 IN. 1/8 IN. 1/4 IN. 1/8 IN. 1/4 IN. 1/8 IN. .1/4 IN. 1/8 IN. 1/4 IN. 1/8 IN. 1/4 IN. 88 24A 823 55A 56A 855 B56 WELD NO. 7A 8A 87 824 78 88 248 558 568 4 SPEC. NO. 27,320 30,940 27,540 20.840 29,790 31,130 24.270 31,160 25,070 22,120 16,890 30,310 1 28,760 30,150 MAX IMUM 2 24,380 27,320 27,080 31,210 20,870 32 870 30,860 23,730 3 30,200 30,750 27 480 28,490 STRENGTH 29,800 30,820 30,630 (P.S.I.) ₿ģ 31.270 <u>31,350</u> 30,600 -----------COMPANY OF COMPANY 30,580 31,170 22,570 28,580 26,490 20,310 AV. 28,940 29,950 27,430 23,960 29,970 18,980 12,250 14,250 12,460 8,270 YIELD 12,550 10,410 9.340 11,900 11.520 9,780 9 14,750 8,740 9,850 15,410 12,430 11 890 12,010 13,930 INDEX 2 13,830 10,480 9,800 11,460 (P.S.I.) 3 13,260 13,190 16,770 17,150 ł 15,490 11,190 <u>13,450</u> 13,170 13,390 caracter and the second ____ ----------8,500 11.610 11,760 9,810 14,110 12,440 13,280 10.440 9,570 14.010 AV. 15,160 10.5 26.5 24.0 13.9 32.0 36.9 14.5 ELONGATION 1 17.1 18.8 21.2 11.8 31.0 39.2 11.0 32.0 23.2 17.0 16.3 19.5 31.2 22,8 INDEX 2 11.1 22.0 21.4 3 14.8 27.7 40.3 (0/0) 29.1 41.4 Bg. 17.5 33.8 37,0 in the second second ----marr with 15.1 27.8 18.7 15.6 37.1 34.0 12.7 25.1 29.7 18.5 13.7 AV. 52.0 85.0 87.0 43.0 46.0 16.0 14.0 REDUCTION 1 13.0 31.0 37.0 18.0 2 57.0 79.0 19.0 83.0 80.0 60.0 13.0 19.0 61.0 18.0 22.0 OF AREA 66.0 84.0 80.0 3 28.0 0/0 6.0 78,0 76.0 R. 16.0 55.0 83.0 -----82.0 77.0 69.7 53.0 14.5 69.0 16.5 13.5 43.7 27.5 20.0 AV. M**.∀.** H.Z. E.V. M.W. E.₩. B.M. M.V. H.Z. B.M. B.M. LOCATION 1 H.Z. H.Z. B.M. M.V. H.Z. H.Z. B.M. B.M. 0F 2 M.Y. B.M. B.M. B.M. 3 B.M. H.Z. H.Z. FRACTURE® H.Z. H.Z.

SUMMARY OF MECHANICAL PROPERTIES AT ROOM TEMPERATURE OF JOINTS WELDED BY THE SHIELDED-ARC PROCESS

TABLE 7 (CONT "D)

The sector of th

* FRACTURE LOCATION

B.M.

\$

H.Z.

ł

A State of the Party of the second

The second s

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE MFTAI

B.M.

B.M.

B.M.

CREATED DEAT OF A CHALLER DEACE HADE ST

		n an	SERIES I			SERIES II	• • • • • • • • • • • • • • • • • • •
ÆLD 10. 1)	BASE Metal (2)	APPEARANCE OF JOINT (3)	MICROSTRUCTURE OF BASE METAL (4)	MICROSTRUCTURE OF WELD METAL (5)	APPEARANCE OF Joint (6)	MICROSTRUCTURE OF BASE METAL (7)	MICROSTRUCTURE OF WELD METAL (8)
5	Elect	STEEP GRADIENT.	VERY NARROW HAZ	EXTENSIVE MICRO-POROSITY.	MICRO-POROSITY AT Interface,	INTER-DENDRITIC AT JOINT,	Moderate Porosity 。
6	Elect	No continuity agross interface,	No continuity across butt. Some oxide penetration.	HEAVY POROSITY,	LITTLE PENETRATION, GOOD CONTINUITY AGROSS INTERFACE.	Some oxide Penetration near Joint,	Moderate Porosity,
1	DEOX	Good Bond,	VERY LARGE HAZ.	21-A Sound 21-B Heavy Porosity.	EXCELLENT Penetration and Continuity.	OXIDE PENETRATION Along Edge of Plate,	Moderate Porosity,
2	Deox	STEEP GRADIENT BUT GOOD GONTINUITY.	VERY LARGE HAZ.	Sound M.	POOR PENETRATION, Porosity in MM Outlines Joint.	No oxides present.	HEAVY POROSITY,
3	OFHC	GOOD CONTINUITY Agross WM-BM Junction,	LARGE HAZ.	HEAVY MACRO- AND MIGRO- Porosity.	FAIR PENETRATION AND GOOD CONTINUITY.	No oxides present.	Moderate Porosity,
ê	OFHC	No bonding across butt interface.	MODERATELY LARGE	EXTENSIVE MICRO- Porosity,	FAIR PENETRATION, GOOD CONTINUITY.	No oxide present.	Heavy Porosity.

. .

.

.

٠. .

٠.

•		CONVERSION AND ADDRESS OF THE OWNER OF THE OWNER OF	SERIES I			E GUL Call and and	وي من المحمد الم
WELD NO. (1)	BASE Metal (2)	APPEARANCE OF JOINT (3)	MICROSTRUCTURE OF BASE METAL (%)	MICROSTRUCTURE OF WELD METAL (5)	APPEARANCE OF JOINT (6)	MICROSTRUCTURE OF BASE METAL (7)	MICROSTRUCTURE OF WELD METAL (8)
7	ELEOT	GOOD BOND	LARGE HAZ,	SOUND WM.	GOOD CONTINUITY.	HEAVY OXIDE PENETRATION NEAR JOINT.	Sound WM.
8	Elect	SHARP INTERFACE WITH LITTLE CONTINUITY.	Some inclusions at grain Boundary,	DENSE, LITTLE Coring Evident,	FAIR CONTINUITY, Porosity at Interface.	Some oxide penetration at joint and edge of BM.	HEAVY POROSITY.
23	Deox				GOOD PENETRATION AND FLOW.	SOME OXIDE PENETRATION AT EDGE OF PLATE.	Sound
24	DEOX	Poor diffusion at interface. Crack near edge.	NARROW HAZ.	HEAVY POROSITY.	FAIR PENETRATION, GOOD CONTINUITY IN GENERAL,	No oxides present,	HEAVY POROSITY,
55	OFHC	FAIR CONTINUITY ACROSS JOINT.	LARGE HAZ.	VERY SOUND WM.	EXCELLENT CONTI- Nuity and Pene- Tration.	No oxides present,	VERY SOUND.
56	OFHC	VERY SHARP Gradient	Large HAZ	EXTENSIVE COR- ING AND MICRO- POROSITY.	FAIR CONTINUITY AND PENETRATION.	Some oxide Penetration At Joint and / Plate Face.	HEAVY POROSITY.

•

					Y NEFUNIEU	DIFADRIUAT	A. 1		and the second secon	and a second second states and		an an in the local sector of the sector of t
	(4). E	ELECTROLYTIC	TOUGH PITCH			DEOX HIG	H PHOS			OFHC	ananda in in in an in an	
	SER	IES I	SERI	ES II	SERI	ES I	SERIES	11	SERIE	S I	SERIES	11
Caracterios Harrison Caracterio (CPC)	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.
WELD NO.	9A 9B	10A 10B	B9	B10	25A 25B	26 a 26B	B25	B26	57A 57B	58A 58B	B57	B58
FILLER METAL Source	Anaconda 372 Atr Beduction	Anagonda 372 Revere Co.	Anaconda 372 American Brass Co	ANACONDA 372 American Brass Co	ANAGONDA 372 A I R REDUCTION	Anaconda 372 Revere Co.	Anaconda 372 American Brass Co	ANAGONDA 372 American Brass Co	ANAGONDA 372 AIR REDUCTION	Anagonda 372 Revere Co.	ÁNA CONDA 372 American Brass Có	ANACOND 372 America Brass C
ROD SIZE, IN. FLUX TYPE	1/8 None	3/16 Marvel Braze Paint	1/16	1/16	1/8 None	9/16 Marvel Braze Paint	1/16	1/16	1/8 None	3/16 Marvel Braze Paint	1/16	1/16
JOINT DESIGN EDGE PREP. ROOT SPACE, IN. POSITION BACKING	SQUARE Butt Tight Flat Steel Yea	No Bevel 1/32 Flat None None	Square Butt 1/16 Flat Copper	30 ⁰ BEVEL None Flat Copper	Square Butt Tight Flat Steel Veo	No Bevel 1/32 Flat None Yea	Square Buyy 1/16 Flat Copper	30 ⁰ Bevel None Flat Copper	Square Butt Tight Flat Steel Yee	45 ⁰ Bevel 1/32-1/16 Flat None None	SQUARE BUTT 1/16 FLAT COPPER	30 ⁰ Bev None Flat Copper
GAS METHOD Torch Make Gas Shield Gas Amount	Argon	Linde 500 amps Argon 15 liters	AIRCOMATIC Gun 28 Argon 35 ofh	Aircomatic Gun 28 Argon 35 ofh	Argon	Linde 500 amps Argon 15 liters	Aircomatic Gun 28 Argon 35 ofh	AIRCOMATIC GUN 28 Argon 35 CFH	Argon	Linde 500 amps Argon 15 liters	Aircomatic Gun 28 Argon 35 offi	A i rcoma Gun 28 Argon 35 ofh
ARG METHOD Electrode Size, (Current Polarity Voltage Amperage	IN. D.C. Straight 70 250	D.C. Straight 40 250	1/16 D.C. Reverse 330	1/16 D.C. Reverse 370	D.C. Straight 70 300	D.C. Straight %0 250	1/16 D.C. Reverse 330	1/16 D.C. Reverse 350	D.C. Straight 70 300	D.C. Straight 40 250	1/16 D.C. Reverse 300	1/16 D.C. Reverse 870
PREHEAT TEMP. ⁰ F	Unknown	600		250	Unknown	600		250 [`]	Unknown	600		250
Procedure Passes Speed, in/min Peening	None	3 None	21	13 8.4	None	3 None	22	13	None	A=3, B=2 None	23	12

,

		EU	<u>ECTROLYTIC</u>	TOUGH PIT	CH	(DEOX HI	GH PHOS			OFH	<u>,</u>	
		SER	IES 1	SERIE	<u>S II</u>	SER	IES I	SERIE	S II	SERI	ESI	SERIES	11
		1/8 IN.	1/4 IN.	1/8 IN.	1/18 IN.	1/8 IN.	9/4 IN.	1/8 IN.	1/4 IN.	178 IN.	1/4 IN.	178 IN.	1/4 IN.
ÆLD NO.		9a 98	10A 10B	89	B10	25 <u>8</u> 258	26A 26B	825	B26	57A 57B	58A 58B	857	B58
	SPEC. NO.	n gaar				990-110-12-23-1-0							
MAX IMUM Strength (P-S-L-)	1 2 3 4	28,380 27,000 33,780 22,130	24,910 24,070 25,960 25,170	30,680 30,160	31,020 30,810	31,230 30,560 30,410 23,270	29,690 29,700 29,400 28,730	30,850 30,350	31,320 30,660	28,940 28,670 25,160 22,760	28,660 29,600 29,440 29,770	27,640 30,740	29,990 30,920
	AV.	27,820	24,880	30,420	30,910	28,870	29,380	30,590	30,990	26,380	29,370	29,190	30,450
(IELD INDEX (P.S.I.)	2 3 8	12,620 12,260 13,580 12,160	9,350 9,060 9,590 11,120	11,330 10,930	11,660 10,950	14,830 12,680 12,220 12,750	9,680 10,010 7,970 8,600	12,180 10,410	12,150 9,370	12,790 13,260 12,860 13,050	9,860 9,520 9,290 8,530	10,780 10,660	10,420 10,870
	AV.	12,650	9,780	11,130	11,300	13,120	9,060	11,290	10,760	12,990	9,300	10,720	10,640
ELONGATION INDEX (0/0)	1 2 3 \$	24.0 15. 0 21.5 16.7	19.2 18.0 18.8 17.3	32.¥ 28.6	36.0 32.0	31.6 36.4 38.9 16.0	58.8 \$7.7 58.5 52.1	25,5 30,5	34.0 50.0	25.0 18.3 16.3 _9;5	32.5 42.7 46.5 46.77	22.4 33.0	49.0 47 .0
A	V.	19.5	18.3	30.5	3,0	30.7	54.3	28,0	44.0	17.3	\$2.1	27.7	48.0
REDUCTION DF AREA (0/0)	1 2 3 4	61.0 57.0 44.0 <u>36.0</u>	28.0 26.0 19.0 22.0	41.0 33.0	32.0 32.0	85.0 84.0 84.0 56.0	86.0 83.0 84.0 83.0	77 .0 62.0	66.0 83.0	79.0 39.0 39.0 28.0	70.0 73.0 78.0 83.0	74.0 61.0	76.0 84.0
	w.	49.5	23.7	37.0	32.0	77.2	84.0	69.5	74.5	46,2	76.0	67.5	80 _¢ 0
LOCATION OF Fracture*	1 2 3	E 348 E . H . M . H .	E.V. E.V. E.V.	B.M. B.M.	.B.M. .B.M.	H.Z. H.Z. H.Z. M.V.	B.M. B.M. B.M. B.M.	. B . M . . M . W .	B.M. B.M.	E.V. M.V. M.V. M.V.	H.Z. H.Z. H.Z. H.Z.	M.V. M.V.	B.M& B.M.

FRACTURE LOCATION

÷.

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE METAL

TABLE 10

SUMMARY OF MECHANICAL PROPERTIES AT ROOM TEMPERATURE OF JOINTS WELDED BY THE INERT-GAS-SHIELDED-ARC PROCESS

SUMMARY OF METALLURGICAL EXAMINATIONS OF JOINTS WELDED BY THE INERT-GAS-SHIELDED-ARC PROCESS

.

.

Lao, and an and a second second			SERIES I		SERIES	18	
WELD NO. (1)	BASE Metal (2)	APPEARANCE OF JOINT (3)	MICROSTRUCTURE OF BASE METAL (4)	MICROSTRUCTURE OF WELD METAL (5)	APPEARANCE OF JOINT (6)	MICROSTRUCTURE OF BASE METAL (7)	MICROSTRUCTURE OF WELD METAL (8)
9	ELECT	LITTLE CONTINUITY AGROSS BUTT JOINT.	Large HAZ. Good penetration.	Sound W.	EXCELLENT CONTINUITY.	AREAS OF EUTECTIC At junction,	VERY SOUND.
10	Elect	SHARP GRADIENT, LITTLE CONTINUITY.	Narrow HAZ. Some inclusions at grain boundary Near junction.	MIGROPOROSITY DUE TO SHRINKAGE, SOME CRACKS IN GRAIN BOUNDARY,	EXCELLENT CONTINUITY.	SLIGHT OXIDE PENETRATION AT PLATE FACE,	VERY SOUND,
25	Deox	GOOD CONTINUITY,	MODERATE HAZ.	SOUND MM	EXCELLENT CONTINUITY.	SLIGHT OXIDE PENETRATION AT PLATE FACE,	Very sound.
26	DEOX	EXQELLENT BOND. GOOD CONTINUITY.	MODERATE HAZ.	VERY SOUND.	EXCELLENT CONTINUITY.	SLIGHT OXIDE Penetration at Plate face.	VERY SOUND.
57	ofhc	EXCEILENT CONTINUITY.	VERY LARGE HAZ.	VERY SOUND W.	EXCELLENT CONTINUITY. IRREGULAR FLOW OF MM. Regions of incomplete Penetration.	NO OXIDES PRESENT.	VERY SOUND.
58	OFHC	EXCELLENT CONTINUITY.	LARGE HAZ.	SOME MICRO- Porosity.	EXCELLENT CONTINUITY	NO OXIDES PRESENT.	VERY SOUND

ł,

.

SUMMARY OF WELD FABRICATION DATA FOR OXY-ACETYLENE PROCESS

.

1

(AS REPORTED BY FABRICATOR)

Choracterian in a succession in the second se	[ELECTROLYTIC	TOUGH PITCH	4		DEOX HIG	H PHOS			OF	HC	
	SEI	RIES I	SERI	ES 11	SERIE	<u>s 1</u>	SERIE	<u>S </u>	SERIES		SERI	ESII
	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	9/4 IN.	1/8 IN.	1/4 IN.
WELD NO.	11A 11B	12A 12B .	B11	B12	27 A 27B	28 a 28b	B27	B28	59A 59B	60A 60B	B59	B60
FILLER METAL Source	Tobin Bronze Vulcan Copper Co.	SPELTER Solder Chase Co.	25 M Bronze Oxweld	25 M Bronze Oxweld	Tobin Bronze Vulgan Copper Co.	25 M Bronze Linde	25 M Bronze Oxweld	25 M Bronze Oxweld	SPELTER Solder Chase Co.	No. 25 Brazo Oxweld	25 M Bronze Oxweld	25 M Bronze Oxweld
ROD SIZE, IN	3/16		3/16	1/4	3/16	3/16	3/16	1/4		1/4	3/16	1/4
Flux Type	Oxweld Brazo Paste	Borax Liquid	Oxweld Brazo Paste	Oxweld Brazo Paste	Oxweld Brazo Paste	Oxweld Brazo Paste	Oxweld Brazo Paste	Oxweld Brazo Paste	Borax Liquid	Oxweld Brazo Paste	Oxweld Brazo Paste	Oxweld Brazo Paste
JOINT DESIGN EDGE PREP. ROOT SPACE, IN. POSITION BACKING CLAMPING	45 ⁰ Bevel 1/32 Flat None Yes	BEVELED Flat None	45 ⁰ Bevel 3/32-1/4 200 Angle Copper None	45 ⁰ Bevel 3/32-1/4 200 Angle Copper None	45 ⁰ Bevel 1/32 Flat None Yes	30 ⁰ Bevel 3/16-5/8 15 ⁰ Angle Copper Yes	45 ⁰ Bevel 3/32-1/4 20 ⁰ Angle Copper None	45 ⁰ Bevel 3/32-1/4 20 ⁰ Angle Copper None	BEVELED Flat None	45 ⁰ Bevel 1/8 None None	45 ⁰ Bevel 3/32=1/4 20 ⁰ Angle Copper None	¥5 ⁰ Bev 3/32⇒1/ 20 ⁰ Ang Copper None
Gas Method Torch Make T1P Size Gas Gas Amount	Air Red. 9803 No. 188 Oxy-acet. (Neut.) 48 cf	No. 20 Oxypropane (neut.)	Oxweld W17 Airco 800 Nos., 40, 7 Oxy-Acet. (SL. ox.) 50 cf	Oxweld W17 Airco 800 No. 40, 7 Oxy-acet. (sl. ox.) 64 of	AIR Red. 9803 No. 188 Oxy-acet. (Neut.) 44 cf	OXWELD W17 No. 40 Oxy-Acet. (Neut.)	Oxweld W17 Atree 800 Nos. 40, 7 Oxy-Aget. (SL, ox.) 43 of .	Oxweld W17 Airco 800 Nos. 40, 7 Oxy-Acet. (sl. ox.) 68 of	HARRIS No. 20 Oxypropane (neut.)	Oxweld W17 No. 60 Oxy-acet. (garb.)	Охweld W17 Airco 800 Nos. 40, 7 Оху-асет. (sl. ох.) 45 сг	OXWELD Airco 8 Nos, 40 Oxy-Ace (sl, ox 60 cf
PREHEAT TEMP. ⁰ F.	1200				1200							
PROCEDURE Passes Speed Information	1		1	1	1	1	1	1			1	1
PEENING	None		None	None	None	Ca-C138244C-14C1020-05-#67446C-1800-#62480-		None		None	None	None

.....

TABLE 12 (CONTO)

SUMMARY OF WELD FABRICATION DATA FOR OXY-ACETYLENE PROCESS

(AS REPORTED BY FABRICATORS)

Entrankarian and Antonia an		ELECTROLYTIC	TOUGH PITCH			DEOX HI	GH PHOS			OFHC		
	SER	RIES I	SERIE	\$ 11	SERI	ESI	SERI	ES 11	SERIE	S I	SERIE	S 11
	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.
WELD NO.	13A 13B	1%A 1%B	B13	B11	29A 29B	30A 30B	B29	B3 0	61A 61B	62A 62B	B61	B62
FILLER METAL Source Rod Size		American Brass 372 American Brass Co. 3/16	SI DEOX Copper Amerigan Brass Co. 1/4	SI DEOX Copper American Brass Co. 1/4		AG BEARING Copper American Brass Co. 3/16, 1/8	SI DEOX Copper American Brass Co. 1/8	SI DEOX Copper American Brass Co. 1/4	Pesco Not Given 3/16	SI DEOX Copper Revere Co. 3/16	SI DEOX Copper American Brass Co. 1/4	SI DEOX Copper American Brass Co. 1/4
Flux Type		Oxweld Braze-Borax Paste	Oxweld Brazo Paste	Oxweld Brazo Paste		None	Oxwelo Brazo Paste	Oxweld Brazo Paste	Pesco Flux Paint	Pesco Flux Paint	Oxweld Brazo Paste	Oxweld Brazo Paste
JOINT DESIGN Edge Prep, Root Spage Position Bagking Clamping	AVAILABLE	30 ⁰ Bevel 3/16-5/8 150 Angle Copper Ves	\$5 ⁰ Bevel 3/32-1/ 200 Angle Copper Nome	\$5 ⁰ Bevel 3/32-1/\$ 200 Angle Copper None	AVAILABLE	30 ⁰ Bevel 1/8-7/8 Vertigal None Yes	90 ⁰ Ingl Angle 3/32-1/4 200 Angle Copper None	90 ⁰ Incl Angle 3/32–1/4 200 Angle Copper None	Square Buty 1/8 None None	90 ⁰ i ncl Angle 1/32 Flat Nome Nome	90 ⁰ i nol Angle 3/32-1/4 200 Angle Copper Nome	90 ⁰ Incl Angle 8/32-1/4 200 Angle Copper None
Gas Method Torgh Make Top Size Gas	NO DATA	OXWELD W17 No. 30 Oxy-Acet (Neut.)	Oxweld V17 Airgo 800 Nos. 40, 7 Oxy-Acet (SL. Ox.)	Oxweld 17 Airco 800 Nos. 40, 7 Oxy-Acet (Sl. Ox.)	NO DATA	Oxweld V17 No. 40 Oxy-Acet (Neut.)	Oxweld W17 Airgo 800 Nos. 40, 7 Oxy-Acet (Sl. Ox.)	Oxweld W17 Airco 800 Nos. 40, 7 Oxy-Acet (SL. Ox.)	OXWELD W17 No. 60 Oxy-Acet (Carb.)	Oxy-Acet (Carb,)	Oxweld W17 Airco 800 Nos. 40, 7 Oxy=Acet (Sl. Ox.)	Oxweld W17 Airco 800 Nos. 40, 7 Oxy-Acet (Sl. Ox.)
GAS AMOUNT			26 of	45 of			25 of	40 of	200 of		26 OF	40 of
Preheat Temp. ⁰										600		
Progedure Passes Speed Peen i ng		2	None	1 None		2 Yes	1 None	1 None	None	2 None	1 None	1 None

1

.

.

and an other second	,	E	LECTROLYTI	C TOUGH PI	TCH	20030000000000000000000000000000000000	DEOX HIGH	PHOS			OFHC	no an an chuirt an	ġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ
		SERIE	S I	SERI	ES II	SERIE	S I	SERIES	11	SERIE	S I	SERIE	S 11
	~~~~~~	178 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	178 IN.	174 IN.	178 IN.	1/4 IN.	178 IN.	1/4 IN.
WELD NO.		11A 11B	12 <b>A</b> 12 <b>B</b>	<b>B</b> 11	B12	27A 27B	28A 28B	B27	B28	59A 59B	60A 60B	859	B60
	SPEC. NO.				<b>.</b>								
MAXIMUM STRENGTH (P.S.I.)	· 1 2 3	17,850 18,900 16,080 16,600	25,950 27,100 28,520 <u>24,280</u>	26,430 28,510	21,270 18,370	93,630 18,880 32,860 31,130	16,050 7,850 14,440 14,800	29,430 30,230	29,640 29,980	28,810 25,250 28,340 26,400	21,040 22,650 16,860 14,510	29,450 30,070	28, <b>\90</b> 29,990
••••	AV .	17,360	26,460	27,470	19,820	29,120	13,270	29,830	29,810	27,200	18,760	29,760	29,460
YIELD INDEX (P.S.I.)	1 2 3 4	1%,090 13,700 11,760 <u>10,160</u>	16,830 14,600 11,020 10,820	10,460 11,240	7,550 8,320	20,880 11,960 10,620 _ <u>9,960</u>	10,980 10,230 <u>12,590</u>	8,240 8,740	7,970 9,160	16,710 16,170 14,910 <u>14,970</u>	11,350 14,010 11,990 <u>10,840</u>	\$,010 9,350	7,020 6,260
	AV.	12,430	13,320	10,850	7,930	13,360	11,270	8,490	8,570	15,690	12,050	9,180	6,640
ELONGATION INDEX (0/0)	1 2 3 4	¥.0 ¥.0 3.7 3.5	14.5 17.1 24.0 <u>16.0</u>	14.2 19 <b>.</b> 0	8.¥ 6.2	12.8 8.4 24.1 <u>36.0</u>	5.7 0 3.4 1.5	34.9 33.8	42.0 25.0	12.1 7.1 12.8 19.3	14.7 18.0 7.4 6.0	20.2 32.6	39.5 ¥0.0
	AV.	3.8	17.9	16.6	7.3	20.3	2.6	34.3	33,5	12.8	11.5	26.4	39.7
REDUCTION OF AREA (0/0)	1 2 3 4	12.0 2.0 27.0 4.0	6.0 31.0 13.0 11.0	12.0 43.0	1.0 %.0	44.0 21.0 77.0 81.0		83.0 78.0	78.0 78.0	83.0 42.0 81.0 56.0	11.0 25.0 4.0 6.0	57.0 76.0	83.0 85.0
	AV.	11.2	15.2	27.5	2,5	55.7		80.5	78.0	65.5	11,5	66,5	84.0
LOCATION Of Fracture [®]	an (1) ar	E.W. E.W. E.W. E.W.	E.W. B.M. E.W. E.V.	B.M. B.M.	E,W. EWW.	H.Z. M.W. H.Z. H.Z.	E.V. E.V. E.V. E.V.	B.M. B.M.	B.M. B.M.	B.M. B.M. B.M. B.M. (	E.V. E.V. E.V. E.V.	B.M. B.M.	B.M. B.M.

SUMMARY OF MECHANICAL PROPERTIES AT ROOM TEMPERATURE OF JOINTS WELDED BY THE OXY-ACETYLENE PROCESS

* FRACTURE LOCATION

4

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE METAL 4

٠,

يعتكله لهم وروح فراجر والمراجع

SUMMARY OF MECHANICAL PROPERTIES AT ROOM TEMPERATURE OF JOINTS WELDED BY OXY-ACETYLENE PROCESS

.....

CROCKENCE OF REPORTED AND REPORT		E	LECTROLYTIC	TOUGH PITC	H		DEOX HI	GH PHOS			OF	HC	
		SERIE	<u>S 1</u>	SERIE	<u>S   </u>	SERI	SI	SER	IES II	SERI	ES I	SERI	<u>ES 11</u>
		1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 in.	1/4 IN.	` 1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.	1/8 IN.	1/4 IN.
WELD NO.		1 3A 1 3B	14A 183	B13	B14	29A 29B	30A 30B	629	<b>B3</b> 0	61A 61B	62A 62B	B61	B62
	SPEC. NO:	,										÷.	
MAXIMUM Strength (P.S.I.)	1 2 3 4	14,800 14,800 15,350 22,850	18,200 16,680 10,530 <u>18,360</u>	19,960 16,410	17,080 13,040	30,990 14,820 26,000 <u>30,560</u>	28,490 28,670 28,260 28,660	26,850 26,270	,23,050 21,880	16,560 12,590 17,760 14,070	19,630 13,160 22,660 21,080	18,110 16,950	23,300 21,630
	AV.	16,950	15,940	18,180	15,060	25,590	28,520	26,560	22,460	15,240	19,130	17,530	22,460
YIELD INDEX (P.S.I.)	1 2 3	11,540 11,110 9,910 10,230	8,970 8,770 10,330 10,980	9,190 8,480	6,930 7,150	9,470 8,800 9,950 8,460	17,570 17,350 17,050 19, <u>380</u>	8,000 8,530	6,760 6,550	11,460 11,980 13,900 13,180	8,280 8,800 7,830 7,960	8,530 8,060	6,320 7,390
	AV.	10,700	9.760	8,830	7,040	9,170	17,840	8,260	6,650	12,630	8,220	8;290	6,850
ELONGATION INDEX (o/o)	1 2 9 4 8	2:5 2:5 6:0 <u>13:8</u> 6:2	10:9 9:1 2:5 8:1 7:5	10.6 9.6 10:1	11.6 7.6 9:6	33:8 9:4 17:4 23.2 19:4	39;5 35:7 25.7 <u>26.2</u> 31:8	32 <u>6</u> 30 <u>0</u> 31:3	22,0 18,0 20;0	6.5 8.1 5.5 5.5 5.1	19:5 13:5 26.2 <u>21:5</u> 20.2	9.0 9,2 9.1	20,5 19,5 20,0
REDUCTION OF AREA (0/0)	4 2 3	31.0 42.0 22.0 25.0	¥6.0 22.0 ¥.0 <u>21.0</u>	14.0 18.0	21.0 20.0	51.0 2.0 17.0 <u>8.0</u>	75.0 69.0 50.0 <u>61.0</u>	69.0 76.0	41.0 30.0	23.0 19.0 11.0 <u>22.0</u>	38.0 18.0 27.0 <u>33.0</u>	16.0 15.0	36.0 18.0
	AV.	30.0	23.2	16.0	20.5	19.5	63.7	72.5	85.5	18.7	29.0	15,5	27.0
LOCATION Of Fracture®	1 2 3 4	E . W . E . W . M . W . M . W .		E . W .	M.V. M.V.	H.Z. M.W. M.W. M.W.	B.M. H.Z. E.W. E.W.	M.Y. M.Y.	M.W. M.W.	N.¥. M.V. E.V. E.V.	E.V. E.V. H.Z. H.Z.	M.V. M.V.	M.V. M.V.

M.V. = MIDDLE OF WELD E.V. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE METAL

ĩ

* FRACTURE LOGATION

.

TABLE 15

----

ŀ

.

SUMMARY OF METALLURGICAL EXAMINATIONS OF JOINTS WELDED BY THE OXY-ACETYLENE PROCESS

	**************************************	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	SERIES I		NO. 201 - MILLION CONTRACTOR DUCK - CONT	SERIES II	
WELD NO. (1)	BASE METAL (2)	APPEARANCE OF JOINT (3)	MICROSTRUCTURE OF BASE METAL (%)	MICROSTRUCTURE OF WELD METAL (5)	APPEARANCE OF JOINT (6)	MICROSTRUCTURE OF BASE METAL (7)	MICROSTRUCTURE OF WELD METAL (8)
11	ELECT	LITTLE DIFFUSION AGROSS JOINT. Sharp gradient.	Moderate HAZ. Oxides in grain Boundary near Junction.	CONSIDERABLE POROSITY.	LITTLE PENETRATION。 Poor plate align- ment。	VERY HEAVY OXIDE PENETRATION。	Modera te Poros i ty
12	ELECT	SHARP GRADIENT, LITTLE PENETRATION,	LARGE HAZ. Oxides at grain Boundary, forming Some cracks.	MACRO⇒ AND Micro-Porosity,	LITTLE PENETRATION.	VERY HEAVY OXIDE PENETRATION AT JOINT AND PLATE FACE.	Modera te Poros i ty,
27	DEOX	SHARP GRADIENT, LITTLE PENETRATION,	LARGE HÁZ. Some oxides at grain Boundary Near Joint.	Sound WM	VERY LITTLE PENETRATION.	SMALL OXIDE PENETRATION AT JOINTO	Sound
28	Deox	CRACKS ALONG INTERFACE, POOR CONTINUITY,	Oxide PENETRATION IN BM. Extremely large HAZ.	Sound MM	GOOD CONTINUITY, NO PENETRATION.	NARROW OXIDE REGION AT JOINT.	Sound
59	OFHC	Poor Bond	DEEP OXIDE PENE® TRATION WITH INTERGRANULAR GRACKS. LARGE HAZ, HIGHLY DEFORMED.	Çons i derable Poros i ty.	NO PENETRATION, POOR CONTINUITY,	HEAVY OXIDE Penetration At joint.	Moderate Porosity.
60	OFHC	Poor Bond	VERY LARGE HAZ. Oxideş near weld.	Considerable Porosity, Poor Flow and wetting action,	NO PENETRATION, GOOD CONTINUITY,	SLIGHT OXIDE Penetration at Joint.	Moderate Porosity,

.

.

### TABLE 1% (CONT "D)

#### SUMMARY OF METALLURGICAL EXAMINATIONS OF JOINTS WELDED BY THE OXY-ACETYLENE PROCESS

		-	SERIES 0		·	SERIES II	
WELD No.	base Metal	APPEARANCE OF JOINT	MICROSTRUCTURE OF BASE METAL	MICROSTRUCTURE OF WELD METAL	APPEARANCE OF JOINT	MICROSTRUCTURE OF BASE METAL	MICROSTRUCTURE OF WELD METAL
13	ELECT	Good Bond	LARGE GRAINS IN AREAS REMOVED FROM JOINTS, (RECRYSTALLIZATION)	Some recrystall!- Zation of WM. Very heavy porosity.	VERY LITTLE PENETRATION。 Excessive <b>IM</b> Deposit。	HEAVY OXIDE PENETRATION AT JOINT AND EDGE OF BM.	VERY HEAVY Porosity,
14	Elect	Marked by oxide penetration,	DEEP PENETRATION OF OXIDES NEAR JUNCTION。 NARROW HAZ。	LARGE DEPOSIT OF MM. Sound MM.	WH-BM JUNCTION OUTLINED BY OXIDES Excessive WM Deposit.	VERY HEAVY OXIDE PENETRATION OVER LARGE AREA.	VERY HEAVY
29	DE OX	No penetration at gap. Extremely weak bond.	No EVIDENCE OF GRAIN GROWTH,	APPLIED FROM ONE Side only. Very Poor flow.	EXCELLENT PENE- TRATION AND CONTINUITY.	SMALL OXIDE PENE- TRATION AT JOINT.	Sound
30	DE OX	Good Bond	LARGE HAZ, Some RECRYSTALLIZATION IN BM AND MM, HIGHLY COLDWORKED NEAR SIDE OF WELD,	Some recrystall - Zation. Slight Porosity.	Oxides and Porosity outline Joint, Poor Pene- Tratton.	HEAVY OXIDE PENETRATION AT EDGE AND JOINT,	VERY HEAVY Porosity.
61	OFHC	POOR CONTINUITY	VERY LARGE HAZ. Intergranular Cracks in BM Near junction.	HEAVY POROSITY. Large deposit of M.	Poor PENETRATION, Fair continuity.	Some OXIDATION AT EDGE NEAR REINFORCEMENT.	VERY HEAVY POROSITY。
62	OFHC	POOR BOND Outlined by Oxygenated Areas.	DEEP OXIDE PENE- TRATION AT GRAIN BOUNDARY. VERY LARGE HAZ, BUT INHIBITED NEAR JUNGTION.	SOME MICRO-POROSITY, Large amount of Metal deposited,	FAIR PENETRATION, GOOD CONTINUITY.	Some oxidation at joint.	Very Heavy Porosity,

TABLE 15

.

. .

SUMMARY OF MECHANICAL PROPERTIES OF JOINTS TESTED AT -321 F

			CARB	ON-ARC PROCE	SS			SHIELD	ED-ARC PROC	ESS	
WELD NO.		B17	B18	B50	B3	<b>B</b> 52	85	B6	<b>B</b> 53	B7	B2.3
	SPEC. NO.	·							, Ť		
۴	1	\$7.150	42.670	40,500	85.720	47.140	39,300	42,470	37,600	39,710	48,470
MAX IMUM	2	46,020	48,480	44,530	25,950	47,590	31,630	¥1,290	46,110	46ູໍ030	48,200
STRENGTH	3	49,670	40,850	43,640	41,780	48,880	41,280	44,120	44,180	48,180	49,080
(P.S.I.)	ly.	47,950	38, 380	<u>43, 380</u>	50,510	48,740	<u>38,990</u>	48,550	47,800	45,570	<u>50,340</u>
AV.		47,690	42,590	43,010	38,490	48,090	37,800	44,110	43,920	43,620	49,020
YIELD	1	14,700	13,030	13,420	17.570		15,520	18,820	15,760	17,400	14,280
INDEX	2	16,690	13,660	13,120	16,380	14,600	16,310	17,140	12,260	18,020	(1) (1) (1) (1)
(P.S.I.)	3	15, 590	13,620	16,100	17,970	2 80.02	17,450	14,110	19,280	16,750	16,950
	В <b>р</b>	17,080	13,230	12,320	18,580	12,140	17,920	16,100	20,730	15,020	16,270
AV.		16,010	13, 380	13,740	17,620	13,370	16,800	16,410	17,010	16,800	15,830
ELONGATION	1	47.4	33.1	26.0	13.6	38.4	22.4	22.8	14.6	18,4	41.8
INDEX	2	36.4	50.4	36.5	8.2	35.6	10.3	22.0	29.1	23.8	37.5
(0/0)	3	49.5	30°8	35.6	18.5	53.5	19.3	31.3	19.6	24.2	44 3
	Bg	32.3	26.9	<u>33.1</u>	38,5	49,0	19.8	41.5	18.3	28.6	46.1
AV.		41.4	35.3	32.8	19.7	44.1	17.9	29.4	20,4	23.7	42.4
REDUCTION	1	70.0	53,0	42.0	¥_0	49.0	27.0	22.0	30.0	27.0	80.0
OF AREA	2	48.0	66.0	55.0	11.0	51.0	17.0	25.0	48.0	23.0	67.0
(0/0)	3	78.0	51.0	56.0	20.0	77.0	21.0	82.0	21.0	29.0	71.0
	lą.	61.0	41.0	51.0	56,0	71.0	29,0	34.0	41.0	51.0	72.0
AV.		64.2	52.7	51.0	22.7	62.0	23.5	28.2	35.0	32,5	72.5
LOCATION	1	H.Z.	H.Z.	E.WH.Z.	M.V.	H.Z.	E.VH.Z.	E.WH.Z.	E.VH.Z.	E.WH.Z.	H.Z.
OF	2	E.WH.Z.	H.Z.	H.Z.	M.W.	H.Z.	E.VH.Z.	E.WH.Z.	H.Z.	E.VH.Z.	H.Z.
FRACTURE*	3	H.Z.	H.Z.	E.WH.Z.	M.W.	B.M.	E.WH.Z.	H.Z.	E.WH.Z.	E.WH.Z.	H.Z.
	磨	H.Z.	E.WH.Z.	E.WH.Z.	H.Z.	H.Z.	E.WH.Z.	E.WH.Z.	E.WH.Z.	H.Z.	H.Z.

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE METAL

*FRACTURE LOCATION

#### TABLE 15 (CONT 'D)

SUMMARY OF MECHANICAL PROPERTIES OF JOINTS TESTED AT -321° F

		an a	an an the contract of the second s	INERT	-GAS-SHIEL	DED-ARC PR	OCESS	OXY-ACETYLENE PROCESS						
WELD NO.			B9	89 B10	B10 B25	B26	B57	B58	<b>B1</b> 1	B12	B27	828	B59	B60
	SF	ÆC. NO.											. **	. •
MAXIMUM Strength (P.S.I.)	AV.	1 2 3	46,960 43,450 43,450 <u>46,330</u> 45,020	\$7,630 \$5,510 \$9,340 <u>\$7,950</u> \$7,610	44,780 48,570 48,010 <u>46,530</u> 46,970	\$6,560 \$8,250 \$8,880 <u>\$8,</u> 410 \$8,020	50,000 48,990 49,050 <u>47,510</u> 48,890	50,080 47,990 49,240 <u>49,920</u> 49,910	42,930 51,140 46,970 <u>38,690</u> 44,930	37,690 44,910 35,780 <u>36,790</u> 38,790	43,130 47,900 48,460 <u>47,610</u> 46,770	47,790 47,840 47,070 <u>47,910</u> 47,650	47,390 39,650 48,010 <u>49,410</u> 46,110	46,750 47,670 47,850 <u>45,670</u> 46,980
YIELD INDEX (P.S.I.)	AV.	1 2 3	16,650 16,580 15,540 <u>15,200</u> 15,990	11,820 13,430 13,240 <u>12,570</u> 12,760	15,150 12,650 14,010 13,940	14,510 11,820 12,490 <u>10,640</u> 12,380	14,600 15,030 14,310 14,650	14,560 16,100 13,550 <u>16,100</u> 15,080	5,430 <u>12,650</u> 9,040	11,980 12,920 <u>12,260</u> 12,390	13,710 13,640 13,880 13,740	18,000 10,710 10,590 <u>10,220</u> 12,380	14,890 14,900 <u>15,440</u> 15,080	12,120 10,530 12,010 <u>11,250</u> 11,480
ELONGATION INDEX (0/0)	AV.	1 2 3	38.0 26.8 30.6 <u>30.5</u> 31.5	35°0 37°8 7°8 7°9 35°0 36°5	36.0 46.5 44.5 <u>41.3</u> 42.1	48.6 52.2 54.0 <u>51.8</u> 51.6	46.0 42.6 47.3 <u>41.3</u> 44.3	54.9 51.5 51.9 <u>56.1</u> 53.6	18.5 29.1 27.0 <u>16.4</u> 22.7	17.0 26.8 16.1 <u>15.8</u> 18.9	27。4 38。1 36。6 <u>39。5</u> 35。%	50.1 50.8 46.5 <u>48.6</u> 49.0	22.0 16.0 33.5 <u>35.0</u> 26.6	43°4 46°3 47°6 <u>45°9</u> 42°8
REDUCTION OF AREA (o/g)	AV.	1 2 3	55.0 37.0 50.0 54.0 49.0	35.0 34.0 36.0 <u>34.0</u> 34.7	66.0 76.0 77.0 <u>56.0</u> 68.7	74.0 74.0 77.0 <u>69.0</u> 73.5	71.0 56.0 57.0 <u>70.0</u> 63.5	77.0 67.0 61.0 <u>75.0</u> 70.0	4.0 10.0 <u>8.0</u> 7.3	6.0 17.0 6.0 <u>2.0</u> 7.7	57.0 78.0 73.0 <u>73.0</u> 70.2	78.0 78.0 76.0 75.0 76.7	16.0 23.0 44.0 <u>45.0</u> 32.0	85.0 66.0 82.0 70.0 75.7
LOCATION Of Fracture +		1 2 3	M.V. E.V. M.V. H.Z.	H.Z. H.Z. E.W. E.W.	E.V. H.Z. H.Z. M.V.	H.Z. H.Z. H.Z. H.Z.	H.Z. M.V. E.V. M.V.	H.Z. H.Z. H.Z. H.Z.	È.W. E.W. E.W. E.W.	E.W. E.W. E.W. E.W.	E.W. B.M. B.M. B.M.	H.Z. B.M. B.M. B.M. B.M.	M.W. M.W. H.Z. H.Z.	H.Z. H.Z. H.Z. H.Z.

* FRACTURE LOCATION

.

ł

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE METAL

Ĩ	A	B	LE	Î	6	
---	---	---	----	---	---	--

SUMMARY OF MECHANICAL PROPERTIES OF JOINTS TESTED AT +400° F

ENEMPINE CONTRACTOR AND A CONTRACTOR	<u>аландыка жайонктерен жактоорин ж</u>		CARB	ON-ARC PROCE	ESS	a. 2 <b>0-0. a. 3. a. 30. to to to t</b> a 3. a. to	SHIELDED-ARC PROCESS						
WELD NO.	andaraalaya kiin menangangan waasin ay ayoo	817	B18	B50	83	B52	B5	B6	<b>B</b> 53	B7	B23		
MAXIMUM Strength (P.S.L.)	SPEC. NO. 1 2 3 4	21,890 22,450	18,280 17,560	18,400 18,200	17,510 19,990	17,550 16,830	15,970 12,280	18,140 17,190	16,100 17,270	19,160 17,770	21,390 21,330		
	AV.	22,170	17,920	18,300	18,750	17,190	14,120	17,660	16,680	18,460	21,360		
YIELD INDEX (P.S.I.)	1 2 3 4	9,300 10,020	9,240 9,140	8,500 9,050	8,800 9,750	7,790 7,350	10,800 11,160	9,950 8,940	10,510 10,040	9,190 8,830	8,900 9,420		
	AV.	9,660	9,190	8,770	9,270	7,570	10,980	9,440	10,270	9,010	9,160		
ELONGATION INDEX (0/0)	1 2 3	32.6 32.3	19,5 14,6	18.6 16.5	10.6 16.2	14.5 14.3	10 <b>.</b> 2 4.0	10.3 11.2	7.8 10 <b>.</b> 4	16.4 12.2	32.8 80.2		
	AV.	32,4	14.0	17.5	13.4	14.4	7.1	10.7	9,1	14.3	31.5		
REDUCTION OF AREA (0/0)	1 2 3	5%。0 62.0	7.0 10.0	32.0 12.0	17.0 31.0	28 <b>.0</b> 30.0	9.0	2.0 10.0	20.0 24.0	8.0 1.0	65 <b>.</b> 0 60 <b>.</b> 0		
	AV.	58.0	8,5	22.0	24,0	29.0	9.0	6.0	22,0	4.5	62,5		
LOCATION Of Fracture®	1 2 3 1	H.Z. H.Z.	E.WH.Z. E.WH.Z.	H.Z E.₩.∞H.Z.	M.V. E.VH.Z.	H.Z. H.Z.	E.WH.Z. E.WH.Z.	E.WH.Z. E.WH.Z.	E.WH.Z. E.WH.Z.	E.WH.Z. E.WH.Z.	H.Z. H.Z.		

		M.W. = MIDDLE OF WELD
\$ FRACTURE	I OCATION	E.W. = EDGE OF WELD
		$H_{z}$ = Heat Affected zone
		B.M. = BASE METAL

#### TABLE 16 (CONT 0)

SUMMARY OF MECHANICAL PROPERTIES OF JOINTS TESTED AT +++000 F

		INERT-GAS-SHIELDED-ARC PROCESS							OXY-ACETYLENE PROCESS						
WELD NO.		B9	B10	B25	B26	B57	B58	B11	B12	B27	B28	B59	B60		
	SPEC. NO.									ا المعر	•				
MAXIMUM Strength (P.S.L.)	1 2 3 4	19,780 18,430	19,660 18,900	21,960 21,790	22,570 21,890	15,340 16,990	18,040 16,730	17,120 16,500	16,490 12,290	20,500 22,050	20,610 20,680	14,360 16,760	20,590 19,420		
	AV.	19,100	19,280	21,870	21,980	16,160	17,380	16,810	14,390	21,270	20,640	15,560	20,000		
YIELD INDEX (P.S.I.)	1 2 3 4	9,350 8,980	10,220 9,810	10,090 9,330	10,050 8,550	9,410 8,620	9,090 9,830	9,770 8,200	7,050 6,750	8,090 9,370	6,990 6,510	7,760 8,620	6,700 6,100		
	AV.	9,160	10,010	9,710	9,300	9,010	9,460	8,980	6,900	8,730	6,750	8,190	6,400		
ELONGATION INDEX (0/0)	1 2 33 8	18.9 14.2	19.8 16.4	31.0 3¥.2	34.5 48.8	8.2 10.9	15.8 14.0	8,5 10,5	10.6 5.1	35.6 23.3	41.4 89.5	9.8 12.9	3%.6 26.6		
	AV.	16.5	18.1	32.6	41.6	9.5	14.9	9,5	7.8	29.4	40.4	11.3	30,6		
REDUCTION OF AREA (0/0)	1 2 3 %	25.0 17.0	25.0 18.0	73.0 74.0	62.0 72.0	6.0 8,0	15.0 18.0	9.0	6.0 3.0	62.0 69.0	68.0 74.0	20 <b>.</b> 0 20 <b>.</b> 0	67.0 35.0		
	AV.	21.0	21.5	78,5	67.0	7.0	16,5	9.0	¥ <b>"</b> 5	65,5	71.0	20,0	51.0		
LOCATION OF Fracture	1 2 3 &	E.¥. E.¥.	E . H . E . H .	H.Z. H.Z.	H.Z. B.M.	E.¥. E.¥.	E.¥. E,¥.	e.¥. E.¥.	E.V. E.V.	₿.М. ₿.М.	E.¥. H.Z.	E.W. H.Z.	B.M. E.W.		

# FRACTURE LOCATION

1

M.W. = MIDDLE OF WELD E.W. = EDGE OF WELD H.Z. = HEAT AFFECTED ZONE B.M. = BASE METAL



# FIG.I ASSEMBLY FOR TESTS OF WELDED

### COPPER JOINTS

----







**







FIG. 4 b RADIOGRAPHS OF COPPER JOINTS WELDED BY THE CARBON-ARC PROCESS, SERIES II







1/8 IN.

1/4 IN.



FIG. 6a MACROSTRUCTURES OF COPPER JOINTS WELDED BY THE SHIELDED - ARC PROCESS









FIG. 7 b RADIOGRAPHS OF COPPER JOINTS WELDED BY THE SHIELDED-ARC PROCESS, SERIES II



**د**..





.

.



.





1/8 IN.

1/4 IN.



FIG. 12 a MACROSTRUCTURES OF COPPER JOINTS WELDED BY THE OXYACETYLENE PROCESS



1/8 IN.





FIG. 12 b MACROSTRUCTURES OF COPPER JOINTS WELDED BY THE OXYACETYLENE PROCESS

- 2


BII

B 27

B 59



FIG. 13a RADIOGRAPHS OF COPPER JOINTS WELDED BY THE OXYACETYLENE PROCESS, SERIES II

-----





FIG. 13 b RADIOGRAPHS OF COPPER JOINTS WELDED BY THE OXYACETYLENE PROCESS, SERIES II



## FIG. 14 LACK OF BONDING AT BUTT INTERFACE IN JOINT 54 A. COPPER SILICON ROD, SHIELDED - ARC PROCESS. 25X



FIG. 15 HEAVY GAS POROSITY AND NARROW HEAT-AFFECTED ZONE IN JOINT BI. COPPER SILICON ROD, CARBON-ARC PROCESS. 30 X





(a) JOINT B54.COPPER SILICON ROD. 30X (b) JOINT 56A PHOSPHOR BRONZE ROD. 25X

FIG. 16 COMPARISON OF JOINTS PRODUCED BY SHIELDED-ARC METHOD USING DIFFERENT FILLER METALS



(d) JOINT 7A. 300X



(b) JOINT 21 B. 25 X

FIG. 17 EVIDENCE OF DEFORMATION IN WELD METAL DUE TO THERMAL DISTORTION. SHIELDED-ARC PROCESS



ARC PROCESS, DEOXIDIZED COPPER ROD





(c) GRAIN BOUNDARY PRECIPITATION.25X



(c) CRACK NEAR

WELD. 1.5 X



(e) SAME AREA AS (c). 200X



(b) PHANTOM PRECIPITATION OF OXIDE. 200X



(d) SAME AREA AS (c). 25 X





## FIG. 21 SHALLOW PENETRATION IN JOINT B 27. BRASS ROD, OXYACETYLENE PROCESS. 25X