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Abstract: The renin–angiotensin system (RAS) controls not only systemic functions, such as blood
pressure, but also local tissue-specific events. Previous studies have shown that angiotensin II recep-
tor type 1 (AT1R) and type 2 (AT2R), two RAS components, are expressed in chondrocytes. However,
the angiotensin II (ANG II) effects exerted through these receptors on chondrocyte metabolism
are not fully understood. In this study, we investigated the effects of ANG II and AT1R blockade
on chondrocyte proliferation and differentiation. Firstly, we observed that ANG II significantly
suppressed cell proliferation and glycosaminoglycan content in rat chondrocytic RCS cells. Ad-
ditionally, ANG II decreased CCN2, which is an anabolic factor for chondrocytes, via increased
MMP9. In Agtr1a-deficient RCS cells generated by the CRISPR-Cas9 system, Ccn2 and Aggrecan
(Acan) expression increased. Losartan, an AT1R antagonist, blocked the ANG II-induced decrease
in CCN2 production and Acan expression in RCS cells. These findings suggest that AT1R blockade
reduces ANG II-induced chondrocyte degeneration. Interestingly, AT1R-positive cells, which were
localized on the surface of the articular cartilage of 7-month-old mice expanded throughout the
articular cartilage with aging. These findings suggest that ANG II regulates age-related cartilage
degeneration through the ANG II–AT1R axis.

Keywords: angiotensin II; cellular communication network factor 2 (CCN2); renin–angiotensin
system (RAS); losartan; angiotensin II type I receptor (AT1R)

1. Introduction

Obesity is a risk factor for osteoarthritis (OA) [1]. Overloading the knee joints due
to obesity is considered a significant risk factor for the induction of articular cartilage
degradation [1]. In addition to body fat, the infrapatellar fat pad, which is an adipose
tissue in the knee joint, is increased with aging and obesity [2], and it is thought that this
tissue secretes various inflammatory cytokines and adipokines, which may be involved
in chondrocyte proliferation, differentiation, or degradation [2]. Therefore, the current
idea that obesity only contributes to OA by overloading the knee joints is insufficient to
account for the true pathophysiology of aging- and obesity-induced OA. Because it was
reported that angiotensin II (ANG II) is one of the peptide hormones induced by aging and
obesity [3] and that chondrocytes express it two specific receptors, angiotensin II receptor
type 1 (AT1R) and type 2 (AT2R) [4], we focused on ANG II functions in chondrocytes in this
study. In general, ANG II is synthesized via two cleavage steps [5]. Specifically, angiotensin
I (ANG I), which is the precursor of ANG II, is formed by the cleavage of angiotensinogen
produced in the liver by renin expressed in the kidney, and then ANG I is cleaved by
angiotensin-converting enzyme 1 (ACE1) to form ANG II [5]. This classical system is
called the systemic renin–angiotensin system (RAS) and encompasses the multiple organs
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involved in forming ANG II [5]. ANG II mainly acts through AT1R and AT2R [6]. AT1R
is responsible for most of the biological effects of ANG II, and ANG II acts not only on
blood vessels to stimulate constriction but also on the adrenal glands to stimulate the
release of aldosterone [5,6]. As a result, ANG II substantially increases blood pressure
through both increased vasoconstriction and increased reabsorption of salt and water [5,6].
Thus, the blockade of the systemic RAS has become an important clinical strategy in the
treatment of renal and cardiovascular diseases, such as hypertension, heart failure, and
diabetic nephropathy [5,6]. On the other hand, the production of angiotensinogens was
reported to occur not only in the liver but also in adipose tissues [7]. Additionally, it
has been demonstrated that prorenin, which is an enzymatically inactive precursor of
renin, is present in various organs, including heart, kidney, and fat tissues, and circulates
in the blood [8]. Prorenin binds to the prorenin receptor (PRR) [9–12], which induces
a conformational change in prorenin [13], leading to the activation of prorenin. Then,
activated prorenin cleaves angiotensinogen to form ANG I in local tissues, thus suggesting
that “local” tissue-specific ANG II is produced and exerts various biological effects in
different tissues [14]. In fact, it was reported that RAS components, including prorenin,
PRR, and ACE1, were expressed in articular chondrocytes [15] and that cartilage-derived
ANG II modulated the hypertrophic differentiation of chondrocytes [16]. Moreover, a
recent study demonstrated that AT1R blockade reduced the chronic kidney disease-induced
deterioration of bone [17]. These findings suggest that ANG II produced by the local RAS
may be involved in the regulation of cartilage and bone metabolism.

Cellular communication network factor 2 (CCN2) is a matricellular protein with a
molecular weight of 36–38 kDa and is involved in multiple biological events, such as
development, wound healing, and tissue regeneration [18–20]. Our previous studies using
an in vitro culture system demonstrated that CCN2 promoted the proliferation and differ-
entiation of chondrocytes [21] and osteoblasts [22] and the formation of osteoclasts [23].
Furthermore, our in vivo study revealed that intraarticular injection of CCN2 enhanced the
repair of articular cartilage in mono-iodoacetate (MIA)-induced OA-like lesions [24]. These
findings suggest that CCN2 has anabolic functions in skeletal tissues, such as cartilage and
bone. Notably, in muscle and renal cells, some studies have demonstrated that ANG II me-
diates the induction of CCN2 production and is associated with fibrosis [25,26]. However,
the effect of ANG II on chondrocytes, particularly through the production of CCN2, is still
unknown. Therefore, in this study, we analyzed the effects of ANG II and AT1R blockade
on the proliferation, differentiation, and functional disorder of chondrocytes and explored
the involvement of ANG II in the production of CCN2 in chondrocytes.

2. Results
2.1. Gene Expression of Local RAS Components in HCS-2/8 Cells Treated with MIA

As our previous study showed that the degradation of the cartilage matrix is induced
by intraarticular injection of MIA, which inhibits glycolysis [24], we first investigated the
gene expression levels of local RAS components in a human chondrosarcoma-derived
chondrocytic cell line, HCS-2/8 [27], treated with MIA at concentrations of 2 and 4 µg/mL.
As shown in Figure 1A, the gene expression levels of ACE1, AGTR1, and AGTR2, but not
ATP6AP2, which encodes PRR, were significantly increased by treatment with 4 µg/mL
MIA. These results indicate that RAS components expressed in chondrocytes are upregu-
lated by cartilage degeneration, thus suggesting that the production of ANG II is promoted
during the degeneration of cartilage.
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RT-PCR analysis was performed, and the amounts of these mRNAs were normalized to the amount 
of β-actin mRNA. The ordinates of the graphs indicate the relative ratio with respect to the control 
(ratio = 1.0). (B) Effect of ANG II on the gene expression of RAS components in HCS-2/8 cells. After 
HCS-2/8 cells had reached confluence, the cells were treated with 200 nM ANG II for 24 h. Graphs 
show the relative ratio with respect to the control (ratio = 1.0). (C) Cell proliferation assay of RCS 
cells treated with ANG II. RCS cells were inoculated into 96-well plates and stimulated with 200 nM 
ANG II at the same time. After 48 h, WST-8 was added, and the optical absorbance of culture media 
was measured at a wavelength of 450 nm. Each bar shows the mean and standard deviation of the 
results from 10 wells. (D) Accumulation of GAGs in RCS cells treated with ANG II. RCS cells were 
inoculated and stimulated with ANG II at the indicated concentrations. After 4 days, the culture 
media were changed, and the cells were stimulated with ANG II for another 3 days. Then, the cell 
lysate was prepared, and GAG content was measured. The ordinates of the graphs indicate the rel-
ative ratio with respect to the control (ratio = 100%). The data were analyzed by using Bonferroni’s 
test to compare the data from multiple groups or unpaired Student′s t-test to compare the data from 
2 groups. The asterisk indicates a significant difference from the control (* p < 0.05, ** p < 0.01). 
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Next, we investigated the effect of ANG II on chondrocyte proliferation and differ-

entiation. As shown in Figure 1C, ANG II at a concentration of 250 nM decreased the cell 
proliferation of a rat chondrosarcoma (RCS) cell line [28]. Furthermore, at the same con-
centration, ANG II also decreased the accumulation of glycosaminoglycans (GAGs) in 
RCS cells (Figure 1D). These results indicate that ANG II inhibits the proliferation and 
differentiation of chondrocytes, suggesting that ANG II negatively regulates cartilage me-
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Figure 1. Decreased chondrocyte proliferation and differentiation by ANG II. (A) The gene expression
of RAS components in HCS-2/8 cells treated with MIA. After HCS-2/8 cells had reached confluence,
the cells were treated with MIA at concentrations of 2 and 4 µg/mL for 12 h. Quantitative RT-PCR
analysis was performed, and the amounts of these mRNAs were normalized to the amount of
β-actin mRNA. The ordinates of the graphs indicate the relative ratio with respect to the control
(ratio = 1.0). (B) Effect of ANG II on the gene expression of RAS components in HCS-2/8 cells. After
HCS-2/8 cells had reached confluence, the cells were treated with 200 nM ANG II for 24 h. Graphs
show the relative ratio with respect to the control (ratio = 1.0). (C) Cell proliferation assay of RCS cells
treated with ANG II. RCS cells were inoculated into 96-well plates and stimulated with 200 nM
ANG II at the same time. After 48 h, WST-8 was added, and the optical absorbance of culture media
was measured at a wavelength of 450 nm. Each bar shows the mean and standard deviation of the
results from 10 wells. (D) Accumulation of GAGs in RCS cells treated with ANG II. RCS cells were
inoculated and stimulated with ANG II at the indicated concentrations. After 4 days, the culture
media were changed, and the cells were stimulated with ANG II for another 3 days. Then, the cell
lysate was prepared, and GAG content was measured. The ordinates of the graphs indicate the
relative ratio with respect to the control (ratio = 100%). The data were analyzed by using Bonferroni’s
test to compare the data from multiple groups or unpaired Student’s t-test to compare the data from
2 groups. The asterisk indicates a significant difference from the control (* p < 0.05, ** p < 0.01).

2.2. Gene Expression of Local RAS Components by ANG II

Next, we examined whether ANG II regulates the gene expression of local RAS
components. When the gene expression levels of local RAS components were examined
in HCS-2/8 cells stimulated with 200 nM ANG II, both AGTR1 and AGTR2 expression
levels were significantly increased (Figure 1B). These findings suggest that after ANG II
is increased by cartilage degradation, it may amplify its signaling in chondrocytes in an
autocrine/paracrine manner.

2.3. Effect of ANG II on Chondrocyte Proliferation and Differentiation

Next, we investigated the effect of ANG II on chondrocyte proliferation and differ-
entiation. As shown in Figure 1C, ANG II at a concentration of 250 nM decreased the
cell proliferation of a rat chondrosarcoma (RCS) cell line [28]. Furthermore, at the same
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concentration, ANG II also decreased the accumulation of glycosaminoglycans (GAGs)
in RCS cells (Figure 1D). These results indicate that ANG II inhibits the proliferation and
differentiation of chondrocytes, suggesting that ANG II negatively regulates cartilage
metabolism.

2.4. Production of CCN2 and MMP9 in the Presence of ANG II

It has been reported that ANG II increases CCN2 production in renal and skeletal
muscle cells [25,26]. Therefore, to confirm the ANG II-induced production of CCN2
in chondrocytes, we performed Western blot analysis. As shown in Figure 2A,B, the
production of CCN2 protein in HCS-2/8 cells treated with ANG II at concentrations of
50, 100, 150, 200, and 250 nM was decreased in a dose-dependent manner by ANG II
concentrations up to 100 nM, and, subsequently, it tended to be increased with the two
higher concentrations. Based on these results, we hypothesized that the ANG II-induced
change in the CCN2 level was due to post-translational regulation, and we next analyzed
the protein production of matrix metalloproteinase 9 (MMP9), which is one of the enzymes
that cleave CCN2. Production of MMP9 was increased by ANG II concentrations up to
150 nM, whereas it decreased at higher concentrations (Figure 2B). These results indicate a
reverse correlation between CCN2 and MMP9 production, suggesting that the CCN2 level
is potentially modulated by ANG II via MMP9.
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Figure 2. (A) Effect of ANG II on the production of CCN2 and MMP9 in HCS-2/8 cells. HCS-2/8 cells
were treated with ANG II at the indicated concentrations for 24 h. Then, Western blot analysis was
performed. (B) The amounts of CCN2 and MMP9 were determined densitometrically and these
amounts were normalized to the amount of β-actin. Relative densitometry (control = 1.0) from
4 measurements is presented and was analyzed by Bonferroni’s test and one-way ANOVA. The
asterisk indicates a significant difference from the control at * p < 0.05. (C) Activation of ERK-1/2 in
RCS cells treated with ANG II. RCS cells were treated with ANG II at the indicated concentrations for
15 and 30 min. Western blot analysis was performed with antibodies against the indicated proteins.

2.5. Signaling Pathway of ANG II in RCS Cells

Next, we confirmed whether intracellular signaling was activated by treatment with
ANG II in RCS cells. As shown in Figure 2C, phosphorylation of extracellular signal-
regulated kinase (ERK)1/2 was increased by treatment with ANG II at concentrations
of both 100 and 200 nM. This result suggests that stimulation with ANG II activates
intracellular signaling of chondrocytes through AT1R and AT2R.
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2.6. Generation of Agtr1a-Deficient RCS Cells and the Effect on Chondrocyte Proliferation
and Differentiation

It has been previously established that ANG II has two types of receptors, namely,
AT1R and AT2R [5–7], and that AT1R predominates in chondrocytes [15]. Accordingly, we
generated Agtr1a-deficient RCS cells using the CRISPR-Cas9 system and investigated the
effect of ANG II on the proliferation and differentiation of these RCS cells. Using genomic
PCR and DNA sequencing, we confirmed the deletion of bases 489–672 in exon 3 of Agtr1a
mRNA (Figure 3A). To exclude an off-target effect, we established two clonal cells and
showed that expression of Atgr1a was not detected at the mRNA or protein level in either
cell type (Figure 3B,C). These data indicate that the Atgr1a gene was knocked out in the
two clonal cells established by the CRISPR-Cas9 system (KO1 and KO2 cells). Using these
KO1 and KO2 cells, we investigated the effect of Agtr1a deficiency on the proliferation of
RCS cells. As shown in Figure 3D, cell proliferation of KO1 and KO2 cells was suppressed
compared with that of wild-type (WT) cells. Additionally, when KO1 and KO2 cells reached
confluence, the metachromatic properties of toluidine blue staining were enhanced in both
KO1 and KO2 cell cultures compared with that in WT cell cultures (Figure 3E). Moreover,
the gene expression levels of two major markers of chondrocytes, type II collagen (Col2a1)
and aggrecan (Acan), and chondrocyte anabolic factor, Ccn2, were examined. As a result,
Col2a1 expression was decreased, and conversely, Ccn2 expression was increased in KO1
and KO2 cells compared with those in WT cells (Figure 3F). The Acan expression level
was higher in KO2 cells than that in WT cells, but it did not differ between KO1 and WT
cells (Figure 3F). Furthermore, when KO1 and KO2 cells were treated with ANG II, Col2a1
expression was upregulated, but Acan expression was not affected (Figure 3G).

2.7. Effect of AT1R or AT2R Blockade on Col2a1, Acan, and Ccn2 Expression

Based on the results in Figure 3, we hypothesized that ANG II increases Col2a1
expression via AT2R and decreases Acan expression via AT1R. To verify this hypothesis,
we investigated Col2a1 and Acan expression levels in RCS cells treated with losartan, an
AT1R antagonist, and PD123319, an AT2R antagonist. The gene expression levels of Col2a1
and Acan were significantly upregulated and downregulated by treatment with ANG II,
respectively (Figure 4A). On the other hand, Col2a1 expression was significantly increased
by treatment with losartan, but Acan expression remained unchanged when RCS cells
were stimulated with ANG II (Figure 4B). In contrast, PD123319 treatment significantly
decreased Acan expression, and Col2a1 expression remained unchanged (Figure 4C). Taken
together with the data in Figure 3, considering that both AT1R and AT2R are expressed in
chondrocytes, these results suggest that ANG II increases Col2a1 expression via AT2R and
decreases Acan expression via AT1R. On the other hand, Ccn2 expression was not changed
by ANG II in RCS cells treated with either losartan or PD123319 (Figure 4). These results
indicate that CCN2 production is principally modulated by ANG II via MMP9, not directly
by ANG II.

2.8. Effect of AT1R Blockade on CCN2 Production

Based on the results of Figures 2–4, we hypothesized that the ANG II–AT1R pathway
suppresses the production of CCN2 via MMP9. To test this hypothesis, we investigated
whether or not the production of CCN2, which is one of the anabolic factors for chondro-
cytes, was altered by the addition of losartan. As shown in Figure 5A,B, ANG II decreased
CCN2 production in RCS cells in the absence of losartan, but not in its presence. Further-
more, we confirmed that ANG II-induced MMP9 had gelatinase activity in the culture
medium (Figure 5C). The bands of active MMP9 were increased by ANG II at 100 nM
and 250 nM, which is consistent with the results in Figure 2B. Losartan decreased ANG
II-induced gelatinase activity (Figure 5C). On the other hand, the bands of MMP2 were
not affected by ANG II (Figure 5C). This result suggests that AT1R blockade may stabilize
CCN2 by decreasing MMP9, thus supporting the idea that AT1R blockade may be useful
for the suppression of ANG II-induced cartilage degeneration.
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Figure 3. Generation of Agtr1a-deficient RCS cells. (A) Agarose gel electrophoresis shows PCR
products of 526 base pairs (bp) from WT cells and 290 bp from KO1 and KO2 cells. The bands are
shown in duplicate. (B) Agtr1a expression in WT, KO1, and KO2 cells at the mRNA level. The bands
are shown in duplicate. (C) Western blot analysis of AT1R in WT, KO1, and KO2 cells. The band of
AT1R was detected in WT cells but not in KO1 and KO2 cells. (D) Cell proliferation of WT (closed
circle), KO1 (closed square), and KO2 cells (closed triangle) determined by using WST-8 on days 0, 1,
and 2. The graph shows the mean and standard deviation of the results from 10 wells. (E) Toluidine
blue staining of WT, KO1, and KO2 cells at confluence. Metachromasia was more pronounced in KO1
and KO2 cells than it was in WT cells. Scale bar = 100 µm. (F) The gene expression of Col2a1, Acan,
and Ccn2 in WT, KO1, and KO2 cells by quantitative RT-PCR analysis. The amounts of these mRNAs
were normalized to the amount of GAPDH mRNA. (G) Effect of ANG II on the gene expression of
Col2a1 and Acan in KO1 and KO2 cells. KO1 and KO2 cells were treated with 200 nM ANG II for 24 h.
The ordinates of the graphs indicate the relative ratio with respect to the control (control = 1.0). The
data were analyzed by using the unpaired Student’s t-test to compare the data from 2 groups. The
asterisk indicates a significant difference from the WT at * p < 0.05.
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Figure 4. Effect of AT1R and AT2R blockade on the gene expression of Col2a1, Acan, and Ccn2 in
RCS cells. (A) RCS cells were treated with ANG II at 200 nM for 24 h. (B) RCS cells were pre-treated
with 10 µM losartan potassium, an AT1R antagonist, for 30 min and were stimulated with ANG II
at 200 nM for 24 h. (C) RCS cells were pre-treated with 10 µM PD123319, an AT2R antagonist, for
30 min and were stimulated with ANG II at 200 nM for 24 h. Quantitative RT-PCR analysis was
performed. The amounts of these mRNAs were normalized to the amount of Gapdh mRNA, and the
relative ratios with respect to the control (ratio = 1.0) are indicated. The asterisk indicates a significant
difference from the control at * p < 0.05.

2.9. Regulation of Gene Expression of Local RAS Components by Age

We next investigated whether or not the gene expression levels of local RAS compo-
nents change with age. We obtained the xiphoid process from mice at 7 and 13 months of
age and subsequently isolated chondrocytes from its tissue [29]. We found that Ccn2 ex-
pression therein was decreased with age (Figure 6A). The gene expression level of Atp6ap2,
which encodes PRR, tended to be upregulated with age (p = 0.051) (Figure 6B). Ace1 and
Agtr1 expression showed no change with age (Figure 6C,D), but Agtr2 expression was
significantly increased in older mice (Figure 6E).

2.10. Localization of AT1R in Articular Cartilage According to Age

We next used immunohistochemistry to comparatively analyze the localization of
AT1R in the articular cartilage of tibias of 7- and 13-month-old mice. As shown in Figure 7,
toluidine blue staining showed metachromasia in the articular cartilage of 7-month-old
mice, and AT1R was detected in the superficial zone of articular cartilage. In aged mice
(13-month-old mice), toluidine blue staining was remarkably decreased in articular car-
tilage. This finding suggests that the proteoglycan of articular cartilage is lost during
aging. However, AT1R-positive cells expanded throughout the articular cartilage in aged
mice (Figure 7). These results suggest that AT1R-positive cells expand to the deeper zones
of articular cartilage with age, although the Agtr1 expression in each cell is unchanged
(Figure 6D).
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for 24 h. (B) The amount of CCN2 was determined densitometrically, and these amounts were
normalized to the amount of β-actin. Relative densitometry (control without losartan = 1.0) is
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in the culture medium from RCS cells treated with 100 and 250 nM ANG II for 24 h. Gelatin-substrate
zymogram was performed.
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Figure 6. Change in the gene expression of CCN2 and RAS components accompanied by aging.
Chondrocytes were isolated from the xiphoid process of mice at 7 and 13 months of age. These
cells were grown until they reached confluence. Then, total RNA was isolated, and quantitative
RT-PCR analysis was performed by using the indicated primers. The amounts of these mRNAs were
normalized to that of Gapdh mRNA. The graphs show the expression levels of (A) Ccn2, (B) Atp6ap2,
(C) Ace1, (D) Agtr1, and (E) Agtr2. The asterisk indicates a significant difference (* p < 0.05). The data
were analyzed by using the unpaired Student’s t-test.
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Figure 7. Immunohistochemical analysis of articular cartilage from mice at 7 and 13 months of
age, using rabbit anti-AT1R antibody. Sections of the articular cartilage of tibias were stained with
hematoxylin and eosin (H&E) and toluidine blue. Cartilage tissue of 7-month-old tibias had a
metachromatic appearance with toluidine blue staining, and AT1R was detected on the surface of
articular cartilage. On the other hand, the cartilage tissue of 13-month-old tibias did not have a
metachromatic appearance after toluidine blue staining, but AT1R was detected throughout the
articular cartilage. Negative controls (NC) showed no detectable signals. Scale bars = 100 µm.

3. Discussion

In this study, we observed that ANG II decreased chondrocyte proliferation, Acan
expression, and the accumulation of GAG content (Figure 1). These results suggest that
ANG II suppresses the proliferation and differentiation of chondrocytes. Regarding chon-
drocyte hypertrophy, a previous study using ATDC5 cells reported that ANG II inhibited
the gene expression of Col10a1, which is a marker of hypertrophic chondrocytes [16]. In
the same report, the authors demonstrated that ColX10a1 expression was upregulated
and downregulated by treatment with olmesartan, which is an inhibitor of AT1R, and
PD123319, which is an inhibitor of AT2R, respectively [16]. Based on these findings, the
authors suggested that the activation of AT1R by ANG II suppresses differentiation into hy-
pertrophic chondrocytes, whereas activation of AT2R by ANG II enhances it [16]. Notably,
it was reported that AGTR1 expression was detected not only in articular chondrocytes
derived from OA and rheumatoid arthritis (RA) patients but also in normal chondrocytes,
whereas AGTR2 expression was detected in diseased chondrocytes only [15]. These results
indicate that AT1R is the dominant ANG II receptor in chondrocytes, and AT2R is a tran-
sient receptor expressed under degradative conditions, suggesting that AT1R and AT2R
not only modulate differentiation into hypertrophic chondrocytes but also contribute to
chondrocyte degradation in OA and RA. Indeed, our data indicate that Agtr1 expression
did not differ between chondrocytes from mice at 7 and 13 months of age, whereas Agtr2
expression was significantly upregulated in those from the aged mice (Figure 6). Addition-
ally, we observed that MMP9 production was increased by ANG II at low concentrations in
cultured chondrocytes (Figure 2). These results suggest that a low dose of ANG II during
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the early stage of cartilage degradation increases MMP9 production via AT1R. Considering
that MMP9 is an important enzyme causing cartilage degradation and that AT1R is the
dominant ANG II receptor in chondrocytes, ANG II-AT1R signaling may be involved in
the degeneration of chondrocytes. Indeed, when HCS-2/8 cells were degenerated by MIA
treatment, the gene expression levels of ACE1, which is a key component of the RAS, and
those of both AGTR1 and AGTR2 were significantly upregulated (Figure 1A). These results
indicate that the production of ANG II is increased in degenerated chondrocytes, thus
suggesting that ANG II potentially accelerates chondrocyte degeneration induced by MIA.
Moreover, we observed that CCN2 was not decreased in chondrocytes pre-treated with
losartan (Figure 5). As we previously demonstrated that the injection of CCN2 into the knee
joint promoted the repair of articular cartilage degenerated by MIA [24], we suggest that
CCN2 has a therapeutic effect on chondrocyte degeneration. Therefore, the result showing
that CCN2 production was maintained by losartan treatment indicates that AT1R blockade
plays an important role in the suppression of chondrocyte degeneration. To confirm this
hypothesis, we generated Atgr1a-deficient RCS cells by using the CRISPR-Cas9 system
and investigated the effect of Atgr1a deficiency (Figure 3). When Atgr1a-deficient RCS
cells were stimulated by ANG II, Col2a1 expression was significantly increased similarly
to that in WT chondrocytes, and Acan expression was not decreased compared to that of
WT chondrocytes (Figure 3). As ANG II could activate AT2R in Atgr1a-deficient RCS cells,
the action of ANG II via AT2R may have a suppressive effect on the loss of proteoglycan,
leading to cartilage degeneration. These findings suggest that ANG II–AT2R signaling is
potentially involved in the inhibition of chondrocyte degeneration. The results of using
antagonists of AT1R and AT2R support these findings (Figure 4). Taken together, our results
suggest that losartan, an anti-hypertensive drug, may reduce the risk of articular cartilage
degradation.

It is well-known that ANG II regulates ECM accumulation in conditions such as fibro-
sis in the kidney and skeletal muscle, and CCN2 is considered to be one of the candidates
for the effector molecules of fibrosis [25,26]. Several studies have reported that the ANG
II–CCN2 axis plays an important role via AT1R in the development of renal and muscle
fibrosis, along with increased type I collagen production [25,26]. On the other hand, our
data reveal that in chondrocytes, ANG II decreased Acan expression and the accumulation
of GAG content, but it increased Col2a1 expression (Figure 1). Because the cartilage matrix
consists of fibrous components (such as types II, IX, and XI collagens) to provide tensile
strength and includes gel components (such as proteoglycan) to accommodate water [30],
the suppressive effect of ANG II on Acan expression leads to a disorganized cartilage
matrix. Therefore, we suggest that this suppressive effect of ANG II on cartilage matrix
formation does not contradict the promotive effect of ANG II on fibrotic remodeling with
type I collagen in other tissues. Furthermore, we observed that ANG II treatment did not
affect Ccn2 expression in WT RCS cells, although Ccn2 expression was increased in Atgr1a-
deficient cells (Figures 3 and 4). These findings indicate that ANG II does not substantially
regulate CCN2 expression in chondrocytes, contradicting previous studies that showed
increased CCN2 expression through AT1R in renal and muscle cells [25,26]. We suspected
that Ccn2 expression is downregulated by destructive effects on the cartilage matrix via
ANG II–AT1R signaling and is upregulated by protective effects via ANG II-AT2R signaling.
However, Ccn2 expression remained unchanged when RCS cells were treated with either
losartan or PD123319 in the presence of ANG II (Figure 4). As we identified a reverse
correlation between ANG II-regulated CCN2 and MMP9 production (Figure 2), we propose
that CCN2 production is modulated via increased or decreased MMP9 production by
ANG II. However, further investigation is needed to clarify the mechanism.

To investigate the degenerative change in articular cartilage accompanied by ag-
ing, we compared the articular cartilage of the tibias of 7-month-old mice with those of
13- month-old mice. Toluidine blue staining was markedly decreased in the articular car-
tilage of the tibias of mice at 13 months of age (Figure 7). On the other hand, compared
with the localization at 7 months of age, AT1R was distributed throughout the articular
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cartilage of 13-month-old mice (Figure 7). These findings indicate that the degenerative
change in articular cartilage with aging causes the expansion of localized AT1R, suggesting
that aging amplifies ANG II-induced degeneration of articular cartilage via AT1R.

In conclusion, ANG II produced by the local RAS among chondrocytes suppresses
the proliferation and differentiation of chondrocytes through AT1R and thus leads to
chondrocyte degeneration (Figure 8A). As chondrocyte degeneration progresses, AT2R
expression is increased in chondrocytes to protect the cell from degradation. ANG II
promotes the gene expression of Col2a1, and ANG II at a high concentration increases the
CCN2 level by decreasing MMP9 via AT2R and, as a result, exhibits cartilage protective
effects, leading to the suppression of chondrocyte degeneration (Figure 8B). Therefore,
AT1R blockers, such as anti-hypertensive drugs, may contribute to chondrocyte protection.
However, to verify this hypothesis, further study on the roles of ANG II in chondrocytes is
required.
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Figure 8. Schematic representation of possible chondrocyte degeneration and protection by the
ANG II–AT1R axis (A) and AT1R blockade (B), respectively. (A) Since AT1R is the dominant ANG
II receptor in chondrocytes, the ANG II–AT1R axis decreases not only Acan expression and GAG
accumulation but also the CCN2 level via increased MMP9, leading to chondrocyte degeneration.
(B) When AT1R is blocked by a specific inhibitor, such as losartan, ANG II interacts with AT2R
instead. The ANG II–AT2R axis then increases the CCN2 level via decreased MMP9, leading to
chondrocyte protection. Gray triangles indicate ANG II. Blue and red arrows show upregulation and
downregulation, respectively, and horizontal arrow indicates no effect. The question mark represents
the possible interaction of ANG II with AT2R, when AT1R is blocked by a specific inhibitor.

4. Materials and Methods
4.1. Materials

Cell culture dishes and multi-well plates were purchased from Becton Dickinson
Biosciences (Bedford, MA, USA), Thermo Scientific (Waltham, MA, USA), and TrueLine
(Nippon Genetics Co. Ltd.; Tokyo, Japan). Dulbecco’s modified Eagle’s medium (DMEM)
and alpha modified Eagle’s medium (αMEM) were purchased from Nissui Pharmaceutical
Co., Ltd. (Tokyo, Japan) and ICN Biomedicals (Aurora, OH, USA), respectively, and fetal
bovine serum (FBS) was from Nichirei Bioscience Inc. (Tokyo, Japan). Angiotensin II was
from Peptide Institute Inc. (Osaka, Japan). Losartan potassium salt and PD123319 were
purchased from Fujifilm Wako Pure Chemical (Osaka, Japan) and Abcam (Cambridge, UK),
respectively. MIA was obtained from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Isolation of Chondrocytes from the Xiphoid Process

To isolate chondrocytes, we isolated the xiphoid process from 7-month-old and
13-month-old female mice. Then, the perichondrium was mechanically removed by using
a scalpel, and the xiphoid process was treated with 0.2% collagenase (Fujifilm Wako Pure
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Chemical) [29]. The liberated chondrocytes were seeded at a density of 1 × 104 cells/cm2

and cultured in αMEM containing 10% FBS at 37 ◦C in a humidified atmosphere of 5% CO2.
The Animal Committee of Okayama University Graduate School of Medicine, Dentistry,
and Pharmaceutical Sciences approved the procedures.

4.3. Cell Cultures

A human chondrosarcoma-derived chondrocyte cell line, HCS-2/8 [27], and a rat
chondrosarcoma cell line, RCS [28], were inoculated at a density of 4 × 104 cells/cm2 and
2 × 104 cells/cm2, respectively, into culture dishes containing DMEM supplemented with
10% FBS and cultured at 37 ◦C in humidified atmosphere of 5% CO2.

4.4. Generation of Agtr1a-Deficient RCS Cells by Using the CRISPER-Cas9 System

To analyze the effect of Agtr1a deletion, we generated Agtr1a-deficient RCS cells
using a genome editing technique with the CRISPER-Cas9 system. Two guide RNAs
were synthesized by GeneArtTM Precision gRNA Synthesis Kit (Thermo Fisher Scientific).
Primer sequences to synthesize cDNA for the guide RNAs are indicated in Table 1. After
RCS cells had reached confluence, the cells were collected with 0.25% trypsin-EDTA, and
1 × 106 cells were re-suspended in Nucleofactor solution containing 50 µg of Cas9 protein
(Integrated DNA Technologies, Coralville, IA, USA) and both gRNAs. Electroporation was
performed using an AmaxaTM Human Chondrocyte NucleofectorTM kit and Amaxa Nucle-
ofector1 II (Lonza Cologne GmbH, Cologne, Germany) according to the manufacturer’s
instructions [31]. The next day, single cell clones were selected through serial dilution, and
the deletion of Agtr1a in each clone was verified by genomic PCR analysis, followed by
DNA sequencing.

Table 1. Sequences of (F) and (R) primers used for genome editing of rat Agtr1a.

Application Primer Sequences
Expected Length (bp)

WT KO

Guide RNA1 (F) 5′-TAATACGACTCACTATAGCGATGAAGTATACATTTCGG-3′

(R) 5′-TTCTAGCTCTAAAACCCACCGAAATGTATACTTCATCG-3′

Guide RNA2 (F) 5′-TAATACGACTCACTATAGTGGGCAGTCTATACCGCTA-3′

(R) 5′-TTCTAGCTCTAAAACTAGCGGTATAGACTGCCCA-3′

Genomic PCR (F) 5′-CAAGCGTCTTTCTTCTCAATCTC-3′

(R) 5′-GATGTCATCGTTTCTTGGTTTG-3′ 526 290

RT-PCR (F) 5′-TGGGCAGTCTATACCGCTA-3′

(R) 5′-GCCCTATGGGGAGCGTCGAA-3′ 334 ND

ND: not detected.

4.5. Quantitative Reverse Transcription (RT)-PCR Analysis

To isolate total RNA from HCS-2/8 cells, RCS cells, and xiphoid process-derived
chondrocytes, we used ISOGEN reagent (Nippon Gene, Tokyo, Japan). First-strand cDNA
was synthesized from 1 µg of total RNA by a primerScriptTM RT reagent kit (Takara Shuzo,
Tokyo, Japan), and subsequent quantitative PCR analysis was performed with the SYBR®

Green Real-time PCR Master Mix (Toyobo, Tokyo, Japan) using the StepOne Plus real-time
PCR machine (Applied Biosystems, Carlsbad, CA, USA) as described previously [32]. The
specific primer sequences and the GenBank accession numbers of the target genes are
shown in Table 2.

4.6. Western Blot Analysis

After the cell lysate was extracted with cell lysis buffer (20 mM Tris-HCl pH 7.7,
150 mM NaCl, 1 mM EDTA, 1% Triton X-100) from HCS-2/8 and RCS cells, the concentra-
tion of proteins in the cell lysates were determined by the BCA protein assay kit (Thermo
Fisher Scientific) using a bovine serum albumin (BSA) standard curve. Then, Western
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blot analysis was performed as described previously [31]. The following primary anti-
bodies were used: mouse anti-AT1 receptor antibody (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), rabbit anti-CCN2 antibody (Abcam), rabbit anti-MMP9 antibody (Triple
Point Biologics, Inc., Forest Grove, OR, USA), rabbit anti-ERK1/2 antibody (Cell Signal-
ing Technology, Beverly, MA, USA), rabbit anti-phospho-ERK1/2 antibody (Promega,
Madison, WI, USA), and mouse anti-β-actin antibody (Sigma-Aldrich). The following
secondary antibodies were used: horseradish peroxidase (HRP)-conjugated anti-rabbit IgG
antibody (SeraCare Life Sciences, Inc., Milford, MA, USA) or HRP-conjugated anti-mouse
IgG antibody (Rockland, Limerick, PA, USA).

Table 2. Sequences of forward (F) and reverse (R) primers used for quantitative PCR.

Gene Accession No. Species Primer Sequences PCR Product Length (bp)

GAPDH XM_011241214.1 human
/mouse

(F) 5′-GCCAAAAGGGTCATCATCTC-3′

(R) 5′-GTCTTCTGGGTGGCAGTGAT-3′ 214

ATP6AP2 NM_005765.3 human (F) 5′-CCTCATTAGGAAGACAAGGACTATCC-3′

(R) 5′-GGGTTCTTCGCTTGTTTTGC-3′ 50

ACE1 NM_000789.4 human (F) 5′-AAGCAGGACGGCTTCACAGA-3′

(R) 5′-GGGTCCCCTGAGGTTGATGTAT-3′ 182

AGTR1 NM_009585.4 human (F) 5′-CTTCAGCCAGCGTCAGTT-3′

(R) 5′-TGCAGGTGACTTTGGCTA-3′ 137

AGTR2 NM_000686.5 human (F) 5′-ACTTCGGGCTTGTGAACATC-3′

(R) 5′-TAAATCAGCCACAGCGAGGT-3′ 217

ACTB NM_001101.3 human (F) 5′-GATCATTGCTCCTCCTGAGC-3′

(F) 5′-ACTCCTGCTTGCTGATCCAC-3′ 100

Acan XM_039101035.1 rat (F) 5′-GATGTCCCCTGCAATTACCA-3′

(R) 5′-TCTGTGCAAGTGATTCGAGG-3′ 229

Col2a1 NM_012929.1 rat (F) 5′-CCCAGAACATCACCTACCAC-3′

(R) 5′-GGTACTCGATGATGGTCTTG-3′ 200

Ccn2 NM_022266.2 rat (F) 5′-ATCCCTGCGACCCACACAAG-3′

(R) 5′-CAACTGCTTTGGAAGGACTCGC-3′ 144

Gapdh NM_017008.4 rat (F) 5′-GCCAAAAGGGTCATCATCTC-3′

(R) 5′-GTCTTCTGAGTGGCAGTGAT-3′ 214

CCN2 NM_010217.2 mouse (F) 5′-CCACCCGAGTTACCAATGAC -3′

(R) 5′-GTGCAGCCAGAAAGCTCA-3′ 151

Atp6ap2 NM_027439.4 mouse (F) 5′-CACATTGCGGCAGCTCCGTAA-3′

(R) 5′-CTCACAAGGGATGTGTCGAAT-3′ 377

Ace1 NM_207624.6 mouse (F) 5′-AACAAACATGATGGCCACATCCCG-3′

(R) 5′-CGTGTAGCCATTGAGCTTGGCAAT-3′ 147

Agtr1 NM_177322.3 mouse (F) 5′-CCATTGTCCACCCGATGAAG-3′

(R) 5′-TGCAGGTGACTTTGGCCAC-3′ 62

Agtr2 NM_007429.5 mouse (F) 5′-CAGCAGCCGTCCTTTTGATAA-3′

(R) 5′-TTATCTGATGGTTTGTGTGAGCAA -3′ 80

4.7. Cell Proliferation Assay

For the evaluation of cell proliferation, we used Cell Counting Kit-8 (CCK-8) according
to the recommended protocol (DOJINDO, Kumamoto, Japan). Briefly, 10 µL of CCK-8
solution was added to 100 µL of culture media of RCS cells treated with ANG II. After
incubation for 45 min at 37 ◦C, the absorbance of the culture medium was measured at a
wavelength of 450 nm [33].



Int. J. Mol. Sci. 2021, 22, 9204 14 of 16

4.8. Measurement of Sulfated Glycosaminoglycan (GAG) Content

RCS cells were treated with ANG II at concentrations of 100 and 250 nM for 7 days
immediately after being inoculated into a 24-well plate. Thereafter, the cell lysate was
collected and digested with actinase E for 90 min at 65 ◦C. DMB (1, 9-dimethyl methylene
blue) solution was added to actinase E-digested cell lysate, and optical absorbance was
measured at 540 nm by using diluted chondroitin-4-sulfate as the standard solutions [33].

4.9. Gelatin Zymography

For the measurement of the gelatinase activity of ANG II-induced MMP9, we per-
formed gelatin-substrate zymography using the culture medium from RCS cells treated
with ANG II, as described previously [34]. Briefly, 500 µL of cultured medium was con-
centrated 10 times with the Amicon®Ultra-0.5 centrifugal filter devices (EMD Millipore,
Temecula, CA, USA). Then, 10 µL of this solution was electrophoresed at 4 ◦C in a 7.5%
polyacrylamide gel containing 0.1% gelatin. After electrophoresis, the gel was washed
twice with 2.5% Triton X-100 and incubated at 37 ◦C for 24 h in 50 mM Tris-HCl pH 8.0,
0.5 M CaCl2, and 10−6 M ZnCl2. The gel was stained with 1% Coomassie brilliant blue.

4.10. Immunohistochemistry

Mice at 7 and 13 months of age were euthanized to obtain knee joints. The knee joints
were fixed in 10% formalin overnight at 4 ◦C and decalcified with 10% formic acid before
being embedded in paraffin [35]. Five-micrometer sections were mounted on glass slides
and deparaffinized with xylene, rehydrated, and treated with hyaluronidase (25 mg/mL;
Sigma) for 30 min at room temperature for antigen retrieval. Immunohistochemical staining
of these sections was performed with rabbit anti-AT1 receptor (AT1R) antibody (EMD
Millipore), as described previously [35]. Sections stained with a normal rabbit antibody
(Dako, Tokyo, Japan) were used as negative controls.

4.11. Statistical Analysis

All experiments were repeated at least twice, and similar results were obtained. After
performing the F-test (normality testing), statistical analyses for multiple comparisons were
performed by one-way analysis of variance (ANOVA) and Bonferroni’s test. Statistical
analyses for two groups were performed by unpaired Student’s t-test. All data are shown
as the mean and standard deviation (SD).
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