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Abstract 
Temperature-dependent studies of Ga2O3-based heterojunction devices are important in understanding its carrier 
transport mechanism, junction barrier potential, and stability at higher temperatures. In this study, we investigated the 
temperature-dependent device characteristics of the p-type γ-copper iodide (γ-CuI)/n-type β-gallium oxide (β‐Ga2O3) 
heterojunctions, thereby revealing their interface properties. The fabricated γ-CuI/β-Ga2O3 heterojunction showed excel-
lent diode characteristics with a high rectification ratio and low reverse saturation current at 298 K in the presence of 
a large barrier height (0.632 eV). The temperature-dependent device characteristics were studied in the temperature 
range 273–473 K to investigate the heterojunction interface. With an increase in temperature, a gradual decrease in the 
ideality factor and an increase in the barrier height were observed, indicating barrier inhomogeneity at the heterojunc-
tion interface. Furthermore, the current–voltage measurement showed electrical hysteresis for the reverse saturation 
current, although it was not observed for the forward bias current. The presence of electrical hysteresis for the reverse 
saturation current and of the barrier inhomogeneity in the temperature-dependent characteristics indicates the presence 
of some level of interface states for the γ-CuI/β‐Ga2O3 heterojunction device. Thus, our study showed that the electrical 
hysteresis can be correlated with temperature-dependent electrical characteristics of the β‐Ga2O3-based heterojunction 
device, which signifies the presence of surface defects and interface states.
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Article Highlights 

•	 We revealed the interface properties of p-type γ-copper iodide (γ-CuI) and n-type β-gallium oxide (β-Ga2O3) hetero-
junction.

•	 The developed heterostructure showed a large barrier height (0.632 eV) at the interface, which is stable at a tempera-
ture as high as 473 K.

•	 We confirmed the current transport mechanism at the interface of the heterojunction by analyzing the temperature 
dependent current–voltage characterization.
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1  Introduction

Among ultra-wide bandgap semiconductors, gallium 
oxide (Ga2O3), with a bandgap of 4.5–4.9 eV, has attracted 
significant attention for deep ultraviolet (DUV) photonics 
and power electronic device applications [1, 2]. β‐Ga2O3, 
with a monoclinic structure and lattice parameters of 
a = 12.22 Å, b = 3.0 Å, and c = 5.8 Å, is the most stable form 
among all the polymorphs of Ga2O3 at room temperature 
[3, 4]. It has been reported that electron mobility as high as 
300 cm2 V−1 s−1 can be achieved in β‐Ga2O3 at room tem-
perature. β‐Ga2O3 possesses a critical field strength higher 
than that of Si, SiC, and GaN semiconducting materials. 
The predicted critical field (Ebr) for β-Ga2O3 is 8 MV cm−1, 
whereas the measured Ebr, is 3.8 MV cm−1 [5]. Owing to its 
high chemical and mechanical stabilities (Young’s modu-
lus of β-Ga2O3 = 232 GPa) and thermal stability (melting 
point 1820 °C), it is well suited for applications such as 
solar-blind photodetectors [6], light-emitting devices, and 
power electronic devices [7, 8]. β‐Ga2O3 exhibits n-type 
semiconducting behavior due to the presence of oxygen 
vacancies, similar to many other oxide semiconductors 
[9]. Most device fabrication approaches have adopted 
the Schottky junction or p-n heterojunction structure for 
practical applications [10, 11]. Thus, suitable materials for 
fabricating a Schottky or p-n junction of Ga2O3 are critical 
in achieving high device performance.

β‐Ga2O3-based Schottky barrier diodes (SBDs) have 
been investigated for the development of high-voltage 
devices as well as solar-blind photodetectors [10, 12, 13]. 
Metal electrodes, such as Au (gold), Pt (platinum), and Ni 
(nickel), have been explored for the fabrication of β‐Ga2O3-
based SBDs [3, 4, 14, 15]. We have demonstrated the inte-
gration of graphene with β‐Ga2O3 for the fabrication of 
deep-UV photo responsive SBD devices. SBDs are majority 
carrier devices, where the interface between the Ga2O3 
and metal contacts plays a significant role in the device 

properties [14, 15]. By contrast, p-n junctions are minor-
ity carrier devices, which are important in achieving a low 
reverse saturation current and high breakdown voltage. 
Thus, a suitable p-type wide-bandgap semiconductor as 
a counterpart for the n-type Ga2O3 is significant for device 
fabrication [15, 16]. γ-CuI with a bandgap of ~ 3.1 eV and 
p-type carrier mobility of ~ 40 cm2 V−1 s−1 has been inves-
tigated for heterojunction devices with β‐Ga2O3 [17, 18]. 
The lattice mismatch between the cubic phase γ-CuI (111) 
and β‐Ga2O3 along the c-axis is approximately 2%, indicat-
ing the possibility of fabricating a compatible heterostruc-
ture of γ-CuI (111) and β‐Ga2O3 for heterojunction device 
applications [19–22].

Previously, Ranade et al. reported the integration of 
γ-CuI with gallium nitride (GaN), which is a III nitride wide-
bandgap semiconductor, to form a p-n heterojunction 
with high-temperature stable photovoltaic action [18]. The 
successful fabrication of a γ-CuI/GaN heterojunction moti-
vated us to explore the integration of p-type γ-CuI with 
β‐Ga2O3. In our previous study, we reported the obser-
vation of a DUV radiation-induced photovoltaic action 
for the γ-CuI/β‐Ga2O3 heterojunction. In contrast to our 
previous studies, herein, we revealed the behavior of the 
heterojunction interface in the γ-CuI/β‐Ga2O3 material 
system, which is significant for understanding its defect 
states, current transport mechanism, and temperature sta-
bility [23]. The temperature-dependent device character-
istics were studied in the temperature range 273–473 K to 
investigate the heterojunction interface. With an increase 
in temperature, a gradual decrease in the ideality factor 
and an increase in barrier height were observed, indicating 
a barrier inhomogeneity at the heterojunction interface. 
Interestingly, we can correlate the electrical hysteresis and 
barrier inhomogeneity behavior of the γ-CuI/β‐Ga2O3 het-
erojunction device, thereby revealing the influence of the 
interface states on these parameters.
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2 � Materials and methods

Here, we used Sn-doped, n-type single-crystal β‐
Ga2O3 (thickness of 650  μm, donor concentration of 
3 × 1018 cm−3) purchased from Tamura Corporation, Japan. 
Approximately 0.05 g of copper iodide (γ-CuI) powder 
(purity ~ 95%), purchased from Wako Pure Chemical Indus-
tries Ltd., was evaporated for 2 min in a vacuum chamber 
at a pressure of ~ 10–3 Pa and an applied current of 35 mA. 
The thickness of the γ-CuI layer was controlled by varying 
the deposition duration. Metal electrodes were deposited 
on the fabricated γ-CuI/β-Ga2O3 heterostructure to com-
plete the device structure. Gold (Au) and indium (In) elec-
trodes were deposited on top of the γ-CuI and backside of 
the β-Ga2O3, respectively, using a metal shadow mask with 
a thermal evaporator instrument under a high vacuum 
(~ 10–3 Pa). The CuI/β–Ga2O3 heterostructure samples were 
characterized using X-ray diffraction (XRD), UV–Vis absorp-
tion spectroscopy, and Raman spectroscopy. XRD studies 
were carried out using a Rigaku Smart Lab SE with Cu Kα 
radiation as the X-ray source (λav = 1.5406 Å). The surface of 
the heterostructure was analyzed using a JEOL JSM 5600 
scanning electron microscope (SEM) at an accelerating 
voltage of 20 kV. Raman spectroscopy measurements on 
the β‐Ga2O3 and deposited CuI film were performed using 
an NRS 3300 laser Raman spectrometer at a laser excita-
tion wavelength of 532.08 nm. UV–Vis absorption spec-
troscopy analysis was performed using a JASCO V-670 K 
spectrophotometer. The CuI film and Au and In metal elec-
trodes were deposited using a ULVAC VPC-260F thermal 
evaporator. Current density–voltage (J–V) measurements 
were carried out using a two-probe system and a Keithley 
2401 source meter at different device temperatures. The 
J–V characteristics of the heterostructure were analyzed at 
different temperatures (298–473 K) on a hot plate using a 
digital temperature controller.

3 � Results and discussion

Figure  1a shows the XRD spectra of the β-Ga2O3 sub-
strate and the fabricated γ-CuI/β-Ga2O3 heterostructure. 
A strong diffraction peak at 61.01° corresponding to the 
(020) reflection phase of β‐Ga2O3 was observed in both 
samples. Again, an additional high-intensity peak is 
observed at 26.06° corresponding to the (111) plane of 
the cubic-phase γ-CuI for the γ-CuI/β-Ga2O3 heterostruc-
ture sample, which is in accordance with the JCPDS Card 
number 06-0246 [24, 25]. The predominantly (111)-ori-
ented cubic-phase γ-CuI was obtained on the monoclinic 
β-Ga2O3 single-crystal substrate, which is consistent with 
previously reported results [21, 22]. Figure 1b shows the 

Raman scattering spectra of the single-crystal β‐Ga2O3 
substrate and the γ-CuI/β-Ga2O3 heterostructure. The low-
frequency Raman peaks at 146, 17, and 201 cm−1 denote 
the liberation and translation of the tetrahedral/octahe-
dral chains. The mid‐frequency Raman peaks at 348, 417, 
and 476 cm−1 are related to the distortion of the Ga2O6 
octahedra. The high-frequency Raman peaks at 631, 654, 
and 767 cm−1 indicate the stretching and bending of the 
GaO4 tetrahedra, as shown in Fig. 1b. The high-intensity Ag 
Raman mode at 200 cm−1 signifies the high-quality crys-
talline nature of the β‐Ga2O3 sample used for the device 
fabrication [20]. Further, by analyzing the Raman spectra 
of the fabricated heterostructure, we observed an addi-
tional peak at 119 cm−1, corresponding to the deposited 
γ-CuI film on the β‐Ga2O3 substrate. The XRD spectra of the 
β‐Ga2O3 substrate and the γ-CuI/β-Ga2O3 sample can be 
correlated with the Raman analysis of the purity and crys-
talline nature of the prepared samples for the device fab-
rication. Figure 1c shows the UV absorption spectra of the 
γ-CuI film deposited on a glass substrate in comparison to 
the absorption spectra of β-Ga2O3. The γ-CuI film shows 
absorption peaks in the range of 350–400 nm, whereas 
the absorption for the β-Ga2O3 sample was obtained in 
the range of 190–280 nm. Thus, the bandgap width for the 
γ-CuI/β-Ga2O3 heterojunction was 190–400 nm. Figure 1d 
shows the Tauc plot for calculating the optical bandgap of 
the deposited γ-CuI film, which was computed as 3.02 eV, 
consistent with previously reported values [26]. A Tauc plot 
of the β-Ga2O3 sample was plotted for comparison with 
the Tauc plot of the γ-CuI film. The optical band gap of β‐
Ga2O3 was computed as 4.6 eV, which agrees with the the-
oretical value [1, 27]. Furthermore, the optical absorption 
study and the obtained bandgap can be correlated with 
the highly crystalline β‐Ga2O3 and γ-CuI/β-Ga2O3 hetero-
structure samples, as observed from the Raman and XRD 
analyses. Figure 1e shows the SEM image of the thermally 
evaporated γ-CuI film on β-Ga2O3. The thermally evapo-
rated γ-CuI film on β-Ga2O3 showed a granular morphol-
ogy, where the grain size of the γ-CuI and surface rough-
ness may change with the deposition conditions. Figure 1f 
shows a tilted SEM image of the γ-CuI film on β-Ga2O3, 
presenting the thickness of γ-CuI around 1 μm. The thick-
ness and uniformity of the film on the β-Ga2O3 substrate 
were controlled by the evaporation rate, where the thick-
ness and uniformity of the γ-CuI film can significantly differ 
with the deposition rate. A heterojunction device was fab-
ricated with the as-deposited γ-CuI film, where a persistent 
diode characteristic was obtained, as discussed next, with 
a device structure of Au/γ-CuI/β-Ga2O3/In.

Figure 2a shows the cross-section stick and ball crystal 
structure of the γ-CuI and β-Ga2O3 device interface. The 
electron affinities of the n-type β-Ga2O3 and p-type γ-CuI 
were in the range of 4.0 and 2.1–2.2 eV, respectively, which 
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indicates the possibility of creating a large build-in field at 
the interface. The bandgaps of the two materials as calcu-
lated from the absorption spectra were 3.02 and 4.6 eV for 
γ-CuI and β-Ga2O3, respectively. As discussed here, owing 
to the large differences in the electron affinity and work 
function, a significant built-in field ( �Ga2O3

− �
�-CuI = Vbi ) 

can be obtained at the interface of the γ-CuI/β-Ga2O3 
heterojunction [18, 28]. Figure 2b shows a schematic dia-
gram of the fabricated γ-CuI/β-Ga2O3 vertical heterojunc-
tion device. The Au and In electrodes were deposited on 
γ-CuI and β-Ga2O3, respectively, to fabricate them. The Au 
electrode was deposited on γ-CuI considering the similar 
work function in the range of 5.1 eV. A work function in the 
range 4.08–4.12 eV was selected considering the electron 
affinity of n-type β-Ga2O3 to be approximately 4.0 eV [23, 
29]. The fabricated Au/γ-CuI/β-Ga2O3/In vertical hetero-
junction device was analyzed for its J–V characteristics. 
First, the device was analyzed at room temperature (298 K). 
Figure 2c shows the J–V characteristics at 298 K in the volt-
age range of − 2 to + 2 V under dark conditions. Good recti-
fying diode behavior was observed with low series resist-
ance and a high rectification ratio (~ 104). Figure 2d shows 
the log plot of the J–V curve at room temperature. The 
diode characteristics can be compared with the previously 
reported results for γ-CuI/β-Ga2O3 and diamond/β-Ga2O3 
heterojunction diodes [11, 20]. The diode ideality factor 
(n), computed from the log plot, was found to be 3.5. The 
diode J–V characteristics can be expressed as follows, cor-
relating the current and voltage with the ideality factor.

where J is the current density flowing through the diode, 
V is the voltage across the diode, J0 is the saturation cur-
rent density, T is the temperature in Kelvin, q is the elec-
tron charge, and k is the Boltzmann’s constant. The n value 
determines the deviation from the ideal diode owing to 
the presence of a tunneling component and barrier inho-
mogeneity [30]. The ideality factor was higher than some 
of the previously reported values for β-Ga2O3 heterojunc-
tion devices [11, 15, 21, 22, 31–34]. In addition, the reverse 
saturation current was significantly low in the fabricated 
device, as can be observed from the J–V characteristics. 
Thus, the deposited γ-CuI on β-Ga2O3 is suitable for the 
fabrication of the vertical heterojunction device. Subse-
quently, we analyzed the temperature-dependent J–V 
characteristics to understand the current transport behav-
ior at the heterojunction interface.

Figure 3a shows the temperature-dependent J–V char-
acteristics of the Au/γ-CuI/β-Ga2O3/In heterojunction 
under an applied bias voltage of − 2 to + 2 V in the tem-
perature range 298–373 K. The temperature-dependent 
analysis of the γ-CuI/β-Ga2O3 heterostructure elucidated 

(1)J = J0

(

e
qV

nkT − 1
)

,

the interface properties and compatibility of the mate-
rial system for device fabrication. The fabricated device 
showed consistent rectification diode characteristics as 
the temperature was increased to 373 K. Figure 3b shows 
the log plot with an increasing temperature. The forward 
current consistently increased with increase in tempera-
ture (Fig. 3a); however, the change in current was not 
significantly high, because the variation in the logarithm 
plot was not noticeably visible. The saturation current is 
significantly low, because of which a small change in cur-
rent is pronounced in the logarithm plot in the reverse 
bias voltage. The reverse saturation current was slightly 
non-saturated at the reverse bias voltage for the measured 
temperature range. This can be attributed to the barrier 
inhomogeneity at the interface of γ-CuI/β-Ga2O3. Subse-
quently, the barrier height (φB) was analyzed by chang-
ing the temperature for the J–V characteristic using the 
reverse saturation current density equation.

where A* is Richardson’s constant (41 A cm−2  K−2 for 
β-Ga2O3), A is the contact area, q is the electron charge, T 
is the temperature in Kelvin, k is the Boltzmann constant, 
and φB is the effective barrier height.

Figure 3c shows the trends in n and φB at various tem-
peratures. n decreased, and φB increased as the tempera-
ture increased from 298 to 373 K. The φB at the interface 
between γ-CuI and β-Ga2O3 was approximately 0.632 eV 
at room temperature (298 K) from the J–V characteristics, 
which is relatively higher than those of other β-Ga2O3 het-
erojunction devices. However, the measured barrier height 
was smaller than the theoretical value, as mentioned ear-
lier, which may be due to the presence of a tunneling com-
ponent at the heterojunction interface in the presence of 
the interface states [24].

Furthermore, the interface quality of the Au/γ-CuI/β-
Ga2O3/In heterojunction was investigated. The J–V char-
acteristics of the forward and reverse sweeps were meas-
ured to analyze the occurrence of electrical hysteresis 
under dark conditions. Figure 4a shows the forward and 
reverse sweeps under a bias voltage of + 2 V. The meas-
ured J–V curve showed no hysteresis effect for the forward 
bias voltage. Figure 4b shows the logarithmic plot of the 
J–V characteristics with a small electrical hysteresis in the 
reverse saturation current. As the reverse saturation cur-
rent is much smaller, the electrical hysteresis becomes 
more prominent. The presence of electrical hysteresis in 
the reverse saturation current indicates some level of inter-
face states for the fabricated γ-CuI/β-Ga2O3 heterojunc-
tion [29, 30]. Figure 4c shows the J–V characteristics of the 
fabricated device at 473 K, which still showed excellent 
rectification diode characteristics at a rectification ratio of 

(2)J0 = AA∗T 2Exp
(

−q�B

kT

)

,
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102. Further, the J–V characteristic was also measured at 
523 K; however, the device properties were not consistent, 
as a dark color appeared around the Au electrode due to 
oxidation. The study of the high-temperature stability of 
the γ-CuI/β-Ga2O3 device is an important aspect to con-
firm the suitability of the fabricated heterojunction device. 
Figure 4d shows the probable energy band diagram for the 
γ-CuI/β-Ga2O3 heterojunction device at equilibrium. The 
energy band diagram was configured from the electron 
affinity and bandgap values of n-type β-Ga2O3 (χ = 4.0 eV; 
Eg = 3.02 eV) and p-type γ-CuI (χ = 2.1–2.2 eV; Eg = 4.6 eV). 

Because the electron affinities of the two semiconductors 
are significantly different, a large band bending as well 
as a large barrier potential at the heterojunction interface 
can be estimated [24, 35–37]. The band diagram also rep-
resents the suitability of both the semiconductors for het-
erojunction device applications, where the formation of 
an interface with the deposition process can significantly 
affect the device performance. From the temperature-
dependent analysis, it can be observed that the γ-CuI/β-
Ga2O3 heterojunction is quite stable with consistent 
highly rectifying diode characteristics. Most importantly, 

Fig. 1   a X-ray diffraction pattern of the β-Ga2O3 substrate and 
γ-CuI/β-Ga2O3 heterostructure, b Raman spectra of the β-Ga2O3 
substrate and γ-CuI film, c UV absorption of the β-Ga2O3 substrate 
and γ-CuI film, d Tauc plots, presenting the respective bandgap 

of the two materials; SEM image of the γ-CuI film, e on top of the 
β-Ga2O3 substrate and f a tilted view at the edge of the γ-CuI film 
on β-Ga2O3
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Fig. 2   a cross-section stick and ball crystal structure of γ-CuI and β-Ga2O3; b schematic of the fabricated vertical heterojunction device of 
γ-CuI and β-Ga2O3; c J–V characteristics; and d log plot of the J–V curve of the fabricated device for a voltage range of − 2 V to 2 V

Fig. 3   a J–V characteristics in the temperature range 298–373  K 
and voltage range of − 2 to 2  V; b Logarithm plot in the voltage 
range of –2 to 2 V, representing the current transport behavior for 

the Au/γ-CuI/β-Ga2O3/In heterojunction device for the temperature 
range 298–373  K; c Variation in the ideality factor (n) and barrier 
height (φ) with an applied temperature in the range 298–373 K
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the experimental results suggest that the observed bar-
rier inhomogeneity from the temperature-dependent J–V 
analysis can be correlated with the electrical hysteresis of 
the diode characteristics, which signifies the presence of 
surface defects and interface states.

4 � Conclusions

We investigated the temperature-dependent device char-
acteristics of the p-type γ-CuI and n-type β‐Ga2O3 het-
erojunctions, thereby analyzing the interface properties. 
A predominantly (111)-oriented cubic-phase γ-CuI was 
deposited on a β‐Ga2O3 substrate by evaporation. The 
fabricated γ-CuI/β-Ga2O3 heterojunction showed excel-
lent diode characteristics with a high rectification ratio 
and low reverse saturation current at 298 K, in the pres-
ence of a large barrier height of 0.632 eV. A decrease in 
the ideality factor and an increase in barrier height were 
observed when the temperature was increased from 298 
to 373 K, indicating a barrier inhomogeneity at the het-
erojunction interface due to the surface defects present 
there. The electrical analysis also showed a small hysteresis 
effect on the reverse saturation current for the fabricated 
γ-CuI/β-Ga2O3 heterojunction. The presence of electri-
cal hysteresis for the reverse saturation current and the 
barrier inhomogeneity in the temperature-dependent 

characteristics indicates the presence of some level of 
interface states. Irrespective of the exsistence of surface 
defects and interface states, a rectifying diode character-
istic was obtained at temperatures as high as 473 K for 
the fabricated γ-CuI/β-Ga2O3 heterojunction. Our study 
revealed that the electrical hysteresis and temperature-
dependent electrical characteristics of the β‐Ga2O3-based 
heterojunction device could be significant and correlated 
in identifying interface properties.
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