10 I 3.9A N. M. NEWMARK 0058 NGINEERING STUDIES Copy 1 Copy 1

A METHOD FOR CALCULATING THE NATURAL FREQUENCIES OF CONTINUOUS BEAMS, FRAMES and CERTAIN TYPES OF PLATES

Metz Rofevence Room Civil had a cong Department BLC: Colling University of Illinois Urbana, Illinois 61801 By A. S. VELETSOS

and

N. M. NEWMARK

Technical Report to OFFICE OF NAVAL RESEARCH Contract N6ori-071(06), Task Order VI Project NR-064-183

> UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

<u>A METHOD FOR CALCULATING THE NATURAL FREQUENCIES</u> OF CONTINUOUS BEAMS, FRAMES, AND CERTAIN TYPES OF PLATES

by

A. S. Veletsos and N. M. Newmark

A Technical Report of a Research Program

Sponsored by

THE OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY

In Cooperation With

THE DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF ILLINOIS

Contract Noori-071(06), Task Order VI Project NR-064-183

> Urbana, Illinois June 1953

CONTENTS

•			
	LIST OI	FIGURES	
I.	INTRODU	JCTION	
	1.	Object and Scope of Investigation	
	2.	Sign Convention and Notation	5
	3.	Acknowledgements	9
II.	METHOD	OF ANALYSIS	•
	4.	Basis of Method of Analysis	10
	5.	Elastic Constants for a Vibrating Bar	12
	6,	Numerical Values of Stiffnesses and Carry-Over Factors	16
	7.	Numerical Values of Deflections Due to End Rotations	18
III.	APPLICA	NTION OF METHOD TO CONTINUOUS BEAMS ON RIGID SUPPORTS	
	8.	General	19
	9.	Development of the Basic Equations	20
	10.	Outline of the Procedure	22
	11.	Determination of Modes of Vibration	24
	12.	Illustrative Examples	24
		Example 1	24
		Example 2	27
•	13.	Alternate Methods of Analysis	31
•		The Effective Stiffness Criterion	32
		The Moment Distribution Procedure	32
		The "Direct" Procedure	33
•		The Method of Three Moments	36
	14.	Range of Applicability and Relative Merits of Various Procedures	36

i

Page

.

(Continued) CONTENTS

. . .

	•		Page
IV.	APPLICATI	ION OF METHOD TO CONTINUOUS FRAMES WITHOUT SIDESWAY	
	15.	General	38
	16.	Basic Relations	38
	17.	Open Frames	40
	18.	Illustrative Examples	42
		Example 3	42
		Example 4	45
	19.	Closed Frames	46
	20.	Outline of Procedure	49
	21.	Illustrative Examples	51
		Example 5	51
		Example 6	55
	22.	Comments on Natural Modes of Partial Vibration	63
	23.	Need for Approximate Methods of Analysis • • • • • • •	64
	24 0	Effect of Axial Forces; Problems of Instability	65
٧.	APPLICATI	ON OF METHOD TO CONTINUOUS BEAMS ON FLEXIBLE SUPPORTS	
•	25 .	General	67
	26.	Basic Relations	67
	27 .	Outline of Procedure	71
	28,	Effect of Various Intermediate Constraints	74.
		Rigid Concentrated Masses	74
		Concentrated Sprung Masses	74
		Rigid Intermediate Supports	75
	•	Supports Having Mass	76

CONTENTS (Continued)

		Page
Continuous Elastic Subgrade	ø	77
29. Determination of Modes of Vibration	ø	79
30. Illustrative Example	9	81
Example 7	ŵ	81
VI. APPLICATION OF METHOD TO FRAMES WITH SIDESWAY		
31. Symmetrical, Single-Bay, Multi-Story Frames	ø	86
VII. EXTENSION OF METHOD TO CONTINUOUS PLATES		
32. General	0	87
33. Basis of Method	¢	87
34. Details of the Method	6	89
35. Elastic Constants for a Panel of a Plate	Ð	91
36. Illustrative Example	ø	94
Example 8	ø	94
III. SUMMARY		
37. General	0	96
APPENDIX A. TABULATED NUMERICAL CONSTANTS		
l. Table I : Stiffnesses and Carry-Over Factors	ð	98
2. Table II: Coefficients for Deflection Due to End Rotations	Ð	126
APPENDIX B. DERIVATION OF FORMULAS		
1. Formulas for Bars Without Axial Forces	ø	152
a. General Solution of Fundamental Equation for Vibration of Bars	¢	152
b. Formulas for Elastic Constants	0	153
c. Formulas for Deflections of a Bar Due to Distortions at the Ends	0	156

CONTENTS (Concluded)

			Page
	•	d. Rayleigh's Reciprocal Relations and Principle of Influence Lines	157
	2.	Formulas for Bars with Axial Forces	158
		a. General Solution of Governing Differential Equation	158
	·	b. Formulas for Flexural Stiffness and Flexural Carry- Over Factor	159
	3.	Formulas for Plates Simply Supported Along Two Opposite Edges	161
		a. General Solution of Fundamental Equation for Vib- ration of Plates	162
		b. Formulas for Flexural Stiffness and Flexural Carry- Over Factor	162
		c. Correlation Between Elastic Constants for Vibrating Plates and Compressed Plates	164
APPENDIX	C.	ANALYSIS OF STEADY-STATE FORCED VIBRATIONS	
	1.	General Description of Method of Analysis	166
	2.	Formulas for Steady-State Deflection of a Simply Support- ed Uniform Beam Carrying a Concentrated Force Fosset	169
BIBLIOGRA	V PHX		171
FIGURES .	ం రాం	,	212

LIST OF FIGURES

Figure	e No .	Page
1.	, Typical Joint of a Plane Framework	174
2.	, Definition of Elastic Constants	174
3	, Coefficients of Dynamic Flexural Stiffness K for a Uniform Bar Fixed at the Far End	175
4.	Coefficients of the Product of Dynamic Flexural Stiffness and Dynamic Flexural Carry-Over Factor <u>kK</u> for a Uniform Bar Fixed at the Far End	176
5.	. Dynamic Flexural Carry-Over Factor \underline{k} for a Uniform Bar Fixed at the Far End	177
6.	Coefficients of Dynamic Flexural Stiffness <u>K</u> " for a Uniform Bar Hinged at the Far End	178
7.	Coefficients of Dynamic Flexure-Shear Stiffness Q for a Uniform Bar Fixed at the Far End	179
8.	Coefficients of the Product of Dynamic Flexure-Shear Stiff- ness and Dynamic Flexural-Shear Carry-Over Factor qQ for a Uniform Bar Fixed at the Far End	180
9.	Coefficients of Dynamic Shear Stiffness <u>T</u> for a Uniform Bar Fixed at the Far End	181
10,	Coefficients of the Product of Dynamic Shear Stiffness and Dynamic Shear Carry-Over Factor <u>tT</u> for a Uniform Bar Fixed at the Far End	182
11.	Dynamic Flexure-Shear Carry-Over Factor q for a Uniform Bar Fixed at the Far End	183
12.	Dynamic Shear Carry-Over Factor t for a Uniform Bar Fixed at the Far End	184
13.	Deflected Shape of Two Adjacent Spans of a Continuous Beam on Rigid Supports	185
14.	Beam Considered in Example 1	185
15.	Beam Considered in Example 2	185
16,	Variation of Rotation Θ_5 as a Function of λ , Example 1	186
17.	First Six Natural Vibration Modes of a Uniform, 4-Span Con- tinuous Beam Hinged at Left End and Fixed at Right End	187

¥

LIST OF FIGURES (Continued)

and the second	-	
Figure 1	NO e	Page
18,	Variation of Exciting Moment \overline{M}_5 as a Function of λ_1 , Example 2	188
19.	First Two Natural Vibration Modes of Beam Considered in Example 2	189
20.	Effective Stiffness at Right End of the Beam as a Function of λ_1 , Example 2	190
21.	Typical Joint of a Plane Rigid Frame, No Sidesway	191
22.	Typical Portal and I-Frames	191
23.	Typical Open Frames	191
24.0	Possible Natural "Modes of Partial Vibration"	192
25.	Illustrative Example 3	193
26.	Variation of Exciting Moment \overline{M}_5 as a Function of $\lambda_{1,9}$ Example 3	194
27 .	Natural Vibration Modes for Frame Considered in Example 3 .	195
28,	Variation of Exciting Moment M_5 as a Function of λ_1 , Example 4	196
29.	Typical Closed Frames, No Sidesway	197
30.	Illustrative Example 5	197
30a	Variation of the Determinant $\Delta_6(M_1,\Theta_1)$ as a Function of λ_1 , Example 5	198
31.	Natural Vibration Modes for Frame Considered in Example 5 .	199
32.	Illustrative Example 6	200-201
33.	Variation of Determinant $\[Delta_5(heta_1, heta_2)\]$ as a Function of $\[\lambda_2\]$, Example 6	202
34-35	Illustrative Example 6 (Continued)	203-204
36.	Typical Continuous Beam on Flexible Supports	205
37.	Spans j-1 and j of a Continuous Beam on Flexible Supports -	205

vi

LIST OF FIGURES (Concluded)

Figure N		Page
38-39	Beams with Various Intermediate Constraints	206-207
40.	Properties of Beam Considered in Example 7	208
41.	Variation of Exciting Moment \overline{M}_{5} as a Function of λ_{4} , Example 7	209
42.	Symmetrical Single-Bay Frames with Sidesway	210
43.	Type of Continuous Plate Considered	211
440	Elastic Constants for a Panel of a Plate on Rigid Supports.	211
45.	Variation of Rotation Amplitude $artheta_{ m g}$ with ω for Example 8	212

vii

<u>A METHOD FOR CALCULATING THE NATURAL FREQUENCIES</u> OF CONTINUOUS BEAMS, FRAMES, AND CERTAIN

TYPES OF PLATES

I. INTRODUCTION

1. Object and Scope of Investigation.

The purpose of this report is to present a method for calculating the undamped natural frequencies of flexural vibration of elastic structures. The method is applicable to continuous beams on rigid or flexible supports, to rigid jointed plane frameworks, and to certain types of continuous plates. The beams may have any number of spans of arbitrary length and any condition of restraint at the far ends. In general, the frames are assumed to be fixed against lateral displacement, but consideration is also given to symmetrical, single-bay, multi-story frames free to undergo sidesway. The plates are assumed to be simply supported along two opposite edges and, in one direction. continuous over a series of rigid supports transverse to the simply supported edges. The mass of the members composing the structure is assumed to be uniformly distributed along each member. A system which has distributed mass and elasticity has an infinite number of natural frequencies. With the method presented herein one is capable of determining all natural frequencies as well as the corresponding natural modes of vibration of a system. The assumptions made in the analysis are those of the ordinary theory of flexure of beams and of medium-thick plates.

Knowledge of the natural frequencies of structures is important for the analysis and design of structures subjected to time-dependent forces.

This knowledge is particularly significant in the case of stationary periodic forces such as those resulting from rotating machinery. If the operating frequency of the machinery is sufficiently close to one of the natural frequencies of the structure supporting it, violent vibrations will ensue which, in the absence of dissipative forces, may attain extremely large amplitudes. In order to avoid, by proper design, the destructive condition of resonance, it is necessary to have a workable method for predicting the natural frequencies of structures. It has been the object of this investigation to attempt to meet this need.

The problem of calculating natural frequencies of dynamic systems has been the subject of discussion for a long period of time. The natural frequencies of single span members having different boundary conditions have been investigated rather exhaustively; yet, comparatively little has been done for multiple member systems. Except for structures consisting of only a few members, the classical method of determining natural frequencies becomes so cumbersome that it tends to be entirely useless for practical purposes. Several considerably more efficient methods have been developed, but these seem to be applicable to limited types of structures.

Among the available methods, Mudrak's method (1), (2), (3) which utilizes the effective stiffness criterion for determining natural frequencies, is by far the most efficient. This method has been applied only to continuous beams on rigid supports and apparently is not capable of extension to continuous frames involving closed panels. The natural frequencies of continuous beams on intermediate flexible supports may be best determined by the method developed by Lee and Saibel (4), (5). This method utilizes principles

Numbers in parentheses, unless otherwise identified, refer to the Bibliography at the end of this report.

that are not well known to engineers; furthermore, it presupposes that the natural modes of vibration of the beam without the intermediate supports are known. This assumption restricts seriously the range of applicability of this procedure. The determination of the natural frequencies of continuous frames, involving closed panels, has apparently been attempted only by use of the classical method (6), which, as already stated, is too laborious for practical applications.

The method described herein is a generalization of Helzer's method (7) for calculating the natural frequencies of torsional vibration of shafts. It utilizes well known engineering principles and, like Holzer's method, it is reduced to a routine scheme of computation which, when repeated a sufficient number of times, will give the natural frequencies of the system to any desired degree of accuracy. Holzer's method has been applied to the determination of the natural frequencies of flexural vibration of beams, first, by Myklestad (8) and later by Prohl (9), Rankin (10), and Bellin (11). In these studies, distributed masses were assumed to be lumped at a number of stations along the length of the beam while the portion of the beam between these stations was assumed to be massless. In the method to be presented, the mass is assumed to be uniformly distributed along each member of the structure. Abrupt changes in the magnitude of the distributed mass or of the flexural rigidity within a member may be treated by assuming that the member is supported by a flexible support of zero stiffness at the point of the discontinuity.

The principles underlying the method are presented in Chapter II of this report. This chapter also includes definitions of the several physical quantities which are necessary in the analysis. These quantities are the dynamic stiffnesses and the dynamic carry-over factors which are analogous to

those introduced by Hardy Cross in connection with the method of moment distribution (12). Extensive tables of numerical values of these quantities are presented in Appendix A, while the derivation of the governing equations is given in Appendix B. With these tabulated values, the calculations required in the application of the method to particular problems are simplified immensely.

The application of the method to continuous beams on rigid supports is discussed in Chapter III. In addition, several alternate methods of analysis are considered and the range of applicability and the relative merits of each are discussed.

Chapter IV presents the extension of the method to frames without sidesway. For continuous beams, a single procedure is capable of determining all possible natural frequencies. For frames, however, this procedure may fail to detect those natural frequencies for which only a portion of the structure vibrates while the rest remains stationary. A technique for overcoming this difficulty has been developed and is presented also in Chapter IV. In the study of frames, the effect of permanent axial forces is neglected. The concluding section of Chapter IV is devoted to a discussion of the manner in which this effect may be taken into account. Also, it is pointed out that problems of framework instability are special cases of the more general problem of the vibration of axially compressed members.

In Chapter V, the method is extended to beams continuous over supports that are flexible instead of rigid. The resistance to deformation of the supports is represented by an equivalent set of mutually independent deflectional and rotational springs. It is shown that the method may be modified readily to include the influence of concentrated rigid masses, of concentrated sprung masses, and of an elastic subgrade of the Winkler type.

Chapter VI shows the application of the method to summetrical, onebay, multi-story building frames which are free to undergo sidesway.

Chapter VII is concerned with the extension of the method to continuous plates having two opposite edges simply supported. The pertinent expressions for dymanic stiffness and dynamic carry-over factor for plates are presented in Appendix B. It is also shown that numerical values of these quantities may be obtained from available tables of stiffness and carry-over factor for compressed plates.

Table II in Appendix A gives influence coefficients for calculating the natural frequencies of vibration of systems composed of bars. It is pointed out that Müller -Breslau's principle of influence lines is applicable in the case of steady-state forced vibrations, so that these coefficients may be interpreted also as coefficients for dynamic fixed-end moments produced by a concentrated harmonic force.

Appendix C includes a brief account of the manner in which the information presented in this report may be used in the analysis of the steadystate forced vibration of frames.

For convenience of reference, a detailed outline of the steps involved in the application of the method to each class of problems is included in each chapter. In addition, several numerical examples are given to illustrate the application of the method and to indicate convenient schemes for arranging the computations. Throughout this report, special effort has been made to present each chapter as independently of the others as possible and to discuss the numerical examples adequately.

2. Sign Convention and Notation.

The following sign convention is used throughout this report with the exception of Appendix B. Clockwise rotations are positive. Internal

bending moments acting at the ends of a member (not a joint) and external moments, except for the restraining moments provided by rotational springs, are positive clockwise. The restraining moment of a rotational spring is positive when it acts in a counter-clockwise direction. Deflections are positive downward. Shears acting at the ends of a member (not a joint) and external forces, except for the forces produced by deflectional springs, are positive downward. The restraining force of a deflectional spring is positive upward.

The letter symbols used are defined where they first appear in the text or by illustration, and they are assembled in this section for converse venience of reference.

General:

w = circular frequency of vibration

 ω_N = natural circular frequency of vibration

f = frequency of vibration, in cycles per second

t = time

E = modulus of elasticity

For structures composed of bars:

x = horizontal coordinate

I = moment of inertia of the cross section of a bar about its centroidal axis

L = span length of a bar

m = mass per unit of length of a bar

m = magnitude of a concentrated rigid mass

 $(\overline{m})_{eq}$ = magnitude of an equivalent concentrated rigid mass $\lambda = \sqrt[4]{\frac{m\omega^2}{EI}} L$ = a dimensionless parameter for a bar $\lambda_N = \lambda$ value corresponding to a natural frequency

	inter -		
and the second s	·		
•			
·.	W X		deflection amplitude at a point of a bar defined by the coordinate $\underline{\mathbf{x}}$
	Θ.	=	rotation amplitude at support or joint j
	$\delta_{\mathbf{j}}$		deflection amplitude at support j
	Mj	=	amplitude of internal bending moment at support j of a continuous beam
	Mji	aller aller	amplitude of internal bending moment at end <u>j</u> of a bar <u>ji</u> in a continuous frame
	M.	=	external moment at support or joint j of a continuous beam or frame
	vj	=	amplitude of shear at support j of a continuous beam
	F	H	external force at support j
	u, v	H,	variable parameters
θ', δ'	, M ',F'	Ξ	values of Θ , δ , \overline{M} , and \overline{F} due to $u = 1.00$ and $v = 0$
θ", δ"	,M,F	=	values of Θ , δ , \overline{M} , and \overline{F} due to $u = 0$ and $v = 1.00$
K,	Q, T		dynamic stiffnesses for a bar, defined in Section 5
k,	q, t	-	dynamic carry-over factors for a bar, defined in Section 5
С _К ,	³ q ^{,C} T	£	dimensionless coefficients in expressions for <u>K</u> , <u>Q</u> , and <u>T</u>
K",]	s, K ^A	u	modified stiffnesses for a bar, defined by Eqs. (9), (10) and (11)
	K	Ļ	effective flexural stiffness for a bar, defined in Section 13 \cdot
R _j ,	Ĵ"Tj	=	stiffnesses K, Q, T of all bars meeting at support or joint j
	κ' j	E	effective flexural stiffness of all bars meeting at $support$ or joint <u>j</u>
	D	=	stiffness of a deflectional elastic spring
	(D) _{eq.}	-	stiffness of an equivalent deflectional spring
	R	9.48 2.992	stiffness of a rotational restraint
	C		dimensionless coefficient in Eq. (14) for the deflection of a bar
	P		axial force in a bar
	P	janes.	buckling load for a bar hinged at both ends

- d = modulus of a continuous elastic subgrade
- w_s = circular vibration frequency for a bar on a continuous elastic subgrade
- δ^* = deflection amplitude of a sprung mass
- $\alpha, \beta, \gamma, \eta =$ dimensionless coefficients defined, respectively, by Eqs. (24), (73), (74), and (50)

For continuous plates:

X9 J		horizontal rectangular coordinates. The y-axis is taken parallel to the pair of simply supported edges
a, b	-	span lengths in the x and y directions, respectively, for a panel of a plate
q	-	density of plate material in a particular panel
h	110.44 84474	thickness of plate in a particular panel
I		$h^3/12 = moment of inertia, per unit width, for a particular panel of the plate$
V	Π	Poisson's ratio
N	-	EI/1- ν^2 = flexural rigidity of a particular panel of a plate
λ*	NG ANG Second Second	$\frac{b^2}{\pi^2} \sqrt{\frac{\rho h w^2}{N}} = a \text{ dimensionless parameter for a panel of a plate}$
n	approved Repaired 4.	integer representing number of half sine waves in the distribu- tion of deflections, slopes, moments, etc., across a plate width <u>a</u>
່ງ	125-04 145-75 1	maximum rotation amplitude along support j
M _j	0-0-0 0-0-0 1-0	maximum amplitude of bending moment at support j
K, k	gana galan	flexural stiffness and flexural carry-over factor for a panel of a plate, defined in Section 35

3. Acknowledgements

This investigation has been part of a research program on "Numerical and Approximate Methods of Stress Analysis" sponsored by the Office of Naval Research (Mechanics Branch) in the Structural Research Laboratory, Department of Civil Engineering, of the University of Illinois. The material of this report has been drawn from a doctoral dissertation by A. S. Veletsos submitted to the Graduate College of the University of Illinois. The dissertation was prepared under the direction of Professor N. M. Newmark in the Department of Civil Engineering.

The writers wish to thank Dr. L. E. Goodman, Research Associate Professor in Civil Engineering, for calling their attention to Lord Rayleigh's paper (14), and Dr. J. G. Sutherland, formerly Research Assistant in Civil Engineering, for first calling their attention to Mr. Gaskell's paper (13).

The numerical values reported in Appendix A of this report were calculated on the Electronic Digital Computer of the University of Illinois. The governing expressions for these constants were coded for machine solution by Mr. A. J. Carlson, Jr., Research Associate in Civil Engineering. Acknowledgment of Mr. Carlson's part in this work is made gratefully. Appreciation is finally due to Mr. D. Trimakas for the tracing of the diagrams.

II. METHOD OF ANALYSIS

4. Basis of Method of Analysis.

The method used in this report is based on the fact that the exciting couple or the exciting force which is necessary to maintain a dynamical system in a steady-state forced vibration with finite amplitudes becomes equal to zero at any one of the natural frequencies of the system.

Figure 1 shows <u>z</u> members of a plane framework rigidly connected at their common joint <u>o</u>. The far ends of the members may be considered elastically restrained against both rotation and translation. These restraints are furnished by the portion of the structure not shown on the figure.

Consider that the frame undergoes a steady-state forced vibration under the action of a harmonically varying exciting couple applied at joint \underline{z} . Joint \underline{z} is assumed to be different from joint \underline{o} . The magnitude of the exciting moment is assumed to be such that the amplitude of either the slope or of the internal bending moment at a joint of the structure different from joint \underline{z} , say at joint 1, has a prescribed finite value. The vibration of the structure is harmonic and its frequency is equal to the frequency of the exciting couple; since the effect of damping is neglected, the amplitudes of vibration are constant and the response is either in phase with, or 180 degrees out of phase with, the exciting couple.

For a given system, the magnitude of the exciting moment necessary to maintain the prescribed amplitude of vibration at joint 1 depends on the frequency of vibration. For the limiting case of no vibration, the magnitude of the moment is obviously finite; its actual value may, if desired, be calculated by any of the available methods of indeterminate stress analysis. As the frequency of vibration increases above zero, the structure is acted upon

by inertia forces of increasingly greater magnitudes. These forces, which are distributed along the length of the individual members, bring about distortions in addition to those produced by the external moment acting statically. Therefore, the amplitude of the dynamic moment necessary to produce the prescribed distortion at joint 1 may be quite different from the magnitude of the corresponding static moment. As the vibration frequency approaches any one of the natural frequencies of the structure considered, the inertia effects predominate, and at a natural frequency the vibration is maintained without any exciting moment acting permanently on the structure.

Briefly, the method presented herein consists of (a) choosing a frequency of vibration, (b) determining the magnitude of the exciting moment which, when applied at joint \underline{z} , will produce a vibration configuration with a fixed amplitude of slope or bending moment at joint \underline{l} , (c) repeating these steps for a number of assumed frequencies, and (d) plotting the magnitude of the exciting moment as a function of the frequency of vibration. The frequencies for which the exciting moment vanishes represent natural frequencies of the system.

In the application of this procedure, the following two conditions must be satisfied: (1) The joint to which a finite amplitude of slope is assigned should be one that is known to rotate for all the natural frequencies that need to be determined. If instead of fixing the amplitude of slope the amplitude of moment is fixed, it must be known that this moment amplitude remains finite. (2) The exciting couple must be applied at a joint which is known to rotate for all the natural frequencies that need to be determined. A couple applied at a joint which does not rotate acts through zero displacement and imparts no energy to the structure; therefore, it does not influence the natural frequencies or the vibration modes of the

system. In such a case, the exciting moment may not vanish at a natural frequency.

If either of these conditions is not satisfied, the procedure will fail to reveal some of the natural frequencies of the system. It will be shown later that, for certain structures, it is impossible to satisfy these requirements. In such cases, in order to obtain the natural frequencies which the basic procedure fails to reveal, it becomes necessary to use a supplementary technique as described in Chapter IV.

For an assumed frequency of vibration, the magnitude of the exciting moment may be determined by a number of different procedures. The conditions to be satisfied are simply those of equilibrium and continuity for each joint of the structure. To satisfy the condition of equilibrium, the sum of the moments and of the forces at the ends of the members meeting at a joint must be respectively equal to zero. To satisfy the condition of continuity, the slopes of the members meeting at a joint must be equal and also the deflection of the members meeting at the joint must have the same magnitude. These conditions may be expressed in equation form in a number of different ways and the equations may be solved by a number of procedures. In the method adopted, these conditions are expressed in the form of a generalized slope deflection equation, and the distortions of the structure at the supports are computed by the repeated application of this equation, working progressively from one end of the structure to the other.

5. Elastic Constants for a Vibrating Bar.

The various quantities necessary to express the resistance to deformation of a bar undergoing steady-state forced vibration are defined in this section.

Consider a bar fg with the far end g fixed. Let the near end be subjected to a harmonically varying bending moment of a circular frequency w producing at that end a steady-state forced rotation

 $\theta(t) = \theta \cos \omega t$.

The amplitude of the impressed moment may be related to the amplitude of the resulting rotation at end \underline{f} by the equation

$$M_{f} = K\theta$$
 (1)

The quantity K represents the moment required to produce a rotation of unit amplitude and is defined herein as the "dynamic flexural stiffness" of the end of the bar being rotated.

The moment induced at the fixed end g may be written as

$$M_q = k K \Theta . \tag{2}$$

The quantity \underline{k} is the ratio of the dynamic moment at the far fixed end to the moment at the near end and is defined as the "dynamic flexural carryover factor".

In the analysis of continuous beams on rigid supports and of continuous frames for which the joints do not translate, the flexural stiffness and the product of the flexural stiffness and the flexural carry-over factor are the only two quantities needed.

The foregoing definitions are generalizations of those originally introduced by Hardy Cross (12) for the analysis of frames subjected to static loads, and they were first used by Gaskell (13), who extended and applied the method of moment distribution to the problem of determining the steady-state forced vibration of continuous beams and frames subjected to pulsating loads.

For static conditions, the end reactions of the bar resulting from the rotation of one end, may be determined from the end moments by statics. For dynamical conditions, this is not possible, since the bar is acted upon

by inertia forces the distribution of which along the length of the bar is generally unknown. The reactions must, therefore, be defined by additional constants.

The amplitude of the vertical reaction at the end being rotated may be written as

$$V_f = Q\theta , \qquad (3)$$

and the reaction at the fixed end may be written as

$$V_g = -qQ\theta = -qV_f. \tag{4}$$

The quantity Q represents the reaction at end <u>f</u> produced by a rotation of unit amplitude at that end and is defined as the "dynamic flexural shear stiffness". The quantity <u>g</u> represents the ratio of the reaction induced at the far fixed end to that produced at the near end and is called the "dynamic flexure-shear carry-over factor".

Consider now that end \underline{f} is subjected to a harmonically varying force producing at that end a steady-state forced deflection without rotation, such that the magnitude of the deflection is

 $\delta(t) = \delta \cos \omega t$.

The amplitudes of the force and of the deflection at the left end may be related by the expression

$$V_{f} = T\delta$$

The quantity <u>T</u> denotes the force necessary to cause a deflection of unit amplitude and is defined as the "dynamic shear stiffness" for the end being deflected. The reaction at the far fixed end may be written as

$$V_q = -tT\delta = -tV_f$$
(6)

The quantity \underline{t} shows the ratio of the reaction at the far end to that at the near end and is called the "dynamic shear carry-over factor". The amplitude of the moment induced at the end being deflected is

(5)

高麗

$$M_f = Q\delta , \qquad (7)$$

and the moment at the far fixed end is

$$M_g = qQ\delta = qM_f.$$
(8)

The quantities Q and q are the same as those used in Eqs. (3) and (4). That these should be the same follows from a reciprocal theorem given by Lord Rayleigh (14), which is the dynamic equivalent of Maxwell's Law of reciprocal relations.

Throughout this presentation, the members composing the structure are considered to be uniform. The stiffness and the carry-over factors for both ends of such members are equal.

The notation used for the various stiffnesses and carry-over factors is the same as that used by Newmark (15) in his static analysis of slabs continuous over flexible supports. The notation is summarized in Fig. 2. The derivation of the algebraic expressions for the various stiffnesses and carry-over factors is given in Appendix B.

For certain conditions of symmetry, antisymmetry, and for those cases for which the degree of restraint at the far end of a member is known, it is convenient to use effective stiffnesses. The pertinent expressions for these stiffnesses are the same as those for the static case. Expressions are given here only for effective flexural stiffnesses. The particular cases considered and the symbols used to identify them are: \underline{K}^{1} , when the far end of the bar is prevented from deflecting and is elastically restrained against rotation; $\underline{K}^{"}$, when the far end is simply supported; \underline{K}^{S} , when the bar is on rigid supports and its deformation is symmetrical, and \underline{K}^{A} , when the bar is on rigid supports and its deformation is antisymmetrical. It can be proved readily that

$$K'' = K(1-k^2)$$
, (9)

16

$$K^{S} = K(1-k)$$
, (10)

$$K^{A} = K(1+k)$$
 . (11)

The stiffness K^{A} of a given bar is also equal to the stiffness K^{H} of a similar bar one half as long. The expression for K^{I} is given in article 12, where it is used first.

It is possible to derive also expressions for effective shear stiffnesses. However, these are not, in general, as simple and convenient to use as the effective flexural stiffnesses.

6. Numerical Values of Stiffness and Carry-Over Factors.

All carry-over factors are dimensionless and depend on a single dimensionless parameter

$$\lambda = \sqrt{\frac{m\,w^2}{E\,I}}\,L\,,\tag{12}$$

in which m = the mass per unit of length of the bar,

w = the circular frequency of vibration, as previously noted,

- E = the modulus of elasticity of the material in the bar,
- I = the moment of inertia of the cross section of the bar about its centroidal axis, and

L =the span length of the bar.

The various stiffnesses are determined from the expressions

$$K = C_{\kappa} \frac{EI}{L} , \qquad Q = C_{\alpha} \frac{EI}{L^2} , \qquad T = C_{\tau} \frac{EI}{L^3} , \qquad (13)$$

where the C's are dimensionless coefficients depending on the parameter λ .

A graphical representation of the variation with λ of the various ^{Carry-over} factors, stiffness coefficients, and of their products is given in

Figs. 3 through 12. It is noted that the curves in these figures range between minus infinity and plus infinity. The λ values corresponding to the zero ordinates and to the discontinuities of the curves, represent natural frequencies of bars having standard boundary conditions. For example, consider the curves in Figs. 3 and 5 for the flexural stiffness and the flexural carry-over factor. Values of λ equal to 3.927, 7.069 and 10.210 correspond, respectively, to the first, the second, and the third natural frequencies of a hinged-fixed bar. At these frequencies, no exciting moment is required to maintain the vibration; consequently, the value of dynamic stiffness is equal to zero. Furthermore, since the moment at the fixed end of the bar has a finite magnitude, the carry-over factor for the member becomes infinite at these frequencies. Values of λ equal to 4.730 and 7.853 correspond, respectively, to the first and the second natural frequencies of a bar fixed at both ends. At these frequencies, the end moments have a finite value while the rotations of the ends are zero; accordingly, the stiffness of the member has an infinite value. For the case of no vibration, $\lambda = 0$, the various quantities in Fig. 3 through 12 assume the well known static values of

17

$$k = 0.65 \qquad K = 4 \frac{EI}{L} \qquad kK = 2 \frac{EI}{L} \qquad K'' = 3 \frac{EI}{L}$$
$$q = 1.00 \qquad Q = 6 \frac{EI}{L^2} \qquad qQ = 6 \frac{EI}{L^2}$$
$$t = 1.00 \qquad T = 12 \frac{EI}{L^3} \qquad tT = 12 \frac{EI}{L^3}$$

Numerical values of the carry-over factors, of the coefficients of the various stiffnesses, and of their products are given in Table I of Appendix A. All values are reported to seven significant figures for the range of λ from zero to 10.20 at increments of 0.01. In some cases, the accuracy of the seventh significant figure reported is uncertain. These values were computed by use of the Electronic Digital Computer of the University of Illinois.

7. Numerical Values of Deflections due to End Rotations.

Consider the beam shown in Fig. 2a with the left end subjected to a steady-state forced rotation Θ . The deflection amplitude of the beam at a distance \bar{x} from the left end may be written as

$$Y_{=} = C\Theta I$$
,

where \underline{C} is a dimensionless coefficient dependent on the value of \overline{x} and the parameter λ . If \underline{O} represents the rotation at the right end instead of at the left end of the beam, the deflection amplitude at a distance \overline{x} from the right end will be equal to the right hand side of Eq. (14) multiplied by minus one. The minus sign is a consequence of the sign convention adopted.

Numerical values of <u>C</u> are given in Table II of Appendix A for successive twelveth points of the beam for values of λ ranging between zero and 10.20. These walues were computed from Eq. (B-32) in Appendix B, by use of the Electronic Digital Computer of the University of Illinois. The values are reported to five significant figures, but to no more than six decimal places.

The values in Table II may also be interpreted as coefficients of dynamic fixed-end moment for a beam subjected to a pulsating concentrated force. This follows from Müller-Breslau's principle, which it can be shown to hold true for dynamical systems undergoing steady-state forced vibration. This principle, as applied to the dynamical case, is presented in Appendix B.

18

(14)

II. APPLICATION OF METHOD TO CONTINUOUS BEAMS ON RIGID SUPPORTS

8. General.

The beams considered are assumed to be straight and may have any number of spans of arbitrary length. At their extreme ends they may be hinged, fixed, or only partially fixed by means of rotational restraints which are assumed to be proportional to the end rotations. The cross section and the mass per unit of length of the beam may vary from one span to the other, but in any one span these quantities are considered constant. It is assumed that vibration is restricted to one of the principal planes of flexure of the beam, and that the cross sectional dimensions of each span are small in comparison to its length so that the effects of shearing deformation and rotatory inertia are negligible.

The supports of the beam are numbered successively from left to right starting with 1 at the extreme left end and terminating with <u>z</u> at the extreme right end.

The portion of the beam between two consecutive supports j and j+1 is referred to as the j-th span. The quantities L_j , E_j , I_j , λ_j , K_j , and k_j refer to the j-th span.

 Θ_j denotes the amplitude of rotation of the deflected beam over the j-th support and M_j denotes the amplitude of bending moment across a section at the same support. The subscripts L and R designate, respectively, sections just to the left and just to the right of the support. M_j denotes the amplitude of the external couple at support j_e

9. Development of the Basic Equations.

Figure 13 shows the extreme deflected position of spans $\underline{j-l}$ and \underline{j} of a continuous beam undergoing a steady-state forced vibration. The vibration is assumed to be maintained by an exciting couple applied at the extreme right end of the beam. There is no other exciting force or moment acting on the system.

In Fig. 13, the rotations and bending moments at the ends of each span are indicated in their positive directions. The slope and the bending moment at a time t for support j are

$$\Theta_j(t) = \Theta_j \cos \omega t, \quad and \quad M_j(t) = M_j \cos \omega t.$$
(15)

In the equations to be used the cos wt appears as a common factor; for convenience, this will be omitted, and in the remainder of this discussion the terms "amplitude of slope" and "slope" and the terms "amplitude of moment" and "moment" will be used interchangeably.

To insure continuity and equilibrium of the beam over the interior support j, it is required that

$$(\Theta_j)_L = (\Theta_j)_R = \Theta_j , \qquad (16)$$

$$\overline{M}_{j} = (M_{j})_{L} + (M_{j})_{R} = 0$$
(17)

The moments $(M_j)_L$ and $(M_j)_R$ can now be expressed as functions of the end rotations of the two spans as follows: Consider span <u>j</u>. First, assume that the right end of the span is held fixed while the left end is rotated through an angle Θ_j ; then, the moment at the end being rotated is equal to the product of the rotation Θ_j and the flexural stiffness of the member K_j . Next, imagine that the left end of the span is kept fixed while the right end is rotated through Θ_{j+1} ; the moment induced at the fixed left end is equal to the product of the rotation Θ_{j+1} and the product of the flexural stiffness and flexural carry-over factor of the member $(kK)_j$. Since the principle of superposition holds true, the moment $(M_j)_R$ corresponding to the rotations Θ_j and Θ_{j+1} is the sum of these partial moments.

$$(M_j)_R = K_j \theta_j + (\hbar K)_j \theta_{j+1}$$
 (18a)

Considering span j-1, one obtains in a similar manner:

$$(M_j)_L = K_{j-1}\theta_j + (kK)_{j-1}\theta_{j-1}$$
 (18b)

Substituting Eqs. (18a) and (18b) in Eq. (17) and solving for θ_{j+1} , one obtains the following equation relating the slopes over three consecutive supports of a continuous beam:

$$\theta_{j+1} = -\frac{(K_{j-1} + K_j)\theta_j + (kK)_{j-1}\theta_{j-1}}{(kK)_j}$$
(19a)

This equation is a generalized slope deflection equation with the deflection term missing. It will be referred to as the "three slope equation". Eq. (19a) is applicable only to interior supports; the appropriate relations for the end supports are given in the following paragraphs.

It is assumed that the extreme ends of the beam are elastically restrained against rotation. The relationship between the end moments and end rotations are

$$M_{i} = -R_{i}\theta_{i} , \qquad (20)$$

$$M_z = -R_z \, \theta_z \,, \tag{21}$$

where, R_1 and R_2 are the known stiffnesses of the rotational restraints at the left and the right ends, respectively. For a hinged end, R = 0, and for a clamped end, R = infinity. The negative signs in these expressions follow from the sign convention used and indicate that for a positive restraint,

the moment exerted on the beam by the restraint acts in a direction opposite to the direction of rotation of the beam.

The moments M and M can also be expressed by the following equations, obtained respectively from Eqs. (18a) and (18b).

$$Y_{I} = K_{I} \theta_{I} + (kK)_{I} \theta_{z} , \qquad (18a)$$

$$\mathcal{M}_{z} = \mathcal{K}_{z-1} \Theta_{z} + (\mathcal{R}\mathcal{K})_{z-1} \Theta_{z} \qquad (18b^{\dagger})$$

Eliminating M_1 between Eqs. (18a') and (20) and M_2 between Eqs. (18b') and (21), one obtains

$$(R_1 + K_1) \Theta_1 + (kK)_1 \Theta_2 = 0$$
, (21a)

$$(K_{z-1} + R_z) \theta_z + (kK)_{z-1} \theta_{z-1} = 0 .$$
(22a)

At a natural frequency, both of these equations must be satisfied identically.

Equations (21a) and (22a) apply only to hinged and to partially fixed ends. For fixed ends, the equations are specialized as follows: For $\Theta_1 = 0$, the relation between the moment at the fixed end and the rotation of the beam over the second support is obtained from Eq. (18a') as

$$\mathcal{I}_{1} = (\mathcal{R}\mathcal{K})_{1} \Theta_{2} \qquad (21b)$$

If the right end is fixed,

 $\Theta_z = O, \qquad (22b)$

and the criterion for a natural frequency is that Eq. (22b) be satisfied. The magnitude of the moment at the fixed end is of no interest but, should it be desired, it may be calculated from Eq. (18b¹), keeping in mind that $\Theta_z=0$.

10. Outline of the Procedure.

The procedure for arriving at the natural frequencies of a continuous beam may be outlined as follows:

- 1. A fixed value is assigned to the amplitude of slope or bending moment at the first support of the beam. Since the natural frequencies of a system depend only on the relative values of the deflection, any arbitrary amplitude consistent with the actual boundary conditions may be chosen. For a hinged or for a partially fixed end, Θ_1 is taken, for convenience, equal to unity; for a clamped end, Θ_1 is equal to zero, and M_1 or M_1 times the L/EI of some reference span is taken equal to unity instead.
- 2. A trial frequency of vibration, ω , is chosen and the λ values for all spans are evaluated. These calculations are carried out conveniently in a tabular form, as illustrated in Example 2.
- 3. With the λ values available, the flexural stiffness and the product of the flexural stiffness and flexural carry-over factor for each span of the beam are found from Table I in Appendix A.
- 4. The rotation of the beam over the second support is determined from Eq. (21a) or (21b).
- 5. By successive applications of Eq. (19), the rotations θ_3 to θ_z are evaluated. A convenient tabular scheme for arranging the computations is described in Example 2.
- 6. If support <u>z</u> is fixed, the determination of the rotation O_z completes one cycle of the procedure (see Eq. 22b). However, if this support is hinged or is only partially fixed, it is necessary to carry out the additional step of evaluating the left hand side of Eq. (22a).
- 7. Steps 1 through 6 are repeated for different assumed frequencies, and the values calculated for the left hand side of Eq. (22a) or (22b) are plotted as a function of the assumed frequencies, or what is usually more convenient, as a function of the corresponding λ

values for some reference span. The zero intercepts of the resulting curve which is, in general, similar in shape to that shown in Figs. 16 and 18, correspond to the natural frequencies of the system.

11. Determination of Modes of Vibration

Since the rotations of the beam over the supports are evaluated in each cycle of this procedure, the deflection configuration of the beam for any desired frequency can ordinarily be sketched from these rotations. The natural modes of free vibration may be determined from the rotations corresponding to the natural frequencies in the same manner.

If it is desired to compute these deflections accurately, it is necessary to use the numerical coefficients given in Table II. The deflection at any point within a span may be obtained by adding (a) the deflection produced by the rotation of the left end of the span, assuming that the right end is fixed and (b) the deflection produced by the rotation of the right end of the span, assuming that the left end is fixed.

12. Illustrative Examples.

Example 1. Consider a uniform beam continuous over five rigid supports spaced equidistantly. The beam is simply supported at the left end and fixed at the right end, as shown in Fig. 14. It is desired to calculate its first eight natural frequencies and the corresponding natural modes of vibration. It is assumed that the beam is cut at the extreme right end and then an exciting moment is applied there. At a natural frequency, the magnitude of this moment must be such that the condition $\Theta_5 = 0$ is satisfied. The amplitude of slope at the extreme left end is taken equal to unity. Since all spans are identical, rather than repeating the procedure outlined in Sec-

tion 10 for each assumed frequency of vibration, it is more convenient to derive a general expression for θ_5 and determine directly from this expression the natural frequencies of the beam.

Let K be the flexural stiffness and k the flexural carry-over factor for each span. These quantities depend, of course, on the parameter λ . From Eq. (21a) one obtains

$$\Theta_z = -\frac{K}{kK} = -\frac{1}{k}$$

Applying Eq. (19) successively to joints 2, 3, and 4, one obtains

$$\begin{aligned} \theta_{3} &= -K \left[2 \left(-\frac{1}{k} \right) + k \right] \div kK = \frac{2 - k^{2}}{k^{2}} ,\\ \theta_{4} &= -K \left[2 \frac{2 - k^{2}}{k^{2}} + k \left(-\frac{1}{k} \right) \right] \div kK = \frac{3k^{2} - 4}{k^{3}} ,\\ \theta_{5} &= -K \left[2 \frac{3k^{2} - 4}{k^{3}} + k \frac{2 - k^{2}}{k^{2}} \right] \div kK = \frac{k^{4} - 8k^{2} + 8}{k^{4}} \end{aligned}$$

The expression for θ_5 was evaluated for several values of λ and the results were used to plot the curve shown in Fig. 16. The values of <u>k</u> corresponding to the assumed values of λ were obtained from Table I. The λ values corresponding to the natural frequencies are

Order of λ_N	Value of $\lambda_{\scriptscriptstyle N}$	Order of λ_N	Value of $\lambda_{\sf N}$
l	3.21	5	6.36
2	3.65	6 .	6.79
3	4.21	7	7.34
4	4.655	8	7.78

These values agree with those reported elsewhere (16). The circular natural frequencies ω_N are obtained from the expression

$$u_N = \frac{\lambda_N^2}{L^2} \sqrt{\frac{EI}{m}}$$

and the natural frequencies, in cycles per second, are computed from

$$f_N = \frac{\omega_N}{2\pi} \, .$$

In order to determine the natural modes of vibration, first, the <u>k</u> values corresponding to the natural frequencies were determined, and then the expressions of θ_2 , θ_3 , and θ_4 were evaluated. The results are summarized in the following:

Order of Mode	e _l	9 2 (1)	O	ିକ ୂ୍ୟ	9 ₅
1	L. 00	924	•707	383	0
2	1900	-•383	707	.924	0
3	1.00	₀ 383	···••707		0
4	1.00	924	.707	•383	. 0
5	1.00	•924	.707	•383	0
6	1.,00	×\$383	-,707	924	0
7	1.00		707	• 924	0
8	1.00	924	•707	-,383	0

From these rotations, the shapes of the natural modes of vibration can be sketched. For this particular problem, the vibration modes were computed by use of the numerical values given in Table II, following the procedure described in the preceding Article. For the purpose of illustration, the computations involved in the determination of the first natural mode

($\lambda = 3.21$) are presented in detail. Deflection of span 1 at successive 1/6 - points:

for $\theta_1 = 1.00$, $\theta_2 = 0$:	0	, 128	.179	.163	.103	•033	0
for $\theta_1 = 0$, $\theta_2 =924$:	0	<u>.0</u> 31	•095	.151	.166	,118	Ó
total:	Ò	. 159	.274	•314	•269	.151	0

Deflection of span 2 at successive 1/6 - points:

for $\theta_2 =924$, $\theta_3 = 0$;	0	118	166	151	095	031	0
for $\theta_2 = 0$, $\theta_3 = .707$:	0	024	···· 6·072	115	127	090	0
total:	0	142		266	222	121	0
Deflection of span 3 at success	Lve	1/6 - p	oints:				
for $\theta_3 = .707$, $\theta_4 = 0$:	0	。 090	.127	. 115	•072		0
for $\Theta_3 = 0$, $\Theta_4 =383$:	0	,013	•039	.062	•069	•049	0
total:	0	. 103	.166	. 177	•141	.073	0
Deflection of span 4 at successi	ve	1/6 - p	oints:	Ī			

for $\theta_4 = -.383$, $\theta_5 = 0$: 0 -.049 -.069 -.062 -.039 -.013 0

The first six natural modes of vibration are shown in Fig. 17

Example 2. In order to illustrate several additional details of the procedure and present a convenient tabular scheme for recording the computations for the general case in which the dimensions of the beam may vary from span to span, we consider the four-span continuous beam shown in Fig. 15. Only the first five natural frequencies will be evaluated. The beam is assumed to be elastically restrained at the left end and hinged at the right end. The stiffness of the end restraint and the characteristics of the various spans are shown in Fig. 15.

For convenience in carrying out the calculations, the natural frequencied of the system are expressed in terms of the pertinent properties of some reference span, say span $\underline{\mathbf{r}}$. In this particular example we take $\mathbf{r} = \mathbf{l}$. In terms of the λ value of the $\underline{\mathbf{r}}$ -th span, the λ value for any span j is

$$\lambda_{j} = \sqrt[4]{\frac{m_{j}}{m_{r}} \frac{E_{r}I_{r}}{E_{j}I_{j}} \frac{L_{j}}{L_{r}} \cdot \lambda_{r}}$$
(23)

In terms of the $\frac{\text{EI}}{\text{L}}$ of the <u>r</u>-th span, the stiffness and the product of the stiffness and of the carry-over factor for any span <u>j</u> are equal to the values obtained from Table I multiplied by the dimensionless factor
$$\alpha_j = \frac{E_j I_j}{E_r I_r} \frac{L_r}{L_j}$$
 (24)

28

Equations (23) and (24) can be verified readily.

The quantities λ_j/λ_r and α_j are evaluated in Table 14. It should be noted that the calculations in this table are independent of the frequency of vibration.

The trial-and-error produce for determining the natural frequencies of the system is carried out in Table 18. As an example of the use of this table, a complete cycle of calculations is carried out for a trial value of $\lambda_r = \lambda_i = 2.40$. This value, shown encircled in the <u>r</u>-th line of Column (2), corresponds to a circular frequency of vibration $\omega = \frac{(2.40)^2}{L_i^2} / \frac{E_i I_i}{m_i}$ The arrangement of the various quantities in this table is believed to facilitate the computational work and to reduce substantially the probability for errors. The order in which the columns in this table are filled in is indicated by the following sequence of column numbers: (1), (3), (2), (4 and 8), (5), (7), and (6). Columns (1) and (3) are reproduced, respectively, from Columns (5) and (6) of Table A. The λ values for the various spans in Column (2) are obtained as the product of the assumed λ_r and each of the values in Column (1). Columns (4) and (8) give, respectively, values of the stiffness and of the product of the stiffness and the carry-over factor for each span, ; these quantities are obtained directly from Table I in in terms of Appendix A, using the λ values computed in Column (2). Column (5) gives the total stiffness of the spans adjoining each support in terms of $\frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}}$ The value for the j-th line in this column is determined by taking the sum of the products of the values in Columns (3) and (4) for lines j-1 and j. Column (7) gives the product of the stiffness and of the carry-over factor for each span in terms of $\frac{rr}{L_{r}}$; the entries in this column are obtained

TABLE 1. CALCULATIONS FOR EXAMPLE 2

			· · · ·	TABLE A			
1	Span	(1)	(2)	(3)	(4)	(5)	(6)
		<u> </u>	<u> </u>	$4 \frac{1}{(2)}$	$\frac{L_j}{L_r}$	$\frac{\lambda_j}{\lambda_r} = (3)(4)$	$\alpha_j = \frac{(2)}{(4)}$
T	l=r	1.00	1.00	1.00	1.00	1.00	1.00
Í	2	0.80	1.00	0.9457	1.25	1.182	0,80
ſ	. 3 .	1.20	1.35	0.9710	1.00	0.9710	1.35
Г	4	1.00.	1.35	0.9277	1.50	1.392	0.,90

TABLE	В
-------	---

							Transment of the second se	
2	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Span or Support	$\frac{\lambda_i}{\lambda_i}$	λį	øj	$K_j - \frac{L_j}{E_j I_j}$	$(K_{j-r} + K_j) \frac{L_r}{E_r I_r}$	Θj	(KK)j <u>Lr</u> E _r Ir	$(\%K)_j \frac{L_j}{E_j I_j}$
+ -	۸r			from Table I	$(3)_{j-1}(4)_{j-1}+(3)_{j}(4)_{j}$	Eq. (19)	(3) _j (8) _j	from Table I
l=r	1,00	2.40	1.00	3.6649		1.0000	2.2555	2.2555
2	1.182	2.84	0.80	3.3015	6.3061	-1.8466	2.0330	2.5412
3	0.9710	2.33	1.35	3.7043	7.6420	4.6185	3.0038	2.2250
4	1.392	3.34	0.90	2.4810	7.2337	-10.500	2.8924	3.2138
5	· · ·		<u> </u>	·	4	21.463		
			a na an	, 		•	E.I.	E.I.

Eq in (22a) = (0 + 2.4810 x 0.90) 21.463 + 2.8924 (-10.500) $\frac{E_1 - 1}{L_1}$ = 17.55 $\frac{E_1 - 1}{L_1}$

N9 .

by multiplying the entries in Column (8) by those in Column (3). Column (6) gives the rotation of the beam over the supports. The first value in this column is unity. (Had the beam been fixed at the left end, this value would have been zero). The second value in the column, θ_2 , is evaluated from Eq. (21a)

$$\Theta_2 = -\frac{(0.5000 + 3.6649) 1.0000}{2.2555} = -1.8466$$

This operation is not indicated in the Table. (Had support 1 been fixed, Eq. (21b) would have been used instead). The values of θ_3 to θ_z are determined from the values in Columns (5) and (7) by use of Eq. (19a), which, in terms of column members, takes the form:

$$\Theta_{j+1} = -\frac{(5)_j(G)_j + (G)_{j-1}(7)_{j-1}}{(7)_j} \quad (for \ j \ge 2). \quad (19b)$$

Thus,

$$\theta_3 = -\frac{6.3061(-1.8466) + 1.0000(2.2555)}{2.0330} = 4.6185$$

The left hand side of Eq. (22a), evaluated at the bottom of the table, is found to be equal to $17.55 \frac{E_1I_1}{I_2}$

Since, for the assumed value of $\lambda_i = 2.40$, Eq. (22a) was not satisfied, this value does not correspond to a natural frequency of the system. The physical significance of the computed value of $17.55 \frac{\text{E}_1\text{I}_1}{\text{L}_1}$ is as follows: the negative of this value divided by the rotation θ_2 ,

$$-\frac{17.55}{21.463} \quad \frac{E_1I_1}{L_1} = -0.8179 \quad \frac{E_1I_1}{L_1};$$

represents the stiffness of a rotational constraint which, if it were imposed at the right end of the beam, would have made the assumed frequency correspond to a natural frequency of the system.

By repeating several such cycles of computation for different values of λ_i , the curve in Fig. 18 was obtained. The first five critical values

are recorded on the figure. The corresponding circular natural frequencies

are

$$(\omega_{N})_{1} = \frac{6 \cdot 27}{L_{1}^{2}} \sqrt{\frac{E_{1}I_{1}}{m_{1}}} ,$$

$$(\omega_{N})_{2} = \frac{9 \cdot 42}{L_{1}^{2}} \sqrt{\frac{E_{1}I_{1}}{m_{1}}} ,$$

$$(\omega_{N})_{3} = \frac{13 \cdot 7}{L_{1}^{2}} \sqrt{\frac{E_{1}I_{1}}{m_{1}}} ,$$

$$(\omega_{N})_{4} = \frac{16 \cdot 9}{L_{1}^{2}} \sqrt{\frac{E_{1}I_{1}}{m_{1}}} ,$$

$$(\omega_{N})_{5} = \frac{24 \cdot 0}{L_{1}^{2}} \sqrt{\frac{E_{1}I_{1}}{m_{1}}} .$$

If it is desired to evaluate these quantities more precisely, the computations should be repeated for several additional values of λ_i in the neighborhood of the critical values, and the results should be plotted on a larger scale.

The natural modes of vibration, determined in the manner described in Section 11, are shown in Fig. 19. It should be stated that, in general, for the fundamental or lowest natural frequency, the rotations of the beam over the supports are not very sensitive to the magnitude of the frequency of vibration. For some of the higher vibration frequencies, however, a slight variation in the value of the frequency may affect the rotations materially. Accordingly, the accurate evaluation of the rotations in these latter cases may become somewhat cumbersome.

13. Alternate Methods of Analysis.

As applied to continuous beams, the criterion for a natural*fre-

$$\overline{\mathcal{M}}_{z}^{*} = O . \qquad (22a)$$

It is presumed that support \underline{z} is not fixed.

As has already been remarked, the method used to evaluate \overline{M}_{z} is

merely one of a number of possible methods. It is the purpose of the following discussion to present several alternate procedures for arriving at the same result.

<u>The Effective Stiffness Criterion</u>. The moment at a joint of a structure necessary to produce at that joint a rotation of unit amplitude, while all other joints are in their actual condition of restraint, is defined as the "effective flexural stiffness" of the joint. This quantity depends on the properties of all the members of the structure, and it will be denoted by \overline{K}^{i} .

Let \overline{K}_{z}^{i} represent the total effective stiffness at the right hand support <u>z</u> of a continuous beam; then, Eq. (22a) may be written as

$$\overline{\zeta}'_z \theta_z = 0 \tag{25}$$

Since $\boldsymbol{\theta}_{_{\mathbf{Z}}}$ is assumed to be different from zero, this equation is satisfied only if

$$\bar{K}'_z = 0. \tag{26a}$$

It should be emphasized that Eqs. (22a) and (26a) express identically the same condition, only in slightly different forms.

Equation (26a) represents the effective stiffness criterion for determining natural frequencies. This criterion will now be applied by use of the moment distribution procedure and a procedure which, for want of any better term, will be referred to as the "direct" procedure.

The Moment Distribution Procedure. Gaskell's adaptation of the method of moment distribution (13) may be applied as follows:

1. A frequency of vibration is assumed, and the flexural stiffness, <u>K</u>, and the flexural carry-over factor, <u>k</u>, for each span of the beam are computed from Table I in Appendix A.

- 2. With all joints of the structure, except joint \underline{z} , fixed against rotation, an exciting moment is applied at joint \underline{z} producing a rotation of unit amplitude at that joint. Obviously, the frequency of this moment is equal to the assumed frequency of vibration and the magnitude of the moment is equal to $K'_{z-i} + R_z$.
- 3. This moment is distributed to the adjacent members in proportion to their relative stiffness, and the proper proportion of the balancing moment is carried-over to joint $\underline{z-1}$.
- 4. Joint <u>z</u> is then locked, and the unbalanced moment at joint <u>z-l</u> is distributed, carried over, and balanced through the rest of the structure. During this process of moment balancing, joint <u>z</u> is maintained locked.
- 5. The total moment carried back to joint \underline{z} is determined. Finally, the effective stiffness of the joint is computed as the algebraic sum of the moment applied initially to the joint and the moment carried back after all the other joints have been balanced.
- 6. Steps 1 through 5 are repeated for several frequencies of vibration, and the natural frequencies are determined as those frequencies for which the effective stiffness vanishes.

The "Direct" Procedure. The second procedure for applying the effective stiffness criterion is presented in this section. Consider a bar on unyielding supports at each end with one end elastically restrained against rotation. The restraint may be due to an actual coil spring or it may symbolize the continuity of the bar with adjoining members. The stiffness of the restraint is

At this point, attention should be called to the fact that the method of moment distribution does not converge always to an answer. Therefore, this method, which probably would appeal to many engineers, is restricted in its practical application. This fact is considered in somewhat greater detail in Section 14.

denoted by \underline{R} . It can be shown (17) that the effective flexural stiffness of the opposite end of the bar is given by the expression

$$V = K - \frac{\left(\frac{k}{K}\right)^2}{K + R} \quad . \tag{27}$$

This equation may be used to calculate the effective stiffness of a continuous beam as follows:

K

den Spo

- 1. A frequency of vibration is assumed, and the corresponding values of <u>K</u> and <u>kK</u> for each span of the beam are determined from Table I in Appendix A.
- 2. With the stiffness of the restraint R_1 at the extreme left end of the beam known, the value of effective stiffness of the first span, K_1 , is computed from Eq. (27). This value represents also the stiffness of the rotational restraint R_2 exerted by the first span on the left end of the second span. By application of Eq. (27) to consecutive spans, the effective stiffness of spans 2 to <u>z-1</u> are evaluated.
- 3. Having determined K_{z-1} , the effective stiffness at joint <u>z</u> is computed as $K_{z-1}^{\dagger} + R_{z}^{\circ}$.
- 4. As usual, the foregoing steps are repeated for a number of frequencies and the natural frequencies are determined as those frequencies for which the effective stiffness vanishes.

In the foregoing discussion it was assumed that $\Theta_z = 0$. Consider new that support <u>z</u> is fixed; then, $R_z = infinite$, $\Theta_z = 0$, and M_z is finite. But, since

$$M_{z} = K'_{z-1} \theta_{z} ,$$

$$K'_{z-1} = infinity$$
(26b)

becomes the modified criterion for a natural frequency.

The curve in Fig. 20 shows the variation of the effective stiffness \overline{k}_{z}^{I} of a continuous beam as a function of the frequency of vibration. The curve was determined by the "direct" method and is applicable to the particular beam considered in Example 2. The zeros of the curve correspond to the natural frequencies of the beam; the discontinuities correspond to the natural frequencies of the beam assuming that its right end is fixed. The abscissa of any other point of the curve corresponds to the natural frequency of the beam, provided its right end is subjected to a restraint, the stiffness of which is equal to the negative of the value represented by the ordinate of the curve.

It should be pointed out again that the main method, which was presented at the beginning of this Chapter, and the effective stiffness method presented in the preceding paragraphs, are fundamentally alike. In the former method, the moment at joint \underline{z} necessary to produce a rotation of unit amplitude at joint 1 is determined, while in the latter method, the moment at joint \underline{z} necessary to produce a rotation of unit amplitude at the same joint \underline{z} is determined. The correspondence of the two methods can be demonstrated further by noting that, if each ordinate of the curve in Fig. 18 is divided by the rotation of the beam $\theta_{\underline{z}}$ corresponding to that ordinate, the curve will be transformed into that shown in Fig. 20. For example, for $\lambda_i = 2.40$ the ordinate of the curve in Fig. 18 is $17.55 = \frac{11}{L_1}$, and the corresponding rotation $\theta_{\underline{z}} = \theta_5 = 21.463$. The ratio $\frac{17.55}{21.463} = \frac{11}{L_1} = .8179 = \frac{E_1 I_1}{L_1}$ is identical to the corresponding ordinate of the curve in Fig. 20.

The effective stiffness method is similar to Porter's (18) and Manley's (19), (20) methods of determining natural frequencies of torsional

vibration of shafts, and is similar also to Lundquist's stiffness and series criteria for determining the critical buckling loads of structures (21). The stiffness criterion has been applied to the determination of the natural frequencies of continuous beams previously by Mudrak (1), (2), (3). However, Mudrak's method differs from the procedures described in this section both in its development and in the form of its application.

<u>The Method of Three Moments.</u> An alternate procedure for calculating the magnitude of the exciting moment \overline{M}_z is provided by the use of the equation of three moments, first applied to the study of steady-state forced vibrations by W. Prager (22). Numerical values of the various coefficients appearing in these equations have been published (23), (24) but, unfortunately, these references are not readily accessible. In general, the three-moment equation can be applied in the same manner as the three-slope equation.

14. Range of Applicability and Relative Merits of Various Procedures.

As previously remarked, the moment distribution procedure is of restricted practical value. Convergence of this procedure can be insured only for vibration frequencies which are smaller that the (unknown) fundamental or lowest natural frequency of the system considered (13). Consequently, the method can, in general, be used to determine only the lowest natural frequency of a structure. Also, it might be important to note that, even for vibration frequencies which are below the fundamental natural frequency of a structure, the moment distribution procedure may be so slow to ^{converge} that it may be necessary to carry out a large number of distributions to affect a solution. This process may become rather time consuming, ^{especially} when applied to structures involving a large number of members.

The "direct" method does not offer any difficulty of convergence.

It can, therefore, be used to calculate the higher natural frequencies of continuous beams. In general, this procedure requires a much larger number of trials than the main procedure of this report. In addition, it cannot be extended to continuous frames involving closed panels. It is, therefore, of restricted applicability, too.

For continuous beams only, the choice between the main method of this report and the procedure based on the use of the three moment equation depends, to a large extent, on personal preference and on one's familiarity with the particular procedure. One major advantage of the use of the three slope equation is that it gives a clear picture of the distortions which the structure undergoes during vibration. This feature is particularly important because, in practice, it is frequently desirable to have a rapid means of sketching the vibration configuration corresponding to a given frequency. For the analysis of continuous frames, equations involving the rotation of the joints as unknowns are remarkably better suited than equations involving moments as the redundant quantities. The extension of the main method of this report to the determination of the natural frequencies of continuous frames without sidesway is presented in the following Chapter.

IV. APPLICATION OF METHOD TO CONTINUOUS FRAMES

WITHOUT SIDESWAY

5. General

This Chapter is concerned with the determination of the natural frequencies of flexural vibration of rigid jointed plane frameworks for which the joints do not move. The extension of the method to some relatively simple frames with sidesway will be presented in Chapter VI.

The frames considered may have any number of members of arbitrary length; the mass per unit of length and the flexural rigidity of cross section of the members may differ from one member to the other, but in any one member, these quantities are assumed to remain constant. The simplifying assumptions made in the analysis are as follows: The vibrations are assumed to take place in the plane of the framework. The change in length of the members due to axial deformation, and the effect of the axial forces on the bending moment in the members are neglected. In addition, no account is taken of the influence of axial vibrations. As before, the cross sectional dimensions of the members are considered to be small in comparison to their length, so that the effects of shearing deformation and rotatory inertia may be neglected.

16. Basic Relations

Figure 21 shows <u>s</u> members of a structure rigidly connected at their common intersection <u>o</u>. The far ends of the members are assumed to be fixed against translation, but free to rotate subject to the restraint imposed by the adjoining members. Assume that the structure is in a steady-state forced vibration under the action of some exciting moment applied at a joint different from joint e.

Let Θ_{oj} denote the amplitude of rotation at end <u>o</u> of member <u>oj</u>, and Θ_{j0} denote the amplitude of rotation at end <u>j</u> of the same member. Similarly, let M_{oj} and M_{j0} be the corresponding moment amplitudes at the same ends. Since all members are rigidly connected at their joints,

$$\theta_{ol} = \theta_{oz} = \dots = \theta_{oj} = \dots = \theta_{os} = \theta_{os} , \qquad (28a)$$

and

$$\Theta_{jo} = \Theta_j$$
(28b)

Furthermore, since no external moment acts at joint o,

$$\overline{M}_{o} = M_{o1} + M_{o2} + \dots + M_{oj} + \dots + M_{o5} = \sum_{j=1}^{s} M_{oj} = 0 .$$
 (29)

The moment M may be expressed in terms of the end rotations of member oj by the relation

$$\mathcal{M}_{oj} = \mathcal{K}_{oj} \theta_o + (\mathcal{K} \mathcal{K})_{oj} \theta_j \qquad (30)$$

Substituting this expression into Eq. (29), one obtains Eq. (31a)

$$\sum_{j=1}^{s} K_{oj} \theta_{o} + \sum_{j=1}^{s} (kK)_{oj} \theta_{j} = 0 \quad . \tag{31a}$$

which expresses the conditions of both equilibrium and continuity for joint o of the structure. If only two members meet at joint o, Eq. (31a) reduces to Eq. (19a) for continuous beams.

If the degree of restraint at the far ends of the members meeting at a joint are known, it is convenient to use effective stiffnesses. Assume that the restraints at ends 1 and 2 of the portion of the structure shown in Fig. 21 are known. Let K_{ol}^{i} and K_{o2}^{i} represent the effective stiffness of members ol and o2. Then, Eq. (31a) may be written as

$$(K'_{ol} + K'_{oz})\Theta_o + \sum_{j=3}^{5} K_{oj}\Theta_o + \sum_{j=3}^{5} (\Re K)_{oj}\Theta_j = 0$$
(31b)

Equations (30) and (31) are the only two relations needed in the analysis of frames without sidesway.

17. Open Frames.

The frames considered in this section do not involve any closed panels and have known conditions of restraint at all external terminals. It is assumed that the joints of the frame do not translate.

Simple L-frames and portal frames, such as those shown in Fig. 22, act as continuous beams on rigid supports. Their natural frequencies can therefore be calculated by the procedure outlined in Section 10 of the preceding Chapter.

When applied to the analysis of continuous frames, such as those shown in Fig. 23, this procedure will, in general, reveal only a portion of the natural frequencies of the frame considered. The failure of the procedure to identify the complete set of natural frequencies results from the fact that, for certain natural frequencies, only a portion of the frame may vibrate with finite amplitudes while the rest may remain stationary. The natural frequencies corresponding to these modes, which will be referred to as "modes of partial vibration", must be determined by a supplementary procedure.

Consider any of the frames shown in Fig. 23. Let 1 denote the joint of the frame at the extreme left terminal and \underline{z} denote the joint at the extreme right terminal. Without loss of generality, it may be assumed that joint \underline{z} is either hinged or elastically restrained. A fixed end may be handled in the manner described in Illustrative Example 1. Assume that the structure is in a steady-state forced vibration under the action of an exciting couple $\overline{M}_{\underline{z}}$ applied at joint \underline{z} . The amplitude of the slope or of the bending moment at joint 1 is assumed to have some fixed value. If the joint is hinged or elastically restrained, the amplitude of slope is taken equal to unity. If the joint is fixed, the amplitude of bending moment is taken equal to unity instead. For an assumed frequency of vibration, it is

generally possible to calculate the magnitude of the exciting moment \overline{M}_z , in a manner entirely analogous to that used for continuous beams, by working progressively from one end of the frame to the other. By repeating this procedure for several frequencies of vibration, the magnitude of \overline{M}_z may be plotted as a function of the frequency. All frequencies for which the magnitude of the exciting moment vanishes are natural frequencies of the frame.

The natural frequencies determined by the previous procedure may not represent the complete set of natural frequencies of the frame. The procedure is based on the assumption that the amplitude of slope or bending moment at joint 1 is finite. For continuous <u>beams</u> this condition is satisfied for all non-trivial natural frequencies. For continuous frames, however, bar 1-2 may be still even though the rest of the structure, or some portion of it, vibrates with finite amplitudes. Obviously then, the procedure fails to reveal those natural frequencies for which bar 1-2 remains still. A second assumption implicit in the procedure described is that the rotation of joint <u>z</u> is finite for the natural frequencies to be determined. For continuous frames, this condition is not satisfied always. Therefore, the procedure fails also to reveal the natural frequencies for which the bar meeting at joint <u>z</u> is stationary.

Figure 24 presents several natural modes of vibration for which either bar 1-2 or the bar meeting at joint \underline{z} is stationary. The modes are applicable to the particular structures shown in Fig. 23 and can, of course, exist only if the dimensions of the various members composing these structures satisfy certain definite relations. It should be emphasized that natural modes of partial vibration are peculiar to frames and cannot exist in the case of continuous beams.

The technique for determining the natural frequencies for which either bar 1-2 or the bar meeting at joint \underline{z} is stationary consists of (a) calculating the frequencies for which these conditions can occur, and (b) ascertaining whether or not these frequencies are natural frequencies of the system. The details of this supplementary technique will be explained in the examples to be presented.

8. Illustrative Examples.

Example 3. The simple frame shown in Fig. 25a has been selected for analysis. To illustrate several features of the method, the bars identified by (1) are taken identical while the bar designated by (2) is considered to have such dimensions that

$$\frac{\mathbf{E}_{2}\mathbf{I}_{2}}{\mathbf{L}_{2}} = \frac{\mathbf{E}_{1}\mathbf{I}_{1}}{\mathbf{L}_{1}} , \mathbf{L}_{2} = 0.80\mathbf{L}_{1}$$

and

$$\lambda_{z} = \frac{3.927}{4.730} \lambda_{1} = 0.8302 \lambda_{1}$$

The subscripts 1 and 2 refer to bars (1) and (2), respectively.

For the sake of brevity, only one cycle of the procedure is presented. The computations are given for a value of $\lambda_1 = 3.30$; this corresponds to a value of $\lambda_2 = 2.74$. The appropriate values of <u>K</u> and <u>kK</u> are obtained from Table I in Appendix A.

for bars (1)
$$K_1 = 2.5720 \frac{E_1I_1}{L_1}$$
 and $(kK)_1 = 3.1375 \frac{E_1I_1}{L_1}$
for bar (2) $K_2 = 3.4051 \frac{E_1I_1}{L_1}$ and $(kK)_2 = 2.4589 \frac{E_1I_1}{L_1}$

The data necessary for the analysis are compiled on the diagram in Fig. 25b. The number in parentheses opposite each joint gives the sum of the stiffnesses of the members meeting at that joint. The parenthesized number at the middle of each member gives the product of the stiffness and the carry-over factor for the member. Both quantities are expressed in terms of $\frac{E_1I_1}{L_1}$. The numbers without parentheses denote the rotations of the various joints. These rotations are evaluated in the manner described below, and they are recorded on the diagram as they are computed.

The procedure is started by taking $M_1 = 1.00 \frac{E_1 I_1}{L_1}$. Then, θ_2 is computed by application to joint 1 of Eq. (30), as

$$\Theta_2 = \frac{1}{3.1375} = 0.31873$$

The rotations θ_4 and θ_5 are determined successively by application of Eq. (31a) to joints 2 and 4.

$$\theta_4 = -\frac{(5.1440) \ 0.31873 + 3.1375 \ (0)}{3.1375} = -0.52256$$

$$\theta_5 = -\frac{8.5491 \ (-.52256) + 3.1375 \ (.31873)}{2.4589} = 1.4101$$

The magnitude of the exciting moment is determined from Eq. (30), as

$$\overline{M}_{5} = (1.4101)3.4051 \frac{E_{1}I_{1}}{I_{1}} + (-.52256)2.4589 \frac{E_{1}I_{1}}{I_{1}} = 3.517 \frac{E_{1}I_{1}}{I_{1}}$$

It should be noted that each of the foregoing operations can be carried out with a single set-up on a desk calculator.

Repeating this procedure for several values of λ_i , the curve shown in Fig. 26 was obtained. The λ_i values corresponding to the natural frequencies are recorded on the figure. The corresponding natural modes of free vibration are given in Figs. 27a to 27f.

The foregoing procedure is based on the assumption that the amplitudes of both the bending moment at joint 1 and of the rotation at joint z = 5 are finite. To obtain the natural frequencies for which $M_1 = 0$, the following reasoning is used. In order for M_1 to be equal to zero, bar 1-2 must be stationary; then, the rotation of joint 2 and the internal bending moment at the joint are also equal to zero. This condition requires that bar 2-4 be stationary and that $\theta_4 = M_{42} = 0$. But with joint 4 remaining fixed against rotation, bar 3-4 can oscillate freely only for frequencies represented by values of

$$\lambda_1 = 4.730, 7.853, \ldots$$
 (32)

During a natural frequency, every member of the structure vibrates with the same frequency. Therefore, in order for these frequencies to be natural frequencies of the entire frame, they must be also natural frequencies of the remaining portion of the frame (bar 4-5, in this particular case). The natural frequencies of bar 4-5, considering that its left end is fixed, are

$$\lambda_2 = 3.927, 7.069, \ldots, \ldots, 3$$

these correspond to values of

$$\lambda_1 = 4.730, 8.514, \ldots$$

Comparing the latter values with those given in Eq. (32), one concludes that, within the range of frequencies considered in Fig. 26, $\lambda_1 = 7.853$ and $\lambda_1 = 8.514$ do not represent a natural frequency, while $\lambda_1 = 4.730$ does. The natural mode of vibration for $\lambda_1 = 4.730$ is shown by the solid curve in Fig. 27g.

The natural frequencies, if any, for which $\theta_5 = 0$, are determined in a similar manner. θ_5 can be equal to zero only if bar 4-5 is stationary. Under this condition, $\theta_4 = M_{45} = 0$; then, bar 3-4 may vibrate freely only at frequencies represented by the λ_i values given in Eq. (32). Since members 1-2 and 2-4 of the remaining portion of the frame are identical to member 3-4, each of these members can vibrate with its ends fixed for the same frequency; therefore, the λ_i values given in Eq. (32) correspond to natural

frequencies of the frame. The natural mode corresponding to $\lambda_1 = 4.730$ is shown by the dotted curve in Fig. 27g, while the mode corresponding to $\lambda_1 = 7.853$ is shown in Fig. 27h.

It should be observed that the natural modes shown in Figs. 27c and 27g can exist for the same frequency. Of these three modes, however, only the two are independent; the third is a linear combination of the other two. In fact, from any two of these three modes, one can obtain an infinite number of combination modes.

Within the range of frequencies considered in Fig. 26, the complete set of λ_i values corresponding to natural frequencies is

 $(\lambda_1)_{\mathbb{N}} = 3.59, 4.22, 4.73$ (double), 6.80, 7.44, 7.85, 8.35

More involved frames may be handled by the same procedure. The technique for obtaining the natural frequencies corresponding to modes of partial vibration is illustrated further by the examples given in Section 21.

Example 4. A sketch of the frame considered is shown in Fig. 28. This frame is similar to that analyzed in the preceding example. In this case, the dimensions of the structure are assumed to be such that

$$\frac{\mathbf{E}_{1}\mathbf{I}_{1}}{\mathbf{L}_{1}} = \frac{\mathbf{E}_{2}\mathbf{I}_{2}}{\mathbf{L}_{2}} = \frac{\mathbf{E}_{3}\mathbf{I}_{3}}{\mathbf{L}_{3}} = \frac{\mathbf{E}_{4}\mathbf{I}_{4}}{\mathbf{L}_{4}}$$

 $\lambda_z = 0.75 \lambda_1 , \qquad \lambda_3 = 1.30 \lambda_1 , \qquad \lambda_4 = 0.90 \lambda_1 .$

and

To determine the natural frequencies of this frame, we proceed in the usual manner and plot the magnitude of the exciting moment at joint 5 as a function of the assumed frequency of vibration. The curve in Fig. 28 summarizes the results obtained. It should be noted that this curve, unlike that shown in Fig. 26, is not continuous. The values of λ_i corresponding to the first few natural frequencies are recorded on Fig. 28. It can be shown that, within the range of the frequencies considered, there are no natural

frequencies corresponding to modes of partial vibration.

19. Closed Frames.

The application of the method to frames involving closed panels, such as those shown in Fig. 29, is described in this section by reference to a simple example. The hypothertical two celled rectangular frame shown in Fig. 29a is selected for this purpose.

The first step in the analysis is to assume that the frame is cut at some convenient joint. In the example considered, the cut is introduced at joint 6. Next, it is assumed that the structure undergoes a steady-state forced vibration with finite amplitudes and known frequency. The vibration is assumed to be maintained by an exciting couple applied at the cut joint (joint 6). If the frequency of vibration is equal to the natural frequency of the frame, the magnitude of the exciting moment must vanish and the amplitudes of slope on either side of the cut must be equal.

For an assumed frequency, the discontinuity of slope and the magnitude of the exciting moment may be determined in the same way as for open frames, by working progressively from joint to joint across the structure.

For the frame considered, Eq. (31a) is first applied to joint 1. It is noted that the resulting expression involves three unknowns: θ_1 , θ_2 , and θ_3 . Therefore, θ_2 and θ_3 cannot be solved directly in terms of θ_1 alone, as it was possible in the case of continuous beams and continuous open frames. Instead, it is necessary to express θ_3 in terms of both θ_1 and θ_2 . Next, Eq. (31a) is applied to joint 2, and θ_4 is determined in terms of the same two permanent unknowns θ_1 and θ_2 . By successive applications of the same equation to joints 3, 4, and 5, the rotations θ_5 , θ_{64} , and θ_{65} may also be determined in terms of θ_1 and θ_2 . Having computed the rotations of all joints, the exciting moment at joint 6 may also be expressed in terms of

the two permanent unknowns θ_1 and θ_2 . In the application of this technique, consecutive joints must be selected in such an order that, when Eq. (31a) is applied to a joint, the resulting expression involves only one new unknown. This technique is an adaption of Wilbur's scheme (25) of solving the set of simultaneous equations resulting from the use of the slope deflection equation.

The joint for which the rotation is evaluated last in this procedure (joint 6 in this case), is the one at which the structure is generally assumed to be cut. The number of members meeting at this joint must be equal to the number of permanent unknowns used.

At a natural frequency

and

$$\overline{\mathcal{H}}_{64} = \Theta_{65} = O, \tag{33a}$$

$$\overline{\mathcal{M}}_{6} = O.$$

47

In terms of the two permanent unknowns Θ_1 and Θ_2 , these conditions may be written as

$$c_{11}\theta_1 + c_{12}\theta_2 = 0 , \qquad (33b)$$

$$c_{21}\theta_1 + c_{22}\theta_2 = 0 , \qquad (33b)$$

where the <u>c</u>'s are constants, the magnitudes of which depend on the assumed frequency of vibration and on the characteristics of all the members in the structure. Equation (33b) represents a set of linear and homogeneous equations for the unknowns θ_1 and θ_2 ; these equations have a solution different from zero when the determinant of their coefficient is zero,

$$\Delta_{G}(\theta_{1},\theta_{2}) = \begin{vmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{vmatrix} = 0.$$
 (34)

This criterion of vanishing determinant will fail to reveal (a) the natural frequencies for which θ_1 and θ_2 are simultaneously ^{equal} to zero, and (b) the natural frequencies for which the bars meeting at the cut joint (joint 6) are stationary.

The natural frequencies corresponding to the foregoing two conditions may be calculated by the supplementary technique described in connection with continuous open frames.

The single-bay multi-story frame shown in Fig. 29b may be handled by the same procedure. The rotations of its joints may be expressed in terms of Θ_1 and Θ_2 ; the cut may be introduced at joint 9 or 10. For the analysis of the two-bay multi-story frame shown in Fig. 29c, one needs to take three quantities, say Θ_1 , M_2 , and Θ_3 , as permanent unknowns. The cut must be introduced at joint 14. The conditions of continuity and equilibrium for this joint may then be expressed as

$$\begin{aligned} \theta_{i4,i3} - \theta_{i4,i1} &= c_{i1}\theta_i + c_{i2}\theta_2 + c_{i3}\theta_3 = 0 , \\ \theta_{i4,i1} - \theta_{i4,i5} &= c_{2i}\theta_i + c_{22}\theta_2 + c_{23}\theta_3 = 0 , \\ \overline{M}_{i4} &= c_{3i}\theta_i + c_{32}\theta_3 + c_{33}\theta_3 = 0 , \end{aligned}$$

where the \underline{c} 's are numerical constants. The criterion for a natural frequency is

 $\Delta_{14}(\theta_1, M_1, \theta_3) = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} = 0 .$

It is seen that, for this problem, it becomes necessary to evaluate a third order determinant. For the general case, the order of the determinant is ^{equal} to the number of the permanent unknowns that must be used in evaluating the rotations of the joints.

The computational work required to calculate the exciting moment and the discontinuity of slope at the cut, may get fairly involved, particu-

larly if more than two quantities must be used as permanent unknowns. One may simplify this work considerably by carrying out the computations in parts: Consider again the frame shown in Fig. 29a. First, assume that $\theta_1 = 1.00$ and that $\theta_2 = 0$. Calculate the rotations of the joints in the usual manner, and designate them by θ' . Calculate also the magnitude of the exciting moment at the cut joint. Designate this by \overline{M}' . Next, assume that $\theta_1 = 0$ and that $\theta_2 = 1.00$, and calculate the corresponding rotations and moment. Denote these by θ'' and \overline{M}'' , respectively. Then, the actual rotation at a joint j is

$$\Theta_{j} = \Theta_{j}^{\dagger} \Theta_{1} + \Theta_{j}^{"} \Theta_{2} , \qquad (35a)$$

and the total exciting moment at the cut joint, say joint j , is

$$\overline{\mathbf{M}}_{j} = \overline{\mathbf{M}}_{j}^{\dagger} \Theta_{1} + \overline{\mathbf{M}}_{j}^{\dagger} \Theta_{2} \quad (35b)$$

The direct combination of these partial effects is justified by the fact that the differential equation for steady-state forced vibration is linear.

20. Outline of Procedure.

The procedure for determining the natural frequencies of continuous frames involving closed panels may be outlined as follows:

- 1. For some member of the frame, say member \underline{r} , assume a value of $\lambda_r = \sqrt[4]{\frac{m_F \omega^2}{E_r I_r}} L_r$. This is equivalent to assuming a frequency of vibration ω .
- 2. From Eq. (23) compute the λ values for the remaining members of the frame.
- 3. From Table I in Appendix A, calculate the appropriate values of <u>K</u> and <u>kK</u> for each member. These values, as obtained from Table I, are expressed in terms of $\frac{\mathbf{E}_j \mathbf{I}_j}{\mathbf{L}_j}$, where the subscript <u>j</u> refers to the particular member considered.

- 4. Express the quantities determined in step (3) in terms of the $\frac{\text{EI}}{\text{I}}$ of the reference member <u>r</u>, by multiplying them by the dimensionless coefficient α_i (Eq. 24).
- 5. Compute the sum of the stiffnesses of the members meeting at the various joints and record these values on a diagram of the frame. On the same diagram record also the product of the stiffness and the carry-over factor for each member. These quantities must be expressed in terms of the $\frac{\text{EI}}{\text{L}}$ of the same reference member \underline{r} . A convenient scheme for arranging the computations is shown in the illustrative examples presented in the next section.
- 6. Choose the unknowns in terms of which the distortions of the frame will be expressed. In general, the number of unknowns that must be selected is equal to the number of the main longitudinal members in the frame. For the frame shown in Fig. 29a, one may take Θ_1 and Θ_2 as the two permanent unknowns.
- 7. Consider the first of these quantities equal to unity and the other equal to zero ($\Theta_1 = 1.00$ and $\Theta_2 = 0$). Working across the structure, as described in the preceding section, compute the rotations of the joints. Denote these by Θ^1 . Compute also the exciting moment and denote it by \overline{M}^1 .
- 8. Repeat step (7), taking the second quantity equal to unity and the first equal to zero ($\Theta_1 = 0$ and $\Theta_2 = 1.00$). Denote the resulting rotations by Θ'' and the exciting moment by \overline{M}'' . In general, steps (7) and (8) must be repeated as many times as there are permanent unknowns.
- 9. Determine the total discontinuity of slope and the total exciting moment and set each expression equal to zero. For the

frame considered, these expressions will be

$$(\theta'_{64} - \theta'_{65})\theta_1 + (\theta''_{64} - \theta''_{65})\theta_2 = 0,$$

$$\overline{M}'_{6}\theta_1 + \overline{M}''_{6}\theta_2 = 0,$$
(33c)

10. Evaluate the determinant of the coefficients of θ_1 and θ_2 in the expressions of Eq. (33c).

11. Repeat steps (1) to (10) for different values of λ_r .

12. Plot the variation of the determinant evaluated in step (10) as a function of the λ_r values. The frequencies for which the determinant becomes equal to zero are natural frequencies of the frame.

The foregoing procedure fails to reveal the natural frequencies for which the permanent unknowns (θ_1 and θ_2) are simultaneously equal to zero. In addition, it fails to reveal the natural frequencies for which the members meeting at the cut joint are stationary. A supplementary procedure for determining these natural frequencies has been described, and its details are illustrated further in the two numerical examples that follow.

21. Illustrative Examples.

Example 5. The structure considered is shown in Fig. 30a. All members are assumed to be uniform and identical to each other. It is desired to calculate the natural frequencies and the corresponding natural modes of vibration of this frame for a range of values of λ less than 6.50. Since all members are identical, rather than repeating the procedure outlined in Section 20 for each assumed frequency, it is more convenient to derive a general expression for the criterion for a natural frequency and determine directly from this expression the desired quantities. This is similar to what was done in Section 12 for Example 1. Let <u>K</u> be the flexural stiffness and <u>k</u> the flexural carry-over factor for each member of the frame. These quantities are, of course, functions of the parameter λ . The sum of the stiffnesses for the various joints and the product of the stiffness and the carry-over factor for each member of the frame are shown in Fig. 30b. The rotations of the joints will be expressed, not in terms of θ_1 and θ_2 , as it was suggested in the preceding discussion, but rather, in terms of θ_1 and the internal bending moment $M_{1,3}$. The reason for this choice will become apparent shortly. The frame is assumed to be cut at joint 6. First, it is assumed that $M_{1,3} = M_1 = 1.00$ and $\theta_1 = 0$. Applying Eq. (30) to ends 1 of members (1) and (2), one obtains

$$\theta_2^{\dagger} = -\frac{1}{kK} ,$$

$$\theta_3^{\dagger} = \frac{1}{kK} .$$

Similarly, applying Eq. (31a) successively to joints 2, 3, 4, and 5, one obtains

$$\begin{split} \theta'_{4} &= -K \left[2 \left(-\frac{l}{kK} \right) + k(0) \right] \div kK = \frac{2}{k^{2}K} , \\ \theta'_{5} &= -K \left[3 \left(\frac{l}{kK} \right) + k(0) + k \left(\frac{2}{k^{2}K} \right) \right] \div kK = -\frac{5}{k^{2}K} , \\ \theta'_{64} &= -K \left[3 \left(\frac{2}{k^{2}K} \right) + k \left(-\frac{l}{kK} \right) + k \left(\frac{l}{kK} \right) \right] \div kK = -\frac{G}{k^{3}K} , \\ \theta'_{65} &= -K \left[2 \left(-\frac{5}{k^{2}K} \right) + k \left(\frac{l}{kK} \right) \right] \div kK = \frac{10 - k^{2}}{k^{3}K} . \end{split}$$

The discontinuity of slope at joint 6 is

$$\theta'_{64} - \theta'_{65} = \frac{k^2 - 16}{k^3 K}$$
,

and the exciting moment at joint 6 is

$$\overline{M}_{\mathcal{G}}' = K \left[2 \left(-\frac{G}{k^{3}K} \right) + k \left(\frac{2}{k^{2}K} \right) + k \left(-\frac{5}{k^{2}K} \right) \right] = -\frac{3}{k^{3}} \left(4 + k^{2} \right)$$

Next, it is assumed that $M_1 = 0$ and $\theta_1 = 1.00$. The rotations $\theta'_{are obtained}$ in a similar manner. The results are

.. :[]願

一种能量的小

$$\begin{aligned} \theta_{3}'' &= -\frac{1}{k} ,\\ \theta_{4}'' &= -K \bigg[2 \bigg(-\frac{1}{k} \bigg) \pm k \bigg] \div kK = \frac{2 - k^{2}}{k^{2}} ,\\ \theta_{5}'' &= -K \bigg[3 \bigg(-\frac{1}{k} \bigg) \pm k \pm k + \frac{2 - k^{2}}{k^{2}} \bigg] \div kK = \frac{1}{k^{2}} ,\\ \theta_{64}'' &= -K \bigg[3 \frac{2 - k^{2}}{k^{2}} \pm k \bigg(-\frac{1}{k} \bigg) \pm k \bigg(-\frac{1}{k} \bigg) \bigg] \div kK = \frac{5k^{2} - G}{k^{3}} ,\\ \theta_{65}'' &= -K \bigg[2 \frac{1}{k^{2}} \pm k \bigg(-\frac{1}{k} \bigg) \bigg] \div kK = \frac{k^{2} - 2}{k^{3}} . \end{aligned}$$

 $\theta_2'' = -\frac{1}{k},$

The discontinuity of slope and the exciting moment at joint 6 are

$$\theta_{64}'' - \theta_{65}'' = \frac{5k^2 - 6}{k^3} - \frac{k^2 - 2}{k^3} = \frac{4}{k^3}(k^2 - 1),$$

$$\overline{M}_{6}'' = K \left[2 \frac{5k^2 - 6}{k^3} + k \frac{2 - k^2}{k^2} + k \frac{1}{k^2} \right] = \frac{K}{k^3}(13k^2 - 12 - k^4)\theta_1$$

The total discontinuity of slope and the total exciting moment at joint 6 are

$$\theta_{64} - \theta_{65} = \frac{1}{k^3 K} \left(k^2 - 16 \right) M_1 + \frac{4}{k^3} \left(k^2 - 1 \right) \theta_1 , \qquad (36)$$

$$\overline{M}_6 = -\frac{3}{k^3} \left(4 + k^2 \right) M_1 + \frac{K}{k^3} \left(13 k^2 - 12 - k^4 \right) \theta_1 .$$

The determinant of the coefficients of Θ_{l} and M_{l} is

$$\Delta_{G}(M_{i},\theta_{1}) = \frac{144}{k^{6}} - \frac{k^{4} - 41 k^{2} + 184}{k^{4}}$$
 (37)

The curve in Fig. 30d shows the variation of this determinant with λ . The values of <u>k</u> and <u>K</u> corresponding to the various values of λ were obtained from Table I in Appendix A. The zero intercepts of this curve represent natural frequencies of vibration. These values are indicated on the figure.

The vibration modes corresponding to a natural frequency are determined as follows: First, the relationship between Θ_1 and M_1 is determined by setting either of the expressions in Eq. (36) equal to zero. Then, the rotations of the joints are evaluated, in terms of either Θ_1 or M_1 , by use of the relation

$$\Theta_{j} = \Theta_{j}^{\dagger} M_{1} \frac{L}{ET} + \Theta_{j}^{\dagger} \Theta_{1}$$

In this particular case, the rotations were expressed in terms of θ_1 . The results are summarized in the following table.

. r.	Value of λ_N		e ₃ /e ₁ /	• ₄ /• ₁ /	₽ ₅ /₽ <u>1</u>	9 ₆ /9 ₁
	π	-1.00	-1.00	1.00	1.00	-1.00
	3:556	-1,00	0	0	-1.00	1.00
	3.805	1.00	-1.333	-1.333	1.00	1.00
	4.048	-1,00	1.333	-1.333	1.00	-1.00
The subscription of	4.298	1.00	0	0	-1.00	-l.00
ounder the second second	2π	1.00	1,00	1,00	1.00	1.00

It should be noted that the value of $\lambda_N = 4.730$ is not included in this table. For this value, as it willfollow from the discussion of the succeeding paragraphs, there is an infinite number of possible natural modes. Such modes cannot be determined by the procedure described. From the rotations in the above table, the deflections at the interior points of the members may be obtained by use of the influence coefficients given in Table II of Appendix A. The natural modes corresponding to the natural frequencies determined in Fig. 30d, are shown in Fig. 31a through 31g.

The next step in the solution is the determination of the natural $f_{requencies}$ for which θ_1 and M_1 vanish simultaneously. θ_1 and M_1 may be equal to zero only if both bars (1) and (2) are stationary. Under this condition, bar (3) also is stationary and joints 3 and 4 remain fixed against

rotation as shown in Fig. 30c. For the range of λ values considered, bar (4) can execute free vibrations with fixed ends only at a frequency represented by

$$\lambda = 4.730$$
 .

Since all members of panel 3-4-6-5 are identical, each member can vibrate at this frequency with fixed ends; therefore, $\lambda = 4.730$ corresponds to a natural frequency of the frame. The vibration mode corresponding to this natural frequency is shown in Fig. 31h.

The concluding step in the solution of the problem under consideration is the determination of the natural frequencies for which the members meeting at a joint 6 remain stationary. Proceeding in the manner described in the preceding case, it can be shown that, within the range of λ values considered, $\lambda = 4.730$ represents a natural frequency for which bars (6) and (7) are stationary. The vibration mode corresponding to this natural frequency is shown in Fig. 31i.

It should be observed that the natural modes shown in Figs. 31f, 31h, and 31i can exist for the same frequency of vibration. However, of these three modes only two are independent. The third is a linear combination of the other two.

Had the distortions of the frame and the exciting moment M_6 been expressed in terms of Θ_1 and Θ_2 instead of in terms of Θ_1 and M_1 , the basic procedure would have failed to reveal the natural frequencies for which $\Theta_1 = \Theta_2 = 0$. In other words, the curve in Fig. 30d would not have intersected the λ -axis at $\lambda = 4.730$. Of course, this natural frequency would have been determined by the supplementary technique.

Example 6. As a further illustration of the application of the method to continuous closed frames, the symmetrical frame shown in Fig. 32a

is selected for analysis. All columns are considered hinged at the base. It is desired to calculate natural frequencies corresponding only to symmetrical modes of vibration. Since for symmetrical vibrations the joints of the frame, even though free from external restraining forces, do not translate, the method of this Chapter is directly applicable to the problem considered. The effect of symmetry is taken into account by using for the girders of the central bay modified stiffnesses \underline{K}^{S} instead of the usual stiffnesses \underline{K}_{\bullet}

The dimensions of the frame and some additional data pertinent in the analysis are assembled in the table below. Member (2) of the frame is taken as the reference member. Columns (5) and (6) of this table give,

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Member	m T	E.I. E _r I _r	$\int_{-\infty}^{4} \frac{(1)}{(2)}$	Lj L _r	$\frac{\lambda_{j}}{\lambda_{r}} = (3)(4)$	$\alpha_j = \frac{(2)}{(4)}$	λ_j
1	0.50	0.67	0.9294	1.00	0.9294	0.67	2.04
2=r	1.00	1.00	1.000	1.00	1.000	1.00	2.20
3	3.00	1.75	1.144	1.50	1.716	1.1667	3.78
4	3.00	1.50	1.189	1.125	1.338	1.3333	2.94
5	0.40	0•45	0.9710	0.75	0.7282	0.600	1.60
6	0.50	0.625	0.9457	0.75	0.7093	0.83333	1.56
7	2.00	1.25	1.125	1. 50	1.687	0.83333	3.71
8	2.00	1.25	1.125	1.125	1.265	1.1111	2.78

respectively, the ratio of λ_j/λ_2 (Eq. 23) and the \prec_j values (Eq. 24) for each member of the frame. For the sake of brevity, only one cycle of the procedure is presented. The computations are given for a value of $\lambda_2 = 2.20$; this corresponds to a circular vibration frequency $\omega = \frac{(2.20)^2}{L^2} \sqrt{\frac{EI}{m}}$.

The \propto values of the various members are recorded also on the diagram in Fig. 32b. The numbers without parentheses above these values give

the stiffness of the various members, while the parenthesized numbers below the \propto values give the product of the stiffness and the carry-over factor of the members. These quantities are expressed in terms of the $\frac{\text{EI}}{\text{L}}$ of the member to which they refer, and they are obtained directly from Table I in Appendix A.

On the diagram in Fig. 32c, the number in parenthesis opposite each joint represents the total stiffness of the members framing into that joint. These stiffnesses are expressed in terms of the $\frac{\text{EI}}{\text{L}}$ of the reference member (2). Thus, the total stiffness of the members connecting at joint 4 is $\vec{k}_4 = 3.7675 \text{xl}.00 + 0.91884 \text{xl}.1667 + 3.9430 \text{x} 0.83333 + 0.54510 \text{xl}.3333 = 8.8521$. The parenthesized number at the middle of each member represents the product of the stiffness and the carry-over factor for that member; these values are also expressed in terms of the $\frac{\text{EI}}{\text{L}}$ of the reference member (2). The rotations of the joints are expressed in terms of θ_1 and θ_2 .

The frame is assumed to be cut at joint 5 (and joint 5'). First, consider that

 $\Theta_1 = 1.00$ and $\Theta_2 = 0$.

Applying Eq. (30) to joints 1 and 2, one obtains

$$\Theta_3' = -\frac{2.5661 \times 1.00}{1.4262} = -1.7993,$$

$$\Theta_4' = -\frac{3.7675 \times 0}{2.1764} = 0$$

As usual, these values are recorded on the diagram as they are computed. Applying Eq. (31) successively to joints 3, 4, and 6, one obtains

$$\Theta_{53}^{i} = -\frac{6.0003(-1.7993) + 1.4262(1.00) + 5.3324(0)}{1.2285} = 7.6273 ,$$

$$\Theta_{6}^{i} = -\frac{0 + 5.3324(-1.7993) + 0}{1.7024} = 5.6359 ,$$

$$\theta_{56}^{*} = -\frac{5.3103(5.6359) + 0}{3.5544} = -8.4201$$

The unbalanced exciting moment at joint 5 is computed as

 $\overline{M}_{5} = 1.2285(-1.7993) + 2.362(7.6273) + 1.0522(-8.4201) + 3.5544(5.3103) = 26.979$.

Next, consider that

$$\Theta_1 = 0$$
 and $\Theta_2 = 1.00$.

The rotations θ are computed in the same manner and the results are recorded on the diagram above the values of θ .

The total slope at a joint, say at joint 6, is

$$\Theta_6 = 5.6359\Theta_1 + 7.7229\Theta_2$$
.

The total discontinuity of slope and the total exciting moment at joint 5 are

$$\Theta_{56} - \Theta_{53} = -16.047\Theta_1 - 18.223\Theta_2,$$

$$\overline{M}_5 = 226.979\Theta_1 + 33.931\Theta_2.$$

The value of the determinant of the coefficients of θ_1 and θ_2 is

$$\Delta_{5}(\theta_{1},\theta_{2}) = \begin{vmatrix} -16.047 & -18.223 \\ 26.979 & 33.931 \end{vmatrix} = -52.85$$

Since this is different from zero, the assumed value of $\lambda_z = 2.20$ does not correspond to a natural frequency. Repeating this procedure for several values of λ_z and evaluating, in each case, the resulting determinant, the curve given in Fig. 33 was obtained. The values of λ_z corresponding to the natural frequencies of the frame are recorded on the figure.

The next step in the solution is the determination of the natural frequencies for which θ_1 and θ_2 are simultaneously equal to zero. θ_1 and θ_2 can be equal to zero only when bars (1) and (2) are stationary as shown in Fig. 34a.

$$M_{31} = M_{42} = 0$$
 and $\Theta_3 = \Theta_4 = 0$

Under this condition, bars (3) and (4) can vibrate freely only at frequencies equal to the natural frequencies of these bars for the condition of fixed ends. For bar (3), these natural frequencies are represented by values of

$$\lambda_3 = 4.730, 7.853, 10.9\%, \ldots$$
 (38a)

The equivalent values of λ_2 are

$$\lambda_{z} = 2.756, 4.576, 6.408, \dots$$
 (38b)

For bar (4), natural frequencies corresponding only to symmetrical modes must be considered; these are given by values of

$$\lambda_4 = 4.730, 10.996, \ldots$$
 (39a)

which are equivalent to

Then,

$$\lambda_2 = 3.535, 8.218, \ldots$$
 (39b)

It is now necessary to ascertain whether or not these frequencies are natural frequencies of the portion of the frame composed of bars (5), (6), (7), and (8). To do this, it is necessary to carry out one cycle of the basic procedure for each frequency to be investigated. For the purpose of illustration, three different frequencies will be considered in detail.

(a) $\lambda_2 = 2.756$ ($\lambda_3 = 4.730$). Since none of the values given in Eq. (39b) is equal to 2.756, bar (4) must be stationary; this means that

$$M_{LL1} = 0$$

The condition of equilibrium at joints 3 and 4 requires that

$$M_{34} = -M_{35}$$
 and $M_{46} = -M_{43}$.

Since, for the λ value considered, the deflection of bar (3) is symmetrical about its midspan,

$$-M_{43} = +M_{34} = -M_{35}$$

The joint rotations of the frame may now be expressed in terms of M₃₅, which, for convenience, may be taken equal to $1.00 \frac{E_2I_2}{L_2}$. Starting from joint 3 and considering that $\Theta_3 = 0$, one may determine the rotations of joints 5, 6, and 4 in the usual manner. If $\lambda_2 = 2.756$ is a natural frequency, the computed value of Θ_4 must be equal to zero and M₄₆ must be equal to $-1.00 \frac{E_2I_2}{L_2}$.

The data necessary in carrying out these computations are assembled in the following table and in Figs. 34b and 34c.

Member	2	5	7	8	6
λ_j / λ_2	1.00	0,7282	1.687	1.265	0.7093
λ_j	2.756	2.01	4:65	3.49	1.95

In Fig. 34b the stiffnesses are expressed in terms of the $\frac{\text{EI}}{\text{L}}$ of the member to which they refer, while in Fig. 34c they are expressed in terms of $\frac{\text{E}_2\text{I}_2}{\text{L}_2}$. The rotation θ_5 is computed by application of Eq. (30) to joint 3, while θ_6 and θ_4 are computed by use of Eq. (31). Since the computed value of θ_4 is different from zero, $\lambda_2 = 2.756$ does not represent a natural frequency of the frame. If θ_4 were found to be equal to zero, it would have been necessary to investigate also if M₄₆ were equal to $-1.00 \frac{\text{E}_2\text{I}_2}{\text{L}_2}$. (b) $\lambda_2 = 4.576$ ($\lambda_3 = 7.853$). In this case also, bar (4) is stationary, but M₄₆ is equal to $+\text{M}_{35}$ instead of $-\text{M}_{35}$. In all other respects, the details of the analysis are similar to those of the previous case. The pertinent computations are given in the following table and in Figs. 34d

and 34e.

ny dema

Member	2	5	7	8	6
λ_j / λ_z	1.00	0.7282	1.687	1.265	0.,7093
λ_j	4.576	3.33	7.72	5.79	3.25

since the computed value of Θ_4 is different from zero, $\lambda_2 = 4.576$ does not correspond to a natural frequency.

(c) $\lambda_z = 3.535$ ($\lambda_4 = 4.730$). Since none of the values given in Eq. (38b) are equal to 3.535, bar (3) in Fig. 34a must be stationary in this case. This means that bars (5) and (7) are stationary also and that joints 4 and 6 remain fixed against rotation. It follows that, if $\lambda_z = 3.535$ is a natural frequency, each of the members composing panel 4-6-6'-4' must be capable of vibrating freely with the ends fixed. For bar (6) this is possible for values of

$$\lambda_{c} = 4.730, 7.853, \ldots$$
 (40a)

while for bar (8) it is possible for values of

· Ander

$$\lambda_{\rho} = 4.730, 10.9\%, \dots$$
 (41a)

The corresponding λ_2 values are, respectively

$$\lambda_z = 6.669, 11.071, \dots$$
 (40b)
 $\lambda_z = 3.739, 8.692, \dots$ (41b)

Since these are different from 3.535, $\lambda_2 = 3.535$ does not correspond to a natural frequency. It is worth noting also that the λ_2 values given in Eqs. (40b), (41b), and (39b) are different. It is, therefore, concluded that, within the range of the frequencies considered, the panel formed by the members (4), (6), and (8) cannot vibrate freely while the rest of the frame remains stationary.

The concluding step in the solution of the problem under consideration consists of investigating if there are any natural frequencies for which the bars meeting at joint 6 are stationary.

When bars (5) and (7) are stationary $M_{35} = M_{65} = 0$ and joints 3 and 6 remain fixed against rotation as shown in Fig. 35a. Excluding the trivial ^{Case} of no vibration, this condition can occur only at frequencies equal to

the natural frequencies of bar (8), assuming that it is fixed at the ends, and of bar (1), assuming that joint 3 is fixed. For bar (8) the first two of these natural frequencies are represented by the λ values given in Eq. (41). For bar (1) the first two natural frequencies are given by values of

 $\lambda_1 = 3.927, 7.069$ (42a)

which are equivalent to

$$\lambda_2 = 4.225, 7.606$$
 (42b)

It remains now to investigate whether these values represent natural frequencies of the frame shown in Fig. 35a. Only two frequencies will be considered in detail; the others may be handled in a similar manner.

(a) $\lambda_z = 3.739$ ($\lambda_g = 4.730$). Since none of the values given in Eq. (42b) are equal to 3.739, bar (1) cannot vibrate freely in this case; consequently, both bars (1) and (3) must remain still and joint 4 must remain fixed against rotation as shown in Fig. 35b. If $\lambda_z = 3.739$ represents a natural frequency, each member of the frame in this figure must be capable of vibrating at the same frequency. It has already been shown that this condition is not possible for panel 4-6-6'-4'. It remains, therefore, to ascertain whether panel 2-4-4'-2' can vibrate freely. The first two natural frequencies of bars (4) and (2) are represented respectively by values of

> $\lambda_z = 3.535, 8.218$ $\lambda_z = 3.927, 7.069$

Since the λ_2 values for the two bars are unequal, it is concluded also that panel 2-4-4'-2' cannot vibrate freely while the rest of the frame remains still.

(b) $\lambda_2 = 4.225$ ($\lambda_1 = 3.927$). In this case, bar (8) cannot vibrate freely; therefore, bars (8) and (6) in Fig. 35a are stationary, and the rotation of joint 4 is zero as shown in Fig. 35c. This means that each member of

the frame shown in Fig. 35c must behave as if it were fixed at joints 3 and 4. The λ_2 values for which this condition can be realized are different for the different members; consequently, $\lambda_2 = 4.225$ does not correspond to a natural frequency.

In summary, it should be stated that for this particular problem and for the range of frequencies considered, the zero intercepts of the curve in Fig. 33 represent the complete set of natural frequencies of the frame.

22. Comments on Natural Modes of Partial Vibration.

The determination of the natural frequencies corresponding to modes of partial vibration is not as tedious as it might appear from the space devoted to its discussion in the preceding sections. Furthermore, it should be noted that, for most practical applications, it may be entirely unnecessary to calculate these natural frequencies. As already explained, the procedure for determining these matural frequencies consists of (a) computing a number of frequencies, and (b) establishing whether or not these frequencies are natural frequencies of the frame. In most actual problems, one is interested in determining natural frequencies comprised within specified ranges of frequencies. Therefore, if the values calculated in the first step of this procedure are found to his outside the ranges of interest, it will be superfluous to carry out the second step. The first step of the procedure can usually be carried out almost by inspection.

Natural modes of partial vibration correspond always to higher natural frequencies. Therefore, no consideration need be given to these modes, if only the fundamental natural frequency of a frame is to be determined. The fundamental natural frequency of a frame may be determined also by the moment distribution procedure described in Section 13.
23. Need for Approximate Methods of Analysis.

The method that has been described, even though simple bothoth principle and in the details of its application, may become time consuming when applied to structures comprising a very large number of members. For very complex structures, such as multi-story multi-bay building frames, it may be desirable to have a simpler, though less accurate, method of analysis.

Strictly speaking, the dynamic response of a member of a framework and, as a consequence, the natural frequencies of the structure depend on the properties of all the members in the structure. Intuition leads one to expect, however, that the importance of this influence diminishes rapidly as the distance from the member concerned increases. For example, the natural frequencies of a two-span beam may vary greatly, depending on whether the extreme ends are fixed or hinged; on the other hand, for a multiple-span beam the natural frequencies may be almost independent of the condition of restraint at the extreme ends. For example, for a uniform beam of two equal spans, the fundamental natural frequency for fixed ends is 56 percent higher than the corresponding natural frequency for hinged ends. For a uniform beam, of seven equal spans, the fundamental natural frequency for fixed ends is only 6 percent higher than for hinged ends. (The latter value was obtained from reference (16)). This condition indicates that it may be possible to determine the natural frequencies of complicated systems by considering only a portion of the structure instead of the entire structure.

It is believed that an investigation aimed at determining the possibilities of such an approximate procedure will be most rewarding. The procedure described herein will be of great value in such a study.

24. Effect of Axial Forces: Problems of Instability.

In the discussion thus far, the effect of permanent axial forces on the natural frequencies of flexural vibration has been omitted. This effect, which may be quite important when the magnitude of the external force on the structure is a sizeable fraction of the critical buckligg load, may be taken into account by use of modified stiffness and carry-over factors which include the influence of the axial thrust. It is assumed that the axial loads are independent of time and that they are applied at the ends of the members.

The modified stiffnesses and carry-over factors may be expressed conveniently in terms of the dimensionless parameter λ , which was used previously, and the ratio P/P_o, where <u>P</u> is the axial compressive or tensile force and <u>P_o</u> is the fundamental buckling load of the member assuming its ends to be simply supported.

Algebraic expressions for the dynamic flexural stiffness and the dynamic flexural carry-over factor are given in Appendix II. Numerical values of these two quantities and of their product have been computed for values of λ between zero and 4.75 at increments of 0.05 and for values of P/P_o between -4.00 and 4.00 at increments of 0.1. It is expected that these results will be made available soon.

For the limiting case of $\lambda = 0$, the values of stiffness and carryover factors are those for an axially loaded bar which does not vibrate. Detailed tabulations of these quantities have been presented previously by James (26), by Lundquist and Kroll (27), and by Hu and Libove (28). It becomes apparent that the problem of elastic instability is a limiting case of the more general problem of the vibration of structures for which the members are subjected to axial forces.

The three slope equation has been applied to the investigation of

the instability of frameworks by Chwalla and Jokish (29) and by Winter and his associates (30). The procedure described in this report has the advantage that it can be used to obtain solutions with considerably less effort.

. ing application

unir Suite

V. APPLICATION OF METHOD TO CONTINUOUS BEAMS ON FLEXIBLE SUPPORTS

25. General.

Thus far application of the method has been restricted to continuous beams on rigid supports and to continuous frames for which the joint do not translate. In this chapter, the method is extended to continuous beams on flexible supports. The flexibility of the supports is represented by a set of mutually independent deflectional and rotational springs. To start with, it is assumed that the stiffnesses of the restraints are independent of the vibration frequency. The assumptions made in the analysis are similar to those made in the case of continuous beams on rigid supports.

The continuous beam considered is shown in Fig. 36. As in the case of continuous beams on rigid supports, consecutive supports are numbered from left to right, starting with 1 at the extreme left end and terminating with <u>z</u> at the extreme right end.

26. Basic Relations.

Figure 37 shows the extreme deflected position of spans $\underline{j-1}$ and \underline{j} of a continuous beam undergoing steady-state forced vibrations. The vibrations are assumed to be maintained by an exciting moment applied at the extreme right end of the beam.

The forces acting at the ends of each span and the deflections and rotations at the supports are indicated in their positive directions. In addition to the symbols used previously, the symbol S is used to designate the deflection of the beam at a support; the stiffness of a deflectional ^{spring} is denoted by <u>D</u>, while that of a rotational spring is denoted by <u>R</u>.

Since the beam is continuous at the supports,

$$(\theta_j)_L = (\theta_j)_R = \theta_j$$
, and $(\delta_j)_L = (\delta_j)_R = \delta_j$. (43)

Also, since no external moment or force acts at the joint, and since the internal moments and forces must be in equilibrium,

$$\overline{M}_{j} = (M_{j})_{L} + (M_{j})_{R} + R_{j}\theta_{j} = 0, \qquad (44)$$

$$\overline{F}_{j} = (V_{j})_{L} + (V_{j})_{R} + D_{j}\delta_{j} = 0. \qquad (45)$$

The moments and shears acting at the ends of a span may be expressed in terms of the rotations and deflections of the ends of the span. For example, the moment or shear at the left end of span \underline{j} may be obtained by the addition of the following four component effects:

(1) Moment or shear produced at the left end, when that end is rotated by θ_i without deflection and the right end is held fixed.

(2) Moment or shear produced at the left end, when that end is held fixed while the right end is rotated by Θ_{i+1} without deflection.

(3) Moment or shear produced at the left end, when that end is displaced by δ_{j} without rotation and right end is held fixed.

(4) Moment or shear produced at the left end, when that end is held fixed and the other end is deflected by δ_{j+1} without rotation.

The direct superposition of these effects is justified by the fact that, for a given frequency of vibration, the moments and shears are linear functions of the distortions. Thus,

$$(M_j)_R = K_j \theta_j + (kK)_j \theta_{j+1} + Q_j \delta_j - (qQ)_j \delta_{j+1}$$
, (46a)

$$(V_j)_R = T_j \delta_j - (tT)_j \delta_{j+1} + Q_j \Theta_j + (qQ)_j \Theta_{j+1}$$
 (47a)

Similarly,

$$(M_j)_L = K_{j-1}\theta_j + (kK)_{j-1}\theta_{j-1} - Q_{j-1}\delta_j + (q,Q)_{j-1}\delta_{j-1} , \qquad (46b)$$

$$(V_j)_L = T_{j-1}\delta_j - (tT)_{j-1}\delta_{j-1} - Q_{j-1}\theta_j - (q_jQ)_{j-1}\theta_{j-1} . \qquad (47b)$$

Substituting Eqs. (46e) and (46b) in Eq. (44) and Eqs. (47a) and
(47b) in Eq. (45), one obtains

$$\begin{array}{l} \bar{n}_{j} = (q\Omega)_{j-1}\delta_{j-1} + (kK)_{j-1}\theta_{j-1} + (\Omega_{j} - \Omega_{j-1})\delta_{j} \\ + (K_{j-1} + R_{j} + K_{j})\theta_{j} - (q\Omega)_{j}\delta_{j+1} + (kK)_{j}\theta_{j+1} = 0, \end{array}$$

$$\begin{array}{l} \bar{F}_{j} = -(tT)_{j-1}\delta_{j-1} - (q\Omega)_{j-1}\theta_{j-1} + (T_{j-1} + D_{j} + T_{j})\delta_{j} \\ + (\Omega_{j} - \Omega_{j-1})\theta_{j} - (tT)_{j}\delta_{j+1} + (q\Omega)_{j}\theta_{j+1} = 0. \end{array}$$
(49)
Eliminating θ_{j+1} from Eq. (49) by use of Eq. (48a), one obtains

$$\begin{bmatrix} \eta_{j}(q\Omega)_{j-1} + (tT)_{j-1}\end{bmatrix}\delta_{j-1} + \begin{bmatrix} \eta_{j}(kK)_{j-1} + (q\Omega)_{j-1}\end{bmatrix}\theta_{j-1} + \begin{bmatrix} \eta_{j}\overline{\Omega}_{j} - \overline{T}_{j}\end{bmatrix}\delta_{j} \\ + \begin{bmatrix} \eta_{j}\overline{K}_{j} - \overline{\Omega}_{j}\end{bmatrix}\theta_{j} - \begin{bmatrix} \eta_{j}(q\Omega)_{j} - (tT)_{j}\end{bmatrix}\delta_{j+1} = 0, \end{aligned}$$
in which

$$\begin{array}{l} \eta_{j} = \frac{(q\Omega)_{j}}{(kK)_{j}}, \qquad (50) \\ \overline{K}_{j} = K_{j-1} + R_{j} + K_{j}, \\ \overline{T}_{j} = T_{j-1} + D_{j} + T_{j}, \\ \overline{\Omega}_{j} = Q_{j} - Q_{j-1}. \end{array}$$

69

Equation (50) expresses the deflection at support j+1 in terms of the deflections and rotations at the two preceding supports. The rotation at support j+1 may be obtained in terms of the deflection δ_{j+1} and the distortions at supports j and j-1 from Eq. (48a), which may be rewritten as

$$=(qQ)_{j-1}\delta_{j-1} - (\pi K)_{j-1}\Theta_{j-1} - \bar{Q}_{j}\delta_{j} - \bar{K}_{j}\Theta_{j} + (qQ)_{j}\delta_{j+1} - (\pi K)_{j}\Theta_{j+1} = 0.$$
(48b)

Equation (50) assures equilibrium of shears, while Eq. (48) assures equilibrium of moments for support j. Of course, both equations satisfy the conditions of continuity. If support j is rigid, Eq. (50) is satisfied automatically, and need not be used. If $\delta_{j-1} = \delta_j = \delta_{j+1} = 0$, that is, when three consecutive supports are rigid, then Eq. (48) reduces to Eq. (19a). The foregoing relations are applicable to intermediate supports only. For the end supports the following specialized relations must be used. First, the boundary conditions for the extreme left support are considered. Four different cases must be distinguished:

<u>Case I.</u> Both D₁ and R₁ are considered finite or zero in this case. Then, the equilibrium condition for moments at support 1 is

$$\overline{\mathcal{M}}_{I} = Q_{I}\delta_{I} + (R_{I}+K_{I})\theta_{I} - (qQ)_{I}\delta_{Z} + (kK)_{I}\theta_{Z} = 0.$$
(51a)

The corresponding condition for shears is

中国帝

$$\overline{F}_{1} = (D_{1} + T_{1})\delta_{1} + Q_{1}\Theta_{1} - (tT)_{1}\delta_{2} + (qQ)_{1}\Theta_{2} = 0.$$
(52a)

Eliminating Θ_2 from Eq. (52), one obtains an equation similar to Eq. (50),

$$[\eta_{i}Q_{i} - (D_{i} + T_{i})]\delta_{i} + [\eta_{i}(R_{i} + K_{i}) - Q_{i}]\Theta_{i} - [\eta_{i}(qQ)_{i} - (tT)_{i}]\delta_{z} = 0.$$
(53)

From this equation, δ_2 may be determined in terms of Θ_1 and δ_1 . With δ_2 determined, Θ_2 also may be computed from Eq. (51a) in terms of Θ_1 and δ_1 . <u>Case II.</u> D_1 is considered infinite (rigid deflectional support) and R_1 finite or zero. Then, the equilibrium condition for moments is expressed by the equation

$$\overline{M}_{1} = (R_{1} + K_{1}) \theta_{1} - (q_{1}Q)_{1} \delta_{z} + (kK)_{1} \theta_{z} = 0.$$
(51b)

No equilibrium equation for shears need be written, since at a rigid support this is satisfied automatically.

<u>Case III.</u> D_1 is considered finite or zero, but R_1 infinite (clamped end). In this case, it is necessary to write only one equilibrium equation for shears: this is

$$\overline{F}_{1} = (D_{1} + T_{1}) \delta_{1} - (tT)_{1} \delta_{2} + (qQ)_{1} \theta_{2} = 0.$$
(52b)

<u>Case IV.</u> Both D_1 and R_1 are considered infinite in this case (fixed end). The relation between the moment or shear at the fixed end and the distortions at the second support are

$$M_1 = (\#K), \theta_2 - (qQ), \delta_2 , \qquad (54)$$

$$V_{1} = (q_{1}Q)_{1} \, \theta_{2} - (tT)_{1} \, \delta_{2} \, .$$
 (55)

It should be noted that Eqs. (53), (51b), (52b), and (54) or (55) involve only three unknown quantities.

The conditions that must be satisfied at the right end of the beam are as follows:

For Case I.

$$\overline{M}_{z} = (K_{z-1} + R_{z})\theta_{z} + (kK)_{z-1}\theta_{z-1} - Q_{z-1}\delta_{z} + (qQ)_{z-1}\delta_{z-1} = 0, \quad (56)$$

$$\overline{F}_{z} = (T_{z-1} + D_{z})\delta_{z} - (tT)_{z-1}\delta_{z-1} - Q_{z-1}\Theta_{z} - (qQ)_{z-1}\Theta_{z-1} = 0.$$
(57)

For Case II.

$$\delta_z = 0 , \qquad (58)$$

$$\overline{M}_{z} = (K_{z-1} + R_{z})\theta_{z} + (kK)_{z-1}\theta_{z-1} + (qQ)_{z-1}\delta_{z-1} = 0.$$
(59)

For Case III.

$$\Theta_{z} = 0 , \qquad (60)$$

$$\overline{F}_{z} = (T_{z-1} + D_{z})\delta_{z} - (tT)_{z-1}\delta_{z-1} - (qQ)_{z-1}\theta_{z-1} = 0.$$
(61)

For Case IV.

$$\Theta_z = 0, \qquad (62)$$

$$\delta_z = 0 . \tag{63}$$

27. Outline of Procedure.

The rotation and deflection of the beam at support j may be written

as

 $\theta_{j} = \theta_{j}' u + \theta_{j}'' v ,$ $\delta_{j} = \delta_{j}' u + \delta_{j}'' v ,$ (64a)

where \underline{u} and \underline{v} are dimensionless parameters which represent two of the three unknowns in the equations expressing the boundary conditions for the left end of the beam. $\theta_j^{!}$ and $\delta_j^{!}$ are, respectively, the rotation and deflection at support \underline{j} when u = 1.00 and v = 0, and $\theta_j^{"}$ and $\delta_j^{"}$ are the corresponding rotation and deflection when u = 0 and v = 1.00. Since the natural frequencies of a system depend on the relative values of the deflection, any arbitrary amplitude consistent with the actual boundary condition may be chosen for either \underline{u} or \underline{v} . For convenience, the following values are selected:

For Case I: $u = \Theta_1 = 1.00$ and $v = \frac{\sigma_1}{L_r}$ For Case II: $u = \Theta_1 = 1.000$ and $v = \Theta_2$ For Case III: $u = \frac{\delta_1}{L_r} = 1.000$ and $v = \Theta_2$ For Case IV: $u = M_1 \frac{r}{E_r} = 1.000$ and $v = \Theta_2$

The details of the procedure are:

1. For some reference span of the beam, say span <u>r</u>, assume a value of λ_r ; this is equivalent to assuming a frequency of vibration $\omega = \frac{\lambda_r^2}{L_r^2} \sqrt{\frac{E_r I_r}{m_r}}$

From Eq. (23) compute the λ values for the remaining spans of the beam.

2.

3. From Table I in Appendix A and the λ values computed in the previous step, determine the stiffnesses and the product of the stiffnesses and the carry-over factors for each span.

4. Identify the parameters \underline{u} and \underline{v} .

5. Consider that u = 1.00 and v = 0. Progressing from support

to support across the beam, determine the deflections and rotations at all supports. Denote these by θ' and δ' . If necessary, evaluate also the unbalanced moment or shear at the extreme right hand support. Denote this by \overline{M}'_{s} or \overline{F}'_{s} . The distortions of the second support are determined from the appropriate expressions given in Eqs. (51) through (55). The distortions of the remaining supports are evaluated by the repeated application to each support of Eqs. (50) and (48b).

6. Repeat the preceding step by considering that u = 0 and v = 1.00. Denote the resulting distortions by θ'' and δ'' . If necessary, determine also the magnitude of the unbalanced moment or shear at the extreme right hand end. Denote this by \overline{M}''_{s} or \overline{F}''_{s} .

7. The actual distortions at a support, say at support j, are

$$\begin{aligned} \Theta_j &= \Theta'_j + \Theta''_j \lor , \\ \delta_j &= \delta'_j + \delta''_j \lor . \end{aligned}$$
 (64b)

Similarly the total unbalanced moment or shear at support z is

$$\overline{M}_{z} = \overline{M}'_{z} + \overline{M}''_{z} \vee , \qquad (65)$$

$$\overline{F}_{z} = \overline{F}'_{z} + \overline{F}''_{z} \vee .$$

8. From one of the two equations expressing the boundary conditions
for the right end of the beam, determine the unknown parameter <u>v</u>.
9. Evaluate the second boundary equation.

10. Repeat steps 1 through 9 for different assumed values of λ_r and plot the value calculated in step (9) against the assumed values of λ_r . The values of λ_r for which the ordinates of the resulting curve are equal to zero represent the natural frequencies of the beam.

7.3

28. Effect of Various Intermediate Constraints.

The foregoing procedure can be modified readily to include concentrated rigid masses, concentrated sprung masses, intermediate rigid supports, flexible supports for which the stiffness depends on the frequency of vibration, and a continuous elastic subgrade of the Winkler type. For convenience, these effects are discussed separately.

<u>Rigid Concentrated Masses.</u> Assume that at station j the beam has no deflectional support, instead it carries a concentrated mass \bar{m}_j as shown in Fig. 38a. Assume that the beam undergoes a steady-state forced vibration with a frequency ω^{\prime} . Then for a downward deflection δ_j , the force exerted on the beam by the mass is $\bar{m}_j \omega^2 \delta_j$, downward. Had the beam been elastically supported against deflection at that point, the corresponding force would have been $D_j \delta_j$, upward. Thus, the effect of the concentrated mass is equivalent to that of a deflectional spring of stiffness

$$(D_j)_{eq.} = -\bar{m}_j \, \omega^2 = -\lambda_r^4 \, \frac{\bar{m}_j}{m_r L_r} \, \frac{E_r I_r}{L_r^3} \, . \tag{66a}$$

If the mass is applied at a point on the beam that is supported by a deflectional spring of stiffness D_j, as shown in Fig. 38b, the stiffness of the equivalent spring is

$$(D_j)_{eq} = D_j - \overline{m}_j \omega^2 . \qquad (66b)$$

After the concentrated mass has been replaced by the equivalent deflectional spring, the natural frequencies of the system may be determined in the usual manner. It must be noted, however, that the stiffness of the equivalent spring is a function of the assumed frequency of vibration and must be evaluated for each cycle of the procedure.

<u>Concentrated Sprung Masses</u>. Assume that the mass n_j is spring borne as shown in Fig. 38c. Let S_i be the stiffness of the spring. The influence of the

flexible support may be taken into account by replacing the actual mass by an equivalent rigid mass of magnitude

$$(\overline{m}_j)_{eq.} = \frac{\overline{m}_j}{1 - \frac{\overline{m}_j \, \omega^2}{S_j}} . \tag{67}$$

The amplification factor $\frac{1}{1-\frac{\overline{m}_{j}\omega^{2}}{S_{j}}}$ is determined as follows: Let δ_{j}^{*} be the deflection of the mass while δ_{j} is, as before, the deflection of the elastic axis of the beam. The forces acting on the mass are the inertia force and the spring reaction; these must be in equilibrium; therefore,

$$\overline{m}_{j}\omega^{2}\delta_{j}^{*}=S_{j}(\delta_{j}^{*}-\delta_{j}),$$

whence, the amplification factor is

$$\frac{\delta_j^*}{\delta_j} = \frac{1}{1 - \frac{\overline{m}_j \,\omega^2}{S_j}}$$

It should be noted that, for vibration frequencies greater than the natural frequency of the spring borne mass, the amplification factor becomes negative, and Eq. (67) results in a negative equivalent mass. <u>Rigid Intermediate Supports.</u> Consider the beam shown in Fig. 38d for which support 4 is rigid instead of flexible. Let the outer supports be flexible. The natural frequencies of this beam may be determined by a combination of the principles that have been described. As usual, the procedure may be initiated at support 1 by taking $\theta_1 = 1.00$. For the portion of the beam between supports 1 and 4 the distortions at the supports may be expressed as the sum of a constant term and a term involving $\frac{\delta_i}{L_r}$ as unknown. The magnitude of this unknown may be determined from the condition that $\delta_4 = 0$. For the portion of the beam between supports 4 and 7, θ_5 may be selected as the new unknown, and the distortions at the supports may be computed by the repeated application of Eqs. (50) and (48b). As usual, the value of θ_5 may be determined from one of the boundary condition for the right end of the beam. The natural frequencies are those frequencies for which the second boundary condition is satisfied identically.

In the application of this procedure, one must, in general, change temporary unknowns as many times as there are rigid intermediate supports.

Abrupt changes in the magnitude of the distributed mass or in the flexural rigidity within a span may be handled by assuming that the beam is supported by a flexible support of zero stiffness at the point of the discontinuity.

<u>Supports Having Mass.</u> Consider a construction consisting of a cross beam supported on a series of longitudinal girders as shown in Fig. 39a. For simplicity's sake, the connections between the beam and the girders are considered hinged. It is assumed that the mass of the supports cannot be neglected; consequently, the stiffnesses of the supports are functions of the frequency of vibration.

The natural frequencies of this system are the same as those of the cross beam assuming that it is supported on deflectional springs as shown in Fig. 39b. The stiffness of each spring is equal to the stiffness of the corresponding girder. The stiffness of each girder is, in turn, equal to the magnitude of a harmonically varying concentrated force which, when applied at the point of intersection of the girder and the beam, will deflect the girder by a unit amount. The magnitude of this force may be calculated in terms of the numerical values tabulated in Table I, Appendix A. As an example, consider a girder fixed at both ends. For the point of application of the force, the conditions of equilibrium and continuity are expressed by the equations

 $(Q_2 - Q_1)W_x + (K_1 + K_2)\Theta_x = 0$, $(T_1 - T_2) W_x + (Q_2 - Q_1) \Theta_x = \overline{F}_x .$

where the subscripts 1 and 2 refer, respectively, to the portions of the girder to the left and the right of the concentrated force, and the subscript \underline{x} refers to the point of application of the force. From the simultaneous solution of these equations one obtains

$$\frac{\overline{F}_{x}}{W_{x}} = D = T_{1} + T_{2} - \frac{(Q_{2} - Q_{1})^{2}}{K_{1} + K_{2}} . \qquad (68a)$$

For a force at midspan, this equation reduces to

$$D = 2 T_{i}$$
 (68b)

The stiffness of a girder with different boundary conditions may be determined in a similar manner.

With the expression for the effective stiffness of the deflectional spring available, the natural frequencies of the system may be determined in the usual manner. It is only necessary to evaluate the stiffness of the springs for each assumed frequency of vibration and to use this value in the calculations.

<u>Continuous Elastic Subgrade</u>. Consider that the beam is supported along a portion of its length on a continuous elastic subgrade of the Winkler type, as shown in Fig. 39c. Let <u>d</u> be the foundation modulus, defined as the force per unit length necessary to compress the foundation by unit amount. The mass of the foundation is assumed to be negligible.

The natural frequencies of such a system may be determined by the same procedure, except that the influence of the elastic foundation must be taken into account in evaluating the stiffnesses and the carry-over factors of the elastically supported spans.

A vibrating beam which is not supported by any foundation, is acted ^{upon} only by distributed inertia forces, the intensity of which is

mww

The intensity of the reactive forces produced by the elastic foundation is dw. These forces act opposite to the inertia forces and, in effect, reduce the intensity of the latter to

 $m \omega^2 w - dw$.

Now, the coefficients of dynamic stiffnesses and the carry-over factors depend solely on the dimensionless parameter $\lambda = \frac{4}{\sqrt{\frac{m\omega^2}{E\,I}}}L$; therefore, the effect of the foundation can be taken into account by replacing in this expression the quantity $m\omega^2$ by the reduced value of $m\omega^2 - d$.

If $m\omega^2-d$ is positive, λ is real, and the various stiffness and carry-over factors may be obtained directly from Table I in Appendix A. If, however, $m\omega^2-d$ is negative, λ is imaginary and the values of Table I can no longer be used. In this case, the expressions for dynamic stiffness and dymanic carry-over factors may be obtained from the expressions for static stiffness and static carry-over factors of a bar on elastic foundation. It is only necessary to replace in the latter expressions the quantity <u>d</u> by the reduced value $d - m\omega^2$. These expressions may be obtained readily from solutions given by Hetényi (31).

Consider now the case for which the foundation extends along the effire length of the beam as shown in Fig. 39d. The modulus of the foundation may differ from one span to the other. Let d_j be the foundation modulus for ^{span} j. In what follows, it is shown that, if the natural frequencies of the system without the subgrade are known, under certain conditions, the natural frequencies of the system with the subgrade may be computed directly.

Assume that the beam without subgrade and the beam with the subgrade are in a steady-state of vibration. Let ω be the circular vibration frequency of the beam without the subgrade and ω_s be the frequency of the beam with the subgrade. Then, for span <u>r</u> the λ value of the beam without the

subgrade is

$$\lambda_r = \sqrt[4]{\frac{m_r \,\omega^2}{E_r \, I_r}} \, L_r \tag{12}$$

and the value for the beam with the subgrade is

$$(\lambda_r)_{\rm S} = \sqrt{\frac{m_r}{E_r I_r}} \left(\omega^2 - \frac{d_r}{m_r} \right) L_r \,, \tag{69}$$

For any other span j, the values for the two cases are

Marketter
 Marketter
 Marketter
 Marketter

 $\lambda_j = \sqrt[4]{\frac{m_j \,\omega^2}{E_j \, I_j}} \, L_j$

 $(\lambda_j)_s = 4 \frac{m_j}{E_j I_j} (\omega^2 - \frac{dj}{m_j}) L_j'$ $\frac{d_r}{m_-} = \frac{d_i}{m_i} = constant,$

and if

$$\frac{(\lambda_j)_s}{(\lambda_r)_s} = \sqrt[4]{\frac{m_j}{m_r}} \frac{E_r I_r}{E_j I_j} \times \frac{L_j}{L_r} = \frac{\lambda_j}{\lambda_r}$$

Now, if \mathcal{A}_{r} and $(\mathcal{A}_{r})_{s}$ are equal, the numerical calculations involved in carrying out a cycle of the procedure will be identical for the two systems. Therefore, if \mathcal{A}_{r} corresponds to a natural frequency of the beam without the subgrade, then $(\mathcal{A}_{r})_{s}$ will correspond to a natural frequency of the beam with the subgrade. Equating Eqs. (12) and (69), one obtains the following relationship between the natural frequencies of the two systems.

$$(\omega_{\rm s})_{\rm N} = \sqrt{\omega_{\rm N}^2 + (dj/mj)} . \qquad (71)$$

The subscript <u>N</u> designates natural frequencies. Equation (71) can be applied to beams having any number of spans and any boundary conditions, provided that the relationship given in Eq. (70) is satisfied.

22. Determination of Modes of Vibration.

After the distortions of the beam at the ends of a span have been

79

(70)

evaluated, the deflection configuration of the span may be determined by superimposing the following four component configurations:

- (1) Deflection configuration produced by the rotation of the left end of the span when that end is restrained against deflection and the right end is fixed.
- (2) Deflection configuration produced by the rotation of the right end of the span when that end is restrained against deflection and the left end is fixed.
- (3) Deflection configuration produced by the deflection of the left end of the span when that end is restrained against rotation and the right end is fixed, and
- (4) Deflection configuration produced by the deflection of the right end of the span when that end is restrained against rotation and the left end is fixed.

Effects (1) and (2) can be obtained readily by multiplying the end rotations by the appropriate values given in Table II, paying proper attention to signs. Effects (3) and (4) may be calculated from Eq. (B-34) in Appendix B. These effects may also be expressed in terms of the quantities given in Table I as follows: Consider a clamped ended uniform beam, the left end of which is displaced by unit amount. The deflection amplitude at a point, a distance \underline{x} from the end being displaced, may be obtained by writing for the point the two equilibrium equations (see Eqs. 48a and 49),

 $\overline{\mathcal{M}}_{x} = (Q_{z} - Q_{1}) w_{x} + (K_{1} + K_{z}) \theta_{x} + (qQ)_{1} = 0 ,$ $\overline{F}_{x} = (T_{1} + T_{z}) w_{x} + (Q_{z} - Q_{1}) \theta_{x} - (tT)_{1} = 0 .$

The subscripts 1 and 2 denote, respectively, the left and the right portions of the beam. Eliminating from the first of the foregoing two equations the unknown Θ_x , and solving for the deflection w_x , one obtains

$$v_{x} = \frac{(tT)_{i} + (qQ)_{i} \frac{Q_{z} - Q_{i}}{K_{i} + K_{z}}}{(T_{i} + T_{z}) - \frac{(Q_{z} - Q_{i})^{2}}{K_{i} + K_{z}}} .$$
 (72a)

81

The deflection at the same point of the beam due to a unit deflection at the right end may be obtained from Eq. (72a) by interchanging the subscripts 1 and 2. When $x = \frac{L}{2}$, this equation reduces to

$$w_{\mathsf{x}} = \frac{(tT)_{,}}{2T_{,}} \tag{72b}$$

Note that for $\lambda = 0$ this equation yields $\frac{1}{2}$, which is, of course, the correct value for the static deflection at midspan.

30. Illustrative Example.

V

Example 7. In order to illustrate the details of the procedure and present a tabular scheme for arranging the computations, we shall calculate the first three natural frequencies of the hypothetical continuous beam shown in Fig. 40. The dimensions of this beam and the stiffnesses of the rotational and deflectional restraints are shown in Fig. 40. The various quantities are expressed in terms of the physical properties of a reference span \underline{r} . In this particular case, we choose r = 4.

It is convenient to express the stiffnesses and the carry-over effects for each span in terms of the <u>EI</u> and <u>L</u> of the reference span <u>r</u>. To do this, the values obtained from Table I in Appendix A must be multiplied by certain dimensionless factors as follows: The coefficients of <u>K</u> and <u>kK</u> for ^a span <u>j</u> must be multiplied by the factor α_j (Eq. 24). The coefficients of <u>Q</u> and <u>qQ</u> must be multiplied by

$$\beta_{j} = \frac{E_{j}I_{j}}{E_{r}I_{r}} \frac{L_{r}^{2}}{L_{j}} ,$$

(73)

and the coefficients of <u>T</u> and <u>tT</u> by

$$\gamma_{j} = \frac{E_{j}I_{j}I_{j}}{E_{r}I_{r}I_{r}I_{j}} \cdot \frac{3}{L_{j}}$$

These relations may be verified readily.

For the beam considered, the ratio λ_j / λ_r and the factors α_j , β_j and γ_j are evaluated in Table 2A. This table is independent of the frequency of vibration and is computed but once.

Table 2B presents one complete cycle of the procedure for a trial value of $\lambda_{q} = \lambda_{r} = 1.30$. This value, shown encircled in the <u>r-th</u> line of Column (1), corresponds to a circular frequency of vibration $\omega = \frac{1.69}{L^2} \sqrt{\frac{\text{EI}}{\text{m}}}$. Columns (1) through (18) in this table are conveniently filled in the following orders (2), (9), (1), (3 and 8), (4 and 7), (10 and 12), (5), (6), (11), (13), (14), (15), (16), (17), and (18). It should be noted that all quantities in Columns (2) through (12) are expressed in terms of the <u>EI</u> and <u>L</u> of the reference span <u>r</u>. The value of -5.7122 in Column (9), which represents the stiffness of an equivalent deflectional spring having the same effect as the concentrated mass \overline{m}_{3} , is computed from Eq. (66a). The partial distortions δ' , Θ' , δ'' , and Θ'' are evaluated (in)Columns! (19))through (22), terms parameter <u>y</u>.

 $\frac{\delta_5}{L} = -87.5781 + 3436.36 v = 0;$ v = 0.0254857

whence,

suppo

ver at lesso

The total distortions at supports 4 and 5 are given in Columns (23) and (24). The magnitude of the exciting moment

$$\overline{M}_5 = [4.473(2.327) + 2.021(-1.177) + 6.089(0.3438)] \frac{EI}{L} = 10.12 \frac{EI}{L}$$
.
Under the action of this moment the distortions at the extreme left
rt are

 $\theta_1 = 1.00$ and $\delta_1 = 0.0254857L$.

82

(74)

Had δ/L , instead of θ_1 , been taken equal to unity, the magnitude of the exciting moment would have been

$$\overline{M}_5 = \frac{10.12}{0.0254857} \frac{\text{EI}}{\text{L}} = 397.1 \frac{\text{EI}}{\text{L}}$$

Since \overline{M}_5 is different from zero, the assumed value of $\lambda_4 = 1.30$ does not correspond to a natural frequency. By repeating several such cycles of computation for different values of λ_4 , the curves shown in Fig. 41 were obtained. The solid curve in this figure shows the moment \overline{M}_5 necessary to produce a rotation $\theta_1 = 1.00$, while the dashed curve shows the moment \overline{M}_5 necessary to produce a deflection $\delta_1 = 1.00L$. The λ intercepts of these curves correspond to natural frequencies of vibration. The first three critical values are

$$(\lambda_4)_1 = 0.85$$
, $(\lambda_4)_2 = 2.01$, $(\lambda_4)_3 = 2.55$.

It should be noted that the distortions δ and Θ are obtained as small differences between large quantities. It becomes necessary, therefore, to use in the computations a relatively large number of significal figures, particularly if the higher natural frequencies of the beam are to be evaluated. It is recommended that at least 6 or 7 significant figures be retained throughout the computations.

TABLE 2. CALCULATIONS FOR EXAMPLE 7

, K. 410000 .- prision -.- prision -.- -

1999) 1999)

	(1)	(2)	(3)	(4))	(5)	(6)	(7)	(8)	(9)	(10)
Span	m j m	E i i Li	$\sqrt[4]{(1)}$		(4) ²	(4) ³	$\alpha_j = \frac{(2)}{(4)}$	$\beta_j = \frac{(2)}{(5)}$	$\gamma_j = \frac{(2)}{(6)}$	$\frac{\lambda_i}{\lambda_r} = (3)(4)$
l	0.60	1.00	0.880112	1.30	1.69	2.8561	0.7692308	0.5917160	0.3501278	1.14415
2	1.30	1.50	0.964857	0.60	0.36	0.1296	2.500000	4.166667	11.57407	0.57891
3	1.30	1.50	0.964.857	0.70	0.49	0.2401	2.142857	3.061224	6.247397	0.67540
4=r	1.00	1.00	1.00	1.00	1.00	1.00	1.000000	1.000000	1.000000	1.0000

TA	BLE	A

- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
50 C		
The second states in the		
0.44	 	
the state of the s	 	
CONCERNMENT OF CONCERNMENT	 1 (11)	
1. Sec. 1. Sec		
Contraction and Contraction of Contr	 	
And the second		
internation for the		
(a) (a) The state of the sta		
and the first state of the second state of the		

TABLE 2. - CALCULATIONS FOR EXAMPLE 7 - CONTINUED

TABLE B

Span	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	.(10)	(11)	(12)	(13)
or Support	λ_j	$R_j \frac{Lr}{E_r I_r}$	Kj <u>Lr</u> E _r I _r	$Q_j \; \frac{L_r^2}{E_r I_r}$	$\overline{Q}_{j} \frac{L_{r}^{2}}{E_{r} I_{r}}$ = (4); - (4);-1	$ \overline{K_{j}} = \frac{L_{r}}{E_{r} I_{r}} $ $= (3)_{j-1} + (2)_{j} + (3)_{j}$	$(q_{i}Q)_{j}\frac{L_{r}^{2}}{E_{r}I_{r}}$	$(\%K)_j \frac{L_r}{E_r I_r}$	$D_j \frac{L_r^3}{E_r I_r}$	$T_j \frac{L_r^3}{E_r I_r}$	$\overline{T}_{j} \frac{L_{r}^{3}}{E_{r} I_{r}}$ =(10) _{j-1} +(9) _j +(10) _j	$(tT)_j \frac{L_r^3}{E_r I_r}$	η _j = (1)/(8)
1	1.49		3.040508	3.396416	3.396416	3.040508	3.641616	1.565839	3.00	3.557417	6.557417	4.426246	2.325664
2	0.75	0.70	9.992462	24.93091	21.53449	13.73297	25.04084	5.005655		137.52819	141.08561	139.36002	5.002510
3	0.88		8.559177	18.27110	-6.65981	18.551639	18.42425	4.294905	- 5.7122	73.57634	205.39233	75.45119	4.289792
4=r	(].30		3.972666	5.849766	-12.42133	12.531843	6.088995	2.020530	1.50	10.93617	86.01251	12.36992 ,	3.013563
5		0.50				4.472666			ø		·		

				~				·		
(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)
Coef. of δ _{j-1} in Eq. (50) = (13); (7) _{j-1} + (12) ₋₁	Coef. of θj-, in Eq.(50) = (13)j(8)j-,†(7)j-,	Coef. of δj in Eq.(50) = (13)j(5)j - (11)j	Coef. of 0j in Eq.(50) – (13);(G);-(5);	Coef. of 0;+1 in Eq.(50) = (13);(1);-(12);	δ'j+1/Lr [(14)j(19)j-1+(15)j(20)j-1 +(16)j(19)j+(17)j(20)j] +(18)j	θ'j+1 = [-(7)j-1(19)j-1 (8)j-1(20)j-1 -(5)j (19)j -(6)j (20)j +(7)j (19)j+1] ÷(8)j	$\begin{split} & \delta_{j+i}''/L \\ &= \\ [(14)_j(21)_{j-1} + (15)_j(22)_{j-i} \\ &+ (1G)_j(21)_j + (17)_j(22)_j] \\ &= (18)_j \end{split}$	$ \begin{array}{c} \theta_{j \neq i}'' \\ = \\ [-(7)_{j-1}(2l)_{j-i}^{-}(8)_{j-1}(22)_{j-1} \\ -(5)_{j}(2l)_{j} - (G)_{j}(22)_{j} \\ +(7)_{j}(2l)_{j+1}] \doteq (8)_{j} \end{array} $	δj/L - (19)j + v(21)j	Θj _ (20)j + v(22)j
		1.341505	3.674784	4.042929	0.	1.00	1-00	0		
22.64347	11.47474	-33.3591	47.16483	-14.09297	0.9089410	0.1721161	0.3318151	- 1.397380		
246 . 7800	46.51406	-233.9615	86.24248	3.58501	0.7612935	- 0.886928	3-85531	20.9649		
130.9738	31.36721	-123.44497	50.18683	5.97965	-6.21754	- 27 1605	257.449	1019.52	0.3438	-1.177
					-87.5781	-138.745	3436.36	5535.33	0	2.327

85

 $\overline{M}_{5} = 10.12 \frac{EI}{I}$

VI. APPLICATION OF METHOD TO FRAMES

WITH SIDESWAY

31. Symmetrical, Single-Bay, Multi-Story Frames.

The method described in the preceding Chapter can also be used to determine the natural frequencies of lateral vibration of frames for which the joints are free to translate. Though this method can be applied to frames of any complexity, it can efficiently be used only for symmetrical, singlebay, multi-story frames. For such frames, the details of application of the procedure are similar to those for a continuous beam on flexible supports.

Consider the symmetrical frame shown in Fig. 42a. Because of symmetry, the end rotations of each girder are algebraically equal, and the midpoints of the girders are points of inflection. Consequently, it is possible to consider in the analysis only one half of the structure as shown in Fig. 42b. In this figure, the right ends of the girders can rotate and slide freely in the horizontal direction but can not deflect in the vertical direction. The influence of these horizontal members may be represented by a set of concentrated masses and concentrated rotational springs, attached at the points of intersection of the horizontal members and the main column as shown in Fig. 42c. The magnitude of each concentrated mass in Fig. 42c is equal to the total distributed mass of the corresponding girder in Fig. 42b. Similarly, the stiffness of each rotational spring in Fig. 42c is equal to the flexural stiffness \underline{K} " of the corresponding girder in Fig. 42b.

The natural frequencies of this system may be determined by the procedure described in Sections 27 and 28. It must be borne in mind, however, that the stiffnesses of the rotational restraints are not constant in this case, but rather depend on the frequency of vibration, and must be evalusted for each cycle of the procedure.

VII. EXTENSION OF METHOD TO CONTINUOUS PLATES

32. General.

This chapter is concerned with the determination of the natural frequencies of flexural vibration of rectangular plates which are simply supported along two opposite edges and which, in one direction, are continuous over rigid supports transverse to the simply supported edges. The plate may have any number of panels of arbitrary length. The mass per unit of area and the flexural rigidity of the plate may vary from one panel to the other, but, in any one panel, these quantities are assumed to remain constant.

The method of analysis is similar to that described in Chapter III for the case of continuous beams on rigid supports. The assumptions made in the analysis are those embodied in the ordinary flexure theory of medium thick plates composed of an elastic, homogeneous, and isotropic material. In addition, it is assumed that the supports can offer no torsional restraint and that no frictional forces or horizontal shearing forces may develop between the plate and the supports. Throughout this discussion, the effects of damping, rotatory inertia, and shearing deformation are disregarded.

33. Basis of the Method.

Figure 43 shows the type of the continuous plate considered. The coordinate axes are taken parallel to the edges as shown in Fig. 43. The sides parallel to the y-axis are assumed to be simply supported. All transverse supports are considered to be rigid. Along the extreme edges the plate may be hinged, fixed or subjected to a rotational elastic restraint of constant stiffness. For simplicity, it will first be assumed that the extreme right edge is either hinged or elastically restrained against rotation. A fixed edge

will be treated separately at the end.

For the plate shown in Fig. 43, the solution of the differential equation for transverse vibration of plates reveals that, during free vibration, the deflections, rotations, shears, and bending moments along sections perpendicular to the simply supported edges are proportional to

$$\sin\frac{n\pi x}{a}\cos\omega_{N}t$$
 (75)

In this expression, $w_{\rm N}$ represents a circular natural frequency, \underline{t} time, and \underline{a} the width of the plate; \underline{n} is an integer which designates the number of halfsine waves, alternately upward and downward, in the distribution of the deflection, slope, shear, or bending moment along the plate width. Corresponding to each value of \underline{n} there is an infinite number of natural frequencies.

Consider now that the plate undergoes a steady-state forced vibration, such that the rotation of the plate at the extreme left support is

$$\theta_{i}(x,t) = \theta_{i} \sin \frac{n\pi x}{a} \cos \omega t$$

where, ω is the circular frequency of vibration, <u>n</u> is the same integer used in Eq. (75), and θ_1 is the maximum amplitude of slope at the left support. The magnitude of θ_1 is assumed to have a prescribed finite value. If support 1 is fixed instead of hinged or elastically restrained, θ_1 is equal to zero, and it becomes necessary to assume that the bending moment at that support is

$$M_{i}(x,t) = M_{i} \sin \frac{n\pi x}{a} \cos \omega t$$

M₁ is assumed to have a fixed value. In either case, the vibration of the plate is presumed to be maintained by an exciting couple applied at the extreme right hand support <u>z</u>. Then, the solution for steady-state forced vibration of the governing differential equation reveals (a) that the deflections, ^{slopes}, shears, and bending moments along sections perpendicular to the simply supported edges are proportional to, and in phase with, the rotation (or bending moment) at the extreme left edge, and (b) that the exciting moment may be expressed as

 $\overline{M}_z(x,t) = \overline{M}_z \sin \frac{n\pi x}{a} \cos \omega t$

Obviously, the magnitude of \overline{M}_{z} depends upon the frequency of vibration. For a frequency equal to a natural frequency of the plate ($\omega = \omega_{N}$), \overline{M}_{z} becomes equal to zero, but the deflection of the plate remains finite. The deflected surface of the plate, which represents a natural mode of vibration, is then expressed as

$$w(x,y,t) = Y_n \sin \frac{n\pi x}{a} \cos \omega t$$

where, Y_n is a function of the y-coordinate only; its absolute value depends on the value assigned to the amplitude of slope (or bending moment) at support 1.

In the discussion thus far, it was assumed that the extreme right support of the plate was either hinged or elastically restrained. If support z is fixed, the criterion for a natural frequency is that $\theta_z = 0$.

Details of the Method.

The foregoing considerations suggest the following procedure for calculating the natural vibration frequencies of continuous plates having two opposite edges simply supported.

1. Assume that the amplitude of slope or bending moment at the extreme left edge of the plate is distributed sinusoidally, and that it has a fixed value. Since the natural frequencies of a system depend only on the relative values of the deflection, any arbitrary amplitude, consistent with the actual boundary condition, may be chosen. For a hinged edge or for a partially fixed edge, take

 $\Theta_{l}(x) = 1.00 \sin \frac{n\pi x}{a}$

For a fixed end, $\theta_1 = 0$; therefore, take

$$M_1(\mathbf{x}) = 1.00 \sin \frac{M \mathbf{x}}{8}$$

In the application of this procedure, it is necessary to consider a specific value of <u>n</u> in each case. Let $n = n_0^{\circ}$

Choose a frequency of vibration and determine the rotations of the plate over the supports, and from these determine the magnitude of the exciting moment at the extreme right edge. (For a fixed edge the moment at that edge need not be evaluated). These quantities are determined by identically the same procedure that was used for continuous beams. The pertinent relations are reviewed in subsequent paragraphs.

Repeat the previous step for different frequencies and, from the results obtained, plot a curve of the variation of the exciting moment or of the slope at the right edge as a function of the frequency of vibration. If the right edge is hinged or elastically restrained, plot the variation of the exciting moment; then, the natural frequencies are those frequencies for which the exciting moment vanishes. If the right end is fixed, establish the variation of the rotation θ_{z} ; the frequencies for which θ_{z} vanishes are natural frequencies.

For the natural frequencies determined in step (3), the deflection of the plate along sections perpendicular to the hinged edges has n_0^{-} half-sine waves. In general, steps (1) to (3) must be repeated for as many values of <u>n</u> as may be necessary for a given problem.

For a given frequency of vibration, the rotations of the plate over the supports and the magnitude of the exciting moment may be determined from the same equations that were used to analyze continuous beams on rigid supports, namely from Eqs. (19), (21), and (22). Equation (19) expresses the condition of equilibrium and continuity at an interior support of a continuous beam, by relating the rotations of the beam over three consecutive supports. Equations (21) and (22) express, respectively, the boundary conditions for the extreme left and the extreme right ends of the beam.

In the application of these equations to continuous plates, it is only necessary to interpret θ_j as the maximum amplitude of slope along the <u>j-th</u> support, and M_j as the maximum amplitude of moment at that support. In addition, it is necessary to replace the stiffness and carry-over factors for beams by equivalent quantities for plates. Such quantities are defined in the section that follows.

35. Elastic Constants for a Panel of a Plate.

Consider a rectangular plate simply supported on three edges and fixed on the fourth as shown in Fig. 44. Let edge \underline{f} be subjected to a steadystate rotation without deflection, such that the magnitude of the rotation is given by the relation

$$\Theta_{f}(x,t) = \Theta_{f} \sin \frac{n\pi x}{Q} \cos \omega t$$

The amplitude of the moment at edge <u>f</u> necessary to produce this rotation is proportional to $\sin \frac{n\pi x}{a}$ and may be written as

$$M_{f} = K\Theta_{f} \cdot$$
(76)

The quantity <u>K</u> is a measure of the resistance to steady-state forced rotation of edge <u>f</u> of the plate, when edge <u>g</u> is fixed, and is referred to as

the "dynamic flexural stiffness" of edge f.

The amplitude of the moment induced at the fixed edge is also proportional to $\sin \frac{n\pi x}{a}$, and may be expressed as

$$M_{g} = kK\Theta_{f} = kM_{f}$$
 (77)

The quantity \underline{k} , which represents the ratio of the moment at the far fixed edge to that at the edge being rotated, is defined as the "dynamic flexural carry-over factor".

These quantities are strictly analogous to those defined for beams, and they are used in the analysis of plates in identically the same way as the quantities for beams are used in the analysis of continuous beams.

The quantity K may be expressed as

劑

$$K = C_{K} \frac{N}{b} , \qquad (78)$$

where <u>N</u> is the flexural rigidity of the plate per unit width and <u>b</u> is its span length in a direction parallel to the simply supported edges. The coefficient C_{K} is dimensionless and depends on the ratio $\frac{a}{nb}$ and the dimensionless parameter

$$\lambda^* = \frac{b^2}{\pi^2} \sqrt{\frac{\rho h w^2}{N}}$$
(79)

where ρ denotes the density and <u>h</u> the thickness of the plate. The carryover factor <u>k</u> is dimensionless and depends on the same two quantities as the coefficient C_v.

The pertinent analytical expressions for <u>K</u> and <u>k</u> are given in Appendix B. For $\lambda^* = 0$, that is, when the plate does not vibrate, the Values of <u>K</u> and <u>k</u> reduce to those given by Newmark (15).

Assume now that the plate is not vibrating but is instead subjected along its simply supported edges to uniformly distributed compressive forces px. Let

$$\mathcal{R}' = \frac{b^2 P_x}{\pi^2 N} \qquad (80)$$

Then, it can be shown that the values of <u>K</u> and <u>k</u> of a vibrating plate for given values of $\frac{a}{nb}$ and λ^* are numerically equal to the stiffness and carryover factor of an equivalent compressed plate having the same $\frac{a}{nb}$ value but a value of

$$\mathcal{K}_{eq} = (\lambda^*)^2 \left(\frac{a}{nb}\right)^2 . \tag{81}$$

Numerical values of K and k for compressed plates have been tabulated by W. D. Kroll $(32)^+$ as a function of $\frac{a}{nb}$ and k! . It should be noted that Kroll defines stiffness as the moment necessary to produce a maximum rotation amplitude of 1/4 radian instead of one radian. Consequently, the stiffness values obtained from Kroll's tables must be multiplied by 4 to make them conform to the definition given in this report.

As a simple illustration, we shall determine the dynamic flexural stiffness and dynamic flexural carry-over factor for a rectangular plate having a ratio of sides a/b = 0.5 when n = 1 and $\lambda^* = 4.00$. The equivalent value of <u>k</u>:

$$k_{eq.}^{I} = (16)(0.25) = 4.00$$
.

From page 14 of reference (32) we find

 $\frac{K}{4} = 2.54385 \frac{N}{b} \text{ and } k = 0.126499 ,$ K = 10.1754 $\frac{N}{b}$ and k = 0.126499 .

whence

See Section 2¢ of Appendix B.

Kroll uses the symbols λ for $\frac{a}{nb}$, k for k, S for K, and C for k.

36. Illustrative Example.

Example 8. This example involves a rectangular plate simply supported along two opposite edges and continuous over five equally spaced rigid supports as shown by the sketch in Fig. 45. The plate is simply supported at the extreme left edge and fixed at the extreme right edge. All panels are square. It is desired to calculate the first few natural frequencies of this structure.

The plate is analyzed in identically the same manner as the continuous beam considered in Example 1. In fact the expression for θ_5 is the same as that for the beam:

$$\Theta_5 = \frac{k^4 - 8k^2 + 8}{k^4}$$

The carry-over factor <u>k</u>, which depends on the parameters $\frac{a}{nb}$ and λ^* , was determined from the numerical values reported in reference (32) as described in the preceding section. In Fig. 45 Θ_5 has been plotted as a function of $(\lambda^*)^2 \left(\frac{a}{nb}\right)^2$ for values of n = 1 and n = 2. The values of $(\lambda^*)^2 \left(\frac{a}{nb}\right)^2$ corresponding to natural frequencies are recorded on the figure.

The lowest circular natural frequency for n = 1 is

$$\omega_{\rm N} = \sqrt{4.11} \frac{\pi^2}{{\rm b}^2} \sqrt{\frac{{\rm N}}{\rho {\rm h}}} = \frac{20.01}{{\rm b}^2} \sqrt{\frac{{\rm N}}{\rho {\rm h}}}$$

The lowest frequency w_N for n = 2 is

$$w_{\rm N} = 2\sqrt{6.29} \frac{\pi^2}{{\rm b}^2} \sqrt{\frac{{\rm N}}{\rho {\rm h}}} = \frac{49.51}{{\rm b}^2} \sqrt{\frac{{\rm N}}{\rho {\rm h}}}$$

For purposes of comparison, the corresponding circular natural frequencies of a square plate having (a) all four edges simply supported and (b) three edges simply supported and one fixed are given in the following. For edge condition (a):

For edge condition (b):

when n = 1
w_N =
$$\frac{23.65}{b^2} \sqrt{\frac{N}{\rho h}}$$
,
w_N = $\frac{51.68}{b^2} \sqrt{\frac{N}{\rho h}}$.

These values have been obtained from reference (33).

VIII SUMMARY

General.

37.

A method has been presented in this report for the determination of the undamped natural frequencies and of the corresponding natural modes of flexural vibration of elastic structures. The method has been applied to continuous beams on rigid or flexible supports, to continuous frames without sidesway, to symmetrical single-bay multi-story frames for which the joints are free to translate, and to continuous plates having two opposite edges simply supported.

The method is a generalization of Holzer's method for calculating the natural frequencies of torsional vibration of shafts and, like Holzer's method, it has been reduced to a routine scheme of computation which, when repeated a sufficient number of times, will give the natural frequencies of the system to any desired degree of accuracy. The method is based on the fact that the exciting couple necessary to maintain a dynamical system in a steady-state of forced vibration with finite amplitudes becomes equal to zero at any one of the natural frequencies of the system.

Extensive tables of numerical values for the various quantities entering in the analysis are presented in Appendix A of this report. With these tables the calculations required in the application of the method to Particular problems are simplified greatly. The tabulated values may be used also with other analytical techniques as well as for the analysis of the steady-state forced vibration of structures.

APPENDIX A

аную 1743

TABLE I

NUMERICAL VALUES OF DYNAMIC CARRY-OVER FACTORS, OF COEFFICIENTS FOR DYNAMIC STIFFNESSES, AND OF THEIR PRODUCTS FOR A UNIFORM BAR UNDERGOING STEADY-STATE FORCED VIBRATIONS

The various quantities are defined in Fig. 2, and are tabulated here as a function of the dimensionless parameter $\lambda = \frac{4}{\frac{m\omega^2}{Fl}}L$

in which <u>m</u> is the mass per unit of length of the bar; ω is the circular frequency of vibration; <u>E</u> is the modulus of elasticity of the material in the bar; <u>I</u> is the moment of inertia of the cross section of the bar about its centroidal axis; and <u>L</u> is the span length of the bar.

λ	K <u>L</u> EI	kK <u>L</u> EI	÷. k	K" L EI	q <u>L² EI</u>	$qQ \frac{L^2}{EI}$	q	$T \frac{L^3}{ET}$	tT <u>L³</u> EI	t
0	4,000000	2.000000	0,5000000	3.000000	6.000000	6.000000	1,000000	12.00000	12.00000	1.000000
0.10	3,999999	2.000001	0,500003	2.999998	5.999995	6.000003	1,000001	11.99996	12.00001	1.000004
0.20	3,999985	2.000011	0,5000048	2.999970	5.999916	6.000050	1,000022	11.999941	12.00021	1.000067
0.30	3,999923	2.000058	0,5000241	2.999846	5.999576	6.000251	1,000113	11.99699	12.00104	1.000338
0.40	3,999756	2.000183	0,5000762	2.999512	5.998659	6.000792	1,000356	11.99049	12.00329	1.001068
0.50	3,999405	2,000447	0,5001861	2,998809	5.996726	6.001935	1,000869	11.97678	12.00804	1,002609
0.55	3,999128	2,000654	0,5002724	2,998256	5.995206	6.002833	1,001272	11.96601	12.01177	1,003824
0.60	3,998766	2,000926	0,5003859	2,997530	5.993210	6.004013	1,001802	11.95186	12.01667	1,005423
0.65	3,998299	2,001276	0,5005317	2,996598	5.990647	6.005527	1,002484	11.93369	12.02296	1,007481
0.70	3,997712	2,001716	0,5007153	2,995422	5.987419	6.007436	1,003343	11.91080	12.03089	1,010082
0.75 0.76 0.77 0.78 0.79	3,996985 3,996821 3,996650 3,996473 3,996288	2.002262 2.002385 2.002513 2.0026%6 2.002785	0,5009480 0,5009944 0,5010478 0,5011034 0,5011612	2,993966 2,993637 2,993295 2,992940 2,992570	5.983419 5.982516 5.981577 5.980601 5.979586	6.009801 6.010334 6.010890 6.011467 6.012067	1.004409 1.004650 1.004900 1.005161 1.005432	11.88244 11.87604 11.86939 11.86247 11.85527	12.04071 12.04293 12.04524 12.04764 12.05013	1.013320 1.014053 1.014816 1.015610 1.015610 1.016436
0.80	3,996096	2.002928	0.5012212	2.992186	5.978532	6.012690	1.005713	11.84780	12.05272	1.017296
0.81	3,995897	2.003078	0.5012836	2.991787	5.977437	6.013337	1.006006	11.84004	12.05541	1.018189
0.82	3,995691	2.003233	0.5013483	2.991374	5.976302	6.014009	1.006309	11.83199	12.05820	1.019118
0.83	3,995476	2.003393	0.5014154	2.990944	5.975124	6.014706	1.006624	11.82364	12.06109	1.020082
0.84	3,995254	2.003560	0.5014850	2.990499	5.973902	6.015428	1.006951	11.81499	12.06409	1.021084

			TABLE I (con	tinued)
이 가슴 생물 것이 가슴	H F	a station and the second se	· · · · · · · · · · · · · · · · · · ·	Same and the second

;, ; ;, ·,

* 				· ·	1						1910 - Series 1910 - Berge
2	K <u>L</u> EI	kK <u>L</u>	k	K ^m L EI			q	T L ³ EI	tT L ³ EI	t	Februé 1
0.85 0.86 0.87 0.88 0.89	8,995024 3,994785 3,994588 3,994283 3,994018	2,003733 2,003912 2,004097 2,004289 2,004488	0,5015572 0,5016319 0,5017093 0,5017895 0,5018725	2,990038 2,989559 2,989064 2,988551 2,988021	5.972636 5.971324 5.969966 5.968560 5.967105	6.016177 6.016953 6.017756 6.018588 6.019449	1.007290 1.007641 1.008005 1.008382 1.0083772	11.80601 11.79672 11.78709 11.77712 11.776681	12.06720 12.07043 12.07377 12.07377 12.07722 12.08080	1.022124 1.023202 1.024321 1.025481 1.026684	
0.90	3.993744	2.004693	0,5019583	2.987472	5.965600	6.020339	1.009176	11.75615	12.08450	1.027930	
0.91	3.993461	2.004906	0,5020471	2.986904	5.964044	6.021260	1.009593	11.74512	12.08832	1.029221	
0.92	3.993169	2.005125	0,5021388	2.986318	5.962435	6.022211	1.010025	11.73372	12.09228	1.030558	
0.93	3.992867	2.005352	0,5022337	2.985711	5.960773	6.023194	1.010472	11.72195	12.09636	1.031941	
0.94	3.992554	2.0053586	0,5023316	2.985085	5.959057	6.024210	1.010933	11.70978	12.10058	1.033374	
0.95	3.992232	2.005828	0,5024328	2,984438	5.957284	6.025259	1.011410	11.69723	12,10494	1.034856	
0.96	3.991899	2.006078	0,5025373	2,983770	5.955455	6.026341	1.011903	11.68426	12,10944	1.036389	
0.97	3.991556	2.006336	0,5026451	2,983081	5.953567	6.027459	1.012411	11.67089	12,11408	1.037974	
0.98	3.991202	2.006602	0,5027563	2,982370	5.951620	6.028611	1.012936	11.65710	12,11887	1.039613	
0.99	3.990836	2.006876	0,5028710	2,981637	5.949612	6.029799	1.013478	11.64287	12,12381	1.041308	
1.00	3.990460	2.007159	0,5029893	2,980881	5.947542	6.031025	1.014036	11.62821	12,12890	1.043059	
1.01	3.990072	2.007450	0,5031112	2,980101	5.945409	6.032288	1.014613	11.61309	12,13415	1.044868	
1.02	3.989672	2.007750	0,5032369	2,979298	5.943211	6.033589	1.015207	11.59753	12,13956	1.046737	
1.03	3.989260	2.008059	0,5033663	2,978471	5.940948	6.034929	1.015819	11.58149	12,14513	1.048667	
1.04	3.988836	2.008378	0,5034997	2,977619	5.938617	6.036309	1.016450	11.56498	12,15086	1.050660	
1.05	3,988400	2.008705	0.5036370	2.976741	5.936217	6.037730	1.017101	11.54799	12,15677	1.052718	
1.06	3,987950	2.009043	0.5037783	2.975838	5.933748	6.039192	1.017770	11.53050	12,16285	1.054841	
1.07	3,987488	2.009390	0.5039237	2.974909	5.931207	6.040697	1.018460	11.51250	12,16910	1.057033	
1.08	3,987013	2.009747	0.5040734	2.973953	5.928594	6.042244	1.019170	11.49400	12,17553	1.059295	
1.09	3,986524	2.010114	0.5042273	2.972970	5.925907	6.043836	1.019901	11.47497	12,18215	1.061628	
1.10	3,986021	2.010492	0.5043856	2.971958	5.923144	6.045 473	1.020653	11.45541	12,18895	1.064035	
1.11	3,985505	2.010880	0.5045483	2.970919	5.920305	6.047 155	1.021426	11.43530	12,19594	1.066517	
1.12	3,984974	2.011278	0.5047156	2.969850	5.917387	6.048883	1.022222	11.41464	12,20313	1.069077	
1.13	3,984428	2.011688	0.5048875	2.968752	5.914390	6.050660	1.023040	11.39342	12,21051	1.071716	
1.14	3,983868	2.012109	0.5050641	2.967624	5.911311	6.052484	1.023882	11.37163	12,21810	1.074437	
1.15	3.983293	2.012541	0,5052456	2.966465	5.908150	6.054358	1.024747	11.34925	12,22588	1.077242	والمتقاد والمراجع
1.16	3.982702	2.012985	0,5054319	2.965276	5.904905	6.056281	1.025636	11.32628	12,23388	1.080193	
1.17	3.982096	2.013440	0,5056232	2.964054	5.901574	6.058256	1.026549	11.30270	12,24209	1.083112	
1.18	3.981474	2.013908	0,5058196	2.962800	5.898156	6.060282	1.027488	11.27851	12,25052	1.086182	
1.19	3.980836	2.014387	0,5060212	2.961513	5.894649	6.062362	1.028452	11.25369	12,25916	1.089346	
·				A	I	<u> </u>	<u></u>	<u>L.</u>	<u>.</u>		L
TABLE I (continued)

λ	K EI	kk <u>L</u>	k	K" L	9 <mark>L</mark>	qQ <u>L</u> 2 EI	đ	T L	tT E	t
								i Antoninip karanakana merupakan Antoninip karanakana merupakan	· ·	
1.20 1.21 1.22 1.23 1.24	3.980181 3.979510 3.978821 3.978116 3.977392	2.014879 2.015384 2.015901 2.016432 2.016975	0.5062280 0.5064402 0.5066579 0.5068811 0.5071100	2.960193 2.955838 2.957449 2.956025 2.954564	5,891052 5,887363 5,883581 5,879704 5,875730	6.064495 6.066682 6.068926 6.071226 6.073584	1.029442 1.030458 1.031502 1.032573 1.033673	11.22823 11.20213 11.17536 11.14793 11.11981	12,26803 12,27713 12,28645 12,29602 12,30582	1.092606 1.095964 1.099423 1.102987 1.106657
1.25 1.26 1.27 1.28 1.29	3.976651 3.975892 3.975114 3.974317 3.973501	2.017533 2.018104 2.018689 2.019288 2.019901	0,5073447 0,5075852 0,5078317 0,5080842 0,5083430	2,953067 2,951532 2,949960 2,948349 2,948349 2,946698	5.871658 5.867486 5.863213 5.858836 5.854354	6.076000 6.078476 6.081012 6.083610 6.086271	1.034801 1.035959 1.037147 1.038365 1.039614	11.09101 11.06149 11.03127 11.00031 10.96862	12.31587 12.32617 12.33671 12.34752 12.35859	1,110437 1,114331 1,118341 1,122470 1,126722
1.30 1.31 1.32 1.33 1.34	3.972666 3.971811 3.970935 3.970040 3.969123	2.020530 2.021173 2.021831 2.022505 2.023194	0,5086080 0,5088794 0,5091574 0,5094420 0,5097333	2,945008 2,943277 2,941505 2,939691 2,937834	5.849766 5.845070 5.840263 5.835345 5.830313	6.088995 6.091785 6.094640 6.097562 6.100551	1.040896 1.042209 1.043556 1.044936 1.044936 1.046351	10,93617 10,90296 10,86898 10,83420 10,79863	12.36992 12.38152 12.39339 12.40555 12.41799	1.131101 1.135611 1.140254 1.145036 1.149959
1.35 1.36 1.37 1.38 1.39	3.968186 3.967227 3.966247 3.965244 3.965244 3.964219	2.023899 2.024621 2.025359 2.026113 2.026885	0,5100314 0,5103365 0,5106487 0,5109681 0,5112948	2,935934 2,933989 2,932000 2,929965 2,927883	5.825166 5.819901 5.814517 5.809013 5.803386	6.103610 6.106740 6.109940 6.113213 6.116559	1.047800 1.049286 1.050808 1.052367 1.053964	10.76225 10.72504 10.68699 10.64809 10.64809 10.64803	12.43071 12.44373 12.45705 12.457066 12.48459	1.155029 1.160251 1.165627 1.171164 1.176866
1,40 1,41 1,42 1,43 1,44 1,44	3.963172 3.962101 3.961006 3.959888 3.958746	2.027674 2.028480 2.029304 2.030146 2.031006	0,5116290 0,5119708 0,5123202 0,5126775 0,5130427	2.925755 2.923578 2.921353 2.919078 2.916753	5.797634 5.791756 5.785749 5.779612 5.773343	6.119981 6.123478 6.127052 6.130704 6.134436	1.055600 1.057275 1.058990 1.060747 1.062545	10.56770 10.52617 10.48374 10.44040 10.39612	12.49882 12.51338 12.52825 12.54345 12.55898	1.182739 1.188787 1.195017 1.201434 1.208045
1,45 1,46 1,47 1,48 1,49	3.957579 3.956388 3.955171 3.953928 3.952660	2.031885 2.032782 2.033699 2.034635 2.035591	0,5134160 0,5137976 0,5141874 0,5145858 0,5149928	2,914377 2,911949 2,909468 2,906934 2,904345	5.766940 5.760400 5.753722 5.746904 5.739943	6,138249 6,142143 6,146121 6,150183 6,154331	1.064386 1.066270 1.068199 1.070173 1.072194	10.35091 10.30473 10.25759 10.20946 10.16034	12.57485 12.59106 12.60762 12362453 12.64180	1.214855 1.221871 1.229101 1.236552 1.244230
1.50 1.51 1.52 1.53 1.54	3,951365 3,950043 3,948694 3,947318 3,945913	2.036567 2.037564 2.038581 2.039618 2.040677	0,515+086 0,5158333 0,5162670 0,5167100 0,5171623	2,901700 2,899000 2,896242 2,893427 2,893552	5.732838 5.725587 5.718187 5.710637 5.702934	6.158566 6.162889 6.167302 6.171806 6.176402	1.074261 1.076377 1.078541 1.080756 1.083022	10,11020 10,05904 10,00683 9,953569 9,899238	12.65943 12.67743 12.69580 12.71456 12.73370	1.252144 1.260303 1.26 <u>9</u> 714 1.277387 1.286331

1. 2

t	T	7	T	· · · · · · · · · · · · · · · · · · ·						
λ	K <u>L</u> EI	kK $\frac{L}{EI}$	k	K" L EI		$q Q \frac{L^2}{EI}$	q	T L ³	tT L ³ EI	t
								·		
1.55 1.56 1.57 1.58 1.59	3,944480 3,943019 3,941528 3,940008 3,938458	2.041758 2.042860 2.043985 2.045132 2.045132 2.046302	0.5176241 0.5180955 0.5185768 0.5190680 0.5195693	2.887617 2.884622 2.881565 2.878445 2.875262	5,695075 5,687060 5,678885 5,670549 5,662049	6.181091 6.185876 6.190757 6.195736 6.200814	1.085340 1.087711 1.090136 1.092617 1.095154	9.843821 9.787304 9.729673 9.670911 9.611005	12,75323 12,77316 12,79349 12,81423 12,83538	1,295557 1,305074 1,314894 1,325028 1,335488
1.60 1.61 1.62 1.63 1.64	3,936877 3,935266 3,933623 3,931949 3,930242	2.047495 2.048711 2.049952 2.051216 2.052505	0.5200810 0.5206031 0.5211358 0.5216793 0.5222338	2.872014 2.868700 2.865320 2.861871 2.858355	5,653383 5,644549 5,635544 5,626366 5,617012	6.205992 6.211273 6.216657 6.222147 6.227742	1.097748 1.100402 1.103116 1.105891 1.108729	9,549937 9,487693 9,424257 9,359613 9,293745	12,85696 12,87896 12,90139 12,92427 12,94759	1.346287 1.357438 1.368956 1.380855 1.393151
1.65 1.66 1.67 1.68 1.69	3.928503 3.926731 3.924925 3.923086 3.921212	2.053819 2.055158 2.056522 2.057912 2.059329	0.5227994 0.5233763 0.5239647 0.5245648 0.5251767	2.854768 2.851110 2.847380 2.843577 2.839700	5,607481 5,597770 5,587877 5,577798 5,567532	6.233446 6.239260 6.245185 6.251222 6.257373	1.111630 1.114597 1.117631 1.120733 1.123904	9.226637 9.158273 9.088637 9.017712 8.945481	12,97136 12,99559 13,02029 13,04546 13,07110	1,405860 1,419000 1,432590 1,446648 1,466196
1.70 1.71 1.72 1.73 1.74	3.919303 3.917359 3.915379 3.915379 3.913363 3.911310	2.060772 2.062242 2.063740 2.065265 2.066818	0.5258007 0.5264369 0.5270856 0.5277469 0.5284211	2.835747 2.831718 12.827611 -2.823425 2.819159	5,557076 5,546428 5,535585 5,524544 5,513303	6.263641 6.270026 6.276530 6.283155 6.289902	1.127147 1.130462 1.133851 1.137316 1.140859	8.871928 8.797035 8.720786 8.643164 8.564150	13.09724 13.12386 13.15099 13.17862 13.20676	1,476256 1,491851 1,508005 1,524745 1,542098
1.75 1.76 1.77 1.78 1.79	3.909220 3.907092 3.904926 3.902721 3.900477	2.068400 2.070011 2.071651 2.073321 2.075021	0.5291082 0.5298087 0.5305225 0.5312501 0.5319915	2.814812 2.810382 2.805868 2.801269 2.796583	5,501859 5,490210 5,478353 5,466286 5,454004	6.296774 6.303772 6.310897 6.318151 6.325537	1.144481 1.148184 1.151970 1.155840 1.159797	8,483728 8,401879 8,318586 8,233832 8,147597	13,23543 13,26462 13,29435 13,32462 13,35544	1,560095 1,578768 1,598150 1,618277 1,639188
1.80 1.81 1.82 1.83 1.83	3.898193 3.895869 3.893504 3.891098 3.888649	2.076751 2.078512 2.080305 2.082129 2.083986	0.5327471 0.5335170 0.5343015 0.5351007 0.5359151	2.791810 2.786947 2.781994 2.776949 2.771810	5,441507 5,428790 5,415852 5,402689 5,389299	6.333056 6.340709 6.348500 6.356428 6.364498	1.163842 1.167978 1.172207 1.176530 1.180951	8,059863 7,970613 7,879827 7,787486 7,693572	13,38682 13,41876 13,45128 13,48439 13,48439 13,51808	1.660924 1.683530 1.707058 1.731546 1.757061
1.85 1.86 1.87 1.88 1.88 1.89	3.886159 3.883625 3.881048 3.878427 3.875761	2.085875 2.087797 2.089753 2.091743 2.093767	0,5367446 0,5375898 0,5384507 0,5393276 0,5402208	2.766577 2.761247 2.755819 2.750293 2.744665	5,375678 5,361824 5,347734 5,333405 5,318833	6.372709 6.381065 6.389567 6.398218 6.407018	1.185471 1.190092 1.194818 1.199650 1.204591	7.598065 7.500947 7.402197 7.301796 7.199724	13.55237 13.58726 13.62278 13.65891 13.69568	1.783660 1.811407 1.840369 1.870623 1.902250

and the second

.

14

.

the service of the se

f								i i a no i i i i		
λ	K L EI	kK <u>L</u> EI	k	K" L RI	Q <u>L</u> 2 <u>E</u> I		đ	T L ³ EI	tT L ³ EI	t
		· .		• • • • •						
1.90	3.873050	2.095826	0,5411306	2.738935	5,304016	6,415971	1.209644	7.095962	13,73308	1.935888
1.91	3.870293	2.097920	0,5420572	2.733101	5,288950	6,425078	1.214812	6.990488	13,77114	1.969988
1.92	3.867490	2.100050	0,5430009	2.727161	5,273634	6,434342	1.220097	6.883283	13,80986	2.006289
1.93	3.864640	2.102217	0,5439619	2.721114	5,258062	6,443764	1.225502	6.774326	13,84924	2.044372
1.94	3.861742	2.104420	0,5449407	2.714958	5,242233	6,453347	1.231030	6.663596	13,88930	2.084355
1.95	3.858796	2.106661	0_5459374	2.708691	5.226143	6.463093	1.236685	6.551072	13,93005	2.126377
1.96	3.855801	2.108939	0_5469523	2.702312	5.209788	6.473004	1.242470	6.436734	13,97149	2.170587
1.97	3.852757	2.111256	0_5479858	2.695818	5.193166	6.483083	1.248387	6.320559	14,01364	2.217151
1.98	3.849662	2.113611	0_5490381	2.689209	5.176273	6.493330	1.254441	6.202527	14,05650	2.266254
1.99	3.846517	2.116006	0_5501096	2.682482	5.159106	6.503750	1.260635	6.4082615	14,10009	2.318096
2_00	3.843321	2.118441	0.5512006	2.675635	5.141661	6.514344	1.266973	5,960802	14,14441	2,372904
2_01	3.840072	2.120916	0.5523114	2.668666	5.123936	6.525115	1.273458	5,837065	14,18948	2,430927
2_02	3.836771	2.123431	0.5534423	2.661574	5.105925	6.536064	1.280094	5,711382	14,23530	2,492444
2_03	3.833417	2.125989	0.5545937	2.654357	5.087627	6.547195	1.286886	5,583731	14,28189	2,557768
2_04	3.8330008	2.128588	0.5557660	2.647011	5.069037	6.558510	1.293837	5,454088	14,32925	2,627250
2.05	3.826545	2.131230	0.5569594	2.639536	5.050153	6.570011	1.300953	5,322431	14,37741	2,701286
2.06	3.82 3026	2.133915	0.5581743	2.631930	5.030969	6.581701	1.308237	5,188736	14,42636	2,780322
2.07	3.819452	2.136644	0.5594111	2.624190	5.011483	6.593582	1.315695	5,052981	14,47612	2,864867
2.08	3.815820	2.139417	0.5606702	2.616313	4.991691	6.605658	1.323331	4,915140	14,52670	2,955500
2.09	3.812132	2.142235	0.5619520	2.608299	4.971589	6.617929	1.331150	4,775191	14,57811	3,052885
2.10	3_808384	2.145098	0.5632568	2.600143	4,951173	6.630401	1,339158	4.633109	14,63036	3.157785
2.11	3_804578	2.148008	0.5645850	2.591845	4,930440	6.643074	1,347359	4.488869	14,68347	3.271085
2.12	3_800713	2.150964	0.5659370	2.583402	4,909385	6.655952	1,355761	4.342448	14,73745	3.393811
2.13	3_796786	2.153968	0.5673134	2.574812	4,888005	6.669037	1,364368	4.193820	14,79230	3.527167
2.14	3_792799	2.157019	0.5687144	2.566071	4,866295	6.682332	1,373187	4.042960	14,84805	3.672569
2.15	3,788749	2.160119	0.5701405	2,557178	4.844253	6.695841	1.382224	3,889843	14,90470	3.831697
2.16	3,784637	2.163269	0.5715922	2,548130	4.821873	6.709566	1.391486	3,734442	14,96227	4.006560
2.17	3,780461	2.166468	0.5730698	2,538924	4.799151	6.723510	1.400979	3,576732	15,02076	4.199576
2.18	3,776221	2.169718	0.5745740	2,529557	4.776083	6.737676	1.410712	3,416 688	15,08020	4.413689
2.19	3,771915	2.173019	0.5761050	2,520028	4.752666	6.752067	1.420690	3,254281	15,14059	4.652514
2.20	3,767544	2.176373	0.5776635	2.510333	4.728894	6.766686	1。430924	3,089486	15,20195	4,920543
2.21	3,763106	2.179779	0.5792499	2.500469	4.704764	6.781537	1。441419	2,9222 76	15,26429	5,223427
2.22	3,758599	2.183238	0.5808647	2.490434	4.680271	6.796621	1。452185	2,752623	15,32763	5,568374
2.23	3,754025	2.186751	0.5825085	2.480224	4.655410	6.811944	1。463232	2,580499	15,39198	5,964730
2.24	3,749381	2.190320	0.5841817	2.469836	4.630178	6.827507	1。474567	2,405877	15,45736	6,424831
-					Rentan in Color de La Color			I	en et en	

ø

and the second second

TAME I (continued)

	λ	K L	kK L	k	K" L BI	Q L ² EI	qQ L ² EI	đ	$T \frac{L^3}{EI}$	tT EI	t
2. 2.2 2.2 2.2 2.2 2.2	25 26 27 28 9	3.744666 3.739881 3.735023 3.735092 3.725087	2.193943 2.197624 2.201361 2.205156 2.209010	0.5858849 0.5876186 0.5893835 0.5911800 0.5930089	2.459268 2.448516 2.4437577 2.426448 2.415125	4,604569 4,578579 4,552203 4,525437 4,498276	6.843315 6.859371 6.875677 6.892238 6.909057	1.486201 1.498144 1.510406 1.522999 1.535935	2.228729 2.049025 1.866738 1.681837 1.494294	15,52377 15,59123 15,65977 15,72939 15,80011	6,965302 7,609098 8,388842 9,352502 10,57362
2,3 2,3 2,3 2,3 2,3	0 1 2 3 4	3,720008 3,714852 3,709620 3,704309 3,698920	2.212923 2.216897 2.220932 2.225028 2.229188	0,5948706 0,5967658 0,5986952 0,6006594 0,6026591	2,403605 2,391884 2,379958 2,367825 2,355480	4,470714 4,442747 4,414370 4,385578 4,356366	6.926138 6.943484 6.961099 6.978986 6.977151	1.549224 1.562881 1.576918 1.591349 1.606190	1.304079 1.111161 0.9155105 0.7170960 0.5158866	15.87194 15.94490 16.01901 16.09429 16.17074	12,17099 14,84977 17,49736 22,44370 31,34554
2.3 2.3 2.3 2.3 2.3	5 6 7 8 9	3.693451 3.687901 3.682270 3.676555 3.670756	2.233411 2.237699 2.242052 2.246472 2.250959	0,6046949 0.6067676 0,6088778 0,6110263 0,6132140	2.342919 2.330138 2.317134 2.303901 2.290437	4.326728 4.296660 4.266156 4.235210 4.203817	7.015596 7.034325 7.053343 7.072654 7.092261	1.621455 1.637161 1.653325 1.669965 1.687100	0.3118507 0.1049565 -0.1048284 -0.3175365 -0.5332011	16.24840 16.32727 16.40737 16.48872 16.57134	52.10313 155.5623 -156.5164 -51.92700 -31.07897
2,4 2,4 2,4 2,4 2,4 2,4	0 1 2 3 4	3.654872 3.658902 3.652844 3.646698 3.640462	2.255514 2.260138 2.264833 2.269599 2.274437	0.6154414 0.6177095 0.6200191 0.6223709 0.6247659	2.276735 2.262793 2.248604 2.234165 2.219471	4.171971 4.139668 4.106500 4.073663 4.039950	7.112169 7.132382 7.152905 7.173742 7.17374898	1.704750 1.722936 1.741680 1.761005 1.780937	-0.7518555 -0.9735334 -1.198269 -1.426098 -1.657054	16.65525 16.74046 16.82700 16.91489 17.00414	-22.15219 -17.19557 -14.04276 -11.86096 -10.26167
2.4 2.4 2.4 2.4 2.4 2.4	5 6 7 8 9	3.634135 3.627716 3.621204 3.614597 3.607895	2,279348 2,284333 2,289394 2,294531 2,299745	0.6272050 0.6296890 0.6322189 0.6347956 0.6374201	2.204517 2.189297 2.173806 2.158039 2.141991	4,005756 3,971074 3,935898 3,900222 3,864040	7.216376 7.238183 7.260322 7.282798 7.305617	1.801502 1.822727 1.844642 1.867278 1.890668	-1.891173 -2.128491 -2.369045 -2.612871 -2.860007	17.09478 17.18682 17.28029 17.37521 17.47159	-9.039246 -8.074649 -7.294200 -6.649852 -6.108934
2,5 2,5 2,5 2,5 2,5	0 1 2 3 4	3,601095 3,594198 3,587200 3,580102 3,572901	2.305038 2.310411 2.315864 2.321400 2.327018	0,6400935 0,6428168 0,6455910 0,6484172 0,6512966	2.125656 2.109027 2.092099 2.074866 2.057322	3,827344 3,790130 3,752389 3,714116 3,675303	7.328783 7.352302 7.376178 7.400418 7.425025	1.914648 1.939855 1.965728 1.992511 2.020248	-3,110491 -3,364360 -3,621654 -3,882413 -4,146675	17.56947 17.66887 17.76980 17.87230 17.97638	-5.648458 -5.251777 -4.906543 -4.603400 -4.335131
2,5 2,5 2,5 2,5 2,5 2,5	5 6 7 8 9	3,565596 3,558187 3,550671 3,543046 3,535313	2.332722 2.338510 2.344386 2.350350 2.356404	0.6542304 0.6572197 0.6602658 0.6633699 0.6665333	2.039459 2.021272 2.002753 1.983895 1.964691	3,635944 3,596031 3,555558 3,514516 3,472899	7.450006 7.475367 7.501113 7.527249 7.553783	2.048988 2.078783 2.109687 2.141760 2.175065	-4,414482 -4,685873 -4,960892 -5,239579 -5,521978	18.08207 18.18940 18.29838 18.40905 18.52143	-4.096080 -3.881752 -3.688526 -3.513460 -3.354130

<u>LU</u>

λ	K <u>L</u> EI	$kK \frac{L}{EI}$	k	K" L EI		$qQ \frac{L^2}{EI}$	¢ <u>j</u>	T L3 EI	$tT \frac{L^3}{EI}$	t
2.60	3,527468	2.362548	0.6697575	1。945134	3.430699	7.580719	2,209672	-5.808131	18.63555	-3.208528
2.61	3,519511	2.368785	0.6730437	1。925216	3.387909	7.608064	2,245652	-6.098082	18.75144	-3.074973
2.62	3,511440	2.375115	0.6763934	1。904928	3.344520	7.635823	2,283085	-6.391877	18.86912	-2.952046
2.63	3,503253	2.381540	0.6798081	1。884263	3.300525	7.664005	2,322056	-6.689559	18.98862	-2.838545
2.64	3,494949	2.388061	0.632893	1。863212	3.255916	7.692614	2,362658	-6.991174	19.10997	-2.733442
2,65	3,486526	2.394681	0.6868386	1.841767	3.210684	7.721658	2,404988	-7.296770	19.23320	-2.635851
2,66	3,477983	2.401399	0.6904575	1.819918	3.164822	7.751143	2,449156	-7.606393	19.35834	-2.545009
2,67	3,469317	2.408219	0.6941478	1.797657	3.118321	7.781076	2,495277	-7.920090	19.48542	-2.460252
2,68	3,460527	2.415141	0.6979112	1.774974	3.071172	7.811464	2,543480	-8.237910	19.61447	-2.381001
2,69	3,451612	2.422167	0.7017494	1.751858	3.023367	7.842314	2,593901	-8.559902	19.74553	-2.306747
2.70	3,442569	2,429298	0.7056643	1,728300	2,974897	7.873634	2.646692	8.886117	19.87862	-2,237042
2.71	3,433397	2,436537	0.7096578	1,704290	2,925752	7.905430	2.702017	-9.216604	20.01378	-2,171492
2.72	3,424094	2,443885	0.7137317	1,679816	2,875924	7.937711	2.760056	-9.551416	20.15104	-2,109744
2.73	3,414658	2,451343	0.7178883	1,654868	2,825403	7.970484	2.821008	-9.890604	20.29044	-2,051487
2.74	3,415087	2,458913	0.7128294	1,629433	2,774180	8.003757	2.885089	-10.23422	20.45202	-1:996441
.75 .76 .77 .78 .79	3,395378 3,385532 3,3755%4 3,365413 3,355137	2,466598 2,474398 2,482316 2,490354 2,498513	0,7264574 0,7308744 0,7353827 0,7353827 0,7399847 0,7446830	1.603500 1.577057 1.550091 1.522589 1.494536	2.722245 2.669589 2.616200 2.562070 2.507187	8.037539 8.071836 8.106658 8.142013 8.177909	2,952540 3,023625 3,098638 3,177904 3,261787	-10.58232 -10.93496 -11.29219 -11.65407 -12.02066	20.57580 20.72183 20.87014 21.02077 21.17376	-1.944356 -1.895007 -1.848192 -1.803728 -1.761448
.80	3,344714	2,506796	0.7494800	1,465920	2.451541	8,214357	3,350691	-12.39201	21.32916	-1.721202
.81	3,334141	2,515204	0.7543785	1,436725	2.395122	8,251364	3,445071	-12.76819	21.48699	-1.682853
.82	3,323417	2,523740	0.7593812	1,406936	2.337917	8,288940	3,545437	-13.14925	21.64731	-1.646276
.83	3,312538	2,532405	0.7644908	1,376538	2.279917	8,327094	3,652367	-13.53526	21.81015	-1.611357
.84	3,301504	2,541202	0.7697105	1,345514	2.221110	8,365837	3,766512	-13.92628	21.97556	-1.577892
85	3.290311	2.550133	0,7750432	1,313848	2.161483	8,405178	3.888616	-14,32237	22.14358	-1,546083
85	3.278957	2.559200	0,7804922	1,281521	2.101026	8,445127	8.019525	-14,72360	22.31426	-1,515544
87	3.267439	2.568405	0,7860607	1,248517	2.039726	8,485694	4.160218	-15,13002	22.48765	-1,486293
88	3.255755	2.577751	0,7917521	1,214815	1.977571	8,526890	4.811800	-15,54172	22.66378	-1,458255
89	3.243903	2.587240	0,7975701	1,180398	1.914548	8,568726	4.475588	-15,95875	22.84272	-1,431361
.90	3.231880	2.596875	0.8035184	1.145243	1.850644	8.611213	4.653089	-16.38118	23.02451	-1.405547
.91	3.219682	2.606657	0.8096006	1.109331	1.785847	8.654361	4.846082	-16.80909	23.20920	-1.380753
.92	3.207309	2.616590	0.8158210	1.072640	1.720143	8.698183	5.056662	-17.24255	23.39685	-1.356925
.93	3.194755	2.626675	0.8221836	1.035146	1.653519	8.742690	5.287325	-17.68162	23.58750	-1.334012
.94	3.182020	2.636917	0.8286928	0.9968259	1.585960	8.787894	5.541057	-18.12639	23.78121	-1.311966

i i se	(† 19 19) († 1914) - Anie Anie († 1914)			Î AB	LE I (conti	nued)				
λ	k <u>L</u> EI	kK L EI	k.	K" <u>EI</u>	Q L ² EI	qQ L ² FI	ę	T L ³ EI	tT <u>L³</u> EI	t
2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13	3.169099 3.155990 3.129196 3.129196 3.115505 3.101613 3.087517 3.073214 3.058700 3.043971 3.029025 3.013857 2.998464 2.982841 2.966986 2.950893 2.934558 2.917978 2.901148	2.647316 2.657877 2.668602 2.679493 2.690554 2.701788 2.713198 2.724786 2.736557 2.748513 2.760658 2.772996 2.785529 2.785529 2.785529 2.811199 2.824342 2.837697 2.851266 2.865055	0.8353530 0.8421699 0.8421699 0.8522879 0.8562879 0.8636013 0.8787636 0.8866244 0.8946799 0.9029367 0.9029367 0.9114017 0.9200821 0.9289855 0.9381198 0.9474932 0.9571145 0.9669927 0.9771375 0.9875588	0.9576554 0.9176088 0.8766592 0.8347789 0.7919389 0.7919389 0.7032575 0.6573517 0.6103571 0.5622378 0.5129562 0.4624731 0.4107474 0.3577361 0.3033940 0.2476740 0.1905265 0.1318995 0.07173840	1.517452 1.447982 1.377534 1.306094 1.233645 1.160172 1.085660 1.010091 0.9334494 0.8557178 0.7768785 0.6969139 0.6158056 0.5335350 0.4500828 0.3654297 0.2795555 0.1924399 0.104619	8.833808 8.860444 8.927815 8.975934 9.024814 9.024814 9.124915 9.176164 9.228231 9.281133 9.334883 9.334883 9.389499 9.444996 9.558702 9.558702 9.616945 9.676139 9.736302	5.821473 6.132979 6.481011 6.872351 7.315569 7.821658 8.404949 9.084492 9.886161 10.84602 12.01589 13.47297 15.33763 17.80838 21.23765 26.31682 34.61258 50.59399	-18.57693 -19.03331 -19.49562 -19.96393 -20.43832 -20.43832 -21.40570 -21.69886 -22.39844 -22.90454 -23.41724 -23.93664 -24.46284 -24.99594 -25.53602 -26.08320 -26.63757 -27.19925	23,97804 24,17804 24,38127 24,38127 24,58779 24,79766 25,01095 25,22772 25,44803 25,67195 25,67195 25,69955 26,13090 26,36607 26,00514 26,84817 28,09526 27,34648 27,60190 27,86162	-1.290743 -1.270301 -1.250602 -1.231611 -1.218293 -1.195616 -1.178551 -1.162071 -1.146149 +1.130761 -1.115883 -1.101494 -1.087573 -1.074101 -1.061060 -1.048433 -1.036202 -1.024353
3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.24 3.25 3.26 3.26 3.27 3.28	2.866720 2.849113 2.831237 2.813088 2.794660 2.775949 2.756949 2.737655 2.718060 2.698160 2.698160 2.657419 2.636566 2.615383	2.87387 2.893306 2.907778 2.922485 2.937436 2.952632 2.968079 2.983782 2.999746 3.015977 3.032479 3.032479 3.049260 3.066324 3.083677 3.101326	1.009274 1.020591 1.032229 1.044203 1.056526 1.069212 1.0852277 1.095736 1.109606 1.123906 1.138655 1.153873 1.169581 1.185801	0.009985909 -0.05341830 -0.1185377 -0.1854389 -0.2541924 -0.3248723 -0.3975567 -0.4723263 -0.5492742 -0.6284867 -0.7100633 -0.7941073 -0.8807283 -0.9700424 -1.062173	0.01440000 -0.07656766 -0.1688636 -0.2625108 -0.3575328 -0.4539539 -0.5517986 -0.6510925 -0.7518615 -0.8541323 -0.9579322 -1.063289 -1.170232 -1.278791 -1.388995	9.859610 9.922795 9.987028 10.05233 10.11872 10.18622 10.25486 10.32465 10.39562 10.46781 10.54122 10.61588 10.69183 10.76910 10.84769	684.6952 -129.5951 -59.14257 -38.29301 -28.30151 -22.43889 -18.58442 -15.85742 -13.82652 -12.25548 -11.D0M1B -9.984004 -9.136507 -8.421313 -7.900716	-28,34494 -28,324918 -29,52117 -30,12102 -30,72886 -31,34481 -31,96899 -32,60153 -33,24257 -33,89224 -34,55068 -35,21802 -35,21802 -35,89442 -36,58003	28.39429 28.39429 28.66741 28.94519 29.22771 29.51508 29.80739 30.10474 30.40725 30.71502 31.02817 31.34680 31.67103 32.00100 32.33681	-1.001741 -0.9909513 -0.9804892 -0.9703426 -0.9605002 -0.9509514 -0.9326940 -0.9239666 -0.9154947 -0.9072702 -0.8992848 -0.8915312 -0.8840019

Sales and the second second second second second

Anne share an opposite the

· .

	Г	T	T	T	The second s	-	다운 가 많다.	1 T		the state of the second states
λ	K L EI	kK <u>L</u> EI	k	Ku T	$Q \frac{L^2}{EI}$		q	T EI	$tT \frac{L^3}{EI}$	t
3,30 3,31 3,32 3,33 3,33 3,34	2.572001 2.549788 2.527218 2.504283 2.480976	3.137534 3.156107 3.175002 3.194225 3.213784	1.219881 1.237792 1.256323 1.275505 1.295370	-1.255416 -1.356816 -1.461609 -1.569965 -1.682064	-1.614465 -1.729796 -1.846903 -1.965819 -2.086581	11.00902 11.09181 11.17606 11.26180 11.34906	-6.818991 -6.412207 -6.051245 -5.728808 -5.439072	-38.69359 -39.41757 -40.15154 -40.89569 -41.65019	33, 38066 33, 74120 38, 110826 34, 48201 34, 86258	-0.8626922 -0.8559939 -0.8494883 -0.8431697 -0.8431697
3,35 3,36 3,37 3,38 3,38 3,89	2,457290 2,433216 2,408746 2,383872 2,358586	3,233686 3,253938 3,274550 3,295528 3,316881	1.315956 1.337299 1.359442 1.382426 1.406301	-1.798098 -1.918274 -2.042812 -2.171951 -2.305945	-2,209224 -2,333787 -2,460308 -2,588827 -2,719385	11.43788 11.52830 11.62034 11.71405 11.80946	-5.177330 -4.939738 -4.723123 -4.524847 -4.342696	-42,41522 -43,19098 -43,97764 -44,77541 -45,58448	35.25013 35.64484 35.04685 36.45635 36.87351	-0.8310727 -0.8252844 -0.8196632 -0.8142048 -0.8089048
3,40 3,41 3,42 3,43 3,43 3,43 3,44	2,332878 2,306739 2,280160 2,253131 2,225642	3,338617 3,360746 3,383277 3,406218 3,429581	1.431116 1.456925 1.483790 1.511771 1.540940	-2.445069 -2.589618 -2.739911 -2.896293 -3.059136	-2.852024 -2.986786 -3.123717 -3.262863 -3.404271	11.90662 12.00557 12.10634 12.20898 12.31354	-4,174798 -4,019560 -3,875618 -3,741799 -3,617084	-46.40507 -47.23739 -48.08166 -48.93810 -49.80695	37,29851 37,73153 38,17278 38,62245 39,08074	-0.8037592 -0.7987640 -0.7939156 -0.7892101 -0.7846443
3,45 3,46 3,47 3,48 3,48 3,49	2.197683 2.169243 2.140312 2.110878 2.080929	3,453374 3,477607 3,502293 3,527441 3,553063	1,571370 1,603143 1,636347 1,671078 1,707440	-3,228845 -3,405858 -3,590652 -3,783749 -3,985714	-3,547989 -3,694068 -3,842559 -3,993516 -4,146994	12.42005 12.52858 12.63917 12.75186 12.86672	-3,500590 -3,391541 -3,289257 -3,193141 -3,102661	-50.68844 -51.58282 -52.49034 -53.41126 -54.34585	39,54787 40,02406 40,50953 41,00452 41,50926	-0.7802148 -0.7759184 -0.7717521 -0.7677129 -0.7637981
3,50 3,51 3,52 3,53 3,54	2.050454 2.019439 1.987878 1.955741 1.923031	3.579170 3.605776 3.632891 3.660530 3.688705	1.745550 1.785533 1.827527 1.871684 1.918172	-4,197168 -4,418793 -4,651333 -4,895613 -5,152540	-4.303050 -4.461742 -4.623130 -4.787277 -4.954248	12.98379 13.10313 13.22480 13.34886 13.47537	-3.017345 -2.936775 -2.860573 -2.788403 -2.719963	-55,29439 -56,25716 -57,23445 -58,22657 -59,23383	42.02400 42.54901 43.08455 43.63089 44.18831	-0.7600048 -0.7563306 -0.7527730 -0.7493295 -0.7459979
3,55 3,56 3,57 3,58 3,59 3,59	1.889728 1.855817 1.821284 1.786113 1.750287	3.717430 3.746720 3.776590 3.807054 3.838128	1_967177 2_018906 2_073586 2_131475 2_192857	-5,423117 -5,708458 -6,009800 -6,328526 -6,666179	-5.124108 -5.296928 -5.472777 -5.651730 -5.833863	13.60439 13.73600 13.87025 14.00722 14.14698	-2.654977 -2.593200 -2.534407 -2.478395 -2.424977	-60.25655 -61.29507 -62.34972 -63.42086 -64.50886	44.75712 45.33761 45.93010 46.53491 47.15239	-0.7427760 -0.7396616 -0.7366529 _0.7337477 -0.7309444
3,60 3,61 3,62 3,63 3,64	1.713790 1.676604 1.638712 1.600096 1.560734	3.869830 3.902175 3.935182 3.968868 4.003253	2.258054 2.327428 2.401386 2.480394 2.564980	-7.024495 -7.405426 -7.811180 -8.244263 -8.707532	-6.019254 -6.207984 -6.400139 -6.595805 -6.795073	14.28961 14.43519 14.58380 14.73551 14.89043	-2.373984 -2.325262 -2.278669 -2.234073 -2.191357	-65.61410 -66.73697 -67.87787 -69.03723 -70.21547	47.78288 48.42674 49.08436 49.75611 50.44241	-0.7282410 -0.7256359 -0.7231275 -0.7207142 -0.7183945

<u>"</u>]6

and the second second second

is the Lord received states are as

r		· · · · · · · · · · · · · · · · · · ·								i the second
λ	K <u>L</u> EI	kK L EI	k	KH L EI	Q L ² EI	qQ EI	q	T L ³ EI	$tT \frac{L^3}{EI}$	t
3,65 3,66 3,67 3,68 3,69	1,520609 1,479699 1,437982 1,395437 1,352040	4,038357 4,074199 4,110800 4,148183 4,186371	2。655749 2。753397 2。858728 2、972677 3、096338	-9.204254 -9.738188 -10.31368 -10.93577 -11.61038	-6,998036 -7,204793 -7,415443 -7,630091 -7,848846	15.04864 15.21023 15.37531 15.54397 15.71632	-2.150409 -2.111127 -2.073417 -2.037193 -2.002373	-71.41305 -72.63043 -73.86809 -75.12653 -76.40628	51.14366 51.86032 52.59282 53.34164 54.10726	-0.7161669 -0.7140302 -0.7119830 -0.7100240
3.70 3.71 3.72 3.73 3.74	1.307767 1.262593 1.216492 1.169437 1.121401	4,225387 4,265255 4,306002 4,347654 4,390238	3,230995 3,378172 3,539688 3,717731 3,914957	-12,34444 -13,14617 -14,02541 -14,99397 -16,06619	-8.071820 -8.299131 -8.530900 -8.767254 -9.008323	15.89246 16.07252 16.25662 16.44486 16.63739	-1.968882 -1.936651 -1.905616 -1.875714 -1.846891	-77.70786 -79.03184 -80.37879 -81.74932 -83.14405	54.89019 55.69096 56.51011 57.34822 58.20587	-0.7063660 -0.7046649 -0.7030476 -0.7015131 -0.7000605
3,75 3,76 3,77 3,78 3,79	1.072354 1.022265 0.9711032 0.9188353 0.8654270	4,433783 4,478320 4,523880 4,570494 4,618198	4,134627 4,380782 4,658495 4,974226 5,336323	-17.25969 -18.59628 -20.10337 -21.81584 -23.77877	-9.254245 -9.505163 -9.761223 -10.02258 -10.28940	16.83434 17.03584 17.24204 17.45309 17.66916	-1.819094 -1.792272 -1.766381 -1.741377 -1.717220	-84,56363 -86,00874 -87,48008 -88,97837 -90,50438	59.08368 59.98230 60.90240 61.84467 62.80984	-0.6986890 -0.6973978 -0.6961859 -0.6950528 -0.6939977
3,80 3,81 3,82 3,83 3,84	0.8108425 0.7550443 0.6979935 0.6396492 0.5799690	4.667027 4.717017 4.768208 4.820639 4.874353	5,755775 6,247338 6,831307 7,536379 8,404506	-26.05152 -28.71376 -31.87510 -35.69051 -40.38656	-10,56184 -10,84008 -11,12431 -11,41470 -11,71147	17.89039 18.11697 18.34907 18.58688 18.83060	-1.693871 -1.671295 -1.649457 -1.628328 -1.607876	-92.05892 -93.64279 -95.25686 -96.90204 -98.57926	63,79867 64,81196 65,85053 66,91525 68,00702	-0.6930200 -0.6921191 -0.6912943 -0.6905453 -0.6898715
3.85 3.86 3.87 3.88 3.89	0.5189083 0.4564206 0.3924572 0.3269673 0.2598972	4,929393 4,985807 5,043642 5,102948 5,163779	9.499546 10.92371 12.85144 15.60691 19.86854	-46,30809 -54,00709 -64,42561 -79,31428 -102,3369	-12.01483 -12.32498 -12.64215 -12.96659 -13.29854	19.08042 19.33657 19.59927 19.86875 20.14526	-1.588073 -1.568894 -1.550312 -1.532304 -1.514848	-100.2895 -102.0338 -103.8132 -105.6289 -107.4819	69.12679 70.27556 71.45435 72.66425 73.90640	-0.6892725 -0.6887478 -0.6882973 -0.6879204 -0.6879204 -0.6876170
3,90 3,91 3,92 3,93 3,94	0.1911912 0.1207906 0.04863390 -0.02534862 -0.1012098	5.226191 5.290240 5.355990 5.423503 5.492847	27.33489 43.79677 110.1287 -213.9988 -54.27190	-142.6661 -231.5747 -589,7997 1160,597 298,0060	-13.63826 -13.98603 -14.34213 -14.70687 -15.08056	20, 42905 20, 72040 21,01958 21, 32691 21,64268	-1,497922 -1,481507 -1,465583 -1,450132 -1,435137	-109.3736 -111.3053 -113.2782 -115.2938 +117.3536	75.18199 76.49228 77.83857 79.22224 80.64475	-0.6873868 -0.6872296 -0.6871452 -0.6871335 -0.6871945
3,95 3,96 3,97 3,98 3,99	-0,1790359 -0,2588970 -0,3408721 -0,4250443 -0,5115012	5,564093 5,637315 5,712593 5,790008 5,869648	-31.07809 -21.77435 -16.75876 -13.62213 -11.47534	172.7423 122.4899 95.39508 78.44719 66.84468	-15,46354 -15,85615 -16,25876 -16,67176 -17,09557	21.96722 22.30090 22.64406 22.99709 23.36039	-1,420582 -1,406451 -1,392730 -1,379403 -1,366459	-119,4591 -121,6121 -123,8141 -126,0671 -128,3729	82,10763 83,61246 85,16095 86,75487 88,39610	-0.6873281 -0.6875342 -0.6875342 -0.6881644 -0.6881644 -0.6885885

.

TABLE I (cont

tinued)		
---------	--	--

λ	k <u>L</u> EI	kK <u>L</u> EI	k	Kn EI		$qQ \frac{L^2}{EI}$	q	T L ³	tT $\frac{L^3}{EI}$	t
4.00 4.01 4.02 4.03 4.04	-0.6003354 -0.6916444 -0.7855311 -0.8821045 -0.9814799	5_951605 6_035976 6_122864 6_212376 6_304628	-9,913800 -8,726994 -7,794553 -7,042676 -6,423594	58.40269 51.98429 46.93946 42.86965 39.51689	-17.53060 -17.97732 -18.43620 -18.90776 -19.39252	23.73490 24.11957 24.51636 24.92529 25.34688	~1,353884 ~1,341667 ~1,329795 ~1,318257 ~1,307044	-130,7336 -133,1512 -135,6281 -138,1667 -140,7693	90,08661 91,82850 93,62398 95,47538 97,38516	-0.00000000000000000000000000000000000
4.05 4.06 4.07 4.08 4.09	-1.083779 -1.189131 -1.297674 -1.409552 -1.524921	6.399742 6.497845 6.599074 6.703575 6.811501	-5,905024 -5,464362 -5,085309 -4,755819 -4,466791	36,70685 34,31744 32,26066 30,47144 28,90063	-19.89106 -20.40398 -20.93191 -21.47554 -22.03558	25.78170 26.23035 26.69346 - 27.17170 27.66579	-1.296145 -1.285551 -1.275252 -1.265240 +1.255506	~143,4387 ~146,1777 ~148,9893 ~151,8766 ~154,8431	99,35595 101,3905 103,4918 105,6630 107,9073	-0.6926718 -0.6936113 -0.6946257 -0.6957156 -0.6958813
4.10 4.11 4.12 4.13 4.13 4.14	-1.643944 -1.766796 -1.893664 -2.024747 -2.160257	6.923017 7.038296 7.157524 7.280900 7.408636	-4.211225 -3.983649 -3.779722 -3.595956 -3.429517	27.51044 26.27131 25.15979 24.15705 23.24778	-22.61280 -23.20802 -23.82209 -24.45595 -25.11059	28.17650 28.70462 29.25102 29.81663 30.40243	-1,246042 -1,236841 -1,227895 -1,219197 -1,210741	-157,8922 -161,0278 -164,2539 -167,5748 -170,9952	110.2282 112.6297 115.1156 117.6902 120.3582	-0.6981235 -0.6994427 -0.7008395 -0.7023146 -0.7038687
4,15 4,16 4,17 4,18 4,19	-2.300420 -2.445480 -2.595696 -2.751348 -2.912735	7.540957 7.678106 7.820343 7.967945 8.121212	-3.278078 -3.139714 -3.012811 -2.896015 -2.788174	22.41943 21.66157 20.96552 20.32394 19.73062	-25.78705 -26.48647 -27.21006 -27.95912 -28.73503	31.00946 31.63885 32.29181 32.96964 33.67371	-1。202521 -1。194529 -1.186760 -1.179209 -1。171870	-174,5199 -178,1543 -181,9040 -185,7750 -189,7738	123,1243 125,9938 128,9723 132,0658 135,2807	-0,7055025 -0,7072169 -0,7090128 -0,7108909 -0,7128523
4.20 4.21 4.22 4.23 4.23 4.24	-3.080179 -3.254028 -3.434655 -3.622464 -3.817893	8.280466 8.446053 8.618346 8.797749 8.984698	~2.688306 ~2.595569 ~2.509232 ~2.428664 ~2.353313	19.18025 18.66828 18.19077 17.74431 17.32591	-29.53931 -30.37355 -31.23951 -32.13907 -33.07424	34,40553 35,16670 35,95895 36,78417 37,64438	-1.164737 -1.157806 -1.151073 -1.144532 -1.138178	-193,9074 -198,1834 -202,6097 -207,1953 -211,9495	138.6240 142.1032 145.7263 149.5021 153.4398	-0.7148980 -0.7170290 -0.7192464 -0.7215515 -0.729459
4,25 4,26 4,27 4,28 4,29 4,29	-4.021415 -4.233543 -4.454836 -4.685901 -4.927402	9.179666 9.383166 9.595756 9.818043 10.05069	-2.282696 -2.216386 -2.154009 -2.095230 -2.039754	16.93297 16.56318 16.21451 15.88516 15.57353	-34.04725 -35.06046 -36.11649 -37.21815 -38.36853	38,54178 39,47875 40,45787 41,48198 42,55415	-1.132009 -1.126019 -1.120205 -1.114563 -1.114563 -1.109090	+216.8826 -222.0057 -227.3308 -232.8713 -238.6413	157,5499 161,8432 166,3318 171,0290 175,9488	-0.7264293 -0.7290047 -0.7316730 -0.7344356
4,30 4,31 4,32 4,33 4,33 4,34	-5.180064 -5.444680 -5.722121 -6.013346 -6.319410	10.29442 10.55003 10.81838 11.10044 11.39726	-1.987315 -1.937676 -1.890624 -1.845967 -1.803532	15.27819 14.99785 14.73137 14.47769 14.23591	-39.57101 -40.82926 -42.14734 -43.52971 -44.98127	43.67774 44.85644 46.0 9429 47.39574 48.76571	-1,103781 -1,098635 -1,093646 -1,088814 -1,084134	-244.6566 -250.9343 -257.4933 -264.3544 -271.5402	181,1071 186,5208 192,2088 198,1918 204,4926	-0.7402501 -0.7433053 -0.7464614 -0.7497203 -0.7530838 \$

					TABI	EI (conti	nued)				
	λ	k <u>L</u> EI	kK L EI	k k	Ku EI		qQ L ² EI	đ	$T \frac{L^3}{EI}$	tT L3 EI	t
	4.35 4.36 4.37 4.38 4.39	-6.641483 -6. 9808 56 -7.338968 -7.717421 -8.118004	11.71000 12.03997 12.38859 12.75748 13.14841	-1.763161 -1.724713 -1.688057 -1.653075 -1.619660	14.00514 13.72463 13.57368 13.37165 13.17794	-46,50745 -48,11427 -49,80841 -51,59731 -53,48930	50,20950 51,73343 53,34388 55,04838 56,85525	-1.079603 -1.075220 -1.070981 -1.066885 -1.066927	-279.0762 -286.9902 -295.8133 -304.0802 -313.3295	211.1362 218.1508 225.5672 233.4200 241.7479	-0.7565541 -0.7601332 -0.7638232 -0.7676265 -0.7715453
	4,40 4,41 4,42 4,43 4,43 4,44	-8.542724 -8.993839 -9.473899 -9.985791 -10.53280	13,56339 14,00468 14,47484 14,97674 15,51367	-1,587712 -1,557142 -1,527865 -1,499805 -1,472891	12,99204 12,81344 12,64169 12,47639 12,31714	-55,49370 -57,62101 -59,88307 -62,29331 -64,86701	58,77381 60,81455 62,98931 65,31151 67,79642	-1.059108 -1.055423 -1.051872 -1.048451 -1.045160	-323,1047 -333,4544 -344,4338 -356,1053 -368,5399	250,5943 260,0077 270,0433 280,7634 292,2390	-0.7755823 -0.7797399 -0.7840209 -0.7884281 -0.7929644
	4,45 4,46 4,47 4,48 4,49	-11.11869 -11.74777 -12.42501 -13.15619 -13.94805	16.08939 16.70822 17.37512 18.09587 18.87720	-1,447058 -1,422246 -1,398398 -1,375464 -1,353394	12.16359 12.01542 11.87232 11.73401 11.60023	-67.62163 -70.57721 -73.75688 -77.18747 -80.90027	70,46151 73,32679 76,41540 79,75416 83,37435	-1.041997 -1.038958 -1.036044 -1.033253 -1.030582	-381.8188 -396.0351 -411.2964 -427.7273 -445.4734	304,5512 317,7931 332,0721 347,5129 364,2609	-0.7976328 -0.8024366 -0.8073790 -0.8124636 -0.8124636 -0.8176939
	4,50 4,51 4,52 4,53 4,54	-14.80848 -15.74682 -16.77421 -17.90398 -19.15229	19,72701 20,65466 21,67124 22,79012 24,02745	-1.332143 -1.311671 -1.291938 -1.272908 -1.254547	11.47073 11.34529 11.22370 11.10575 10.99126	-84.93202 -89.32615 -94.13432 -99.41856 -105.2539	87.31272 91.61266 96.32586 101.5143 107.2531	-1.028031 -1.025597 -1.023281 -1.021080 -1.018994	-464,7053 -485,6248 -508,4722 -533,5357 -561,1642	382.4867 402.3922 424.2174 448.2506 474.8405	-0.8230738 -0.8286072 -0.8342982 -0.8401510 -0.8461703
	4,55 4,56 4,57 4,58 4,59	-20,53888 -22,08813 -23,83053 -25,80468 -28,06021	25.40295 26.94103 28.67215 30.63493 32.87899	-1.236823 -1.219706 -1.203169 -1.187185 -1.171730	10.88007 10.77200 10.66691 10.56465 10.46509	-111.7322 -118.9667 -127.0991 -136.3087 -146.8263	113.6340 120.7702 128.8035 137.9133 148.3301	-1.017021 -1.015160 -1.013411 -1.013411 -1.011772 -1.010242	-591,7841 -625,9221 -664,2364 -707,5610 -756,9678	504,4136 537,4963 574,7470 616,9995 665,3257	-0.8523608 -0.8587272 -0.8652748 -0.8720089 -0.8789352
	4.60 4.61 4.62 4.63 4.64	-30.66203 -33.69666 -37.28208 -141.58344 -46.83925	35,46924 38,49220 42,06585 46,35533 51,59916	-1.156781 -1.142315 -1.128313 -1.114755 -1.101622	10.36810 10.27356 10.18135 10.09138 10.00355	-158,9534 -173,0922 -189,7910 -209,8172 -234,2793	160.3557 174.3920 190.9875 210.9095 235.2665	-1.008822 -1.007508 -1.006304 -1.005206 -1.004214	-813.8585 -880.1018 -958.2458 -1051.857 -1166.088	721.1271 786.2725 863.3098 955.8058 1068.912	-0,8860595 -0,8933881 -0,9009273 -0,9086839 -0,9166650
*	4.65 4.66 4.67 4.68 4.69	-53.40723 -61.84939 -73.10214 -88.85041 -112.4624	58.15507 66.58504 77.82550 93.56137 117.1608	-1.038899 -1.076567 -1.064613 -1.053021 -1.041778	9.917749 9.833897 9.751908 9.671701 9.593198	-264.8398 -304.1103 -356.4427 -429.6673 -539.4370	265.7210 304.8846 357.1092 430.2252 539.8852	-1.003327 -1.002546 -1.001870 -1.001298 -1.000831	-1308.662 -1491.719 -1735.482 -2076.341 -2587.039	1210.353 1392.268 1634.879 1974.578 2485.106	-0.9248781 -0.9333309 -0.9420317 -0.9509890 -0.9602119

· .•

 $\sim,\pi^{-\ell'}$

TABLE I (continued)

λ	K EI	kK L EI	k	K" L EI	Q L ² EI	qQ L ² EI	q	T EI	tT L3 EI	t
4.70 4.71 4.72 4.73 4.73 4.74	-151.7910 -230.3633 -465.4320 -116083.6 480.5811	156,4769 235,0364 470,0923 116088,3 -475,9468	-1.030870 -1.020286 -1.010013 -1.000040 -0.9903569	9.516329 9.441023 9.367215 9.294843 9.223847	-722.2467 -1087.433 -2179.901 -539489.4 2216.403	722.5844 1087.659 2180.015 539489.4 -2216.517	-1.000468 -1.000208 -1.000052 -1.000000 -1.000000	-3437.178 -5134.874 -10212.46 -2507238. 10217.21	3333.066 5029.573 10105.96 2507131. -10326.13	-0.9697099 -0.9794930 -0.9895717 -0.9999570 -1.010661
4.75	242.6212	-238.0001	-0.9809535	9.154169	1110.498	-1110.727	-1.000206	5077,167	-5187.317	-1.021695
4.76	163.5132	-158.9054	-0.9718200	9.085757	742.8208	-743.1663	-1.000465	3367,874	-3479.261	-1.033073
4.77	123.9967	-119.4023	-0.9629474	9.018559	559.1359	-559.5986	-1.000828	2513,639	-2626.271	-1.044809
4.78	100.2974	-95.71650	-0.9543271	8.952524	448.9574	-499.5384	-1.001294	2001,003	-2114.892	-1.056916
4.79	84.50119	-79.93396	-0.9459507	8.887607	375.5067	-376.2070	-1.001865	1659,047	-1774.203	-1.069411
4,80	73.21909	-68.66562	-0.9378103	8.823762	323.0339	-323.8545	-1.002540	1414.578	-1531.009	-1,082308
4,81	64.75741	-60.21782	-0.9298985	8.760945	283.6680	-284.6100	-1.003321	1231.015	-1348.733	-1,095627
4,82	58.17555	-53.64996	-0.9222081	8.699117	253.0379	-254.1022	-1.004206	1088.046	-1207.060	-1,109384
4,83	52.90931	-48.39785	-0.9147322	8.638236	228.5216	-229.7093	-41.005197	973.4838	-1093.806	-1,123599
4,84	48.59974	-44.10253	-0.9074643	8.578265	208.4507	-209.7629	-1.006295	879.5773	-1001.217	-1,138293
4.85	45.00756	-40.52473	-0.9003982	8.519168	191.7135	-193,1512	-1.007499	801.1584	-924.1255	-1.153487
4.86	41.96715	-37.49882	-0.8935279	8.460909	177.5401	-179,1044	-1.008811	734.6501	-858.9557	-1.169204
4.87	39.36023	-34.90653	-0.8868477	8.403456	165.3810	-167.0729	-1.010231	677.4978	-803.1525	-1.185469
4.88	37.10005	-32.66111	-0.8803521	8.346775	154.8329	-156,6536	-1.011759	627.8280	-754.8426	-1.202308
4.89	35.12157	-30.69752	-0.8740360	8.290836	145.5936	-147,5442	-1.013397	584.2359	-712.6213	-1.219749
4,90	33.37505.	-28,96602	0.8678943	8.235609	137,4319	-139_5135	-1.015146	545.6473	-675,4143	-1.237822
4,91	31.82181	-27,42792	-0.8619223	8.181064	130,1681	-132.3818	-1.017006	511.2266	-642,3863	-1.256559
4,92	30.43130	-26,05271	-0.8561155	8.127175	123,6603	-126.0072	-1.018979	480.3144	-612,8779	-1.275993
4,93	29.17910	-24,81593	-0.8504693	8.073915	117,7948	-120.2761	-1.021065	452.3828	-586,3614	-1.296161
4,94	28.04544	-23,69783	-0.8449797	8.021257	112,4798	-115.0967	-1.023265	427.0049	-562,4097	-1.317104
4,95	27.01414	-22.68222	-0.8396427	7.969176	107.6402	-110,3938	-1.025581	403.8311	-540.6737	-1.338861
4,96	26.07182	-21.75574	-0.8344543	7.917649	103.2138	-106,1052	-1.02801	382.5728	-520.8646	-1.361478
4,97	25.20736	-20.90726	-0.8294109	7.866653	99.14877	-102,1793	-1.030566	362.9893	-502.7419	-1.385005
4,98	24.41139	-20.12741	-0.8245089	7.816164	95.40173	-98,57256	-1.033237	344.8787	-486.1037	-1.409492
4,99	23.67601	-19.40829	-0.8197450	7.766161	91.93585	-95,24818	-1.036029	328.0698	-470.7791	-1.434997
5.00 5.01 5.02 5.03 5.04	22.99447 22.36098 21.77057 21.21892 20.70227	-18.74315 -18.12622 -17.55252 -17.01772 -16.51807	-0.8151159 -0.8106185 -0.8062497 -0.8020068 -0.7978870	7.716623 7.667529 7.618859 7.570594 7.522716	88.71981 85.72673 82.93346 80.31992 77.86865	-92.17486 -89.32574 -86.67767 -84.21060 -81.90706	-1.038943 -1.041982 -1.045147 -1.048440 -1.051862	312.4170 297.7954 284.0974 271.2297 259.1110	-456.6225 -443.5092 -431.3315 -419.9962 -409.4223	-1.461580 -1.489308 -1.518252 -1.548489

TABLE I (continued)

2	K L EI	$kK \frac{L}{EI}$	k	K" L EI	$Q \frac{L^2}{EI}$	$qQ \frac{L^2}{EI}$	q	$T \frac{L^3}{EI}$	$tT \frac{L^3}{EI}$	t
5.05	20.21732	-16.05028	-0.7938875	7.475206	75.56432	-79.75177	-1.055416	247.6701	-399.5387	-1.613189
5.06	19.76119	-15.61146	-0.7900059	7.428046	73.39351	-77.73128	-1.059103	236.8446	-390.2829	-1.647844
5.07	19.33132	-15.19905	-0.7862398	7.381219	71.34436	-75.83376	-1.062926	226.5792	-381.6000	-1.684179
5.08	18.92545	-14.81081	-0.7825868	7.334709	69.40634	-74.04870	-1.066887	216.8252	-373.4411	-1.722314
5.09	18.54158	-14.44472	-0.7790446	7.288499	67.57013	-72.36679	-1.070988	207.5391	-365.7630	-1.762382
5.10	18,17790	-14.09898	-0.7756112	7.242573	65.82738	-70.77969	-1.075232	198,6820	-358,5270	-1.804527
5.11	17,83282	-13.77201	-0.7722843	7.196915	64.17065	-69.27997	-1.079621	190,2194	-351,6986	-1.848910
5.12	17,50490	-13.46236	-0.7690622	7.151511	62.59324	-67.86095	-1.084158	182,1201	-345,2466	-1.895708
5.13	17,19284	-13.16873	-0.7659428	7.106345	61.08913	-66.51662	-1.088845	174,3561	-339,1433	-1.945119
5.14	16,89548	-12.88997	-0.7629244	7.061403	59.65288	-65.24156	-1.093687	166,9020	-333,3634	-1.997360
5.15	16.61174	-12.62501	-0.7600051	7.016671	58,27957	-64.03086	-1.098685	159.7350	-327.8841	-2.052676
5.16	16.34069	-12.37290	-0.7571834	6.972135	56,96474	-62.88008	-1.103842	152.8342	-322.6848	-2.111338
5.17	16.08144	-12.13276	-0.7544576	6.927781	55,70433	-61.78516	-1.109163	146.1809	-317.7468	-2.173654
5.18	15.83319	-11.90381	-0.7518263	6.883595	54,49464	-60.74244	-1.114650	139.7577	-313.0528	-2.239968
5.19	15.59523	-11.68532	-0.7492878	6.839566	53,33230	-59.74854	-1.120307	133.5490	-308./5874	-2.310669
5.20	15,36689	-11.47662	-0.7468408	6.795679	52.21421	-58,80039	-1.126138	127.5403	-304.3363	-2.386198
5.21	15,14755	-11.27711	-0.7444841	6.751922	51.13754	-57,89517	-1.132146	121.7184	-300.2863	-2.467059
5.22	14,93667	-11.08624	-0.7422162	6.708283	50.09969	-57,03030	-1.138336	116.0711	-296.4255	-2.553826
5.23	14,73372	-10.90348	-0.7400359	6.664750	49.09826	-56,20339	-1.144712	110.5874	-292.7428	-2.647162
5.24	14,53823	-10.72837	-0.7379422	6.621309	48.13105	-55,41225	-1.151279	105.2569	-289.2281	-2.747831
5.25	14.34976	-10.56047	-0.7359338	6.577950	47.19600	-54,65486	-1.158040	100.0701	-285.8720	-2.856719
5.26	14.16791	-10.39939	-0.7340098	6.534661	46.29125	-53,92936	-1.165001	95.01810	-282.6658	-2.974863
5.27	13.99230	-10.24473	-0.7321690	6.491429	45.41503	-53,23400	-1.172167	90.09284	-279.6015	-3.103482
5.28	13.82259	-10.09617	-0.7304106	6.448244	44.56572	-52,56718	-1.17954 3	85.28671	-276.6717	-3.244019
5.29	13.65845	-9.953372	-0.7287336	6.405094	43.74183	-51,92743	-1.187134	80.59267	-273.8695	-3.398194
5.30	13.49958	-9.816046	-0.7271371	6.361968	42,94195	-51,31334	-1.194947	76.00415	-271.1884	-3.568074
5.31	13.34570	-9.683912	-0.7256204	6.318855	42,16477	-50,72364	-1.202986	71.51505	-268.6226	-3.756168
5.32	13.19655	-9.556712	-0.7241827	6.275743	41,40908	-50,15713	-1.211259	67.11967	-266.1664	-3.965550
5.33	13.05188	-9.434204	-0.7228232	6.232622	40,67373	-49,61268	-1.219772	62.81266	-263.8146	-4.200023
5.34	12.91148	-9.316162	-0.7215412	6.189481	39,95767	-49,08925	-1.228531	58.58905	-261.5626	-4.464359
5.35	12.77511	-9.202375	-0.7203361	6.146309	39.25989	-48.58587	-1.237545	54,44416	-259,4057	-4.764619
5.36	12.64259	-9.092647	-0.7192074	6.103095	38.57948	-48.10162	-1.2246819	50,37360	-257,3397	-5.108622
5.37	12.51373	-8.986792	-0.7181544	6.059829	37.91554	-47.63565	-1.256362	46,37326	-255,3607	-5.506637
5.38	12.38835	-8.884636	-0.7171766	6.016499	37.26725	-47.18714	-1.266182	42,43926	-253,4650	-5.972417
5.39	12.26629	-8.786017	-0.7162736	5.973095	36.63385	-46.75536	-1.276288	38, 56796	-251,6490	-6.524821

adda... v avdol avdol

1.9

		Y	· · · · · · · · · · · · · · · · · · ·	· · · ·	······			· · ·		
λ	K L EI	kK L	k	K" L ĒĪ		$q Q \frac{L^2}{EI}$	q	$T \frac{L^3}{EI}$	$tT \frac{L^3}{EI}$	t
5,40	12,14738	-8,690782	-0,7154448	5.929607	36.01460	-46,33959	-1.286689	34,75592	-249,9096	-7.190418
5,41	12,03149	-8,598786	-0,7146900	5.886024	35,40882	-45,93916	-1.297393	30,99991	-248,2437	-8.007884
5,42	11,91847	-8,509894	-0,7140087	5.842335	34.81586	-45,55345	-1.308411	27,29686	-246,6483	-9.035776
5,43	11,80820	-8,423979	-0,7134006	5.798530	34.23511	-45,18187	-1.319753	23,64389	-245,1209	-10.36720
5,44	11,70055	-8,340919	-0,7128655	5.754598	33.66598	-44,82387	-1.331429	20,03826	-243,6588	-12.15968
5,45	11.59541	-8.260601	-0.7124030	5.710528	33,10794	-44.47892	-1.343452	16,47739	-242,2596	-14.70256
5,46	11.49265	-8.182919	-0.7120130	5.666310	32,56047	-44.14652	-1.355832	12,95878	-240,9211	-18.59135
5,47	11.39219	-8.107770	-0.7116952	5.621932	32,02307	-43.82622	-1.368583	9,480135	-239,6411	-25.27823
5,48	11.29392	-8.035059	-0.7114496	5.577385	31,49528	-43.51756	-1.381717	6,039237	-238,4176	-39.47809
5,49	11.19775	-7.964694	-0.7112761	5.532657	30,97667	-43.22013	-1.395248	2,633976	-237,2487	-90.07246
5,50	11.10359	-7.896590	-0.7111745	5.487738	30.46680	-42.93353	-1.409195	-0,7376535	-236.1326	320.1131
5,51	11.01135	-7.830666	-0.7111448	5.442616	29.96528	-42.65740	-1.423561	-4,077559	-235.0676	57.64909
5,52	10.92096	-7.766844	-0.7111870	5.397280	29.47174	-42.39137	+11438375	-7,387561	-234.0521	31.68191
5,53	10.83233	-7.705051	-0.7113012	5.351720	28.98580	-42.13512	-1.453647	-10,66940	-238.0845	21.84608
5,53	10.74540	-7.645218	-0.7114875	5.305923	28.50714	-41.88832	-1.453398	-13,92473	-232.1635	16.67275
5,55	10,66009	-7.587278	-0.7117459	5.259880	28.03540	-41,65066	-1.485645	-17.15513	-231,2876	13.48212
5,56	10,57635	-7.531168	-0.7120766	5.213577	27.57030	-41,42188	-1.502410	-20.36213	-230,4556	11.31785
5,57	10,49409	-7.476829	-0.7124798	5.167004	27.11151	-41,20167	-1.519712	-23.54718	-229,6662	9.753445
5,58	10,41328	-7.424205	-0.7129556	5.120149	26.65877	-40,98982	-1.537574	-26.71167	-228,9182	8.569970
5,59	10,33384	-7.373241	-0.7135045	5.073000	26.21178	-40,7860\$	-1.556019	-29.85694	-228,2107	7.643471
5.60	10.25573	-7.323886	-0,7141265	5.025545	25.77030	-40,59012	-1,57507%	-32.98426	-227,5424	6.898514
5.61	10.17888	-7.276090	-0,7148222	4.977771	25.33407	-40,40183	-1,59%763	-36.09488	-226,9125	6.286556
5.62	10.10326	-7.229808	-0,7155918	4.929667	24.90285	-40,22097	-1,615115	-39.18997	-226,3200	5.774946
5.63	10.02881	-7.184994	-0,7164357	4.881219	24.47640	-40,04732	-1,636160	-42.27068	-225,7640	5.340911
5.64	9.955479	-7.141607	-0,7173544	4.832416	24.05451	-39,88070	-1,657930	-45.33811	-225,2436	b.968085
5.65	9.883234	-7.099606	-0.7183484	4.783243	23.63696	-39.72092	-1.680458	-48,39332	-224.7581	4.644404
5.66	9.812028	-7.058952	-0.7194183	4.733689	23.22354	-39.56782	-1.703781	-51,43732	-224.3067	4.360777
5.67	9.741819	-7.019609	-0.7205645	4.683738	22.81407	-39.42123	-1.727935	-54,47111	-223.88887	4.110228
5.68	9.672568	-6.981541	-0.7217877	4.633379	22.40834	-39.28099	-1.752963	-57,49565	-223.5033	3.887309
5.69	9.604238	-6.944714	-0.7230885	4.582596	22.00617	-39.14695	-1.778908	-60,51185	-223.1500	3.687708
5.70 5.71 5.72 5.73 5.73 5.74	9.536793 9.470196 9.404415 9.339416 9.275169	-6.909098 -6.874660 -6.841373 -6.809207 -6.778136	-0.7244676 -0.7259259 -0.7274639 -0.7290827 -0.7307830	4.531375 4.479702 4.427563 4.374942 4.321823	21.60739 21.21183 20.81932 20.42970 20.04282	-39,01896 -38,89690 -38,78064 -38,67004 -38,56500	-1.805816 -1.833736 -1.862724 -1.892834 -1.924130	-63,52061 -66,52280 -69,51927 -72,51082 -75,4 9 825	-222.8282 -222.5372 -222.2765 -222.0455 -221.8439	3,507967 3,345276 3,197336 3,062240 2,938398

·

L² EI $\frac{L^2}{EI}$ 1³ EI λ L EI kK L L EI Κ Kn k Q qQ T. tr t q 5.75 5.76 9.211643 -6.748135 -0.7325658 4.268191 19.65853 -38,46539 -1.956678 -78,48234 -221.6711 2:824471 9.148809 -6.719179 --0.7344320 47214029 19.27668 -38,37113 -1.990547 -81.46383 -221.5267 2.719326 5.77 9.086639 -6.691245 --0.7363828 4.159322 18.89713 -38,28209 -2,025815 -84,44347 -221,4103 2.621994 5,78 9.025105 -6,664310 -0.7384191 4,104051 18,51975 -38,19820 -2.062566 -87,42195 -221.3214 2.531646 5.79 8.964181 -6.638353 -0.7405421 4.048201 18.14440 -38,11935 -2.100887 -90,39999 -221,2598 2.447564 5,80 8,903841 -6.613354 -0.7427530 3.991752 17,77096 -38,04546 -2.140878 5.81 8.844060 -93,37825 -6,589294 -0.7450530 -221,2250 3.934687 2.369128 17,39931 -37.97644 -2,182641 5.82 8.784815 -96.35742 -6.566153 -221.2168 -0.7474435 2,295794 3.876987 17.02931 -37.91223 -2.226293 5,83 8.726082 -99.33813 -6.543913 -0.7499257 -221:2349 3.818633 2.227089 16,66085 +37.85273 -2.271957 5.84 -102,3210 8,667838 -6.522558 -0.7525012 -221,2789 2.162594 3,759605 16,29382 -37.79789 -2:319768 -105.3068 -221.3486 2.101941 5.85 8,610061 -6.502072 -0.7551714 3,699882 15.92810 -37.74764 ~2.369876 5.86 8,552730 -108.2959 -6.482439 -0,7579379 3,639444 -221,4438 2.044803 15,56359 ~37.70190 -2. \$22442 5.87 -111.2891 8_495825 -6.463643 -221.5642 -0.7608024 1,990889 3,578269 15,20017 -37,66063 -2.477645 5,88 8,439324 -114.2869 -6.445672 -221,7096 -0.7637664 3,516336 1,939939 14.83775 -37,62377 -2.535679 5.89 -117,2899 8,383208 -6,428511 -221.8799 -0,7668318 3.453621 1,891722 14,47621 -37.59126 -2.596760 -120,2987 -222.0748 1,846029 5.90 8.327458 -6.412147 -0.7700005 3.390101 14.11546 -37,56305 -2.661127 5.91 8,272055 -123,3139 -6.396569 -0.7732744 3.325752 -222.2943 1.802671 13,75540 -37,53909 -2.729043 5,92 -126.3359 8,216982 -6.381764 -0.7766555 -222,5380 1.761479 3,260549 13.39594 -37.51935 5,93 -2,800800 8,162219 -129.3654 -6.367722 -222.8061 1.722300 -0.78014593.194467 13.03697 -37.50377 5.94 -2.876725 8.107749 -132,4030-6.354431 -0,7837478 -223.0982 1.684994 3.127478 12.67840 -37.49232 -2,957180 -135,4491 -223.4143 1.649434 5,95 8.053556 -6.341882 -0.7874635 3.059555 12.32015 -37,48497 -3.042579 5.96 7.999623 -138.5042 -6.330065 -223, 7544 -0.791295 2,990671 1.615506 11,96212 -37.48168 5.97 -3,133364 7,945933 -6.318972 -141,5690 -0,7952460 -224,1183 1.583103 2,920796 11,60423 -37.48242 5,98 -3.230067 7.892471 -6.308593 -144,6440 -224,5060 -0,7993179 1,552129 2.849900 11,24637 -37.48716 5.99 -3.333266 -147.7295 7.839219 -6:298920 -0.8035137-224,9175 1.522495 2.777951 10,88848 -37.49587 -3.443627 -150,8263 -225,3527 1,494121 6.00 7.786164 -6.289946 -0.8078363 2.704917 10.53046 -37,50854 -3.561908 -153,9348 6.01 7.733290 -6.281664 -225.8116 1,466930 -0.81228872.630765 10.17224 -37.52514 -3.688977 6.02 7,680582 -157,0555 -6.274067 -226,2942 1.440855 -0.8168739 2.555460 9,813712 -37.54565 -3.825835 6.03 -160,1889 7.628025 -6.267148 -226,8005 1.415832 -0.8215951 2.478967 9.454811 -37,57005 -3.973644 6.04 7.575605 -163,3355 -6,260902 ÷227,3306 -0.8264557 1,391801 2.401247 9.095451 -37.59833 -4.133751 -166,4959 -227.8844 1.368709 6.05 7,523307 -6.255322 -0.8314591 2.322263 8.735550 -37.63048 -4.307740 6.06 ~169,6705 7.471119 -6.250409 -228,4620 -0.8366089 1.346504 2.241974 8,375028 -37.66648 -4.497475 -172.8599 6.07 7,419024 -6.246144 -229.0634 1,325139 -0.8419090 2.160339 8,013805 -37,70634 -4.705173 6.08 -176.0646 7.367011 -6.242535 -229,6888 -0.8473634 2:077315 1.304572 7,651801 -37.75003 6.09 -4,933483 7_315065 -179,2850 -6.239576 -0.8529761 -230,3382 1.284760 1,992856 7,288936 -37.79756 -5,185608 -182.5217 1.265667 -231.0118

. •

.

* 運輸 TABLE I (continued) L² EI FI EI L EI K EI L EI kK k Кн Q qQ Т Y tTt **q** 6.10 7.263173 -6.237261 -0.8587515 1,906916 6.925131 -37.84893 -5.465446 -185,7752 -231,7095 1.247257 6.11 7.211322 -6.235587 -0.8646941 1.819447 6.560308 -37,90413 -5.777798 -189:0460 -232,4315 1.229497 7.159499 6.12 -6.234552 -0.8708085 1.730397 6.194388 -37,96317 -6.128640 -192.3347 -233,1780 1,212356 6.13 7,107690 -6.234153 -0.8770998 1.639715 5.827293 ~38.02605 -6,525509 -195,6417 -233,9492 1.195804 7.055883 6.14 -6.234388 -0.8835731 1.547345 5,458944 -38,09278 -6,978049 -198,9675 -234,7450 1.179816 6.15 7_004064 -6.235254 -0.8902337 1.453231 5.089263 -38,16336 -7.498800 -202.3127 -235,5658 1.164365 6.952222 6.16 -6.236750 -0.8970873 1,357313 4.718171 -38,23780 -8.104371 -205.6779 -236:4117 1,149427 6.17 6,900343 -6.238875 -0.9041398 1.259528 4,345589 -38,31612 -8.817244 -209,0634 -237.2828 1,134980 6.18 6.848415 -6.241627 -0.9113973 1.159813 3,971440 -38,39833 -9.668617 -212,4700 -238.1794 1,121003 6.19 6.796425 -6.245006 -0,9188664 1,058098 3.595643 -38,48444 -10.70308-215,8981 -239,1018 1.107475 6.20 6.744360 -6.249012 -0.9265538 0,9543144 3,218120 -38,57447 -11,98665 -219,3482 -240.0501 1.094379 6,692208 6.21 -6.253645 -0.9344665 0.8483868 2.838791 -38,66844 -13,62145 -222,8209 -241,0245 1.081696 6.639957 -6.258904 6.22 -0.9426121 0.7402381 2.457574 -38,76638 -15,77424 -226.3168 -242,0254 1.069409 6.23 6.587593 -6.264791 -0,9509984 0.6297872 2.074391 -38,86829 -18.73721 -229.8365 -243.0529 1.057503 6.24 6.535105 -6.271306 -0.9596336 0.5169493 1.689159 -38,97422 -23,07315 -233,3804 -244,1074 1.045963 6.25 6.482480 -6.278451 -0.9685262 0,4016353 1.301796 -39.08419 -30,02327 -236,9493 -245,1892 1.034775 6.26 6.429704 -6.286228 -0.9776853 0.2837520 0,9122206 -39,19822 -42,97011 -240,5436 -246,2985 1.023925 6.27 6.376766 -6.294637 -0.9871205 0.1632018 0.5203484 -39,31634 -75.55773 -244,1640 -247.4357 1.013400 6.28 6.323653 -6.303681 -0.9968417 0,03988056 0.1260954 -39,43860 -312.7679 -247.8110 -248,6012 1,003189 6.29 6,270352 -6.313364 -1.006860 -0.08631841 -0.2706234 -39,56503 146.1996 -251,4853 -249,7952 0.9932795 6.30 6.216850 -6.323687 -1.017185 -0.2155092 -0.6698942 -39.69565 59,25660 -255.1875 -251,0181 0.9836615 6.31 6,163135 -6.33465% -1.027830-0.3478113 -+1.071804 -39.83052 37.16214 -258,9182 -252.2704 0,9743245 6.32 6.109192 -6.346268 -1.038806 -0,4833506 -1.476441 -39,96968 27.07164 -262.6781 -253,5523 0,9652586 6.33 6.055010 ~6.358533 -1.050127 -0.6222597 -1.883895 -40.11316 21,29268 -266,4679 -254.8644 0.9564546 6:34 6.000575 -6.371459 -1.061807 -0.7646785 -2.294255 -40.26102 17,54862 -270,2881 -256.2070 0,9479036 6.35 5,945874 -6.385033 -1.073859 -0,9107544 -2.707615 -40.41330 14.92579 -274.1394 -257,5806 0,9395972 6.36 5,890893 -6.399277 -1.086300 -1.060643 -3.124068 -40.57006 12,98629 ~278.0226 -258,9857 0,9315272 6.37 5.835618 -6.414192 -1.099145 -1.214510 -3.543708 -40.73135 11.49399 -281.9384 -260.4226 0.9236862 6.38 5,780036 -6.429781 -1.112412 -1.372528 -3,966631 -40.89722 10,31032 -285,8874 -261,8920 0.9160668 6.39 5.724134 -6.446051 -1.126118 -1.534882 -4.392936 -41.06773 9,348583 -289,8704 -263.3943 0.9086620 6.40 5.667896 -6.463009 -1.140284 -1.701768 -4.822723 -41,24294 8,551796 -293,8882 -264,9300 0.9014652 6.41 5,611308 -6.480661 -1.154929 -41.42294 -1.873393 7.880935 -297.9415 6.42 -5,256092 -266.4997 5.554357 0.8944701 -6.499013 -1.170075 -2.049976 7,308388 -302.0310 -5.693148 -268,1040 6.43 5.497027 0.8876706 -6.518074 -1.185745 -41.79745 -2.231750 6,814066

-6.133995

-6.578742

-2.418965

-41,99213

-306.1576

-310.3221

6.383004

-269,7435

-271,4188

0.8810610 占

0.8746357

6.44

5.439303

~6.537851

-1.201965

2	K L EI	kK L EI	k	Kn L EI	$Q \frac{L^2}{EI}$	* qQ <u>L</u> ² EI	đ	t <u>l</u> ³ EI	$tT \frac{L^3}{EI}$	t
6,45	5.381170	-6.558352	-1.218760	-2.611885	-7.027497	-42.19187	6.003825	-314,5253	-273,1304	0.8683894
6,46	5.322613	-6.579586	-1.236157	-2.810790	-7.480374	-42.39673	5.667728	-318,7681	-274,8791	0.8623171
6,47	5.263616	-6.601562	-1.254188	-3.015982	-7.937485	-42.60679	5.367795	-323,0512	-276,6656	0.8564139
6,48	5.204162	-6.624289	-1.272883	-3.227781	-8.398949	-42.82214	5.098512	-327,3757	-278,4905	0.8566753
6,49	5.144237	-6.647777	-1.292277	-3.446530	-8.864884	-43.04287	4.855436	-331,7425	-280,3545	0.8450968
6.50	5.083822	-6.672036	-1.312406	-3.672597	-9.335413	-43.26907	4.634939	-336,1524	-282,2585	0.8396741
6.51	5.022901	-6.697078	-1.333309	-3.906372	-9.810661	-43.50083	4.434036	-340,6064	-284,2031	0.8344033
6.52	4.961457	-6.722913	-1.355028	-4.148280	-10.29075	-43.73824	4.250246	-345,1055	-286,1892	0.8292804
6.53	4.899471	-6.749554	-1.377609	-4.398771	-10.77583	-43.98141	4.081488	-349,6508	-288,2177	0.8243016
6.54	4.836927	-6.777011	-1.401099	-4.658335	-11.26601	-44.23045	3.926008	-354,2431	-290,2893	0.8194635
6.55	4.773805	-6.805300	-1,425551	-4,927494	-11.76145	-44.48546	3,782312	-358,8837	-292,4051	0.8147626
6.56	4.710086	-6.834431	-1,451021	-5,206815	-12.26227	-44.74655	3,649124	363,5736	-294,5658	0.8101957
6.57	4.645751	-6.864421	-1,477570	-5,496909	-12.76864	-45.01385	3,525345	-368,3139	-296.7724	0.8057595
6.58	4.580781	-6.895282	-1,505264	-5,798436	-13.28068	-45.28747	3,410026	-373,1058	-299,0260	0.8014511
6.59	4.515154	-6.927031	1,534174	-6,112114	-13.79857	-45.56754	3,302338	-377,9504	-301,3276	0.7972675
6.60	4.448851	-6.959682	-1.564377	-6.438719	-14,32245	-45.85418	3,201560	-382.8490	-303,6781	0.7932060
6.61	4.381849	-6.993252	-1.595959	-6.779096	-14,85249	-46.14755	3,107058	-387.8028	-306,0788	0.7892640
6.62	4.314127	-7.027759	-1.629011	-7.134166	-15,38885	-46.44776	3,018274	-392.8131	-308,5307	0.7854388
6.63	4.245662	-7.063219	-1.663632	-7.504932	-15,93170	-46.75498	2,934713	-397.8813	-311,0350	0.7817281
6.64	4.176432	-7.099651	-1.699932	-7.892493	-16,48123	-47.06935	2,855937	-403.0087	-313,5929	0.7781294
6.65	4.106412	-7.137074	-1.738032	-8.298050	-17.03760	-47,39103	2.781555	-408,1967	-316.2057	0,77464 06
6.66	4.035577	-7.175508	-1.778062	-8.722924	-17.60102	-47,72017	2.711217	-413,4468	-318.8747	0,7712594
6.67	3.963904	-7.214974	-1.820169	-9.168568	-18.17166	-48,05696	2.644611	-418,7604	-321.6012	0,7679838
6.68	3.891365	-7.255493	-1.864511	-9.636583	-18.74973	-48,40156	2.581454	-424,1392	-324.3866	0,7648117
6.69	3.817934	-7.297087	-1.911266	-10.12874	-19.33543	-48,75415	2.521493	-429,5847	-327.2325	0,7617414
6.70	3.743584	-7.339780	-1.960629	-10,64700	-19.92898	-49.11493	2,464498	-435.0986	-330.1402	0.7587710
6.71	3.668286	-7.383596	-2.012819	-11,19355	-20.53058	-49.48408	2,410262	-440.6825	-333.1113	0.7558986
6.72	3.592012	-7.428559	-2.068078	-11,77083	-21.14047	-49.86182	2,358595	-446.3383	-336.1475	0.7531227
6.73	3.514730	-7.474697	-2.126677	-12,38154	-21.75888	-50.24834	2,309326	-452.0677	-339.2504	0.7504416
6.74	3.436410	-7.522035	-2.188922	-13,02874	-22.38605	-50.64387	2,262296	-457.8726	-342.4218	0.7478537
6.75	3.357020	-7.570603	-2.255156	-13.71587	-23.02222	-51.04864	2.217364	-463.7551	-345.6634	0.7453577
6.76	3.276526	-7.620429	-2.325765	-14.44680	-23.66766	-51.46289	2.174397	-469.7170	-348.9772	0.7429521
6.77	3.194895	-7.671544	-2.401188	-15.22593	-24.32262	-51.88684	2.133275	-475.7604	-352.3651	0.7406355
6.78	3.112090	-7.723981	-2.481927	-16.05827	-24.98739	-52.32077	2.093887	-481.8876	-355.8290	0.7384067
6.79	3.028075	-7.77771	-2.568553	-16.94954	-25.66224	-52.76494	2.056131	-488.1008	-359.3712	0.7362644

TABLE I (continued)

λ	k <u>L</u> Ei	kK L EI	k	K" L EI	Q L2 BI	qQ L2 EI	Q	t L ³ EI	$tT \frac{L^3}{EI}$	ť
6.80	2.942811	-7.832950	-2.661723	-17.90634	-26.34748	-53,21962	2.019913	-494,4022	-362.9938	0.7342074
6.81	2.856260	-7.889553	-2.762197	-18.93624	-27.04341	-53,68509	1.985145	-500,7944	-366.6990	0.7322347
6.82	2.768381	-7.947617	-2.87085%	-20.04807	-27.75035	-54,16166	1.951747	-507,2797	-370.4892	0.7303451
6.83	2.679131	-8.007183	-2.98872%	-21.25213	-28.46862	-54,64963	1.919645	-513,8607	-374.3669	0.7285377
6.84	2.588466	-8.068289	-3.117015	-22.56051	-29.19856	-55,14933	1.\$888769	-520,5402	-378.3346	0.7268115
6.85	2,496341	-8.130978	-3.257158	-23,98754	-29.94054	-55.66109	1.859054	-527,3209	-382,3950	0.7251656
6.86	2,402709	-8.195295	-3.410857	-25,55027	-30.69492	-56.18527	1.830442	-534,2058	-386,5508	0.7235990
6.87	2,307519	-8.261284	-3.580158	-27,26918	-31.46209	-56.72222	1.802875	-541,1977	-390,8049	0.7221110
6.88	2,210722	-8.328995	-3.767544	-29,16914	-32.24243	-57.27233	1.776303	-548,3000	-395,1603	0.7207008
6.89	2,112265	-8.398476	-3.976053	-31,28052	-33.03637	-57.83599	1.750676	-555,5158	-399,6201	0.7193677
6.90	2.012091	-8.469781	-4,209443	-33.64097	-33,84434	-58,41362	1.725950	-562.8485	-404.1876	0.7181109
6.91	1.910143	-8.542963	-4,472420	-36.29757	-34,66678	-59,00565	1.702080	-570.3016	-408.8663	0.7169299
6.92	1.806362	-8.618079	-4,770958	-39.31013	-35,50417	-59,61253	1.679029	-577.8789	-413.6596	0.7158240
6.93	1.700686	-8.695189	-5,112754	-42.75568	-36,35699	-60,23472	1.656758	-585.5841	-418.5712	0.7147927
6.94	1.593049	-8.774354	-5,507902	-46.73523	-37,22575	-60,87272	1.635232	-593.4213	-423.6051	0.7138354
6,95	1.483383	-8.855641	-5,969897	-51.38388	-38.11097	-61,52705	1.614418	-601,3946	-428,7652	0,7129516
6,96	1.371617	-8.939115	-6,517208	-56.88646	-39.01323	-62,19823	1.594286	-609,5084	-434,0559	0,7121409
6,97	1.257679	-9.024850	-7,175799	-63.50283	-39.93308	-62,88684	1.574806	-617,2673	-439,4815	0,7114030
6,98	1.141490	-9.112918	-7,983354	-71.61016	-40.87114	-63,59345	1.555950	-626,1759	-445,0466	0,7107373
6,99	1.022970	-9.203398	-8,996748	-81.77764	-41.82803	-64,31869	1.537693	-634,7393	-450,7561	0,7101437
7_00 7_01 7_02 7_03 7_04	0.9020346 0.7785956 0.6525604 0.5238323 0.3923097	-9.296371 -9.391924 -9.490145 -9.591130 -9.694976	-10,30600 -12,06265 -14,54294 -18,30954 -24,71256	-94.90640 -112.5129 -137.3620 -175.0854 -239.1953	-42.80443 -43.80101 -44.81851 -45.85769 -46.91933	-65.06319 -65.82764 -66.61274 -67.41923 -68.24790	1.520011 11.502879 1.486277 1.470184 1.454580	-643,4627 -652,3515 -661,4114 -670,6484 -680,0687	-456.6151 -462.6289 -468.8031 -475.1434 -481.6561	0.7096217 0.7091712 0.7087919 0.7084837 0.7084837 0.7082463
7.05	0.2578861	-9.801789	-38.00821	372,2905	-46.00428	-69,09956	1.439446	-689,6790	-488,3476	0.7080797
7.06	0.1204498	-9.911677	-82.28889	815,5004	-49.11341	-69,97508	1.424765	-699,4861	-495,2247	0.7079837
7.07	-0.02011682	-10.02475	498.3270	-+4995,585	-50.24765	-70,87536	1.410521	-709,4972	-502,2945	0.7079584
7.08	-0.1639370	-10.14114	61.86000	627,1671	-51.40795	-71,80135	1.396697	-719,7201	-509,5645	0.7080037
7.09	-0.3111406	-10.26097	32.97856		-52.59535	-72,75406	1.383279	-730,1626	-517,0426	0.7081197
7.10	-0.4618643	-10,38437	22.48360	233.0161	-53.81091	-73,73454	1.370253	-740,8334	-524,7370	0,7083064
7.11	-0.6162518	-10,51148	17.05712	178.6794	-55.05576	-74,74391	1.357604	-751,7411	-532.6567	0,7085639
7.12	-0.7744550	-10,64246	13.74187	145.4729	-56.33109	-75,78334	1.345320	-762,8953	-540.8107	0,7088924
7.13	-0.9366336	-10,77746	11.50659	128.0752	-57.63817	-76,85407	1.333389	-774,3058	-549.2088	0,7092920
7.14	-1.102957	-10,91664	9.897618	106.9458	-58.97830	-77,95742	1.321798	-785,9829	-557.8615	0,7097628

f			r	y						
λ	K L EI	kK <u>L</u> EI	k	K ⁸⁹ L	Q L ² EI	qQ $\frac{L^2}{EI}$	g	t $\frac{L^3}{EI}$	$tT \frac{L^3}{EI}$	Ė.
7.15	-1.273603	-11.06019	8.684180	94.77510	-60.35290	-79,09477	1.310538	-797.9378	-566.7795	0.7103053
7.16	-1.448760	-11.20829	7.736474	85.26390	-61.76345	-80,26759	1.299597	-810.1822	-575.9748	0.7109196
7.17	-1.628628	-11.36114	6.975896	77.62549	-63.21151	-81,47742	1.288965	-822.7282	-585.4583	0.7116060
7.18	-1.813418	-11.51894	6.352059	71.35557	-64.69875	-82,72592	1.278632	-835.5890	-595.2448	0.7123649
7.19	-2.003355	-11.68192	5.831179	66.11601	-66.22691	-84,01483	1.268590	-848.7785	-605.3460	0.7131967
7.20 7.21 7.22 7.23 7.24	+2.198675 -2.399682 -2.606493 -2.606493 -2.819544 -3.039089	-11.85031 -12.02437 -12.20436 -12.39056 -12.58327	5.389751 5.010923 4.682290 4.394525 4.140475	61.67157 57.85356 54.53785 51.63107 49.06163	-67.79788 -69.41363 -71.07627 -72.78804 -74.55132	-85.34599 -86.72139 -88.14310 -89.61336 -91.13454	1.258830 1.249342 1.240120 1.231155 1.222440	-862.3112 -876.2029 -890.4701 -905.1304 -920.2025	-615,7780 -626,5558 -637,6958 -649,2155 -661,1335	0.7141018 0.7150807 0.7161339 0.7172619 0.7184652
7.25	-3,265451	-12.78282	8.914566	46.77374	-76.36867	-92.70917	1.213969	-935.7066	-673.4698	0.7197447
7.26	-3,498976	-12.98955	3.712387	44.72326	-78.24280	-94.33996	1.205733	-951.6640	-686.2456	0.7211008
7.27	-3,740034	-13.20383	3.530404	42.87481	-80.17661	-96.02978	1.197728	-968.0975	-699.4836	0.7225343
7.28	-3,989019	-13.42605	3.365751	41.19971	-82.17321	-97.78173	1.189947	-985.0314	-713.2080	0.7240460
7.29	-6,246354	-13.65662	3.216082	39.67446	-84.23591	-99.59912	1.182388	-1002.492	-727.4450	0.7256366
7.30	-4.512494	-13.89601	3.079453	38,27962	-86.36829	-101.\$855	1,175032	-1020.507	-742.2222	0.7273071
7.31	-4.787924	-14.14470	2.954245	36,99898	-88.57417	-103.\$447	1,167888	-1039.107	-757,5698	0.7290582
7.32	-5.073169	-14.40321	2.839095	35,81890	-90.85765	-105.\$807	1,160945	-1058.325	-773,5199	0.7308910
7.33	-5.368790	-14.67209	2.732849	34,72762	-93.22317	-107.5981	1,154199	-1078.194	-790,1072	0.7328063
7.33	-5.675395	-14.95196	2.634523	33,71589	-95.67550	-109.8016	1,147645	-1098.752	-807,3690	0.7348054
7.35	-5.993640	-15,24347	2.543274	32.77467	-98.21978	-112.0962	1.141279	-1120.041	-825,3458	0.7368892
7.36	-6.324231	-15,54732	2.458373	31.89687	-100.8616	-114.4876	1.135096	-1142.103	-844,0810	0.7390589
7.37	-6.667936	-15,86427	2.379188	31.07616	-103.6069	-116.9817	1.129092	-1169.986	-863,6220	0.7413157
7.38	-7.025586	-16,19517	2.305170	30.30703	-106.4623	-119.5851	1.123262	-1188.741	-884,0200	0.7436608
7.39	-7.398085	-16,54090	2.235836	29.58466	-109.4349	-122.3049	1.117604	-1213.424	-905,3307	0.7460956
7.40	-7.786414	-16.90246	2.170763	28,90481	-112.5324	-125.1487	1.112113	-1239.097	-927.6146	0.7486215
7.41	-8.191645	-17.28090	2.109576	28,26373	-115.7632	-128.1250	1.106785	-1265.825	-950.9379	0.7512399
7.42	-8.614949	-17.67740	2.051945	27,65810	-119.1365	-131.2430	1.101618	-1293.680	-975.3725	0.7539522
7.43	-9.057605	-18.09323	1.997574	27,08496	-122.6624	-134.5127	1.096608	-1322.741	-1000.998	0.7567601
7.44	-9.521018	-18.52981	1.946200	26,54169	-126.3520	-137.9451	1.091752	-1353.096	-1027.900	0.7596652
7.45	+10,00673	-18,98866	1.897588	26.02592	-130.2172	-141.5523	1.087047	-1384,839	-1056,174	0.7626693
7.46	-10,51645	-19,47149	1.851527	25.53554	-134.2716	-145.3477	1.082491	-1418.076	-1085,926	0.7657740
7.47	-11,05204	-19,98017	1.807826	25.06864	-138.5298	-149.3461	1.078079	-1452.923	-1117,271	0.7689813
7.48	-11,61560	-20,51679	1.766314	24.62350	-143.0083	-153.5637	1.073810	-1489.508	-1150,337	0.7722931
7.49	-12,20942	-21,08364	1.726835	24.19856	-147.7251	-158.0188	1.069681	-1527.974	-1185,267	0.7757114

ž.

λ	K <u>L</u> EI	kK L EI	k	K" L EI	Q L ² EI		q	t L ³ EI	$tT \frac{L^3}{EI}$	t
7.50	-12.83607	-21.68330	1.689248	23,79240	-152,7005	-162.7314	1.065690	-1568,480	-1222.220	0.7792384
7.51	-13.49843	-22.31864	1.653425	23,40375	-157,9569	-167.7241	1.061834	-1611,202	-1261.372	0.7828762
7.52	-14.19971	+22.99285	1.619248	23,03142	-163,5197	-178.0221	1.058112	-1656,339	-1302.921	0.7866272
7.53	-14.94351	-23.70956	1.586612	22,67436	-169,4173	-178.6539	1.054520	-1704,115	-1347.092	0.7904937
7.54	-15.73391	-24.47282	1.555419	22,33157	-175,6815	-184.6513	1.051057	-1754,780	-1394.135	0.794937
7。55	-16,57552	-25.28726	1。525578	22.00216	-182.3487	-191.0506	1.047721	-1808,620	-1444,334	0.7985885
7。56	-17,47358	-26.15809	1。497008	21.66530	-189.4599	-197.8929	1.044511	-1865,958	-1498,013	0.8028120
7。57	-18,43405	-27.09131	1。469634	21.38024	-197.0623	-205.2252	1.041423	-1927,168	-1555,542	0.8071667
7。58	-19,46380	-28.09375	1。443384	21.08628	+205.2095	-213.1014	1.038457	-1992,658	-1617,342	0.8116506
7。59	-20,57071	-29.17330	1。418196	20.80276	-218.9637	-221.5833	1.035612	-2062,931	-1683,902	0.8162666
7,60	-21,76392	-30,33911	1,394009	20,52908	-223.3367	-230,7429	1.032884	-2138,547	-1755.786	0,8210181
7,61	-23,05408	-31,60181	1,370769	20,26470	-233.5920	-240,6638	1.030274	-2220,162	-1893.650	0,8259082
7,62	-24,45364	-32,97387	1,348424	20,00911	-244.6478	-251,4438	1.027779	-2308,548	-1918.266	0,8309406
7,63	-25,97732	-34,46999	1,926926	19,76181	-256.6794	-263,1987	1.025398	-2404,611	-2010.541	0,8361189
7,6%	-27,64257	-36,10762	1,306232	19,52237	-269.8242	-276,0654	1.023131	-2509,430	-2111.552	0,8414468
7.65 7.66 7.67 7.68 7.69	-29,47029 -31,48569 -33,71951 -36,20957 -39,00296	-37,90766 -39,89533 -42,10135 -44,5635 -44,5635 -47,32900	1.286301 1.267094 1.248575 1.230712 1.213472	19,29037 19,06543 18,84719 18,63531 18,42947	-284.2464 -300.1442 -317.7590 -337.3882 -359.4019	-290.2084 -305.8257 -328.1588 -342.5051 -364.2345	1.020975 1.018929 1.016993 1.015166 1.013446	-2624,297 -2750,769 -2890,744 -3046,558 -3221,121	-2222,592 -2345,217 -2481,325 -2633,258 -2803,909	0,8469284 0,8525677 0,8583690 0,8643370 0,8704762
7.70	-42,15907	-50,45712	1.196827	18,22938	-384.2668		1.011833	-3418,100	-2996.962	0.8767917
7.71	-45,75387	-54,02386	1.180749	18,03476	-412.5801		1.010326	-3642,190	-3217.104	0.8832885
7.72	-49,88617	-58,12802	1.165218	17,84535	-445.1181		1.008924	-3899,491	-3470.438	0.8899720
7.73	-54,68682	-62,90046	1.150195	17,66091	-482.9095		1.007626	-4198,088	-3765.046	0.8968479
7.74	-60,33294	-68,51828	1.135670	17,48120	-527.3462		1.007628	-4198,920	-4111.869	0.9039220
7.75	-67.07026	-75.22725	1.121619	17.30602	-580,3595	-583,4592	1,005341	-4967.168	-4526.086	0.9112006
7.76	-75.25001	-83.37856	1.108021	17.13514	-644,7097	-647,5159	1,004853	-5474,524	-5029.391	0.9186901
7.77	-85.39224	-98.49226	1.094857	16.96839	-724,4843	-726,9954	1,003466	-6108,112	-5653.906	0.9263972
7.78	-98.30117	+106.3726	1.082109	16.80557	-826,0036	-828,2184	1,002681	-6902.609	-6449.308	0.9348290
7.79	-115.2900	-123.3327	1.069761	16.64652	-959,5886	-961,5055	1,001998	-7954.127	-7496.709	0.93424930
7.80	-138.6592	-146.6731	1.057796	16,49108	-1143,319	-1144,937	1.001415	-9399.764	-8938.208	0,9508970
7.81	-172.8389	-180.8240	1.046200	16,33908	-1412,015	-1413,331	1.000933	-11513.17	-11047.46	0,9595492
7.82	-227.5966	-235.5527	1.034957	16,19038	-1842,438	1843,452	1.000551	-14897.66	-14427.76	0,9684581
7.83	-329.5360	-337.4631	1.024055	16,04485	-2643,678	-2644,389	1.000269	-21196.52	-20722.41	0,9776328
7.84	-585.8507	-593.7487	1.013481	15,90235	-4658,202	-4658,607	1.000087	-37030.96	-36552.68	0,9870828

λ	K L EI	kK L EI	k	Kn FI	Q L ² EI		q	T L ³ EI	$tT \frac{L^3}{EI}$	t
7.85	-2441.721	-2449,590	1.003223	15.76276	-19244.13	-19244.28	1.000005	-151667.9	-151185_3	0,9968181
7.86	1164.517	1156,678	0.9932681	15.62595	9098.344	9098.554	1.000023	71082.61	71569_47	1,006849
7.87	476.4183	468,6034	0.9836068	15.49182	3690.255	3690.775	1.000141	28577.07	29068_22	1,017187
7.88	301.8962	294,1158	0.97%2283	15.36026	2318.602	2319.433	1.000359	17795.11	18290_59	1,027844
7.89	222.2283	214,4776	0.9651226	15.23116	1692.397	1693.542	1.000359	12871.86	13371_68	1,088831
7.90 7.91 7.92 7.93 7.93	176.6028 147.0380 126.3206 110.9942 99.19558	168.8818 139.3469 118.6594 103.3631 91.59465	0,9562805 0,9476929 0,9893514 0,9812479 0,9812479 0,9233747	15.10442 14.97996 14.85769 14.73751 14.61935	1233.7%2 1101,312 538,4160 817,8893 725,0872	1335,201 1103,088 940,5100 820,3932 727,8228	1.00109% 1.001613 1.002231 1.002951 1.003779	10051.35 8222.874 6940.877 5991.867 5260.745	10555 54 8731 462 7453 882 6509 315 5782 659	1.050162 1.061850 1.073911 1.086358 1.099209
7.95	89.83116	82,26059	0,9157244	14.50313	651.4167	654.4755	1.004696	4679,974	5206.880	1.112481
7.96	82.21726	74,67712	0,9082900	14.38878	591.5031	594.8870	1.005721	4207,314	4738.237	1.126191
7.97	75.90419	68,39459	0,9010649	14.27622	541.8125	545.5233	1.006849	3814,991	4350.457	1.140359
7.98	70.58414	68,10522	0,8940425	14.16539	499.9258	503.9653	1.008080	3488,992	4024.027	1.155005
7.98	66.03932	58,59120	0,8872169	14.05621	464.1314	468.5014	1.009415	3200,865	3745.494	1.170151
8.00 8.01 8.02 8.03 8.03 8.04	62.11128 58.68201 55.66176 52.98113 50.5855%	54,69409 51,29587 48,30681 45,65750 43,29337	0.8805822 0.8741329 0.8678635 0.8617691 0.8558447	13.94864 13.84260 13.73804 13.63491 13.53314	438,1839 406,1558 382,3418 361,1969 342,2906	437.8862 411.1922 387.7143 366.9068 348.3409	1.010855 1.012400 1.014052 1.015810 1.015810 1.017676	2955,828 2741,574 2552,577 2884,544 2234,104	3505.072 3295.470 3111.147 2947.813 2802.101	1.185820 1.202086 1.218826 1.236217 1.254239
8.05 8.06 8.07 8.08 8.09	48,43154 46,48407 44,71453 43,03937 41,61902	41.17097 39.25523 37.51756 35.93442 34.48624	0.8500858 0.8444877 0.8390463 0.8337575 0.8337575 0.8286174	13.43269 13.33351 13.23556 13.13877 13.04312	325,2830 309,8980 295,9108 283,1364 271,4209	331,6752 316,6339 302,9925 290,5659 279,2002	1.019651 1.021736 1.023932 1.026240 1.028661	2098.573 1975.784 1863.972 1761.682 1667.705	2671.324 2553.317 2446.315 2348.863 2259.752	1.272924 1.292306 1.312420 1.333307 1.35500?
8.10	40,25708	33.15662	0.8236221	12.94855	260.6354	268.7666	1.031198	1581.028	2177.969	1,377565
8.11	38,39970	31.93171	0.8187582	12.85503	250.6712	259.1564	1.033850	1500.795	2102.660	1,401030
8.12	37,83512	30.79976	0.8140521	12.76252	241.4357	250.2769	1.036619	1426.280	2033.097	1,425454
8.13	36,75327	29.75069	0.8094705	12.67097	232.8498	242.0492	1.039508	1356.860	1968.659	1,450893
8.14	35,74548	28.77584	0.8050203	12.58035	224.8453	234.4051	1.092517	1292.001	1908.811	1,477407
8.15	34.80426	27.86771	0,800638%	12,49062	217,363	227.2857	1.045649	1231.238	1853,089	1.505062
8.16	38.92307	27.01980	0,7965020	12,40175	210,3528	220.6398	1.048904	1174.170	1801,092	1.533928
8.17	33.09624	26.22639	0,792%282	12,31371	203,7687	214.4227	1.052285	1120.444	1752,468	1.564084
8.18	32.31875	25.48251	- 0,788%7%3	12,22645	197,5719	208.5951	1.055794	1069.751	1706,907	1.5956121
8.19	31.58621	24.78373	0,78%6377	12,13996	191,7276	203.1223	1.059432	1021.819	1664,138	1.62860410

· · ·

. . .

2	K L EI	kK <u>L</u> EI	k	K" L EI	Q L2 EI	$q Q \frac{L^2}{EI}$	q	$T \frac{L^3}{EI}$	tT L3	t
8,20	30,89470	24.12617	0.78091 61	12.05419	186.2053	197,9738	1.063202	976.4073	1623,921	1,663160
8,21	30,24078	23.50637	0.7773070	11.96912	180.9777	193,1224	1.067106	933.3019	1586,042	1,699388
8,22	29,62136	22.92125	0.7738081	11.88471	176.0207	188,5438	1.071146	892.3123	1550,310	1,737408
8,23	29,03368	22.36805	0.7704173	11.80095	171.3125	184,2165	1.075324	853.2681	1516,556	1,777350
8,24	28,47527	21.84431	0.7671325	11.71779	166.8337	180,1209	1.079644	816.0165	1484,627	1,819359
8,25	27,94390	21.34779	0.7639517	11.63522	162.5668	176.2398	1,084107	780.4201	1454,386	1.863593
8,26	27,43758	20.87651	0.7608729	11.55321	158.4961	172.5573	1,088716	746.3550	1425,709	1.910229
8,27	26,95449	20.42865	0.7578943	11.47173	154.6073	169.0592	1,093475	713.7092	1398,485	1.959460
8,28	26,49298	20.00258	0.7550142	11.39075	150.8875	165.7326	1,098385	682.3811	1372,612	2.011503
8,29	26,05158	19.59680	0.7522308	11.31026	147.3250	162.5659	1,103451	652.2785	1347,999	2.066600
8,30 8,31 8,32 8,33 8,33 8,34	25.62890 25.22373 24.83491 24.46142 24.10231	19.20995 18,84081 18,48824 18,15119 17,82874	0.7495426 0.7469479 0.7444453 0.7420334 0.7397108	11.23022 11.15062 11.07143 10.99263 10.91420	143,9092 140,6301 137,4790 134,4477 131,5287	159.5484 156.6703 153.9228 151.2977 148.7877	1.108674 1.114059 1.119609 1.125328 1.131219	623.3174 595.4210 568.5193 542.5479 517.4479	1324,561 1302,223 1280,915 1260,572 1241,136	2.125019 2.187063 2.253071 2.323429 2.398572
8.35	23.75668	17.51999	0.7374762	10.83611	128.7150	146,3857	1.137286	493,1650	1222.554	2.478995
8.36	23.42374	17.22414	0.7353284	10.75834	126.0003	144,0855	1.143533	469,6492	1204.774	2.565264
8.37	23.10274	16.94046	0.7332661	10.68088	123.3788	141,8812	1.149965	446,8544	1187.753	2.658032
8.38	22.79299	16.66825	0.7312883	10.60370	120.8450	139,7676	1.156586	424,7378	1171.447	2.758048
8.39	22.49385	16.40688	0.7293939	10.52678	118.3939	(137,7395	1.163400	403,2599	1155.817	2.866184
8.40 8.41 8.42 8.43 8.43 8.44	22.20474 21.92510 21.65442 21.39222 21.13807	16.15576 15.91436 15.68215 15.45867 15.24347	0.7275818 0.7258511 0.7242008 0.7226302 0.7211382	10,45010 10,37364 10,29739 10,22133 10,14542	116.0209 113.7216 111.4920 109:3284 107.2274	135.7923 133.9218 132.1241 130.3953 128.7320	1,170413 1,177629 1,185054 1,192693 1,200552	382.3842 362.0766 342.3055 323.0414 304.2568	1140.827 1126.444 1112.635 1099.373 1086.630	2.983458 3.111065 3.250416 3.403196 3.571423
8.45	20.89156	15.03616	0.7197242	10.06967	105.1855	127.1311	1,208637	285,9261	1074.380	3.757544
8.46	20.65228	14.83634	0.7183874	9.994042	103.1999	125.5895	1,216953	268,0253	1062.600	3.964552
8.47	20.41989	14.64366	0.7171272	9.918525	101.2676	124.1043	1,225509	250,5320	1051.269	4.196145
8.48	20.19405	14.45778	0.7159428	9.843102	99.38602	122.6731	1,234309	233,4252	1040.365	4.456951
8.49	19.97443	14.27839	0.7148336	9.767752	97.55263	121.2933	1,243362	216,6851	1029.869	4.75283 7
8,50 8,51 8,52 8,53 8,53 8,54	19.76074 19.55270 19.35005 19.15253 18.95993	14.10520 13.93792 13.77631 13.62011 13.46909	0.7137992 0.7128388 0.7119522 0.7111387 0.7103980	9.692460 9.617206 9.541975 9.466748 9.391508	95.76508 94.02117 92.31883 90.65610 89.03115	119.9626 118.6788 117.4399 116.2440 115.0894	1.252675 1.262256 1.272112 1.282253 1.292687	200,2932 184,2321 168,4854 153,0377 137,8744	1019,763 1010,031 1000,655 991,6221 982,9171	5.091353 5.482382 5.939122 6.479594 7.129075

TABLE I (continued)

λ	k <u>L</u> EI	kK L EI	k	K" L EI			đ	t L ³ EI	$tT \frac{L^3}{EI}$	t
8,55 8,56 8,57 8,58 8,58 8,59	18,77200 18,58856 18,40939 18,23432 18,06317	13,32305 13,18177 13,04506 12,91275 12,78465	0,7097297 0,7091335 0,7086091 0,7081562 0,7077746	9.316238 9.240921 9.165540 9.090078 9.014517	87.44222 85.88769 84.36601 82.87569 81.41537	113,9742 112,8969 111,8561 110,8501 109,8779	1.303423 1.314472 1.325843 1.337547 1.349596	122,9818 108,3470 93,95760 779,80203 65,86930	974,5269 966,4391 958,6419 951,1242 943,8753	7.924153 8.919852 10.20292 11.91855 14.32952
8,60	17.89577	12.66061	0,7074640	8,938841	79.98372	108,9380	1.362002	52.14897	936.8855	17.96556
8,61	17.73197	12.54048	0,7072244	8,863033	78.57949	108,0292	1.374776	38.63113	930.1453	24.07761
8,62	17.57161	12.42410	0,7070556	8,787074	77.20150	107,1504	1.387932	25.30640	923.6458	36.49851
8,63	17.41455	12.31135	0,7069575	8,710950	75.84863	106,3006	1.401484	12.16582	917.3787	75.40622
8,64	17.26066	12.20208	0,7069301	8,634641	74.51980	105,4787	1.415446	-0.7990917	911.3359	-1140.465
8。65	17.10981	12,19618	0,7069734	8,558132	73.21399	104,6838	1,429833	-13,59644	905,5099	-66.59904
8。66	16.96187	11,99352	0,7070873	8,481403	71.93024	103,9149	1,444662	-26,23394	899,8936	-34,30265
8。67	16.81674	11,89401	0,7072720	8,404440	70.66763	103,1711	1,459989	-38,71893	894,4802	-23,10188
8。68	16.67429	11,79752	0,7075275	8,327222	69.42527	102,4517	1,475712	-51,05844	889,2631	-17,41657
8。69	16.53443	11,70396	0,7078539	8,249734	68.20232	101,7558	1,491969	-63,25918	884,2364	-13,97799
8.70	16.39705	11,61323	0.7082515	8,171957	66,99798	101_0827	1,508742	-75,32754	879.3941	-11,67427
8.71	16.26205	11,52525	0.7087204	8,093873	65,81149	100_4316	1,526050	-87,26966	874.7308	-10,02331
8.72	16.12935	11,43992	0.7092609	8,015465	64,64212	99_80201	1,543916	-99,09139	870.2411	-8,782207
8.73	15.99885	11,35716	0.7098731	7,936713	63,48915	99_19314	1,562364	-110,7984	865.9202	-7,815280
8.74	15.87048	11,27689	0.7105576	7,857599	62,35192	98_60440	1,581417	-122,3959	861.7632	-7,040782
8.75 8.76 8.77 8.78 8.78 8.79	15,74414 15,61977 15,49728 15,37662 15,25770	11,19903 11,12353 11,05029 10,97927 10,91040	0.7113144 0.7121442 0.7130472 0.7140240 0.7150750	7.778105 7.698212 7.617901 7.537152 7.455945	61,22979 60,12214 59,02838 57,94794 56,88028	98.03522 97.48503 96.95331 96.43954 95.94325	1.601103 1.621450 1.642486 1.664248 1.666758	-133_8893 -145_2835 -156_5831 -167_7928 -178_9170	857,7657 853,9239 850,2318 846,6875 843,2866	-6,406528 -5,877636 -5,429909 -5,046030 -4,713284
8,80 8,81 8,82 8,83 8,83 8,84	15.14046 15.02485 14.91080 14.79825 14.68714	10.84361 10.77886 10.71608 10.65523 10.55625	0.7162008 0.7174020 0.7186791 0.7200329 0.7214640	7,374260 7,292078 7,209377 7,126136 7,042335	55.82486 5%.78119 53.74878 52.72717 51.71589	95,46397 95,00125 94,55469 94,12387 93,70842	1,710062 1,734195 1,759197 1,785112 1,811985	-189.9600 -200,9257 -211.8183 -222.6414 -233.3987	840,0256 836,9010 833,9097 831,0486 828,3148	-%,422119 -4,165226 -3,936911 -3,732679 -3,548927
8,85	14,57748	10,53909	0.7229732	6.957950	50.71452	93.30797	1.839867	-244,0938	825,7055	-3,382738
8,86	14,46906	10,48372	0.7245613	6.872961	49.72264	92.92216	1.868810	-254,7301	823,2180	-3.231726
8,87	14,36198	10,43009	0.7262291	6.787345	48.73984	92.55067	1.898871	-265,3110	820,8499	-3.093916
8,88	14,25614	10,37815	0.7279776	6.701077	47.76573	92.19318	1.930111	-275,8395	818,5986	-2,967662
8,89	14,15149	10,32786	0.7298075	6.614136	46.79994	91.84937	1.962596.	-286,3190	816,4620	-2,851582

COMPANY AND ALL ADDRESS

	1		r	1	ter alle and an all second	an a starten ander ander an			an an tha she she she she she	
λ	K L EI	kK <u>L</u> EI	k	Ku T	Q L2 EI		q	T ¹³ EI	tT L ³ EI	t
8,90 8,91 8,92 8,92 8,94	14.04799 13.94560 13.84427 13.74397 13.64465	10,27920 10,23211 10,18657 10,14255 10,10000	0.7317201 0.7337161 0.7357969 0.7379634 0.7379634 0.7402169	6.526497 6.438135 6.349025 6.259141 6.168458	45,84209 44,89183 43,94881 43,01272 42,08321	91,51897 91,20168 90,89725 90,60542 90,32596	1.996396 2.031588 2.068253 2.106480 2.146366	-296.7523 -307.1423 -317.4921 -327.8042 -338.0814	814,4378 812,5240 810,7186 809,0196 807,4254	-2.744504 -2.645431 -2.553508 -2.467996 -2.388257
8,95	13.54627	10_05890	0.7425586	6.076947	41,15999	90,05862	2.188014	-348.3264	805,9342	-2.313733
8,96	13.44880	10_01922	0.7449899	5.984582	40,24273	89,80319	2.231538	-358.5416	804,5444	-2.243936
8,97	13.35221	9_980935	0.7475121	5.891335	39,33115	89,55946	2.277061	-368.7295	803,2545	-2.178438
8,98	13.25645	9_944014	0.7501267	5.797175	38,42497	89,32722	2.324718	-378.8926	802,0630	-2.116861
8,99	13.16149	9_908430	0.7528351	5.702074	37,52389	89,10629	2.374655	-389.0333	800,9685	-2.058869
9,00	13.06730	9.874161	0.7556389	5.606000	36.62764	88.89648	2,427032	-399.1537	799,9698	-2.004165
9,01	12.97385	9.841183	0.7585398	5.508923	35.73597	88.69762	2,482026	-409.2563	799,0656	-1.952482
9,02	12.88111	9.809472	0.7615394	5.410809	34.84861	88.50955	2,539830	-419.3432	798,2547	-1.903583
9,03	12.78904	9.779007	0.7646396	5.311626	33.96530	88.33210	2,600657	-429.4166	797,5360	-1.857255
9,04	12.69762	9.749769	0.7678421	5.211339	33.08580	88.16513	2,664742	-439.4786	796,9085	-1.813305
9,05	12.60682	9,721736	0,7711490	5.109913	32.20987	88.00850	2.732345	-449,5313	796.3713	-1.771559
9,06	12.51661	9,694890	0,7745622	5.007311	31.33727	87.86206	2.803756	-459,5767	795.9234	-1.731862
9,07	12.42696	9,669213	0,7780838	4.903497	30.46777	87.72570	2.879295	-469,6169	795.5640	-1.694070
9,08	12.33784	9,644688	0,7817161	4.798431	29.60114	87.59929	2.959322	-479,6538	795.2923	-1.658055
9,09	12.24923	9,621299	0,7854614	4.692074	28.73715	87.48272	3.044238	-489,6893	795.1075	-1.623698
9.10	12.16111	9,599029	0.7893219	4,584385	27.87560	87,37588	3,134493	-499,7255	795,0089	-1,590891
9.11	12.07344	9,577865	0.7933002	4,475320	27.01626	87,27868	3,230598	-509.7641	794,9960	-1,559537
9.12	11.98621	9,557793	0.7973990	4,364837	26.15893	87,19100	3,333125	-519.8070	795,0681	-1,529545
9.13	11.89939	9,538798	0.8016208	4,252890	25.30340	87,11277	3,442730	-529.8561	795,2247	-1,500832
9.14	11.81295	9,520868	0.8059685	4,139432	24.44946	87,04390	3,560157	-539,9132	795,4654	-1,473321
9,15	11.72688	9.503991	0,8104451	4_024415	23_59691	86,98432	3,686259	~549,9801	795,7896	-1,446943
9.16	11.64114	9.488156	0,8150536	3_907787	22_74556	86,93 3 94	3,822018	~560,0585	796,1971	-1,421632
9.17	11.55573	9.473353	0,8197972	3_789499	21_89520	86,89271	3,968573	~570,1503	796,6874	-1,397329
9.18	11.47060	9.459570	0,8246792	3_669494	21_04566	86,86056	4,127244	~580,2571	797,2603	-1,373978
9.19	11.38576	9.446799	0,8297032	3_547718	20_19673	86,83744	4,299580	~590,3808	797,9155	-1,373978
9.20 9.21 9.22 9.23 9.23 9.24	11.30116 11.21680 11.13264 11.04868 10.96488	9,435030 9,424256 9,414468 9,405660 9,397824	0.8348726 0.8401914 0.8456634 0.8512928 0.8570839	3,424113 3,298618 3,171171 3,041707 2,910159	19,34822 18,49996 17,65175 16,80342 15,95478	86_82329 86_81807 86_82173 86_83424 86_83424 86_85557	4,487404 4,692878 4,918589 5,167653 5,443859	-600.5229 -610.6854 -620.8697 -631.0777 -641.3111	798.6529 799.4722 800.3733 801.3563 802.4209	-1,329929 -1,309139 -1,289116 -1,269822 - -1,251220 \

ad and shared it. A shared a state

196-38

TABLE I (contin

λ	K L EI	$kK \frac{L}{EI}$	k	K" L EI	$Q \frac{L^2}{EI}$	qui L2	q	t <u>1</u> 3 EI	tT L3 EI	t
9,25 9,26 9,27 9,28 9,29	10.88124 10.79772 10.71432 10.63100 10.54776	9.390955 9.385047 9.380095 9.376094 9.373041	0,8630411 0,8691692 0,8754730 0,8819577 0,8886287	2.776458 2.640529 2.502297 2.361683 2.218605	15.10565 14.25585 13.40520 12.55353 11.70066	86.88568 86.92457 86.97219 87.02856 87.09365	5,751868 6,097468 6,487945 6,932597 7,443483	-651,5714 -661,8605 -672,1799 -682,531% -692,9166	803.5673 804.7955 806.1056 807.4977 808.9720	-1.233276 -1.215959 -1.199241 -1.183092 -1.167488
9,30 9,31 9,32 9,33 9,34	10,46457 10,38141 10,29826 10,21511 10,13194	9.370931 9.369761 9.369530 9.370235 9.371871	0.8954915 0.9025521 0.9098165 0.9172912 0.9249829	2.072978 1.924711 1.773711 1.619881 1.463119	10.84641 9.990604 9.133072 8.273635 7.412119	87.16745 87.24998 87.34122 87.44120 87.54993	8.036528 8.733204 9.563182 10.56866 11.81173	-703,3372 -713,7949 -724,2915 -734,8285 -745,4077	810.5287 812.1681 813.890% 815.6960 817.5853	-1.152404 -1.137817 -1.123706 -1.110050 -1.096830
9°35 9°36 9°37 9°38 9°39 9°39	10.04873 9.965451 9.882096 9.798643 9.715072	9.374445 9.377950 9.382386 9.387754 9.394056	0,9328988 0,9410461 0,9494328 0,9580668 0,9669569	1,303319 1,140368 0,9741515 0,8045464 0,6314250	6,548346 5,682142 4,813329 3,941731 3,067170	87.66741 87.79367 87.92874 88.07265 88.22543	13,38772 15,45081 18,26776 22,34365 28,76444	-756.0308 -766.6995 -777.1156 -788.1808 -798.9969	819,5588 821.6167 823,7598 825,9884 828,3033	-1.084028 -1.071628 -1.059613 -1.047968 -1.036679
9_40 9_41 9_42 9_43 9_44 9_44	9.631366 9.547507 9.463474 9.379250 9.294815	9.401292 9.409463 9.418573 9.428623 9.439616	0.9761119 0.9855414 0.9952553 1.005264 1.015579	0,4546533 0,2740907 +0,08958941 -0,09900557 -0,2918573	2,189466 1,308441 +0,4239135 -0,4642990 -1,356380	88.38712 88.55777 88.73741 88.92611 89.12392	40,36926 67,66189 +209,3290 -191,5277 -65,70720	-809.8656 -820.7887 -831.7681 -842.8055 -853.9029	830,7049 833,1941 835,7715 838,4379 841,1941	-1.025732 -1.015114 -1.004813 -0.9948178 -0.9851128
9,45 9,46 9,47 9,48 9,49	9.210151 9.125239 9.040059 - 8.954592 8.868820	9,451556 9,464447 9,478294 9,493101 9,508873	1.026211 1.037173 1.048477 1.060138 1.072169	-0,4891373 -0,6910262 -0,8977140 -1,109401 -1,326300	-2,252514 -3,152890 -4,057694 -4,967118 -5,881355	89.33090 89.54712 89.77265 90.00756 90.25194	-39,65830 -28,40160 -22,12406 -18,12068 -15,34543	-865.0620 -876.2849 -887.5733 -898.9294 -910.3549	844,0409 846,9792 850,0101 853,1344 856,3532	-0,9756998 -0,9655559 -0,9576787 -0,9490561 -0,9406806
9,50 9,51 9,52 9,53 9,54	8.782721 8.696277 8.609467 8.522272 8.434670	9,525618 9,543340 9,562048 9,581747 9,602448	1_084586 1_097405 1_110643 1_124318 1_128318 1_138450	-1.548632 -1.776635 -2.010558 -2.250664 -2.497234	-6.800602 -7.725055 -8.654914 -9.590385 -10.53167	90.50586 90.76942 91.04272 91.32585 91.61893	-13,30851 -11,75000 -10,51919 -9,522648 -8,699371	-921.8520 -933.4227 -945.0690 -956.7931 -968.5971	859.6677 863.0789 866.5880 870.1964 873.9052	-0.9325441 -0.9246388 -0.9169574 -0.9094927 -0.9022381
9.55 9.56 9.57 9.58 9.59 9.59	8.346641 8.258165 8.169220 8.079784 7.989835	9.624157 9.646884 9.670638 9.695431 9.721271	1.153057 1.168163 1.183790 1.199962 1.216705	-2.750564 -3.010969 -3.278783 -3.554362 -3.838083	-11.47899 -12.43254 -13.39255 -14.35924 -15.33282	91.92205 92.23534 92.55892 92.89292 93.23748	-8.007854 -7.418866 -6.911225 -6.469210 -6.080907	-980,4832 -992,4536 -1004,511 -1016,656 -1028,894 -	877,7159 881,6299 885,6487 889,7737 894,0066	-0.8951871 -0.8883337 -0.8816718 -0.8751961 -0.8689010

λ	k <u>L</u> EI	$kK \frac{L}{EI}$	k	K" L EI			q	t L3 EI	$tT \frac{L^3}{EI}$	t
9.60	7.899352	9.748172	1.234047	-4.130349	-16,31354	93,59272	-5,737118	-1041.224	898.3491	-0.8627815
9.61	7.808312	9.776143	1.252018	-4.431591	-17,30162	93,95880	-5,430636	-1053.651	902.8028	-0.8568327
9.62	7.716692	9.805199	1.270648	-4.742266	-18,29730	94,33587	-5,155726	-1966.177	907.3695	-0.8510499
9.63	7.624468	9.835352	1.289972	-5.062864	-19,30082	94,72410	-4,907775	-1078.803	912.0512	-0.8454286
9.64	7.531617	9.866616	1.310026	-5.393911	-20,31243	95,12363	-4,683025	-1091.534	916.8498	-0.8399645
9.65	7.438114	9.899006	1.330849	-5.735967	-21.33239	95,53466	-4,478386	-1104,371	921.7671	-0.8346536
9.66	7.343936	9.932536	1.352481	-6.089635	+22.36094	95,95735	-4,291293	-1117,317	926.8055	-0.8294918
9.67	7.249055	9.967223	1.374968	-6.455561	-23.39836	96,39190	-4,119600	-1130,375	931.9669	-0.8244755
9.68	7.153448	10.00308	1.398358	-6.834442	-24.44491	96,83849	-3,961499	-1143,549	937.2536	-0.8196009
9.69	7.057087	10.04013	1.422702	-7.227026	-25.50088	97,29734	-3,815451	-1156,840	942.6680	-0.8148646
9,70	6.959947	10,07839	1.448056	-7.634121	-26,56654	97.76865	-3.680143	-1170.252	948.2125	-0,8102634
9,71	6.861998	10,11787	1.474479	-8.056598	-27,64218	98.25264	-3.554446	-1183.788	953.8895	-0,8057939
9,72	6.763213	10,15861	1.502038	-8.495401	-28,72810	98.74954	-3.437385	-1197.452	959.7017	-0,8014532
9,73	6.663564	10,20060	1.530803	-8.951550	-29,82461	99.25959	-3.328110	-1211.246	965.6517	-0,7972383
9,74	6.563021	10,24389	1.560850	-9.426155	-30,93203	99.78302	-3.225881	-1225.174	971.7424	-0,7931465
9.75	6.461553	10.28849	1.592262	-9.920419	-32.05066	100,3201	-3.130048	-1239.239	977,9765	-0.7891749
9.76	6.359131	10.33442	1.625131	-10.43565	-33.18084	100,8711	-3.040040	-1253.446	984,3572	-0.7853211
9.77	6.255721	10.38171	1.659554	-10.97329	-34.32292	101,4363	-2.955351	-1267.796	990,8876	-0.7815825
9.78	6.151291	10.43038	1.695641	-11.53489	-35.47723	102,0159	-2.875533	-1282.296	997,5707	-0.7779568
9.79	6.045809	10.48046	1.733509	-12.12216	-36.64414	102,6104	-2.800184	-1296.947	1004,410	-0.77744417
9,80	5.939238	10,53198	1.773288	-12.73699	-37.82402	103,2199	-2.728950	-1311.755	1011.409	-0,7710349
9,81	5.831545	10,58496	1.815121	-13.38144	-39.01724	103,8448	-2.661509	-1326.723	1018.571	-0,7677345
9,82	5.722692	10,63944	1.859166	-14.05779	-40.22421	104,4854	-2.597575	-1341.856	1025.901	-0,7645383
9,83	5.612642	10,69544	1.905598	-14.76856	-41.44531	105,1421	-2.536887	-1357.158	1033.401	-0,7614444
9,84	5.501357	10,75299	1.954608	-15.51653	-42.68097	105,8152	-2.479213	-1372.634	1041.076	-0,7584511
9,85 9,86 9,87 9,88 9,89 9,89	5,388796 5,274920 5,159684 5,043047 4,924962	10,81214 10,87291 10,93534 10,99947 11,06533	2,006411 2,061247 2,119382 2,181115 2,246785	-16.30480 -17.13683 -18.01647 -18.94806 -19.93645	-43,93162 -45,19769 -46,47966 -47,77797 -49,09313	106,5052 107,2123 107,9371 108,6798 109,4410	-2,424340 -2,372075 -2,322243 -2,274685 -2,229254	-1388,287 -1404,124 -1420,149 -1436,367 -1452,783	1048.930 1056.967 1065.192 1073.610 1082.225	-0.7555565 -0.7527588 -0.7500566 -0.7474482 -0.7449321
9,90 9,91 9,92 9,93 9,93 9,94	4,805384 4,684264 4,561552 4,437198 4,311149	11.13297 11.20243 11.27375 11.34697 11.42216	2.316770 2.391502 2.471471 2.557238 2.649446	-20,98714 -22,10636 -23,30119 -24,57972 -25,95125	-50,42564 -51,77602 -53,14480 -54,53255 -55,93984	110.2212 111.0207 111.8400 112.6797 113.5404	-2.185816 +2.144249 -2.104440 -2.066284 -2.029687	-1469.403 -1486.233 -1503.279 -1520.546 -1538.041	1091.042 1100.067 1109.305 1118.762 1128.443	-0.7425069 -0.7401712 -0.7379237 -0.7357633 -0.73368854

•

- <u>S</u>

· 注意 · 建新精制

seluke.

TABLE I (concluded)

λ	K L EI	kK L EI	k	Kn EI	Q L EI	$qQ \frac{L^2}{EI}$	q	t L ³ EI	tr $\frac{L^3}{ET}$	t
9,95	4,183348	11.49935	2。748838	-27,42649	-57.36727	114.4225	-1.994560	-1555.771	1138,355	-0.7316985
9,96	4,053739	11.57859	2。856274	-29,01788	-58.81546	115.3266	-1.960821	-1573.7%1	1148,504	-0.7297920
9,97	3,922263	11.65994	2。972759	-30,73993	-60.28506	116.2533	-1.928393	-1591.961	1158,896	-0.7279680
9,98	3,788860	11.74346	3。099471	-32,60967	-61.77672	117.2033	-1.897207	-1610.%35	1169,539	-0.7262256
9,99	3,653464	11.82921	3。297805	-34,64720	-63.29115	118.1771	-1.867198	-1629.173	1180,440	-0.7245637
10,00	3.516011	11.91723	3.289419	-36.87649	-6%.82907	119.1755	-1.838304	-1648.182	1191.606	-0.7229817
10,01	3.376432	12.00761	3.556303	-39.32625	-66.39121	120.1992	-1.810469	-1667.471	1203.044	-0.721\$785
10,02	3.234656	12.10040	3.740862	-42.03128	-67.97836	121.2489	-1.783640	-1687.047	1214.764	-0.72053
10,03	3.090608	12.19568	3.946044	-45.03406	-69.59132	122.3254	-1.787767	-1706.920	1226.773	-0.7187056
10,04	2.944213	12.29350	4.175481	-48.38708	-71.2309%	123.4294	-1.732806	-1727.099	1239.080	-0.717\$3\$6
10.05 10.06 10.07 10.08 10.09	2.795390 2.644055 2.490123 2.333502 2.174099	12.39396 12.49713 12.60309 12.71193 12.82373	4,433716 4,726502 5,061233 5,447575 5,898411	-52,15593 -56,42367 -61,29707 -66,91569 -73,46555	-72.89807 -74.59365 -76.91862 -78.07396 -79.86070	124.5618 125.7234 126.9153 128.1382 129.3933	-1.708711 -1.685444 -1.662966 -1.641242 -1.620237	-1747.593 -1768.412 -1789.568 -1811.070 -1832.930	1251.695 1264.627 1277.885 1291.481 1305.426	-0.7162395 -0.7151198 -0.7151198 -0.71\$10982 -0.71\$1082 -0.7122073
10.10 10.11 10.12 10.13 10.13 10.14	2.011816 1.846549 1.678192 1.506632 1.331752	12,93860 13,05662 13,17790 13,30255 13,43069	6,431300 7,070820 7,852440 8,329332 10,08497	-81,20017 -90,47443 -101,8005 -115,2460 -134,1164	-81.67992 -83.53275 -35.42036 -87.34398 -89.30488	130,6815 132,0039 133,3617 134,7561 136,1862	-1.599922 -1.580265 -1.561240 -1.542820 -1.524981	-1855.160 -1877.772 -1900.779 -1924.195 -1948.033	1 319 . 731 1 334 . 407 1 349 . 467 1 364 . 926 1 380 . 795	-0.7113838 -0.7106331 -0.7099559 -0.7093489 -0.7088148
10.15	1.153431	13,56242	11,75823	-158.3179	-91.30441	137.6595	-1.507698	-1972.309	1397.090	-0.7083523
10.16	0.9715397	13,69788	14,09914	-192.1568	-93.34399	139.1712	-1.490950	-1997.038	1413.825	-0.7079611
10.17	0.7859439	13,83719	17,60582	-242.8292	-95.42507	140.7248	-1.474716	-2022.235	1431.017	-0.7076411
10.18	0.5965028	13,98050	23,43743	-327.0704	-97.54921	142.3219	-1.458973	-2047.919	1448.682	-0.7073921
10.19	0.4030689	14,12793	35,05091	-494.7939	-99.71802	143.3640	-1.443710	-2074.106	1466.837	-0.7072139
10.20	0.2054873	14,27966	69,49167	-992.1118	-101.9332	145.6527	-1.443710	-2100.816	1485.501	-0.7071066

TABLE II VALUES OF THE COEFFICIENT <u>C</u> FOR THE STEADY - STATE FORCED DEFLECTION OF A UNIFORM BAR FIXED AT ONE END AND SUBJECTED TO A HARMONICALLY VARYING ROTATION AT THE OTHER END.

For an end rotation $\theta(t) = \theta \cos \omega t$, the deflection of the bar at a distance \overline{x} from the end being rotated is expressed as $w(\overline{x}, t) = Y_{\overline{x}} \cos \omega t$, where $Y_{\overline{x}} = C \theta L$, if θ represents the rotation amplitude at the left end, and $Y_{\overline{x}} = -C \theta L$, if θ represents the rotation amplitude at the right end. Values of <u>C</u> are tabulated for successive twelveth points of the bar as a function of the dimensionless parameter

 $\lambda = \sqrt[4]{\frac{m\,\omega^2}{E\,I}}\,L$

in which <u>m</u> is the mass per unit of length of the bar; ω is the circular frequency of vibration; <u>E</u> is the modulus of elasticity of the material in the bar; <u>I</u> is the moment of inertia of the cross section of the bar about its centroidal axis; and <u>L</u> is the span length of the bar.

Q					RA	TIO X/L	•				
٨	1/12	2/12	'3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
0 0.50 0.60 0.70 0.80 0.90	0.070023 0.070025 0.070027 0.070030 0.070035 0.070042	0.11574 0.11575 0.11575 0.11576 0.11576 0.11578 0.11580	0.14062 0.14063 0.14065 0.14067 0.14069 0.14069	0.14815 0.14816 0.14818 0.14820 0.14824 0.14824 0.14830	0.14178 0.14180 0.14182 0.14185 0.14185 0.14189 0.14196	0.12500 0.12502 0.12504 0.12507 0.12512 0.12512 0.12519	0,10127 0,10129 0,10131 0,10131 0,10138 0,10138	0.074074 0.074087 0.074101 0.074124 0.074160 0.074160 0.074211	0.0%46875 0.0%46884 0.0%46894 0.0%45939 0.0%45939 0.0%45934 0.0%45959	0.023148 0.023153 0.023158 0.023166 0.023166 0.023179 0.023198	0.006366 0.006367 0.006369 0.006371 0.006375 0.006380
1.00 1.10 1.20 1.30 1.40	0.070051 0.070064 0.070082 0.070104 0.070132	0.11583 0.11588 0.11593 0.11601 0.11610	0.14079 0.14087 0.14097 0.14111 0.14128	0.14838 0.14849 0.14863 0.14882 0.14882 0.14905	0,14206 0,14218 0,14235 0,14257 0,14284	0.12528 0.12541 0.12559 0.12581 0.12609	0.10153 0.10165 0.10181 0.10202 0.10228	0.074284 0.074381 0.074509 0.074675 0.074884	0.047019 0.047085 0.047173 0.047287 0.047430	0,023224 0,023259 0,023305 0,023365 0,023365 0,023440	0,006388 0,006398 0,006411 0,006428 0,006450
1.50 1.55 1.60 1.65 1.70	0.070166 0.070187 0.070209 0.070234 0.070261	0.11621 0.11628 0.11636 0.11636 0.11644 0.11653	0.14148 0.14161 0.14174 0.14189 0.14189 0.14205	0.14934 0.14951 0.14969 0.14990 0.14990 0.15013	0.14318 0.14338 0.14360 0.14384 0.14384 0.14410	0.12644 0.12665 0.12687 0.12712 0.12740	0.10260 0.10278 0.10299 0.10322 0.10347	0.075144 0.075295 0.075463 0.075648 0.075851	0.047608 0.047712 0.047827 0.047827 0.047954 0.048093	0,023534 0,023589 0,023649 0,023716 0,023789	0.006477 0.006493 0.006511 0.006530 0.006551

- EE 15/1

õ

		Setto Status		TABLE 11	- VALUES OF T	HE COEFFICIEN	T <u>c</u> - continu	ED			
λ			1		RA	T10 : X/L	and and a set of the s				
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
1.75 1.76 1.77 1.78 1.79	0.070291 0.070297 0.070303 0.070310 0.070316	0.11663 0.11665 0.11667 0.11669 0.11671	0.14223 0.14227 0.14231 0.14234 0.14234 0.14238	0.15037 0.15043 0.15048 0.15053 0.15059	0,14439 0,14446 0,14452 0,14458 0,14458 0,14465	0.12770 0.12776 0.12782 0.12789 0.12796	0.10375 0.10381 0.10387 0.10393 0.10393 0.10399	0.076074 0.076121 0.076169 0.076217 0.076267	0.048246 0.048278 0.048311 0.048344 0.048344 0.048378	0.023870 0.023887 0.023904 0.023922 0.023940	0.006575 0.006580 0.006585 0.006590 0.006595
1.80 1.81 1.82 1.83 1.83 1.84	0,070323 0,070330 0,070337 0,070351 0,070351	0.11673 0.11676 0.11678 0.11680 0.11683	0.14242 0.14247 0.14251 0.14255 0.14255 0.14259	0.15064 0.15070 0.15076 0.15082 0.15088	0,14471 0,14478 0,14485 0,14492 0,14499	0.12803 0.12809 0.12817 0.12824 0.12831	0.10405 0.10411 0.10418 0.10424 0.10424 0.10431	0.076318 0.076369 0.076421 0.076475 0.076529	0_048413 0_048448 0_048484 0_048484 0_048520 0_048558	0.023958 0.023976 0.023995 0.023995 0.024014 0.024034	0.006600 0.006606 0.006611 0.006617 0.006622
1.85 1.86 1.87 1.88 1.88 1.89	0,070359 0,070366 0,070374 0,070382 0,070389	0.11685 0.11688 0.11690 0.11693 0.11695	0.14264 0.14268 0.14273 0.14277 0.14277 0.14282	0.15094 0.15100 0.15107 0.15113 0.15120	0.14506 0.14513 0.14521 0.14528 0.14536	0.12838 0.12846 0.12854 0.12861 0.12861 0.12869	0.10438 0.10445 0.10452 0.10459 0.10459 0.10466	0.076584 0.076640 0.076697 0.076755 0.076814	0,048595 0,048634 0,048673 0,048713 0,048753	0.024054 0.024074 0.024095 0.024095 0.024116 0.024137	0,006628 0,006634 0,006640 0,006646 0,006652
1.90 1.91 1.92 1.93 1.94	0,070397 0,070405 0,070414 0,070422 0,970431	0.11698 0.11701 0.11703 0.11706 0.11709	0.14287 0.14292 0.14297 0.14302 0.14307	0.15126 0.15133 0.15140 0.15147 0.15154	0,14544 0,14552 0,14560 0,14568 0,14577	0.12878 0.12886 0.12894 0.12903 0.12911	0.10474 0.10481 0.10489 0.10497 0.10497 0.10505	0.076874 0.076936 0.076998 0.077061 0.077125	0.048795 0.048836 0.048879 0.048922 0.048927	0.024159 0.024181 0.024203 0.024226 0.024229	0.006658 0.006665 0.006671 0.006678 0.006685
1.95 1.96 1.97 1.98 1.98 1.99	0,070439 0,070448 0,070457 0,070457 0,070466 0,070475	0.11712 0.11715 0.11718 0.11721 0.11724	0.14312 0.14318 0.14323 0.14328 0.14334	0.15161 0.15169 0.15176 0.15184 0.15191	0,14585 0,14594 0,14603 0,14611 0,14621	0.12920 0.12929 0.12938 0.12947 0.12957	0.10513 0.10521 0.10530 0.10538 0.10538 0.10547	0.077191 0.077257 0.077325 0.077393 0.077463	0.049011 0.049057 0.049103 0.049150 0.049150 0.049198	0.024273 0.024297 0.024321 0.024346 0.024372	0.006691 0.006698 0.006705 0.006713 0.006720
2,00 2,01 2,02 2,03 2,04	0,070485 0,070494 0,070504 0,070514 0,070524	0,11727 0,11730 0,11733 0,11737 0,11740	0,14340 0,14345 0,14351 0,14357 0,14363	0.15199 0.15207 0.15215 0.15224 0.15232	0.14630 0.14639 0.14649 0.14658 0.14668	0.12966 0.12976 0.12986 0.12996 0.12996 0.13006	0.10555 0.10564 0.10573 0.10583 0.10583 0.10592	0.077534 0.077606 0.077680 0.07754 0.077830	0.049247 0.049297 0.049347 0.049398 0.049398 0.049350	0,024397 0,024423 0,024450 0,024477 0,024504	0,006727 0,006735 0,0067%3 0,006750 0,006758
2.05 2.06 2.07 2.08 2.09	0.070534 0.070545 0.070555 0.070555 0.070566 0.070577	0,11748 0,11747 0,11750 0,11754 0,11754 0,11757	0,14369 0,14376 0,14382 0,14388 0,14395	0,15241 0,15249 0,15258 0,15267 0,15276	0.14678 0.14689 0.14699 0.14709 0.14720	0.13017 0.13027 0.13038 0.13049 0.13060	0.10602 0.10611 0.10621 0.10631 0.10631 0.10641	0.077907 0.077986 0.078065 0.078146 0.078228	0.049503 0.049557 0.049611 0.049667 0.049667 0.049723	0.024532 0.024560 0.024589 0.024618 0.024648	0.006766 0.006775 0.006783 0.006791 0.006800

.

127.

Г	T										
λ			·	`` T	R	ATIO X/L					 - Line and R. Arbensenberger - Line and R. Arbensenberger - Line and R. Arbensenberger
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
2.10 2.11 2.12 2.13 2.14	0.070588 0.070599 0.070611 0.070622 0.070634	0,11761 0,11765 0,11769 0,11772 0,11776	0.14402 0.14408 0.14415 0.14422 0.14429	0,15285 0,15295 0,15304 0,15314 0,15324	0.14731 0.14742 0.14753 0.14765 0.14765	0.13071 0.13082 0.13094 0.13106 0.13118	0.10652 0.10662 0.10673 0.10684 0.10695	0.078312 0.078396 0.078482 0.078570 0.078659	0.049780 0.049838 0.049898 0.049898 0.049958 0.050019	0.024678 0.024709 0.024740 0.024740 0.024772 0.024804	0.006809 0.006818 0.006827 0.006836 0.006845
2.15 2.16 2.17 2.18 2.19	0.070646 0.070658 0.070670 0.070670 0.070683 0.070696	0.11780 0.11784 0.11788 0.11793 0.11793	0.14436 0.14444 0.14451 0.14459 0.14466	0,15334 0,15344 0,15354 0,15365 0,15365 0,15375	0,14788 0,14800 0,14812 0,14824 0,14837	0.13130 0.13142 0.13155 0.13167 0.13180	0.10706 0.10717 0.10729 0.10740 0.10752	0,078749 0,078841 0,078934 0.079029 0,079125	0.050081 0.050144 0.050207 0.050272 0.050338	0.024836 0.024870 0.024903 0.024903 0.024938 0.024972	0.006855 0.006864 0.006874 0.006884 0.006884
2.20 2.21 2.22 2.23 2.24	0,070708 0,070722 0,070735 0,070748 0,070762	0,11801 0,11805 0,11810 0,11814 0,11814 0,11819	0,1447& 0,14482 0,14490 0,14498 0,14506	0.15386 0.15397 0.15408 0.15420 0.15431	0.14849 0.14862 0.14875 0.14889 0.14889 0.14902	0.13193 0.13207 0.13220 0.1323% 0.1323% 0.13248	0.1076% 0.10776 0.10789 0.10802 0.1081%	0.079223 0.079322 0.079423 0.079525 0.079629	0.050405 0.050474 0.050543 0.050613 0.050684	0.025008 0.025043 0.025080 0.025080 0.025117 0.025154	0.00690% 0.006915 0.006925 0.006936 0.0069%7
2.25 2.26 2.27 2.28 2.29	0.070776 0.070790 0.070804 0.070819 0.070834	0.11824 0.11828 0.11833 0.11838 0.11838 0.11843	0.14515 0.14523 0.14532 0.14541 0.14550	0.15443 0.15454 0.15466 0.15479 0.15491	0.14916 0.14930 0.14944 0.14958 0.14958 0.14973	0.13262 0.13277 0.13291 0.13306 0.13321	0.10827 0.10841 0.10854 0.10868 0.10868 0.10882	0.079734 0.079841 0.079950 0.080061 0.080173	0.050757 0.050830 0.050905 0.050981 0.051058	0,025193 0.025231 0,025271 0.025311 0.025311 0.025351	0.006958 0.006959 0.006980 0.006992 0.007004
2.30 2.31 2.32 2.33 2.33 2.34	0,070849 0,070864 0,070879 0,070875 0,070911	0.11848 0.11853 0.11858 0.11863 0.11868	0.14559 0.14568 0.14577 0.14587 0.14587 0.14596	0.15504 0.15516 0.15529 0.15542 0.15556	0.14988 0.15003 0.15018 0.15033 0.15033 0.15049	0.13336 0.13352 0.13368 0.1338% 0.1338%	0.10896 0.10910 0.10924 0.10939 0.10939 0.10954	0.080287 0.080402 0.080520 0.080639 0.080639 0.080760	0.051136 0.051215 0.051296 0.051377 0.051360	0.025393 0.025434 0.025477 0.025520 0.025520 0.025564	0.007016 0.007028 0.007040 0.007053 0.007065
2.35 2.36 2.37 2.38 2.39	0,070927 0,070944 0,070960 0,070977 0,070977	0.11874 0.11879 0.11885 0.11885 0.11890 0.11896	0.14606 0.14616 0.14626 0.14636 0.14646	0.15569 0.15583 0.15597 0.15611 0.15626	0,15065 0,15081 0,15098 0,1511% 0,15131	0.13417 0.13433 0.13450 0.13468 0.13485	0.10969 0.10985 0.11000 0.11016 0.11032	0.080883 0.081007 0.081134 0.081262 0.081393	0.051545 0.051630 0.051717 0.051806 0.051895	0.025608 0.025653 0.025699 0.025746 0.025793	0,007078 0,007091 0,007105 0,007118 0,007132
2.40 2.41 2.42 2.43 2.43 2.44	0.071012 0.071029 0.071047 0.071065 0.071084	0.11902 0.11908 0.11913 0.11920 0.11926	0.14657 0.14667 0.14678 0.14689 0.14700	0.15640 0.15655 0.15670 0.15685 0.15701	0.15148 0.15166 0.15183 0.15201 0.15220	0.13503 0.13521 0.13539 0.13558 0.13557	0.11049 0.11065 0.11082 0.11099 0.11199 0.11117	0.081525 0.081660 0.081796 0.081935 0.082075	0.051986 0.052078 0.052172 0.052267 0.052364	0.025841 0.025890 0.025939 0.025989 0.025989 0.025040	0.007146 0.007160 0.007174 0.007189 0.007203

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

128,

÷

$1 \sim$					AR	rio 2/c	ald for the out of a point of a second second		n ne stan en en senten en e	Constant of the second s	
himme	1/12	2/12	8/12	4712	5/12	1/2	7/12	8/12	9/12	10/12	11/12
2.45 2.46 2.47 2.48 2.49	0.071102 0.071121 0.071141 0.071160 0.071180	0.11932 0.11938 0.11938 0.11945 0.11951 0.11958	0.14712 0.14723 0.14735 0.14735 0.14746 0.14758	0.15716 0.15732 0.15748 0.15765 0.15781	0.15238 0.15257 0.15276 0.15295 0.15815	0.13596 0.13615 0.13635 0.13655 0.13655 0.13675	0,11134 0,11152 0,11170 0,11189 0,11207	0,082218 0,082363 0,082510 0,082659 0,082810	0.052%62 0.052561 0.052662 0.052765 0.052869	0.026092 0.026144 0.026197 0.026251 0.026306	0.007218 0.007234 0.007249 0.007265 0.007281
2.50	0.071200	0,11964	0,14770	0.15798	0.15335	0,13696	0.11226	0.082964	0.05297%	0.026362	0,007297
2,52 2,53 2,54	0,071241 0,071262 0,071283	0.11978 0.11985 0.11992	0.14795 0.14808 0.14821	0.15833 0.15851 0.15868	0.15375 0.15396 0.15417	0,13738 0,13759 0,13781	0,11246 0,11265 0,11285 0,11305	0.083120 0.033278 0.083439 0.083602	0.053081 0.053190 0.053300 0.053412	0.026418 0.026476 0.026534 0.026533	0.007313 0.007330 0.0073%7 0.0073%7
2,55 2,56 2,57 2,58 2,59	0,071305 0,071327 0,071349 0,071371 0,071394	0,11999 0,12006 0,12014 0,12021 0,12021 0,12029	0,14834 0,14847 0,14861 0,14874 0,14888 0,14888	0.15887 0.15905 0.15924 0.15943 0.15962	0.15439 0.15460 0.15482 0.15505 0.15527	0,13803 0,13826 0,13849 0,13872 0,13872 0,13896	0.11325 0.11346 0.11367 0.11389 0.11389 0.11410	0,083767 0,083935 0,084106 0,084279 0,084454	0.053526 0.053642 0.053759 0.053878 0.053898	0.026653 0.026714 0.026776 0.026839 0.026839	0.007381 0.007395 0.007411 0.007435 0.007455
2.60 2.61 2.62 2.63 2.64	0,071418 0,071441 0,071465 0,071489 0,071514	0.12037 0.12044 0.12052 0.12060 0.12069	0.14902 0.14916 0.14931 0.14945 0.14960	0.15981 0.16001 0.16021 0.16042 0.16042	0,15551 0,15574 0,15598 0,15622 0,15646	0,13919 0,13944 0,13968 0,13993 0,13993 0,14018	0,111432 0,11454 0,11477 0,11500 0,11523	0.084632 0.084813 0.084997 0.085183 0.085183 0.085372	0.054121 0.054245 0.054371 0.054371 0.054499 0.054623	0.026967 0.027032 0.027099 0.027166 0.027235	0.007472 0.007491 0.007510 0.007530 0.007530
2,65 2,66 2,67 2,68 2,69	0.071539 0.071564 0.071589 0.071615 0.071642	0.12077 0.12085 0.12094 0.12102 0.12111	0,14975 0,14991 0,15006 0,15022 0,15038	0.16083 0.16105 0.16126 0.16128 0.16148 0.16171	0.15671 0.15696 0.15721 0.15747 0.15774	0,14044 0,14070 0,14097 0,14123 0,14121	0.11547 0.11571 0.11595 0.11620 0.11645	0.08556 0.085758 0.085956 0.085956 0.086156 0.086360	0.054761 0.054895 0.055030 0.055168 0.055308	0,027305 0,027375 0,027447 0,027520 0,027520 0,027594	0.007570 0.007591 0.007691 0.007691 0.007692 0.007692
2.70 2.71 2.72 2.73 2.74	0.071669 0.071696 0.071723 0.071751 0.071779	0.12120 0.12129 0.12138 0.12147 0.12157	0.15054 0.15070 0.15087 0.15104 0.15121	0.16198 0.16216 0.16239 0.16263 0.16287	0.15800 0.15827 0.15855 0.15882 0.15882 0.15911	0,14178 0,14206 0,14235 0,14264 0,14293	0.11671 0.11697 0.11723 0.11749 0.11776	0.086566 0.086776 0.086989 0.087204 0.087204	0.055450 0.055594 0.055740 0.055889 0.056039	0.027668 0.027745 0.027822 0.027800 0.027900 0.027980	0.007676 0.007698 0.007720 0.007748 0.007748
2.75 2.76 2.77 2.78 2.79	0,071808 0,071837 0,071867 0,071897 0,071927	0.12166 0.12176 0.12186 0.12196 0.12206	0,15139 0,15156 0,15174 0,15192 0,15211	0.16311 0.16336 0.16361 0.16386 0.16412	0.15939 0.15968 0.15998 0.16028 0.16058	0,14323 0,14353 0,14383 0,14415 0,14445 0,14446	0.11804 0.11832 0.11860 0.11888 0.11888 0.11918	0,087646 0,087872 0,088101 0,088333 0,088569	0.056192 0.056348 0.056505 0.056665 0.056665	0.028060 0.028142 0.028225 0.028310 0.028396	0,007789 0,007813 0,007837 0,007862 0,007862

TARLE IS - UNLIKE OF THE CONTRICTION OF STRATES

129.

and a second stand and a second stand s

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

2			•		R	ATIO X/L				<u></u>	
^	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12 .	9/12	10/12	11/12
2.80 2.81 2.82 2.83 2.83 2.84	0.071958 0.071989 0.072021 0.072053 0.072086	0.12216 0.12227 0.12237 0.12248 0.12259	0.15229 0.15248 0.15268 0.15287 0.15287 0.15307	0.16438 0.16464 0.16491 0.16519 0.16546	0.16089 0.16120 0.16152 0.16184 0.16217	0.14478 0.14511 0.14543 0.14577 0.14611	0.11947 0.11977 0.12007 0.12038 0.12038 0.12070	0,088808 0,089051 0,089298 0,089548 0,089548	0,056992 0,057159 0,057329 0,057501 0,057676	0,028483 0,028571 0,028661 0,028752 0,028844	0.007912 0.007938 0.00796% 0.007990 0.008017
2.85 2.86 2.87 2.88 2.88 2.89	0.072119 0.072153 0.072187 0.072222 0.072257	0.12270 0.12281 0.12293 0.12304 0.12316	0.15327 0.15348 0.15368 0.15389 0.15411	0.16574 0.16603 0.16632 0.16661 0.16691	0.16250 0.16284 0.16318 0.16353 0.16358	0,14645 0,14680 0,14716 0,14752 0,14788	0.12101 0.1213% 0.12166 0.12200 0.12233	0.090061 0.090322 0.090588 0.090858 0.090858 0.091132	0.05785 0.05803 0.058217 0.058402 0.058591	0.028938 0.029033 0.029129 0.029228 0.029228 0.029327	0.008044 0.008072 0.008100 0.008128 0.008157
2,90 2,91 2,92 2,93 2,93 2,94	0.072292 0.072328 0.072365 0.072402 0.072402	0.12328 0.12340 0.12352 0.12364 0.12377	0.15432 0.15454 0.15477 0.15499 0.15522	0.16721 0.16752 0.16783 0.16814 0.16846	0.16424 0.16460 0.16437 0.16534 0.16572	0、14825 0、14863 0、14901 0、14940 0、14979	0.12268 0.12302 0.12338 0.12373 0.12373 0.12410	0.091410 0.091692 0.091979 0.092270 0.092565	0.058782 0.058977 0.059174 0.059374 0.059374 0.059577	0.029428 0.029531 0.029635 0.029741 0.029848	0.008186 0.008216 0.008247 0.008277 0.008308
2.95 2.96 2.97 2.98 2.99	0.072478 0.072517 0.072557 0.072597 0.072637	0.12390 0.12403 0.12416 0.12429 0.12429 0.12443	0.15545 0.15569 0.15593 0.15617 0.15642	0.16879 0.16912 0.16946 0.16980 0.1701%	0.15610 0.16649 0.16689 0.16729 0.16770	0.15019 0.15060 0.15101 0.15148 0.15185	0.12447 0.12484 0.12522 0.12561 0.12600	0,092865 0,093169 0,093478 0,093792 0,094111	0.05978% 0.059993 0.060206 0.060422 0.060642	0.029958 0.030068 0.030181 0.030295 0.030311	0.008340 0.008372 0.008405 0.008438 0.008438 0.008472
3.00 3.01 3.02 3.03 3.04	0.072678 0.072720 0.072763 0.072806 0.072849	0.12456 0.12470 0.12484 0.12499 0.12513	0.15667 0.15693 0.15718 0.157%5 0.157%5 0.15771	0.17049 0.17085 0.17121 0.17158 0.17195	0.16811 0.16854 0.16896 0.16940 0.16984 0.16984	0.15229 0.15272 0.15317 0.15362 0.15408	0.12640 0.12680 0.12721 0.12763 0.12763 0.12805	0,094434 0,094763 0,095097 0,095436 0,095780	0.060865 0.061091 0.061321 0.06155% 0.06155%	0.030529 0.030649 0.030770 0.030894 0.030894 0.031019	0.008506 0.0085%1 0.008576 0.008612 0.0086%8
3.05 3.06 3.07 3.08 3.09	0.072894 0.072939 0.072984 0.073031 0.073078	0.12528 0.12543 0.12558 0.1257% 0.12590	0.15798 0.15826 0.15853 0.15882 0.15882 0.15910	0.17233 0.17271 0.17310 0.17349 0.17389	0.17028 0.17074 0.17120 0.17167 0.17214	0.15454 0.15501 0.15549 0.15598 0.15598 0.15648	0,128%8 0,12892 0,12936 0,12981 0,13027	0.096129 0.096484 0.096845 0.097211 0.097583	0.062032 0.062277 0.062525 0.062525 0.062778 0.063034	0.031146 0.031276 0.031407 0.031540 0.031540 0.031676	0.008685 0.008723 0.008761 0.008800 0.008839
3.10 3.11 3.12 3.13 3.13 3.14	0.073125 0.073174 0.073223 0.073273 0.073273	0.12605 0.12622 0.12638 0.12655 0.12672	0.15940 0.15969 0.15999 0.16030 0.16061	0.17430 0.17472 0.17514 0.17556 0.17600	0.17263 0.17312 0.17361 0.17412 0.17463	0.15698 0.15749 0.15801 0.15853 0.15907	0.13074 0.13121 0.13169 0.13217 0.13217 0.13267	0.097961 0.098344 0.098734 0.099130 0.099533	0.063294 0.063559 0.063828 0.063828 0.064101 0.064378	0.031814 0.031954 0.032096 0.032240 0.032387	0.008879 0.008920 0.008961 0.009003 0.0090046

130,

2		· ·			RA	TIO X/L	······································			· . • * "	•_•
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
3,15 3,16 3,17 3,18 3,19	0.073375 0.073428 0.073481 0.073534 0.073589	0.12689 0.12706 0.1272% 0.12742 0.12760	0.16092 0.16124 0.16156 0.16189 0.16223	0.17644 0.17688 0.17734 0.17780 0.17827	0.17515 0.17568 0.17622 0.17677 0.17733	0.15961 0.16016 0.16072 0.16129 0.16129 0.16187	0.13317 0.13368 0.13420 0.13473 0.13526	0.099942 0.10036 0.10078 0.10121 0.10164	0.064660 0.064946 0.065238 0.065533 0.065533	0.032536 0.032688 0.032842 0.032998 0.032998 0.033157	0,009089 0,009133 0,009178 0,00922% 0,00922%
3.20 3.21 3.22 3.23 3.23 3.24	0.073645 0.073701 0.073759 0.073817 0.073876	0.12779 0.12798 0.12817 0.12836 0.12856	0.16257 0.16291 0.16326 0.16362 0.16398	0.17875 0.17923 0.17972 0.18022 0.18073	0.17789 0.17846 0.17905 0.17964 0.18024	0.16246 0.16306 0.16367 0.16428 0.16491	0.13581 0.13636 0.13692 0.13749 0.13749 0.13808	0.10209 0.1025% 0.10300 0.103% 0.103% 0.10393	0.066140 0.066450 0:066766 0.067087 0:067813	0.033319 0.033484 0.033651 0.033821 0.033821 0.033993	0.009317 0.009365 0.009418 0.009468 0.009468 0.009513
3.25 3.26 3.27 3.28 8.29	0.073936 0.073997 0.074059 0.074122 0.074186	0.12876 0.12897 0.12917 0.12939 0.12960	0.16435 0.16472 0.16510 0.16549 0.16583	0.18124 0.18177 0.18230 0.18284 0.18339	0.18085 0.18147 0.18210 0.18275 0.18340	0.16555 0.16620 0.16686 0.16753 0.16753 0.16821	0.13867 0.13927 0.13988 0.13988 0.14050 0.14113	0,10441 0,10490 0,10540 0,10590 0,10592	0,067745 0,068082 0,068425 0,068774 0,069128	0.034169 0.034347 0.034529 0.034529 0.034714 0.034901	0.009564 0.009616 0.009669 0.009722 0.009777
3,30 3,31 3,32 3,33 3,33 3,34	0.074251 0.074317 0.074384 0.074452 0.074522	0.12982 0.13004 0.13026 0.13049 0.13072	0.16628 0.16669 0.16710 0.16710 0.16732 0.16794	0.18395 0.18452 0.18509 0.18568 0.18568 0.18628	0.18406 0.18474 0.18542 0.18612 0.18633	0.16890 0.16960 0.17032 0.17105 0.17179	0.1%177 0.1%2%2 0.1%308 0.1%376 0.1%376 0.1%%%	0,10694 0,10747 0,10801 0,10856 0,10912	0,059889 0,069856 0,070229 0,070608 0,070998	0,035092 0.035287 0.035484 0.035685 0,035685 0,035890	0.009833 0.009889 0.009947 0.010005 0.010065
3,35 3,36 3,37 3,38 3,39	0.074592 0.074664 0.074737 0.074811 0.074886	0.13096 0.13120 0.13144 0.13169 0.13194	0.16537 0.16881 0.16926 0.16971 0.17018	0.18689 0.18750 0.18813 0.18877 0.18877 0.18942	0.18755 0.18828 0.18903 0.18979 0.19056	0.17254 0.17330 0.17408 0.17488 0.17488 0.17568	0.14514 0.14585 0.14657 0.14731 0.14806	0.10969 0.11027 0.11086 0.11146 0.11146 0.11207	0.071387 0.071787 0.072193 0.072607 0.072607 0.073028	0.036098 0.036310 0.036525 0.036744 0.036744 0.036967	0.010125 0.010187 0.010249 0.010313 0.010378
3,40 3,41 3,42 3,43 3,44	0.074962 0.075040 0.075119 0.075200 0.075282	0.13220 0.13246 0.13272 0.13299 0.13299 0.13327	0.17065 0.17113 0.17161 0.17211 0.17261	0.19008 0.19075 0.19144 0.19213 0.19284	0.19135 0.19215 0.19296 0.19379 0.19463	0.17650 0.1773% 0.17819 0.17905 0.17993	0.14882 0.14959 0.15038 0.15118 0.15200	0.11269 0.11332 0.11396 0.1136 0.11462 0.11528	0,073457 0,073693 0,074937 0,074937 0,074790 0,075250	0.037195 0.037426 0.037661 0.037661 0.037901 0.038145	0.010444 0.010512 0.010580 0.010650 0.010721
3,45 3,46 3,47 3,48 3,49 3,49	0.075365 0.075450 0.075536 0.075623 0.075623 0.075713	0.13355 0.13383 0.13412 0.13442 0.13442 0.13471	0.17312 0.17365 0.17418 0.17472 0.17527	0.19356 0.19429 0.19504 0.19580 0.19580 0.19657	0.19549 0.19636 0.19725 0.19815 0.19807	0.18083 0.18174 0.18267 0.18361 0.18457	0.15283 0.15368 0.15454 0.15541 0.15631	0.11596 0.11665 0.11735 0.11807 0.11880	0.075719 0.076196 0.076682 0.077177 0.077682	0.038398 0.038647 0.038904 0.039167 0.039434	0.010793 0.010867 0.010942 0.011018 0.011018 0.011096

TABLE 11 - VALUES OF THE COEFFICIENT C - CONTINUED

۰ ک		f			RAT	10 x/L					·
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
3,50 3,51 3,52 3,53 3,53 3,54	0.07580¥ 0.075896 0.075990 0.076086 0.076183	0.13502 0.13533 0.13565 0.13597 0.13629	0,17583 0,17640 0,17698 0,17757 0,17817	0.19736 0.19816 0.19898 0.19981 0.20066	0.20001 0.20096 0.20193 0.20293 0.20393	0,18555 0,18655 0,18757 0,18861 0,18966	0.15722 0.15815 0.15909 0.16005 0.16103	0.11954 0.12030 0.12107 0.12186 0.12266	0.078196 0.078719 0.079253 0.079797 0.080351	0.039707 0.039985 0.040268 0.040556 0.040556 0.040850	0.011176 0.011256 0.011339 0.011339 0.011423 0.011509
3,55 3,56 3,57 3,58 3,59	0.076283 0.076384 0.076487 0.076592 0.076699	0.13663 0.13697 0.13731 0.13767 0.13802	0.17878 0.17941 0.18004 0.18069 0.18135	0.20152 0.20240 0.20330 0.20421 0.20514	0.20496 0.20601 0.20708 0.20817 0.20927	0.19074 0.19184 0.19295 0.19409 0.1 95 25	0.15203 0.16305 0.16409 0.16515 0.16623	0,12348 0,12431 0,12516 0,12602 0,12690	0.080916 0.081492 0.082079 0.082678 0.083288	0.041150 0.041455 0.041767 0.042085 0.04209	0.011596 0.011685 0.011776 0.011868 0.011963
3.60 3.61 3.62 3.63 3.64	0_076808 0_076919 0_077032 0_077147 0_077264	0,13839 0.13876 0,13914 0,13953 0,13953 0,13993	0.18203 0.18271 0.18341 0.18413 0.18485	0.20609 0.20706 0.20804 0.20905 0.21008	0.21041 0.21156 0.21273 0.21393 0.21393 0.21516	0.19644 0.19765 0.19888 0.20013 0.20142	0.16733 0.16846 0.16960 0.17077 0.17196	0,12780 0,12872 0,12966 0,13061 0,13159	0.083911 0.084546 0.085195 0.085856 0.085856 0.086531	0,042739 0,043077 0,043421 0,043772 0,044130	0.012059 0.012157 0.012258 0.012360 0.012360
3.65 3.66 3.67 3.68 3.69	0.077384 0.077506 0.077631 0.077758 0.077888	0.14033 0.14074 0.14116 0.14159 0.14202	0.18560 0.18635 0.18712 0.18791 0.18872	0,21112 0,21219 0,21328 0,21 328 0,21 439 0,21552	0.21641 0.21768 0.21898 0.22030 0.22166	0.20272 0.20406 0.20542 0.20681 0.20823	0.17318 0.17442 0.17569 0.17698 0.17630	0,13258 0,13360 0,13464 0,13570 0,13678	0.087220 0.087924 0.088642 0.089375 0.090124	0.044496 0.044870 0.045251 0.045640 0.046038	0.012571 0.012680 0.012791 0.012791 0.012905 0.013021
3.70 3.71 3.72 3.73 3.74	0.078020 0.078155 0.078293 0.078434 0.078577	0.14247 0.14292 0.14339 0.14386 0.14386 0.14434	0.1895 0.19037 0.19123 0.19210 0.19299	0.21668 0.21786 0.21907 0.22030 0.22156	0.22304 0.22445 0.22589 0.22737 0.22887	0.20968 0.21116 0.21268 0.21422 0.21580	0,17965 0,18103 0,18244 0,18388 0,18535	0,13788 0,13901 0,14016 0,14134 0,14254	0.090889 0.091671 0.092470 0.093286 0.094120	0.0%6%45 0.046860 0.047284 0.04718 0.04718 0.048161	0.013139 0.013260 0.013384 0.013510 0.013510 0.013640
3.75 3.76 3.77 3.78 3.79	0.07872 0.078874 0.079027 0.079183 0.079343	0,14484 0,14534 0,14586 0,14638 0,14638 0,14692	0.19391 0.19484 0.19579 0.19676 0.19775	0.22285 0.22417 0.22551 0.22688 0.22829	0.23041 0.23198 0.23359 0.23523 0.23523 0.23691	0.21741 0.21906 0.22075 0.22247 0.22424	0.18686 0.18839 0.18996 0.19157 0.19322	0.14377 0.14503 0.14632 0.14764 0.14898	0.094973 0.095846 0.096738 0.097650 0.098584	0.048615 0.049 078 0.049552 0.050037 0.050034	0.013772 0.013907 0.014045 0.014187 0.014187 0.014332
3.80 3.81 3.82 3.83 3.83 3.84	0.079506 0.079673 0.079844 0.080019 0.080197	0.14747 0.14804 0.14861 0.14920 0.14980	0,19877 0,19981 0,20087 0,20196 0,20307	0.22972 0.23119 0.23270 0.23424 0.23581	0.23863 0.24039 0.24218 0.24402 0.24591	0.22604 0.22789 0.22978 0.23171 0.23369	0.19490 0.19662 0.19838 0.20019 0.20203	0.15036 0.15177 0.15322 0.15469 0.15621	0.099540 0.10052 0.10152 0.10254 0.10360	0.051042 0.051562 0.052094 0.052640 0.053198	0.014480 0.014632 0.014787 0.014946 0.015109

TABLE 11 - VALUES OF THE COEFFICIENT C - CONTINUED

TABLE 11 - VALUES OF THE COEFFICIENT C - CONTINUED

i vere

	RATIO X/L												
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	· 11/12		
3_85 3_86 3_87 3_88 3_88 3_89	0.080380 0.080567 0.080759 0.080955 0.081156	0.15042 0.15105 0.15170 0.15236 0.15304	0.20421 0.20538 0.20658 0.20780 0.20905	0.23742 0.23908 0.24077 0.24250 0.24427	0.24784 0.24982 0.25184 0.25392 0.25604	0.23572 0.23780 0.23993 0.24211 0.24435	0.20393 0.20586 0.20785 0.20989 0.21197	0.15776 0.15935 0.16098 0.16265 0.16436	D.10467 O.10577 O.10690 O.10806 D.10925	0.053771 0.054357 0.054958 0.055575 0.056207	0.015276 0.015447 0.015623 0.015803 0.015987		
3.90 3.91 3.92 3.93 3.93 3.94	0.081362 0.081573 0.081789 0.082011 0.082238	0.15373 0.15444 0.15518 0.15592 0.15663	0.21034 0.21166 0.21301 0.21439 0.21582	0.24610 0.24796 0.24988 0.25184 0.25386	0.25822 0.260% 0.26275 0.26511 0.26752	0,24664 0,24900 0,25141 0,25389 0,25643	0.21412 0.21631 0.21857 0.22088 0.22325	0.16611 0.16792 0.16976 0.17166 0.17361	0.11047 0.11172 0.11300 0.11432 0.11568	0.056855 0.057521 0.058204 0.058905 0.059626	0.016177 0.016371 0.016570 0.016775 0.016986		
3,95 3,96 3,97 3,98 3,99	0,082472 0,082711 0,082957 0,083210 0,083469	0,15748 0,15829 0,15912 0,15998 0,16085	0.21728 0.21877 0.22031 0.22189 0.22352	0.25592 0.25805 0.26023 0.26247 0.26478	0.27000 0.27255 0.27516 0.27785 0.28062	0,25904 0,26172 0,26448 0,26731 0,27022	0.22569 0.22820 0.23077 0.23342 0.23614	0.17561 0.17767 0.17978 0.18196 0.18419	0.11707 0.11849 0.11996 0.12147 0.12302	0.060366 0.061126 0.061908 0.062711 0.063538	0.017202 0.01742% 0.017652 0.017687 0.018128		
4.00 4.01 4.02 4.03 4.09	0.083736 0.084010 0.084292 0.084581 0.084680	0.16175 0.16268 0.16363 0.16461 0.16562	0.22519 0.22691 0.22867 0.23049 0.23286	0.26715 0.26958 0.27209 0.27467 0.27733	0,28346 0,28688 0,28989 0,29249 0,29568	0.27322 0.27630 0.27947 0.28273 0.28610	0.23894 0.24182 0.24479 0.24784 0.24784 0.25099	0.18649 0.18886 0.19129 0.19380 0.19638	0.12462 0.12627 0.12796 0.12970 0.12970 0.13150	0.064389 0.065264 0.066166 0.067095 0.068052	0.018377 0.018633 0.018896 0.019167 0.019457		
4.05 4.06 4.07 4.08 4.09	0,085187 0,085504 0,085830 0,086166 0,086512	0.15666 0.16774 0.16888 0.16998 0.16998 0.17115	0.23429 0.23628 0.23833 0.24044 0.24248	0.28007 0.28289 0.28580 0.28579 0.29189	0:29897 0.30236 0.30585 0.30945 0.31317	0,28956 0,29314 0,29682 0,30062 0,30455	0,25428 0,25757 0,26102 0,26458 0,26825	0.19905 0.20179 0.20463 0.20755 0.21057	0.13335 0.13526 0.13723 0.13927 0.13927 0.14137	0.069038 0.070056 0.071106 0.072189 0.073308	0.019735 0.020033 0.020340 0.020656 0.020984		
4.10 4.11 4.12 4.13 4.14	0,036870 0.087239 0.087621 0.088015 0.088422	0.17236 0.17361 0.17491 0.17626 0.17762	0.24487 0.24719 0.24959 0.25207 0.25463	0.29509 0.29839 0.30180 0.30532 0.30897	0.31701 0.32098 0.32508 D.32932 0.33371	0.30860 0.31279 0.31711 0.32159 0.32622	0.27204 0.27596 0.28002 0.28421 0.28855	0.21369 0.21691 0.22025 0.22369 0.22726	0.14354 0.14578 0.14810 0.15049 0.15298	0.074464 0.075659 0.076895 0.078174 0.079498	0,021321 0,021671 0,022032 0,022406 0,022793		
4.15 4.16 4.17 4.18 4.19	0.088844 0.089280 0.089732 0.090201 0.090686	0.17905 0.18059 0.18206 0.18365 0.18530	0.25729 0.2600% 0.26288 0.2658% 0.2658%	0.31275 0.31666 0.32071 0.32491 0.32927	0.33825 0.34295 0.34783 0.35288 0.35613	0.33102 0.33599 0.34113 0.34647 0.35202	0.29304 0.29769 0.30252 0.30752 0.31272	0.23096 0.23878 0.23875 0.24287 0.24715	0,15555 0,15821 0,16098 0,16384 0,16682	0.080869 0.082289 0.083763 0.085292 0.086875	0.023194 0.023610 0.024040 0.024040 0.024488 0.024952		

133.

	TABLE 11 - VALUES OF THE COEFFICIENT C - CONTINUED											
λ		1			RA	TIO X/L						
The Party of Concernants	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12.	
4.20 4.21 4.22 4.23 4.23 4.23	0.091190 0.091713 0.092257 0.092823 0.093411	0.18701 0.18879 0.19063 0.19255 0.19455	0.27208 0.27538 0.27881 0.28238 0.28610	0,33379 0,33849 0,34338 0,34846 0,35376	0.36357 0.36923 0.37512 0.38124 0.38762	0.35777 0.36375 0.36997 0.37645 0.38319	0.31811 0.32372 0.32955 0.33562 0.34194	0.25159 0.25620 0.26100 0.26600 0.27121	0.16991 0.17313 0.17647 0.17995 0.18358	0.088528 0.090243 0.092026 0.093884 0.095819	0.025434 0.025936 0.026458 0.027001 0.027567	
4.25	0,094024	0.19663	0,28997	0.35927	0.39426	0.39022	0.34854	0.27664	0.18736	0.097837	0.028158	
4.26	0,094663	0.19880	0,29401	0.36503	0.40119	0.39755	0.35541	0.28230	0.19131	0.099943	0.028774	
4.27	0,095330	0.20106	0,29822	0.37103	0.40843	0.40521	0.36260	0.28822	0.19543	0.1021%	0.029418	
4.28	0,096026	0.20343	0,30263	0.37731	0.41599	0.41321	0.37010	0.29440	0.19974	0.1044%	0.030091	
4.29	0,09675%	0.20590	0,30723	0.38387	0.42390	0.42158	0.37796	0.30087	0.20425	0.1044%	0.030795	
4,30	0.097515	0.20859	0,31205	0.39074	0.43218	0.43034	0.38618	0.30765	0.20897	0.10937	0.031533	
4,31	0.098313	0.21120	0,31710	0.39794	0.44086	0.43953	0.39481	0.31476	0.21392	0.11201	0.032307	
4,32	0.099149	0.21405	0,32239	0.40549	0.44997	0.44917	0.40385	0.32222	0.21912	0.11479	0.033120	
4,33	0.10003	0.21703	0,32795	0.41342	0.45953	0.45930	0.41336	0.33005	0.22458	0.11771	0.033975	
4,34	0.10095	0.22016	0,33380	0.42176	0.46959	0.46995	0.42336	0.33830	0.23033	0.12078	0.034872	
4.35	0.10192	0,223%7	0,33395	0.43054	0.48019	0.48117	0.43390	0,3%698	0.23639	0.12401	0.035819	
4.36	0.1029¥	0,22695	0,34644	0.43980	0.49136	0.49300	0.44501	0,3561%	0.24278	0.12742	0.036818	
4.37	0.10403	0,23062	0,35329	0.44957	0.50315	0.50549	0.45675	0,36582	0.24952	0.13102	0.037873	
4.38	0.10517	0,23451	0,36053	0.45991	0.51563	0.51871	0.46916	0,37606	0.25666	0.13484	0.038989	
4.39	0.10638	0,23862	0,36820	0.47086	0.52884	0.53270	0.48231	0,38690	0.26423	0.13888	0.040173	
4,40	0.10766	0,24298	0.37633	0, 48247	0.5%286	0.5%756	0.49627	0.39841	0.27226	0.14317	0.041429	
4,42	0.10902	0,24761	0.38497	0, 49481	0.55775	0.56335	0.51110	0.41065	0.28079	0.14773	0.042764	
4,43	0.11047	0,2525%	0.39417	0, 50794	0.57362	0.58016	0.52690	0.42369	0.28989	0.15258	0.044187	
4,48	0.11201	0,25780	0.40398	0, 52196	0.59054	0.59810	0.54377	0.43760	0.29959	0.15777	0.045706	
4,48	0.11366	0,263%2	0.41447	0, 53694	0.60864	0.61729	0.56180	0.45248	0.30997	0.16332	0.047331	
4.45 4.46 4.47 4.48 4.49	0.11543 0.11733 0.11938 0.12159 0.12398	0.26945 0.27592 0.28288 0.29040 0.29855	0.42571 0.43778 0.45078 0.46482 0.48003	0.55300 0.57025 0.58882 0.60889 0.63063	0.62804 0.64887 0.67132 0.69556 0.72184	0.63785 0.65994 0.68375 0.70946 0.73733	0.58113 0.60191 0.62428 0.64847 0.67467	0,46848 0,48557 0,50404 0,52400 0,54563	0,32111 0,33307 0,34596 0,35989 0,37498	0.16926 0.17566 0.18254 0.18999 0.18999 0.19806	0.049073 0.050945 0.052963 0.055144 0.057508	
4,50	0.12658	0.307%0	0,49656	0.65¥26	0,75040	0.76763	0.70317	0.56915	0,39140	0.20683	0.060079	
4,51	0.12941	0.31706	0,51460	0.6800¥	0,78156	0.80069	0.73426	0.59483	0,40932	0.21641	0.062885	
4,52	0.13251	0.3276%	0,53495	0.70828	0,81570	0.83691	0.76833	0.62296	0,42896	0.22690	0.065961	
4,53	0.13593	0.33927	0,55608	0.73935	0,85326	0.87676	0.80582	0.65391	0,45057	0.23846	0.069345	
4,54	0.13970	0.35212	0,58009	0.77369	0,89478	0.92081	0.84727	0.68813	0,47446	0.25123	0.073089	

P		an and the second s		IRDLE I	I - VALUES UF	THE COEFFICT	ENT <u>C</u> - CONTIN	IUED			
R		•		· · · ·	RA	TIO X/L		an the second		- <u>1948</u> - <u>1948</u> - <u>1</u> 944	
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
4,55 4,56 4,57 4,58 4,59	0.14389 0.14857 0.15384 0.15981 0.16662	0.36640 0.38236 0.40031 0.42066 0.44390	0.60677 0.63658 0.67012 0.70813 0.75157	0.81184 0.85449 0.90247 0.95684 1.0190	0.94091 0.99248 1.0505 1.1163 1.1914	0.96978 1.0245 1.0861 1.1559 1.2357	0.89334 0.94484 1.0028 1.0685 1.1436	0.72617 0.76870 0.81657 0.87082 0.93285	0.50102 0.53072 0.56414 0.60203 0.64534	0,26543 0,28130 0,29917 0,31943 0,34259	0,077249 0,081902 0,087138 0,093075 0,099863
4.60 4.61 4.62 4.63 4.64	0,17449 0,18366 0,19450 0,20751 0,22340	0,47072 0,50200 0,53896 0,58331 0,63751	0.80169 0.86015 0.92924 1.0121 1.1134	1.0907 1.1743 1.2732 1.3918 1.5368	1.2782 1.3794 1.4990 1.6425 1.8179	1.3278 1.4352 1.5622 1.7146 1.9009	1,2302 1,3314 1,4509 1,5943 1,7697	1.0044 1.0880 1.1867 1.3052 1.4501	0,69534 0,75368 0,82264 0,90541 1,0066	0,36932 0,40051 0,43739 0,48165 0,53576	0.10770 0.11684 0.12765 0.14062 0.15648
4.65 4.66 4.67 4.68 4.69	0.24326 0.25879 0.30281 0.35043 0.42184	0,70524 0,79231 0,90837 1,0708 1,3144	1.2401 1.4028 1.6198 1.9235 2.3789	1.7180 1.9510 2.2616 2.6963 3.3481	2.0372 2.3191 2.6949 3.2209 4.0098	2.1337 2.4331 2.8322 3.3908 4.2286	1.9889 2.2707 2.6464 3.1724 3.9611	1.6312 1.8640 2.1744 2.6090 3.2607	1.1331 1.2957 1.5126 1.8161 2.2714	0.60340 0.69037 0.80634 0.96869 1.2122	0,17631 0,20181 0,23580 0,28339 0,35%76
4.70 4.71 4.72 4.730+ 4.74	0,54077 0,77839 1,4893 ±∞ -1,3717	1.7201 2.5306 4.9556 ±∞ -4.8038	3.1374 4.6530 9.1872 ±∞ -9.0609	4,4339 6,6033 13,094 ±∞ -13,028	5.3238 7.9492 15.804 ±∞ -15,809	5.6242 8.4126 16.755 ≟∽ -16.821	5,2751 7,9004 15,755 ±∞ -15,858	4.3464 6.5157 13.006 ±∞ ~13.116	3.0298 4.5452 9.0793 ±∞ -9.1691	1.6178 2.4282 4.8531 ± ~	0.47366 0.71124 1.4221 ±
4.75 4.76 4.77 4.78 4.79	-0.65203 -0.41280 -0.29329 -0.22162 -0.17386	-2.3489 -1.5329 -1.1252 -0.88077 -0.71784	-4,4709 -2,9450 -2,1829 -1,7258 -1,4212	-6,4575 -4,2733 -3,1823 -2,5281 -2,0921	-7.8575 -5.2142 -3.8939 -3.1021 -2.5745	-8.3758 -5.5684 -4.1662 -3.3253 -2.7650	-7,9066 -5,2634 -3,9431 -3,1515 -2,6240	-6.5457 -4.3616 -3.2708 -2.6167 -2.1808	-%.5792 -3.0535 -2.2915 -1.8346 -1.5301	-2.4517 -1.6357 -1.2262 -0.98385 -0.82102	-0.71931 -0.48011 -0.36064 -0.28901 -0.24128
4.80 4.81 4.82 4.83 4.83 4.84	-0.13974 -0.11416 -0.094255 -0.078333 -0.065304	-0.60148 -0.51421 -0.44634 -0.39204 -0.34761	-1.2036 -1.0405 -0.91363 -0.81214 -0.72909	-1.7807 -1.5472 -1.3656 -1.2204 -1.1016	-2.1978 -1.9152 -1.6955 -1.5198 -1.3760	-2.3649 -2.0649 -1.8316 -1.6450 -1.4923	-2.2473 -1.9649 -1.7453 -1.5696 -1.4259	-1.8696 -1.6362 -1.4548 -1.3097 -1.1910	-1.3127 -1.1497 -1.0230 -0.92165 -0.83876	-0.70476 -0.61760 -0.54984 -0.49564 -0.49564	-0.20720 -0.18165 -0.16179 -0.14590 -0.13291
4.85 4.86 4.87 4.88 4.89 4.89	-0.054445 -0.045254 -0.037374 -0.030543 -0.024564	-0.31058 -0.27925 -0.25238 -0.22910 -0.20872	-0.65989 -0.60133 -0.55113 -0.50762 -0.46955	-1.0025 -0.91875 -0.84693 -0.78470 -0.73024	-1.2563 -1.1549 -1.0681 -0.99279 -0.92693	-1.3652 -1.2576 -1.1654 -1.0855 -1.0156	-1.3062 -1.2050 -1.1182 -1.0431 -0.97730	-1.0922 -1.0085 -0.93686 -0.87478 -0.82048	-0.76971 -0.71131 -0.66127 -0.61791 -0.58000	-0,41440 -0,38317 -0,35642 -0,33324 -0,31297	-0,12209 -0,11294 -0,10510 -0,098305 -0,092366

š.

135.
	·			TADLE	I - VALUES UP	THE COEFFICI	ENT <u>C</u> - CONTL	NUED			
2		• ·	•		R	ATIO X/L			· · · ·		
<u>^</u>	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
4,90 4,91 4,92 4,93 4,93	-0.019286 -0.014593 -0.010392 -0.006609 -0.003185	-0.19073 -0.17474 -0.16042 -0.14754 -0.13587	-0.43595 -0.40608 -0.37935 -0.35528 -0.33351	-0.68219 -0.63948 -0.60126 -0.56686 -0.53574	-0.86884 -0.81720 -0.77100 -0.72943 -0.79182	-0.95396 -0.89917 -0.85015 -0.80605 -0.76617	-0.91930 -0.86776 -0.82166 -0.78018 -0.74267	-0.77258 -0.73003 -0.69197 -0.65774 -0.62678	-0.54656 -0.51685 -0.49029 -0.46639 -0.44639	-0.29510 -0.27922 -0.26502 -0.25225 -0.25225 -0.24070	-0.087128 -0.082475 -0.078314 -0.074572 -0.071189
4,95 4,96 4,97 4,98 4,99	-0.000071 +0.00277% 0.00538% 0.007787 0.010006	-0.12527 -0.11558 -0.10669 -0.09851% -0.090961	-0.31371 -0.29563 -0.27905 -0.26379 -0.24970	-0.50744 -0.48161 -0.45792 -0.43613 -0.41601	-0.65763 -0.62642 -0.59781 -0.57150 -0.54721	-0.72991 -0.69682 -0.66649 -0.63860 -0.63860 -0.61286	-0.70859 -0.67748 -0.64897 -0.62276 -0.59858	-0.59864 -0.57297 -0.54946 -0.52783 -0.52788	-0.42515 -0.40724 -0.39083 -0.37575 -0.36183	-0.23021 -0.2206 -0.21187 -0.20381 -0.19638	-0.068116 -0.065313 -0.062745 -0.060385 -0.058208
5.00 5.01 5.02 5.03 5.04	0.012063 0.013974 0.015755 0.017419 0.018977	-0.083963 -0.077461 -0.071404 -0.065747 -0.060451	-0.23665 -0.22453 -0.21324 -0.20270 -0.19283	-0,29738 -0,38008 -0,36397 -0,34893 -0,33486	-0,52472 -0,50384 -0,48441 -0,46627 -0,44930	-0.58904 -0.56692 -0.54634 -0.52713 -0.50917	-0.57619 -0.55542 -0.53609 -0.51806 -0.50120	-0,48943 -0,47230 -0,45636 -0,44150 -0,42761	-0.34896 -0.33702 -0.32591 -0.31555 -0.30587	-0,18951 -0.18313 -0.17720 -0.17167 -0.16650	-0.056195 -0.054328 -0.052591 -0.050972 -0.049459
5.05 5.06 5.07 5.08 5.09	0.020438 0.021813 0.023108 0.024331 0.025487	-0.055483 -0.050812 -0.046413 -0.042261 -0.038337	-0.18358 -0.17488 -0.16669 -0.15897 -0.15167	-0.32167 -0.30927 -0.29760 -0.28660 -0.27620	-0.43340 -0.41846 -0.40440 -0.39114 -0.37862	-0.49234 -0.47653 -0.46166 -0.44765 -0.434765 -0.43442	-0.48541 -0.47058 -0.45663 -0.44349 -0.44349 -0.43109	-0,41460 -0,40238 -0,39090 -0,38008 -0,36987	-0.29680 -0.28829 -0.28029 -0.27275 -0.26564	-0.16166 -0.15712 -0.15285 -0.14883 -0.14504	-0.048043 -0.046714 -0.045465 -0.044289 -0.043180
5.10 5.11 5.12 5.13 5.14	0.026582 0.027621 0.028607 0.029546 0.030440	-0.034621 -0.031097 -0.027751 -0.024568 -0.021538	-0.14476 -0.13821 -0.13199 -0.12608 -0.12045	-0.26637 -0.25705 -0.24820 -0.23979 -0.23180	-0.36678 -0.35557 -0.34493 -0.33482 -0.32521	-0.42191 -0.41006 -0.39882 -0.38816 -0.37801	-0.41936 -0.40826 -0.39774 -0.38775 -0.37826	-0.36022 -0.35109 -0.34243 -0.33422 -0.33422 -0.32642	-0.25893 -0.25257 -0.24655 -0.24084 -0.23541	-0,1%146 -0,13807 -0,13866 -0,13181 -0,12892	-0.042132 -0.041141 -0.040203 -0.039313 -0.038468
5.15 5.16 5.17 5.18 5.19	0.031293 0.032108 0.032887 0.033632 0.034346	-0,018648 -0,015889 -0,013253 -0,010730 -0,008314	-0.11509 -0.10997 -0.10508 -0.10040 -0.095925	-0.22418 -0.21691 -0.20997 -0.20333 -0.19698	-0.31605 -0.30732 -0.29899 -0.29103 -0.28342	-0.36836 -0.35915 -0.35037 -0.34199 -0.33397	-0.36922 -0.36062 -0.35241 -0.34457 -0.33708	-0,31900 -0,31193 -0,30519 -0,29875 -0,29261	-0.23025 -0.22534 -0.22066 -0.21619 -0.21192	-0.12617 -0.12356 -0.12106 -0.11869 -0.11642	-0.037665 -0.036900 -0.036172 -0.035478 -0.034815
5.20 5.21 5.22 5.23 5.23 5.24	0.035032 0.035690 0.036322 0.036930 0.037516	-0.005997 -0.003774 -0.001638 +0.000416 0.002393	-0.091634 -0.087519 -0.083567 -0.079769 -0.076116	-0.19090 -0.18507 -0.17947 -0.17410 -0.16893	-0,27613 -0,26914 -0,26244 -0,25601 -0,24983	-0,32630 -0,31895 -0,31190 -0,30514 -0,29865	-0.32992 -0.32306 -0.31649 -0.31019 -0.30414	-0.28674 -0.28111 -0.27573 -0.27057 -0.26561	-0.20784 -0.20395 -0.20021 -0.19663 -0.19320	-0.11425 -0.11217 -0.11019 -0.10828 -0.10646	-0.034182 -0.033576 -0.032997 -0.032442 -0.031910

45

.,

136.

1. 1.

У		RATIO X/L										
~~~~~	1/12	2/12	3/12	¥/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12	
5,25 5,26 5,27 5,28 5,29	0.038080 0.038625 0.039150 0.039658 0.040149	0,004296 0,006131 0,007902 0,009611 0,011263	-0,072600 -0,069212 -0,065945 -0,06279% -0,059750	-0.16396 -0.15917 -0.15456 -0.15011 -0.14582	-0,24389 -0,23817 -0,23266 -0,22735 -0,22224	-0,29242 -0,28642 -0,28064 -0,27508 -0,27508 -0,26972	-0,29833 -0,29274 -0,28737 -0,28220 -0,28220 -0,27722	-0,26086 -0,25629 -0,25190 -0,24768 -0,24361	-0.18990 -0.18674 -0.18370 -0.18370 -0.18078 -0.17797	-0.10471 -0.10303 -0.10142 -0.099868 -0.098377	-0.031400 -0.030911 -0.030441 -0.029989 -0.029555	
5,30 5,31 5,32 5,33 5,33	0.040623 0.041083 0.041528 0.041528 0.041960 0.042378	0.012859 0.014404 0.015900 0.015900 0.017349 0.018754	-0.056810 -0.053966 -0.051215 -0.048552 -0.045971	-0.14168 -0.13767 -0.13380 -0.13006 -0.12643	-0.21730 -0.21253 -0.20792 -0.20347 -0.19916	-0.26456 -0.25957 -0.25476 -0.25011 -0.24561	-0,27243 -0,26780 -0,26333 -0,25902 -0,25486	-0,23969 -0,23592 -0,23228 -0,22877 -0,22538	-0.17526 -0.17265 -0.17014 -0.16772 -0.16538	-0.096942 -0.095561 -0.094230 -0.092948 -0.091711	-0.029138 -0.028736 -0.028349 -0.027976 -0.027616	
5,35 5,36 5,37 5,38 5,39	0.0%2785 0.0%3179 0.0%3563 0.0%3936 0.0%%299	0.020117 0.021440 0.022725 0.023973 0.025187	-0,043470 -0,041044 -0,038690 -0,036404 -0,034183	-0.12292 -0.11952 -0.11521 -0.11301 -0.10990	-0.19499 -0.19096 -0.18704 -0.18325 -0.17957	-0,24126 -0,23706 -0,23299 -0,22904 -0,22522	-0,25084 -0,24695 -0,24318 -0,23954 -0,23602	-0.22211 -0.21896 -0.21589 -0.21293 -0.21293 -0.21007	-0.16312 -0.16095 -0.15884 -0.15681 -0.15681 -0.15484	-0.090518 -0.089367 -0.088255 -0.087181 -0.086144	-0.027270 ~0.026936 -0.026613 ~0.026301 ~0.026001	
5°40 5°41 5°42 5°43 5°44	0.044652 0.044997 0.045332 0.045659 0.045978	0.026368 0.027517 0.028637 0.029727 0.030790	-0.032024 -0.029924 -0.027881 -0.025892 -0.023955	-0.10689 -0.10395 -0.10110 -0.098327 -0.095628	-0.17601 -0.17254 -0.16918 -0.16591 -0.16273	-0.22152 -0.21792 -0.21443 -0.21105 -0.21105 -0.20776	-0.23260 -0.22929 -0.22609 -0.22297 -0.221996	-0,20730 -0,20462 -0,20203 -0,19951 -0,199707	-0,15294 -0,15110 -0,14932 -0,14760 -0,14593	-0.085142 -0.084172 -0.083234 -0.082327 -0.082327 -0.081449	-0.025710 -0.025429 -0.025158 -0.024895 -0.024641	
5°*5 5°*6 5°*7 5°*8 5°*9 5°*9	0.046290 0.046594 0.046891 0.047182 0.047166	0.031827 0.032839 0.033827 0.034792 0.035735	-0.022067 -0.020227 -0.018432 -0.016680 -0.014971	-0.093000 -0.090441 -0.087948 -0.085518 -0.083148	-0.1596% -0.15663 -0.15370 -0.15085 -0.14808	-0,20457 -0,20147 -0,19845 -0,19551 -0,19266	-0.21703 -0.21418 -0.21142 -0.20874 -0.20613	-0,19471 -0,19242 -0,19019 -0,18804 -0,18594	-0,14431 -0,14274 -0,14122 -0,13975 -0,13832	-0.080600 -0.079777 -0.078980 -0.078208 -0.077459	-0.024396 -0.024158 -0.023928 -0.023705 -0.023705	
5,50 5,51 5,52 5,53 5,53	0,047744 0,048016 0,048282 0,048544 0,048544 0,048799	0.036657 0.037558 0.038440 0.039303 0.039303 0.040149	-0.013301 -0.011670 -0.010075 -0.008515 -0.006991	-0,080836 -0,078580 -0,076378 -0,074226 -0,07212%	-0.14537 -0.14274 -0.14017 -0.13766 -0.13521	-0.18988 -0.18718 -0.18454 -0.18198 -0.18198	-0.20360 -0.20113 -0.19873 -0.19640 -0.19413	-0,18391 -0,18193 -0,18001 -0,17814 -0,17633	-0,13694 -0,13559 -0,13429 -0,13302 -0,13179	-0.076734 -0.076032 -0.075350 -0.074690 -0.074049	-0.023281 -0.023079 -0.022883 -0.022693 -0.022509	
5,55 5,56 5,57 5,58 5,59	0.049050 0.049297 0.049538 0.049775 0.049775 0.050008	0.040977 0.041789 0.042584 0.043365 0.044131	-0.005498 -0.004037 -0.002606 -0.001204 0.000170	-0.070070 -0.068061 -0.066096 -0.06%17% -0.06%17%	-0.13282 -0.13049 -0.12821 -0.12599 -0.12381	-0.17704 -0.17466 -0.17234 -0.17008 -0.16787	-0.19192 -0.18977 -0.18768 -0.18563 -0.18365	-0.17457 -0.17286 -0.17119 -0.16957 -0.16799	-0.13060 -0.12944 -0.12832 -0.12722 -0.12616	-0.073427 -0.072824 -0.072239 -0.071672 -0.071122	-0.022331 -0.022158 -0.021990 -0.021828 -0.021671	

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

~	RATIO X/L										•
^	1/12	2/12	3/12	¥/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
5.60 5.61 5.62 5.63 5.63	0.050237 0.050462 0.050683 0.050901 0.051115	0.044882 0.045621 0.046346 0.047058 0.047058 0.047759	0.001517 0.002838 0.004134 0.005406 0.005655	-0,060451 -0,05261;7 -0,056879 -0,055147 -0,053149	-J.12169 -J.11960 -O.11757 -O.11558 -O.11363	-0.16572 -0.16362 -0.16156 -0.15955 -0.15955	-0.18171 -0.17982 -0.17798 -0.17618 -0.17443	-0.16645 -0.16496 -0.16351 -0.16209 -0.16071	-0.12513 -0.12413 -0.12315 -0.12220 -0.12128	-0.070587 -0.070069 -0.069566 -0.069077 -0.068603	-0.021518 -0.021371 -0.021228 -0.021088 -0.02095%
5。65 5。66 5。67 5。68 5。69	0,051326 0,051534 0,051736 0,051940 0,052138	0,048447 0,049125 0,049791 0,050448 0,051095	0.007882 0.009086 0.010270 0.011435 0.012580	-0,051783 -0,050149 -0,048546 -0,048972 -0,045427	-0,11173 -0,10986 -0,10803 -0,10624 -0,10448	-0.15568 -0.15380 -0.15197 -0.15018 -0.14843	-0,17272 -0,17105 -0,16943 -0,16784 -0,16629	-0,15937 -0,15807 -0,15679 -0,15555 -0,15\$35	-0.12039 -0.11951 -0.11867 -0.11785 -0.11705	-0,068143 -0,067697 -0,067264 -0,066844 -0,066436	-0.020823 -0.020697 -0.020575 -0.020456 -0.020341
5.70 5.71 5.72 5.73 5.73 5.74	0.052334 0.052528 0.052718 0.052907 0.052903	0,051732 0,052359 0,052978 0,053588 0,054189	0,013707 0,014815 0,015906 0,016981 0,016981	-0.043910 -0.042419 -0.040954 -0.039513 -0.038097	-0,10276 -0,10107 -0,099\$409 -0,097783 -0,096187	-0,14671 -0,14504 -0,14339 -0,14179 -0,14021	-0.16477 -0.16330 -0.16185 -0.16044 0.15906	-0.15317 -0.15202 -0.15091 -0.14982 -0.14876	-0.11627 -0.11552 -0.11478 -0.11407 -0.11338	-0.066040 -0.065657 -0.065284 -0.064923 -0.064573	-0.020230 -0.020122 -0.020018 -0.019917 -0.019819
5.75 5.76 5.77 5.78 5.79	0.053277 0.053458 0.053638 0.053815 0.053991	0.054783 0.055369 0.0555948 0.056519 0.057084	0.019082 0.020109 0.021123 0.022122 0.023108	-0.036704 -0.035333 -0.033985 -0.032657 -0.031349	-0,094621 -0,093084 -0,091574 -0,090090 -0,088633	-0.13867 -0.13716 -0.13563 -0.13*23 -0.13281	-0.15772 -0.15641 -0.15512 -0.15387 -0.15264	-0.14773 -0.14672 -0.14574 -0.14478 -0.14385	-0.11270 -0.11205 -0.11141 -0.11079 -0.11019	-0.064234 -0.063905 -0.063586 -0.063277 -0.063278	-0.019724 -0.019633 -0.019544 -0.019545 -0.019459 -0.019376
5.80 5.81 5.82 5.83 5.83	0.054165 0.054337 0.054507 .0.054675 0.054843	0.05762 0.058193 0.058739 0.059279 0.059813	0.024080 0.025041 0.025989 0.026925 0.027850	-0.030062 -0.028793 -0.027543 -0.026311 -0.026311 -0.025096	-0.087201 -0.085793 -0.084409 -0.083047 -0.081708	-0.13142 -0.13005 -0.12872 -0.12740 -0.12740 -0.12612	-0.15144 -0.15027 -0.14913 -0.14801 -0.14691	-9.14295 -0.14206 -0.14120 -0.14036 -0.13954	-0.10961 -0.10904 -0.10849 -0.10796 -0.10744	-0.062688 -0.062408 -0.062137 -0.061874 -0.061821	-0.019297 -0.019220 -0.019146 -0.019146 -0.019074 -0.019005
5.85 5.86 5.87 5.88 5.89	0.055008 0.055172 0.055335 0.055335 0.055497 0.055657	0.0603%1 0.060665 0.061383 0.061896 0.062405	0.028764 0.029668 0.030561 0.031445 0.032320	-0.023837 -0.022715 -0.021548 -0.020397 -0.019260	-0.080391 -0.079095 -0.077819 -0.076563 -0.075326	-0.12\85 -0.12361 -0.122\0 -0.122\0 -0.12120 -0.12003	-0.14584 -0.14479 -0.144377 -0.14377 -0.14277 -0.14179	-0.13875 -0.13797 -0.13722 -0.13648 -0.13577	-0.10694 -0.10645 -0.10598 -0.10552 -0.10507	-0.061376 -0.061139 -0.060910 -0.060690 -0.060678	-0.018939 -0.018875 -0.018814 -0.018814 -0.018755 -0.018699
5,90 5,91 5,92 5,93 5,94	0.055816 0.055974 0.056131 0.056287 0.056441	0.062910 0.063410 0.063906 0.064398 0.064887	0.033185 0.034042 0.034890 0:035730 0.035562	-0.018137 -0.017028 -0.015933 -0.014850 -0.014850 -0.013779	-0.07\108 -0.072908 -0.071725 -0.070560 -0.069\11	-0.11888 -0.11775 -0.11664 -0.11555 -0.11448	-0.14084 -0.13990 -0.13896 -0.13809 -0.13722	-0.13507 -0.13439 -0.13373 -0.13309 -0.13246	-Q.10464 -0.10423 -0.10383 -0.10344 -0.10306	-0.060273 -0.060076 -0.059886 -0.059704 -0.059529	-0.018645 -0.018593 -0.018544 -0.018496 -0.018451

* . A.

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

2						RATIO X/L				ین دینون 	
·	1/12	2/12	3/12	4/12	5/12	1/2:	7/12	8/12	9/12	10/12	11/12
5,95 5,96 5,97 5,98 5,99	0_056595 0_056748 0_056900 0_057052 0_057203	0.065372 0.065854 0.066332 0.066807 0.066807	0.037387 0.038205 0.039016 0.039820 0.040618	-0.012721 -0.011674 -0.010638 -0.009613 -0.008599	-0.068278 -0.067161 -0.066060 -0.064973 -0.063900	-0,11343 -0,11240 -0,11139 -0,11039 -0,10941	-0.13636 -0.13552 -0.13471 -0.13391 -0.13312	-0.13186 -0.13127 -0.13069 -0.13014 -0.12959	-0.10270 -0.1023% -0.10250 -0.10260 -0.10168 -0.10136	-0.059361 +0.059201 -0.0590%7 -0.058900 -0.058760	-0.018408 -0.018368 -0.018329 -0.018329 -0.018293 -0.018258
6.00 6.01 6.02 6.03 6.04	0,057352 0,057502 0,057651 0,057799 0,0579%6	0.0677%9 0.068216 0.068681 0.0691%3 0.069603	0.041410 0.042196 0.042977 0.043752 0.044522	-0.007594 -0.006599 -0.005614 -0.004638 -0.003670	-0.062841 -0.061796 -0.060764 -0.059745 -0.058739	-0.10845 -0.10750 -0.10657 -0.10566 -0.10476	-0.13236 -0.13161 -0.13088 -0.13017 -0.12947	-0.12907 -0.12856 -0.12806 -0.12758 -0.12712	-0.10106 -0.10077 -0.10049 -0.10022 -0.099963	-0.058627 -0.058500 -0.058380 -0.058266 -0.058159	-0.018226 -0.018196 -0.018167 -0.018141 -0.018141
6.05 6.06 6.07 6.08 6.09	0.05809% 0.0582%0 0.058387 0.058533 0.058678	0.070061 0.070517 0.070971 0.071424 0.071875	0.045288 0.046049 0.046805 0.047557 0.048306	-0.002711 -0.001760 -0.000817 0.000119 0.001048	-0.057744 -0.056761 -0.055790 -0.054830 -0.053880	-0.10387 -0.10300 -0.10214 -0.10130 -0.10047	-0.12879 -0.12812 -0.12747 -0.12683 -0.12621	-0.12667 -0.12623 -0.12581 -0.12540 -0.12500	-0,099716 -0,099481 -0,099256 -0,099042 -0,098839	-0.058057 -0.057963 -0.05787% -0.057791 -0.057715	-0.01809% -0.018073 -0.018055 -0.018038 -0.018023
6.10 6.11 6.12 6.13 6.14	0,058824 0,058969 0,059114 0,059259 0,059403	0.072324 0.072773 0.073220 0.073666 0.074111	0.049051 0.049792 0.050530 0.051265 0.051997	0.001970 0.002885 0.00379% 0.004696 0.005593	-0.052941 -0.052012 -0.051092 -0.050182 -0.049282	-0.099658 -0.098856 -0.098066 -0.097289 -0.097289	-0.12560 -0.12501 -0.12443 -0.12387 -0.12332	-0.12462 -0.12426 -0.12390 -0.12356 -0.12323	-0.098646 -0.098463 -0.098291 -0.098129 -0.097976	-0.057644 -0.057580 -0.057521 -0.057468 -0.057422	-0.018010 -0.017999 -0.017990 -0.017983 -0.017977
6.15 6.16 6.17 6.18 6.18 6.19	0,0595%8 0,059692 0,059837 0,059981 0,060126	0.07%555 0.07%999 0.075%%2 0.075%%2 0.075885 0.076327	0.052727 0.053454 0.054179 0.054901 0.055622	0.006485 0.007371 0.008252 0.009128 0.010000	-0.048390 -0.047507 -0.046633 -0.045766 -0.044908	-0.095771 -0.095029 -0.09%299 -0.093581 -0.092873	-0.12278 -0.12226 -0.12175 -0.12125 -0.12125 -0.12076	-0,12292 -0,12261 -0,12232 -0,12205 -0,12178	-0.09783% -0.097702 -0.097580 -0.097%67 -0.09736%	-0.057381 -0.057345 -0.057316 -0.057292 -0.057274	-0.017973 -0.017971 -0.017971 -0.017973 -0.017973 -0.017976
6.20 6.21 6.22 6.23 6.24	0.060271 0.060416 0.060560 0.060706 0.060851	0.076769 0.077211 0.077653 0.078095 0.078537	0.056342 0.057060 0.057776 0.058492 0.059207	0.010868 0.011732 0.012591 0.013448 0.014301	-0.044057 -0.043214 -0.042377 -0.041548 -0.040725	-0.092176 -0.091489 -0.090813 -0.090147 -0.089491	-0.12029 -0.11983 -0.11938 -0.11894 -0.11852	-0.12153 -0.12128 -0.12106 -0.12084 -0.12083	-0.097271 -0.097188 -0.097114 -0.097049 -0.096995	-0.057262 -0.057256 -0.057255 -0.057260 -0.057270	-0.017981 -0.017988 -0.017997 -0.018008 -0.018020
6.25 6.26 6.27 6.28 6.29	0.060997 0.061143 0.061289 0.061436 0.061583	0.078979 0.079422 0.079866 0.080310 0.080755	0.059921 0.060634 0.061348 0.062061 0.0620734	0.015150 0.015997 0.016842 0.017684 0.018524	-0.039908 -0.039098 -0.038294 -0.037495 -0.036702	-0.088844 -0.088207 -0.087579 -0.086961 -0.086351	-0.11811 -0.11770 -0.11732 -0.11694 -0.11657	-0.12044 -0.12026 -0.12009 -0.11993 -0.11978	-0.096949 -0.096914 -0.096887 -0.096871 -0.096863	-0.057286 -0.057308 -0:057335 -0.057369 -0.057407	-0.018035 -0.018051 -0.018068 -0.018088 -0.018088 -0.018110

TABLE 11 - VALUES OF THE COEFFICIENT C - CONTINUED

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

2					F	RATIO X/L					
Λ	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
6.30 6.31 6.32 6.33 6.33 6.34	0.061731 0.061879 0.062027 0.062177 0.062177 0.062326	0.081201 0.081648 0.082096 0.082545 0.082996	0.063487 0.064201 0.064915 0.065631 0.066347	0.019362 0.020198 0.021032 0.021866 0.022698	-0.035915 -0.035132 -0.034354 -0.033581 -0.032812	-0,085751 -0,085159 -0,084575 -0,084000 -0,083433	-0.11622 -0.11587 -0.11554 -0.11522 -0.11490	-0,11965 -0,11952 -0,11941 -0,11931 -0,11922	-0.096865 -0.096877 -0.096898 -0.096928 -0.096928	-0,057452 -0,057502 -0,057558 -0,057620 -0,057687	-0.018133 -0.018158 -0.018158 -0.018185 -0.018214 -0.018244
6.35	0.062477	0.083448	0.067064	0.023530	-0.032048	-0.082874	-0.11460	-0.11914	-0.097018	-0.057760	-0.018277
6.36	0.052628	0.083902	9.067783	0.024361	-0.031288	-0.082323	-0.11431	-0.11907	-0.097077	-0.057840	-0:018311
6.37	0.062780	0.084357	0.068503	0.025191	-0.030531	-0.081779	-0.11403	-0.11902	-0.097145	-0.05792%	-0.018347
6.38	0.062932	0.084814	0.069225	0.026022	-0.029778	-0.081243	-0.11377	-0.11897	-0.097223	-0.058015	-0.018386
6.39	0.063086	0.085273	0.069949	0.026852	-0.029029	-0.080715	-0.11351	-0.11894	-0.097311	-0.058112	-0.018426
6,40	0.063240	0.085735	0.070675	0.027683	-0.028282	-0.080194	-0.11326	-0.11892	-0.097408	-0.058215	-0,018468
6,41	0.063395	0.086198	0.071404	0.028514	-0.027539	-0.079680	-0.11302	-0.11891	-0.097516	-0.058323	-0.018512
6,42	0.063551	0.086663	0.072135	0.029346	-0.026799	-0.079173	-0.11279	-0.11891	-0.097633	-0.058438	-0,018558
6,43	0.063708	0.087132	0.072868	0.030179	-0.026061	-0.078673	-0.11258	-0.11892	-0.097759	-0.058559	-0,018606
6,44	0.063866	0.087602	0.073605	0.031013	-0.025326	-0.078180	-0.11237	-0.11895	-0.097896	-0.058686	-0,018656
6,45 6,46 6,47 6,48 6,49	0.064024 0.064184 0.064346 0.064346 0.064508 0.064571	0.088075 0.088552 0.089031 0.089513 0.089998	0.074344 0.075087 0.075834 0.076584 0.077338	0.031848 0.032685 0.033524 0.034365 0.035208	-0,024593 -0,023862 -0,023133 -0,022406 -0,021680	-0.077694 -0.077214 -0.076741 -0.076274 -0.075813	-0.11218 -0.11199 -0.11181 -0.11165 -0.11149	-0.11898 -0.11903 -0.11909 -0.11916 -0.11924	-0.0980\3 -0.098200 -0.09836? -0.0985\4 -0.098731	-0.058819 -0.058958 -0.059104 -0.059256 -0.059415	-0.018708 -0.018762 -0.018818 -0.018876 -0.018836
6.50	0.064836	0.090487	0.078097	0.036054	-0.020955	-0.075358	-0.11135	-0.11934	-0.098929	-0.059580	-0.018999
6.51	0.065002	0.090979	0.078859	0.036903	-0.020232	-0.074910	-0.11121	-0.11945	-0.099138	-0.059752	-0.019063
6.52	0.065170	0.091475	0.079627	0.037755	-0.019509	-0.074467	-0;11109	-0.11956	-0.099357	-0.059931	-0.019130
6.53	0.065333	0.091974	0.080399	0.038610	-0.018787	-0.074031	-0.11097	-0.11969	-0.099587	-0.060116	-0.019199
6.54	0.065509	0.092478	0.081176	0.039469	-0.018066	-0.073600	-0.11087	-0.11984	-0.099827	-0.060309	-0.019199
6.55	0.065681	0.092985	0.081958	0.040331	-0.017344	-0.073174	-0.11078	-0.11999	-0.10008	-0.060508	-0.019344
6.56	0.065854	0.093497	0.082746	0.041198	-0.016623	-0.072755	-0.11069	-0.12016	-0.10034	-0.060714	-0.019420
6.57	0:066029	0.094013	0.083540	0.042069	-0.015902	-0.072340	-0.11062	-0.12034	-0.10062	-0.060928	-0.019499
6.58	0.066206	0.094534	0.084340	0.042944	-0.015181	-0.071931	-0.11056	-0.12053	-0.10090	-0.061148	-0.019579
6.59	0.066384	0.095059	0.085146	0.043825	-0.014459	-0.071528	-0.11050	-0.12074	-0.10120	-0.061377	-0.019663
6.60	0.066564	0.095590	0.085959	0.044710	-0.013736	-0.071129	-0.11046	-0.12096	-0.10151	-0.061612	-0.019749
6.61	0.066746	0.096125	0.086778	0.045601	-0.013012	-0.070736	-0.11043	-0.12119	-0.10183	-0.061856	-0.019837
6.62	0.066930	0.096666	0.087605	0.046498	-0.012287	-0.070348	-0.11041	-0.12144	-0.10216	-0.062107	-0.019928
6.63	0.067116	0.097212	0.088459	0.047401	-0.011561	-0.069965	-0.11040	-0.12169	-0.10251	-0.062366	-0.020021
6.64	0.067303	0.097763	0.089280	0.048310	-0.010833	-0.069587	-0.11040	-0.12197	-0.10287	-0.062633	-0.020118

1	1				·	an a	-				
λ	······································	1		 T	·	RATIO X/L					
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
6.65 6.66 6.67 6.68 6.69	0,067493 0.067685 0.067880 0.068076 0.068275	0.098321 0.098884 0.099454 0.10003 0.10061	0.090130 0.090988 0.091854 0.092729 0.093614	0.049225 0.050148 0.051078 0.052015 0.052961	-0.010103 -0.009371 -0.008637 -0.007901 -0.007161	-0.069213 -0.068845 -0.068481 -0.068121 -0.067766	-0.11041 -0.11043 -0.11047 -0.11051 -0.11057	-0.12225 -0.12255 -0.12287 -0.12320 -0.12324	-0.10324 -0.10362 -0.10402 -0.10443 -0.10445	-0,062909 -0,063193 -0,063485 -0,063786 -0,064096	-0.020217 -0.020318 -0.020423 -0.020531 -0.020531
6.70 6.71 6.72 6.73 6.74	0,068476 0,068680 0,068887 0,069096 0,069308	0.10120 0.10180 0.10240 0.10301 0.10363	0.094508 0.095411 0.096325 0.097250 0.098186	0.053915 0.054877 0.055848 0.056829 0.057820	-0.006419 -0.005673 -0.004924 -0.004171 -0.003414	-0.067416 -0.067070 -0.066729 -0.066391 -0.066058	-0.11064 -0.11071 -0.11080 -0.11091 -0.11102	-0.12390 -0.12427 -0.12466 -0.12507 -0.12549	-0.10529 -0.10574 -0.10621 -0.10669 -0.10718	-0,064414 -0,064742 -0,065080 -0,065427 -0,065784	-0.020755 -0.020871 -0;020991 -0.02111% -0.021240
6.75 6.76 6.77 6.78 6.79	0,069523 0,069740 0,069961 0,070185 0,070412	0.10426 0.10490 0.10554 0.10620 0.10686	0.099133 0.10009 0.10106 0.10205 0.10304	0,058821 0,059832 0,06085% 0,061888 0,06293%	-0.002652 -0.001886 -0.001115 -0.000339 +0.000343	-0.065729 -0.065404 -0.065083 -0.064767 -0.064767	-0.11115 -0.11128 -0.11128 -0.11143 -0.11160 -0.11177	-0.12592 -0.12638 -0.12685 -0.12734 -0.12734	-0.10770 -0.10822 -0.10877 -0.10933 -0.10990	-0.066151 -0.066528 -0.066916 -0.067315 -0.067724	-0.021370 -0.021503 -0.021640 -0.021780 -0.021924
6,80 6,81 6,82 6,83 6,8%	0.070642 0.070876 0.071114 0.071355 0.071600	0.10753 0.10821 0.10890 0.10961 0.11032	0.10405 0.10508 0.10611 0.10717 0.10824	0.063992 0.065063 0.066147 0.067245 0.068358	0.001230 0.002024 0.002824 0.003631 0.004445	-0.064145 -0.063840 -0.063538 -0.063541 -0.063241 -0.062947	-0.11196 -0.11217 -0.11238 -0.11261 -0.11285	-0.12837 -0.12891 -0.12947 -0.13005 -0.13065	-0.11050 -0.11111 -0.11174 -0.11238 -0.11238	-0.068145 -0.068577 -0.069021 -0.069478 -0.069946	-0,022072 -0,022224 -0,022379 -0,022539 -0,022703
6.85 6.86 6.87 6.88 6.88 6.89	0,071849 0,072101 0,072358 0,072620 0,072886	0.11104 0.11178 0.11253 0.11329 0.11406	0.10932 0.11042 0.11154 0.11268 0.11283	0.069485 0.070628 0.071787 0.072963 0.074156	0.005266 0.006096 0.006934 0.007780 0.008636	-0.062656 -0.062369 -0.062086 -0.061806 -0.061530	-0.11311 -0.11338 -0.11367 -0.11397 -0.11397 -0.11429	-0.13127 -0.13191 -0.13257 -0.13326 -0.13396	-0,11374 -0,11444 -0,11517 -0,11592 -0,11669	-0,070428 -0,070923 -0,071431 -0,071954 -0,072490	-0.022872 -0.023045 -0.023222 -0.023404 -0.023591
6,90 6,91 6,92 6,93 6,94	0.073156 0.073431 0.073711 0.073996 0.074287	0.11485 0.11565 0.11646 0.11729 0.11813	0.11501 0.11620 0.11741 0.11865 0.11991	0.075367 0.076597 0.077846 0.079115 0.080405	0.009501 0.010376 0.011261 0.012158 0.013066	-0.061257 -0.060987 -0.060721 -0.060458 -0.060198	-0.11462 -0.11497 -0.11534 -0.11572 -0.11612	-0.13469 -0.13544 -0.13622 -0.13702 -0.13785	-0,11748 -0,11829 -0,11913 -0,11999 -0,12088	-0,073041 -0,073608 -0,074190 -0,074788 -0,075402	-0.023783 -0.023980 -0.024183 -0.024391 -0.024604
6,95 6,96 6,97 6,98 6,99	0.074583 0.074885 0.075192 0.075505 0.075825	0.11899 0.11987 0.12076 0.12167 0.12260	0.12119 0.12249 0.12382 0.12517 0.12655	0.081717 0.083052 0.084410 0.085792 0.087199	0.013986 0.014918 0.015863 0.016822 0.017795	-0.059941 -0.059687 -0.059437 -0.059189 -0.058945	-0.11654 -0.11697 -0.11743 -0.11790 -0.11790	-0,13870 -0,13958 -0,14049 -0,14143 -0,14143	-0.12179 -0.12273 -0.12369 -0.12469 -0.12571	-0,076034 -0,076683 -0,077350 -0,078036 -0,078742	-0.024823 -0.025048 -0.025280 -0.025518 -0.025762

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

i i											
				TABLE	II - VALUES O	F THE COEFFICI	ENT <u>c</u> - CONTI	NUED			
2						RATIO X/L					
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
7.00 7.01 7.02 7.03 7.04	0.076152 0.076485 0.076825 0.077172 0.077527	0.12355 0.12451 0.12550 0.12651 0.12754	0.12796 0.12940 0.13086 0.13236 0.13388	0.088633 0.09009% 0.09158% 0.093103 0.094653	0,018783 0,019787 0,020807 0,021843 0,022898	-0,058703 -0,058464 -0,058229 -0,057996 -0,057766	-0.11891 -0.11945 -0.12000 -0.12058 -0.12118	-0.14339 -0.14442 -0.14548 -0.1457 -0.14657 -0.14770	-0.12676 -0.12785 -0.12896 -0.13011 -0.13130	-0,079467 -0,080213 -0,080981 -0,081770 -0,082582	-0.026013 -0.026271 -0.026537 -0.026810 -0.027091
7.05 7.06 7.07 7.08 7.09	0.077890 0.078260 0.078640 0.079028 0.079425	0.12859 0.12967 0.13077 0.13189 0.13304	0.13544 0.13704 0.13867 0.14034 0.14034 0.14204	0.096235 0.097850 0.099500 0.10119 0.10291	0.023970 0.025063 0.026175 0.027308 0.028464	-0.057539 -0.057314 -0.057093 -0.056874 -0.056657	-0.12181 -0.12246 -0.12313 -0.12383 -0.12456	-0.14887 -0.15007 -0.15131 -0.15259 -0.15391	-0.13252 -0.13377 -0.13506 -0.13640 -0.136777	-0,083418 -0,084279 -0,085165 -0,086078 -0,087018	-0.027380 -0.027677 -0.027983 -0.028298 -0.028298
7.10 7.11 7.12 7.13 7.14	0.079832 0.080248 0.080675 0.081113 0.081562	0,13422 0,13543 0,13667 0,13794 0,13924	0.14379 0.14558 0.14741 0.14929 0.15121	0.10467 0.10648 0.10832 0.11021 0.11215	0.029642 0.030844 0.032072 0.033326 0.034608	-0.056444 -0.056233 -0.056024 -0.055818 -0.055615	-0.12532 -0.12610 -0.12692 -0.12776 -0.12864	-0.15528 -0.15669 -0.15815 -0.15965 -0.16120	-0.13919 -0.14065 -0.14216 -0.14371 -0.14531	-0.087986 -0.088985 -0.090014 -0.091075 -0.092169	-0.028956 -0.029301 -0.029655 -0.030021 -0.030398
7.15 7.16 7.17 7.18 7.19	0,082023 0,082496 0,082981 0,083480 0,083993	0,14058 0,14195 0,14336 0,14480 0,14629	0.15319 0.15522 0.15730 0.15944 0.16164	0.11414 0.11618 0.11827 0.12041 0.12262	0,035919 0,037260 0,038632 0,040038 0,041479	-0,055414 -0,055215 -0,055019 -0,054826 -0,054635	-0.12955 -0.13050 -0.13148 -0.13250 -0.13356	-0.16281 -0.16447 -0.16619 -0.16796 -0.16780	-0,14697 -0,14868 -0,15045 -0,15227 -0,15416	-0.093298 -0.094464 -0.095667 -0.096909 -0.098193	-0.030787 -0.031188 -0.031603 -0.032030 -0.032472
7.20 7.21 7.22 7.23 7.24	0.084520 0.085063 0.085622 0.086197 0.086790	0.14782 0.14939 0.15101 0.15268 0.15440	0.16390 0.16622 0.16861 0.17108 0.17362	0.12488 0.12721 0.12961 0.13207 0.13462	0.042957 0.044473 0.046029 0.047628 0.049272	-0,054446 -0,054259 -0,054075 -0,053893 -0,053713	-0.13466 -0.13580 -0.13699 -0.13822 -0.13951	-0.17170 -0.17367 -0.17571 -0.17782 -0.18001	-0.15611 -0.15812 -0.16021 -0.16237 -0.16237	-0.099520 -0.10089 -0.10231 -0.10378 -0.10530	-0.032929 -0.033401 -0.033889 -0.034394 -0.034394 -0.034917
7.25 7.26 7.27 7.28 7.29	0.087401 0.088032 0.088684 0.089356 0.090052	0.15618 0.15801 0.15990 0.16185 0.16386	0.17624 0.17894 0.18173 0.18461 0.18759	0,13723 0,13993 0,14272 0,14560 0,14857	0.050963 0.052703 0.054496 0.056343 0.058249	-0:053536 -0.053361 -0.053188 -0.053017 -0.052848	-0.14084 -0.14223 -0.14367 -0.14518 -0.14574	-0.18228 -0.18464 -0.18708 -0.18962 -0.19225	-0.16693 -0.16933 -0.17182 -0.171841 -0.17709	-0.10687 -0.10851 -0.11020 -0.11195 -0.11377	-0.035458 -0.036019 -0.036600 -0.037203 -0;037829
7.30 7.31 7.32 7.33 7.34	0,090771 0,091516 0,092287 0,093086 0,093915	0.16595 0.16811 0.17035 0.17267 0.17507	0.19067 0.19386 0.19717 0.20059 0.20414	0.15164 0.15482 0.15812 0.16153 0.16507	0,060216 0,062248 0,064349 0,066523 0,068774	-0.052682 -0.052517 -0.052355 -0.052195 -0.052036	-0.14837 -0.15007 -0.15184 -0.15369 -0.15562	-0,19499 -0,19784 -0,20080 -0,20389 -0,20710	-0,17988 -0,18278 -0,18579 -0,18893 -0,19219	-0,11566 -0,11763 -0,11967 -0,12180 -0,12401	-0.038478 -0.039153 -0.039855 -0.040585 -0.041345
	•.					-			· · · · · · · · · · · · · · · · · · ·		, ,

. . <mark>*</mark>.

. ¹. ę

142. • •

r	1.			<u> </u>	·						i j
2	·	····	· · ·		· ·	RATIO X/L				· · · ·	
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12-	9/12	10/12	11/12
7,35 7,36 7,37 7,38 7,39	0.094776 0.095670 0.096599 0.097567 0.098574	0,17757 0,18017 0,18287 0,18568 0,18860	0,20783 0,21166 0,21564 0,21979 0,22411	0.16874 0.17255 0.17652 0.18064 0.18494	0.071107 0.073527 0.076039 0.078651 0.081367	-0,051880 -0,051726 -0,051574 -0,051574 -0,051424 -0,051275	-0.15763 -0.15974 -0.16194 -0.16424 -0.16666	-0.21046 -0.21395 -0.21760 -0.22141 -0.22540	-0.19559 -0.19914 -0.20284 -0.20670 -0.21074	-0.12631 -0.12872 -0.13122 -0.13384 -0.13657	-0.042136 -0.042961 -0.043821 -0.044720 -0.045658
7.40 7.41 7.42 7.43 7.44	0.099625 0.10072 0.10187 0.10307 0.10332	0.19165 0.19484 0.19817 0.20165 0.20529	0.22861 0.23331 0.23823 0.24336 0.24874	0.18942 0.19409 0.19897 0.20408 0.20943	0.084195 0.087144 0.090220 0.093434 0.096796	-0.051129 -0.050984 -0.050842 -0.050701 -0.050563	-0.16918 -0.17183 -0.17462 -0.17754 -0.18062	-0,22957 -0,23394 -0,23852 -0,24333 -0,24333 -0,24837	-0.21497 -0.21939 -0.22403 -0.22889 -0.23400	-0.13943 -0.14243 -0.14557 -0.14886 -0.15231	-0,046640 -0,047667 -0,048744 -0,049873 -0,051059
7,45 7,46 7,47 7,48 7,49	0.10563 0.10701 0.10847 0.10999 0.11160	0.20911 0.21312 0.21734 0.22177 0.22645	0.25438 0.26031 0.26653 0.27308 0.27998	0.21503 0.22091 0.22710 0.23360 0.24046	0.10032 0.10401 0.10789 0.11196 0.11625	-0,050426 -0,050291 -0,050157 -0,050026 -0,049896	-0.18385 -0.18726 -0.19086 -0.19467 -0.19869	-0.25368 -0.25927 -0.26516 -0.27138 -0.27794	-0.23936 -0.24501 -0.25096 -0.25724 -0.25724	-0.15594 -0.15976 -0.16379 -0.16304 -0.16804 -0.17252	-0.052305 -0.053616 -0.054997 -0.056455 -0.057994
7.50 7.51 7.52 7.58 7.58	0.11330 0.11509 0.11699 0.11901 0.12115	0.23138 0.23660 0.24212 0.24799 0.25422	0.28727 0.29497 0.30313 0.31179 0.32099	0.24769 0.25534 0.26344 0.27204 0.28117	0.12078 0.12557 0.13063 0.13599 0.14169	-0,049768 -0,049642 -0,049518 -0,049395 -0,049395 -0,049274	-0,20295 -0,20747 -0,21227 -0,21737 -0,22282	-0,28489 =0,29226 -0,30008 -0,30840 -0,31725	-0.27090 =0.27834 -0.28623 -0.29462 -0.30356	-0.17727 -0.18230 -0.18764 -0.19331 -0.19936	-0.059623 -0.061348 -0.063179 -0.065126 -0.067199
7.55 7.56 7.57 7.58 7.59	0.123\3 0.12586 0.128\7 0.13126 0.13\26	0,26085 0,26793 0,27551 0,28363 0,29236	0.33079 0.34126 0.35245 0.36445 0.37736	0.29090 0.30128 0.31239 0.32430 0.33711	0.14776 0.15423 0.16115 0.16857 0.17654	-0,049155 -0,049037 -0,048922 -0,048807 -0,048695	-0.22863 -0.23486 -0.24153 -0.24871 -0.25644	-0.32671 -0.33682 -0.34765 -0.35930 -0.37184	-0,31310 -0,32330 -0,33423 -0,34597 -0,35862	-0,20580 -0,21270 -0,22009 -0,22802 -0,23657	-0.069411 -0.071776 -0.074311 -0.077033 -0.079965
7.60 7.61 7.62 7.63 7.64	0.13750 0.14100 0.14479 0.14893 0.15344	0,30178 0,31197 0,32302 0,33505 0,34820	0.39127 0.40632 0.42265 0.44044 0.45988	0.35092 0.36586 0.38206 0.39971 0.41900	0,18514 0,19443 0,20450 0,21547 0,22746	-0,048584 -0,048475 -0,048367 -0,048261 -0,048157	-0.26479 -0.27385 -0.28369 -0.29443 -0.30619	-0,38538 -0,40005 -0,41600 -0,43339 -0,45252	-0.37228 -0.38707 -0.40314 -0.42067 -0.43986	-0.24580 -0.25580 -0.26667 -0.27851 -0.29148	-0.083132 -0.086561 -0.090288 -0.094351 -0.098799

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

2		••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	¢		RATIO X/L					
~	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
7.65 7.66 7.67 7.68 7.69	0,15840 0,16387 0,16993 0,17669 0,18427	0.36264 0.37856 0.39622 0.41590 0.43798	0.48122 0.50476 0.53086 0.55996 0.59262	0,44018 0.46354 0.48944 0.51832 0.55072	0.24061 0.25512 0.27120 0.28913 0.30923	-0.048054 -0.047953 -0.047853 -0.047755 -0.047755 -0.047658	-0.31912 -0.33341 -0.34927 -0.36698 -0.38688	-0,47335 -0,49645 -0,52210 -0,55073 -0,58288	-0,46095 -0,48423 -0,51008 -0,53893 -0,57133	-0.30573 -0.32147 -0.33894 -0.35843 -0.35843	-0.10369 -0.10909 -0.11508 -0.12177 -0.12928
7.70	0,19284	0,46293	0.62952	0.58734	0,33195	-0.047563	-0.40939	-0,61925	-0,60798	-0,40510	-0.13777
7.71	0,20259	0,49136	0.67156	0.62906	0,35784	-0.047470	-0.43506	-0,66072	-0,64976	-0,43334	-0.14746
7.72	0,21381	0,52404	0.71989	0.67702	0,38759	-0.047378	-0.46461	-0,70844	-0,69785	-0,46583	-0.15861
7.73	0,22684	0,56201	0.77605	0.73276	0,42215	-0.047287	-0.49897	-0,76394	-0,75376	-0,50362	-0.17157
7.74	0,24217	0,60668	0.84212	0.79832	0,46281	-0.047198	-0.53943	-0,82926	-0,81957	-0,54810	-0.18682
7.75	0.26046	0.65998	0.92096	0.87658	0.51133	-0,047111	-0.58775	-0.90727	-0.89817	-0.60121	-0.20505
7.76	0.28267	0.72470	1.0167	0.97160	0.57024	-0,047025	-0.64647	-1.0021	-0.99366	-0.66575	-0.22718
7.77	0.31021	0.80496	1.1354	1.0894	0.64330	-0,046940	-0.71933	-1.1197	-1.1121	-0.74582	-0.25465
7.78	0.34526	0.90712	1.2866	1.2394	0.73629	-0,046857	-0.81213	-1.2694	-1.2630	-0.84780	-0.28963
7.79	0.39139	1.0416	1.4855	1.8369	0.85867	-0,046776	-0.93433	-1.4666	-1.4617	-0.98207	-0.33569
7,80	0,45485	1.2266	1.7592	1.7085	1.0270	-0,046696	-1.1025	-1.7380	-1,7351	-1,1669	-0.39908
7,81	0,54767	1.4971	2.1595	2.1058	1.2733	-0,046617	-1.3486	-2.1351	-2,1352	-1,4372	-0.49183
7,82	0,69638	1.9306	2.8008	2.7424	1.6679	-0,046540	-1.7430	-2.7715	-2,7763	-1,8705	-0.64046
7,83	0,97322	2.7376	3.9948	3.9276	2.4024	-0,046464	-2.4774	-3.9564	-3,9701	-2,6773	-0.91723
7,83	1,6693	4.7667	6.9972	6.9078	4.2495	-0,046389	-4.3242	-6.9364	-6,9722	-4,7062	-1.6132
7.85 7.86 7.87 7.88 7.88 7.89	6.7095 -3.0843 -1.2156 -0.74165 -0.52529	19,459 -9,0905 -3,6431 -2,2615 -1,6308	28,797 -13,507 -5,4463 -3,4021 -2,4690	28.886 -13.445 -5.4438 -3.4148 -2.4885	17,623 -8,3644 -3,4057 -2,1481 -1,5741	-0.046316 -0.046245 -0.046175 -0.046106 -0.046038	-17.698 8.2900 3.3315 2.0741 1.5002	-28,515 13,416 5,4159 3,3870 2,4610	-28,711 13,532 5,4720 3,4281 2,4952	-19.398 9.1514 3.7041 2.3227 1.6922	-6.6533 3.1405 1.2719 0.79800 0.58172
7.90	-0,40139	-1.2697	-1,93%6	-1.9581	-1.2453	-0.045972	1.1716	1.9309	1.9611	1.3312	0.45789
7.91	-0,32111	-1.0356	-1,588%	-1.6145	-1.0323	-0.045908	0.95874	1.5874	1.6151	1.0974	0.37768
7.92	-0,26485	-0.87167	-1,3%58	-1.3737	-0.88311	-0.045844	0.80966	1.3469	1.3728	0.99363	0.32150
7.93	-0,22323	-0.75037	-1,1663	-1.1956	-0.77273	-0.045782	0.69943	1.1690	1.1936	0.81252	0.27995
7.94	-0,19119	-0.65700	-1,0282	-1.0585	-0.68776	-0.045782	0.61462	1.0321	1.0557	0.71935	0.24799
7.95	-0.16577	-0.58291	-0.91863	-0.94978	-0.62035	-0,045663	0.54735	0,92357	0,94632	0.64545	0.22264
7.96	-0.14510	-0.52267	-0.82953	-0.86136	-0.56555	-0,045605	0.49270	0,83537	0,85747	0.58540	0.20204
7.97	-0.12796	-0.47274	-0.75568	-0.78808	-0.52012	-0,045548	0.44742	0,76230	0,78386	0.53566	0.18498
7.98	-0.11352	-0.43066	-0.69345	-0.72634	-0.48185	-0,045493	0.40929	0,70077	0,72188	0.49377	0.17062
7.99	-0.10118	-0.39472	-0.64031	-0.67362	-0.44917	-0,045439	0.37676	0,64825	0,66898	0.45803	0.15835

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

**...** 

TABLE	11 -	VALUES	OF THE	COEFFICIENT C - CONTINUED

<u>م</u> `		·	-	· · ·		RATIO X/L			· · ·		
	/ 1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
8,00 8,01 8,02 8,03 8,04	-0.090521 -0.081215 -0.073019 -0.065746 -0.059247	-0.36367 -0.33656 -0.31270 -0.29152 -0.27260	-0.59439 -0.55432 -0.51904 -0.48774 -0.45978	-0.62806 -0.58831 -0.55332 -0.52228 -0.49455	-0.42094 -0.39631 -0.37462 -0.35538 -0.33820	-0,045387 -0.045336 -0.045286 -0.045238 -0.045238 -0.045190	0.34866 0.32416 0.30261 0.28350 0.26645	0.60291 0.56336 0.52857 0.49773 0.47021	0,62330 0,58347 0,54843 0,51738 0,48966	0.42717 0.40025 0.37658 0.35560 0.33687	0,14777 0,13854 0,13042 0,12322 0,11680
8.05 8.06 8.07 8.08 8.09	-0.053404 -0.048122 -0.043324 -0.038945 -0.034931	-0,25559 -0,24022 -0,22625 -0,21351 -0,20184	-0.43465 -0.41194 -0.39131 -0.37249 -0.35526	-0,46964 -0,44712 -0,42668 -0,40804 -0,39096	-0.32276 -0.30881 -0.29614 -0.28459 -0.28459 -0.27401	-0,045145 -0.045100 -0.045057 -0.045015 -0.04974	0.25113 0.23731 0.22477 0.21334 0.20288	0.44550 0.42318 0.40294 0.38449 0.36761	0,46477 0,44230 0,42192 0,40335 0,38635	0.32006 0.30488 0.29112 0.27857 0.26710	0,11104 0,10583 0,10111 0,096811 0,092877
8,10 8,11 8,12 8,13 8,14	-0,031240 -0,027832 -0,024677 -0,024677 -0,019017	-0.19110 -0.18119 -0.17202 -0.16350 -0.15557	-0.33941 -0.32479 -0.31125 -0.29869 -0.28700	-0.37526 -0.36078 -0.34738 -0.33494 -0.32337	-0.26429 -0.25532 -0.24703 -0.23933 -0.23216	-0.044935 -0.044897 -0.04480 -0.044825 -0.044791	0.19327 0.18442 0.17623 0.16864 0.16159	0.35211 0.33783 0.32462 0.31238 0.30100	0.37075 0.35637 0.34308 0.33076 0.31931	0,25656 0,24685 0,23788 0,22956 0,22183	0.089264 0.085936 0.082861 0.080010 0.077361
8.15 8.16 8.17 8.18 8.19	-0.016468 -0.014083 -0.011845 -0.009741 -0.007759	-0,14817 -0,14124 -0,13474 -0,13474 -0,12864 -0,12289	-0.27608 -0.26587 -0.25630 -0.25630 -0.23884	-0.31257 -0.30247 -0.29300 -0.28411 -0.27575	-0.22548 -0.21923 -0.21338 -0.20788 -0.20271	-0.044758 -0.044727 -0.044696 -0.044667 -0.044640	0.15501 0.14886 0.14311 0.13771 0.13264	0.29039 0.28048 0.27121 0.26251 0.25433	0.30864 0.29867 0.28935 0.28060 0.27238	0,21463 0,20790 0,20161 0,19571 0,19016	0.074893 0.072588 0.070432 0.068410 0.066510
8.20 8.21 8.22 8.23 8.23 8.24	-0.005889 -0.004121 -0.002447 -0.002447 -0.000859 0.000650	-0,11746 -0,11234 -0,10748 -0,10288 -0,098512	-0,23085 -0,22331 -0,21617 -0,20941 -0,20299	-0,26786 -0,26041 -0,25337 -0,24669 -0,24036	-0,19784 -0,19323 -0,18888 -0,18476 -0,18086	-0.044614 -0.044588 -0.044565 -0.044542 -0.044521	0.12786 0.12336 0.11910 0.11507 0.11125	0.2%663 0.23937 0.23251 0.22602 0.21987	0,26464 0,25734 0,25045 0,24393 0,23776	0,18494 0,18002 0,17538 0,17098 0,16682	0.064723 0.063037 0.061446 0.059942 0.058518
8,25 8,26 8,27 8,28 8,29	0.002085 0.003452 0.004755 0.006000 0.007191	-0,094358 -0,090402 -0,086630 -0,083029 -0,079588	-0.19688 -0.19107 -0.18554 -0.18026 -0.17521	-0.23434 -0.22862 -0.22317 -0.21797 -0.21300	-0.17715 -0.17362 -0.17026 -0.16706 -0.16400	-0.044501 -0.044483 -0.044465 -0.04449 -0.044435	0,10762 0.10418 0.10090 0.097776 0.094798	0.21404 0.20850 0.20323 0.19821 0.19343	0.23190 0.22634 0.22106 0.21603 0.21123	0,16288 0,15913 0,15557 0,15218 0,14895	0.057167 0.055885 0:054667 0.053508 0.05240%
8.30 8.31 8.32 8.33 8.34	0.008330 0.009422 0.010470 0.011475 0.012442	-0.076296 -0.073143 -0.070120 -0.067218 -0.064431	-0.17039 -0.165?7 -0.16134 -0.15710 -0.15302	-0.20826 -0.20372 -0.19937 -0.19521 -0.19121	-0.16108 -0.15829 -0.15562 -0.15307 -0.15061	-0.044409 -0.044398 -0.044389 -0.044389 -0.044380	0.091956 0.089239 0.086641 0.084152 0.081767	0.18886 0.18451 0.18034 0.17635 0.17253	0.20666 0.20229 0.19812 0.19412 0.19030	0.14588 0.14294 0.14013 0.13744 0.13744	0.051351 0.050346 0.049386 0.048469 0.047591

.

.

145.

r	1	······									
2						RATIO X/L					
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
8.35 8.36 8.37 8.38 8.39	0.013372 0.014267 0.015130 0.015963 0.016766	-0.061751 -0.059172 -0.056687 -0.054293 -0.051982	-0.14910 -0.14534 -0.14171 -0.13822 -0.13485	-0.18737 -0.18368 -0.18013 -0.17671 -0.17342	-0.14826 -0.14600 -0.14383 -0.14174 -0.13973	-0.044373 -0.044368 -0.044363 -0.044360 -0.044359	0.079480 0.077283 0.075173 0.073144 0.071191	0.16887 0.16535 0.16198 0.15874 0.15562	0.18664 0.18312 0.17975 0.17652 0.17341	0.13241 0.13005 0.12779 0.12562 0.12353	0.046750 0.045944 0.045171 0.044830 0.043717
8.40 8.41 8.42 8.43 8.43 8.44	0.017542 0.018293 0.019019 0.019722 0.020402	-0.049752 -0.047597 -0.045513 -0.043497 -0.041545	-0.13160 -0.12846 -0.12543 -0.12250 -0.11967	-0.17025 -0.16719 -0.16423 -0.16138 -0.15862	-0.13779 -0.13593 -0.13418 -0.13239 -0.13072	-0,044358 -0,044359 -0,044361 -0,044365 -0,044370	0.069311 0.067499 0.065751 0.064065 0.062436	0.15262 0.14974 0.14696 0.14427 0.14169	0.17041 0.16754 0.16476 0.16209 0.15952	0,12152 0,11959 0,11774 0,11595 0,11423	0.043033 0.042375 0.041741 0.041132 0.040545
8,45 8,46 8,47 8,48 8,49	0.021063 0.021703 0.022325 0.022928 0.023515	-0.039654 -0.037821 -0.036043 -0.034317 -0.034317	-0.11693 -0.11427 -0.11169 -0.10919 -0.10677	-0,15595 -0,15337 -0,15087 -0,14845 -0,14610	-0.12910 -0.12754 -0.12602 -0.12456 -0.12314	-0,044376 -0,044383 -0,044392 -0,044403 -0,044414	0.060863 0.059342 0.057871 0.056447 0.055068	0,13919 0,13678 0,13445 0,13220 0,13002	0.15704 0.15464 0.15233 0.15010 0.14794	0.11256 0.11096 0.10942 0.10792 0.10648	0.039979 0.039434 0.038908 0.038400 0.038400 0.037910
8.50 8.51 8.52 8.53 8.54	0.024086 0.024641 0.025182 0.025708 0.025708	-0.031012 -0.029429 -0.027888 -0.026389 -0.026389 -0.024930	-0.10442 -0.10213 -0.099910 -0.097750 -0.097649	-0.14382 -0.14161 -0.13947 -0.13739 -0.13536	-0.12177 -0.12044 -0.11916 -0.11791 -0.11670	-0.044427 -0.044441 -0.044457 -0.044474 -0.044474	0.053732 0.052437 0.051181 0.049962 0.048778	0.12792 0.12588 0.12390 0.12199 0.12013	0,14585 0,14383 0,14188 0,13999 0,13816	0.10509 0.10375 0.10244 0.10119 0.0999568	0.037437 0.036979 0.036538 0.036110 0.035697
8,55 8,56 8,57 8,58 8,59	0.026722 0.027210 0.027686 0.028151 0.028606	-0.023507 -0.022121 -0.020769 -0.019450 -0.018163	-0.09360 -0.091613 -0.08967 -0.087783 -0.085940	-0.13340 -0.13148 -0.12962 -0.12781 -0.12605	-0.11552 -0.11438 -0.11328 -0.11220 -0.11115	-0.044512 -0.044533 -0.044556 -0.044580 -0.044580 -0.044605	0.047629 0.046512 0.045426 0.0454369 0.044369 0.043342	0.11833 0.11659 0.11489 0.11825 0.11325 0.11165	0.13638 0.13467 0.13300 0.13139 0.12982	0.098789 0.097647 0.096541 0.0955470 0.095470 0.094432	0.035297 0.034911 0.034536 0.034174 0.033822
8,60 8,61 8,62 8,63 8,64	0.029050 0.029484 0.029909 0.030325 0.030732	-0.016906 -0.015678 -0.014477 -0.013304 -0.012156	-0.084143 -0.082389 -0.080676 -0.079004 -0.077371	-0.12433 -0.12266 -0.12103 -0.11944 -0.11789	-0,11014 -0,10915 -0,10819 -0,10726 -0,10635	-0.044632 -0.044660 -0.044689 -0.044720 -0.044753	0.042341 0.041367 0.040418 0.039493 0.038591	0.11010 0.10860 0.10713 0.10571 0.10571 0.10432	0,12830 0.12682 0.12539 0.12400 0,12265	0.093426 0.092450 0.091503 0.090585 0.089694	0,033482 0,033153 0,032833 0,032523 0,032223
8,65 8,66 8,67 8,68 8,69	0.031131 0.031522 0.031905 0.032281 0.032650	-0.011032 -0.009933 -0.008855 -0.007800 -0.006766	-0.075774 -0.074213 -0.072686 -0.071192 -0.069730	-0.11637 -0.11489 -0.11345 -0.11204 -0.11067	-0.10547 -0.10460 -0.10377 -0.10295 -0.10215	-0.044787 -0.044822 -0.044859 -0.044897 -0.044937	0.037712 0.036854 0.036016 0.035198 0.034399	0.10297 0.10166 0.10038 0.099138 0.097926	0,12134 0,12006 0,11882 0,11762 0,11644	0.088830 0.087991 0.087176 0.086385 0.085617	0.031932 0.031650 0.031376 0.031110 0.030852

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

146.

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

2			1920 - Marine Marine, 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920		R	ATIO X/L			99999999999999999999999999999999999999	<b>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</b>	
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
8.70 8.71 8.72 8.73 8.74	0.033011 0.033367 0.033716 0.034059 0.034396	-0.005752 -0.004758 -0.003782 -0.002824 -0.001884	-0.068299 -0.066897 -0.06552% -0.06%177 -0.062858	-0.10932 -0.10801 -0.10672 -0.10546 -0.10423	-0.10138 -0.10063 -0.099890 -0.099172 -0.098473	-0.044978 -0.045021 -0.045066 -0.045111 -0.045159	0.033619 0.032856 0.032110 0.031380 0.030667	0.096745 0.095594 0.094472 0.093378 0.092312	0,11530 0.11420 0,11312 0,11207 0,11105	0.084871 0.084146 0.083442 0.082757 0.082092	0,030602 0,030359 0,030124 0.029895 0,029673
8,75 8,76 8,77 8,78 8,79	0.034727 0.035053 0.035374 0.035690 0.035690 0.036001	-0.000961 -0.000053 0.000838 0.001715 0.002578	-0.061564 -0.060294 -0.059048 -0.057825 -0.056624	-0.10303 -0.10185 -0.10069 -0.099563 -0.098455	-0.097791 -0.097126 -0.036477 -0.095844 -0.095226	-0.045208 -0.045258 -0.045310 -0.045364 -0.045364	0.029968 0.029284 0.02861% 0.027958 0.027958	0.091271 0.090256 0.089265 0.088298 0.087354	0.11005 0.10908 0.10814 0.10722 0.10633	0.081446 0.080818 0.080208 0.079614 0.079038	0.029457 0.029248 0.029045 0.028848 0.028848 0.028657
8,80 8,81 8,82 8,83 8,84	0.036307 0.036609 0.036906 0.037200 0.037489	0,003426 0,004261 0,005083 0,005892 0,006689	-0.055445 -0.054286 -0.053148 -0.052028 -0.050928	-0.097370 -0.096306 -0.095263 -0.095263 -0.093236	-0.09%623 -0.09%035 -0.09%61 -0.092900 -0.092353	-0.045476 -0.045534 -0.045594 -0.045656 -0.045656 -0.045719	0.026684 0.026066 0.025460 0.024865 0.024281	0.086432 0.085532 0.084652 0.083793 0.082953	0.10546 0.10461 0.10378 0.10298 0.10298 0.10219	0,078477 0,077932 0,077402 0,076887 0,076386	0.028471 0.028291 0.028116 0.027946 0.027781
8,85 8,86 8,87 8,88 8,89	0.037774 0.038056 0.038334 0.038609 0.038880	0.007474 0.008249 0.009012 0.009765 0.010507	-0.049845 -0.048780 -0.047732 -0.046700 -0.045684	-0.092252 -0.091286 -0.090338 -0.089408 -0.088494	-0.091819 -0.091297 -0.090788 -0.090291 -0.089805	-0.045785 -0.045851 -0.045920 -0.045990 -0.046062	0.023708 0.023145 0.022592 0.022049 0.021515	0.082133 0.081331 0.080547 0.079780 0.079031	0.10143 0.10069 0.099961 0.099254 0.098566	0.075900 0.075427 0.074967 0.074521 0.074086	0.027621 0.027466 0.027316 0.027370 0.027170 0.027029
8,90 8,91 8,92 8,93 8,9%	0.039148 0.039413 0.039675 0.039675 0.039934 0.040190	0.011240 0.011963 0.012677 0.013383 0.014080	-0.044684 -0.043698 -0.042727 -0.041769 -0.040825	0.087597 -0.086715 -0.085849 -0.084998 -0.084161	-0.089331 -0.088868 -0.088416 -0.087974 -0.087543	-0.046135 -0.046211 -0.046288 -0.046367 -0.046448	0.020990 0.02047% 0.019966 0.019466 0.018975	0.078298 0.077581 0.076879 0.076193 0.075521	0.097894 0.097240 0.096603 0.095982 0.095377	0.073665 0.073255 0.072857 0.072470 0.072095	0.026891 0.026759 0.026630 0.026505 0.026384
8,95 8,96 8,97 8,98 8,99	0,040444 0,040695 0,040943 0,041189 0,041433	0.014768 0.015449 0.016122 0.016787 0.017446	-0.03989% -0.038976 -0.038070 -0.037176 -0.036293	-0.083339 -0.082530 -0.081735 -0.080953 -0.080183	-0.087122 -0.086711 -0.086309 -0.085917 -0.085534	-0.046531 -0.046615 -0.046701 -0.046790 -0.046880	0.018490 0.018014 0.017544 0.017581 0.016625	0.074864 0.074221 0.073591 0.072375 0.072372	0,094787 0,094213 0,093653 0,093108 0,092577	0.071731 0.071377 0.07103% 0.070701 0.070378	0.026267 0.026154 0.026045 0.025939 0.025837
9.00 9.01 9.02 9.03 9.04	0.041675 0.041914 0.042152 0.042387 0.042621	0.018097 0.018742 0.019380 0.020013 0.020639	-0.035421 -0.034561 -0.033710 -0.032870 -0.032040	-0.079426 -0.078680 -0.077946 -0.077924 -0.076513	-0.085160 -0.084795 -0.084439 -0.084091 -0.083752	-0.046972 -0.047066 -0.047162 -0.047260 -0.047360	0,016176 0.015733 0.015295 0.014864 0.014438	0.071781 0.071203 0.070636 0.070082 0.069538	0.092059 0.091556 0.091065 0.090588 0.090588 0.090123	0.070065 0.069762 0.069468 0.069183 0.069183	0.025738 0.025643 0.025551 0.025462 0.025377

-----

<u>ک</u>					······	RATIO X/L			· · · · · · · · · · · · · · · · · · ·	مىلغۇر بۇرىرىيە	
Λ 	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
9.05 9.06 9.07 9.08 9.09	0.042853 0.043083 0.043312 0.043538 0.043764	0.021260 0.021875 0.022484 0.023089 0.023689	-0.031219 -0.030407 -0.029604 -0.028810 -0.028024	-0.075812 -0.075122 -0.074442 -0.073772 -0.073112	-0.083421 -0.083097 -0.082782 -0.082474 -0.082174	-0.047463 -0.047567 -0.047567 -0.047673 -0.047782 -0.047892	0.014018 0.013603 0.013193 0.012788 0.012388	0,069006 0,068485 0,067974 0,067974 0,067474 0,066984	0.089670 0.089230 0.088802 0.088385 0.087980	0,068641 0,068383 0,068134 0,067893 0,067661	0.025295 0.025216 0.025140 0.025067 0.024997
9.10 9.11 9.12 9.13 9.14	0.043988 0.044210 0.044432 0.044652 0.044652 0.044871	0,024284 0,024874 0,025460 0,026042 0,026620	-0.0272%6 -0.026%76 -0.025713 -0.02%958 -0.02%210	-0.072461 -0.071820 -0.071187 -0.070563 -0.069948	-0.081882 -0.081597 -0.081319 -0.081048 -0.080784	-0.048005 -0.048120 -0.048237 -0.048356 -0.048478	0.011992 0.011601 0.011214 0.010832 0.010453	0.066504 0.066034 0.065573 0.065121 0.064679	0,087587 0,087204 0,086832 0,086832 0,086471 0,086121	0.067437 0.067221 0.067013 0.066812 0.066820	0.024930 0.024866 0.024805 0.024746 0.024746
9,15 9,16 9,17 9,18 9,19	0,045088 0.045305 0.045521 0.045521 0.045736 0.045949	0.027194 0.027764 0.028331 0.028895 0.029455	-0.023468 -0.022733 -0.022005 -0.021283 -0.020566	-0.069341 -0.068742 -0.068151 -0.067568 -0.066992	-0.080527 -0.080277 -0.080033 -0.079796 -0.079565	-0.048602 -0.048728 -0.048857 -0.048988 -0.049122	0.010078 0.009707 0.009340 0.008976 0.008615	0.064245 0.063820 0.063404 0.062996 0.062596	0.085781 0.085451 0.085131 0.084821 0.084521	0.066435 0.066258 0.066088 0.065925 0.065770	0.024638 0.024588 0.024540 0.024496 0.024454
9.20 9.21 9.22 9.23 9.23	0.046162 0.046375 0.046586 0.046797 0.046797 0.047007	0.030012 0.030567 0.031118 0.031668 0.032214	-0.019855 -0.019150 -0.018450 -0.017755 -0.017065	-0.066423 -0.065862 -0.065308 -0.064760 -0.064219	-0.079341 -0.079124 -0.078912 -0.078707 -0.078507	-0.049258 -0.049396 -0.049537 -0.049681 -0.049827	0.008257 0.007903 0.007551 0.007203 0.006857	0.062205 0.061821 0.061845 0.061076 0.060715	0.084230 0.083949 0.083677 0.083677 0.083414 0.083161	0.065622 0.065481 0.065347 0.065220 0.065200	0.024414 0.024378 0.024343 0.024343 0.024312 0.024282
9.25 9.26 9.27 9.28 9.29	0.047217 0.047426 0.047635 0.047843 0.047843 0.048051	0.032759 0.033301 0.033841 0.034380 0.034916	-0.016380 -0.015599 -0.015023 -0.014350 -0.013682	-0.063685 -0.063156 -0.06263% -0.06263% -0.062118 -0.061608	-0.078314 -0.078127 -0.077945 -0.077769 -0.07760	-0.049976 -0.050128 -0.050282 -0.050439 -0.050599	0.006513 0.006173 0.005834 0.005498 0.005164	0.060361 0.060015 0.059675 0.059343 0.059017	0.082916 0.082681 0.082454 0.082236 0.082026	0.064986 0.064880 0.064780 0.064780 0.064686 0.064600	0.024256. 0.024232 0.024210 0.024191 0.024191 0.024174
9,30 9,31 9,32 9,33 9,34	0,048259 0,048466 0,048673 0,048880 0,049087	0.035451 0.035985 0.036517 0.037048 0.037578	-0.013018 -0.012357 -0.011639 -0.011045 -0.010394	-0.061104 -0.060605 -0.060112 -0.059623 -0.059141	-0.077435 -0.077277 -0.077124 -0.076977 -0.076835	-0,050762 -0,050928 -0,051096 -0,051268 -0,051442	0.004832 0.004502 0.004174 0.003847 0.003522	0.058698 0.058385 0.058079 0.057779 0.057486	0.081825 0.081632 0.081448 0.081272 0.081104	0.064520 0.064446 0.064379 0.064318 0.064364	0.024160 0.024148 0.024138 0.024131 0.024131
9.35 9.36 9.37 9.38 9.39	0.049294 0.049501 0.049708 0.049715 0.049915 0.050122	0.038107 0.038635 0.039162 0.039689 0.040216	-0.009746 -0.009100 -0.008458 -0.007817 -0.007180	-0.058663 -0.058190 -0.057721 -0.057258 -0.056799	-0.076698 -0.076567 -0.076442 -0.076321 -0.076207	-0.051620 -0.051801 -0.051985 -0.052171 -0.052363	0.003199 0.002877 0.002557 0.002238 0.001920	0.057198 0.056917 0.056642 0.056373 0.056109	0.0809%4 0.080793 0.080649 0.080514 0.080386	0.064216 0.064175 0.064139 0.064111 0.064088	0.024124 0.024124 0.024127 0.024132 0.024132

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

				·····			-	•			
λ.				j <del></del>		KATIO X/L	r		· · · ·		···
	1/12	2/12	3/12	. 4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
9,40	0.050329	0,040742	-0.006544	-0.056344	-0.076097	-0,052557	0.001603	0.055851	0.080266	0.064072	0 022129
9.41	0,050536	0.041268	-0.005910	-0.055894	-0.075993	-0.052754	0,001287	0,055599	0,080154	0.064062	0.024161
9,42	0,050744	0.041794	-0.005278	-0.055448	-0.075894	-0.052955	0.000972	0.055352	0.080050	0.064058	0.024175
9,43	0.050952	0.042319	-0.004648	-0.055006	-0.075800	-0.053159	0,000658	0,055111	0.079954	0.064061	0.024192
9,44	0.051160	0.042845	-0.004019	-0,054568	-0,075711	-0.053367	0.000344	0.054875	0,079865	0.064070	0.024211
9.45	0,051369	0.043372	-0.003392	-0 051134	-0 075628		0 000.91	0 OFICE	0 070504	0.00000	0.001.000
9.46	0.051578	0.043899	-0.002765	-0.053704	-0.075550	-0.053793	-0.000281	0,054645	0,072703	0,054085	0.024233
9.47	0.051788	0.044426	-0.002140	-0.053277	-0.075\$77	-0.051012	-0 000593	0.054420	0.079/11	0,054106	0.024257
9.48	0.051999	0.044954	-0.001516	-0.052854	-0.075409	-0.054235	-0.000905	0.059200	0,07040	0,054134	0.024284
9.49	0.052209	0.045483	-0.000893	-0.052435	-0.075346	-0,054462	-0.001216	0.053776	0.079537	0.064168	0.024313
9 50	0 050009	0.01-01-0	-0 000086	0 050040	0.075000	0.05%-000	0.004 505	0.050504	0.0001.05		
9 51	0.052421	0.070013	0,000240	-0.052010	-0,075200	-U.U24672	-0,001527	0,053571	0.079495	0.064255	0.024378
2.21	0.052603	0.045243	0.000352	-0,051606	0,075236	-0.054927	-0.001838	0.053372	0,079460	0.064308	0,024414
9.52	0.052046	0,04/0/5	0.000974	-0.051196	-0.075189	-0.055166	-0.002149	0.053177	0,079433	0.064368	0.024453
2.23	0.023050	0.047609	0.001596	-0.050/89	-0.075147	-0.055409	-0.002461	0,052988	0.079413	0.064434	0.024494
7,24	0.053275	0,040143	0.002218	-0.020386	-0,075110	-0.055656	-0,002772	0,052803	0.079401	0,064506	0.024538
9.55	0.053491	0.048680	0.002840	-0.049985	-0.075078	-0 055908	-n nn368¥	0.052623	0.079397	0.061585	0 024584
9.56	0.053707	0.049218	0.003462	-0.049587	-0.075051	-0 056164	-0.003396	0,052448	0,079400	0.064671	0 024594
9.57	0.053925	0.049758	0.004085	-0.049192	-0.075030	-0.056425	-0.003708	0.052277	0.079412	0.064763	0.024685
9.58	0.054143	0.050299	0.004708	-0.048799	-0.075013	-0.056690	-0 001022	0.052112	0.079431	0.064861	0.021739
9.59	0,054363	0.050843	0.005332	-0.048409	-0.075002	-0,056960	-0.004335	0.051951	0.079457	0.064967	0,024795
0.00	O OFLEOL	0 074000	0.005057	0.01.0004	0.000.000	· .					
9,60	0.054584	0.051390	0.005957	-0.048021	-0.074997	-0.057235	-0,004650	0.051794	0_079492	0.065079	0.024855
7.61	0,054806	0.051938	0.006583	-0.047636	-0.074996	-0.057515	-0,004965	0.051642	0.079535	0.065198	0.024917
9.62	0.055030	0.052489	0.007210	-0.047253	-0.075001	-0.057800	-0.005282	0.051495	0.079585	0.065323	0,024982
9,63	0.055255	0.053043	0,007839	-0.046872	-0.075011	-0,058090	-0,005599	0.051352	0.079643	0_065456	0.025049
9,64	0,025861,	0.053600	0.008469	-0,046494	-0.075026	-0,058385	-0,005918	0,051214	0.079709	0.065596	0.025119
9.65	0.055708	0.054159	0.009101	-0.046117	-0.075047	-0,058686	-0.006237	0,051081	0.079784	0.065742	0.025193
9.66	0,055938	0.054722	0.00973%	-0.045742	-0.075073	-0.058992	-0.006558	0.050951	0 079866	0 065896	0 025268
9.67	0.056168	0,055288	0.010370	-0.045369	-0.075105	-0.059303	-0.006881	0.050827	0.079957	0.066057	0.025260
9.68	0.056401	0,055857	0.011008	-0.044998	-0.075142	-0.059620	-0.007205	0.050706	0.080056	0 066226	0 025129
9.69	0.056635	0.056430	0.011649	-0.044629	-0.075185	-0.059943	-0.007531	0.050591	0.080163	0,066401	0.025514
9 70	0 056871	0 057007	0 010000	-0 010-064	-0.075000	0.00000	0.000050	0 050500	0 000080	0.044505	0.005700
971	0.05000	0.057589	0.012222	-0.01:2001	-0.072233	-0.060272	-0,007858	0.020477	0.000278	0.066585	0.025601
9.72	0 057910	0.058179	0.01273/	-0.043074	-0.07528/	-U, U5U5U8	-0.000546	0.050372	0,080402	0.066775	0.025692
972	0.057590	0.058762	0.013208	-0 010122	-0.075546	-U.U6U949	-0.008519	0,050270	0.080535	0.066974	0.025786
9.74	0.057834	0.059355	0 014230	-0,043100	-0.0/2412	-0.061297	-0.008852	0.050172	0.080676	0.067180	0.025883
- 01			0.08 10/0	L	_0,015400	-0,001021	-0.007100	0,00070	0°080858	0.067394	0,025983

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

TABLE 11 - VALUES OF THE COEFFICIENT C - CONTINUED

2			·			RATIO X/L	·		· · ·	<u> </u>	
	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
9.75 9.76 9.77 9.78 9.79	0.058080 0.058328 0.058579 0.058831 0.059087	0.059953 0.060556 0.061164 0.061777 0.062395	0.015552 0.016214 0.016880 0.017551 0.018225	-0.042442 -0.042082 -0.041723 -0.041364 -0.041007	-0.075560 -0.075643 -0.075732 -0.075827 -0.075928	-0.062012 -0.062379 -0.062754 -0.063136 -0.063525	-0.009526 -0.009866 -0.010209 -0.010555 -0.010903	0,049989 0,049904 0,049823 0,049823 0,049747 0,049676	0,080985 0,081153 0,081330 0,081316 0,081516 0,081711	0.067617 0.067847 0.068086 0.068333 0.068589	0.026086 0.026193 0.026303 0.026416 0.026533
9.80 9.81 9.82 9.83 9.83 9.84	0.0593%% 0.059605 0.059868 0.06013% 0.060403	0.063020 0.063649 0.064285 0.064285 0.064927 0.065576	0.018905 0.019589 0.020278 0.020972 0.021672	-0.040650 -0.040234 -0.039938 -0.039583 0.039228	-0.076035 -0.076149 -0.076269 -0.076396 -0.076530	-0.063921 -0.064325 -0.064737 -0.065157 -0.065586	-0.011254 -0.011609 -0.011967 -0.012327 -0.012692	0_049608 0_049546 0_0495487 0_049487 0_049385 0_049385	0.081916 0.082131 0.082355 0.082589 0.082834	0,068853 0,069126 0,069409 0,069700 0,070001	0.02665% 0.026778 0.026905 0.027037 0.027172
9.85 9.86 9.87 9.88 9.89	0.060674 0.060949 0.061227 0.061509 0.061794	0.066231 0.066893 0.067563 0.068239 0.068924	0.022377 0.023088 0.023806 0.024530 0.025260	-0.038873 -0.038519 -0.038165 -0.037810 -0.037856	-0.076670 -0.076817 -0.076970 -0.077131 -0.077300	-0.066023 -0.066468 -0.066923 -0.067386 -0.067859	-0.013060 -0.013432 -0.013808 -0.014188 -0.014572	0.049340 0.049300 0.049264 0.049233 0.049233 0.049207	0.083088 0.083353 0.083629 0.083915 0.084213	0.070312 0.070632 0.070962 0.071302 0.071653	0.027311 0.027455 0.027602 0.027753 0.027909
9,90 9,91 9,92 9,93 9,9%	0.062082 0.062374 0.062670 0.062969 0.063273	0.069616 0.070317 0.071026 0.071745 0.072472	0.025998 0.026743 0.027495 0.028256 0.028025	-0.037101 -0.036746 -0.036390 -0.036034 -0.035677	-0.077475 -0.077658 -0.077849 -0.078047 -0.078253	-0,068342 -0,068834 -0,069337 -0,069850 -0,070373	-0.014961 -0.015354 -0.015752 -0.016155 -0.016563	0.049186 0.049169 0.049157 0.049157 0.049150 0.049148	0.084521 0.084841 0.085173 0.085517 0.085517 0.085873	0.072014 0.072387 0.072770 0.073165 0.073571	0.028069 0.02823% 0.028403 0.028576 0.028755
9.95 9.96 9.97 9.98 9.99	0.063581 0.063893 0.064209 0.064531 0.064856	0.073209 0.073955 0.074712 0.075479 0.076257	0.029802 0.030588 0.031383 0.032188 0.032188 0.033003	-0,035319 -0.034961 -0.0342601 -0.034240 -0.038278	-0.078468 -0.078690 -0.078921 -0.079161 -0.079409	-0.070908 -0.071455 -0.072012 -0.072582 -0.073165	-0.016977 -0.017396 -0.017821 -0.018252 -0.018689	0.049151 0.049159 0.049172 0.049172 0.049190 0.049213	0.086241 0.086622 0.087016 0.087424 0.087845	0_073989 0_074419 0_074862 0_075317 0_075786	0.028938 0.029127 0.029320 0.029519 0.029724
10.00 10.01 10.02 10.03 10.03	0.065187 0.065523 0.06586% 0.066210 0.066563	0.077047 0.077848 0.075661 0.079486 0.080325	0.033823 0.034664 0.035511 0.036370 0.037241	-0.033515 -0.033150 -0.032783 -0.032415 -0.032044	-0.079667 -0.079934 -0.080210 -0.080496 -0.080792	-0.073759 -0.074368 -0.074989 -0.075625 -0.0756275	-0.019133 -0.019584 -0.020041 -0.020506 -0.020978	0.049242 0.049276 0.049316 0.049361 0.049361 0.049411	0.088280 0.088730 0.089194 0.089673 0.089673 0.090168	0.076268 0.07676% 0.07727% 0.077799 0.0778339	0,029934 0,030149 0,030371 0,030598 0,030832
10.05 10.06 10.07 10.08 10.09	0.066920 0.06728% 0.06765% 0.068031 0.068%1%	0.081177 0.082042 0.082922 0.083817 0.083728	0.038124 0.039021 0.039930 0.040854 0.041793	-0.081672 -0.031297 -0.030920 -0.030540 -0.030157	-0.081098 -0.081414 -0.081742 -0.082080 -0.082430	-0.076989 -0.077619 -0.078315 -0.079027 -0.079756	-0.021458 -0.021946 -0.022443 -0.022948 -0.023462	0.049468 0.049530 0.049599 0.049673 0.049673	0.090678 0.091205 0.091748 0.092309 0.092888	0,078894 0,079465 0,080053 0,080657 0,081278	0.031072 0.031319 0.031573 0.031833 0.031833

150.

1 g 4 *

TABLE II - VALUES OF THE COEFFICIENT C - CONTINUED

1						RATIO X/L	***	· · ·			
. <b>Λ</b>	1/12	2/12	3/12	4/12	5/12	1/2	7/12	8/12	9/12	10/12	11/12
10.10 10.11 10.12 10.13 10.14	0.068804 0.069201 0.069606 0.070018 0.070438	0.085654 0.086597 0.087558 0.088536 0.089\$33	0.042746 0.043715 0.044701 0.045703 0.046723	-0.029772 -0.029383 -0.028991 -0.028596 -0.028197	-0.082791 -0.083165 -0.083550 -0.083949 -0.084361	-0.080502 -0.081266 -0.082049 -0.082851 -0.083672	-0.023986 -0.024520 -0.025063 -0.025618 -0.026183	0.049841 0.049935 0.050035 0.050143 0.050257	0,093485 0,094100 0,094735 0,095391 0,096066	0.081918 0.082576 0.083253 0.083949 0.084666	0.032376 0.032659 0.032950 0.033249 0.033557
10.15 10.16 10.17 10.18 10.19 10.20	0.070866 0.071303 0.071749 0.072204 0.072669 0.073144	0.090548 0.091584 0.092641 0.093719 0.094820 0.095944	0.047762 0.048820 0.049897 0.050995 0.052115 0.053257	-0.027794 -0.027386 -0.026975 -0.026558 -0.026137 -0.025711	-0.084786 -0.085225 -0.085679 -0.086148 -0.086632 -0.087131	-0.084515 -0.085378 -0.086264 -0.087172 -0.088105 -0.089062	-0.026759 -0.027348 -0.027949 -0.028562 -0.029189 -0.029830	0.050378 0.050507 0.050643 0.050787 0.050787 0.050939 0.051100	0.096763 0.097482 0.098224 0.098989 0.099778 0.10059	0.085404 0.086163 0.086945 0.087750 0.088579 0.088579	0.033873 0.034199 0.034533 0.034878 0.035232 0.035597

151,

#### APPENDIX B. DERIVATION OF FORMULAS

## Formulas for Bars Without Axial Forces

a. General Solution of Fundamental Equation for Vibration of Bars

Using Bernoulli-Euler's beam theory, the differential equation for transverse vibration of a uniform bar which is free from external loads is

$$EI\frac{\partial^4 w}{\partial x^4} + m\frac{\partial^2 w}{\partial t^2} = 0 , \qquad (B1)$$

where w(x,t) is the deflection of any point of the bar at a time  $\underline{t}$ , <u>m</u> is the mass per unit of length of the bar, and <u>EI</u> is the flexural rigidity of its cross section. The effects of damping, shearing deformation, and rotatory inertia are disregarded.

We can let

$$w(x,t) = Y(x)\cos \omega t , \qquad (B2)$$

where the amplitude of the motion Y(x) is a function of <u>x</u> only, and  $\omega$  is the circular frequency of the motion.

Substituting (B2); in (B1), one obtains the following expression for determining the function Y(x):

$$\gamma'''' - \left(\frac{\lambda}{L}\right)^4 \gamma = 0 , \qquad (B3)$$

where L is the span length of the bar and

$$\lambda = \sqrt[4]{\frac{mw^2}{E I}} L \qquad (B4)$$

(B5)

Primes in Eq. (B3) indicate differentiations with respect to x.

The solution of Eq. (B3) is

$$\Upsilon(x) = c_1 \cosh \lambda \frac{x}{L} + c_2 \sinh \lambda \frac{x}{L} + c_3 \cos \lambda \frac{x}{L} + c_4 \sin \lambda \frac{x}{L} .$$

The integration constants  $c_1$ ,  $c_2$ ,  $c_3$ , and  $c_4$  must be determined from the boundary conditions of the particular problem considered.

# b. Formulas for Elastic Constants

Consider the bar shown in Fig. B-1. At x = 0 the bar is fixed,



Fig. B-1

while at x = L it is subjected to a moment

$$M(x,t) = Mcoswt$$
(B6)

producing at that end a steady-state forced rotation

$$\Theta(\mathbf{x}, \mathbf{t}) = \Theta \cos \omega \mathbf{t}$$
 (B7)

With the notation and sign convention given in Section 2, the boundary conditions may be stated as follows:

At $\mathbf{x} = 0$	$\begin{split} \delta &= \mathbf{Y} = \mathbf{O} ,\\ \Theta &= \mathbf{Y}^{t} = \mathbf{O} , \end{split}$		(B8)
and at $x = L$	$\delta = \mathbf{Y} = 0 ,$	· · · · ·	(pg)
•	$M = EIY^n$ .		(59)

From these boundary conditions, one finds the following values for the integration constants in Eq. (B5):

$$c_{1} = -c_{3} = -\frac{ML^{2}}{2\lambda^{2}EI} \cdot \frac{\sinh\lambda - \sinh\lambda}{\cosh\lambda \sinh\lambda - \sinh\lambda\cos\lambda} , \qquad (B10)$$

$$c_{2} = -c_{4} = -\frac{ML^{2}}{2\lambda^{2}EI} \cdot \frac{\cosh\lambda - \cos\lambda}{\cosh\lambda\sin\lambda - \sinh\lambda\cos\lambda} .$$

The moments  $\underline{M}$  and the reactions  $\underline{V}$  at the ends of the bar are found to be as follows:

$$At x = L \qquad M = K\Theta, \qquad (Bll)$$

$$K = \frac{EIY''}{Y'} = \lambda \frac{\cosh \lambda \sin \lambda - \sinh \lambda \cosh \lambda}{I - \cosh \lambda \cosh \lambda} \cdot \frac{EI}{L}, \quad (B12)$$

where

and

where

$$-\nabla = Q\Theta , \qquad (B13)$$

$$Q = -\frac{EIY'''}{Y'} = \lambda^2 \frac{\sinh \lambda \sin \lambda}{1 - \cosh \lambda \cos \lambda} \cdot \frac{EI}{L^2} .$$
 (B14)

At x = 0

$$M = kK\Theta, \qquad (B15)$$

$$\mathcal{R} = -\frac{\Upsilon'']_{x=0}}{\Upsilon'']_{x=L}} = \frac{\sinh \lambda - \sin \lambda}{\cosh \lambda \sin \lambda - \sinh \lambda \cosh \lambda}, \quad (B16)$$

where

$$V = qQ\Theta, \qquad (B17)$$

where  $q = \frac{\gamma''']_{x=0}}{\gamma''']_{x=L}} = \frac{\cosh \lambda - \cos \lambda}{\sinh \lambda \sin \lambda}$  (B18)

For a simply supported beam, the moment at x = L may be expressed as

$$M = K^{n}\Theta.$$
(B19)

It can be shown that

$$\mathcal{K}'' = \lambda \frac{2 \sinh \lambda \sin \lambda}{\cosh \lambda \sin \lambda - \sinh \lambda \cos \lambda} . \tag{B20}$$

Equations (Bl2), (Bl6), and (B20) have been presented previously by Gaskell (13).

Now consider the case in which the right end of the beam is displaced without rotation by

$$\delta(\mathbf{x}, \mathbf{t}) = \delta \operatorname{coswt}$$

as shown in Fig. B2.

154

(B21)



In this case, the boundary conditions may be stated as follows:

At 
$$x = 0$$
  
 $\delta = Y = 0$ . (B22)  
 $\Theta = Y' = 0$ .  
At  $x = L$   
 $\Theta = Y' = 0$ .  
 $\delta = Y = 0$ .  
 $\delta = Y = 0$ .  
(B23)

For these conditions, one finds the following values for the integration constants in Eq. (B5).

$$c_{1} = -c_{3} = \frac{\delta}{2} \cdot \frac{\cosh \lambda - \cos \lambda}{1 - \cosh \lambda \cos \lambda} , \qquad (B24)$$

$$c_{2} = -c_{4} = -\frac{\delta}{2} \cdot \frac{\sinh \lambda + \sin \lambda}{1 - \cosh \lambda \cos \lambda} .$$

The moments  $\underline{M}$  and the reactions  $\underline{V}$  at the ends of the bar are found to be as follows:

At 
$$x = L$$
  $M = -Q\delta$ , (B25)

where Q is given by Eq. (Bl4), and

$$V = T\delta, \qquad (B26)$$

$$T = -\frac{EIY'''}{\delta} = \frac{\cosh\lambda\,\sin\lambda\,+\,\sinh\lambda\,\cos\lambda}{1-\cosh\lambda\,\cos\lambda}.$$
 (B27)

where

At x = 0

$$M = -qQ\delta, \qquad (B28)$$

where q is given by Eq. (B18), and

$$V = -tT\delta, \qquad (B29)$$

where

調けが特

$$t = \frac{\Upsilon''']_{x=0}}{\Upsilon''']_{x=L}} = \frac{\sinh\lambda + \sin\lambda}{\cosh\lambda \sinh\lambda \cosh\lambda}$$
(B30)

As already remarked, the quantities Q in Eqs. (B13) and (B25) are equal; likewise the quantities q in Eqs. (B17) and (B28) are equal. These equalities follow from Lord Rayleigh's reciprocal relations which, for convenience, are reviewed in Section 1d of this Appendix.

It should be stated that numerical values of the trigonometric and hyperbolic functions appearing in the numerator and denominator of most of the formulas given in this section have been tabulated previously in Reference (24). These functions were tabulated for values of  $\lambda$  between zero and 10.00 at increments of 0.02. The numerical values presented in this report have been tabulated at increments of  $\lambda$  of 0.01. Since all quantities were computed on the Electronic Digital Computer, there was no need to use the previously tabulated functions.

c. Formulas for Deflections of a Bar Due to Distortions at the Ends

It is desired to find the deflections of the bars shown in Figs. BL and B2. The distortions  $\Theta$  and  $\delta$  may be introduced at either end of the bar.

First consider the bar shown in Fig. Bl. Let x denote the distance of any point of the bar from the end being rotated. Then, if  $\Theta$  represents the rotation at the left end, the deflection amplitude

$$Y_{\tau} = C\Theta L$$
, (B31a)

and if O represents the rotation at the right end

$$Y_{\overline{x}} = -C\Theta I$$
, (B31b)

where <u>C</u> is a dimensionless coefficient dependent on the coordinate  $\overline{\mathbf{x}}$  and the parameter  $\lambda$  .

Substituting the integration constants given in Eq. (BLO) into Eq. (B5), the following expression is found for  $\underline{C}$ :

$$C = \frac{1}{2\lambda(1 - \cosh\lambda\cos\lambda)} \left\{ \left[ \sinh\lambda - \sinh\lambda \right] \left[ \cosh(1 - \xi)\lambda - \cos(1 - \xi)\lambda \right] \right\}$$
(B32)  
-  $\left[ \cosh\lambda - \cosh\lambda \right] \left[ \sinh(1 - \xi)\lambda - \sin(1 - \xi)\lambda \right] \right\}$ ,  
where  
$$\xi = \frac{x}{L}$$
(B33)

Consider now the bar shown in Fig. B2. Let x denote the distance of a point of the bar from the deflected end. Then, for a deflection amplitude  $\delta$  at either end

$$\mathbf{Y}_{\mathbf{z}} = \mathbf{C} \cdot \boldsymbol{\delta}, \tag{B34}$$

where C: is a dimensionless coefficient.

Substituting the integration constants given in Eq. (B24) into Eq. (B5), the following expression is found for  $\underline{C}^{\dagger}$ :

$$C' = \frac{l}{2\lambda(l-\cosh\lambda\cos\lambda)} \left\{ \left[ \cosh\lambda - \cosh\lambda \right] \left[ \cosh(l-\xi)\lambda - \cos(l-\xi)\lambda \right] \right\}$$

$$(B35)$$

$$- \left[ \sinh\lambda + \sinh\lambda \right] \left[ \sinh(l-\xi)\lambda - \sin(l-\xi)\lambda \right] \right\}.$$

d. Rayleigh's Reciprocal Relations and Principle of Influence Lines Rayleigh's reciprocal relations for dynamics (14) are strictly analogous to Maxwell's law of reciprocal relations for statics. Rayleigh's relations may be stated as follows: If A and B denote two points in a given structure, the steady-state forced displacement at A produced by a harmonically varying load applied at B is equal to the steady-state displacement at B due to the same load applied at A. The term displacement may be interpreted in a general sense as either linear or

angular displacement; similarly, the term load may be interpreted in the same general sense as either force or couple. Couples correspond to rotations while forces correspond to linear displacements.

Using Rayleigh's reciprocal relations, one can prove readily that MM1ler-Breslau's principle is also applicable in the case of steadystate forced vibrations. The proof is identical to that for the static case and is, therefore, omitted. According to this principle: The influence line for any dynamic function, such as reaction, shear, bending moment, torque, at some point <u>A</u> of <u>a</u> structure due to harmonically varying load can be obtained as the deflected shape of the structure due to a very small unit displacement, linear or angular, introduced at point <u>A</u>.

It follows from this principle that the deflection of a fixed ended beam subjected to a unit rotation at one end represents an influence line for fixed end moment due to a unit concentrated force on the beam. Similarly, the deflection of a beam resulting from a unit deflection without rotation of one end represents an influence line for fixed end shear due to a concentrated unit force.

#### 2. Formulas for Bars with Axial Forces

## a. General Solution of Governing Differential Equation

The differential equation for transverse deflection w(x,t) of a uniform bar which is free from lateral loads but is acted upon by constant axial forces P is

$$EI\frac{\partial^4 w}{\partial x^4} - P\frac{\partial^2 w}{\partial x^2} + m\frac{\partial^2 w}{\partial t^2} = 0.$$
 (B36)

A positive P indicates a tensile force.

The deflection w(x,t) may be expressed as

$$w(x,t) = Y(x)\cos \omega t , \qquad (B37)$$

where Y(x) is the amplitude of the harmonic motion and w is its circular frequency.

Substituting Eq. (B37) into Eq. (B36) and using the symbols

$$P_o = \frac{\pi^2 E I}{L^2} , \qquad (B38)$$

$$\lambda = \sqrt[4]{\frac{m\omega^2}{EI}} L . \tag{B4}$$

one obtains the following expression for determining the function Y(x):

$$Y'''' - \frac{\pi^2}{L^2} \frac{P}{P_o} Y'' - \left(\frac{\lambda}{L}\right)^4 Y = 0.$$
 (B39)

The roots of the corresponding characteristic equation are

$$r_{1,2} = \pm \frac{\phi}{L} . \tag{B40}$$

$$r_{3,4} = \pm \frac{\chi}{L} .$$

where

三中 福藤町 三藤 世

$$\phi = \frac{\pi}{\sqrt{2}} \sqrt{\left(\frac{P}{P_o}\right)^2 + \frac{4}{\pi^4} \lambda^4} + \frac{P}{P_o} \quad , \tag{B41}$$

$$\chi = \frac{\pi}{\sqrt{2}} \sqrt{\left(\frac{P}{P_o}\right)^2 + \frac{4}{\pi^4} \lambda^4} - \frac{P}{P_o} = \frac{\lambda^2}{\phi} \qquad (B42)$$

Then, the solution of Eq. (B39) becomes

$$Y(x) = c_1 \cosh \phi \frac{\chi}{L} + c_2 \sinh \phi \frac{\chi}{L} + c_3 \cos \chi \frac{\chi}{L} + c_4 \sin \chi \frac{\chi}{L} . \quad (B43)$$

The integration constants  $c_1$ ,  $c_2$ ,  $c_3$ , and  $c_4$  must be determined from the boundary conditions of the particular problem considered.

## b. Formulas for Flexural Stiffness and Flexural Carry-Over Factor

Consider a bar, such as that shown in Fig. Bl, fixed at x = 0 and

subjected to a periodic moment

$$M(x,t) = Mcos \omega t$$

at x = L. Assume that the bar is acted upon by tensile end forces.

The boundary conditions in this case are the same as those given in Eqs. (B8) and (B9). For these boundary conditions, one finds the following values for the integration constants in Eq. (B43).

$$c_{1} = -c_{3} = -\frac{ML^{2}}{EI} \cdot \frac{1}{\phi^{2} + \chi^{2}} \cdot \frac{\chi \sinh \phi - \phi \sin \chi}{\phi \cosh \phi \sin \chi - \chi \sinh \phi \cos \chi}, \qquad (B44)$$

$$c_{2} = -\frac{\chi}{\phi}c_{4} = \frac{ML^{2}}{EI} \cdot \frac{\chi}{\phi^{2} + \chi^{2}} \cdot \frac{\cosh \phi - \cos \chi}{\phi \cosh \phi \sin \chi - \chi \sinh \phi \cos \chi}.$$

The moments at the ends of the bar are found to be as follows: At x = L  $M = K\Theta = KY^{*}$ , (B45)

where 
$$K = \frac{\phi \cosh \phi \sin \chi - \chi \sinh \phi \cos \chi}{\frac{2\phi \chi}{\phi^2 + \chi^2} \left[ 1 - \cosh \phi \cos \chi \right] + \frac{\phi^2 - \chi^2}{\phi^2 + \chi^2} \sinh \phi \sin \chi} \cdot \frac{EI}{L} \cdot$$
 (B46)

$$M = kK\Theta, \qquad (B47)$$

where 
$$k = -\frac{Y'']_{\chi=0}}{Y'']_{\chi=L}} = \frac{\sinh \phi - \frac{\phi}{\chi} \sin \chi}{\frac{\phi}{\chi} \cosh \phi \sin \chi - \sinh \phi \cos \chi}$$
 (B48)

Now, assume that the bar is subjected to compressive forces. In this case, it is necessary to replace +P by -P. Then, Eq. (B41) is changed to Eq. (B42) and vice versa. Therefore, the expressions of  $\underline{K}$ and  $\underline{k}$  for a compressive force can be obtained from the corresponding expressions for a tensile force simply by interchanging in the latter expressions the quantities  $\phi$  and  $\chi$ .

For the special case in which no axial force is present,  $\phi = \chi = \lambda$ , and Eqs. (B46) and (B48) reduce respectively to Eqs. (B12) and (B16). 3. Formulas for Plates Simply Supported Along Two Opposite Edges

a. General Solution of Fundamental Equation for Vibration of Plates

Using the ordinary flexure theory of medium thick plates, the differential equation for lateral deflection w(x,y,t) of a uniform plate which is free from lateral loads is

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} + \frac{\rho h}{N} \frac{\partial^2 w}{\partial t^2} = 0 , \qquad (B49)$$

where  $\rho$  = the density of the plate material, <u>h</u> = the thickness of the plate, assumed to be constant, and <u>N</u> = the flexural rigidity of the plate.

The coordinate axes are taken in the middle plane of the plate parallel to the sides of the plate. The origin of the axes is taken at the upper left hand corner of the plate.

If the plate is simply supported along two opposite edges (say, along x = 0 and x = a) the solution of Eq. (B49) may be taken in the form

$$w(x,y,t) = Y_n \sin \frac{n\pi x}{q} \cos \omega t, \qquad (B50)$$

where  $Y_n$  is a function of the <u>y</u> variable only. Substituting this equation into Eq. (B49), one obtains the following equation for determining the function  $Y_n$ :

$$Y_n^{''''} - \frac{2n^2\pi^2}{a^2}Y_n'' + \left(\frac{n^4\pi^4}{a^4} - \frac{\rho h w^2}{N}\right)Y_n = 0.$$
(B51)

The roots of the corresponding characteristic equation are

$$\gamma_{1,2,3,4} = \pm \frac{\pi}{b} \sqrt{\left(\frac{nb}{a}\right)^2} \pm \lambda^* , \qquad (B52)$$

where

$$\lambda^* = \frac{b^2}{\pi^2} \sqrt{\frac{\rho h \omega^2}{N}} \quad . \tag{B53}$$

Two different cases must now be considered:

Case (I) , when  $\lambda^* > \left(\frac{\mathrm{nb}}{\mathrm{a}}\right)^2$  , and

Case (II), when  $\lambda^* < \left(\frac{\mathrm{nb}}{\mathrm{e}}\right)^2$  .

The particular case in which  $\lambda^* = 0$  is omitted. In the first case two of the roots are real while the remaining two are imaginary. In the second case all four roots are real.

First consider Case (I). Using the notation

$$\bar{\phi} = \pi \sqrt{\lambda^* + \left(\frac{nb}{a}\right)^2} , \qquad (B54)$$

$$\bar{\chi} = \pi \sqrt{\lambda^* - \left(\frac{nb}{a}\right)^2} . \qquad (B55)$$

and

the solution of Eq. (B51) becomes

$$Y_n(y) = c_1 \cosh \overline{\phi} \frac{y}{b} + c_2 \sinh \overline{\phi} \frac{y}{b} + c_3 \cos \overline{\lambda} \frac{y}{b} + c_4 \sin \overline{\lambda} \frac{y}{b}. \quad (B56)$$

In Case (II) the  $\overline{\chi}$  values in Eq. (B55) are imaginary and, using the notation

$$\bar{\chi}' = \pi \sqrt{\left(\frac{nb}{a}\right)^2 - \lambda^*} , \qquad (B57)$$

the solution of Eq. (B51) becomes

$$Y_{\eta}(y) = c_{i}^{\prime} \cosh \overline{\phi} \frac{y}{b} + c_{2}^{\prime} \sinh \overline{\phi} \frac{y}{b} + c_{3}^{\prime} \cosh \overline{\lambda}^{\prime} \frac{y}{b} + c_{4}^{\prime} \sinh \overline{\lambda}^{\prime} \frac{y}{b}. \quad (B58)$$

The integration constants in Eqs. (B56) and (B58) must be determined from the boundary conditions of the particular problem considered.

## b. Formulas for Flexural Stiffness and Flexural Carry-Over Factor

Consider a rectangular plate simply supported at x = 0 and x = aand fixed at y = 0. Let an exciting moment

$$M(x,t) = Msin \frac{n\pi x}{a} cos \omega t$$
 (B59)

be applied along the edge y = b

The boundary conditions in this case are:

at 
$$y = 0$$
  
 $\delta = Y_n = 0$ , (B60)  
 $\Theta = Y_n^* = 0$ ,  
at  $y = b$   
 $\delta = Y_n = 0$ ,  
 $M = NY_n^*$ .  
(B61)

The moment amplitudes at the ends may be expressed in terms of the rotation amplitude  $\Theta$  as follows:

At $y = b$ $M = kK\Theta$ (B63)	At	у	 0	М	1	KO	,		(B62)
	At	y	 b	Μ	=	<u>kk</u> o	•		(B63)

where <u>K</u> and <u>k</u> are respectively the flexural stiffness and the flexural carry-over factor.

It should be noted that when  $\lambda^* > \left(\frac{nb}{a}\right)^2$  Eq. (B51) for plates is similar to Eq. (B39) for bars subjected to fixed axial forces. And since, for the particular case considered, the boundary conditions given in Eqs. (B60) and (B61) are similar to those given in Eqs. (B8) and (B9), the expressions of <u>K</u> and <u>k</u> for a plate panel can be obtained directly from the corresponding expressions given in Eqs. (B46) and (B48). It is only necessary to replace in Eqs. (E46) and (B48) the quantities  $\phi$ ,  $\chi$ , <u>EI</u>, and <u>L</u> by  $\overline{\phi}$ ,  $\overline{\chi}$ , <u>N</u>, and <u>b</u>, respectively. The results are as follows:

$$\mathcal{K} = \frac{\overline{\phi} \cosh \overline{\phi} \sin \overline{\chi} - \overline{\chi} \sinh \overline{\phi} \cos \overline{\chi}}{\frac{2\overline{\phi} \overline{\chi}}{\overline{\phi}^2 + \overline{\chi}^2} \left[ 1 - \cosh \overline{\phi} \cos \overline{\chi} \right] + \frac{\overline{\phi}^2 - \overline{\chi}^2}{\overline{\phi}^2 + \overline{\chi}^2} \sinh \overline{\phi} \sin \overline{\chi} \cdot \frac{N}{b} , \quad (B64)$$

$$\begin{aligned}
& & k = \frac{\sin h \,\overline{\phi} - \frac{\overline{\phi}}{\overline{\chi}} \sin \overline{\chi}}{\frac{\overline{\phi}}{\overline{\chi}} \cosh \overline{\phi} \sin \overline{\chi} - \sinh \overline{\phi} \cos \overline{\chi}} .
\end{aligned}$$
(B65)

These relations apply to values of  $\lambda^* > \left(\frac{nb}{a}\right)^2$ .

n se grieder en en de stat de site

For  $\lambda^* < \left(\frac{nb}{a}\right)^2$  the expressions for <u>K</u> and <u>k</u> are obtained from those given in Eqs. (B64) and (B65) by replacing trigonometric functions by hyperbolic functions and the quantity  $(\bar{\chi})^2$  by  $-(\bar{\chi}')^2$ . The results are:

$$\mathcal{K} = \frac{\overline{\phi} \cosh \overline{\phi} \sinh \overline{\chi}' - \overline{\chi}' \sinh \overline{\phi} \cosh \overline{\chi}}{\frac{2\overline{\phi} \overline{\chi}'}{\overline{\phi}^2 - (\overline{\chi}')^2} \left[ 1 - \cosh \overline{\phi} \cosh \overline{\chi}' \right] + \frac{\overline{\phi}^2 + (\overline{\chi}')^2}{\overline{\phi}^2 - (\overline{\chi}')^2} \sinh \overline{\phi} \sinh \overline{\chi}' - \frac{N}{b} , \quad (B66)$$

$$\mathcal{K} = \frac{\sinh \overline{\phi} - \frac{\overline{\phi}}{\overline{\chi}'} \sinh \overline{\chi}'}{\mathcal{K} = \frac{\sinh \overline{\phi} - \frac{\overline{\phi}}{\overline{\chi}'} \sinh \overline{\chi}'} \quad (B67)$$

# <u>c.</u> <u>Correlation Between Elastic Constants for Vibrating Plates and</u> <u>Compressed Plates</u>

Consider a flat plate loaded on two edges parallel to the y-axis by uniformly distributed compressive forces  $p_x$ . Assume that no lateral load acts on the plate.

The differential equation for the deflection w(x,y) of the plate is

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} + \frac{p}{N} \frac{\partial^2 w}{\partial x^2} = 0$$
(B68)

For the case in which the loaded edges are simply supported, the solution of Eq. (B68) may be taken in the form

$$x(x,y) = Y_n \sin \frac{n\pi x}{a}, \qquad (B69)$$

where Y is a function of y only. The unloaded edges may have any condition of restraint.

Substituting Eq. (B69) into Eq. (B68), one obtains the following equation for determining the function  $Y_n$ :

$$Y_{n}^{''''} - \frac{2n^{2}\pi^{2}}{a^{2}}Y_{n}^{''} + \left(\frac{n^{4}\pi^{4}}{a^{4}} - \frac{k'n^{2}\pi^{4}}{a^{2}b^{2}}\right)Y = 0, \qquad (B70)$$

where

nia Nije

$$\mathcal{R}' = \frac{b^2 P_x}{\pi^2 N} . \tag{B71}$$

Comparing Eq. (B70) with Eq. (B51) it can readily be shown that if

$$\mathcal{K}' = (\lambda^*)^2 \left(\frac{a}{nb}\right)^2, \qquad (B72)$$

the two equations will be identical. Accordingly, the quantities <u>K</u> and <u>k</u> of a vibrating plate for a given value of  $\frac{a}{nb}$  and  $\lambda^*$  are numerically equal to the corresponding quantities of a compressed plate for the same  $\frac{a}{nb}$  value but for a value of  $k' = (\lambda^*)^* \left(\frac{a}{nb}\right)^2$ . Since tabulated values of stiffness and carry-over factor for compressed plates do exist (see Reference 32), these values can be used to determine the corresponding dynamic quantities. It should be noted, however, that in Reference 32 stiffness has been defined as the moment necessary to produce a rotation of a maximum amplitude of a quarter radian rather than one radian. Therefore, the stiffness values obtained from Reference 32 must be multiplied by 4 to make them conform to the definition given in this report. APPENDIX C. ANALYSIS OF STEADY-STATE FORCED VIBRATIONS

#### 1. General Description of Method of Analysis

The information presented in this report may be used also to analyze the steady-stateforced vibration of continuous beams and frames subjected to harmonically varying forces. The forces are presumed to have the same frequency and the same phase angle. The effect of damping is neglected.

The determination of the steady-state forced vibration of a system is a much simpler problem than the calculation of its natural frequencies, since in the former case it is only necessary to go through a single cycle of the trial-and-error procedure used in the determination of natural frequencies.

An analysis for steady-state forced vibrations can be carried out in substantially the same way as an analysis for static conditions. In either case, the analysis involves two basic steps:

a. Determination of the redundant quantities at the joints or supports of the continuous system. In general, the redundant quantities may be moments, rotations, deflections or any combination of these.

b. Determination of the moments, shears, deflections at points between joints or supports. The principal difference between a static and dynamic analysis is that while in a static analydis moments and shears within a member may be determined by statics from the moments and shears at the ends of the member, in a dynamic analysis these effects must be computed independently.

We shall now outline one of a number of possible procedures for executing these steps. For illustration, we shall consider the relatively simple frame shown in Fig. B3 and, for simplicity's sake, shall assume that the joints of the frame do not move. Joints 1 and 9 are assumed to be simply supported.



Although this procedure, in the form presented herein, is applicable to continuous open frames only, it can readily be extended to frames involving closed panels. The details of the procedure are as follows:

<u>Step a.</u> (1) Replace the concentrated forces by equivalent fixed end moments. The magnitude of these moments may be obtained directly from Table II in Appendix A. (If the ends of the loaded members were free to deflect, it would have been necessary to calculate also fixed end shears. These could have been computed either from Eq. (72) or from Eq. (B31).

(2) For each span compute the quantities <u>K</u> and <u>kK</u>. (If the joints of the frame were free to translate, it would have been necessary to compute also the quantities <u>Q</u>, <u>qQ</u>, <u>T</u>, and <u>tT</u>.) These quantities are obtained directly from Table I in Appendix A.

(3) Assume a slope at support 1. Progressing from joint to joint across the frame in the manner described in the body of this report, evaluate the rotations of the joints. It should be remembered that in this case the external moment  $\overline{M}_i$  is, in general, different from zero.

(4) From the rotations determined in the preceding step, calculate the magnitude of the moment at the extreme right end of the frame. This

1.42

poment will, in general, be different from the actual moment at that end, a condition indicating that the assumed slope  $\Theta_1$  was in error. It is therefore necessary to add a correction configuration.

(5) Disregarding the external moments, find the influence of a unit rotation at joint 1 on the distortions of the remaining joints. Calculate also the magnitude of the corresponding moment at the right end.

(6) Combine the configurations determined in (4) and (5) so as to eliminate the unbalanced moment at the right end.

(7) From the rotations determined in (6), compute the magnitude of the moments at the joints or supports of the frame using the relationship

$$M_{oj} = K\Theta_{o} + kK\Theta_{j}$$

where M_{oj} is the moment at end <u>o</u> of the member <u>oj</u>. This concludes Step a. <u>Step b.</u> Any desired effect (moment, shear, deflection, etc.) within a member <u>oj</u> may be determined by superimposing the following effects; (1) The effect of the load on a simply supported member

(2) The effect of the moment at end  $\underline{o}$ 

(3) The effect of the moment at end j

If the ends of the member deflect, the following effects must also be added: (4) The effect of the deflection at end  $\underline{o}$ 

(5) The effect of the deflection at end j

Each effect is computed on the assumption that the member is simply supported at the ends.

The quantities added may, if desired, be different from those outlined. For example, one may add the effect of the load on a member fixed at both ends, the effects of the end deflections, and the effects of the end rotations. Irrespective of the manner in which the computations are carried out, the facility with which results are computed depends on the information available for the various quantities added.

The appropriate expressions for effects (2) through (5) are given in Reference (24). Included in this reference are also tabulated numerical values of functions in terms of which these effects can easily be computed. The appropriate expréssion for effect (1) is given in the next section.

# Formulas for Steady-State Deflection of a Simply Supported Uniform Beam Carrying a Concentrated Force Fcoswt

The force is assumed to be applied at a distance  $\forall$  L from the left end of the beam as shown in Fig. B4. The subscripts 1 and 2 will be used to



designate quantities for the left and the right portions of the beam. The distances  $x_1$  and  $x_2$  are measured from the ends of the beam as shown on the figure.

The deflections w₁ and w₂ may be written as

$$\begin{split} w_{1} &= \left[ c_{1} \cosh \lambda \frac{X_{1}}{L} + c_{2} \sinh \lambda \frac{X_{1}}{L} + c_{3} \cos \lambda \frac{X_{1}}{L} + c_{4} \sin \lambda \frac{X_{1}}{L} \right] \cos \omega t , \\ w_{2} &= \left[ \overline{c}_{1} \cosh \lambda \frac{X_{2}}{L} + \overline{c}_{2} \sinh \lambda \frac{X_{2}}{L} + \overline{c}_{3} \cos \lambda \frac{X_{2}}{L} + \overline{c}_{4} \sin \lambda \frac{X_{2}}{L} \right] \cos \omega t . \end{split}$$

The eight integration constants have been evaluated from the four boundary conditions and from the four continuity and equilibrium conditions for the Point of application of the force. The results are:

$$\begin{split} w_{I}(x_{I}) &= \frac{FL^{3}}{EI} \cdot \frac{I}{2\lambda^{3}} \left[ \frac{\sin\left(I-\psi\right)\lambda}{\sin\lambda} \sin\lambda \frac{x_{I}}{L} - \frac{\sinh\left(I-\psi\right)\lambda}{\sinh\lambda} \sinh\frac{x_{I}}{L} \right] \cos \omega t \ , \\ w_{Z}(x_{Z}) &= \frac{FL^{3}}{EI} \cdot \frac{I}{2\lambda^{3}} \left[ \frac{\sin\psi\lambda}{\sin\lambda} \sin\lambda \frac{x_{Z}}{L} - \frac{\sinh\psi\lambda}{\sinh\lambda} \sinh\frac{x_{Z}}{L} \right] \cos \omega t \ . \end{split}$$

From these equations, expressions for bending moment and shear can be obtained readily by differentiation.

11 T 11 L

#### BIBLIOGRAPHY

- "Zur Ermittlung der Grundschwingungszahlen von durchlaufenden Trägern", by W. Mudrak, Ingenieur-Archiv, vol. 7, 1936, pp. 51-55
- "Ermittlung der Eigenschwingzahlen von durchlaufenden Trägern mit feldweise veränderlicher Langskraft", by W. Mudrak, Ingenieur-Archiv, vol.7, 1936, pp. 293-297

(1)

(2)

- (3) "Bestimmung der Eigenschwingungszahlen von durchlaufenden Trägern und Rahmen", by W. Mudrak, Zeitschrift für Angewandte Mathematik and Mechanik, vol. 28, 1948, pp. 258-263
- (4) "Vibration Frequencies of Continuous Beams", by Edward Saibel, Journal of the Aeronautical Sciences, vol. 11, 1944, pp. 88-90
- (5) "Free Vibrations of Constrained Beams", by W. F. Z. Lee and E. Saibel, Journal of Applied Mechanics, vol. 19, 1952, pp. 471-477
- (6) "Natural Modes of Vibration of Simple Frames", by S. Bennon, Journal of the Franklin Institute, vol. 243, 1947, pp. 13-39
- (7) "Die Berechnung der Drechschwingungen", by H. Holzer, J. Springer, Berlin, 1921.
  Holzer's method is also described in "Mechanical Vibrations", by J. P. Den Hartog, McGraw-Hill Book Company, Inc., N.Y., 2nd Edition, 1940, pp. 228-233, or in "Vibration Analysis", by N. O. Myklestad, McGraw-Hill Book Company, Inc. N.Y., 1944, pp. 165-168
- (8) "A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams", by N. O. Myklestad, Journal of the Aeronautical Sciences, vol. 11, 1944, pp. 153-162
- (9) "A General Method for Calculating Critical Speeds of Flexible Rotors", by M. H. Prohl, Journal of Applied Mechanics, vol. 12, 1945, pp. 142-148
- (10) "Calculation of the Multiple-Span Critical Speeds of Flexible Shafts by Means of Punched-Card Machines", by A. W. Rankin, Journal of Applied Mechanics, vol. 13, 1946, pp. 117-126
- (11) "Determination of the Natural Frequencies of the Bending Vibrations of Beams", by A. I. Bellin, Journal of Applied Mechanics, vol. 14, 1947, pp. 1-6
- (12) "Analysis of Continuous Frames by Distributing Fixed-End Moments", by Hardy Cross, Transactions A.S.C.E., vol. 96, 1932, pp. 1-10
- (13) "On Moment Balancing in Structural Dynamics", by R. E. Gaskell, Quarterly of Applied Mathematics, vol. 1, 1943, pp. 237-249

おいた 二日 とう

La sur a sur
- (14) "Some General Theorems Relating to Vibrations", by Lord Rayleigh, London Proceedings Mathematical Society, 1873, pp. 357-368; also, "The Theory of Sound", by Lord Rayleigh, Dover Publications, 1945, vol. 1, pp. 150-157
- (15) "A Distribution Procedure for the Analysis of Slabs Continuous over Flexible Beams", by N. M. Newmark, University of Illinois Engineering Experiment Station Bulletin 304, 1938, p. 25
- (16) "Natural Frequencies of Continuous Beams of Uniform Span Length", by R. S. Ayre and L. S. Jacobsen, Journal of Applied Mechanics, vol. 17, 1950, pp. 391-395
- (17) "A Direct Method of Moment Distribution", by T. Y. Lin, Transactions A.S.C.E., vol. 102, 1937, pp. 561-571
- (18) "A Simple Method for the Calculation of Natural Frequencies of Torsional Vibration", by F. P. Porter, Transactions A.S.M.E., vol. 53, Paper OGP-53-2, 1931, pp. 17-32.
  A detailed description of Porter's method is given also by N. O. Myklestad "Vibration Analysis", McGraw-Hill Book Company, Inc. NoY., 1944, pp. 168-177
- (19) "Fundamentals of Vibration Study", by R. G. Manley, John Wiley and Sons, Inc., N.Y., 1943
- (20) "Free and Forced Vibrations of Composite Systems", by E. Saibel, Proceedings of the Symposium on Spectral Theory and Differential Problems, Oklahoma Agr. and Mech. College, 1951, pp. 333-343
- (21) "Stability of Structural Members Under Axial Load", by E. E. Lundquist, Technical Note No. 617, National Advisory Committee for Aeronautics, Washington, D.C., October, 1937
- (22) "Die Beanspruchung von Tragwerken durch schwingende Lasten", by W. Prager, Ingenieur-Archiv, vol. 1, 1930, pp. 527-532
- (23) "Beanspruchung und Formanderung von Stabwerken bei erzwungenen Schwingungen", by S. Gradstein and W. Prager, Ingenieur-Archiv, 1932, vol. 2, pp. 622-650
- (24) "Dynamik der Stabwerke", by K. Hohenenser end W. Prager, Julius Springer, Berlin, 1933
- (25) "Successive Elimination of Unknowns in the Slope Deflection Method", by J. B. Wilbur, Transactions A.S.C.E., vol. 102, 1937, pp. 346-351
- (26) "Principal Effects of Axial Load on Moment Distribution Analysis of Rigid Structures", by B. W. James, Technical Note No. 534, National Advisory Committee for Aeronautics, Washington, D.C., July 1935

"Extended Tables of Stiffness and Carry-Over Factor for Structural Members Under Axial Load", by E. E. Lundquist and W. D. Kroll, Wartime Report L-255 (ARR 4B 24), National Advisory Committee for Aeronautics, Washington, D.C., February, 1944

(27)

(30)

- (28) "A Relaxation Procedure for the Stress Analysis of a Continuous Beam-Column Elastically Restrained Against Deflection and Rotation at the Supports", by Pai C. Hu and Charles Libove, Technical Note No. 1150, National Advisory Committee for Aeronautics, Washington, D.C.m. October 1946
- (29) "Über das ebene Knickproblem des Stockwerkrahmens", by E. Chwalla and F. Jokisch, Der Stahlbau, vol. 14, p. 33, 1941
  - "Buckling of Trusses and Rigid Frames", by G. Winter, P. T. Hsu, B. Koo, and M. H. Loh, Cornell University Engineering Experiment Station Bulletin 36, Ithaca, N.Y.
- (31) "Beams on Elastic Foundation", by M. Hetényi, University of Michigan Press, Ann Arbor, 1946
- (32) "Tables of Stiffness and Carry-Over Factor for Flat Rectangular Plates Under Compression", by W. D. Kroll, Wartime Report L-398 (ARR No.3K27), National Advisory Committee for Aeronautics, Washington, D.C., Nov.1943
- (33) "The Frequency of Vibration of Rectangular Isotropic Plates", by R. F. S. Hearmon, Journal of Applied Mechanics, vol. 19, 1952, pp. 402-403
- (34) "On the Fundamental Frequencies of Vibration of Rigid Frames", by E. F. Masur; paper presented at the First Midwestern Conference on Solid Mechanics, University of Illinois, April 24, 1953

御田市 ない たいない 「「「「「「」」













승규, 코고고, 목구국













FIG. 13 DEFLECTED SHAPE OF TWO ADJACENT SPANS OF A CONTINUOUS BEAM ON RIGID SUPPORTS









and the second second









06T







FIG. 25 ILLUSTRATIVE EXAMPLE 3















FIG. 30 ILLUSTRATIVE EXAMPLE



















207 Cross beam (4) (5) (3) (1) (2) (a) Cross beam (P) NNN 2 2 MWC I Z <del>זיזיייי</del> j+1 j (c). ** -dj 2 2 j + 1 i (d) WITH VARIOUS INTERMEDIATE BEAMS FIG. 39 CONSTRAINTS










A SLAB ON RIGID SUPPORTS

_____

