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~ SIMPLE APP~OXIMATION FOR THE NATURAL .FREQUENC.IES 

OF PARTLY RESTRAINED BARS' 

by 

No M. Newmark and A~ S. Veletsos 

University of Illinois 

This paper presents a simple approximate formula. for the 

natural frequencies of flexural v.ibration of a bar which rests at 

each end on non-deflecting supports but which is elastically restrained 

against rotation at the ends 0 The bar is of consta.nt cross·-sectionand· 

density. The end restraints are assumed to be proportional to the end 

rotations, and the restraint stiffness may have any value in the range 

between perfectly hinged and completely fixed conditions. The 

restraints may be due to elements such as coil springs, or they may 

result from the continuity of the bar 'with adjoining members. 

Consider the bar tD be oscillating in 'oneof its natural 

modes of free vibration. Let BL and G
R 

be the angular rotations of 

the bar at the left and .right ends respectively, and let ML and MR be 

the moments at the corresponding ends. The relation between moments 

and rotations at the ends is expressed by the equat~ons: 

and 

where KL and KR represent the stiffnesses of the restraints at the 

left and the right ends. The stiffness K is de~ined as the moment 

necessary to rotate the spring restraint, or the restraining member 



-which it may symbolize, by a unit amount 0 A restraint is referred 

to as positive when the moment which it exerts on the bar "acts in a 

direction opposite to the direction of rotation of the bar; when the 

rea.ctive moment acts so as to augment this rotation, the restraint is 

r~ferred to as a negative restr~int. A positive restr~int~ there~ore, 

resists the tendency of the bar to rotateo 

It is convenient to express thestiffnesses of " the restraints 

by dimensionless coefficients which are related tn the characteristics 

of the bar ~s follows: 

and (2) 

where 

L - the length of the span; 

E = the modulus 01: elasticity of the material in 
the bar; and 

I = the moment of inertia of the cross-section of 
the ba.r about "its centroidal axis. 

In terms of the coefficients f3L a.nd f3 R it is possible to 

derive lI exact" v~lues of the natural frequencies of flexural vibrationo 

These appear as the roots of transcend"ental equations involving trigo'-

nometric and hyperbolic functions 0 In gener~l the roots are tedious 

to evaluate, and the formulas do not give a simple picture of the 

mechanism of the action of the bar. Gr"aphs or tables are required to 

obtain useful values of the frequencies for a range iIi the parameters, 

The frequencies can also be expressed by approximate formulas 0 

It ~s convenient to state the frequencies of the elastically 

restra.ined bar as the product of a dimensionless coefficient Cn multi-

plied by the fundamental frequency f of the same bar with hinged ends: 
o 
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where E, .!, and!: are as previously defined, ~ is the masS ,per unit 

of length oithe bar, and in is the n-th frequency of 'the ba.r in its 

elastically restrained condition, expressed in cycles per S~conda 

From the results of numeric'al calculations based on the 

exact, solutions the following 'simple approximatioTh was developedf'or 

the coefficient Gn : 

c ~ [~ + ! ( ~L )] In + ! ( ~R· )] 
n 2 ,5n + 13L " 2 5n + ~R 

(4 ) 

, I 

In this expression,. n is the order of the desired natural frequency and' 

~L and ~R are the restraint coefficients as defin-ed' by equation (Z). For 

the fundamental frequency, n = 1. In,genera.l, for the n-th mode there' 

are E. waves, alternately upward and downward, in the deflection curve 

along the length of the bar. 

The foregoing formula is a.pplicable to bars 'having: positive end 

restra.ints. It is valid f'orthe f'undamental as well as the higher -n.atu:r:a.l 

frequencies and it is accurate within a maximum error Df"4 per cent, with 

the maximum error occurring in the lowest or fundamental tr-equency. 

For the first and second natural frequencies, 'tne percentage 

error resulting from the us,e of 'this approximate formula is indicated in 

Fig. 1 in the form of a contour map. Since the error curves are sym-

metrical with respect to a diagonal line, only one-half of the contour 

map is plotted for each frequency. The curves above the diagonal 

correspond to the first natural frequency while those below the diagonal 

pertain to the second natural frequency. Bec'aus e of symmetry, 1 t is 

possible to specify that the subscript ~ always refers to the larger 
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end restraint 0 The scale o£ the coordinates is chosen so chat the 

entire renge of positive restraints, from zero to infinity, is 

represented. A positive error indicates tha.t the £requency given 

by equa. tion (4) is too high. 

It can be observed that the maximum err'or in the second 

frequency is negligible for all practi-cal purposes.,.· The errors become 

prDgressivaly smaller for the higher modes. The greatest error is 

obtained for a bar fixed at one end 8J:J.d hinged at the other, where 

the fundamental frequency given by equ~.tion (4) is 1.50 f~, and the 

true value is 1.56 fo~ The large errors in the first mode are con-

centr'ated over 'an extremely ,small region, which corresponds to the 

cases of bars with one end practically unrestrained and'the other 

subj ect to 'a very stiff restr'ainto With the exception of this 

localized region, the maximum error over the remaining domain of end 

fixities is consistently less than 2 per cent~ 

When the end restr'aints are very small, i 0 e o 'for -values of 

13 approaching' zero, the value of C is express ed more- cOINe-nie-ntly- by 
n 

the relation: 

(5) 

Equation (5) is in error by less than 1·5 per cent whenf3L + f3 R is 

less than 1.0, and the error is always positive. 

The approximate formulas are based on exact 'Solutions derived 

from the ordinary theory of flexure of beams J which-neglects the effects 

of shearing deformation and of rotatory inertia, Because the influence 

of these neglected factors may become significant in the higher modes, 

the present formulas should not be used without regard for the limitations 

imposed by the ordinary theory of flexure. 

-I 
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This paper is based upon an observation of' the senior author. 
\ 

The approxim'ate equatIons are similar to those given in a previous 

paper* relating to buckling loads for partly restrained bars. The 

calculations and d-etailed study were made as a part of a program 

sponsored by the Office of Nav'al Research (Mechanics Branch) in the 

structural Research Laboratory, Department of Civil Engineering, of 

the University of Illinois 0 

*N. M. Newmark, "A Simple Approximate Fermula for Effective End'-Fixi ty 
of Columns," Journal of the Aeronautical Sciences, Vol. 16, No.2, 
February 1949, p~ 116. 
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