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A STMPLE APPHoxmATiON FOR THE NATURAL FREQUENCIES

OF PARTLY RESTRAINED BARS'

by
N. M. Newmark and A. S. Veletsos

University of Illinois

This paper presents a simple approximate formula for the

natural frequencies of flexural vibration of a bar which rests at

sach end on non-deflecting supports but which is elastically restrained
against rotation at the ends. The bar is of constant cross-section and:
density. The end restraints are assumed to be proportional tc the end
rotations, and the restraint stiffness may have any value in the range
between perfectly hinged and completely fixe& conditions. The
restraints may be due to elements such as coil springs, or they may
result from the continuity of the bar with adjoining members.

| Consider the bar to be oscillating in one of its natural
modes of free vibration. Let:GL and GR be the gngular rotations of
the bar at the left and right ends respectively, aﬁdvlet ML and MR be
the moments at the corresponding ends. The relation between moments

and rotations at the ends is expressed by the equations: -
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where K; and Kp represent the stiffnesses of the restraints at the

left and the right ends. The stiffness K is defined as the moment

necessary to rotate the spring restraint, or the restraining member




2.

which it may symbolize, By a unit amount. A restraint is referred
to as positive when the moment which it exerts on the bar acts in a
direction opposite to the directioﬂ of rotation of the bar; when the
reactive moment acts so as to augﬁent thié rotation, the restraint is
referred to as a negative restraint. A positive restraint, thersfors,
resists the tendency of the bar to rotate.

~ It is convenlent to express the stiffnesses of the restraints
by dimensionless coefficients which are related to the characteristics
of the bar as follows:

Br, = ¥ L/EI and Br = KgL/EI - (2)

where

-
i

the length of the span;

the modulus of elasticity of the material in
the bar: and '

=
I

I = the moment of inertia of the cross-section of
the bar about its centroidal axis.

In terms of the coefficients BL and ﬁR it is possible to
derive "exact" values of the natural frequencies of flexural vibration.
These appear as the roofs of transcendental eqﬁations involving trigo-
ﬁomstrio and hyperbolic functions. In general the roots are tedious
to evaluate, and the formulas do not give & simple picture of the
mechanism of the action of the bar. Graphs or tables are required to
obtain useful values of the frequencies for & range in the parameters.
The frequencies can also be expressed by approximafe formulas.

It is convenient to state the frequencies of the elastically
restrained bar as the product of a diﬁensionless coefficient Cn multi-

plied by the fundamental frequency fo of the same bar with hinged ends:
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where E, I, and L are as previously defined, m is the masé-pef unit
of length of the bar, and £, is the n-th frequency of the bar iﬁ ité_
plastically restrained condition, expressed in cycles per sécondm
From the results of numerical calculations based on the

exact solutions the following Simpie approximation was developed for

the coefficisnt Cn:

o z [;1 +1 (_EL__)] [n +1 <_B_L>] | | ()

2 Sn + B, 2 5n + Br
In this expression, n is the order of ‘the desired natural frequency and
By, and Py are the restraint coefficients as defimed by equation (2). For

the fundamental frequency, n = 1. In general, for_the n-th mode there-

are n waves, altermately upward and downward, in the deflection curve

along the 1engtﬁ of the bar.

The faregoing formula is applicable to bars having positive end
restraints. It is valid for the fuﬁdamental as well>as the higher natural
frequencies and it is accurate within & maximum error of 4 per cent, with
the maximum error occurring in the lowest or fundamental frequency.

For the first and second natural frequencies, the percentdge
error resulting from the use of this approximate formulas is indicated in
Fig. 1 in the form of & contour map. Since thes error curves &are sym-
metrical with respect to a dimgonal line, only one-half of the contour
map is plotted for each frequency. Thevcurves above the diagonal
correspond to the first natural frequency while those below the diagonal
pertain to the second natural frequency. Because of symsetry, it 1s

possible to specify that the subseript L always refers to the larger



m

end restraint. The scale of the coordinates is chosen so that the
entire range of positive restraints, from zero to infinity, is

represented. A positive error indicates that the frequency given

by equation (4) is too high.
It can be observed that the maximum error in the second

frequency 1is negligible for all practical purposes. The errors become

S cite
progressively smaller for the higher modes. The greatest error is 2»;.5;:'
L < o
S o
obtained for a bar fixed at one end and hinged at the other, where P g CD;;
b =
the fundamental frequency given by equation (4) is 1.50 f,, and the tjé; F;?i
ot
=
oo W
true value is 1.56 fom The large errors in the first mode are con- g H:E.g
: , R
centrated over an extremely small region, which corresponds to the @ tjffég
o W= Bt
. . . : : HERy
cases of bars with one end practically unrestrained and the other end g’ S. @
L]
o
subject to a very stiff restraint. With the excseption of this E;
B
localized region, the maximum error over the remainimng domain of end g
d'

fixities is consistently less than 2 per cent-

When the end restraints are very small, i.e. for valuses of

B approaching zero, the value of Gn is expressed more cemveniently by

the relation:

¢, = 1%+ 0.1 (B + Bg) (5)

Equation (5) is in error by less than 1.5 per cent when'BL + BR is
less than 1.0, and the error is always positive.(

The approximate formulas are based on exact solutions derived
from the ordinary theory of flexure of beams, which neglects the effects

of shearing deformation and of rotetory inertia. Because the influence

of these neglected factors may become significant in the higher modes,

the present formulas should not be used without regard for the limitations

imposed by the ordinary theory of flexure.
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5.
This paper is based upon an observation of the senibr author
\ : :

The approximate equations are similar to those given in a previous

paper* relating to buckling loads for‘parfly restrained bars. The

calculations and detailed study were made as a part of a program
sponsored by the 0ffice of Naval Research (Mechanios Branch).in the
Structural Research Laboratory, Dspartment of Civil Engineering, of

the University of Illinois.

¥N. M. Newmark, "A Simple Approximate Fermula for Effective End-Fixity
of Columns," Journal of the Aeronautical Sciences, Vol. 16, No. 2,
February 1949, p. 116.
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