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A B S T R A C T   

Metaproteomics is becoming widely used in microbiome research for gaining insights into the functional state 
of the microbial community. Current metaproteomics studies are generally based on high-throughput tandem 
mass spectrometry (MS/MS) coupled with liquid chromatography. In this paper, we proposed a deep-learning- 
based algorithm, named DeepFilter, for improving peptide identifications from a collection of tandem mass 
spectra. The key advantage of the DeepFilter is that it does not need ad hoc training or fine-tuning as in 
existing filtering tools. DeepFilter is freely available under the GNU GPL license at https://github. 
com/Biocomputing-Research-Group/DeepFilter. 
Significance: The identification of peptides and proteins from MS data involves the computational procedure of 
searching MS/MS spectra against a predefined protein sequence database and assigning top-scored peptides to 
spectra. Existing computational tools are still far from being able to extract all the information out of MS/MS data 
sets acquired from metaproteome samples. Systematical experiment results demonstrate that the DeepFilter 
identified up to 12% and 9% more peptide-spectrum-matches and proteins, respectively, compared with existing 
filtering algorithms, including Percolator, Q-ranker, PeptideProphet, and iProphet, on marine and soil microbial 
metaproteome samples with false discovery rate at 1%. The taxonomic analysis shows that DeepFilter found up 
to 7%, 10%, and 14% more species from marine, soil, and human gut samples compared with existing filtering 
algorithms. Therefore, DeepFilter was believed to generalize properly to new, previously unseen peptide- 
spectrum-matches and can be readily applied in peptide identification from metaproteomics data.   

1. Introduction 

Metaproteomics focuses on the entire protein complement recovered 
directly from complex microbial communities like aqueous ecosystems, 
terrestrial systems, and eukaryotic host microbiomes [1,2,3,4]. Under-
standing the functionality of microbial communities is essential. For 
example, the gut microbiome was known to play a crucial role in health 
by benefiting the immune system and helping control digestion [5,6,7]. 
The microbial activities can be inferred from the total proteins of its 
constituent microorganisms. Mass spectrometry (MS)-based meta-
proteomics has emerged as a discovery method for analyzing the prote-
ome of a microbial community in a high-throughput fashion. In shotgun 
MS-based metaproteomics, proteins are digested into peptides using 
high-performance liquid chromatography (HPLC), then ionized, isolated, 
fragmented, and detected in the mass analyzer as they elute from the 
HPLC. The central component of computational metaproteomics data 
analysis is database searching. This is where measured tandem mass 
spectra (MS/MS), of unknown microbial peptides, are compared with 

theoretical tandem mass spectra predicted from a database of proteins 
encoded in metagenomes. Peptide-spectrum match (PSM) scores are 
calculated by the comparisons between each MS/MS and in-silico 
digested peptides from the protein database. The peptide in the top- 
scoring PSM is used as a candidate for the query MS/MS. The candi-
date PSMs are filtered with a score threshold to generate a set of confi-
dent PSMs at a designed false discovery rate (FDR). 

In the database matching procedure, it is crucial to choose an 
appropriate PSM scoring function which plays two important roles. First, 
the scoring function is used to rank candidate peptides for a single 
spectrum, producing a top-scoring PSM for each spectrum. Second, the 
scoring function is used to rank the PSMs from different spectra. The 
second ranking task is intrinsically more complicated than the first 
ranking task due to the variance of spectra. A perfect scoring function for 
ranking top-scoring PSM per spectrum may not be a perfect scoring 
function for ranking PSMs from different spectra because PSM scoring 
may not be well-calibrated from one spectrum to the other. To solve this 
issue, a variety of approaches have been developed to learn PSM scoring 
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functions for the second ranking task after the initial PSM scoring. These 
approaches can be categorized into two types. The first type is based on 
statistical modeling [8]. For instance, PeptideProphet [9] determines the 
confidence of identified PSMs by a probability-based model using Bayes’ 
Law. Other statistical modeling methods, such as linear discriminant 
analysis [10] and Bayes classifier [11] were also used as discriminant 
functions. Ivanov et al. [12] designed a multiple-parameter scoring 
scheme to find PSM outliers to estimate the distributions of PSMs with 
information from the experimental spectra. iProphet [13] implemented 
five models based on the number of sibling searches, replicate spectra, 
sibling experiments, sibling ions, and sibling modifications to filter PSMs. 
The second type of PSM filtering algorithms discriminate true PSMs from 
false ones based on machine learning [14,15,16,17,18,19,20]. Percolator 
[16], Q-ranker [19], and CRanker [20] belong to the second type. They 
train Supporting Vector Machines to classify PSMs. Other machine 
learning models, such as decision tree [14], random forest [15], Bayesian 
network models [17], and logistic regression [18] were also applied to re- 
rank or re-score PSMs with different strategies in constructing training 
data sets and feature extraction. 

Although the above-mentioned methods improved the number of 
identified PSMs for single organism proteome, there are still more than 
50% of spectra without correctly assigned peptides in MS-based meta-
proteomics [21,22,23]. One reason for that is the large metaproteomic 
protein databases, which may contain millions of predicted proteins 
spanning thousands of organisms in complex communities [24,25]. 
Also, the scores of random matches generally follow a probabilistic 
distribution with a small tail towards high scores. A spectrum should 
have a high score for a correctly matched peptide. As a result, when the 
databases of candidate peptides increase in size, the probability of an 
incorrect random match that scores higher than the correct match 

increases as well. Therefore, a more sensitive ranking strategy is needed 
for ranking PSMs from different spectra with the properties of spectra 
and peptide sequences being taken into account. Another drawback of 
the existing PSM filtering algorithms is that they often do not generalize 
well across different metaproteome samples and experimental condi-
tions, such as different instrument platforms, etc. For solving this issue, 
ad hoc training is required when the samples and experimental condi-
tions change. Therefore, it will be hard to justify the confidence of re-
sults when training data is from the one needs to be inferred. 

In this study, we propose a deep learning model, called DeepFilter, to 
re-rank PSM candidates after the database search for shotgun meta-
proteomics. DeepFilter has two key contributions. First, it can learn the 
mapping patterns between spectra and peptide sequences and combine 
them with the features known to relate to the PSM score distribution. 
These automatically extracted features enabled DeepFilter to produce 
substantially higher numbers of PSM, peptide, and protein identifica-
tions in complex metaproteomics data sets than the existing algorithms 
benchmarked here. Second, DeepFilter eliminates the ad hoc training 
and can be applied to analyze different metaproteome samples without 
fine-tuning and still obtain substantial improvements over existing tools. 
The rest of the paper is organized as follows. In section 2, we elaborate 
on the architecture of DeepFilter and the whole workflow, including 
training data set construction, spectrum peak charge detection, and 
feature extraction. In section 3, systematic experiments on five real- 
world metaproteomes and single organism proteome were used to 
demonstrate that our method outperformed the other state-of-the-art 
approaches. In section 4, we visualized the learned features in Deep-
Filter by using class activation mappings. In section 5, we concluded that 
DeepFilter not only achieves higher identification performance but also 
can be generalized to different metaproteomic studies. 

Fig. 1. The workflow of building DeepFilter.  
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2. Materials and methods 

The workflow of building DeepFilter is shown in Fig. 1, which includes 
five steps: training data set construction (Part A), charge detection for 
experimental spectra (Part B), theoretical isotopic envelope generation 
(Part C), 11 features extraction (Part D), and feature/spectrum encoding 
(Part E). In the following sections, We will explain the details of each 
component. DeepFilter is freely available under the GNU GPL license at 
https://github.com/Biocomputing-Research-Group/Deep 

Filter, where step-by-step installation and usage were provided. In 
short, DeepFilter needs the mass spectra data in ms2 format and the 
database searching results by Comet in pin format, and generates re- 
ranked PSMs in a tab-separated values file. Note that DeepFilter needs 
20 GB GPU memory for training. 

2.1. Training data construction 

There are nine data sets used in our experiments. The summary of 
spectrum numbers is in Table 1. Marine 1, 2, and 3 are metaproteomes of 
marine microbial communities [26]. Soil 1, 2, and 3 are metaproteomes 
of soil microbial communities [27]. P1 and P2 are metaproteomoes of 
mock community [28]. HG is the metaproteome of human hut microbial 
community [29]. Marine data sets and one of soil data sets were used to 
construct our training data set, and others are for benchmarking. 

Since the metaproteome data sets do not have ground-truth PSMs, we 

used existing algorithms to generate a set of PSMs as positive data 
points. We used Comet [30] to collect a set of top-scoring PSM candi-
dates for each spectrum, and re-scored these PSMs by different filters, 
including Percolator [16], Q-ranker [19], PeptideProphet [13], and 
iProphet [13]. We chose the one that identified the highest number of 
identified PSMs with FDR controlled by the target-decoy search [31]. In 
our experiments, Percolator performed best and was chosen for gener-
ating positive PSMs. We generated a training data set for each Marine 
data set. Take Marine 1 for example. After the Comet search and the 
Percolator filtering, top-5 scoring PSM candidates for each spectrum 
were collected. The PSM candidates with posterior error probabilities 
(calculated by Percolator) larger than 0.93 were removed. A total of 
243,928 PSM candidates were left. For the top-ranked PSM candidates, 
if they were target PSMs from the matched protein database, we labeled 
them as positive PSMs. For the rest PSMs, including all decoy PSMs from 
the decoy protein database and non-top-ranked target PSMs, we labeled 
them as negative PSMs. The number of positive and negative PSMs for 
four training data sets are shown in the Table 2. 

2.2. Charge detection for experimental mass spectra 

To provide more information to the spectrum encoder, each experi-
mental spectrum was deconvoluted with charge states assigned to each 
fragment peak. Not all the MS data comes with charge information. 
Here, we developed a charge detection method based on Patterson 
routine algorithm [32]. We assigned charges up to +3 and, for the 
fragment ions with charges more than +3, we put them into one group 
without further categorization. The equation of charge detection is 
shown in Equ. 1, where ΔM represents the mathematical inverse of 
charge state which is being evaluated, Mi represents the m/z of nearby 
fragment peaks, and f(Mi) is the intensity of corresponding peak. The 
details of determining the charge state for each fragment peak is 
described in Algorithm 1. 

Table 1 
The total numbers of MS/MS of nine metaproteome data sets.   

Marine 1 Marine 2 Marine 3 Soil 1 Soil 2 Soil 3 P1 P2 HG 

# of spectra 138,682 143,344 127,075 391,249 489,785 409,202 356,160 351,658 668,162 

1. P1 and P2 are two mock metaproteome samples. 
2. HG is the human gut metaproteome sample. 

Table 2 
The numbers of postive and negative PSMs in training data sets.   

Marine 1 Marine 2 Marine 3 Soil 1 

# of positive PSMs 79,057 77,916 79,496 252,829 
# of negative PSMs 160,562 153,692 132,051 1,702,530  
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2.3. Isotope envelope generation for peptide sequences 

In addition to using the most abundant theoretical peaks of peptide 
sequences as in Comet and other database searching tools, we also 
generated the theoretical spectrum with isotope envelopes for each 
fragment ions. Here, we modified our open-source tool, Sipros [33], to 
obtain the isotope envelopes for the peptide sequences in the training 
PSMs. For each ion, we sorted the isotopes in descending order based on 
their abundances and keep the isotopes until the cumulative isotopic 
abundance no less than 98%. We then clustered fragment ions into six 
groups by considering 3 charge states, i.e., +1, +2, and + 3, and two ion 
types, i.e., b-ion and y-ion. 

2.4. Input representations of PSMs and engineered features 

Each input PSM was converted into a matrix, where the peaks in the 
experimental spectrum and theoretical spectrum were discretized based 
on their m/z values, and grouped based on their charge states and ion 
types. This PSM matrix was fed into a spectrum encoder based on the 
CNN (Convolutional Neural Network) model, which uses convolution 
kernels to construct a shared weight architecture. Inspired by the 
existing filtering algorithms [16,19,9], we extracted 11 features for each 
input PSM and encoded them by a PSM feature encoder based on a fully 
connected layer. The details of these two input representations are 
described as follows. 

2.4.1. Spectrum representation 
Our spectrum representation is a matrix constructed by peaks. The 

column index indicates the m/z value, and the row index indicates the 
ion types and the charge states. An example is shown in Fig. 2. We used 
0.5 Da as a resolution parameter and considered the m/z values ranged 
from 100 Da to 1900 Da. We then constructed an 10 × 3600 matrix, 
where the first 4 rows are for the fragment ions in charge +1, +2, +3, 
and above in the experimental spectrum, and the rest 6 rows are for the 

predicted b-ions and y-ions in charge +1, +2, +3 from the peptide 
sequence, respectively. The column index was calculated as index = (mi- 
mmin)/resolution, where mi is the m/z value of ith peak, mmin is the 
minimum m/z value considered, which is 100 Da. If the m/z value of a 
peak is 421 Da, then its intensity value is filled in the cell in 642nd col-
umn. The intensities in the experimental spectrum were used to fill the 
first four rows, and the abundances of theoretical spectrum were used to 
fill the rest six rows. An L2 normalization was applied to the input matrix 
before the CNN model calculation. 

2.4.2. PSM feature representation 
In addition to the features from CNN model, DeepFilter also used 

another 11 features extracted from the initial PSM score, the observed 
spectrum, and the peptide sequence for each input PSM. These features 
are shown in Table 3. 

2.5. DeepFilter model architecture 

The architecture of our DeepFilter model is in Fig. 2. It has two en-
coders, i.e., spectrum encoder and PSM feature encoder. The 

Fig. 2. The architecture of DeepFilter model.  

Table 3 
11 PSM features used in DeepFilter.  

Feature 
Index 

Feature 
Name 

Feature Description 

1 Xcorr Cross correlation between theoretical and observed 
spectra 

2 ΔCn Fractional difference between current and second 
best XCorr 

3 ΔCn
L Fractional difference between current and the fifth 

best XCorr 
4 Mass The observed mass [M + H]+

5 ΔM The difference in calculated and observed mass 
6 abs(ΔM) The absolute value of the difference in calculated and 

observed mass 
7 pepLen The length of the matched peptide, in residues 
8 enzInt Number of missed internal enzymatic (tryptic) sites 
9–11 charge 1–3 Three Boolean features indicating the charge state  
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representations from the spectrum encoder and PSM feature encoder 
were concatenated together into a 1024-dimension vector and fed into a 
fully connected layer with the softmax activation function. The output is 
the probability from 0 to 1 to indicate how likely a PSM candidate is a 
true match. We used a modified cross-entropy loss multiplied by the 
weights that indicate the probability of PSM being a true match. The 
detail of each encoder and loss function are described as follows. 

2.5.1. Spectrum encoder 
The spectrum encoder consists of four dilated convolutional layers 

and two fully connected layers. To grab features between experimental 
and theoretical representations within the same charge state, we set the 
dilation rate to be 3 as highlighted in the red boxes of the kernels of CNN 
in Fig. 2. For the four dilated convolutional layers, we used 16 kernels 
for each layer, and in each convolutional layer, we used different kernel 
sizes, which are (3,7), (2,5), (2,6), (2,6), respectively. We used max- 
pooling with (1,2) kernel size after each convolution operation. To 
speed up the calculation and avoid the over-fitting issue, we applied 
batch-normalization for each convolutional layer and added a dropout 
layer after the last convolutional layer, with the dropout rate being 0.5. 
In the first fully connected layer, the input dimension is 3504, and the 
hidden units are 1024. For the second fully connected layer, the input 
dimension is 1024, and the dimension of output vector is 512, which is 
activated by ReLU function, and used as the representation of spectrum 
for the next PSM classification task. 

2.5.2. PSM feature encoder 
The 11 PSM features were given to the PSM feature encoder made of 

a single fully connected layer. The input dimension for this layer is 11 
with ReLU as the activation function. And the output is a 512-dimension 
vector. This vector was used as the representation of 11 PSM features. 

2.5.3. Loss function 
The scoring model is a binary classifier. We applied a modified cross- 

entropy loss function as in Equ. 2 by incorporating the posterior error 
probability (pep) calculated by Percolator. pi is the predicted probability 
that ith PSM is a correct match, and pepi is the posterior error proba-
bility. This modified loss function achieved a better number of identified 
PSMs than the classical cross-entropy loss did (data is not shown here). 

Loss = −
∑

[pepilogpi +(1 − pepi)log(1 − pi) ] (2)  

2.5.4. Training DeepFilter 
Here, we would like to emphasize some important techniques for 

training DeepFilter. DeepFilter was implemented using PyTorch version 
1.4.0 and trained in a workstation with 8 GeForce RTX 2080 Ti GPUs. 
We randomly split the data sets into training and validation data sets 
with a ratio of 9 to 1. For the training data sets, we set the mini-batch 
size to 256. We applied backward propagation to get the gradient in 
each mini-batch and save the model as a checkpoint when the perfor-
mance improved based on the accuracy calculated based on the vali-
dation data sets. We set the epochs as 150 to ensure the convergence and 
performed Adam optimizer, whose learning rate and weight decay were 
set to 1e-4. 

3. Experiments and results 

3.1. Experimental design 

We evaluated the performance of DeepFilter using three meta-
proteome data sets from soil communities [27], three metaproteome data 
sets from marine communities [26], and one E. coli proteome data set. 
The summary of these data sets is in Table 1. These (meta)proteomes 
were all measured using the Multidimensional Protein Identification 
Technology (MudPIT) approach [34] on an LTQ Orbitrap Elite mass 
spectrometer (Thermo Scientific). Their matched metagenomes were 
used to construct a soil protein database with 3.4 million target proteins 
and a marine protein database with 392,000 target proteins. The mock 
community protein database contains 123,100 target proteins, and the 
human gut protein database has more than 4.9 million target proteins. 
The MS data and protein databases for marine and soil metaproteome are 
available from the ProteomeXchange Consortium via the PRIDE re-
pository with the data set identifier of PXD007587. Details on these 
benchmarking data sets are described in our previous study [35]. The MS 
data and protein databases for human gut and mock community are 
provided through the PRIDE repository PXD006118 [28] and 
PXD013386 [29], respectively. 

DeepFilter was compared with four state-of-the-art filtering algo-
rithms, including Percolator [16], Q-ranker [19], PeptideProphet [8], 
and iProphet [13]. We did not compare with other filtering algorithms 
because they are either not available or outperformed by the tools 
mentioned above for metaproteome analysis. Percolator, Q-ranker, and 
PeptideProphet used the PSMs scored by Comet. iProphet used the PSMs 

(a) The composition of peptide for PSMs in marine data sets (b) The composition of peptide for positive PSMs in marine

data sets

Fig. 3. The composition of peptide for PSMs in marine data sets.  
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scored by PeptideProphet. Because iProphet used the features at peptide 
and protein levels, which may cause the machine learning to share in-
formation among PSMs for discrimination and destroy the independence 
among the PSMs [36], we employed the iProphet without the features at 
the peptide and protein levels, including the number of sibling ions 
(NSI), the number of sibling modifications (NSM), and the number of 
sibling peptides (NSP). We also used iProphet by enabling above fea-
tures and the results are in Supplementary Table 2 in the supplementary 
document. This version of iProphet achieved comparable results to 
DeepFilter at the PSM level but gave less protein identifications. 

Benchmarking datasets were searched using Comet 2018.01 rev. 2. 
The database searching results were filtered by Percolator version 
3.03.0, Q-ranker from Crux toolkit version 3.2, PeptideProphet, and 
iProphet from TPP v5.2.0 with default configuration settings, respec-
tively. The following parameters were used: precursor mass tolerance set 
to 0.09 Da, fragment mass tolerance set to 0.01 Da, peptide mass range 
set from 700 Da to 7000 Da, Trypsin/P used for enzyme, and the allowed 
number of missing cleavages set to three. The protein FASTA files were 
from the PRIDE repository, where the studies provided both the mass 
spectrum data and the protein databases. The PSM filtering was 
executed on a desktop computer with one 2.3 GHz Intel(R) Xeon(R) Gold 
5118 CPU and 32 GB memory. 

The performance metrics include the number of identified target 
PSMs, peptides, and proteins with FDR controlled at different levels 
(where FDR was estimated by the target-decoy strategy) [37]. For each 
observed spectrum, only the top-scoring PSM was used for estimating 
FDR. The score threshold was adjusted to reach a user-defined FDR. The 
FDR is calculated as follows. 

FDR =
# Decoy PSMs/peptides/proteins
# Target PSMs/peptides/proteins

(3) 

For peptide and protein level FDRs, we adjust the PSM level score 
threshold to control FDRs. For example, suppose the protein FDR is 
higher than the user-defined value. In that case, we will use a high score 
threshold to remove more decoy PSMs, which will reduce the more 
decoy proteins than target proteins, thus lower the protein FDR. We 
applied the same FDR control strategy for all the tested tools. 

3.2. Performance comparison of DeepFilter on marine microbial complex 

Rotation training and testing were applied here. More specifically, 
each marine data set was used to create a training data set for DeepFilter, 
and the remaining marine data sets were used to test the performance 
between DeepFilter and the other five existing filtering tools. Details on 
the execution of these algorithms are described in the supplementary 
document. Although these MS data sets were all from marine microbial 
communities, the metaprotome samples were extracted at the different 

times and dates, and the protein/peptide compositions were different 
among these marine data sets. Fig. 3 shows the compositions of peptides 
in marine data sets reported by Comet and the ones used in training 
DeepFilter. The three marine data sets share some peptides but only a 
small portion, which means that a significant amount of spectra in the 
test data sets were not seen in the training data sets. This experiment 
shows how well DeepFilter can be generalized to unseen data but similar 
to the data used in the training. 

The filtering results are shown in Table 4, where the bold entry and 
underline entry represents the best and second best results, respectively. 
Table 4 demonstrates that DeepFilter achieves the highest identifica-
tions of PSMs, peptides, and proteins. The improvements of DeepFilter 
over the second best were 11.8% more PSMs, 10.3% more peptides, and 
9.9% more proteins at 1% FDR on average. We also found that the 
DeepFilter model using Marine 3 as the training data set obtained a 
slightly better improvement compared to the ones using Marine 1 and 
Marine 2, which may be caused by the larger number of positive PSMs in 
Marine 3, as observed in Fig. 3(b). Our DeepFilter model trained on Soil 
1 also obtained more identifications compared to baseline methods, 
although the improvement is not as significant as the DeepFilter models 
trained on the marine datasets. This may be caused by the difference 
between training and test data distributions. To show the discrepancy 
between Soil and Marine metaproteome samples, we did a taxonomic 
analysis by searching filtered proteins with FDR controlled at 1% against 
the NCBI database. We used Protein-Protein BLAST version 2.11.0+
with default parameters except only keeping one query result with the 
best E-value. The overlap of taxonomic compositions is shown in Fig. 4. 
The percentage of the shared identified species within marine and soil 
samples are 70% and 60%, separately on average. In contrast, only 5% of 
species are shared between soil and marine samples. Even with a low 
number of shared species, the DeepFilter model trained on Soil 1 still 
obtained more identifications compared to baseline methods, which 
shows how well DeepFilter can be generalized to unseen data. For ma-
rine samples, the overlap of identified PSMs, peptides, and proteins by 
the best DeepFilter model, Comet, and the second-best baseline are 
shown in Supplementary Fig. 4. Comet, DeepFilter, and other baseline 
methods share a significant portion of identifications. On average, 5353 
PSMs, 3181 peptides, and 1035 proteins are identified only by Deep-
Filter, whereas 2974 PSMs, 1602 peptides, 173 proteins identified only 
by the second-best tool. 

3.3. Performance comparison of DeepFilter on soil microbial complex 

To further investigate the generalization ability of DeepFilter, we 
conducted the performance comparison of DeepFilter trained by marine 
data sets and one soil data set then tests on the rest marine and soil 
metaproteome data sets. Given the different microbe compositions 

(a) The taxonomic composition overlap

within marine metaproteome data sets

(b) The taxonomic composition overlap

within soil metaproteome data sets

(c) The taxonomic composition overlap be-

tween marine and soil metaproteome data sets

Fig. 4. The taxonomic composition overlap between marine and soil data sets at species level.  
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between marine and soil microbial communities, the numbers of common 
peptides/proteins will be even less than the ones we have in Fig. 3. 
DeepFilter was trained on one marine data set and was applied to soil data 
sets without ad hoc training or fine-tuning. If DeepFilter can still outper-
form other filtering tools, this means DeepFilter can be well generalized to 
unseen MS data even without ad hoc training or fine-tuning. 

The results are shown in Table 5, where bold and underlined entries 
represent the best and the second best results. Among the six algorithms 
tested, DeepFilter always generated the highest number of identified 
PSMs, peptides, and proteins at 1% FDR. The improvements of Deep-
Filter over the second best were 6.5% more PSMs, 6.3% more peptides, 
and 6.9% more proteins at 1% FDR, by using marine metaproteome data 
sets for training. Therefore, DeepFilter was believed to have well 
modeled the matching between experimental spectra and peptide se-
quences. We also did an experiment by using soil 1 as training data set 
and found that DeepFilter improved the PSM/peptide/protein identifi-
cations, which gave us up to 8.2% more PSMs, 9.1% more peptides, and 
8.8% proteins. 

For soil samples, the overlap of identified PSMs, peptides, and pro-
teins by the best DeepFilter, Comet, and the second-best baseline are 
shown in Supplementary Fig. 5. Similar to the marine data sets, Comet, 
DeepFilter, and other baseline methods share a significant portion of 
identifications. There were more identification results only reported by 
DeepFilter compared to other methods. On average, 920 proteins are 
identified only by DeepFilter at FDR 1%, whereas 234 proteins are 
identified only by the second-best tool. 

3.4. Performance comparison of DeepFilter on human gut microbial 
complex 

To investigate if DeepFilter performs well in the metaproteome with 
a large database, we tested DeepFilter on the human gut microbial 

complex with a protein database consisting of 5 million target proteins 
[29]. First, we used a small portion of mass spectra from the human gut 
metaproteome to test which DeepFilter model, trained by different data 
sets, performed best. We selected the one trained by Soil 1 data set, 
which achieved slightly better performance than other data sets. The 
identification results are shown in Table 6. Although DeepFilter did not 
achieve the same level improvements for human gut samples as in ma-
rine and soil samples, it still identified 6.2% more PSMs, 6.7% more 
peptides, and 4% more proteins compared to the best baseline method. 

For the human gut sample, the overlap of identified PSMs, peptides, 
and proteins by the best DeepFilter, Comet, and the second-best baseline 
are shown in Supplementary Fig. 6. Similar to the marine and soil data 
sets, Comet, DeepFilter, and other baseline methods share a significant 
portion of identifications. 23,620 PSMs, 15,976 peptides, and 2914 
proteins were identified by only DeepFilter at FDR 1%, whereas 4889 
PSMs, 2845 peptides, and 480 proteins were identified only by the 
second-best tool. 

3.5. Performance comparison of DeepFilter on mock community 

We also tested the DeepFilter model using a mock community data 
set to see if DeepFilter is effective for a microbial complex with only a 
few species (30 species). We chose two of the “P” type communities from 
[28]. The “P” means the data sets have the same protein contents. Here, 
we labeled them as P1 and P2. The identification results for these two 

Table 5 
Identification performance using three soil metaproteomes at FDR 1%.   

Baseline DeepFilter 

C P Q PP I M1 M2 M3 S1 

# PSM identification at PSM FDR 1% 
Soil 1 79,505 88,037 86,433 73,821 75,360 92,221 91,745 94,011 – 
Soil 2 75,693 84,623 82,773 71,281 73,331 89,465 88,093 88,372 91,384 
Soil 3 72,454 81,331 79,211 68,067 70,121 86,809 87,017 87,233 88,015  

# Peptide identification at Peptide FDR 1% 
Soil 1 26,068 29,304 29,163 25,288 25,403 30,111 30,006 30,923 – 
Soil 2 23,500 26,989 26,116 23,478 22,775 28,968 27,883 28,923 29,338 
Soil 3 20,423 23,275 23,673 19,863 19,922 25,006 25,018 25,116 25,392  

# Protein identification at Protein FDR 1% 
Soil 1 6938 7756 7684 6821 6819 8069 8011 8184 – 
Soil 2 6913 7519 7498 6848 6879 8041 7727 8031 8169 
Soil 3 5644 6183 6462 5473 5577 6976 6980 6998 7029 

1 Baseline searching algorithms & filters: C, Comet only; P, Comet & Percolator; Q, Comet & Q-ranker; PP, Comet & PeptideProphet; I, Comet,PeptideProphet & 
iProphet; 
2 DeepFilter models trained by M1 (Marine 1), M2 (Marine 2), M3 (Marine 3) and S1 (Soil 1); 
3 The best entry was in bold and the next best from baseline methods was underlined. 

Table 6 
Performance comparison on human gut metaproteome at FDR 1%.   

PSM Peptide Protein 

Comet 231,919 160,472 35,085 
Percolator 249,371 171,183 36,183 
Q-ranker 239,467 168,731 35,707 
PeptideProphet 211,706 148,840 33,566 
iProphet 211,706 148,840 33,566 
DeepFilter 264,875 182,698 37,644 

1 The best entry was in bold and the next best from baseline methods was 
underlined. 

Table 7 
Identification performance using mock community metaproteome at FDR 1%.   

Baseline DeepFilter 

C P Q PP I  

# PSM identification at PSM FDR 1% 
P1 95,098 101,563 98,461 93,669 93,669 107,970 
P2 103,405 111,018 103,798 102,639 102,639 118,029  

# Peptide identification at Peptide FDR 1% 
P1 26,773 28,706 27,334 25,642 25,642 30,587 
P2 39,424 42,042 41,203 33,820 33,820 44,901  

# Protein identification at Protein FDR 1% 
P1 7157 7670 7603 6884 6884 8316 
P2 9417 10,134 9897 9557 9557 10,838 

1 Baseline searching algorithms & filters: C, Comet only; P, Comet & Percolator; 
Q, Comet & Q-ranker; PP, Comet & PeptideProphet; I, Comet,PeptideProphet & 
iProphet; 
2 The best entry was in bold and the next best from baseline methods was 
underlined. 
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Table 8 
Computation time for nine metaproteomes (precise to second).   

Marine 1 Marine 2 Marine 3 Soil 1 Soil 2 Soil 3 HG P1 P2 

DeepFilter 204 218 210 578 476 432 1547 231 256 
Percolator 126 134 127 359 277 266 902 145 157 
Q-ranker 235 251 242 671 550 528 1639 247 260 
PeptideProphet 67 68 182 159 142 136 473 96 108 
iProphet 297 314 300 835 691 654 2217 429 319 

1 P1 and P2 are two mock metaproteome samples; 
2 HG is the human gut metaproteome sample. 

Table 9 
The number of species searched using protein identification results at FDR 1%.   

Comet Percolator Q-ranker PeptideProphet iProphet DeepFilter 

Marine 1 709 765 756 705 706 805 
Marine 2 723 804 711 739 738 860 
Marine 3 643 671 650 637 637 643 
Soil 1 777 864 819 785 778 934 
Soil 2 632 705 645 606 623 777 
Soil 3 343 377 374 329 330 395 
P1 30 30 30 30 30 30 
P2 30 30 30 30 30 30 
Human gut 2012 2148 2071 1987 1990 2454  

Fig. 5. Phylogenetic tree of the species only found by DeepFilter from the marine metaproteome samples.  
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data sets are shown in Table 7. Note that the results by the DeepFilter 
model were trained on another mock community data set, P3, from [28], 
and this DeepFilter model was slightly better than the models trained on 
marine and soil samples (Data not shown). DeepFilter identified 6.3% 
more PSMs, 6.7% more peptides, and 7.7% more proteins on average at 
FDR 1% than the second-best baseline method. Therefore, DeepFilter 
can also perform well in the metaproteome samples with a few species. 
For mock community samples, the overlap of identification results for 
PSM/peptide/protein levels by the best DeepFilter, Comet, and the 
second-best post-processing tools are shown in Supplementary Fig. 7. Up 
to 8311 PSMs, 3176 peptides, and 742 proteins were identified only by 
DeepFilter at FDR 1%, whereas up to 1254 PSMs, 363 peptides, and 51 
proteins were identified only by the second-best tool. 

3.6. Computation time 

Table 8 presents the computation time when applying the DeepFilter 
and other filtering algorithms on different data sets. DeepFilter was 
running on a workstation with 8 GeForce RTX 2080 Ti GPUs, each with 

12 GB memory. Baseline algorithms were executed on a desktop com-
puter with one 2.3 GHz Intel Xeon Gold 5118 CPU and 32 GB memory. 
DeepFilter can finish the filtering in around 10 min with GPU 
acceleration. 

4. Discussion 

4.1. Analysis of the taxonomy information from protein identification 
results 

To show the impact of DeepFilter on the taxonomy analysis, we used 
the protein-protein blast to search the protein identification results from 
different data sets against the NCBI database. The summary of the 
numbers of species identified is shown in Table 9. For the marine met-
aproteome data sets, up to 7% more species were found by DeepFilter 
compared to the second-best. DeepFilter found 10.21% more species for 
the soil metaproteome data sets. For the mock communities, all 30 
species were found by the tested methods. For the human gut meta-
proteome, DeepFilter can discover more than 14% species than the 

Fig. 6. Phylogenetic tree of the species only found by DeepFilter from the soil metaproteome samples.  
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second-best one. 
The species found only by DeepFilter for marine, soil, and human gut 

metaproteome samples have their lineage shown in Fig. 5, 6 and 7. 
These phylogenetic trees include 104 taxa for marine samples, 160 taxa 
for soil samples, and 306 taxa for the human gut samples. The taxa, 
which have the greatest number of identified proteins for marine, soil, 
human gut, and mock communities, are shown in Fig. 8, 9, 10 and 11. 

From these figures, we found that DeepFilter identified the largest or 
comparable numbers of proteins for each species. 

4.2. Analysis of the significance of the spectrum encoder 

To evaluate the spectrum encoder’s significance, we compared the 
performance of DeepFilter with the spectrum encoder disabled. The 

Fig. 7. Phylogenetic tree of the species only found by DeepFilter from the human gut metaproteome sample.  

(a) The numbers of identified proteins at 1%

FDR in the three out of five most abundant

species for Marine 1.

(b) The numbers of identified proteins at 1%

FDR in the three out of five most abundant

species for Marine 2.

(c) The numbers of identified proteins at 1%

FDR in the three out of five most abundant

species for Marine 3.

Fig. 8. The numbers of identified proteins at 1% FDR in the three out of five most abundant species for marine communities.  
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(a) The numbers of identified proteins at 1%

FDR in the three out of five most abundant

species for Soil 1.

(b) The numbers of identified proteins at 1%

FDR in the three out of five most abundant

species for Soil 2.

(c) The numbers of identified proteins at 1%

FDR in the three out of five most abundant

species for Soil 3.

Fig. 9. The numbers of identified proteins at 1% FDR in the three out of five most abundant species for soil communities.  

Fig. 10. The numbers of identified proteins at 1% FDR in the three out of five most abundant species for the human gut community.  

(a) The numbers of identified proteins at 1% FDR in the three

out of five most abundant species for P1.

(b) The numbers of identified proteins at 1% FDR in the three

out of five most abundant species for P2.

Fig. 11. The numbers of identified proteins at 1% FDR in the three out of five most abundant species for mock communities  

(a) PSM level (b) Peptide level (c) Protein level

Fig. 12. Performance comparison of DeepFilter with/without the spectrum encoder.  
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models trained on Marine 2 were used here. Fig. 12 shows the im-
provements of DeepFilter over the second-best one from baseline 
methods at PSM FDR 1%. We can see that without the spectrum encoder, 
the PSM identifications of DeepFilter were slightly better than the 
existing tools but dropped significantly compared to the one with the 
spectrum encoder. The improvement decline was not even among 
different data sets. By looking at the number of unique peptides that are 
not shared by multiple protein sequences, fewer unique peptides give 
fewer protein identifications, which is the main reason for the uneven 
improvement decline. 

4.3. Analysis of the features learned in DeepFilter 
To mine the patterns and visualize the features learned by our 

DeepFilter, we adopted a class activation mapping (CAM) generation 
technique [38] to interpret the learning decision of DeepFilter. In the 
image analysis, CAM is used to show the input image regions that 
contribute to prediction process. In our experiments, we applied CAM in 
the spectrum representation to visualize the patterns that help predict 
correct PSMs. 

Fig. 13 presents the CAMs for a target and a decoy PSM, respectively. 
The color mapping in these figures shows the weight from zero to one, as 
the legend indicates. The background color represents the learning 
weights from CNN for different regions. The red color regions make the 
PSMs more likely to be true (positive) PSMs if there are non-zero input 
values. In contrast, the blue color regions make the PSMs more likely to 
be false (negative) PSMs. The white points represent the peaks from the 
experimental and theoretical mass spectra. The CAMs have ten rows, 
each of which represents the peaks grouped by different charge states 
and different ion types as used in Section 2.4. The first four rows are for 
experimental spectra, and the rest six rows are for theoretical spectra. 
The actual spectra are shown in Supplementary Fig. 9. In Fig. 13, we can 
see that the isotopic envelopes of fragment ions from experimental 
spectra are mostly inside the red regions. Given that the isotopic 

envelopes indicate high-quality peaks, if the theoretical spectra also 
contain these ions, DeepFilter will tend to label the input PSM as a 
positive PSM; otherwise, DeepFilter will tend to label it as a negative 
PSM. For example, in the CAM of a target PSM in Fig. 13, there are 
several isotopic envelope mappings covered by the red region, which 
means there is a strong connection between the experimental spectrum 
and the theoretical spectrum. However, in the CAM of a decoy PSM in 
Fig. 13, the red region covers the parts where no isotopic envelope 
mappings exist. The above analysis showed that our DeepFilter models 
lean towards a true PSM if the matching fragment ions are of high in-
tensity and have a detectable isotope pattern. 

We examined the PSMs reported only by the DeepFilter in the hope of 
finding any pattern of these PSMs and why the DeepFilter performed 
better than the baseline methods. It turns out there are no obvious 
characteristics of these PSMs. We also visualized the score distribution of 
PSMs from the DeepFilter and the Percolator (Supplementary Fig. 8), 
from which we can found that both distributions of the PSMs from the 
Percolator and the DeepFilter are mixture distributions. For the PSMs 
reported only by the DeepFilter at 1% FDR, a large number of them have 
scores over 0.5 (Supplementary Fig. 8(c)). 

4.4. Analysis of the identifications by DeepFilter in terms of false- 
discovery rate 

In this study, we used the decoy-database approach to assess the 
confidence of identifications. Although the decoy-database approach is 
currently the gold standard in shotgun proteomics experiments, what 
might appear to be a good result could be, in fact, the product of over-
fitting [39]. Here, we used a modified decoy method, termed a semi- 
labeled decoy approach [39], to estimate if DeepFilter generated 
confident results. The semi-labeled decoy approach relies on labeled 
decoys and unlabeled decoys, where the latter serve as an internal error 
reference that helps to statistically deal with overfitting. In this 

Fig. 13. Class activation mappings of one target and one decoy PSMs.  

Table 4 
Identification performance using marine metaproteomes at FDR 1%.   

Baseline DeepFilter 

C P Q PP I M1 M2 M3 S1 

# PSM identification at PSM FDR 1% 
Marine 1 34,425 37,951 36,472 33,061 33,358 – 41,423 43,597 41,170 
Marine 2 31,822 34,741 33,899 30,670 30,846 38,927 – 39,421 37,165 
Marine 3 38,490 41,714 40,832 37,072 37,304 44,664 44,273 – 44,073  

# Peptide identification at Peptide FDR 1% 
Marine 1 21,334 23,597 23,007 20,961 20,961 – 25,012 26,790 25,387 
Marine 2 22,004 24,150 23,589 21,597 21,696 26,582 – 26,816 25,767 
Marine 3 25,085 27,522 26,674 24,653 24,661 29,300 29,007 – 29,127  

# Protein identification at Protein FDR 1% 
Marine 1 6676 7312 7221 6458 6458 – 7687 7956 7781 
Marine 2 7033 7715 7617 7039 5375 8313 – 8740 8109 
Marine 3 7457 8209 8151 7354 7433 8851 8367 – 8690 

1 Baseline searching algorithms & filters: C, Comet only; P, Comet & Percolator; Q, Comet & Q-ranker; PP, Comet & PeptideProphet; I, Comet,PeptideProphet & 
iProphet; 
2 DeepFilter models trained by M1 (Marine 1), M2 (Marine 2), M3 (Marine 3) and S1 (Soil 1); 
3 The best entry was in bold and the next best from baseline methods was underlined. 
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experiment, we generated two types of decoys, i.e., PR and MR se-
quences, for each target sequence. A PR peptide is generated by first 
swapping the two outermost amino acids, then treating pairs of the 
remaining amino acids as units and reversing their order. An MR peptide 
is generated by first swapping the two outermost amino acids, then 
dividing the remaining portion in half and reversing each of the halves 
separately. We randomly chose one of the decoys as labeled decoys. 
Table 4 shows the DeepFilter results on the Marine 2 data set. The results 
from the DeepFilter trained on Marine 3 appear to be consistent between 
the two types of decoys. For statistically estimating the overfitting issue, 
the number of unlabeled decoys identified follows the binomial distri-
bution under the hypothesis that the results are not overfitted. Thus, the 
overfitting p-value can be approximated by P = Pr (X > s) ≈

∑
t=s+1
n Bin 

(t,n,p), where X is a random variable indicating the number of identified 
unlabeled decoys, Bin is the binomial distribution function, s is the 
number of identified unlabeled decoys by DeepFilter, n is the total 
number of identifications, p is the expected fraction of unlabeled decoys 
(i.e., given FDR). By re-analyzing Table 10, we believe that the results 
from the DeepFilter can be taken with confidence (P ≫ 0.05) without 
overfitting issue. 

5. Conclusion 

In this study, a CNN-based deep learning model, called DeepFilter, was 
designed to filter PSM candidates after database searching. It can auto-
matically learn the features from experimental spectra and peptide se-
quences and combine with other engineered features to predict if PSMs 
are correct matches or not. Unlike the existing filtering tools, we did not 
apply a semi-supervised fashion or fine-tune the filter using a subset of the 
working data. Instead, we trained DeepFilter on a separate data set and 
tested its performance on other metaproteome data and single organism 
proteome data. The experimental results demonstrate that DeepFilter 
achieved the highest or comparable numbers of identified PSMs, peptides, 
and proteins. Therefore, DeepFilter was believed to generalize properly to 
new, previously unseen PSMs. In the future, we will further improve 
DeepFilter by training it on a composite data set with mass spectra from 
various microbes, such as those in the human intestines. We will also 
investigate its performance on other microbial communities that are 
available in Proteomics Identifications database [40]. 
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