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Abstract poses such as mapping of physical phenomena or comput-

This paper develops a participatory sensing service,aalle ing community wide statistics. In this paper, we develop
Fueoogle that maps vehicular fuel consumption on city @ novel participatory sensing application, calledeoogle
streets, allowing drivers to find the most fuel-efficienttess ~ that computes fuel efficient routes from one point to another
for their vehicles between arbitrary end-points. The servi  Fueoogle relies on data collected by individuals from their
exploits measurements of vehicular sensors, availabliagia ~ vehicles as well as on the mathematical models that we de-
OBD-ll interface that gives access to most gauges and enginevelop in this paper to compute fuel efficient routes.
instrumentation. The OBD-Il sensors are standardizedinal  Vehicles that have been sold in the United States af-
vehicles produced in the US since 1996, constituting some ofter 1996 are mandatorily equipped with a sensing subsys-
the largest “sensor deployments” to date. Using fuel-eelat tem called theOn-Board Diagnosti¢OBD-II) system. The
measurements contributed by participating vehicles, we de OBD-Il is a diagnostic system that monitors the health of the
velop a route planner that maps normalized fuel-efficiency automobile using sensors that measure approximately 100
of city streets, enabling vehicles to compute minimum fuel different engine parameters. Examples of monitored mea-
routes from one point to another. Street congestion, eleva-surements include fuel consumption, engine RPM, coolant
tion variability, average speed, and average distancedsetw temperature, and vehicle speed. A comprehensive list of
stops (e.g., stop signs) lead to changes in the amount of fuelmeasured parameters can be obtained from standard speci-
consumed making fuel-efficient routes potentially diffgre  fications as well as manufacturers of OBD-IlI scanngls [3].
from shortest or fastest routes, and a function of vehiglety =~ Several commercial OBD-Il scanner tools are available [3,
Our experimental study answers two questions related to the4,[2,[5], that can read and record these sensor values.
viability of the new service. First, how much fuel can it save Fueoogle utilizes a vehicle’s OBD-Il system and a typ-
Second, can it survive conditions of sparse deployment? Theical scanner tool in conjunction with a participatory sens-
main challenge under such conditions is to generalize froming framework to develop a novel application that enables
relatively sparse measurements on a subset of streets to egzhe reduction of fuel consumption of vehicles in every-
timates of measurements of an entire city. Through exten-day use (by computing fuel efficient routes). Compared to
sive experimental data collection and evaluation, coretiict traditional mapping tools, such as Google mé&ps [15] and
over the duration of a month across several different cats an MapQuest[2R], which provide either the fastest or the short
drivers, we show that significant savings can be achieved byest route between two points, Fueoogle collects the negessa
choosing the right route. We also provide extensive results information to compute and answer queries onrtisst fuel-
pertaining to the accuracy of models that are used for predic efficient route The most fuel-efficient route between two
tion of fuel consumption values. points may be different from the shortest and fastest routes

. For example, a fastest route that uses a freeway may consume
1 Intmduc_:t'on o more fuelrt)han the most fuel-efficient route becguse)q‘uel con

An emerging category of sensor network applications symption increases non-linearly with speed or because it is
(8, 1,19, [T0[ 18] rely on data collection by individuals and |onger. Similarly, the shortest route that traverses bitsy ¢
sharing of this data within a community for common pur-  streets may be suboptimal because of downtown traffic. The

optimal route might therefore be neither shortest nor fste

Indeed, we will show, in this paper, examples where the most

fuel-efficient route is different from both the shortest ainel

fastest routes.

The motivation for Fueoogle does not need elaboration.

Permission to make digital or hard copies of all or part o$ thiork for personal or Fueoogle USGI'S_ mlght be _drl_ven by benefits such as s_avmg
classroom use is granted without fee provided that copiesiairmade or distributed on fuel or reducing C@emissions and the carbon footprint.
for profit or commercial advantage and that copies bear titisand the full citation With the increase in the use of bluetooth devices (e_g__’ cell
on he st page. To copy ehenvise o republay (o poskoness o o edSIIE  phones) and in-vehicle Wi-Fi, Fueoogle can be easily sup-

ported by inexpensive OBD-II-to-bluetooth or OBD-II-to-
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WiFi adaptors that can upload OBD-Il measurements op- tion[4.

portunistically, for example, to applications running ¢ t 2 A Feasibility Study
driver’s cell phone. It can also be supported by scanning In this Section. we present a feasibility study that oro-
tools that read and store OBD-Il measurements on storage, . .« v der with P imate of ol Y'S yth ; P A
media such as SD cards. At the time of writing, OBD-II viges the reader with an estimate ot fuel savings that can be

Bluetooth adaptors, such as the ELM327 Bluetooth OBD- achieved by driving on the most fuel efficient routes.
Il Wireless Transceiver Dongle, are available for approxi- We compute fuel consumption between landmarks (in the

mtely S50, together wih sofviare hat neiaces them to O WTETe he suhors esfeand compare heee vaee
phones and handhelds. Individuals who own OBD-Il adap- P P '

tors or scanning tools may record sensor measurements fromlgfhlggc:rr?ea\;\l/?rfh?:feno\:‘vter:g ;Let?]lcj)?sntg%Ias'léerir?oesni%at?:ﬁ.
their daily commutes. These recorded sensor values are P ' | pping

then shared within a community, in a privacy-preserving ter, and a_footballstadlum. Flg_lEle 1 shows the routes usedin
fashion, using a participatory sensing framework, called '([jhe telxaerlmir]lts. tEach expe_rlmetnt was perfcl)trrrwled |ndepe(;1-
PoolView [13]. Fueoogle does not require all city streets to d?‘fn y :om eFo ?hr eXperimen iésmg mu Itple czré an
be driven by all types of vehicles in order to estimate thé fue . : ereg USErs. do(rj € pulrlposej;) xpelglme_n é’m d)g)l\slr-
efficiency of different vehicle types on different streelts: '{ggr;t F,W?Euse , ata; go tﬁCte rom dat on'ﬂact dra}[n '
stead, Fueoogle utilizes models, we develop in this paper, t Hond'a (?i(/icxg%r(l)r;erjl'he’ sh%rcizgtu:r?d fgs?e)s'?c atr?saa\xeaf)l?-
estimate fuel consumption for different streets and caesyp ' ' P

for which no direct OBD-Il measurements are present, using tained using commonly available m%pmg services such as

: Google maps[[15] and MapQuest[42] We plot the fuel
previously collected data on other streets ar!d car models. consumption for the shortest path, the fastest path, and the
Fueoogle supports two types of users; members and

non-members. Members are those who contribute datapath that consumes the least fuel for these three expergment

to the Fueoogle repository from OBD-Il sensors as de- in Figurei2.

scribed above. They have Fueoogle accounts and can ben; We observe, _from Figurdl 2, that in t_h_e first experiment,
. . s the fastest path is also the most fuel efficient path. Whereas
efit from more accurate estimates of route fuel-efficiency,

customized to the performance of their individual vehicles :2 atshtearsnecfl?r?tdofe;(upe?”met?\té ttrTi?dS:)? r(teer;sr:]gr?tththceo :ﬁggfj elt_he
Non-members can use Fueoogle to query for fuel-efficient y P '

routes as well. Since Fueoogle does not have measurement%ﬁident route is different from both the shortest and the
from their specific vehicles, it answers queries based on the astest routes (which happen to be the same). We conclude

average estimated performance for their vehicle’s make andfrom the above observat_lons that S|mply_ choosm_g the short-
est or the fastest path will not necessarily result in thetmos

model. In addition to being a look-up service such as Google fuel-efficient path
Maps, the authors envision Fueoogle to be integrated as an path. . . . .
The most conservative estimate of fuel savings obtained

option in future “green” GPS services that would give di- : LT . 0

rections based of the most fuel-efficient (as opposed to thefrom the exp_enm(gnts shown in Figure 2 is ab_out 10% (and

fastest or shortest) route. the average is 15% across all th_e three_ experlments). At the
current national average gas price (which is about $2), this

folt!ln ﬁﬁgmﬁéyag\],ifgag ]ffjoer;.tgg\l,litrzonsse?\titgelsa%%p;;reévﬁ- would be equivalent to a savings of at least 20 cents per gal-
X : P 9 y lon at the pump, which is not bad for “cash back”.

amount of fuel savings that are achieved using Fueoogle. An To estimate the amount of savings that can be achieved on

ex_perlmental study IS performed over the course ofa montha global scale, we provide back of the envelope calculations
using seven different cars with different drivers in order t based on data from the Environmental Protection Agency
estimate fuel savings. The second contribution, and tha mai E(EPA) [T1]. An estimated 200 million light vehicles (pas-

ghsaggpsie daedpdlcr)ilfﬁggt |tr:) tglsstir?wgggrfhg f\ﬁ/ Qlet:hoenrs\lljvripii)nn uosnsenger cars a_nd light trucks) are on the road i_n theT US. Each

streets and car types for which OBD-Il measurements are notOf them is drlvgn, on an average, 12000 m|I_es in a year.
et available. We develop several mathematical models us—The average mile-per-galion (mpg) rating for light vehicle

y : velop -~~~ is 20.3 mpg. Even if 5% of these vehicles adopted Fueoogle

ing the datasets obtained over the course of our experitenta

tudv. t late fuel effici ith ob bl t and the 10% fuel savings were achieved on only a quarter
zuuchy’as(,) g?rg:taseeté?j ﬁrr:ﬁ'sencé\gém% 2§(rjv?1ur?1gg:a;ﬁrafﬁc0f the routes traveled by each of these vehicles, the amount
; SPE S: P .~of overall fuel savings is nearly 148 million gallons of fuel
lights, congestion information, and the type of car for vhic ((12000+0.25) /20.3 (0.05% 200M)  0.1). This translates
theTrf?ute 'i ccf)r?hputed (e.g. SdU\{j Sg‘fali se(_jan). . S into about one third of a billion dollars in savings at the gum

.1 he rest ol tniS paper IS divided INto SIX SECUONS. S€C- y45a4 on the current national average pump prices for a gal-
tion presents a feasibility study that investigates thewrh lon of gasoline). The authors consider the above prosgectiv

of fuel savings that can be achieved by using Fueoogle _,, -
and by following the fuel-efficient routes. The details of fﬁg'g&g&i;zrgggighe rest of the paper presents deftails o

Fueoogle system are described in Sedflon 3. Models for es-
timating fuel consumption on streets lacking such measure-  1city name is removed for anonymity

ments are pres_,ented in Sectidn 4. Evaluatlon results are pre  2Google maps provides only the shortest path, MapQuest pro-
sented in Sectiof] 5. Related work is presented in Selion 6.vides both fastest and shortest paths, hence we use MapQugest
Finally, we conclude with directions for future work in Sec- route information
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(a) Figure showing the driving routes used in Experiment (b) Figure showing the example of the most fuel-efficient
1 (from point A to point B) and Experiment 2 (from route that is different from the fastest and shortest-paiiter.
point C to point D). Routes with dashed and dotted lines The route with solid lines is the fastest and shortest-paiter
are shortest-path routes while routes with dash lines are from point A to point B provided by MapQuest system. The
fastest routes provided from MapQuest system. The most route with dash lines is the most fuel-efficient route. The ca
fuel efficient route is marked by solid lines. Experiment 1 used for collecting data was a Pontiac Grand AM, 1997.
was conducted using a Honda Civic, 2002 and Experiment
2 using a Pontiac Grand AM, 1997.
Figure 1. Maps showing the experiments performed for the fesibility study
3 The Fueoogle System user with a Pontiac Grand AM, 1997. In the following sub-

The service provided by Fueoogle is similar to a regu- Sections, we will discuss the Fueoogle concept, then ptesen
lar map app"cationy such as Goog|e méps [15] or MapQuestthe pa_rt|C|patory sensmg framework that_ \{VG utilize foradat
[22]. Google maps and MapQuest provide the shortest or collection and data sharing and the specifics of the hardware
fastest routes between two points, whereas Fueoogle comused for the purpose of data collection.
putes the most fuel-efficient route. A snapshot of the Web-
based Fueoogle’s user interface is shown in Fifllire 3 alon s« om—— |
with the most fuel efficient route between two points for g 7" —————
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Figure 3. Figure showing the user interface of Fueoogle
with the most fuel efficient route between two points on
0 - the map for a Pontiac Grand AM, 1997 car model
1 2 3
Experiment number 3.1 The Fueoogle Concept
Figure 2. Figure showing fuel consumption for multiple Individuals who want to compute the most fuel-efficient

routes between multiple selected landmarks for different route between two points enter the source and destination
cars and drivers address via the interface provided by Fueoogle. Members of



Fueoogle (i.e., those individuals who contributed paptei is a set of infrastructure tools and protocols that enalde in
tory data) can register their vehicles that were used fax dat viduals to set up new participatory sensing services and col
collection. Hence, Fueoogle can compute the route specifi-lect data for them. PoolView consists of four layers; namely
cally for the registered vehicle. Other users may enter thei sensing storage privacy, and aggregation The sensing
vehicle’s make, model, and year of manufacture, as well aslayer encompasses participants’ sensors. It includesdriv
average mpg and tire diameter, if known (for better accu- that allow them to upload data to the user’s private archive.
racy). Alternatively, those last two parameters can beddok The privatestoragelayer maintains the archive of sensory
up from the model data. Since different vehicles have dif- data collected by the user. Tpevacy firewalllayer imple-
ferent fuel consumption characteristics, these car detad ments various privacy policies to sanitize data by maskmng o
used to compute the most fuel-efficient route for the given perturbing appropriate fields prior to sharing with extérna
vehicle brand. The advantage for the users who contributeparticipatory sensing services. Taggregatioriayer imple-
data is that the system provides better estimates of the mosments such services that aggregate sanitized data and com-
fuel-efficient routes to these individuals, thus allowihgrmn pute service-specific statistics. The communication betwe

to have higher savings. This is because the prediction model these layers is achieved using an extension to the HTTP pro-
(Sectior ) will be more accurate for those individuals who tocol.

contr_|bl_Jte data_on their specific cars. . We implemented Fueoogle as a participatory sensing ser-

It is impractical to assume that Fueoogle members will ;- (i e."an aggregation server) in PoolView. An individ-
measure all city streets and cover all vehicle types. lstea 5 \yho wants to share their OBD-II sensor data can thus
measurements of Fueoogle members are used to calibratgjqynioad the client side software of PoolView, and use it to
generalized fuel-efficiencprediction models These mod- 51044 their data to the Fueoogle aggregation server. The
els, discussed in Secti@h 4, show that the fuel consumption,qqreqation server uses these data to calibrate models that
on an arbitrary street can be predicted accurately from Setyg|ate street and vehicle parameters to fuel-efficiencyafind

of static street parameters (e.g., the speed limit, the nuM- o5 the Fueoogle query interface for fuel-efficient routes
ber of traffic lights, and the number of stop signs) and a set

of dynamicstreet parameters (such as the average speed on Individuals who wish to contribute OBD-II data to
the street or the average congestion level), plus of cohese t Fueoogle can install, in their vehicle, any commercial OBD-
vehicle type (specifically, its mpg rating and some known pa- !l scanner along with a GPS unit. In our deployments, we use
rameters such as wheel diameter and weight). It is the math-0ne such off-the-shelf device for data collection purposes
ematical model describing the relation between these gener Our hardware setup consists of an OBD-Il scanner connected
parameters and fuel-efficiency that gets estimated from par 10 @ GPS unit, as shown in Figute 4. We use DashDyno's
ticipant data. Hence, the larger and more diverse is thefset o OBD-ll scanneri[B] for collecting sensor data from a car and
participants, the better the generalized model. a Garmin eTrex Legend GPS]14] to get location data. Dash-
For most streets, static street parameters can be readilyPyno has a GPS port allowing the Garmin to be plugged in.
obtained from traffic databases. For example, the number of Theé DashDyno records trip data (including Garmin's GPS
traffic lights, the number of stop signs, and the speed liaits location) on an SD card that the user later uploads to the
streets can be obtained from the red light datatiage [16]. Dy-Fueoogle server.
namically changing parameters such as the congestiorslevel
or average speed are more tricky to obtain. In larger cities,
real-time traffic monitoring services can supply these para
eters[[25]. Many GPS device vendors, such as TomTom, also
collect and provide congestion information. Finally, jart
ipatory sensing applications, such as Traffic AnalyZzel [13]
and CarTel[[IB], have been described in prior literaturé tha
have the potential to provide congestion and speed data. In
this paper, we use historic per-street-block traffic speed-a
ages computed by the Traffic Analyzer participatory sensing
service. Fueoogle utilizes this service for (historic)rage
congestion level information. The Traffic Analyzer arclsive
these averages for different city blocks as a function of the
time of day and day of the week, based on GPS data collected
from individuals with GPS devices (that are much more com-
mon than the OBD-II scanners). Hence, while Fueoogle is
not yet responsive to real-time conditions, such as actsden
on the road, it can still provide information on which of mul-

tiple routes is the most fuel-efficienn averageat a given A total of 19 parameters are obtained from the car and the
time and on a given day. ) GPS, the mostimportant of them being instantaneous vehicle
3.2 A Participatory Sensing Framework speed, total fuel consumption, rate of fuel consumptidn, la

We utilize a participatory sensing framework, called itude, longitude, and time. The following section elabegat
PoolView [13], to implement Fueoogle. Briefly, PoolView on the implementation of the Fueoogle server.



3.3 Implementing the Fueoogle Server dresses of the query are translated into nearest nodes in the
The aggregation server provides a fuel-efficient route street graph. The most fuel-efficient route is the weighted
computation service based on models generated from theshortest path between these nodes of the street graph, where
data collected. The aggregation server maintains a city’s the weights represent total fuel consumption on each arc,
map as a directed graph, which we call gtieet graphwith computed using the arc’s street parameters and the model
street intersections as nodes and streets as arcs. Theigraphused for the vehicle in question. This shortest path is com-

directed because some streets are one-way and because fuputed using the weighted Dijkstra’s algorithm. It is stfzig
efficiency may depend on the direction of motion. For ex- forward to extend the above algorithm when the source or
ample, on uneven ground, one direction can be up-hill, while destination addresses, or both, are not nodes (i.e., @t str
the other down-hill, making fuel efficiency different in éac  intersections). The fuel consumption for segments that rep
directiofil. Each arc is assigned a set of parameters such agesent partial arcs is approximated by multiplying the fuel
the speed limit and whether the arc contains traffic lights or consumption for the arc by the ratio of the length of the seg-

stop signs. We call these tisereet parametersA fuel con- ment to total arc length.
sumption modetlescribes how to map these parameters to = Members can upload more data on their vehicles to the
consumed fuel. server at any time. The latitude and longitude (location)

The server allows registering user vehicles by mem- information shared in conjunction with fuel consumption is
bers. From the data uploaded for each registered vehicleused to infer the street it corresponds to based ostiape-
(namely, streets traversed and fuel consumed), a vehiclefilesfrom the TIGER databasg[26]. The TIGER shapefiles
specific model is found by regression that maps street pa-are spatial extracts from the US government's census bureau
rameters to that vehicle’s fuel consumption. The purpose of database which contain feature information regardinggtie |
computing such a model is that it can then be used to predictitude and longitude of various streets/roads in a city. Apar
the vehicle’s fuel consumption on streets that this velfieke from these features, the database also contains railiwed, r
not traveled from street parameters. and points of interest information. The fuel consumptiod an

In addition to computing vehicle-specific fuel consump- the street information are used to compute the model as de-
tion models for individual registered vehicles, the data on tailed below.
registered vehicles are aggregated into progressivedgtar I
pools, that are classified,g?esgectively, b?/ (ig)J make,e‘jjrﬁodel 4 Prediction Model
and year, (i) make and model, and (iii) make and type  One of the main contributions of this paper is to develop
(e.g., “compact”, “economy”, “midsize”, “full”, etc), and @ mathematical model that predicts the fuel consumption on
(iv) type. A model is then found for data in each pool. These streets for which OBD-Il measurements are unavailable. Al-
more general fuel consumption models are used to predictthough a large number of people own cars, not many of them
fuel-efficient routes for vehicles that are not registeréthw have OBD-Il scanner tools. The lack of widespread avail-
Fueoogle. Given the make, model and year of such a vehi-ability of these scanner tools implies that the data beimg co
cle, Fueoogle finds the most specific fuel consumption model tributed by the users of our participatory sensing appbeat
that matches that information, then uses it for predictieor. ~~ may be rather sparse. Hence, a primary research question is
example, to compute a fuel-efficient route for a Ford Taurus, Whether one can derive good models for predicting fuel con-
2001, that is not registered, the server first checks to see if sumption under conditions of sparse deployment. In other
has a fuel consumption model for a Ford Taurus, 2001, ob- Words, can we use data collected by a smaller population

tained from registered vehicles; if not, then a model fordFor  to build a model that is capable of predicting the fuel con-
Taurus in general; if not, then a model for full-size Ford ve- sumption characteristics of those streets for which OBD-II

hicles. If not, then a model for full-size vehicles in gedera Measurements are not available? In addition, the different

As more vehicles register, models of narrower categories ge cars have different fuel economy factors that have great ef-
populated, but the generalizations are useful for earlgehia fect on the fuel efficiency. Thus the model should be able
of deployment. to accurately predict the fuel consumption for different ca
Importantly, by parameterizing the vehicles themselves models.
(e.g., by mpg and tire diameter), Fueoogle is able to come up ~ There are several factors that affect the fuel consumption
with accurate models that estimate the fuel consumption of on streets. We classify these parameters into four categori
one vehicle given data collected by another vehicle. Thesethat are (i)static street parametergii) dynamic street pa-
models are especially good for accounting for finer differ- rameters (iii) car specific parameteyand (iv)personal pa-
ences between vehicles in one category (e.g., full-size ve-rameters Static street parameters model the street character-

hicles) but can also be applied across categories, as will beistics and do not change (or change very infrequently) over
shown in the evaluation. a period of time. For example, the speed limits of streets

When a query is posed for a fuel-efficient route from one change very infrequently and the number of traffic lights on
point to another in the city, the source and destination ad- the street remain more or less constant. The dynamic street
parameters are characteristics that change with time.Xor e

3\While the authors appreciate the importance of accounting f  @MPle, the congestion levels on a street or the average speed
street incline as a model parameter, this study does naostigate on astreet. The static and dynamic street parameters tygeth
the effect of incline due to the flat nature of the terrain ia libcale determine the fuel efficiency of a particular street. Other
where the study is performed. variations in the fuel consumption can occur due to the type




of car being driven and the nature of the person’s driving. teristics), we divide such streets into smaller segmerashE

For example, a big car may consume more fuel than a smallsegment is considered as one training data point for the pre-
sedan. Similarly, a person who is more erratic (higher ac- diction model. Note that, the collected raw data are not di-
celeration or hard braking) is likely to consume more fuel rectly used. Instead, the model parameters (average speed,
than a more “careful” driver. These parameters account for real mpg) are extracted and used for training and testing pur

the variation in fuel consumption due to the car type and the poses.
driver behavior.

Before we explain the details of the model, we provide
a brief description of the data collection for the purpose of

developing models.

4.1 Data collection
Our model is derived using data collected from six users that greatly affect the fuel consumption even if the street a
(with different cars) over the course of a month. A wide the car are fixed. For example, one might drive from home
range of cars were used in our experiments and a total ofto office every day at the same time and on the same route,

about 90 miles were driven by the users. The details of the pyt the fuel consumption might vary greatly with the num-

car make, model, year, and the number of miles of data col- per of traffic lights encountered that were red on a given trip
lected for each car are summarized in Tdble 1.

4.2 Preliminaries

Predicting the fuel consumption using only static param-
eters of a street (e.g., number of traffic lights) or simple dy
namic street parameters (e.g., average speed) with high ac-
curate is challenging because there are several othergacto

(as opposed to green). Simply counting the total number of
traffic lights, or even the average number of red lights en-

Car make | Car model | Car year | Miles driven countered over a long time, does not accurately predict this
Pontiac | Grand Prix| 1997 24.5 time-sensitive single-trip information. Therefore, fioein-
Honda Civic 2002 10.55 sumption estimates of city traffic routes, based on any aver-

Chevrolet | Prizm 1998 15.5 age metrics, are inherently inaccurate due to the noisy@atu

Ford Taurus 2001 9.46 of the random variable being estimated. What we hope for,
Mazda. 626 2001 8.89 however, is to develop a prediction scheme whose residual
Hyundai | SantaFe | 2008 214 error has a zero mean. In other words, if the actual fuel con-

Table 1. Table summarizing the cars used and the

sumption is equally likely to be above or below the predic-
amount of data collected

tion, the errors will tend to cancel out (e.g., on daily com-
mutes) and the total fuel consumption estimate over a long
In our experiments, each user was given a DashDyno andtime will be accurate. In other words, a scheme with a zero
GPS system described in Sectionl 3.2 and was asked to drivenean error will still accurately predict one’s savings a th
around the city in which the authors reside. There were two pump, which is the basis for choosing fuel-efficient routes.
sets of experiments performed by us, one is a controlled set \jith the above in mind, we begin by plotting the variation
of experiments, which enabled us to collect sufficient data in the fuel efficiency across various streets and cars. We plo

for a variety of streets. In these set of experiments, eaeh us the distribution of the miles per gallon (mpg) for the data
was asked to drive around a specific set of major streets incollected for all the users in Figue 5.

the city. Each street had various characteristics, sucheas t

speed limit, the congestion levels, and the number of traffic

lights. These controlled experiments captured the vagabl 0.1
affecting fuel consumption. The controlled experiments al 0.095
low us to decide on the best modstucture as opposed to
estimating parameter values. They are done only once for

0.08f

purposes of understanding what parameters to monitor, and  _ %97
are not part of the participatory service itself. That segvi 2 0.06}
will simply use the model structure we arrive at in this paper = s
and use participant data to estimate model parameter values 30047
The data from these controlled experiments were usedto g
build models. Parameters of these models were estimated. 0.03r
The second set of experiments evaluated the efficacy of the 0.02f
models in an uncontrolled setting. The users drove randomly .01
over several streets and collected (ground truth) fuel con-

sumption information for these streets. The fuel consump- % 10 15 20 25 30 35 40

tion data for these streets were compared against Fueoogle Miles per gallon (mpg)
predictions and hence used to evaluate the accuracy of preFigure 5. Figure showing the real mpg distribution for all
diction using our model. the six users

For the purpose of modeling the streets, we note that the
data collected consists of several streets which are signifi ~ We observe from FigurEl 5 that the distribution is very
cantly long. For example, many streets are as long as 1.5wide, with the mpg values varying between 5 and 40. The
miles. In order to capture the variation in the fuel consump- standard deviation of the mpg distribution is 7.75 mpg,
tion within the longer streets (due to different traffic char which is pretty high. We observe that the variation in the mpg



distribution is in part due to differences inherent to ssee 4.3.1 Prediction with Static Street Parameters

and cars and in part to time-sensitive noise added as dis- The static street parameters under consideration include
cusse_d above. Hence, itis de§|red to have a predlct|0n modethe speed limit (SL), number of stop signs (ST), and number
that gives a prediction error with much smaller standard var of traffic lights (TL). We consider only static parameters in
ation than the that of the overall mpg (7.75mpg). this section. Even though the error for the models presented

The inputs to the prediction model include street param- in this section is high, we are interested in understandieg t
eters and car parameters. The goal of the prediction mod-importance of the parameters that affect the fuel consump-
els is to be able to estimate the fuel consumption using only tion on various streets. We use the data sets from six differe
general parameters of both streets and cars which are easears described in Tabl& 1.

ily acquired (e.g., number of stop signs, car make, etc). The  The simplest model is a linear model that depends on only
lack of fine-grained parameters in the model makes it hard gne of the parameters, SL, ST, or TL. The absolute prediction
to achieve a low prediction error. However, as mentioned error and the corresponding signed prediction error foheac

above, we are interested in the prediction error over a long car are shown in Figufe 6la) and Fig{ire p(b), respectively.
period of time. This error can be very small if the predic- e see from these two figures that the error in prediction is

tion error follows a zero mean distribution. There_foresit i quite high, as much as 30% absolute error and 10% signed
reasonable to measure the accuracy of the prediction mod-gyor (i.e., long-term total prediction error as a fractioi

els using the sum afignederrors instead of absolute errors. |ong term total consumption).

The goal of our paper is to come up with @ model with fair Our next step is to combine two parameters (linearly) to
absolute error but with a very low signed error. Hence, we P P y

: X bserve if more parameters can predict the mpg better than
evaluate the developed model with both absolute and signe . .
errors in upcoming sections. G?he single parameter models. We plot the absolute and signed

. T . . _ errors for the three combinations of the static street param
With that goal in mind, we consider a simple linear model gtgrg (ST, SL), (SL, TL), and (ST, TL), in Figufe 4(a) and
to predict the mpg for individual street segments. The mpg Figure[7(D), respectively. We observe from these two fig-
of streets is modeled as a function of the various street and, g5 that the error in prediction does not change much, which
car parameters described above. Itis straightforwardito o yeans that the mpg information contained in those static pa-
pute the fuel used from the mpg as distance of the streets;ameters are similar. We further justify this observatign b

is known. We shall show that the model, developed in this ¢onsidering the linear model with all three static paramsete
paper, achieves an absolute error of about 11.28%, on av-These results are shown in Tahle 2.

erage, while the signed error is less than 2%, which is ac-
curate, considering that we are contemplating savingsen th i
10%-20% range as discussed in the feasibility section. We| Car make | Absolute percentage| Signed percentage

also show that the total prediction accuracy for long roigtes _ error error
much higher than the accuracy for the individual route seg-| Pontiac 27.05 9.18
ments, confirming the cancellation of noise. Ford 22.06 6.23

Hyundai 26.65 9.08

Our linear model estimates the fuel consumption as the

weighted linear combination of the parameters. The system I\C/I;\zda 122? 6151
needs to estimate the coefficient vector from the OBD-Il data evy : :
Honda 28.87 1.01

shared by users in order to minimize the least squared mp
error. Another advantage of the linear model is that it is pos
sible to have a powerful online algorithm to update the co-
efficients of the model whenever new OBD-II data arrives,
essentially using a Kalman filter.
In the rest of this section, we will incrementally build a Both the absolute and the signed errors for all static pa-

model that achieves the aforementioned goals and resultsrameters considered in the model are approximately the same
We will begin by looking at simple models and slowly evolve across the simpler and more complex models. This means we

Table 2. Absolute and signed prediction errors for each
car/user when all the static street parameters are used in
the model

into more sophisticated ones until the best is found. have nothing to gain from using a complex model that com-
bines the above static features. Instead, we pick the static
4.3 The Single Car Model single-parameter model that performs best (in terms of per-

In this section, we first consider models developed for centagt_—:‘ signed error).
Fueoogle members. These models are dedicated to their in- 10 pick that model, we compute the average error across
dividual cars. Being fuel efficiency models of a single car, allthe users for each one parameter modelin Table 3. We ob-
they incorporate only street parameters that the caroperf ~Serve from TablE3 that the static parameter that best geedic
mance might depend on. To evaluate the accuracy of singlethe mpg for all the streets is the number of stop signs (ad-
car models in our experiments, we use data from driving the Mittedly, this study was performed in a small campus town).
same car on one set of streets and evaluate the accuracy of
model in predicting fuel consumption for a different street In the rest of this section, we consider models that com-
In other words, the errors are computed based on the leavebine other parameters with the chosen static parameter(num
one-out cross validation schemel[21]. ber of stop signs).
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Features Average absolute| Average signed
percentage error | percentage error

Speed limit 22.82 7.31

Traffic lights 22.2 6.94

Stop signs 22.3 6.68

Table 3. Average absolute and signed prediction errors
for all the cars for each of the models using static param-

eters only

4.3.2 Prediction with Dynamic Street Parameters

The dynamic street parameters are those that vary withchoose the best model that gives least signed prediction er-
time. Examples of those parameters include average speedor. Table[## summarizes both the absolute prediction error
of the vehicles on the street and congestion level. First, we and the signed prediction error for the three models across
analyze the effect of the average speed on the mpg of the veall the users.

scheme. The absolute prediction errors and the signed pre-
diction errors for these three models are presented in €igur
and Figurg 8(b), respectively.

We observe that both the absolute prediction errors and
the signed prediction errors are significantly lower tharsth
of the model with static parameters only, which suggests tha
average speed strongly correlates with fuel efficiency. How
ever, there is no model that outperforms the others. This can
be explained by the fact that the average speed and the fuel
efficiency are likely to be linearly dependent in normal city
traffic (the average speed is less than 40 mph). Hence we

hicle on various streets. Studies by the U.S. Department of
Energy [27] show that the fuel economy (mpg) strongly re-
lates to the average speed of vehicles. Moreover, we observe
from the results in[27] that the fuel economy can be approxi-
mated by a polynomial in average speedaf order less than
three. Now, we consider three possible models which com-
bine the number of stop signs with (v,v?) and (v,v2,v3).

| Features Average absolute| Average signed
i percentage error | percentage error
ST andv 17.24 4.17
ST,vandv? 16.45 3.83
ST,v, v andv® 16.53 3.56

We individually train these models using data sets for dif- Table 4. Average absolute and signed prediction errors
ferent cars (to estimate coefficients of the above parasjeter for all the cars for each of the models using number of
and evaluate them using the leave one out cross-validationstop signs (ST) and average spee)(
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Figure 8. Prediction errors for the model with stop signs andaverage speedy V2, V) for all the users

The results show that the model achieving least error is  We now consider the effect of the amount of training data
the one with number of stop signs (SV)y? andvs. In other used on the accuracy of prediction. We partition the data
words: set of one car (the Pontiac Grand Am) into two sets. The
first data set contains the data points recorded from one spe-
cific street. The second data set contains the rest of the data
wherea, b, ¢, d, ande are the coefficients derived for the points. We train the model with the data points taken from
vehicle in question. the second data set and test the model on the first data set.

Yet another dynamic factor that can improve the predic- We also vary the size of the training data to see the effect of
tion error is the congestion level. Higher congestionlseel ~ the number of training data points on the performance of this
streets resultin lower fuel efficiency, as vehicles moversio  model. We repeat the experiment for several training sets
in congested streets (thus consuming more fuel). Hence,and average the prediction errors. The results for absolute
we introduce the congestion parameter that approximatesprediction errors and signed prediction errors are shown in
the congestion level. The congestion parameter of a certainFigure[S(d) and Figufe 9{b), respectively.
street is defined as the ratio of the average speed of the ve- The results show that this model generalizes well to dif-
hicles on the street to that of the speed limit on the street. ferent streets even with small number of data points. On
We augment the best model achieved in Equdflon 1 with the average, the model needs 40 data points to gives reasonably
congestion parameter and evaluate the performance of thiggood prediction error for the streets that don’t have any dat
new model using leave one out cross validation method. Thepoints. This is a good number since the number of training

mpg=aST+bv+cv’+dv+e (1)

results are shown in Tadl& 5. data points for real participatory applications can be gabi
thousands of data points. In the next section, we explore how
Car make | Absolute percentage| Signed percentage models generalize across cars by incorporating car-specifi
error error parameters into the model.
Pontiac 13.79 4.60 4.4 The Generalized Model
Ford 19.31 2.88

Car type is an important factor that affects the fuel effi-

Hyundai 23.23 6.78 ciency. In our experiments, the fuel consumption of an SUV
Mazda 14.36 3.05 is higher than that of a sedan by as much as 20% on the same
Chevy 11.65 2.76 street at the same time of the day. Hence, it is desired for
Honda | 1897 6.03 the model to be able to accurately predict the fuel efficiency

Table 5. Prediction error for each car/user with conges-  across multiple types of cars. This allows Fueoogle to @eriv
tion level parameter fuel efficiency of a vehicle, even when it has no prior data
collected for that type of vehicle.

We compare the results of the model without the con-  In order for the model to accurately predict the fuel effi-

gestion parameter (Figufe g(a) and Fidure]8(b)) with that of ciency across the different types of cars, car-specificrpara

the results in TablE]l5. We observe that the model with the eters need to be incorporated into the prediction model.
congestion parameter augmented does not improve over the The most important car-specific factor that affects the fuel
model without the congestion parameters (Equdfion 1). This efficiency is the average mpg of the specific car. Using this
can be explained as the average speed in the original modebbservation, we can use the car’s average mpg as a parameter
also contains information about the congestion, thus gddin for the model. In the new model, the set of features do not

a scaled version of the speed does not help in improving thechange, however instead of finding the coefficients to ptedic
model. Therefore, we choose not to add the congestion pa-the real mpg, we now find the coefficient to predict the nor-
rameter into our final model. malized mpg, defined as the ratio of average mpg on a given
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street to the car'’s rated mpg. performs extremely well.

The long-term average mpg for a specific car can be found  In order to justify the improvement of the model after in-
in two ways: either the car owner has a sense of the averagecorporating the car's mpg information, we train the single-
mpg or it can be provided by the manufacturer or by EPA car model described in Equatibh 1 across all the cars but one
[LT]. The information provided by the manufacturer might and test on the other car. The prediction error is then com-
not be a good estimate of a specific car's mpg since the av-pared with the result for the multi-car model (with real car
erage mpg of same type of car may differ as much as 10mpgmpg). The signed prediction error for both single-car model
[11], which may result in poor prediction performance. In and multi-car model is plotted in Figuel11.
this paper, we evaluate the model using both standard mpg We can see that the multi-car model outperforms the
(provided by EPA) and average mpg (provided by the owner single-car model in most cases. It means that the normal-
of the car). In order to evaluate the accuracy of the model ized mpg is a better parameter for the prediction model.
in predicting the mpg across different cars, we use all data  Another car-specific parameter that is considered in the
points of one car as the testing set while use all other datapaper is the wheel size of the car. Fuel-efficiency will sligh
points of other cars as training data. Figre T0(a)[and JLO(b)drop with a smaller wheel size at a given speed because to
shows the absolute error and signed error for both modelsmaintain that speed, the engine and drive train have toerotat
(using standard mpg and real average mpg), respectively.  at a greater speed thus friction losses will be higher. We hy-

Significant difference in the error performance of the pothesize that the mpg loss can be accurately linearized so
model with different parameters can be seen from those fig-it is proportional to the wheel size of the car. We evaluate
ures. The model performs badly on the when using the stan-our hypothesis by using wheel size of the car as a parameter
dard average MPG from EPA which means that those valuesto the model (which includes static parameters, dynamic pa-
are pretty far from the accurate mpg of the car. On the otherrameters and car’s real mpg). The model is tested using all
hand, the prediction model using the real average of the carthe data points of one car and is trained using data points of



Car make Absolute Signed
120 . . . . . percentage error | percentage error
Single car mode] Hm— Pontiac 13.72 2.52
100 b Honda 17.59 2.12
Chevrolet 22.87 6.7
A Ford 13.16 2.14
& Mazda 12.86 1.86
> Hyundai 18.97 6.04
5 Table 7. Absolute and signed prediction errors for each
a

car/user when the human factor is introduced into our
final model
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Car make

model developed in Sectidn #.4 achieves an average signed
error of 1.99%, which is quite small. This error is accept-
able for our application and hence we do not explore further
parameters. We will now discuss our final model in the next
Section.

4.5 Final Model Discussion

In the previous sections, we developed a linear model that
can accurately predict the fuel consumption across ciffidra
streets and car types. We will summarize this model below.

Honda

Figure 11. Signed prediction error for each car/user for
the single car and multi car models

all other cars. The results is showed in TdRle 6.

Car make | Absolute percentage| Signed percentage The input to the model includes:
_ error error e Static street parameters: Number of stop signs (ST)
Pontiac 12.23 2.21 . :
Ford 9.69 1.49 ¢ Dynamic street parameters; V2, v wherev is the av-
Hyundai 1558 315 erage vehicle speed on a specific street.
Mazda 13.7 281 e Car specific parameters: average mpgpg and wheel
Chevy 11.72 1.56 diameter ¢).
Honda 5.86 0.72 The final model is expressed as
Table 6. Prediction error for each car/user when the

wheel size is considered in the model mpg, = aST+bv+cv +dv’ +edy + f )

] whereab,c,d,e, f are the model coefficients that are es-
aoo B S oS98 e o e 1 aiing phaseng s he nomaleed mog
GO , II , which is computed as\pg, = mpg/mpy

than the previous model without wheel size information. In the Fueoogle application, the static street parameters
4.4.1 Driver Specific Model are automatically determined from existing databases such

In order to incorporate the human factor into our final as the Red light databade [16]. The average speed for each
model, we introduce a driver specific parameter. We want street is computed from GPS data contributed by users. For
to choose a metric that captures the driving behavior of the the street having no GPS information, then the average speed
users. For example, an individual who is used to braking is guessed by the software as the average community speed.
hard or accelerating fast is likely to consume more fuel than Car specific parameters are supplied by the users. The out-
a person who coasts to a stop or accelerates normally. Weput of the prediction model is the normalized mpg for that
propose to use a parameter calledlifetime speed variance  car/street. Fueoogle multiplies this number with the viehic
for a single user. This metric is the speed variance computedaverage mpg to get the real mpg for that car/street.
over the entire speed data for the given user (such a metric We now evaluate the overall performance of the final
can be computed only for the Fueoogle members). model using the leave one out cross validation scheme on

We compute the absolute percentage error and the signedhe all the data set of six cars. As discussed in SeEflldn#4.2, i
percentage error for the six users using the method sinailar t is desirable for the standard deviation of the error of thal fin
the one presented in Sectionl4.4. These results are shown iimodel to be smaller than the standard deviation of the data
Table[T. itself. In addition, we are only concerned about the signed

We observe from Tablgl 7 that the prediction accuracies error distribution since it represent the typical errorésgbr
decrease when the driver specific parameter is introducedwhen estimating long street segments. The error distahuti
into the final model. The average absolute percentage errorfor signed error of the final model is plotted in Figliré 12.
is 16.53% and the average signed percentage error is 3.56%. The error distribution in Figure_12 resembles a Gaussian
Thus, the driver lifetime speed variance is not a useful met- distribution with zero mean and standard deviation of 04143
ric for our model. Hence, our final model does not have the mpg, which is significantly smaller than the standard devia-
driver lifetime speed variance. Finally, we observe that th tion of the real data itself (7.75 mpg). Two sigma rule tels u
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that the prediction error is less than 0.2868 mpg with proba-
bility of 95% which is very good.

4.6 Updating the Model

Since Fueoogle is a participatory sensing application that
provides a long term service for the community, there is a
need to update the model using new OBD-II data to prevent
inaccuracy due to out-dated model. To update the prediction
model, one solution is to augment old data with newer data
and solve the least squared optimization to find new model
coefficients. However this solution does not scale becaus

The initial condition isxg = 0 andHg being arbitrary pos-
itive definite matrix. Interestingly, this equation is a Irea
ization of the Kalman filter[[6]. Readers are encouraged to
refer to [6] for more discussion of the incremental gradient
method for linear system.

In order to update the coefficient, we only need to store
anmxmmatrix H in addition to the old coefficient which is
extremely resource efficient. One property of the Kalman fil-
ter is that the model parameters converge to a new state very
fast when the characteristic of the system change. This guar
antees our system to be up to date when there are changes in
traffic characteristics.

5 Evaluation

In a sense, the performance of the fuel consumption mod-
els we presented has already been evaluated in the context
of deriving the best model structure. We therefore present i
this section only a small number of additional experiments
that confirm the efficacy of the winning model. We evalu-
ate how the system performs both in terms of the accuracy
of the model in predicting end-to-end fuel consumption for
long routes as well as in terms of ability to find the most fuel
efficient paths. We use the data collected from the second
set of experiments (the data collection is described in Sec-
tion[4]) to compute these results.

For each of the considered routes, we compute the actual
fuel consumed and the predicted fuel consumption from the
Fueoogle system (which uses the final model described in the
previous Section). FigufelIl3 shows the routes of two differ-
ent users. These computed results along with the percentage
error for the end-to-end path are shown in Tdle 8.

of the accumulation of OBD-II data over years and the com-
putational complexity to solve the least squared optinorat
with huge input data. Therefore there is the need to find an
online algorithm to update the model coefficients usinggust
small number of past variables and new OBD-II data. In this
paper, we present an online algorithm to update the model
coefficients based on incremental gradient methbd [6].

For simplicity, we denotex as the current model co-
efficient vector with m elements corresponding to m fea-
tures discussed in Sectid@ U4.5. The set of new OBD-II
data features is denoted as@s- (C1,C,...,Cp), andZ =
(z1,22,...,2y) is the target MPG get from the new OBD-II
training data. We compute the model coefficient by mini-
mizing the following unconstrained quadratic optimizatio

|
X =argmin’y [z —Cjx[? (3)
j=1

The incremental gradient method iteratively finds the the
optimal coefficient vectok for each 1< i <n. The opti-
mal solution ofx at stepi is denoted ag;. The incremental
gradient solution for this linear curve fitting as follow

X =X_1+H 'C'(z —Cixi_1) (4)
H; is also iteratively computed using following equation
Hi=Hi1+CC )

Car Actual Predicted Percentage
make/

Path fuel (gallons) | fuel (gallons) error
Pontiac 0.0767 0.0757 1.3
(A-B)

Pontiac 0.0786 0.0760 3.3
(A-C)

Ford (D- 0.0980 0.0948 3.2
E)

Chevy 0.0817 0.0897 2.3
(A-B)”

Chevy 0.0789 0.0857 8.6
(A_ B) k%

Table 8. Table showing the actual and predicted fuel con-
sumption in gallons for the routes shown in Figure[IB
along with the percentage error in prediction. The first
entry for Chevy (A-B) * is for the fastest route and the sec-
ond entry (A-B)** is the most fuel efficient route chosen
by Fueoogle.

We observe from Tabl[d 8 that the percentage errors for the
end-to-end routes for most of the paths are quite small. The
average prediction error for the end-to-end path is 3.75%.
This demonstrates that Fueoogle achieves a small pereentag
error in predicting the fuel consumption for the end-to-end
paths.
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(a) Figure showing the routes chosen for two different

users for evaluating the goodness of our final model. User
1 drives a Pontiac Grand AM, 1997 and User 2 drives a
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Figure 13. Maps showing the driving routes for the purpose o&valuation

Further, we asked our participants to choose a random
route between two points and measure fuel consumption,

6.2 Fuel Efficiency
A comprehensive study that provides optimal route

then ask Fueoogle and follow its directions between the samechoices for lowest fuel consumption is presentedin [12]. In

endpoints, measuring fuel consumption again. All partici-

the paper, fuel consumption measurements are made through

pants reported fuel savings. One such experiment is shownthe extensive deployment of sensing devices (differemhfro

in Figure[I3({@). The user drove on two different paths be-
tween landmarks A and B. One was the fastest route from

the OBD-Il) in experimental cars. These fuel consumption
measurements are then used to compute the lowest fuel con-

MapQuest and the other is a route by Fueoogle. Fueooglesumption route. As opposed to the work [inl[12], our paper

picked the route that consumed less fuel, when compared
to the fastest route from MapQuest. The most fuel-efficient
route is marked by a solid line in Figure T3(b).

We conclude from the above observations that Fueoogle
predicts the fuel consumption for end-to-end routes with a
high accuracy and also chooses the most fuel efficient route.

6 Related Work

We divide this section into three parts, the first part
presents related work in participatory sensing and the sec-
ond examines fuel efficiency related literature.

6.1 Participatory Sensing

The concept of participatory sensing was introduced in
[B]; participatory sensing is where individuals are tasked
with data collection which is then shared for a common pur-
pose. A broad overview of such applications was later pro-
vided in [1]. Several early applications have been pubtishe
Examples include CenWit5]118], a participatory sensing net
work to search and rescue hikers, CarTel [19], a vehicular
sensor network for traffic monitoring, BikeNet ]10], a bik-
ers sensor network for monitoring popular cyclist routes,

and ImageScapé€ 23], cellphone camera networks for shar-

ing diet related images. Our application, Fueoogle, intro-
duces a novel participatory sensing application that exsabl
individuals to obtain fuel efficient routes within a city.
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