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ABSTRACT 

This report presents studies on the seismic analysis and 

earthquake resistant design of steel low-rise shear buildings, moment 

frame buildings, and X-braced frame buildings. 

In the first portion of the study, a number of two- and three-story 

buildings were designed according to the recommendations of modern 

building codes. The forces and deformations generated in the buildings 

under the North-South component of the El Centro 1940 earthquake were 

assessed by means of time-history analysis. It was found that the base 

story was the critical 1 ink in the lateral seismic load resisting system 

for the shear buildings, the moment frame buildings proportioned with 

weak columns, and the X-braced buildings considered. For the moment 

frame buildings proportioned with strong columns and weak beams, inelastic 

response was distributed fairly uniformly throughout the beams of the 

buildings. From the results of the time-history studies, it appears that 

inelastic deformations can be estimated from the elastic deformations 

by means of the design rules that have been developed for single-degree

of-freedom systems. 

In addition, two simpler methods of analysis, the modal method used 

in conjunction with inelastic response spectra and the quasi-static 

building code approach modified to expl icitly take inelastic behavior 

into account, were evaluated for use in calculating response quantities. 
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It was concluded that the quasi-static building code approach is the most 

appropriate procedure for use in the.practical design of low-rise steel 

buildings of the types considered. 

In the last section of the report, the application of the 

results of these studies to the practical design of low-rise steel buildings 

is discussed. A simpl ified design procedure that is in part similar to the 

quasi-static building code approach presently recommended by the Applied 

Technology Council I I I study is discussed; the procedure appears to be 

appl icable at least to two- and three-story buildings. Comments concerning 

other factors (redundancy, reserve strength, and so forth) that should be 

considered in the design of low-rise steel buildings are made. 
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1 • I NTRODUCT ION 

1.1 Objectives of the Investigation 

A major proportion of society·s investment in building construction 

is consumed on low-rise buildings. Most people spend some portion of each 

day -- sleeping, working or 1 iving -- in buildings which can be classified 

as low-rise. In the past, many of the available techniques of seismic 

analysis and design have not been appl ied to this class of structures 

mainly because the additional design costs are large relative to the value 

of the buildings, the consequences of failure are considered to be small, 

or the dynamic properties cannot be expressed simply in mathematical terms. 

Thus, there is a need for procedures consistent with earthquake engineering 

theory that can be simply appl ied to the design practice of low-rise 

buildings. 

The objective of the first portion of this investigation was to 

determine the behavior of some low-rise buildings when subjected to 

earthquake base motion. Step-by-step numerical integration of the 

governing equations of motion (time-history analysis) was used for these 

studies. In the second portion of this investigation, simplified analytical 

procedures, specifically the modal method and the quasi-static building 

code approach, were evaluated for use in predicting the dynamic response 

of low-rise buildings. The objective of the final portion of the investiga

tion was to discuss the application of the results of the studies in this 

report to the design of buildings. The major emphasis of the 

studies was on inelastic response as it affects the seismic design of 

low-rise buildings. 
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This study was 1 imited in scope~to planar two- and three-story 

shear buildings, moment frame buildings, and X-braced frame buildings 

subjected to one horizontal component of earthquake ground motion. It 

was assumed that nonstructural components had an insignificant influence 

on the seismic response, and that torsional and soil-structure interaction 

effects could be ignored. A number of assumptions regarding the structural 

properties were made in order to simplify the problem of analysis to one of 

tractable proportions. 

A1though the studies were 1 imited to a relatively small sampling of 

buildings subjected to only one base motion, it is hoped the conclusions 

drawn are general enough that certain limitations in current design 

procedures might be isolated, and the gap between complicated methods of 

analysis and simplified procedures of design might be lessened. 

1.2 Prey ous Work 

The problem of determining the dynamic behavior of building structures 

during earthquake motion has been approached by a number of experimenta] 

and analytical investigators. It has long been recognized that seismic 

behavior cannot be reconciled on a purely elastic basis. Thus, much of 

the recent research effort has been directed towards the determination 

of the lateral load carrying capacity of structures in the inelastic 

range. In the remainder of this section, reference is made to (a) pertinent 

experimental and analytical investigations which lay the foundation for 

the selection of the structural ideal izations used in chapters to follow, 

(b) analytical studies which have given insight into the earthquake 

resistant design of buildings, and (c) some of the current methods of 

earthquake design. 
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1.2.1 Behavior of Steel Members and Frames -- Considerable effort 

in the development of the plastic design of steel theory has been directed 

towards the determination of the collapse load of moment frames. Tests 

(see for example Arnold, ~ ~., 1968) have shown that the monotonic lateral 

load-deformation path observed in experiments can be closely predicted by 

second-order elastic-plastic analysis (Galambos, 1968). 

Recently much emphasis has been placed on determining the cycl ic 

hysteretic behavior of steel moment frame structures. The results of tests 

by Popov and Bertero (1973) on girder subassemblages, by Carpenter and Lu 

(1973) on frames, and others have shown hysteretic behavior to be remarkably 

stable. The results indicate that after a number of load cycles, the 

experimental ultimate strength can exceed the calculated monotonic load 

by 30 percent or more. This increase in load carrying capacity is primarily 

due to strain hardening and the beneficial effects of gravity axial loads 

acting on column members. Stiffness deteriorates as the number of load 

cycles increases because of the Bauschinger effect. 

Local buckl ing of the flange or web of flexural members can lead to 

strength and stiffness degradation on cyclic loading, and this must be 

protected against in the proportioning of moment frames. 

Analysts have attempted to use the results of cyclic load tests in 

formulating structural models to account for the hysteretic behavior of 

flexural members (Clough, ~~., 1965; Giberson, 1969). Some success 

has been achieved in using these types of models in nonl inear time

history analysis procedures to predict the behavior of dynamically 

loaded steel frames (Tang, 1975). 
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The cycl ic inelastic behavior of steel X-bracing is relatively 

new and not well defined. The load history of a steel brace extends 

from tensile yielding through compressive buckl ing. Although recent 

tests (Hanson, 1975) indicate that models with more compl icated hysteretic 

behavior should be developed, the most commonly used is the elastoplastic 

model with tensile yielding and zero buckling strength. Igarashi, ~~. 

(1973) have shown that this type of model predicts the dynamic behavior of 

steel diagonal braces well, provided the slenderness ratios of the braces 

are relatively large. 

In summary, some of the basic factors which control the inelastic 

response of steel members and frames to earthquake base motions have been 

determined. it appears that more research is needed before simple analytical 

models can be developed to account for many of these factors. 

1.2.2 Analytical Investigations -- Inelastic analytical studies 

generally fall in two categories: those based on spring-mass or shear-beam 

systems, and those based on more compl icated finite element models. 

The former type of study attempts to model the macroscopic behavior 

of a real structure. Work with single-degree-of-freedom systems with 

elastop1astic resistances has led to the inelastic response spectra 

proposed by Newmark (Veletsos ~ ~., 1965; Newmark and Hall, 1973 and 

1976). Veletsos (1969) summarizes the results of investigations on 

single-degree-of-freedom systems with various resistance functions. 

Bazan and Rosenb1ueth (1974) have studied the combined effect of two 

resistances in parallel, one representing frame action and the other 

representing X-bracing. Penzien (1960), Veletsos and Vann (1971), and 
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others have used elastoplastic shear~beam models to represent multi

degree-of-freedom systems. 

Studies on shear-beam systems are usually carried out over a wide 

range of parameters with a minimum of expense. Design forces that would 

be consistent with a given amount of nonl inear behavior during an earthquake 

can be estimated for many one-story buildings directly from publ ished 

results. Unfortunately, the results give 1 ittle indication of the 

individual member ductil ity requirements. 

The latter type of study uses finite elements to model tall buildings. 

Time-history calculations by Clough and Benuska (1967) on concrete frame 

buildings and Goel and Hanson (1972) on a series of lightly braced steel 

frame~ are representative of this class of investigation. 

Studies using finite elements give insight into the ductil ity 

requirements of the individual members of a frame. The behavior of 

specific structures is indicated, but it is difficult to general ize the 

results and apply them to the design of other structures. 

1.2.3 Present Methods of Design -- In the quasi-static building 

code approach (NBC, 1975; SEAOC, 1975; UBC, 1976; and so forth), the 

design lateral base shear is calculated and the distribution of the base 

shear as lateral loads over the building height is determined. These 

lateral loads are appl ied to the building and a static analysis is 

performed; members are proportioned to resist the forces thus obtained 

elastically. 

The code design approach has evolved empirically from observations 

of building behavior during past earthquakes, and it is generally 
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consistent with more compl icated methods of analysis and design (Newmark, 

1968). Buildings designed according ·to the lateral force provisions of 

modern codes are expected to deform inelastically, withstanding ductil ities 

of 4 to 6 without collapse during major earthquakes. 

The modal method used in conjunction with response spectra provides 

a sl ightly more compl icated procedure for determining lateral design forces, 

but one which is consistent with the principles of dynamic behavior. 

Unfortunately, since superposition is used, the modal method is only 

rigorously correct for 1 inear elastic systems. However, Newmark and Hall 

(1973) note that, ifdesign response spectra are modified to account for 

non1 inear behavior? the method can be used to approximate inelastic 

response .quant it i es. I n fact, some of the modern bu i 1 ding codes (NBC, 

1975; ATe, 1977) recommend this approach for compl icated or important 

structures. 

It is appropriate to mention that the development of procedures for 

the estimation of inelastic response quantities using the modal method is 

presently an area of active research (Anderson and Gupta, 1972; Luyties 

~~., 1976; Shibata and Sozen, 1976). 

in short, it is apparent that design procedures for low-rise buildings 

must be simple and similar to presen't practice in order to be utilized by 

design engineers. It is likely that the quasi-static building code 

approach, modified to expl icitly take into account inelastic behavior, 

is at present the most appropriate procedure for use in the design of 

low-rise buildings. 
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1.3 Scope of the Investigation 

This report summarizes the methods used in, and the results of, 

detailed studies on the seismic response and the earthquake resistant 

design of low-rise steel buildings. It should be appreciated that for the 

sake of brevity and understanding the methods and results are presented 

in condensed form. 

In Chaper 2 a series of two- and three-story low-rise steel buildings 

are designed according to the quasi-static procedures recommended by modern 

building codes. Also contained in Chapter 2 is a description of the ground 

motion used for time-history calculations and the development of design 

response spectra consistent with the ground motion. Appendix A contains 

supplementary data pertaining to the building properties described in 

Chapter 2. 

The analytical procedures used for time-history analysis, modal 

analysis, and the quasi-static building code approach calculations are 

described in Chapter 3. Appendices B, C and 0 contain detailed descriptions 

of the analytical procedures discussed in Chapter 3. 

The results of very interesting studies on the dynamic response of 

two-degree-of-freedom systems subjected to pulse base motion are contained 

in Appendix E; the intent of these special studies was to provide a 

theoretical basis on which to view the results of studies on more 

comp1 icated building systems. 

in Chapter 4 the results of time-history calculations on the building 

designs are summarized with particular attention being paid to the 

inelastic response, the story shear distributions, and the story displace

ments and drifts. Also contained in Chapter 4 is an evaluation of the 

modal method of analysis and the quasi-static building code approach for 
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estimating the base story shear. Appendix F contains the detailed results 

of the time-history calculations discussed in Chapter 4. 

The appl ication of the results of the studies recorded in this 

report to 'the design of low-rise buildings is discussed in Chapter 5. 

Procedures for proportioning structures to resist seismic motion with an 

adequate margin of reserve strength are discussed. 

To the authors· knowledge, this is one of the few studies that has 

been directed specifically towards determining the inelastic response of 

low-rise steel buildings of practical proportions to earthquake ground 

motion. The studies have indicated that compl icated methods of analysis 

are in general not necessary for use in analyzing commonly employed 

low-rise.building frames. Also, the studies carried out have provided 

further confirmation of the fact that the design rules appl icable to 

single-degree-of-freedom systems can be used to predict the dynamic 

response of (and can be used in the design of) low-rise buildings. In 

addition, in contrast to studies on simple systems, these studies on 

framing systems have pointed out clearly areas where additional research 

impacting practical design is required. For example, there is a tendency 

for yielding to be concentrated in the columns of well-designed low-rise 

buildings. As yet there are no easy-to-use and rel iable procedures for 

evaluating the strength-deformation capacities of yielded columns 

subjected to thrust and end moment, especially where bracing against 

instabil ity is lacking. Also, the role of secondary resisting systems, 

redundant resisting systems, and methods for evaluating the margin of 

safety or reserve strength under dynamic load reversal remain to be 

investigated. 
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1.4 Notation 

The symbols used in the text' are defined where they are first 

introduced. For reference purposes, they are also defined here. A 

superscript dot above a symbol indicates one differentiation with 

respect to time. A Greek delta prefix to a symbol indicates an 

incremental quantity. 

a = maximum ground acceleration, or inelastic hinge length 

A cross-sectional area 

A = spectral acceleration for the n-th mode of vibration 
n 

[A] = pseudostatic structural stiffness matrix 

b = coefficient of proportional ity between mass and damping 

{B} pseudostatic structural load vector 

c. = coefficient relating the yield displacement of the i-th 
I spring to the maximum relative displacement observed 

when the system responds elastically 

[c] structural damping matrix 

d = maximum ground displacement 

D = spectral displacement for the n-th mode of vibration 
n 

D.L. = dead load 

E = modulus of elasticity 

E.Q. = earthquake load 

f = frequency of vibration for a single-degree-of-freedom system 

f frequency of vibration for the n-th mode 
n 

F axial stress permitted in the absence of bending moment 
a 

Fb bending stress permitted in the absence of axial force 

F = design lateral force at the x-th floor 
x 

F = yield stress 
y 
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{F} ::::: vector of design lateral forces, or vector of resisting 
forces due to structural stiffness 

[F] ::::: structural flexibil ity matrix 

{g} ::::: end moment vector for a simply supported (constrained) 
flexural element 

{G} ::::: total element end force vector 

{G E} ::::: element end force vector calculated from material properties 

{GG} ::::: element end force vector calculated from geometric properties 

{G }::::: element fixed end force vector 
t> 

h ::::: story height 

h.,h ::::: height of the i-th or x-th story 
I x 

::::: moment of inertia 

k ::::: story stiffness, or stiffness of a spring 

::::: entries to the simply supported (constrained) flexural 
element stiffness matrix 

L ::::: length of a flexural element, or horizontal length 
between columns 

Lb ::::: length of an X-brace 

L.L. ::::: live load 

m ::::: mass, or mode number 

m. ::::: mass of the i-th story, or mass concentrated at the 
I i-th degree-of-freedom 

M ::::: plastic moment capacity 
p 

M pc 
::::: plastic moment capacity reduced to take axial load 

effects into account 

[M] ::::: mass matrix 

l"MJ ::::: diagonal mass matrix 

n ::::: mode number, or number of cycles of iteration in the 
initial stress procedure 
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N number of lateral translational degrees-of-freedom, 

p = 

p = y 

{p} = 

number of stories, or axial force used to obtain the 
element geometric ·stiffness matrix (positive in compression) 

axial force (positive in compression) 

yield axial force 

structural load residual vector used in the in i t i a 1 stress 
procedure 

qm,qn = general ized coordinate in the m-th or n-th mode of vibration 

Q story shear capacity, or story shear resisted by an 

(Qi)o = 

(Qj)prob = 

X-brace subassemblage 

force in the i-th spring 

force in the i-th spring calculated using the quasi-static 
building code approach 

force in the i-th spring calculated by combining modes 
using the sum of the absolute values of modal quantities 
approach 

maximum force in the i-th elastic spring 

force in the i-th spring calculated by combining modes 
using the square root of the sum of the squares of modal 
quantities approach 

(Q.) = yield force in the i-th elastoplastic spring 
I y 

(Qj) 1st = force in the i-th spring in the first mode 

{R} structural load residual at the beginning of a time step 

[s] = complete structural stiffness matrix 

[5*] structural stiffness matrix condensed to include only 
story displacements 

[5
E

] = element stiffness matrix calculated from material properties 

[5
G

J = geometric element stiffness matrix 

t = time 

tl measure of the duration of the pulse base motion 

[T 1] = transformation matrix 
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[T2] = transformation matrix 

u = relative story displacement, or relative spring 
displacement for a single-degree-of-freedom system 

u. = relative displacement of the i-th spring 
I 

u 
m 

u ps 

maximum relative story displacement, or maximum 
relative displacement for a single-degree of
freedom system 

= permanent set 

u = story yield displacement, or yield displacement for 
y a single-degree-of-freedom system 

(u. ) 
I m 

(u. ) 
I 0 

(u.) prob 
I 

= maximum relative displacement of the j-th elastoplastic 
spring 

maximum relative displacement of the i-th spring calculated 
by combining modes using the sum of the absolute values 
of modal quantities approach 

= maximum relative displacement of the i-th elastic spring 

maximum relative displacement of the i-th spring calculated 
by combining modes using the square root of the sum of the 
squares of modal quantities approach 

(u.) yield displacement of the i-th spring 
I y 

{u} = total end rotation vector for a simply supported 
(constrained) flexural element 

{OJ = element end displacement vector 

v = maximum ground velocity 

{v} = structural story dis~lacement vector relative to the base 

{v(m)},{v(n~=structural story displacement vector relative to the base 
in the m-th or n-th mode of vibration 

v = design base shear 

v = measure of the yield displacement of an elastoplastic 
y spring in a single-degree-of-freedom system 

(v .) 
I 0 

(v.) = 
I Y 

measure of the maximum relative displacement of the i-th 
elastic spring 

measure of the yield displacement of the i-th spring 

w.,w = weight of the i-th or x-th story 
I x 
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W = building weight 

W.l. = wind load 

x = base (ground) displacement 

Z = plastic section modulus 

a = maximum inelastic hinge rotation 
m 

{a} = inelastic (hinge) end rotation vector 

S = parameter in Newmark's S-Method equations 

y = parameter in Ne~mark's S-Method equations 

Y
n 

= participation factor for the n-th mode of vibration 

€ = phase angle for the n-th mode of vibration 
n 

e
h 

= inelastic hinge rotation capacity 

{e} = structural rotation vector 

~ = story ductil ity, or ductil ity for a single-degree-of-freedom 

~. = ductil ity of the i-th spring 
I 

~n = percent critical viscous damping in the n-th mode of vibration 

<Pav = average curvature in the inelastic region of a beam 
d uri n g its c r i tic all oa din 9 

cP = plastic curvature 
p 

¢ *- = des i gnp 1 as tic cur vat u r e 
p 

tcp(m)},{<p(n)}=mode shape of the-m-th or n-th mode of vibration 

rv (n) cp. = normal ized ampl itude of the n-th mode shape at the i-th story 
I 

{~(n)} = normalized mode shape of the n-th mode of vibration 

w= circular frequency of vibration for a single-degree-of
freedom system 

Wn = circular frequency of vibration for the n-th mode 

wdn = damped circular frequency of vibration for the n-th mode 

{oJ ~ zero vector 

{1} = unit vector 
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[ I ] = identity matrix 

{ }T transposed vector 

[ ] T transposed matrix 
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2. BUILDING DESIGNS 

2.1 I ntroduct ion 

In this chapter several two- and three-story buildings are designed 

to resist earthquake motion using the quasi-static building code approach 

to determine lateral loads, and the steel design specifications of the 

AISC (1969) to size members. The buildings designed provide the ensemble 

of structures used in the analytical and behavioral studies discussed in 

Chapter 4. Also presented is a description of the base motion used for 

time-history analysis, and the construction of the Newmark-Hall elasto

plastic design response spectra used for modal analysis and building code 

calculations in Chapter 4. 

2.2 Ground Motion 

The North-South component of the El Centro 1940 earthquake is 

bel ieved to be representative of a strong base motion which has a 

reasonable probability of occurrence in a highly seismic zone. The 

particular digitalized accelerogram used in this study had a maximum 

ground acceleration (a), velocity (v) and displacement (d), of 0.318 g, 

13.0 in./sec and 8.40 in., respectively. The maximum ground motions 

and the elastic response spectrum for this record are shown in Fig. 2.1. 

Also shown are elastic and elastoplastic design spectra, consistent with 

the maximum ground motions listed above, constructed using the rules 

given by Newmark and Hall (1973). All spectra are plotted for 5 percent 

critical viscous damping. 

The ducti1 ity factor for a single-degree-of-freedom elastoplastic 

system is defined as 
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u 
m 

11 =
u 

y 

in which u and u denote the maximum displacement of the oscillator 
m y 

(2. 1) 

relative to the ground during seismic motion and the maximum elastic or 

yield displacement, respectively. The design spectra p]otted in Fig. 2.1 

represent the peak elastic response (acceieration and yield displacement) 

for a series of elastoplastic oscillators. 

2.3 Design Criteria 

The base shears, V, used in seismic design were selected on the basis 

of recommendations contained in modern building codes. The base shear 

coefficients recommended by several building codes for use in calculating 

design forces in zones of maximum earthquake hazard are tabulated in Table 

2.1. The entries to the table represent the limiting (maximum) va1ues of 

the base shear normal ized by the building weight, W, for low-rise buildings 

on stiff ground. The base shear was distributed over the building height 

according to the following formula: 

w h 
F = V __ x_x __ 

x N 
L: 

i=l 
w.h. 

I i 

(2.2) 

in which w , w. and h , h. represent the story weight and height of the 
'x I X I 

building at the x-th or i-th story, and N denotes the total number of 

stories. Since it is generally not required by the building codes for 

low-rise buildings, no concentrated lateral force at the top of the. 

structure was included in Eq. (2.2). 

The design external pressure due to wind on the buildings was 

assumed to be 20 psf. For design the lateral deflection of the buildings 
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per story arising from wind and gravity loading was 1 imited to 1/500 of 

the story height. 

Member sizing was accomplished by the specifications of the AISC 

using type A36 steel with a yield stress, F , of 36 ksi and a modulus of 
y 

elasticity, E, of 30,000 ksi. The members were designed for dead plus 

gravity 1 ive loading (D.L. + L.L.), dead plus gravity 1 ive plus earthquake 

loading (O.L. + L.L. + E.Q.), and dead plus gravity live plus wind loading 

(O.L. + l.L. + W.l.), the loads for the latter two cases being mUltipl ied 

by a 0.75 probability factor. * 
Beam members in moment frame buildings were assumed to be capable 

of developing their plastic moment capacities. For moment frames and 

shear buildings, it was assumed that column members could develop their 

reduced plastic moment capacities calculated according to the strength 

interaction formula (AiSC Formula 2.4.3) 

M pc 
p = 1.18 (1 - --p ) M < M 

P - P 
Y 

(2.3) 

in which M (= F Z) denotes the plastic moment capacity and P (= F A) 
p y y y 

denotes the yield axial load capacity of the section. In Eq~ (2.3), 

Z and A represent the plastic section modulus and the cross-sectional 

area of the member. The axial load, P, acting on the column during 

dynamic motion was obtained using the concept of tributary area** and 

was assumed to be constant. 

* For convenience in this study, rather than increasing the resistance 
function by a factor of 1.33 for the (D.L. + l.L. + E.Q.) and (D.L. + 
L.L. + W.l.) loadings, the loads were multiplied by a factor of 1/1.33= 
0.75. In this way, stresses for the three load cases could be compared 
to the same allowable values. 

** One-half of the span between adjacent columns was used to calculate 
tributary areas (NBC, 1975, Commentary G). 
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The connections in shear buildings and moment frame buildings were 

assumed to develop the full capacities of members framing into a joint 

and to be rigid (unless noted otherwise). Column bases were considered 

to be fix-ended. 

For X-braced frames, it was assumed that the bracing members could 

develop their full tensile strengths based on gross area. The connections 

of columns were assumed to resist no moment and to be completely flexible. 

it was assumed that 20 percent of the transient live load contributed 

to the building weights and column axial loads during earthquake motion. 

Thus, floor masses and axial loads were calculated for a dead plus 20 

percent gravity 1 ive loading [D.L. + O.2(L.L.)]. 

For.purposes of design and analysis, it was assumed that each seismic 

load resisting frame in a building could be considered separately. Thus, 

it was assumed that the individual frames about each horizontal axis of 

a building vibrated in phase for seismic motion in a given horizontal 

direction. Also, it was assumed that mass was lumped at points of 

horizontal story translation~ 

It is to be noted that some of the building designs described 

in this chapter are not necessarily examples of good seismic design. 

Rather, the buildings were proportioned so that some of the more 

interesting aspects of seismic behavior could be studied. In particular, 

shear building Design 2-C and X-braced building Designs 2-G and 3-C, 

because of their relatively low base shear capacities, were subjected 

to large deformations during earthquake excitation. Also, some of the 

members in Designs 2-D and 2-E were overstressed under the building code 

loadings. 
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2.4 Building Descriptions 

Information pertaining to the building designs studied is contained 

in Tables 2.2, 2.3 and 2.4, and is shown in Figs. 2 2 and 2.3. The 

information recorded is for the most part self-explanatory; however, a 

few general comments are made here for clarity The symbol fl used in 

Fig. 2.2 denotes the fundamental frequency of vibration. The seismic 

design forces and the modal properties of the building designs are 

presented in Appendix A. 

The first group of designs was for a portion of a two-story building 

with three bays in the assumed direction of earthquake motion and a frame 

spacing of 32 ft in the perpendicular direction, Fig. 2.2(a), (b) and (c). 

The loadings tabulated in Table 2.2 were assumed to include exterior 

cladding weight. 

Buildings with extremely stiff and strong girders (shear buildings), 

Designs 2-A, 2-8 and 2-C shown in Fig. 2.2{a), were designed for a base 

shear coefficient of 10 percent. Of course, the design stresses as 

percentages of the AISC allowable stresses tabulated in Table 2.4 indicated 

that the actual base shear coefficients were different from the design 

value. The values tabulated in Table 2.4 refer to the design stresses 

in the most highly stressed members in the structures. For buildings with 

extremely stiff and strong girders, the maximum stresses occurred in the 

base story interior columns. As would be expected, the design stresses 

for Design 2-A, composed of W12 x 58 sections, were much less than those 

for Design 2-C, composed of w8 x 24 sections. 

The moment frame buildings shown in Fig. 2.2(b) also were designed 

for a base shear coefficient of 10 percent. In this case, the problem: 

of design was complicated since there were many possible combinations 
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of column and beam sections resulting in adequate structures. Both Designs 

2-D and 2-E were designed such that yielding tended to be confined to the 

columns. Conversely, Design 2-F was sized according to the strong column, 

weak beam philosophy. Design stresses in critical members are presented 

in Table 2.4. Design 2-D represents a well-designed building for which the 

design stresses in the critical column members and the critical beam 

members are on the same order of magnitude. The stresses are sl ightly 

less than the allowable stresses. Conversely, the critical columns of 

Design 2-E and the critical beams of Design 2-F are overstressed under 

the building code loadings. 

X-bracing was used for seismic load resistance in Designs 2-G and 

2-H shown in Fig. 2.2(c). For this type of structure, ignoring the second 

order effects, on]y lateral forces contribute to stress in the bracing 

members. As a result, the member cross-sectional areas 1 isted correspond 

to member sizes required to resist the given base shear coefficient at 100 

percent of the AISC allowable stress. As mentioned previously, it was 

assumed that the connections of columns to beams were completely flexible 

in these frames. 

Three-story bui1dings comprise the final group of structures studied. 

The ductile moment resisting frame building design shown in Fig. 2.3 was 

taken, with minor changes, directly from Army, Navy and Air Force (1973) 

Design Example C-2. The floor loadings given in Table 2.3 and an exterior 

cladding weight of 4 lb/ft 2 were uSed to calculate the seismic weights. 

The roof diaphragm for this building was assumed to be perfectly flexible, 

and the f100r diaphragms were assumed to be perfectly rigid. In the 

reference cited, the lateral design forces were obtained using the SEAOC 
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(1968) recommendations for a Zone 3 earthquake hazard. The design 

forces were consistent with a 5 percent base shear coefficient. 

For this building only the frames along 1 ines A, C, 1, 4 and 7 shown 

in Fig. 2.3 are lateral load resisting. In the East-West direction, from 

consideration of symmetry, 1/2 of the lateral load is resisted along each 

of the exterior walls (lines A and C). Each exterior wall is composed of 

two identical frame subassemblages which, by stiffness, attract 1/4 of the 

lateral load. Design 3-A shown in Fig. 2.2(d) represents such a 

subassemblage. 

The behavior in the North-South direction is compl icated because the 

roof diaphragm is flexible and the floor diaphragms are rigid. A rigorous 

dynamic analysis would require the idealization of the building as three 

frames in parallel (the frames along 1 ines 1, 4 and 7, Fig. 2.3), the first

and second-story levels of all frames being constrained to vibrate with 

the same displacement, and the roof of each frame being allowed to vibrate 

independently. However, for simpl icity it was assumed that the vibration 

of the central frame (1 ine 4) was independent of the other frames, and 1/2 

of the roof weight and 1/3 of the floor weights were tributary to it. The 

structural ideal ization in the North-South direction, Design 3-B, is shown 

in Fig. 2.2(d). Stresses in critical members for both Designs 3-A and 3-B 

under the design loadings are tabulated in Table 2.4. 

Designs 3-C and 3-D shown in Fig. 2.2(e) were for the building 

configuration illustrated in Fig. 2.3, but it was assumed that lateral 

resistance was provided by X-bracing along lines A and C. The relatively 

large design base shear coefficients selected were in 1 ine with the 

requirements of modern building codes for X-braced buildings in zones of 

maximum earthquake hazard. 
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3. ANALYTIC PROCEDURES 

3.1 I ntroduct ion 

This chapter contains a brief description of (a) the step-by-step 

numerical integration (time-history) procedure used to solve the coupled 

equations of motion which govern the dynamic behavior of low-rise buildings, 

(b) the modal method as used in conjunction with inelastic response 

spectra, and (c) the quasi-static building code approach modified to 

expl icitly take inelastic behavior into account. The methods described 

are 1 imited to pianar structures founded on a rigid base and subjected to 

one horizontal component of earthquake base motion. The computational 

techniques described were used to perform the analytical and behavioral 

studies discussed in Chapter 4. 

In an attempt to limit computational effort it was necessary to make 

several simpl ifying assumptions. Some of the assumptions are discussed in 

the following sections. The use of simp1 ified analytical models permitted 

the study of the fundamental parameters which control the inelastic dynamic 

response of low-rise buildings. 

3.2 Time-History Analysis 

3.2.1 Mass and Damping -- For the buildings considered in this study, 

it was assumed that mass was lumped at points of horizontal story trans

lation. The resulting mass matrix was diagonal with nonzero entries only 

for translational degrees-of-freedom. Under this assumption, it was 

possible to formulate the equations of motion in terms of a set of ordinary 

differential equations. 
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Damping was assumed to be proportional to mass, and the arbitrary 

constant of proportional ity (Appendix B, Section B.3) was adjusted so that 

5 percent critical viscous damping in the first mode of vibration resulted. 

Since inelastic hysteretic behavior was taken into account expl icitly when 

establ ishing the structural stiffness, it was felt that this relatively low 

value of damping was justified. The higher modes of vibration were damped 

less strongly than the first mode using this formulation. 

3.2.2. Element Stiffness -= Flexural members were assumed to resist 

end rotation in an elastoplastic manner The moment-rotation diagram shown 

in Fig. 3.1 represents the hysteretic behavior of a typical flexural element 

subjected to moment at one of its ends. Until the end moment capacity of 

the member is reached, the elastic resistance curve passing through the 

origin is followed. If the moment capacity is reached, an inelastic hinge 

forms and subsequent end rotation occurs without increase in end moment. 

If the direction of end rotation is now changed, unloading follows a curve 

parallel to the initial elastic curve. Subsequent loading or unloading is 

along the offset elastic curve until the end moment capacity of the member 

is again reached. 

The flexural element end moment-rotation relationship used ignores 

any increase in moment capacity resulting from strain hardening, and any 

decrease in elastic stiffness caused by the Bauschinger effect. 

The hysteretic story shear-displacement relationship used for X-braced 

frames is shown in Fig. 3.2. On first loading it is assumed that the 

compression brace buckles out of the way and the tension brace carries 

the lateral load elastically. If the lateral load is increased a sufficient 
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amount, the tension bar yields in an elastoplastic manner. If the direc-

tion of load is now reversed 0 and the ·tension bar is unloaded, the lateral 

force will not experience any resistance to deformation until the system 

passes back through its initial configuration of zero displacement. The 

bar, which had formerly buckled in compression, now is in tension and 

carries load as described for the tension bar above. On subsequent load 

cycles, the tension bar begins to carry load when the displacement equals 

the maximum deformation in the last cycle minus the elastic recovery. 

Igarashi, ~~. (1973) have shown that this model predicts the dynamic 

behavior of steel diagonal braces well, provided the slenderness ratio is 

greater than 2TI~ (or 181 for A36 steel). For the low-rise buildings 
y 

considered in this study, the slenderness ratios were greater than this 

value. 

As a story displaces relative to the story below, geometric forces 

are caused by gravity loads acting on column members. These secondary 

load-displacement (P~delta) effects must be opposed by the lateral load 

resisting system. The stiffness matrices for flexural and X-braced 

frame elements were modified to take account of P-delta effects. 

The detailed derivations of element stiffness properties are given 

in Appendix C. 

3.2.3 Method of Solution -- Once the structural properties were 

establ ished, the equations of motion were assembled by conventional 

matrix procedures and solved using time-history analysis. In performing 

the time-history analyses, the response history was divided into a 

number of small increments in time, and the change in response during 
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each increment was calculated for a 1 inear system having stiffness 

properties determined at the begi'nning of the time increment. Since 

structural stiffness changed with the member states of inelasticity, 

calculations advanced in a step-by-step manner in the time domain for 

a series of 1 inear systems with changing stiffness properties. 

The basic feature of the incremental time-history analysis procedure 

is the transformation of the ordinary differential equations of motion 

into a set of incremental algebraic equations. The transformation was 

accompl ished in this study by using the expressions of Newmark (1959) 

with S = 1/6. 

The details of the numerical procedure are found in Appendix D. 

3.3 Modal Method 

In the modal method calculations referred to in Chapter 4, inelastic 

behavior was taken into consideration by using inelastic design response 

spectra to obtain the modal response quantities. For a given building, 

the spectral ordinates used were consistent with 5 percent critical viscous 

damping and a constant value of the ductility factor for all modes of 

vibrations The elastic mode shapes and frequencies were used for both 

elastic and inelastic response calculations. The total response was 

obtained by taking the sum of the absolute values of the modal quantities. 

A summary of the modal method as it was used for inelastic response 

calculations in this study is as follows: 

(1) Obtain the frequencies and mode shapes of elastic vibration 

for the given building. 

(2) Select the design response spectrum consistent with the 
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desired degree of inelastic response. The design response spectra used 

were inelastic maximum ac~eleration or yield displacement spectra. 

(3) By means of the conventional procedure for elastic systems, 

calculate the yield (maximum) forces and the yield displacements using 

the modal method in conjunction with the design response spectrum. 

(4) Multiply the yield displacements by the selected ductil ity 

factor to obtain the maximum inelastic displacements. 

3.4 Building Code Approach 

In using the quasi-static building code approach in Chapter 4, 

the base shear was calculated by mUltiplying the mass of the building 

by the spectral acceleration in the first mode of vibration. Inelastic 

behavior was taken into consideration by using inelastic response spectra 

to obtain the spectral accelerations. 

A detailed discussion of the modal method and the building code 

approach is found in Appendix B. 
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4. RESULTS OF THE ANALYSIS 

4. 1 i nt roduc t ion 

This chapter is devoted to the discussion of the results of analytical 

studies on the building designs described in Chapter 2. The results of 

time-history behavioral studies using the digital ized El Centro earthquake 

record for base motion are discussed. Calculations using modal analysis in 

conjunction with design response spectra consistent with the El Centro base 

motion are compared to the results of the time-history studies. The quasi

static building code approach for obtaining the design base shear, modified 

to expl icitly take inelastic behavior into account by use of response 

spectra, also is reviewed in i ight of the time-history calculations. 

4.2 Building Behavior Determined from Time-History Calculations 

Time-history analysis was carried out according to the methods 

described in Chapter 3. Each building design was analyzed under the 

following assumptions (shown schematically in Fig. 4.1): 

(1) Elastic - The structural members were assumed to respond in a 

1 inearly elastic manner under all displacements. 

(2) Inelastic - Yielding was assumed to occur (a) when the plastic 

moment capacities of beam members were exceeded, (b) when the reduced 

plastic moment capacities of column members were exceeded, and (c) when 

the story yield displacements of X-braced frames were exceeded. 

(3) Inelastic + PL'l - Yielding was assumed to occur, and column 

and X-braced frame stiffnesses were reduced to take geometric effects 

resulting from gravity axial loads into account. The influence of gravity 

axial loads on the response, referred to as P-delta effects in this study, 
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was physically modelled by 1 inks (false members) subjected to axial force. 

The 1 inks subjected to axial force shown in Fig. 4.1(c) depend on the 

column members or the X-braced frame for stability under lateral story 

displacement. The abbreviation p~, standing for the influence of gravity 

axial loads on the response, is used only when the inelastic + p~ analysis 

case is referred to in the text. 

For the three cases 1 isted above, it was assumed that only lateral 

loads contributed to the first order member forces. An additional 

analytical assumption was made for some of the moment frame building 

designs: 

(4) Inelastic + FEF - Yielding was assumed to occur and gravity loads 

were assumed to be present on the beam members during seismic motion. At 

the beginning of the time-history analysis, fixed end forces and moments 

were appl led as equivalent joint loads to account for gravity loads acting 

on the beam members. The gravity loads acting were calculated from a dead 

plus 20 percent gravity 1 ive loading [O.L. + O.2(L.L.)]. The abbreviation 

FEF, standing for fixed end forces and moments, is used only when the 

inelastic + FEF analysis case is referred to in the text. 

In Section 4.2.3 story shears, and in Section 4.2.4 story displacements 

and drifts, are sometimes referred to as "design" quantities. The design 

quantities were obtained from the earthquake loadings used to proportion 

the buildings in Chapter 2. 

In the following sections, the most important results of the time

history calculations are discussed. In cases where the results of the 

inelastic + p~ analysis and the inelastic + FEF analysis were nearly the 

same as those for the inelastic analysis, only the results of the 
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inelastic analysis are discussed. The detailed numerical data are 

presented in Appendix F. 

4.2.1 Overview of Results -- This section contains a brief overview 

of the significant trends observed from the time-history response calcula

tions. The intent is to famil iarize the reader with the manner in which 

the three types of buildings considered in this study (shear buildings, 

moment frames, and X-braced frames) behaved generally during the El Centro 

base motion. The structural configurations of the buildings studied are 

shown in Fig. 2.2. 

The first observations involve those structures proportioned with 

fairly uniform story shear strengths over the building heights. The 

structures in this category were the shear building designs, the moment 

frame buildings designed so that yielding was forced into the columns, 

and the X-braced building designs. For these buildings it was found that 

the first story tended to be the weak 1 ink in the seismic load resistant 

system, and as a result, inelastic deformations were concentrated in the 

base story. The upper portions of these buildings remained elastic or 

responded in only a sl ightly inelastic manner. 

By contrast, for the moment frame buildings proportioned with weak 

beams and strong columns, yielding was distributed fairly uniformly 

throughout the beams of all stories. It was found that the presence of 

gravity loads on the beam members of these buildings had a marked influence 

on the location of inelastic hinges during seismic motion. 

The story shears attracted during earthquake motion depended on the 

location and magnitude of inelastic behavior within the buildings. For 
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buildings with yielding concentrated in the bottom stories (shear buildings, 

moment frame buildings designed so that yielding was forced into the 

columns, and X-braced buildings), the inelastic analysis case shears were 

fairly uniformly distributed over the building heights and were reduced 

from the elastic analysis case shears. The reductions were largest in 

the first stories. 

Conversely, for the moment frame buildings designed with strong 

columns, the inelastic story shears observed were only sl ightly reduced 

from, and had the same distribution as, the elastic shears. The response 

of these buildings under the El Centro base motion was nearly elastic on 

an overall scale. 

When the deformations that occurred under the elastic analysis case 

were compared to the inelastic analysis case deformations for buildings 

with inelastic response concentrated in the base story (shear buildings, 

moment frame buildings designed so that yielding was forced into the 

columns, and X-braced buildings), it was observed that yielding tended to 

concentrate the deformations in the base story and reduce the deformations 

in the upper portions of the building. For the shear buildings and moment 

frame buildings designed so that yielding was forced into the columns, the 

inelastic deformations were equal to or slightly less than the deformations 

for the elastic case. The inelastic deformations of the X-braced buildings 

were often significantly larger than the elastic deformations. 

For moment frames proportioned with strong columns and weak beams, 

the elastic and inelastic deformations were for all practical purposes 

the same. 
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It is the purpose of the following four sections to evaluate in detail 

the time-history response of some low-rise steel buildings subjected to 

earthquake base motion. Particular emphasis is placed on the appl ication 

of the results to the design of low-rise buildings. 

4.2.2 Inelastic Response -- The locations where inelastic behavior 

tends to be concentrated within a structure during seismic motion, the 

magn i tude of i ne 1 ast i c response, and the capac i ty of members to res i st 

inelastic deformations are of interest to design engineers. Unfortunately, 

it is often difficult to determine how a building responds in the inelastic 

range without resorting to complicated time-history calculations. In this 

section the locations of inelastic response and the magnitudes of inelastic 

deformations of some low-rise steel buildings are determined from time

history calculations. 

On reaching their plastic moment capacities, the flexural members 

making up shear buildings and moment frame structures form inelastic 

hinges. The maximum inelastic hinge rotations and the locations of 

inelastic hinges observed during the earthquake base motion are illustrated 

in Fig. 4.2 for the buildings studied. It can be seen that the inelastic 

hinge rotations were concentrated in the first-story columns for the two

story shear buildings, Designs 2-A, 2-6 and 2-C. This might have been 

anticipated since the maximum response usually occurs in the first-story 

for shear-beam systems in the high or medium frequency ranges during 

seismic motion. 

Similarly, for moment frame Designs 2-D, 2-E and 3-A (buildings 

proportioned so that yielding was forced into the columns), the maximum 
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inelastic hinge rotations were found to be at the tops and bottoms of 

the first-story columns. 

The response of moment frame buildings designed such that yielding is 

forced into the beams is strongly influenced by gravity loads acting on 

beam members. In Fig. 4.3 bending moment diagrams for a beam element under 

gravity load and increasing lateral load are compared to those for a beam 

element subjected only to increasing lateral load. For the combined loading 

case, yielding first occurs at the end of the beam where the moments 

resulting from the two types of loading are of the same sign. On subsequent 

increase in lateral load~ yielding occurs either in the interior or the 

opposite end of the yielded beam, depending on the magnitude of the gravity 

loads and the beam moment capacity. Conversely, for the lateral load only 

case, yielding is restricted to the beam ends. 

Moment frame building Designs 2-F and 3-B were designed according to 

the strong column, weak beam philosophy. It was observed that inelastic 

response occurred in the beams of building Design 2-F (Fig. 4.2) for the 

inelastic + FEF case; no yielding occurred in any of the members of Design 

2-F for the inelastic analysis case. In this study the magnitudes of 

moments resulting from lateral loads were not large enough to cause two 

inelastic hinges to form in any of the beams at anyone time during the 

response history. For Design 3-B yielding occurred for both the' inelastic 

and inelastic + FEF analysis cases. Agai'n, most of the beam members under 

the inelastic + FEF case could have resisted more lateral load than was 

caused by the El Centro base motion. As a matter of practical interest, 

building Designs 2-F and 3-8 had a margin of reserve strength that was 

not available for the moment frame buildings proportioned so that yielding 
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was concentrated in the columns. Also, the inelastic action was more 

uniformly distributed throughout. the frames for Designs 2-F and 3-B than 

it was for the designs with yielding concentrated in the columns. 

The cumulative hinge rotations, defined as the sum of the absolute 

values of all the inelastic rotations occurring at a given hinge location 

during dynamic motion, are of interest. As can be seen from the schematic 

representation in Fig. 4~4, the ratio of the cumulative to maximum hinge 

rotation serves as an indication of the amount of inelastic load reversal 

or cyclic response that has occurred at a given hinge location. For the 

buildings considered in this study, the normal ized cumulative hinge 

rotations were small numbers, in general less than about 6, suggesting 

that .significant inelastic load reversal made up a relatively small portion 

of the total response history. The cumulative rotations, normal ized by the 

corresponding maximum hinge rotations, are presented in Appendix F (Figs. 

F.1, F.3 and F.4(b)) for the moment frame and shear building designs 

considered. 

Popov and Bertero (1973) have presented a simple formula for 

estimating the available inelastic hinge rotation capacity, eh, that an 

inelastic region of beam can develop during its critical loading after it 

has been subjected to several cycles of load reversal. The expression 

, has been developed from consideration of the results of cyclic tests on 

a number of cantilever steel beam specimens. The suggested formula is 

in which ¢ /¢ is the normal ized hinge curvature capacity selected from av p 
~ 

experimental results and ¢" is the plastic curvature used in design. 
p 
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The quantity ~ denotes the average curvature in the inelastic zone av 

during the critical loading, and ~ (= M lEI) denotes the plastic curvature p p 

of the given section. The length of the inelastic hinge, a, is estimated 

from knowledge of the shape of the moment diagram and the strain hardening 

characteristics of the material. 

In Table 4. i the maximum hinge rotations observed in the columns of 

some of the buildings considered in this study are compared to the maximum 

hinge rotation capacities calculated using Eq. (4.1). In performing the 

calculations, it was assumed that Eq. (4.1) is appl icable to 1 ightly loaded 
-,-

columns and that ~n = M lEi. In order to estimate the hinge length, it p p 

was assumed that the columns were bent in antisymmetric double curvature 

and that .the ratio of maximum end moment to the plastic moment capacity 

wa s i. i 5. A reasonable vaiue of the quantity ~ i~ was estimated to be av p 

7.5.* These numbers were selected so that conservative estimates to the 

hinge rotation capacities were obtained. It can be seen that the maximum 

inelastic hinge rotations observed during the time-history calculations 

were less than the rotation capacities in all cases. 

The inelastic behavior of X-braced buildings is measured in terms 

of story ductil ity factors calculated by dividing the maximum relative 

story displacements by the yield relative story displacements. It can be 

seen from Table 4.2 that the maximum inelastic response occurred in the 

first-story for the two- and three-story building Designs 2-G, 2-H, 3-C 

and 3-D. (In Table 4.2 a ductil ity of less than one denotes elastic 

response. ) 

* The normal ized hinge curvature capacity was estimated from the data 
recorded in Table 3 of the article by Popov and Bertero. 
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For the low-rise buildings studied, the following observations about 

the locations of inelastic response and the magnitudes of inelastic 

deformations can be made: 

(1) The maximum inelastic response was concentrated in the base story 

for all designs except moment frames with weak beams. Such behavior is 

thought to be typical of many types of low-rise buildings of practical 

proportions, provided the fundamental frequency of vibration is in the high 

or medium frequency range of the elastic response spectra. 

(2) For moment frames proportioned such that yielding was forced into 

the beams, yielding was spread throughout the buildings in a fairly uniform 

manner and gravity loads acting on beam members had an important influence 

on the locations of inelastic regions within the structures. 

(3) The inelastic hinge rotations observed for the shear buildings 

and the moment frame buildings with inelastic deformations concentrated in 

the columns were smaller than the 1 imit capacities estimated by the 

procedure of Popov and Bertero. 

4.2.3 Sto Shear -- in proportioning a building to resist seismic --.!-----
motion, member sizes are usually selected to resist specified story shears. 

It is of interest, therefore, to. discuss the shear distributions observed 

for the building designs during the E1 Centro base motion. As would be 

expected, the shear distributions depended on the inelastic response. 

The story shears attracted by the buildings, normal ized by the total 

building weights, are shown in Fig. 4.5. The normal ized shears designated 

a slid e s i g nil rep res e n t the shea r sus ed to pro po r t ion the bu i 1 din g sin 

Chapter 2. The most notable feature of the story shear diagrams for shear 
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building Designs 2-A, 2-B and 2-C is that the distributions for the elastic 

and inelastic cases were of different shapes. Upon yielding in the base 

stories, the shear distributions became more uniform over the building 

heights. Moreover, even though the second stories responded elastically 

for the inelastic analysis case, the second-story shears were reduced from 

those observed for the elastic case. 

The behavior of moment frames proportioned so that yielding was 

concentrated in the first-story columns, Designs 2-D, 2-E and 3-A, was 

similar to that observed for the shear buildings. 

Conversely, even though yielding occurred in the beam members of moment 

frame Designs 2-F and 3-8, the story shears for the inelastic + FEF analysis 

case were not significantly different than the elastic values. On an overall 

scale the response of these frames was nearly elastic. 

For X-braced building Designs 2-G, 2-H, 3-C and 3-D, the inelastic 

story shears were much smaller than the elastic shears. The inelastic shear 

distributions were relatively uniform over the building heights and; in fact, 

for Designs 2-G, 3-C and 3-D both the first and second stories reached their 

yield capacities. The behavior in yielding was, of course, similar to the 

other designs with inelastic response concentrated in the first story. 

The story shears for the yieldfng buildings plotted in the figure can 

be compared to the design values. It is clear that the shear buildings 

and the moment frame buildings had base shear capacities far exceeding the 

design values. Of course, this was to be expected since some of the members 

in many of these designs were stressed below the AISC (1969) allowable 

values, and an effort was made to use common section sizes throughout. 

In addition, during the earthquake motion the instantaneous live load was 
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assumed to be less than the design 1 ive load. For these buildings member 

strength that was assumed to be needed to resist gravity load in design 

wa s , i n fa c t, a va i 1 a b 1 e tor e sis t 1 ate r all oa d . 

On the other hand, only lateral load contributes to the first order 

stresses in X-braced frames, and the nature of X-bracing members is such 

that they can be sized close to the intended design strengths. Therefore, 

the story shears for the X-braced frames were near the design values. 

From these studies on some two- and three-story steel buildings, 

the fol lowing observations about the story shear distributions during the 

El Centro base motion can be made: 

(1) The inelastic story shear response for shear building, moment 

frame, and X-braced building designs was similar when yielding was 

concentrated in the first story in that the distribution of the story 

shears over the building heights tended to become fairly uniform. As a 

result, the elastic and inelastic story shear distributions were not of 

the same sha pe. 

(2) Moment frame buildings designed so that yielding was forced into 

the beams tended to have larger story shear capacities than moment frames 

designed so that yielding was concentrated in the columns. (For low-rise 

moment frames it is often difficult to force yielding into the beams 

without using artifical1y large column sizes.) The response of the 

moment frames with strong columns and weak beams was nearly elastic. 

(3) X-braced frames, because of their lack of redundancy and the 

dependence of their member sizing on lateral load only, can be proportioned 

such that their base shear capacities are close to the intended design 

shears. 
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4.2.4 Displacement and Drift -- The designer endeavors to proportion 

a building so that deformations during seismic motion are not excessive. 

In general, the deformations that occur if the structure remains elastic 

during the design earthquake can be estimated using simple analytical 

procedures. Conversely, it is often difficult to obtain estimates of the 

deformations that occur if the structure responds inelastically. It is 

the purpose of this section to compare the inelastic deformations of some 

low-rise steel buildings to the elastic deformations. The inelastic 

deformations are also compared to the deformations under the design loading. 

The maximum lateral story displacements relative to the ground observed 

during the El Centro base motion are shown in Fig. 4.6 for the building 

designs studied. Story drifts, defined as the maximum lateral deflections 

between consecutive floors divided by the corresponding story heights, are 

also presented in Fig. 4.6. The two types of plots illustrate sl ightly 

different information since the maximum displacements and drifts did not 

necessarily occur at the same instant during the time-history calculations. 

The displacements and drifts designated as "design" represent the deformations 

calculated under the full earthquake loading (i.e., not including the 0.75 

load reduction factor) used for the design of the buildings in Chapter 2. 

It can be seen that the maximum deformations occurred in the first 

stories for the two-story shear building Designs 2-A, 2-8 and 2-C. The 

inelastic analysis case deformations were less than those for th~ elastic 

analysis case, particularly in the second stories. 

For moment frame Designs 2-D, 2-E and 3-A, once yielding occurred in 

the first-story columns, the deformations in the upper stories were reduced 

from those observed for the elastic case. The first-story deformations 
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were about the same magnitude for the elastic and inelastic analysis 

assumptions. The deformed shapes of these designs were similar to those 

for the shear building designs described above, especially after yielding 

occurred. 

By contrast, the behavior of moment frame building Designs 2-F and 

3-8 was such that the upper portions of the buildings were more flexible 

than the first story. For these buildings yielding was concentrated in 

the beams, and the deformed shapes on yielding were similar to the elastic 

analysis case deformed shapes. The deformed shapes observed for these 

buildings indicated that the lack of significant (shear reducing) yielding 

in the first stories permitted forces to be carried up the building frames. 

The response of the X-braced buildings, Designs 2-G, 2-H, 3-C and 3-D, 

was similar to that for the shear buildings under the elastic analysis 

assumption. However, on yielding, especially for the lower strength 

Designs 2-G and 3-C, the first-story deformations were greater than the 

elastic deformations. As before, when yielding was concentrated in the 

first story the drifts in the upper portions of the structures were reduced. 

For seismic design purposes it is often assumed that the maximum 

displacements are the same whether the system responds elastically or in 

an inelastic manner. Exhaustive studies on single-degree-of-freedom 

oscillators with various types of resistances have indicated that this 

assumption may be conservative, unconservative, or approximately correct, 

depending on the frequency of vibration and the nature of the resistance 

function. 

The elastic displacements serve as sl ightly conservative approximations 

of the inelastic displacements for the shear buildings, and as reasonable 
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approximations for the moment frame buildings. However, when inelastic 

deformations were largest in the first stories, the elastic and inelastic 

deformed shapes were of different form. Yielding in the base story 

concentrated the response in the base story and reduced the response in 

the upper portions of the building. 

On the other hand, the elastic displacements serve as unconservative 

estimates of the inelastic displacements for X-braced buildings. This 

might have been anticipated since there can be times during the response 

history when X-braces, as modelled in this study, offer no resistance to 

deformation. 

A comparison between the maximum inelastic and the design story drifts 

is given .in Table 4.3. It can be seen that the inelastic drifts during 

earthquake motion were from about 4 to 10 times the design values. The 

inelastic drifts of the lower strength X-braced frame Designs 2-G and 3-C 

and the relatively weak shear building Design 2-C are over 2 percent; the 

inelastic drifts for all other designs are under 1.5 percent. The maximum 

inelastic drift occurred in the first story for all designs except moment 

frame Designs 2-F and 3-B; frames 2-F and 3-B were proportioned so that 

yielding was forced into the beams. 

The following observations regirding deformation response can be 

made from the results of the studies on the low-rise buildings considered 

in this investigation: 

(1) The elastic and inelastic displacements and drifts were on the 

same order of magnitude for the shear building and moment frame building 

designs. This could have been anticipated from the results of studies on 

single-degree~of~freedom elastoplastic systems in the frequency ranges of 
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the fundamental frequencies of these buildings. 

(2) For X-braced buildings, particularly for low base shear capacities~ 

inelastic deformations were larger than elastic deformations. The reduced 

hysteretic energy absorptive capacity of X-braced frames on load reversal 

is bel ieved to be responsible for this trend. In order to avoid the 

possibil ity of excessive deformations during seismic excitation, it is 

recommended that X-braced frames be proportioned in a conservative manner. 

(3) When yielding occurred in the bottom story of a building, the 

deformation response was concentrated in the first story and the response 

in the upper portions of the building was reduced. For buildings with this 

type of response, the first story was the critical 1 ink of the seismic load 

resistant system. 

4.2.5 P-delta Effects -- The influence of P-delta effects (gravity 

axial load effects) on the response of low-rise buildings is generally 

believed to be of ~econdary importance. Nevertheless, under some 

circumstances P-delta loads can modify dynamic behavior. It is the purpose 

of this section to evaluate the influence of P-delta effects on the response 

of the buildings considered in this study. 

The differences between the first story displacements under the 

inelastic and the inelastic + P6 analysis cases are tabulated in Table 4.4 

for the buildings considered. Displacements were for the most part 

increased by P-delta forces, but the increases were in general small. 

The influence of P-delta forces tended to be most important for 

flexible buildings or buildings of low base shear resistances. For 

example, shear building Design 2-C was much more flexible and of smaller 

first story shear capacity than was Destgn 2-A. The increase in displacement 
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due to P~delta loads was 18.9 percent for Design 2-C, but the increase 

was only 0.1 percent for Design 2-A. The same trends apply when moment 

frame Design 2-E is compared to Design 2-D and when X-braced frame Design 

2-G is compared to Design 2-H. (The base shear resistances of the buildings 

can be assessed from the plots of Fig. 4.5 for the inelastic analysis case.) 

These studies suggest that P-delta effects can be ignored for well

designed low-rise buildings of reasonably high strengths and stiffnesses. 

4.3 Modal Method and Building Code Calculations 

The intent of this section is to evaluate the use of less compl icated 

procedures for estimating the response of low-rise buildings to earthquakes. 

The less complicated procedures considered are (a) the modal method used 

in conjunction with inelastic response spectra and (b) the quasi-static 

building code approach modified to expl icitly take inelastic behavior into 

account. The response quantities obtained using these procedures are 

compared to the response quantities calculated using the time-history 

method of analysis. 

In order to facil itate comparisons between the less compl icated methods 

of analysis and time-history analysis, the response spectra used for the 

modal method and building code calculations were consistent with the 

largest story ductility observed for the given building from the time~ 

history analysis. The techniques used to estimate ductil ity factors for 

the different types of buildings considered are discussed in Section 

4.3.1. 

Elastoplastic response spectra were used for the modal method and 

building code calculations pertaining to shear buildings and moment frames. 

For X-braced frames modified inelastic response spectra were developed 



43 

using the techniques discussed in Section 4.3.1. 

The results of the modal method and building code calculations are 

presented in Section 4.3.2.* 

4.3.1 Story Shear-Deformation Relationships -- The response spectra 

that are generally available for use in design calculations have been 

derived from consideration of the dynamic response of elastoplastic systems 

and therefore strictly apply only to buildings with elastoplastic story 

shear-deformation relationships. For the designs considered, the story 

shear-deformation relationships were not purely elastoplastic by virtue of 

the different yielding mechanisms involved during deformation. Consequently, 

it was necessary to estimate equivalent elastoplastic story ductil ity 

factors or to modify the elastoplastic design response spectra for use in 

spectral calculations. The procedures used to estimate ductil ities and to 

modify the elastoplastic response spectra are described in the following 

paragraphs. 

The story ductility factors for the buildings were calculated using 

the expression 

u m 
u 

y 

f ,. ") \ 
\"1.L..! 

in which u is the maximum relative story displacement and u is the story 
m y 

yield displacement. 

* The modal properties for the building designs studied are tabulated in 
Appendix A (Tables A.3 and A.4), and the elastoplastic response spectra 
used for calculations are shown in Fig. 2.1 (b). The details of the 
modal analysis and the quasi-static building code procedures are 
discussed in Chapter 3. 
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Story Yield Displacements. Under the assumptions made in this 

study, the shear-deformation relationships for the individual column 

members in the shear buildings were elastoplastic. However, the story 

shear-deformation relationships were not in general elastoplastic since 

the individual columns of a story sometimes yielded at different levels 

of deformation. The yield displacement of a column can be calculated 

using the expression 

u 
y 

M h
2 

pc 
6EI 

(4.3) 

in which the symbol h denotes the story height. Equation (4.3) follows 

from consideration of the slope-deflection equations for a flexural 

member of momen~ capacity M under relative end displacement with no pc 

end rotation (fixed-fixed case). The equivalent elastoplastic story 

ductil ity can be calculated using Eq. (4.2) under the assumption that 

the story yield displacement is equal to the average of the yield 

displacements calculated for all columns in a story. 

The shear-deformation relationship for a story in a moment frame 

building in which yielding at the top and bottom of all column occurs 

can be represented graphically by the sol id 1 ine curve in Fig. 4.7. 

Point lIa ll represents the story shear at which the first column in the 

story n~aches its moment capac i ty, and po i nt "bi! represents the shear 

at which all columns in the story have formed inelastic hinges at 

their tops and bottoms. Unfortunately, the initial story stiffness, 

k, and the shape of the resistance curve between points lIa" and "bll 

cannot be determined easily. However, a reasonable estimate of k can 
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be made by dividing the story shear by the relative story displacement 

under lateral loading proportional to the first mode shape. 

In order to use Eq. (4.2) to estimate the equivalent elastoplastic 

story ductil ity, some estimate of the yield displacement must be made. 

The following three approximate procedures gave quite similar estimates 

of the yield displacements for building Designs 2-D, 2-E and 3-A: 

(1) Extrapolate the initial resistance curve Iloa ll linearly to a 

horizontal 1 ine drawn at the ordinate representing the maximum story 

shear, Q, and use the displacement corresponding to point IIC" as the 

yield value. 

(2) Equate the areas under the estimated curve "oab" and an 

equivalent elastoplastic curve "odb ll
, and use the displacement corresponding 

to point "d ll as the yield value. 

(3) With knowledge of the inelastic hinge rotations occurring in zones 

of inela~tic response, sum the energy dissipated by inelastic hinge ,rotation, 

M a, over all the columns in a story. By equating this energy to the 
pc m 

inelastic energy dissipated by an equivalent elastoplastic oscillator, 

Q(u - u ), one obtains 
m y 

u = u -
y m 

LM a pc m 
Q 

as an expression for the yield displacement. 

(I, I, \ 
'''"To') 

The symbol a in Eq. (4.4) 
m 

denotes the maximum inelastic (plastic) hinge r'otation. 

In establ ishing the yield displacements for building Designs 2-D, 

2-E and 3-A, preference was given to the third approach. 

The problem of obtaining estimates of the story shear-deformation 

reiationships for moment frames with yielding beams is difficult. Because 

building Designs 2-F and 3-B considered in this study responded to the 
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El Centro base motion in a nearly elastic manner, the problem was not 

specifically addressed in this report. 

The lateral yield displacement of a story in an X~braced frame with 

bracing in one bay can be calculated in a straightforward manner using 

the expression 

F Lb L 
u =..L!? (---E.) 

y E L 
(4.5) 

in which the symbols Lb and L represent the brace length and the 

horizontal projection of the brace length. Equation (4.5) follows from 

consideration of the elongation of a tension brace as it resists lateral 

story deflection. Once the story yield displacement is obtained, Eq. (4.2) 

can be used to calculate the story ductility factor. 

For reference purposes, the first-story yie1d displacements obtained 

using the procedures described in this section are presented in Table 4.5 

for some of the building designs. 

X-braced Frame Response Spectra. The displacements of X-braced 

buildings during seismic motion, because of the reduced hysteretic energy 

absorptive capacity of X-braced frames, are usually more than those 

for an associated elastoplastic building of the same elastic stiffnesses 

and initial yield strengths. Consequently, elastoplastic spectra could 

not be used for spectral calculations pertaining to X-braced buildings. 

In this study modified design response spectra were constructed for 

single-degree-of-freedom oscillators having force-deformation relationships 

of the type described previously for X-braced frames. The spectra shown 

in Fig. 4.8 give (approximately) the initial story yield displacement 
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required to 1 imit the maximum deformation of an oscillator to a specified 

ductility. 

The yield level design response spectra were constructed from the 

design spectrum for elastic systems in the following manner (see Fig. 4.8). 

1 
Yield Level } lElastic spectral] 

1 
Mu 1 tip 1 i ca t ion I Spectral Ordinate = Ordinate at x 

at Control Point Control Point Factor 

a l a 1/11 

b l b 1/11 

c l c 2/11 

d l d l/~ 

The construction procedure is illustrated in Fig.4.8 for the case where 

11 = 4. 

The yield level spectra constructed for X-braced systems are in 

accordance with the design rules proposed by Veletsos (1969) in the low 

and medium frequency ranges of the elastic design response spectrum. 

Insufficient data are available at present (1977) to determine the shape 

of the yield level spectra in the high frequency range. As a result, 

in the high frequency range the yield level spectra for X-braced systems 

shown in Fig. 4.8 are at best approximate. Bazan and Rosenblueth (1974) 

and Sun ~~. (1973) have proposed sl ightly different procedures for 

estimating the response of X-braced single-degree-of-freedom systems. 

4.3.2 Results of Modal Method and Building Code Calculations --

The response quantities obtained using the modal method of analysis are 

presented in Table 4.6 and the base shears obtained using the building 

code procedure are tabulated in Table 4.7. The response quantities 

from the modal method and the building code calculations are normal ized 
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by the corresponding time-history response quantities. The ductil ities 

given in the tables were calculated using the procedures described in 

Section 4.3.1. It was found that the maximum ductil ity factors were 

attained in the base stories for all buildings except Designs 2-F and 3-B. 

Therefore, the ductil ities tabulated are consistent with the first-story 

deformations observed during time-history calculations. For convenience 

the ductilities were rounded off to even multiples. Since the time-history 

response of Designs 2-A, 2-F and 3-8 was for all practical purposes elastic, 

only elastic quantities are presented in the tables for these buildings. 

The agreement between modal and time-history analysis for the elastic 

case, Table 4.6(a), was very good for all building designs. The modal 

response -values were never more than 30 percent over or 13 percent under 

the time-history values. 

The results of inelastic modal calculations are compared to those 

from time-history analysis (inelastic analysis case) in Table 4.6(b). 

For the shear building Designs 2-8 and 2-C, the moment frame Designs 2-D, 

2-E and 3-A, and the lower strength X-braced building Designs 2-G and 3-C, 

reasonable estimates of the first-story displacements and shears were 

obtained using the modal method of analysis. In general, in the upper 

portions of the buildings the story shears were underestimated and the 

displacements were overestimated. The modal method gave response 

quantities that were almost always larger than the time-history response 

quantities for the higher strength X-braced frame Designs 2-H and 3-D. 

(It is 1 ikely that the procedure used to obtain design response spectra 

for X-braced buildings tends to be conservative for systems with 

relatively high base shear strengths.) 
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The fact that the response in the upper portions of the buildings 

was not well predicted by the modal method might have been anticipated. 

In using the modal method, it was tacitly assumed that the elastic and 

inelastic deformed shapes were of the same form and that the elastic and 

inelastic story shear distributions were of the same form. However, 

inelastic behavior was concentrated in the first stories for these 

designs, and this caused the inelastic deformed shapes and shear 

distributions to differ from those for the elastic case. 

It can be seen from Table 4.7(a) that the building code approach 

provided good estimates of the elastic base shears. The shears were 

never more than 27 percent over or 15 percent under the time-history 

values. The building code approach gave values which were almost 

identical to the modal analysis first-story shears, but with much less 

computational effort (compare Table 4.7(a) to Table 4.6(a), "first-story 

The building code approach, as can be seen from Table 4.7(b), also 

gave reasonable estimates of the inelastic base shears. Again, the base 

shears obtained using the building code approach were nearly the same as 

those obtained using the modal method. 

Example. As an example of the procedure used to obtain 

the entries to Tables 4.6(b) and 4.7(b), consider the 

following calculations for moment frame Design 2-D. 

The first step in the procedure is to estimate the 

first-story ductil ity factor from the results of the 

time-history analysis for the inelastic case by means of 

Eqs. (4.2) and (4.4). The reduced plastic moment 

capacities of the columns are calculated using the 

expression 
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M = 1.18[1 - L J M < M pc p p - p 
y 

Thus, for the exterior base columns 

Mpc = J. J 8 (J - 4~2~~ ) 26 J 0 in. k .. = 28 J 0 in. k < 26 J 0 in. k 

and for the interior base columns 

MpC = J. J8(1 - 9~2~~ ) 26J 0 in.k = 2540 in.k < 2610 in.k 

The base story shear capacity is found by assuming all columns 

in the story (bent in double curvature) develop hinges at 

their tops and bottoms. By summation of moments 

Q = 2 x 2610 in. k + 2 x 2540 in. k + 2 x 2540 in. k + 2 x 2610 in .. k 
144 in. 144 in. 144 in. 144 in. 

, = 143k 

The maximum inelastic hinge rotations obtained from Fig. 4.2(b) 

are 

exterior base column 

a = 22.2 x 10-5 rad, top 
m 

a = 538 x 10-5 rad, bottom 
m 

interior base column 

a = 318 x 10- 5 rad, top 
m 

a = 551 x 10-5 rad, bottom 
m 

The maximum first-story displacement for the inelastic analysis 

case from Table F.4 or Fig. 4.6 is u = 1.54 in. The first-
m 

erA,.." ":,,.,.lrf 
oJ ... "" r riO;;;; B \..I displacement estimated by means of Eq. (4.4) IS 

4 2[(22.2+538)2610 in.k+ (318+551)2540 in.k]xl0- 5 
uy = 1.5 in. - 143k 

The elastoplastic first-story ductil ity can finally be obtained 

using Eq. (4.2) 

11 = 1.54 in. / 1 .0 in. = 1.54, use 1.5 

The next step is to obtain the quantities used for the 

modal method calculations. From Table A.l, the total weight 
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of the building is W=276.5 k and the masses of the first 

and second stories are m1 =0.477 k-.sec2/in. and m2 == 0.239 

k~sec2/in. The elastic frequencies of vibration obtained 

from Table A.3(a) are 

1.99 cps 

4.92 cps 

W1 == 2'ITfl 

w = 2'ITf2 2 

= 12.5 rad/sec 

30.9 rad/sec 

The spectral yield dispiacements and accelerations obta i ned 

from Fig. 2.1 (b) for the 11 == 1 .5 case are 

D1 1 .32 in. Al 206 in./sec 2 
== = 

D2 0.237 in. A2 = 226 in./sec 2 

The inelastic response quantities can be estimated by 

means of the modal method using the fol lowing procedure. 

(The elastic mode shapes used are obtained from Table A.4(a).) 

Story Number, i 

(a) mode shapes, ¢~n) 
(1) I 

(2) 

o 

0.714 
0.286 

. rv (n) 
accelerations, ¢.. A 

~~--~----- j n 
( b) modal . / 2 , In. sec 

(1) 
(2) 

147 
64.6 

(c) modal 
rv (n) 

forces, ¢. m. A ,k 
I I n (1) 

(2) 

(d) modal story shears, k ---'-ro 
(2) 

N 
~ I (modal story shear$)n l 

n=l 

135 
13.9 

149 

70. 1 
30.8 

~~.d_a_l--L-y_i, --..e.--..l d_d_i_s..!-p_l a_c_e_m_e_n_t s, ¢ ~ n) D ,i n . 
. I n 

(1) 0.942 
N (2) 0.067! 

L I¢~n) D I 
n=l I n 

(f) 

1 .01 

N I (n) I 
maximum displacements, Pn~l ~i DIn) , in. 

1. 52 

h.l.J. ~ 
....., I G J 

-16.9 

81.4 

2 

1 .312 
-0.312 

270 
-70.·5 

64.5 
-16.9 

1 .73 
-0.0739 

1 .80 

2.70 
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Also, the base shear can be estimated using the quasi

static building code approach. The building code base shear . N 
is calculated from the expression Al .L

l 
m. where N is the ,= I 

number of stories. 

code base shear = (206 in./sec2)(0.477k ... sec2/in. + 0.239 k-sec2/in~) 
= 147'k 

If the response quantities calculated above are normal ized 

by the corresponding time-history response quantities from 

Table F.4 or Figs. 4.5 and 4.6 for the inelastic analysis case, 

the entries to Tables 4.6(b) and 4.7(b) for Design 2-D are 

obtained. 

From the studies recorded in this report on some low-rise steel 

buildings, the following observations can be made pertaining to the use of 

the modal method and the quasi-static building code procedure to predict 

response quantities: 

(1) The modal method used in conjunction with inelastic design 

spectra gave reasonable estimates of the inelastic forces and displacements 

during seismic motion. However, inaccuracies arose because the elastic 

mode shapes and frequencies used in calculations sometimes did not 

represent well the actual inelastic response. Also, it was difficult to 

apply the technique when story shear-deformation relationships could not 

be easily defined. 

(2) The quasi-static building code method used together with 

inelastic response spectra provided a simple and reasonably accurate 

procedure for estimating the base shears of low-rise buildings. 

(3) For buildings in which yielding was most extensive in the 

bottom story, it was found that the ductility used in inelastic spectral 
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calculations should correspond to the first story ductil ity of the building. 

(4) Both the modal method and the building code approach gave good 

estimates of the elastic response quantities. 
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5. DESIGN APPLICATIONS 

5. 1 I n trod u c t ion 

The intent of this chapter is to review the results of the studies 

made as a part of this investigation in the light of practical applications 

to the design of 10w~rise steel buildings. To this end the behavior of 

the low-rise buildings considered in this study when sUbjected to the El 

Centro base motion, and the behavior of simple spring-mass systems subjected 

to base excitation are briefly reviewed in Section 5.2. The studies on 

buildings were 1 imited to planar two- and three-story structures sUbjected 

to one component of ground motion. In Section 5.3 the three procedures 

that were used in this study for seismic analysis are evaluated. In Section 

5.4 a procedure for obtaining seismic deformations and seismic design forces 

is described. Finally, in Section 5.5 several comments concerning factors 

that should be considered in the design of low-rise steel buildings are made. 

5.2 Behavior of Low-Rise Buildings and Simple Systems 

The studies recorded in this report were directed in part 

towards determining the behavior of low-rise steel buildings subjected to 

seismic ground motion. This section serves to summarize some of the more 

important findings of the time-history studies presented in Appendix E on 

simple elastoplastic shear-beam (spring-mass) systems and studies 

presented in Chapter 4 on low-rise steel shear buildings, moment frames, 

and X-braced frames. 

Simple Systems. From studies on simple shear-beam (spring-mass) 

systems with proportions comparable to low-rise buildings, it appears 

that in the frequency ranges of interest the maximum response will usually 
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occur in the base story. This suggests developing a design criteria, at 

least for certain types of low-rise buildings, which assumes the base 

story is the critical 1 ink in the seismic load resisting system. 

Shear Buildings. The response of buildings with very stiff and strong 

girders (shear buildings) was similar to the response of simple systems in 

that the base story was the critical 1 ink in the seismic load resisting 

system. When the shear buildings considered in this study were subjected 

to the El Centro base motion, zones of inelastic response formed only in 

the base story columns. The deformations calculated for 1 inearly elastic 

response were on the same order of magnitude as the deformations obtained 

from inelastic response calculations . 

. Moment Frame Buildings. Moment frame buildings can be proportioned 

for two different types of behavior: the inelastic response can be forced 

into the beams or it can be forced into the columns. For the moment frame 

buildings considered that were proportioned so yielding occurred in the 

columns, the inelastic response was similar to the response of shear 

buildings; that is, zones of inelastic response generally formed at the 

tops and bottoms of the base story columns. For one of the buildings 

considered, zones of inelastic response also formed at the bottoms of the 

second-story columns, but the m~gnitudes of the inelastic rotations were 

small when compared to the inelastic rotations occurring in the base 

story columns. 

For the moment frame buildings designed so inelastic response was 

forced into the beams, inelastic hinges were generally uniformly distributed 

throughout the beams of all stories. The buildings proportioned with weak 

beams and strong columns had an apparent margin of reserve strength that 
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the buildings proportioned so that yielding was concentrated in the columns 

did not have. On an overall scale the weak beam, strong column moment 

frames considered responded in a nearly elastic manner to the El Centro 

base motion. 

In proportioning low-rise steel moment frame buildings in the manner 

prescribed in modern building codes and specifications, it wi 11 often be 

found that yielding will be confined to the columns during seismic base 

motion. In order to force yielding into the beams and still satisfy the 

code and specification requirements for gravity loads acting on beam 

members, it often will be necessary to arbitrarily increase the sizes of 

column sections above the sizes required on the basis of stress 

calculations. 

For the moment frame buildings, the deformations obtained from 

elastic response calculations were on the same order of magnitude as the 

deformations obtained from inelastic response calculations. 

X-braced Buildings. When the X-braced buildings considered were 

subjected to base motion, the largest inelastic deformations occurred in 

the bottom story. For some of the buildings considered, a relatively small 

amount of yielding also occurred in the second-story bracing members. 

The deformations obtained from inel~stic response calculations were 

usually larger than the deformations obtained from elastic response 

calculations. Further, the inelastic deformations were often excessive 

due to the low hysteretic energy absorptive capacity of the X-braced 

frames employed in this study. 

In order to avoid excessive deformations during seismic motion, 

it is recommended that X-braced buildings be designed with relatively 
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high base shear coefficients, V/W. For example, the X-braced buildings 

considered in this study behaved well when subjected to the El Centro 

base motion provided the base shear coefficient was about 25 percent. 

Obviously, if the compression bracing could resist some of the lateral 

force, or secondary structural systems could be counted on to provide 

lateral resistance, the coefficient could be reduced somewhat. 

Comments. Except in the case of moment frame buildings designed 

so that the inelastic response was forced into the beams, the maximum 

inelastic response of all buildings occurred in the base story. Thus, 

for many of the buildings the base story was the critical 1 ink in the 

seismic load resisting system. The relationship between the maximum 

deformations obtained from inelastic response calculations and the 

deformations obtained from elastic response calculations varied with 

the building type. However, in most cases the relationship between 

elastic and inelastic deformations for a building could have been 

anticipated from consideration of the corresponding relationship for a 

single-degree-of-freedom system responding with the same frequency as 

the fundamental frequency of the building. 

5.3 Discussion of the Methods of Analysis Used 

A major objective of this study was to evaluate the use of some 

of the different analytical techniques available for determining the 

deformations and forces in buildings during earthquakes. The three 

methods considered in this study were, in order of the most to the 

least complex, time-history analysis, the modal method used in 

conjunction with inelastic response spectra, and the quasi-static 
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building code approach modified to expl icitly take inelastic behavior 

into account. 

Time-History Analysis. Time-history analysis is, in general, the 

procedure that allows the analyst to obtain the most detailed information 

about the inelastic response of buildings during a particular seismic 

ground motion. Unfortunately, time-history calculations are too tedious, 

complicated, and time consuming to be justified for use in the design of 

any but very special or unusual low-rise buildings. The time-history 

method of analysis has the added disadvantage that a large number of 

earthquake base motions should be used for calculations to at least 

partially take account of the statistical nature of earthquake ground 

motion. 

Modal Method. The modal method used in conjunction with inelastic 

response spectra can be employed to obtain estimates to the inelastic 

response of buildings. Provided a certain amount of judgment is used, 

and the response characteristics of the type of the building under study 

are considered, reasonably good estimates of response quantities can be 

obtained. The use of the modal method is thought to be particularly 

appropriate for systems responding with small inelastic deformations 

(low ductilities). 

Building Code Approach. The simplest procedure, and the procedure 

that is most famil iar to design engineers, is the quasi-static building 

code approach. In using the building code approach, the design base 

shear is estimated by multiplying the mass of the building times the 

inelastic response spectrum ordinate in the f1rst mode of vibration. 

This procedure seems to be particularly appropriate for structures in 
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the high and medium frequency ranges of the elastic design response 

spectrum, provided response is primarily in the first mode. Therefore, 

the procedure is suited to low-rise buildings. Once the base shear is 

estimated, the distribution of forces over the building and the deforma-

tions under the forces can be estimated by procedures similar to those 

recommended in modern building codes (NBC, 1975; SEAOC, 1975; UBC, 1976; 

ATC, 1977). 

Comments. The quasi-static building code procedure is thought to be 

the most appropriate procedure for use in the design of the majority of 

low-rise steel buildings. In using the procedure, it is tacitly assumed 

that the response of a building is similar to the response of a single-

degree-of-freedom system subjected to the same design base motion and 

having a resistance system similar to the building under construction. 

For many of the buildings considered in this study, the first story was 

the critical link in the seismic load resisting system. Consequently, 

the first story ductil ity was the appropriate ductil ity for use in 

spectral calculations. 

5.4 Recommended Desig~ Procedure 

The purpose of this section is to formulate simple recommendations 

which can be appl ied by engineers to the design of low-rise buildings. 

The inte~t is to formulate a quasi-static procedure that is famil iar to 

design engineers~ but thatexplicitly takes inelastic behavior into 

account. In the following section a quasi-static design procedure 

that is in principle similar to the ATC (1977) approach is described. 

The appl ication of the procedure to low-rise buildings of the types 

considered in this study is discussed. 
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Procedure. The suggested design procedure for a regular low-rise 

building may be summarized as follows: 

(1) Construct yield design response spectra for different levels of 

elastic and inelastic response that are consistent with the earthquake 

hazard and building type. It is recommended that design response spectra 

for elastoplastic systems (see for example Newmark and Hall, 1973 and 

1976) be used for moment frame buildings with yielding concentrated in 

the columns and shear buildings. 

At present (1977) simple rules for developing design response spectra 

for X-braced systems are not available; however, the recommendations of 

Veletsos (1969), Sun ~~. (1973) or Bazan and Rosenblueth (1974) can be 

used, at· least in some frequency ranges, to establ ish the general shape 

of the design response spectra (see also Section 4.3.1). Also, accepted 

procedures are not available at present for constructing design response 

spectra that are applicable to moment frame buildings with inelastic 

response occurring in the beams. 

(2) Estimate the fundamental frequency of vibration and obtain 

the design base shear using the quasi-static building code approach. 

The base shear is obtained by multiplying the mass of the building times 

the response spectrum ordinate in the first mode of vibration. The 

design spectrum used should be consistent with the degree of inelastic 

response or duct!l ity desired. 

(3) Obtain the lateral yield forces by assuming some distribution 

of the base shear over the height of the building, and proportion the 

bui1ding to resist the yield lateral forces. 
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In calculating the lateral yield forces, it is recommended that a 

triangular distribution of acceleration in the structure from zero at the 

base to a maximum at the top (as recommended by current building codes), 

or a distribution of acceleration proportional to the first mode shape be 

used. The inertial forces associated with the assumed distribution of 

acceleration are the lateral yield forces. The assumed value of accelera-

tion at the top of the structure is adjusted so that the total distributed 

lateral forces add up to the design base shear. 

(4) Obtain the yield displacements. The yield displacements are the 

displacements that occur when the design (yield) lateral forces are appl ied 

to the structure and the structure responds in a 1 inear]y elastic manner . 

. (5) MUltiply the yield (elastic) displacements by the selected 

ductil ity factor to obtain the estimated maximum displacements. 

(6) Estimate the actual base shear capacity of the building now 

proportioned.;', and estimate the actual fundamental frequency of vibration, 

.for example by means of Rayleigh's method. The base shear capacity and 

fundamental frequency of vibration should be commensurate with the values 

assumed above for design. 

(7) Determine whether or not the building can accommodate the maximum 

displacements associated with the design base motion while maintaining its 

strength and without being subjected to undue structural or nonstructural 

damage. If the building cannot accommodate the maximum displacements, 

return to Step (1). 

* For low-rise steel moment frame buildings, the base shear capacity can 
usually be assessed in a straightforward manner by consideration of the 
possible plastic collapse mechanisms that can occur as the static lateral 
load is increased. 
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Example. As an example of the design procedure,·consider the 

following calculations for moment frame Design 2-D. The 

structural configuration for Design 2-D is shown in Fig. 2.2(b). 

(1) The elastoplastic design response spectra shown in 

Fig. 2.1 (b) are used for calculations. 

(2) The estimated fundamental frequency, fl' and the 

selected design ductil ity, ~, are 

fl 1.99 cps 

~ = 1.5 

(In this case the actual value of the fundamental frequency 

is known from previous calculations, see Fig. 2.2(b).) The 

spectral yield acceleration is obtained from the design 

response spectrum for ~ = 1.5. Thus 

Al = 206 in./sec2 

Finally, the design base shear is calculated using the expression 

N 
V = Al .L l m. in which the masses of the first and second 

1= J 

stories obtained from Table A.l are m
1 

= 0.477 k-sec
2
/1n. and 

m2 = 0.239 k""sec
2

/ in., and N is the number of stor i es 0 Thus 

V (206 in./sec2) (0.477 k-sec 2/in. + 0.239 k-sec 2/in.) 

= 147 k 

(3) The lateral yield forces are obtained by assuming a 

triangular distribution of acceleration over the building height. 

From the calculations presented in Table A.l, 

= 73 .. 5 k 

73.5 k 

The members can now be proportioned to resist the ultimate 

loading. In most instances it can be assumed that the ultimate 

loading is made up of the yield lateral forces, the dead load, 

and the portion of the gravity live load judged to be present 

during earthquake excitation. (In many cases it will not be 

necessary to proportion the building in this step since 
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prel iminary member sizes already will have been selected on 

the basis of gravity or gravity plus wind loadings.) It will 

be assumed without checking that Design 2-D is proportioned 

adequately. 

(4) The yield displacements are calculated. 

{Vl} = fO·639 0.770 x 10-2 in. {Fl} k = {1.04.} 
'v2 ~.771 1.85j T F2 1.93 

yield 
flexibil ity matrix 

in. 

(5) The maximum displacements are calculated. 

{ 
1. 56} . 

in. 
2.90 

(6) The actual base shear capacity, Q, of the building 

under increasing lateral load and a dead plus 20 percent 

gravity 1 ive loading is now estimated. The [D.L. + 0.2(L.L.)] 

and the moment capacities of the members are shown in the 

figure below. (The moment capacities of the base story 

columns have been calculated previously in the example 

presented in Section 4.3.2.) 

r-1.28 k/ft 
I 

(2304) Q (2304) Q (2304 ) Q 
~ ~2.56k/ft 

<D <.0 
{\J {\J ...... - "-" 

(5220) '6 (5220) 0 (5220) -v ~ 
0 

LO W 
~ {\J {\J - -.- ...... -- -""'- ~-

288 in. .1'IiI 288 in. 288 in. 

(Mp or Mpcd in. k 

Under the assumption that the distribution of lateral forces 

over the building height arises from the inertial forces 

caused by a triangular distribution of acceleration, it can 

be shown that the following two collapse mechanisms are 

among the possible mechanisms. 
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0.50~ 

0.50.....
a 
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a a 

External Work + Internal Work = 0 
(0.5Q + 0.5Q) 144 in. a - (4x2610 + 4x2540) in.ka= 0 

.: Q = 143 k 

Meehan i sm I I 

0.5Q .........-

External Work + Internal Work = 0 
(0.5Qx 144+0.5Qx288) in. a- (2x2610+2x2540 + 

+ 6 x 5220 + 6 x 2304) in. k .a = 0 

.o. Q = 257 k 

From all the possible modes of failure, Mechanism gives 

the lowest base shear capacity. Therefore 

Q = 143 k 

If it is assumed that all inelastic hinges form at the 

instant during seismic motion when the yield displacement 

of the first story is reached, the maximum inelastic hinge 

rotations can be estimated from consideration of Mechanism I. 

Thus 

a = m 
inelastic story displacement 

story'height 
= 1.56 in. - 1.04 in. = 0.00361 rad 

144 in. 

The elastic fundamental frequency of vibration can be estimated 

by means of Rayleigh 1 s method, 
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Since the elastic frequency is to be obtained, the yield 

displacements are used for calculations. Thus 

f ~ 1 J (]3.5 k) (1.04 in.) + (]3.5 k) (1.93 in.) 

1 2n (0.477 k~ec2/in.) (1.04 in.l+ (0.239 k.-sec2/in.) (1.93 in.)2 

2.0 cps 

The values of the base shear capacity and fundamental frequency 

estimated in this step are commensurate with the values assumed 

for design in Step (2). 

(7) The design for a ductil ity of 1.5 is complete provided 

the building can accommodate the maximum displacements, inelastic 

deformations, and so forth. 

The response quantities calculated in this example can be 

compared to the response quantities obtained from time-history 

analysis and the response quantities obtained from modal analysis. 

The time-history response quantities (inelastic analysis case) 

are shown in Fig. 4.2 and tabulated in Table F.4, and the modal 

analysis response quantities are calculated in the example 

presented in Section 4.3.2. 

5.5 Design Considerations 

The conventional approach to the earthquake resistant design of 

structures requires that inelastic deformations be relied upon to dissipate 

energy during seismic ground motion. It is therefore necessary that 

structures be designed to deform in a ductile manner throughout the cyl ic 

response. 

In proportioning a low-rise building to resist earthquake base 

excitation, due consideration should be given to the overall structural 

performance of the lateral load carrying system, including not only primary 
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and secondary structural systems, but also nonstructural items. Secondary 

structural and nonstructural items such as stairs, exterior walls, partition 

walls, and floor systems can have a significant influence on the response. 

Also, when assessing the available ultimate deformation capacity of a 

building system, it should be remembered that damage to nonstructural items 

is often much more expensive to repair than structural damage. 

With these factors in mind, a good start to the earthquake resistant 

design procedure can be made by proportioning the structure to resist gravity 

and wind loads. The adequacy of the design can then be checked using the 

recommendations of the seismic provisions in modern building codes, and the 

recommendations given in this study. 

Strength ver~us Flexib~. The design engineer endeavors to 

proportion his building such that it responds to earthquake base motion 

without being subjected to excessive deformations. On the other hand, he 

does not want to make the building so strong that it attracts very large 

inertial forces. Thus, the designer attempts to strike a balance between 

strength and flexibil ity. 

Redundancy. In an effort to minimize the 1 ikel ihood of a major 

structural failure, the prudent designer will, if possible, include 

redundancy in his des i gn. I n the ev'ent that fa i 1 ure of an element or a 

portion of the structure occurs, second lines of defense are then available. 

Redundancy can be built into a design by separating the lateral load 

resisting system into a number of structural cells or units so that the 

weakening of one unit will not endanger the overall structural integrity 

of the building system. Further, the structure should be detailed in such 

a way that secondary structural members and systems (floor systems, secondary 
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framing connections, and so forth) can resist a certain amount of lateral 

load and add to damping in the system, especially for significant levels 

of deformation. Redundancy also can be included in the design by combining 

more than one type of structural system to resist lateral load, provided 

the different types of structural systems are compatible with each other 

and provided the strength of the redundant system is maintained under 

deformation. 

Design for Reserve Strength. In order for structures to reach and 

sustain their strength under inelastic deformations, the connections between 

structural members must be carefully detailed. It is usually preferable to 

make a connection stronger than the members framing into it, thus forcing 

the inelastic deformations into the members. In proportioning a connection, 

due account should be taken of strain hardening effects that occur in the 

members under inelastic deformations. 

The load carrying capacity of flexural members under cycl ic deformations 

can be reduced significantly or lost if local buckl ing or a fracture occurs. 

Thus, the width to thickness ratios of flexural members should satisfy the 

requirements for plastically designed sections. Also, the fracture toughness 

of materials and fabricated elements (including X-bracing members) should be 

selected to ensure that the resistance (strength and deformation capabil ity) 

will be maintained under the design temperatures. 

In the case of the primary structural system, the designer must evaluate 

the effective resistance offered by all load carrying members_ Careful 

attention is required to ensure that beams, for example, cannot fail by 

lateral torsional buckl ing. For architectural reasons it may not be 

possible to brace column members against lateral torsional buckl ing. 
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Unfortunately, simplified procedures for evaluating the strength-deformation 

capacities of unbraced steel columns ~ubjected to thrust and end moment are 

not yet available. 

For several of the moment frame buildings considered in this study, 

it was observed that yielding tended to be concentrated in the base story 

columns. It is thought that this type of behavior is typical of many low

rise steel moment frame buildings of practical proportions. Because the 

failure of columns is usually considered to be more severe than the failure 

of beams, it is recommended that buildings in which yielding tends to be 

concentrated in the columns be designed for relatively low ductilities, 

say less than about 2 or 3. 

Wel1.-proportioned low-rise buildings, including shear buildings, moment 

.frames, and X-braced frames, should preferably have story shear strengths 

that decrease sl ightly as the story number increases. There seems to be 

1 ittle justification for del iberately designing buildings with a weak or 

'Isoftll base story, or buildings with large strength discontinuities between 

stories. 

Low-rise buildings as a class are often irregular in form and cannot 

be modelled simply for purposes of analysis. Nevertheless, the prudent 

designer will attempt to proportion·a well-balanced system of comparable 

structural properties in the orthogonal horizontal directions. Redundancies 

should be included in the design if possible, and designs that result in 

large torsional forces or motions should be avoided. The members and frames 

of well-designed structures should be connected and tied together in a 

manner that allows for the satisfactory overall performance of the structure 

during seismic ground excitation; provision also should be made for 

overturning and torsional effects at each elevation and the base. 
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TABLE 2.1 LIMITING BASE SHEAR COEFFICIENTS, V/W 

Bu i 1 ding Code Ductile Moment Frame X-b raced Frame 

UBC (1973) 1 0.067 0.15 

NBC (1975)2 0.056 0.10 

SEAOC (1975) 1 0.094 0.18 

UBC (1976) 1 0.094 o. 18 

ATC (1977) 3 o. 14 0.22 

1 Based on al1owab1e stress, 33 percent increase allowed for (D.L. + 
L. L. + E. Q. ) . 

2 Based on allowable stress~ multiply (D.L. + L.L. + E.Q.) by a load 
combina~ion probability factor of 0.75. 

3Based on yield stress. 

TABLE 2.2 LOADING FOR TWO-STORY BUILDINGS 

Loading 

D.L. 

L.L. 

D.L. + O.2(L.L.) 

First Floor 

(lb/ft 2 ) 

70 

50 

80 

Second Floor (Roof) 

(1 b/ft2) 

36 

20 

40 



TABLE 2.3 

Loading 

D.L. 

L.L. 

D.L. + 0.2(L.L.) 
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LOADING FOR THREE-STORY BUILDINGS 

First and Second 

(lb!ft 2) 

74.5 

50 

84.5 

Floor Third Floor (Roof) 

(1 b!ft 2) 

* Includes 10 lb!ft2 to account for the weight of second floor partitions 
tributary to third floor mass. 

TABLE 2.4 MAXIMUM DESIGN STRESSES IN CRITICAL MEMBERS, 
IN PERCENT OF ALLOWABLE 

Design Design Base Shear Columns 1 Beams 2 
Coefficient, V!W 

2-A 0.10 50 

2-B 0.10 85 

2-C 0.10 170 

2-D 0.10 70 85-90 

2-E 0.10 100-110 90 

2-F 0 .. 10 50 130-135 

3-A 0.05 50 30 

3-B 0.05 30 55-85 

1 Calculated assuming Fb = 22 ksi and F = axial stress that would be 
a permitted in the plane of bending. 

2Calculated assuming Fb = 24 ksi. 
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TABLE 4.1 COMPARISON BETWEEN MAXIMUM HINGE ROTATIONS 
AND HINGE ROTATION CAPACITIES 

Description 

shear building 

shear building 

shea r bu i 1 ding 

moment frame 

moment frame 

moment frame 

M
• 1 aXlmum 

Column Location Rotation 
(rad) 

interior, first floor 0.00046 

interior, first floor 0.00720 

interior, first floor 0.0141 

interior, first floor 0.00551 

interior, first floor 0.00603 

first floor 0.00995 

Rotation2 

Capacity, eh (rad) 

0.0154 

0.0189 

0.0237 

0.0155 

0.0230 

0.0123 

1 .... ~ _ _ . I rrom Lne results of time-history calcuiations for the ineiastic 
analysis case. 

2Calculated using Eq. (4.1), an expression developed by Popov and 
, Bertero (1973). 

TABLE 4.2 DUCTILITY FACTORS FOR X-BRACED BUILDING DESIGNS, 
INELASTIC ANALYSIS CASE 

Design Design Base Shear First Second Third 
Coefficient, V/W Story Story Story 

2-G 0.157 7.91 1. 04 

2-H 0.266 3.69 0.706 

3-C 0.158 5.58 1.82 0.720 

3-D 0.253 3.30 1 .09 0.612 
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TABLE 4.3 COMPARISON BETWEEN MAXIMUM INELASTIC 
AND DESIGN STORY DRIFTS 

Design Story of Maximum Design Inelastic Inelastic Drift 
Drift Drift Drift Design Drift 

(%) (%) 

(a) Two-Storl Shear Buildin~s 

2-A 0.0833 0.570 6.84 

2-B 0.190 1. 31 6.89 

2-C 0.,482 2.02 4. 19 

(b) Two-Storl Moment Frames 

2-D 0.135 1. 07 7.93 

2-E 0.311 1 .33 4.28 

2-F 2 o. 118 0.920''- 7 .80 

(c) Two-Storl X-braced Frames 

2-G 0.240 2.37 9.88 

2-H 0.240 1 • 1 1 4.63 

(d) Three-Storl Moment Frames 

3-A O. i 50 1. 41 9.40 

3-B 3 o. 131 1 • 220k 9.31 

(e) Three-Storl X-braced Frames 

3-C 0.312 2.18 6.99 

3-D 0.312 1 .29 4.13 

* inelastic + FEF analysis case. 
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TABLE 4.4 CHANGES IN INELASTIC FIRST-STORY DISPLACEMENTS 
DUE TO P-DELTA EFFECTS 

Description 

shear bu i 1 ding 

shear bu i 1 ding 

shear bu i 1 ding 

moment frame 

moment frame 

moment frame 

X-braced frame 

X-braced frame 

moment frame 

moment frame 

X-braced frame 

X-braced frame 

(Inelastic + P~) - (Inelastic) • 100 
(Inelastic) 

(%) 

O. 1 

2.6 

18.9 

1.3 

7.9 
1.7 

13.2 

-6.9 

4.3 
3.0 

2.8 

0.0 

TABLE 4.5 ESTIMATED FIRST-STORY YIELD DISPLACEMENTS 

Description u 
y 

shear building 0.89 

shear bu i 1 ding 1.0 

moment frame 1.0 

moment frame 1 .2 

X-braced frame 0.432:k 

X-braced frame 0.432* 

moment frame 0.98 

X-braced frame 0.515;" 

X-braced frame 0.515"k 

* The yield displacements for X-braced building designs are exact 
quantities. 
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TABLE 4.6 RESPONSE QUANTITIES OBTAINED USING THE MODAL METHOD NORMALIZED 
BY THE CORRESPONDING TIME-HISTORY RESPONSE QUANTITIES 

Design 2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H 

(a) elastic 

second-story shear 1. 21 0.97 0.95 1. 01 1 .27 1 .05 1. 01 1'.25 
first-story shear 1. 13 0.90 0.87 0.99 1 .26 1 .25 0.90 1 . 12 

second-story displ. 1 .21 0.89 0.87 0.90 1. 25 1 .03 0.90 1. 18 
first-story displ. 1. 13 0.91 0.87 0.96 1 .26 1 . 16 Q.90 1 . 12 

(b) inelastic 

ductility 2 3 1.5 1 .5 8 4 

second-story shear 0.71 0.72 0.86 1 • 11 0.52 0.96 
first-story shear 1 • 11 1 .08 1. 04 1 .35 1. 03 1 .43 

second-story displ. 1. 28 1 .38 1. 10 1 .54 1. 33 1.91 
first-story displ. 1 .04 1 • 1 1 0.99 1 .29 1.04 1 .54 

Design 3-A 3-B 3-C 3-D 

(a) elastic (continued) 

third-story shear 1.25 1.26 1. 06 1 . 13 
second-story shear 0.99 1.28 0.95 0.97 
first-story shear 1.02 1 .30 1. 06 0.98 

third-story displ. 0.95 1. 16 0.92 0.93 
second-story displ. 0.90 1. 23 0.91 0.90 
first-story displ. 0.97 . 1. 29 1. 06 0.98 

(b) inelastic (continued) 

ductility 2 6 3 

third-story shear 0.90 0.54 0.90 
second-story shear 0.76 0.82 1. 30 
first-story shear 1 .05 1. 05 1. 72 

third-story displ. 1 .42 1. 51 2.06 
second-story displ. 1. 26 1 .35 1. 96 
first-story displ. 1. 01 1. 14 1. 56 
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TABLE 4.7 BASE SHEARS OBTAINED USING THE BUILDING CODE APPROACH 
NORMALIZED BY THE TIME-HISTORY BASE SHEARS 

Design 2-A 2-B 2-C 2-D 2-E 2-F 2..,G 2-H 

(a) elastic 

base shear 1. 13 0~90 0.85 0.98 1 .23 1. 27 0.90 1. 12 

(b) inelastic 

ductility 2 3 1 .5 1 .5 8 4 

base shea r 1. 10 1 .04 1. 03 1 .31 1 .01 1 .43 

Design 3-A 3-B 3-C 3-D 

(a) elastic (continued) 

base shear 0.89 1. 20 1 .04 0.98 

(b) inelastic (cont i nued) 

ductility 2 6 3 

base shear 0.87 0.99 1 . 71 
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Moment 

End Rotation 

FIG. 3.1 FLEXURAL ELEMENT END MOMENT
ROTATION RELATIONSHIP 
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Story Shear 

Story Displacement 

FIG. 3.2 X-BRACE ELEMENT STORY SHEAR-DISPLACEMENT RELATIONSHIP 
(AFTER NEWMARK AND ROSENBLUETH, 1971) 
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Mp = Large 

Uy = Large 

(a) Elastic ( b) Inelastic 

(c) Inelastic + P II (d) Inelastic + FEF 

FIG. 4.1 SCHEMATIC REPRESENTATION OF ANALYSIS CASES 
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FIG. 4.7 STORY SHEAR-DISPLACEMENT RELATIONSHIP FOR 
A STORY FORMING A SIDESWAY MECHANISM 
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APPENDIX A. SEISMIC DESIGN FORCES AND MODAL PROPERTIES 

This appendix contains (a) in Tables A.l and A.2, the seismic design 

forces used to proportion the two- and three-story building designs and 

(b) in Tables A.3 and A.4, the elastic frequencies of vibration and mode 

shapes for the building designs. The information contained in this 

appendix is supplementary to the data presented in Chapter 2 pertaining 

to the building designs considered in this study. 
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TABLE A. 1 SEISMIC DESIGN FORCES FOR TWO-STORY BUILDINGS 

F 
Floor hx wxhx 

x 
Wx V 

( k) (f t) (kft) 

2 92.16 24 2212 0.5 

184. 12 2212 O. 

L 276.5 4424 1.0 

TABLE A.2 SEISMIC DESIGN FORCES FOR THREE-STORY BUILDINGS 

Floor Cladding F 
h w h x 

Floor Weight Weight w 
V x x x x 

(k) ( k) ( k) ( ft) (kft) 

3 364 10.6 375 33 12,375 0.319 

2 779 21.1 800 22 17,600 0.454 

779 21.1 800 1 1 8,800 0.227 

z= 1975 38,775 1 .000 
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TABLE A.3 NATURAL FREQUENCIES OF ELASTIC ViBRATION 

(a) Two-Story Buildings 

Design 2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H 

f 1 (cps) 2.67 1. 78 1. 11 1 .99 1.35 2.27 1. 98 2.58 

f2/fl 2.41 2.41 2.41 2.47 2.41 2.88 2.41 2.41 

( b) Three-Story Buildings 

Design 3-A 3-B 3-C 3-D 

f 1 (cps) 1. 10 1.39 1. 59 2.02 

f2/f] 2.83 3.04 2.73 2.73 

f3 /f l 4.93 6.23 3.73 3.73 
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TABLE A.4 "ELASTIC MODE SHAPES 

(a) Two-Story Buildings 

Design 2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H 

Mode Stor~ 

2 1.207 1 .207 1 .207 1 .312 1 .265 1 .361 1 .207 1 .207 
1 0.854 0.854 0.854 0.714 0.787 0.569 0.854 0.854 

2 2 -0.207 -0.207 -0.207 -0.312 -0.265 -0.361 -0.207 -0.207 
1 0.146 0.146 0.146 0.286 0.213 0.431 o. 146 0.146 

( b) Three-Story Buildings 

Des ign 3-A 3-B 3-C 3-D 

Mode Storl 

3 1 .411 1. 371 1 .243 1 .243 
2 0.968 0.825 1 .084 1 .084 
1 0.408 0.308 0.628 0.628 

2 3 -0.558 -0."466 -0.333 -0.333 
2 0.226 0.391 -0.014 -0.014 
1 0.368 0.410 0.333 0.333 

3 3 0.147 0.095 0.090 0.090 
2 -0. 194 -0.216 -0.070 -0.070 
1 0.224 0.282 0.039 0.039 



APPENDIX B. MODAL ANALYSIS AND APPROXIMATE PROCEDURES 

B.l I ntroduct ion 

This appendix contains (a) a review of the mode-superposition procedure 

as used in conjunction with response spectra and (b) a discussion of three 

approximate procedures which can be used to estimate dynamic base shear. 

Since the modal method is well known (see for example Timoshenko, ~~., 

1974; Clough and Penzien, 1975), only the details pertinent to this study 

are repeated. The approximate procedures follow from consideration of the 

normal-mode method, and they have been discussed previously by Newmark and 

Rosenblueth (1971, pp. 468-469, 482). 

B.2 Modal Method 

The governing set of simultaneous differential equations of motion can 

be uncoupled if the normal modes of vibration are used as general ized 

coordinates. Each of the resulting independent differential equations can 

be solved as if they governed the response of single-degree-of-freedom 

systems. The total response can then be found by transforming back to the 

original set of coordinates. This procedure, known as the normal-mode 

method, is based on superposition and therefore strictly appl ies only to 

elastic systems. The procedure described in the following paragraphs 

applies to building structures founded on the ground and subjected to 

base mot i on. 

The first step in the normal-mode method involves solving for the 

mode shapes and modal frequencies. In this study it was assumed that 

mass was lumped only at locations of story translation. Therefore, in 

order to avoid including unwanted degrees-of-freedom in the analysis, it 
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was convenient to find the mode shapes and frequencies using the 

flexibility approach. The equations of motion for free vibration using 

flexibil ity formulation are 

[ F] M.J {v} + {v} = {oJ (B.1) 

in which {v} and l'MJ represent the horizontal displacements of the lumped 

story masses and the diagonal mass matrix, respectively. The entries to 

the i-th column of the flexibility matrix, [F], are the story displacements 

caused by a unit force appl ied at the i-th story. If it is assumed that 

each of the story masses vibrates with harmonic motion about the static 

equilibrium position according to the equation.~ 

(B.2) 

then Eq. (B.1) can be reduced to the following set of algebraic equations 

([ ['MJ - ~ [I]){cp(n)} = 0 
W 

n 

(B.3) 

In Eq. (B.2), {cp(n)} represents the mode shape, W represents the natural 
n 

circular frequency, and s represents the phase angle associated with the 
n 

n-th mode of vibration. In Eq. (B.3), [I] denotes the identity matrix. 

A nontrivial solution to the set of equations is possible only when 

d e t ( [ [' M J 12 [I]) = 0 
W 

n 

(B.4) 

The natural circular frequencies of vibration are found by expanding the 

determinate and solving the resulting algebraic equation for the N roots 

2 ., l/wN in which N represents the number of degrees-of-

freedom. The N mode shapes are found by successively substituting the 
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roo t s· i n toE q. ( B • 3) . 

It can be shown that the mode shapes have the following orthogonality 

relationships, provided w2 # w2
: n m 

{cp(n)}T ['M...]{cp(m)} {~ 0, n -/: m 
0, n = m 

{¢(n)}T [s*] {¢(m)} {= 0, n # m 
# 0, n = m 

(B-.5) 

(B.6) 

in which [S*] (= [F]-l) represents the structural stiffness matrix condensed 

to include only story displacements as degrees-of-freedom. 

Next, the response in each mode is found. For purposes of evaluating 

the dynamic response in this study, it was convenient computationally to 

reformulate the equations of motion using the stiffness approach. If the 

stiffness formulation is used, the equations of motion including the effects 

of damping and support excitation can be written 

(B.7) 

in which [C] represents the damping matrix and x represents the ground 

acceleration. In Eq. (B.7), {l} denotes the unit vector. Equation (B.7) 

can be uncoupled into normal modes of vibration if the displacements are 

written in terms of the mode shapes .and the generalized coordinates, qm' 

as fo 11 ows: 

N 
L: 

m=l 

N 
L 

m=l 

in which {v(m)} denotes the displacement vector in the m~th mode of 

vibration. If Eq. (B.8) is substituted into Eq. (B.7) and the resulting 

expression is premultiplied by {¢(n)}T, the equations uncouple. 
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In performing the algebra~ the orthogonality conditions on mass and 

stiffness are used, and it is assumed that a corresponding orthogonal ity 

condition appl ies to the damping matrix. The uncoupled equation of motion 

obtained for the n-th mode of vibration is 

_{¢(n)}T ['M....]{l} .0 

= {¢(n)}T L-M....]{¢(n)} x 

In Eq. (B.9), ~ denotes the amount of critical viscous damping in the 
n 

n-th mode of vibration. 

The response expression for the n-th general ized coordinate can be 

written, using Duhamel IS integral to solve Eq. (B.9), as 

in which wd = W 1'1 ~2. The expression in the parentheses on the n n n 

right hand side of Eq. (B.10) is the same expression as would be used to 

calculate the displacement response of a single-degree-of-freedom system 

vibrating ~ith the frequency of the n-th mode. In practice only the 

maximum value of the displacement is available, and it can be estimated 

from the response spectrum ordinate that is consistent with the given 

frequency of vibration and amount of damping. If the participation factor, 

y , is defined as 
n 

and 0 represents the spectral displacement, then the maximum value of 
n 

the n-th generalized coordinate is 

(B.ll) 
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(B.12) 

By Eq. (B.8), the maximum displacements in the n-th mode are 

If, for convenience, the mode shapes are 

normal ized* so that 

{(j>(n)}y 
n 

(B.13) 

then the maximum displacements in the n-th mode become 

Finally, the modal responses are combined to obtain the general 

solution. An upper bound to the response of the system is obtained by 

taking the sum of the absolute values of the modal quantities. Thus, upper 

bounds to the story displacements are 

{v} = 
max 

N 
2: I {~(n)}D I 

n=l n 
(B.14) 

* When the mode shapes are normal ized in this manner, the sum of the N 
modal ampl itudes at each mass point (degree-of-freedom) is unity, i.e., 

N 
2: 

n=1 

N 
= 2: 

n=l 
.That this is so can be shown by 

calculating the participation factor required such that 

~ {(j>(m)}y = {1}. If the expression ~ {(j>(m)}y = {1} is 
~1 m ~1 m 

premultiplied by {(j>(n)}T['M.J and modal orthogonality is used, 

expression is solved for y , Eq. (B.ll) is obtained. 
n 
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Since the maximum modal responses do not in general occur at the same 

time, the probable response of the system is often estimated by taking 

the square root of the sum of the squares of the modal quantities. Thus, 

the probable story displacements are 

{v}prob = ';~{{)n)} )2 = / ~ 
n=l max n=l 

(B.15) 

The accelerations, inertial forces, and story shears in each mode can 

be obtained from the usual relationships between these quantities and the 

modal displacements. The maximum and probable accelerations, inertial 

forces, and story shears can then be obtained by combining the modes in 

the fashion described above for displacements. 

B.3 Modal Damping 

In using the modal method as described in the previous section, it is 

not necessary to evaluate the entries to the damping matrix. However, when 

using time-history calculations the damping coefficients are usually 

related to .some percentage of critical viscous damping in each mode of 

vibration. In order for the damping coefficients to be related to the 

damping in the normal modes, the damped equations of motion must uncouple 

into normal modes of vibration. This requires the damping matrix to have 

orthogonal ity properties. 

If it is assumed that the damping matrix is linearly proportional to 

the ma s s rna t r ix, i. e. , 

[c] = b[M] (B.16) 

where b is a constant, the equations uncouple, Once b has been set, the 
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percentage of critical viscous damping in the n-th mode is calculated from 

b 
~n = 2w 

n 

When damping is prescribed in this manner, the lower modes are damped 

more strongly than the higher modes. 

B.4 Bounds on Base Shear 

(B. 17) 

The computation of lateral design forces is often spl it into two parts: 

the calculation of the base shear and the distribution of the base shear 

over the building height. Three bounds to the base shear may be obtained 

which can be justified in terms of the modal superposition procedure. 

A lower bound is obtained by computing the base shear associated with 

the fir s t mod e . I n eq u a t ion form, the bas e shea r i s 

¢. (1) m. 
I I 

in which m
i 

and Al refer to the lumped mass of the i-th story and the 

'\J (1) 
spectral acceleration in the first mode. The symbol ¢. denotes the 

I 

normal ized ampl itude of the first mode shape at the i-th story. 

(B.18) 

Building codes recommend the base shear be calculated by mUltiplying 

the mass of the building by a coefficient that is equivalent to the 

spectral acceleration in the first mode. According to studies referred 

to by Newmark and Rosenblueth (1971), the building code approach sl ightly 

overestimates the base shear of multistory buildings when compared to the 

square root of the sum of the squares method of combining modal quantities, 

provided the ordinates of the response spectrum do not exceed those 
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corresponding to a constant pseudovelocity. Thus, an upper bound may be 

obta i ned from 

m. 
I 

(S.19) 

Equations (B.18) and (B.19) yield the same result if 

1 } • 

An upper bound of some interest may be defined for shear-beam systems. 

This bound was not specifically considered in this study. The base shear 

is less than or equal to the first story stiffness times the spectral 

displacement corresponding to a single-degree-of-freedom system having the 

same frequency as the fundamental frequency of the system. In equation form 

v .::. k D1 (B.20) 

in which k represents the first story stiffness. Equation (B.20) is an 

upper bound provided the spectral displacement in the first mode is larger 

than the spectral displacement in any of the higher modes.* 

* This may be shown as follows. 
N () 

By Eq. (B.14), V.::.k L: I¢ n'D I. 
n=l 1 n 

Noting ¢1 (n) are positive for all n and therefore 
B 

~ I,¢(n) I = 1, it follows that V < k max 
n=l n 

provided 01 > 0 , n r 1. - n 

D . 
n 

Thus, Eq. (B.20) is true 
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APPENDIX C. ELEMENT STIFFNESS PROPERTIES 

C.l Introduction 

In the analysis of buildings of the types considered in this 

report, nonlinearities arise from two sources. The first source 

of non1 inearity is caused by the inelastic behavior of the structural 

material, and this source is referred to as material non1 inearity. The 

second source of non1 inearity, referred to as geometric non1 inearity, 

arises when the deformations are large and changes in the geometry of the 

structure must be accounted for in the analysis. Consequently, it is 

convenient to separate the formulation of the stiffness properties into 

the formulation of material stiffness and geometric stiffness. 

In this appendix member stiffness matrices to be used in establ ishing 

the structural stiffness matrix are derived. Element stiffness properties 

are formulated to account for (a) material nonlinearities resulting from 

the yielding of beams, columns, and X-braces and (b) geometric nonlineari-

ties due to gravity loads acting on columns. The material stiffness for 

beam and column members is derived from consideration of a beam made up of 

an elastic flexural portion with rigid-plastic hinges at the ends. The 

material stiffness for X-braced frames represents the behavior of lateral 

bracing which resists only tensile forces. To account for geometric 

nonlinearities due to gravity loads acting on columns (P-delta effects), 

it is assumed that column and X-brace members support 

bar segments (false members) subjected to axial load. 

The relationship between member end forces, {G}, and end displace-

ments, {U}, can be written (Przemieniecki, 1968, pp. 383-384) 
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(C.1) 

in which [SE J and [SG J represent the material and geometric stiffnesses, 

respectively. The minus sign before the geometric stiffness is used in 

this study to account for the fact that Ppdelta effects tend to reduce the 

element stiffness~ Since the material element stiffness changes as a 

function of the member force-displacement history, Eq. (C.1) is val id only 

for small changes in displacement and must be wrftten in incremental form. 

A Greek delta prefix to a symbol indicates an incremental value. 

C.2 Flexural Element Material Stiffness 

In formulating the flexural element material stiffness, it is 

convenient to first establ ish the stiffness of a beam element which is 

constrained in such a way that all rigid body degrees-of-freedom are 

eliminated. The constrained stiffness is obtained from consideration of 

the slope-deflection equations for a simply supported beam, modified to 

take inelastic behavior into account. The complete or unconstrained 

stiffness is then establ ished from the constrained stiffness by using a 

transformation of coordinates. When the beam member is unconstrained, 

rigid body displacements that do not induce strains in the beam element 

are possible and the corresponding stiffness matrix is singular. 

The simply supported beam element shown in Fig. C.l is made up of 

an elastic flexural portion with inelastic hinges at either end. If it 

is assumed that prior to yielding the hinges at either end are rigid, 

and after yielding they sustain the plastic moment capacity of the 

member (or reduced plastic moment capacity in the case of columns), 

four states of yield can be defined: 
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State one, the moment capacity at either end is not exceeded. 

State two, the moment capacity at the left end is reached, 

the right end remaining elastic. 

State three, the moment capacity at the right end is reached, 

the left end remaining elastic. 

State four, the moment capacity is reached at both ends. 

From consideration of the slope-deflection equations, Giberson (1969) 

has demonstrated that the relationship between total end rotations, {u}, 

and end moments, {g} , can be written in incremental form as 

t9 1
} =CA kB ] 

692 kB kC tU1
} L'l.u

2 
(C.2) 

in which kA' kS and kC are stiffness coefficients that depend on the state 

of yield. The relationship between inelastic hinge rotations, {a}, and 

the total end rotations can be written in incremental form as 

{6a} = (C.3) 

in which [T 1] is a transformation matrix that also depends on the state of 

yield. The values of kA' kB and kC and the entries to [Tll are recorded 

in Table C. 1 for the four states of-yield described above. In Fig. C.l 

and Table C. 1, E and I denote the modulus of elasticity and the moment of 

inertia of the section. 

in the unconstrained coordinate system, the beam element shown in Fig. 

C.2 is capable of rigid body motions. The end displacements in the 

unconstrained coordinate system, {U}, can be related to the end rotations 

in the constrained coordinate system by consideration of the geometry of 
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the beam element under deformation. Thus 

in which 

f-l/l 
tl/l 

1 
o 

l/l 
l/l 

If the principle of contragradience is used, the unconstrained element 

forces, {G
E
}, can be found from 

If Eqs. (C.2) and (C.4) are substituted into Eq. (c.6) and incremental 

(c.4) 

(C.s) 

(C.6) 

notation is used where appropriate, the following expression can be obtained 

for the element forces: 

(C.7) 

in which the complete element material stiffness is 

fk k l [S ] == [T ] TAB [T] 
E 2 k k 2 

B C 

(c.8) 

- -

The incremental hinge rotations can be obtained from the unconstrained 

displacements by writing Eq. (c.-4) in incremental form and substituting 

into Eq. (C.3). Thus 

C.3 X-brace Material Stiffness 

The material stiffness for the X-brace subassemblage shown in Fig. 

C.3(a) is obtained by analogy to the derivation used in the previous 

section for the flexural element. 



1 j 0 

The stiffness in the constrained coordinate system is established 

from consideration of the story shear-deformation relationship for the 

tension brace in the subassemblage. In establ ishing the constrained 

stiffness, it is assumed that the tension brace is elastic, the compression 

brace resists no lateral load, and the gravity loads acting on the columns 

can be ignored. From consideration of equil ibrium, Fig. C.3(b), Hooke's 

law and compatibility, Fig. C.3(c), the horizontal story shear resisted is 

(C.10) 

In Eq. (C. 10), A denotes the cross-sectional area of the brace and u 

represents the relative story displacement. 

The ~tory shear resisted by an X-brace subassemblage depends on the 

cyclic load history. If it is assumed that the resistance-deformation 

relationship described in Section 3.2.2 (see Fig. 3.2) appl ies, then, for 

displacement in the positive direction, the story shear resisted can be 

calculated from the following expressions: 

u > u ,u - u - u < 0 
- ps ps y 

Q 
AE 

= 
lb 

Q = AF u>u ,u-u -u >0 - ps ps y -

u < u 
ps 

Q = 0 

(LLbf (u - u ) ps (C.lla) 

y [LLbJ (C.llb) 

(C.llc) 

in which u 
y 

represents the initial yield displacement and 

F denotes the yield stress of steel. The permanent set in the positive 
y 

direction, u ,is equal to the maximum positive displacement minus the 
ps 

elastic recovery during the previous excursion into the inelastic range. 
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The use of Eq. (C.11) to calculate the hysteretic response of an X-brace 

subassemblage is illustrated by the examples shown in Fig. c.4. Conditionals 

similar to those 1 isted above can be written for negative displacements. 

Equations (C.ll) can be written more conveniently in the incremental 

form 

L\Q = k· L\u (C • 12) 

in which k is the constrained stiffness. Two states of yield can then be 

defined: 

State one, the force resisted changes according to the 

elastic stiffness, k = ~: [ LLb r . 
State two, the change in force resisted in zero, i.e., k 0 

The complete or unconstrained element stiffness matrix is obtained 

from the constrained element stiffness by a transformation of coordinates. 

The relative story displacement can be calculated from the displacement 

in the unconstrained coordinate system, {U}, by using the transformation 

u =: {-1 l}{U} (C.13) 

If the contragredient relationship for forces is used, the X-brace 

material stiffness in the unconstrained coordinate system can be formulated. 

Thus 

(C.14) 

C.4 Geometric Stiffness 

A linear approximation of the flexural element geometric stiffness 

can be obtained from consideration of the physical model shown in Fig. C.S 
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(Clough and Penzien, 1975, pp. 167-169). The model is made of a rigid 

bar segment subjected to axial force·N and a stabilizing flexural element. 

As the flexural element deflects, the rigid bar also deflects developing 

forces which must be resisted by the flexural element. If it is assumed 

that the centerl ines of the bar and the flexural element coincide, 

summation of moments about the top and bottom ends of the rigid bar leads 

to the additional (shear) forces acting on the ends of the flexural element. 

In matrix form, the end forces due to geometric effects are 

(C.15) 

in which the geometric stiffness is 

IN/h 0 -NIh 0 

0 0 0 0 
[SG] ::: 

-NIh 0 NIh 0 
(C.16) 

0 0 0 0 

The X-brace element geometric stiffness can be obtained in a similar 

manner. From consideration of equil ibrium of the subassemblage shown in 

Fig. C.3(a) under deformation, the geometric stiffness is 

-NIh] 

NIh 
(C.17) 

in which N represents the sum of the axial loads acting on the columns 

of the subassemblage. 

If the axial forces are positive (compressive), the geometric stiffness 

tends to reduce the member stiffness. Thus, the lateral story shear that 

can be resisted for a given relative story displacement under monotonically 

increasing load is reduced from that which would be resisted if gravity 
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loads were not present. 

It should be commented that, in'the derivation of the geometric 

element stiffnesses, it is assumed that the axial loads acting are 

constant. Thus, the axial forces are assumed to arise from sources that 

are independent of the seismic excitation. 

Buildings are frequently designed so that not all columns in a story 

contribute to the resistance of lateral load. The P-delta forces arising 

from gravity loads acting on columns that do not contribute to lateral 

load resistance are transferred to the seismic load resisting frames by 

diaphragm action. The axial loads used to formulate geometric stiffness 

matrices must take this transfer of P-delta forces into account. 
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TABLE C.l ENTRIES TO THE BEAM ELEMENT MATERIAL STIFFNESS MATRIX 
AND TO THE TRANSFORMATION MATRIX USED TO OBTAIN THE 
INELASTIC HINGE ROTATIONS 

State of [ll] yield kA kB kC 

4EI 2EI 4EI [~ ~J L L -l-

2 0 0 
3EI [6 1~2J l 

3 
3EI 

0 0 [1~2 ~J -L-

a a 0 [~ ~J 
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FIG. C.2 TRANSFORMATION OF COORDINATES 
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(a) X - Brace Subassemblage 

All Horizontal Beams 
And Vertical Columns 
Are Assumed To Be 
Rigid Links 

(b) Force In Tension Brace, Gravity Loads Ignored 

u 

(c) Compati bi Ii ty splacements 

FIG. C.3 X-BRACE ELEMENT 
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APPENDIX D. INCREMENTAL NUMERICAL PROCEDURE 

D.l I ntroduct ion 

This appendix contains a discussion of the step-by-step numerical 

integration (time-history) procedure used to solve the equations that 

govern the dynamic response of low-rise steel buildings. In the step-by

step procedure, the response history is divided into a number of small 

increments in time. The response during each increment in time is evaluated 

using the structural properties applicable at the beginning of the time 

increment. The dynamic response quantities calculated at the end of one 

time increment become the initial conditions for the next time increment. 

At the end of each time increment, the structural stiffness matrix is 

adjusted to account for any changes in the element stiffnesses due to 

yielding or hardening. Thus, the solution advances in a step-by-step 

manner in the time domain for a series of 1 inear systems with changing 

stiffness properties. 

Unless certain precautions are taken when the stiffness properties 

are not constant during a time increment, some error is involved in using 

the step-by-step numerical integration procedure. If the stiffness changes 

during a time increment, the forces that can actually be resisted by some 

members are different from the member forces calculated using the stiffness 

properties applicable at the beginning of the time increment. In an effort 

to minimize this disparity between the forces that can be resisted and 

the calculated forces, an iterative technique analogous to the initial 

stress procedure that is sometimes appl ied to static problems is used. 

Of course, it is only necessary to use the iterative procedure at the 
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end of time increments in which the stiffness has changed. 

0.2 Equations of Motion 

In order to facilitate the solution of the simultaneous differential 

equations of motion using the step-by-step numerical integration procedure, 

the equations of motion are converted into a set of simultaneous algebraic 

equations. This is accompl ished by assuming that the structural displace

ments, velocities, and accelerations can be simply related to each other 

over small time increments. 

The simultaneous differential equations of motion, assembled in 

incremental form, can be written as follows: 

l~~ ] ( nv(t) I + [[~l ] ( n~(t) I 
+ [s(t}] ( ::~:; l=-I~~~ : ]wnx(t) + {R(t)} (0.1) 

in which L-MJ represents the diagonal mass matrix, 

[C] represents the damping matrix, 

[S(t)] represents the tangent stiffness at time t, 

{R (t) } represents the residual load vector at time t (see Section D.3), 

{v} represents the story displacement vector, 

{S} represents the nodal rotation vector, 

{l} represents the unit vector, 

and x represents the ground acceleration. 

A Greek delta prefix to a symbol indicates an incremental value. A 

superscript dot above a symbol indicates one differentiation with respect 
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to time. The incremental displacement quantities are associated with 

the time at the beginning of the time increment, t. 

In order to convert Eq. (D.1) into a set of simultaneous equations, 

a 1 inear variation of acceleration over a short time interval ~t is assumed. 

If the equations of Newmark (1959) with B = 1/6 and y = 1/2 are used, the 

incremental story velocities and displacements can be written as follows: 

{~~(t)} = ~t{v(t)} + ~; {~v(t)} (D.2) 

{~v(t)} = ~t{~(t)} + (~~)2 {v(t)} + (66)2 {~v(t)} (D.3) 

At time t the velocity vector, {~(t)}, and the acceleration vector, {v(t)}, 

are known quantities. If the incremental displacement vector is taken as 

the basi~ unknown quantity, Eqs. (0.2) and (D~3) can be solved to obtain 

the following expressions for the incremental velocity and acceleration 

vectors: 

{~~(t)} = It{~v(t)} - 3{~(t)} - ~2t {v(t)} 

{~v(t)} = 6 {~v(t)}'~'A6t {~(t)} - 3{v(t)} 
(~t)2 u 

(D.4) 

(D.5) 

If Eqs. (D.4) and (0.5) are substituted into Eq. (D.1) and the resulting 

expression is simpl ified, the following set of simultaneous algebraic 

equations is obtained 

(0.6) 

in which 
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(0.7) 

{B(t)}= r~J :]~6t { ~:t} + 3(V(.t)} - {1}L1X(1 

+ ~~l :1 <3 r(.t) I + L12t (V (.t) i>+{R(t)} (0.8) 

Equation (0.6) has the same form as the standard static stiffness equations 

and it can be solved for the incremental story displacements and rotations 

by Gaussian elimination. The incremental velocities and accelerations can 

then be found by substituting the incremental story displacements in Eqs. 

(D.4) .and (D.5). 

The structural story displacements, joint rotations, and so forth at 

the end of the time increment are equaJ to the response quantities at the 

beginning of the time increment plus the changes in the response quantities 

ca 1 c u 1 a ted us i n g E q . ( 0 . 6) and E q s. ( D . 4) and ( D . 5). T h us 

{V(t+~t)} e(t+~t) {
V(t)} + {~V(t)} 
e ( t) . ~e ( t) . 

(D.9) 

(0.10) 

{v(t+~t)} = {v(t)} + {~v(t)} (0.11) 

The solution procedure progresses in a step-by-step manner with the values 

at time (t + ~t) calculated by Eqs. (0.9), (0.10) and (0.11) becoming the 

the known values at time t for the next time increment. 
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0.3 Initial Stress Procedure 

Using the initial stress procedure (Zienkiewicz, 1971, pp. 372~373), 

a nonlinear problem is solved as a succession of linear problems, the 

nonl inearities being accounted for by additional or residual loading terms 

in the nodal equil ibrium equations. Thus, when yielding (or hardening) 

occurs during a time increment, the structural stiffness changes and 

[S(t)] {~V(t)} in Eqs. (D.l) and (D.6) should be replaced by (Aktan, 
~e (t) 

~~., 1974) 

{~F(t)} !
~V(t)) 

= [S(t)] r - {~p(t)} 
~8 ( t) J 

(D.12) 

in which {~F(t)} represents the actual incremental resisting forces due 

to structural stiffness and {~p(t)} represents the residual forces. 

Incremental structural displacements and residual forces between times 

t and (t + ~t) are 

{~V(t)} ~8 (t) 
" -

= {~V(t)}o+ !~V(t))l 
il8(t) ~8(t) 

, -

+ ...... + {~V (t))n 
Ll8 ( t) 

" 

(D.13) 

(D.14) 

The corrections to the incremen-tal displacements are found iteratively 

from 

[A ( t) ] fl1v
(
tlr 

lLl8(t)j 
= {B(t)} 

[A ( t) ] 
[Llv(t)1

1 

lLl8(t)f 
- {{).p(t)}o 

r 
(D. 15) 

[A(t)] {"V(tT = {LlP(t)}n-l 

J ,il8(t) 
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The tangent stiffness applicable at the beginning of the time increment 

is used for all cycles of iteratl6ni 

The incremental residual forces are obtained successively from 

consideration of the member force-deformation relationships. For the i-th 

i -1 iteration, the residual forces {~p(t)} to be applied as joint loads are 

assembled from the forces required to bring the member forces based on the 

tangent stiffness solution (the calculated forces) into coincidence with 

the actual forces that the members can resist under the displacements 

reached in the (i -1) -th i terat ion. The force vector {~p (t) } i "" 1 can be 

physically interpreted as the unbalanced residual forces left on the 

structure at the end of the (i-l)-th iteration. 

iteration is continued for a specified number of cycles or until 

{~p(t)}n are smaller than a specified tolerance. Since iteration is 

carried out only to a tolerance, the residua1 forces {~p(t)}n found for 

the last iteration cycle are added as the residual load vector, {R(t)}, 

during the next time increment. Before going on to the next increment 

in time, the structural stiffness matrix is updated to account for any 

changes in element stiffnesses that have occurred. 

D.4 Member Residual Forces and Special Considerations 

D.4.1 Member Residual Forces -- In order to formulate the residual 

load vectors for use in the initial stress procedure described in Section 

D.3, it is necessary to obtain the actual forces that can be resisted by 

the members under specified displacements. For X-brace elements, once 

the member relative displacements are known, the actual member forces can 

be determined from the member force-deformation relationships (Eq. (C. 11) 
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and Fig. 3.2). The member residua1 forces are simply equal to the 

differences between the forces calculated using the tangent stiffness 

and the actual member forces. 

No unique relationship between moment and rotation exists for flexural 

elements: the moment at one end of a flexural element is affected by the 

moment at the other end and vice versa. After each iteration of the 

initial stress procedure, the calculated flexural element end moments are 

adjusted such that the moment capacities at either end are not exceeded. 

An adjustment at one end is accompanied by an adjustment at the other end 

according to the carry-over factor applicable to the given state of yield. 

The carry-over factors are 1/2 for elastic far ends and 0 for inelastic 

far ends .. The residual end moments are found from the differences between 

the calculated and adjusted end moments. The residual end moments may be 

physically interpreted as the moments to be applied to the elastic inner 

portion of the flexural element (of stiffness 4EI/L) in the actual deformed 

shape such that the actual deformed shape and the deformed shape assumed 

using the tangent stiffness become the same (see Fig. 0.1). 

The unbalanced residual forces for X-brace elements and the 

unbalanced residual end moments for beam elements are liquidated using 

the initial stress procedure. 

An inelastic hinge at either end of a flexural member is free to 

rotate in only one direction during each excursion into the inelastic 

range, and if the direction of rotation changes the member becomes 

elastic. If it is found that a beam has unloaded (become elastic) at 

either end during a time increment, a special procedure is ~sed. 

Rather than calculate unbalanced forces and use the iterative procedure 
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described in the previous section, it is convenient to return to the 

beginning of the time increment, modify the structural stiffness, and 

repeat calculations. 

0.4.2 Special Considerations -- The accuracy of the numerical 

procedure described above depends on the size of the time increment used 

in calculations. Since the times when the response is evaluated do not 

in general correspond to the exact times of yielding or maximum deformation, 

certain errors can result. Mel i~ (1976) has estimated the magnitude of 

these errors from studies on single-degree-of-freedom elastoplastic systems. 

If yielding occurs during a time increment, he concludes that the resulting 

errors are small provided the time increment is 1/20 to 1/40 of the elastic 

period of vibration. In these estimates it was assumed that the force

deformation relationship was satisfied at the end of the time increment 

using an iterative procedure. Melin has estimated the largest probable 

~rror in the calculation of maximum deformation to be less than 1 perceht 

or 0.3 percent if the time increment is 1/20 or 1/40, respectively, of 

the elastic period of vibration. 

For this study the time increment used was less than or equal to 1/20 

of the elastic period of the hig~est mode of vibration. The earthquake 

base motion was assumed to be a piecewise linear function between times 

o~known ground acceleration. In order to avoid missing abrupt changes in 

loading, the response was evaluated at each discontinuity in the slope of 

the ground acceleration history. Computations were carried out for the 

duration of the base motion plus a time of twice the fundamental elastic 

period of vibration. 
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0.5 Verification of the Analytical Procedures 

The intent of this section is to· verify the computational procedures 

described above by comparison of the results of some simple response 

calculations to the publ ished results of other investigators. The simple 

structures studied were subjected to the half-cycle displacement pulse 

base motion shown in Fig. E.3. The structures were undamped, 

The first group of studies was confined to systems composed of flexural 

elements with the inelastic properties described in Section Ce2. The one 

story frame shown in Fig. 0.2 has an elastoplastic resistance deformation 

relationship when subjected to lateral load. Its behavior during dynamic 

motion can be compared directly to that of an elastoplastic single-degree

of-freedom system. In Fig. D.2 the maximum displacements for a number of 

systems are shown as a function of the frequency parameter ftl where f is 

the elastic frequency of vibration and tl is a measure of the pulse 

duration. For both elastic and inelastic systems, the response calculated 

was for all practical purposes the same ~s that found by Veletsos and Vann 

(1971) for elastoplastic single-degree=of-freedom systems subjected to the 

same base motion. 

Similarly, a flexural element under shear deflection with no end 

rotations has an elastoplastic forc~-deformation relationship. The maximum 

displacements of two-story shear systems are plotted in Fig. D.3 as a 

function of the frequency parameter fltl in which the symbol fl denotes 

the fundamental frequency of elastic vibration. The response was almost 

exactly the same as that found by Veletsos and Vann (1971) for elasto

plastic two-degree-of-freedom systems. (There were sl ight discrepancies 

for the maximum inelastic responses of the first stories between frequency 
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parameters 0.2 and 0.3, see Fig. D.3(a), These discrepancies cannot be 

accounted for, but they may be due to the scale of plotting.) 

The results of studies on X-braced single story frames with the 

resistance-deformation relationship described in Section C.3 are shown 

in Fig. D.4. Again the plots are in terms of the frequency parameter 

ft 1" The maximum deformations calculated by the procedures described 

in this appendix were for all practical purposes the same as those found 

by Veletsos (1969) for the same base motion. 
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Deformed Shape Assumed Using 
The Tangent Stiffness Properties 

Actual Deformed Shape 

FIG. D. 1 

Additional Hinge 
Rotations During 
The Iterati ve 
Time Step 

ADDITIONAL INELASTIC HINGE ROTATIONS 
DURING THE INITIAL STRESS PROCEDURE 
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APPENDIX E. THEORETICAL STUDiES OF SIMPLE SYSTEMS 

E.l Introduction 

In this chapter the results of calculations on elastoplastic two-

degree-of-freedom systems subjected to pulse type base motion are 

summarized. The objectives of this special study were (a) to evaluate 

the modal procedure when appl ied to systems with nonuniform inelasticity, 

(b) to find the appropriate procedure for combining modes when applying 

the modal method to systems with a few degrees-of-freedom, and (c) to 

examine certain approximate procedures which might be used to estimate 

the design base shear. 

The approach used in the study was to compare the results of modal 

method and approximate calculations to time-history solutions. The studies 

in part parallel earlier work by Newmark, et~. (1965), Veletsos and Vann 

(1971), and others. However, in this study either the base motion consi-

dered, the systems studied, or the modal and approximate procedures used 

for estimating inelastic response were in some way different from those 

used in the previous studies. It is important that such studies be 

pursued because the results of investigations on simple systems provide 

a theoretical basis on which to view the more complicated behavior of 

two- and three-story buildings subjected to earthquake base motion. 

E.2 Systems and Base Motion Considered 

Systems. The mathematical ideal ization for the two-degree-of

freedom systems studied is shown in Fig. E.l. The symbols f and {~(~}} n 

denote the frequency and the normalized mode shape for the n-th mode of 

small amplitude (elastic) vibration. Mass, m, and elastic stiffness, k, 
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are uniform for each degree-of-freedom, and the systems are undamped. 

The resistance-deformation relationship for each spring was assumed 

to be elastoplastic with equal yield resistances in both directions of 

displacement. After yielding occurred, unloading was assumed to follow 

a curve offset from, but parallel to, the original elastic curve. The 

resistance-deformation curve for the i-th spr·ing is presented in Fig. E.2. 

The symbols Q. and u. denote the spring force and the relative displacement, 
I I 

respectively. The subscript 110'1 indicates the maximum displacement or 

force observed if the spring remains elastic during base motion. The 

ductil ity, ~., is calculated by dividing the maximum inelastic displacement, 
i 

(u.) , by the elastic component of the displacement at yield, (u.) . The 
I m I y 

symbol (Q.) denotes the maximum elastoplastic spring force. 
I y 

Base Motion. The half-cycle displacement pulse base motion considered 

is shown in Fig. E.3. The symbol tl denotes the duration of one-half of 

the base motion. 

Single-Degree-of-Freedom Response Spectra. The response spectra for 

elastoplastic single-degree-of-freedom systems subjected to the pulse base 

motion are plotted in Fig. E.4. Each curve in Fig. E.4 gives the yield 

displacement, u , required to limit the maximum deformation of the spring, 
y 

u , to a specified value of the ductility factor,~. The spectra are 
m 

plotted in terms of the quantity V j defined as V = wu in which w(=2nf) 
y y y 

represents the circular frequency of elastic vibration. In some of the 

1 iterature V is referred to as the pseudovelocity for yielding systems. 
y 

The spectral values are normalized by the maximum ground velocity, v, and 

they are plotted in terms of the dimensionless frequency parameter ftl 

where f is the frequency of elastic vibration and tl is a measure of the 
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pulse duration. The response spectra shown in Fig. E.4 are essentially 

the same as those determined by Veletsos and Vann (1971) for the same base 

motion. 

In discussing the results of the modal method and approximate 

calculations later in Section E.4, it is convenient to refer to the 

different frequency ranges of the elastic single-degree-of-freedom 

response spectrum, ~= 1 in Fig. E.4. The transition between the moderately 

low and the medium frequency ranges occurs at a frequency parameter of 

about ftl = 0.55 (point b), and the transition between the medium and the 

moderately high frequency ranges occurs at a frequency parameter of about 

ftl = 0.75 (point c). The transition frequencies adopted in this appendix 

are similar to those reported by Veletsos and Vann (1971). 

E.3 Time-History Calculations 

It is the objective of this section to generate numerical data which 

can be compared to the modal and approximate calculations reported in the 

following section. 

Method of Analysis. The time-history calculations were made using 

Newmark1s S-Method in the well known iterative form, with S = 1/6 and 

y = 1/2 (Newmark, 1959). The increment in time used for the numerical 

integration procedure was less than or equal to 1/20 of the elastic period 

of the highest mode of vibration. The response was evaluated at the end 

of each time increment and at the times of each discontinuity in the 

slope of the base acceleration history. Computations were carried out for 

the duration of the base motion plus a time of twice the fundamental period 

of elastic vibration. 
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One Spring Permitted to Yield. The calculated response of the 

two-degree-of~freedom systems where one of the springs could yield is 

shown in Figs. E.5 and E.6. In each case the response was determined 

for a number of discrete values of the dimensionless frequency parameter 

fltl (recall that fl denotes the fundamental frequency of elastic 

vibration of a given system, and tl is a measure of the pulse duration)_ 

In the figures, the maximum elastic component of the response was plotted 

in terms of the quantity (V.)o if the spring responded elastically, or 
I 

the quantity (V.) if the spring responded inelastically. The quantities 
I y 

(V.)o and (V.) are defined as (V.)o = w1(u.)o and (V.) = w1(u.) in 
I i Y I I I Y I Y 

which w
1 

(=2nf
1
) denotes the fundamental circular frequency of elastic 

vibration. The displacements (u.)o and (u.) are defined in Fig. E.2. It 
I I Y 

should be appreciated that the computed quantities were (u.)o or (u.) 
I I m 

wh ere the d u c til i t y, 11., i s g i v e n by 11. = ( u 1 ) / ( u .) . The p lot s are 
I I m I y 

normal ized by the maximum ground velocity, v. 

The response of systems for which the base spring was elastoplastic 

and the second spring remained elastic is given in Fig. E.5. Each curve 

in Fig. E.5(a) gives the yield displacement of the base spring, (u1)y' 

required to limit the maximum deformation of the base spring, (u 1)m ' to 

a specified ductil ity, 11 1- Each' curve in Fig. E.5(b) gives the maximum 

elastic deformation of the second spring, (u2)o~ under the condition that 

the base spring responds with the specified ductil ity, 11 1. The abscissa 

of both plots is the dimensionless frequency parameter ft. 
1 1 

The plots in Fig. E.5 can be interpreted in the following manner. 

For a given value of the dimensionless frequency parameter, the quantity 

(V1)y required to limit the maximum deformation of the base spring to a 

ductil ity of 111 can be obtained from Fig. E.5(a). For the same value of 
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the dimensionless frequency parameter, the quantity (V2)o measuring the 

maximum elastic response of the second spring under the condition that the 

base spring responds with the selected base spring ductility, ~1' can be 

obtained from Fig. E.5(b). The yield displacement of the base spring and 

the maximum elastic displacement of the second spring can then be found 

from the relations (u 1) = (V
1

)y/W1 and (u 2)o = (V2)o/w
1

, respectively. 

Finally, the maximum displacement of the elastoplastic base spring can be 

calculated from the relation (u 1)m = ~1 (u 1)y. Of ~ourse, the use of these 

plots implies that the yield displacement of the elastic second spring, if 

it exists, is greater than (u 2)oo 

Similar charts are presented in Fig. E.6 for systems in which the base 

spring remained elastic and the second spring was elastoplastic. Each curve 

in Fig. E.6(a) gives the maximum elastic deformation of the base spring, 

(u 1)o, under the condition that the second spring responds with a specified 

ductil ity, ~2. Each curve in Fig. E.6(b) gives the yield displacement of 

the second spring, (u 2)y' required to 1 imit the maximum deformation of the 

second spring~ (u 2)m' to a specified ductil ity, ~2. 

On the basis of the studies just described the following observations 

concerning the inelastic response of simple two-degree-of-freedom systems 

can be made. If the base spring is ~ermitted to yield (Fig. E.S), the 

response of the second spring is reduced significantly, even if it remains 

elastic. Conversely, if the second spring is permitted to yield (Fig. E.6), 

the elastic response of the first spring is reduced only sl ightly from the 

response that would occur if both springs remained elastic. 

It should be noted that a graphical interpolation procedure was used 

to construct Figs. E.4 through E.6~ and the plots may contain sl ight 

inaccuracies. 
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Both Springs Permitted to Yield. The calculated response of two

degree-of-freedom systems where both springs could yield is shown in Fig. 

E.l for systems with a frequency parameter of fltl = 1.0. The graph can 

be used in the following manner. The maximum deformations of the springs 

assuming that both springs of the system respond elastically to the pulse 

base motion are obtained first. The maximum elastic deformations, (u 1)o and 

(u 2)o, are given in the upper right corner of the figure. The desired design 

ductil ities for the first and second springs of the system, ~1 and ~2' 

are selected. A point on the graph is located corresponding to the 

selected ductilities, noting that ~l is the abscissa and ~2 is the ordinate 

of the plot. The quantities c
1 

and c2 corresponding to the selected 

ducti.l ities can then be determined from the point on the plot by interpola

tion between the lines of constantc
1 

and c2 0 In order for the system to 

achieve the desired ductilities during the pulse base motion, the yield 

resistances of the springs must be (u 1)y = c 1(u 1)o and (u 2)y = C2 (U 2)O. 

The maximum deformations of the first and second springs will then be 

(u1)m = ~1 (u1)y and (u2)m = ~2(u2)Y' 

The chart shown in Fig. E.7 demonstrates that the response of even 

simple systems to pulse base motion is a complicated function of the system 

parameters, especially when yiel~ing is involved. Of course, figures 

similar to Fig. E.l could be constructed for systems with other frequency 

parameters. 

E.4 Modal and Approximate Calculations 

It is the objective of this section to evaluate (a) the modal method 

for calculating spring forces and deformations, (b) the use of the first 
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mode base spring force as an approximation to the actual force, and (c) the 

quasi-static building code approach for estimati-ng the base spring force. 

The approach used was to compare response quantities obtained by the three 

procedures to the quantities obtained in the previous section using time-

history analysis. In the discussion that follows, the maximum displacement 

observed in the i-th spring during time-history calculations is denoted by 

(u.)o if the spring remained elastic and (u.) = ~.(u.) if the spring 
I I m I I Y 

yielded. The maximum time-history spring force in the i-th spring is 

denoted by (Q.)o = k(u.)o if the spring remained elastic and (Q.) = k(u.) 
I I I Y I Y 

if the spring yielded. 

A detailed discussion of the modal method and the approximate procedures 

is given -in Appendix B. The discussion in Appendix B is appl icable to 

elastic systems. 

Modal Method. A summary of the modal method as used for inelastic 

response calculations in this appendix is as follows: 

(1) Obtain the frequencies and mode shapes of elastic vibration for 

the given system. 

(2) Select the inelastic design response spectrum that gives the 

elastic component of the displacement response for the desired elastoplastic 

ductil ity. (In some publications this spectrum is referred to as the 

inelastic maximum acceleration or yield displacement spectrum.) For the 

studies recorded in this section, the spectral quantities were obtained 

from Fig. E.4. 

(3) Calculate the yield (maximum) spring forces and the yield 

displacements using the modal method in conjunction with the inelastic 

design response spectrum (as described in Appendix B for elastic systems). 
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(4) MUltiply the yield level displacements by the design ductility 

factor to obtain the maximum spring deformations. 

The yield (maximum) force and the maximum deformation obtained in the 

i-th spring are denoted by (Q.) and (u ) if the modal quantities were 
I max i max 

obtained by the sum of the absolute values of the modal quantities approach. 

They are denoted by (Q.) band (u.) b if the modal quantities were combined 
I pro I pro 

by the square root of the sum of the squares of the modal quantities approach. 

It is well to point out one inconsistency in the modal method as 

described above when appl ied to systems with nonuniform inelasticity. In 

particular, consider a two-degree~of-freedom system proportioned so that 

ine1astic response occurs only in one spring. If the modal calculations 

conform to the ductility of the inelastic spring, the response quantities 

obtained for the elastic spring are inconsistent. 

First Mode Approximation. The base spring force in the first mode of 

vibration is denoted by (Ql)lst. The spectral ordinates used for calculations 

were obtained from Fig. E.4. 

Building Code Approach. In the quasi-static building code approach, 

the force in the base spring is approximated by mUltiplying the total mass 

of the building by the spectral acceleration, obtained from Fig. E.4, in 

the first mode of vibration. The building code base force is denoted by 

(Q) -. , 1/ code 

Both Springs Elastic. The results of calculations for the case where 

both springs responded elastically to the pulse base motion are presented 

in Table E.1. As would be expected, the sum of the absolute values of 

the modal quantities procedure for combining modes gave forces, (Ql) max 

and (Q2) ,and deformations, (u 1) ; and (u 2) ,that were close to max max max 
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the time-history values over a wide range of frequency parameters.* The 

square root of the sum of the squares of the modal quantities approach also 

g a v e for c e s , ( Q 1 ) ban d (Q ) and de for ma t ion s, ( u 1 ) band ( u 2) b ' pro 2 prob' pro pro 

that were close to the time~history response; however, in the low frequency 

region this procedure slight]y underestimated the time-history response. 

In the medium and high frequency ranges, the base spring forces in 

the first mode, (Ql)lst' were almost the same as the time~history forces. 

Consequently, it can be assumed that the response was primarily in the first 

mode in these frequency ranges. 

The building code method of calculating the base spring force, (Ql~ode' 

gave good estimates of the time-history spring forces in the medium and 

high frequency ranges. 

Base Spring Permitted to Yield while Second Spring Remained Elastic. 

The results of calculations for the case where the base spring responded 

with a ductility of 3 and the second spring responded elastically are 

presented in Table E.2. The modal and approximate calculations were 

performed using the response spectrum for ~ = 3 shown in Fig. E.4 for both 

modes of vibration. Modal analysis gave results that were reasonably close 

to, although in general sl ightly under, the time-history values for the 

base smrfng forces, (Ql) and (Ql)-\ b' and base deformations, (u ) 
~ max pro 1 max 

and (u
1
) bO In the medium and hig~ frequency ranges, the base spring pro 

forces in the first mode, (Ql)lst' were almost the same as the time-history 

values. For the medium and high frequency systems, the base spring forces 

estimated by the building code approximation, (Ql) d' were \vithin 10 co e 

* The different frequency ranges of the elastic single~degree~of-freedom 
response spectrum are defined in Section E.2. 
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percent of the forces obtained by time-history analysis. 

Unfortunately, the elastic second spring forces calculated by the 

modal method, (Q2) and (Q2) b' were significantly less than the max pro 

time-history values. On the other hand, the elastic deformations 

calculated by the modal method, (u 2) and (u 2) b' were much larger 
ma~ pro 

than the time-history values. Therefore, it can be observed that the 

modal method, as used in this study, provided very poor estimates of the 

response quantities for the elastic second spring. 

Example. As an example of the procedure used to obtain the 

entries to Table E.2, consider the following calculations for 

a system with m = 1.0 k-sec2/in. and k = 103.4 kline For this 

system 

fl = 1.0 cps 

f2 = 2.618 cps 

W1 = 6.283 rad/sec 

W2 = 16.45 rad/sec 

Assume that the duration of one-half of the pulse base motion 

is tl = 1.0 sec and the maximum ground velocity is v = 10 in./sec. 

The spectral yield displacements and accelerations obtained from 

Fig. E.4 for elastoplastic systems with a ductil ity of ~ = 3 are 

D1 = 0.86(10 in./sec)/(6.283 rad/sec) = 1.37 in. Al = 54.1 in./sec
2 

02 = 0.25(10 in./sec)/(16.45 rad/sec) =0.152 ih. A2 = 41.1 in./sec
2 

in which 01 and D2 represent the values of uy for the first and 

second modes of vibration, and Al = W~ 01 and A2 = w~ 02· 

The inelastic response quantities can be estimated by means 

of the modal method using the following procedure. 

Mass Number, i 0 2 

(a) mode sha~es, i~n) 
(1) I 

0.724 1. 171 
(2) 0.276 -0.171 

(b) modal forces, 
'V (n) A , k cpo m. 

(1) I I n 
39.2 63.3 

(2) 11.3 -7.03 
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(c) modal shears, k 

(1) 103 63.3 
(2) 4.27 -7.03 
(Qj) max 107 70.3 
(Qj)prob 103 "63=:=J 

(d) modal absolute yield displacements, ,¢(n) D in. 
(1) 

I n' 
0.992 1.60 

(2) 0.0420 -0.0260 

(e) modal relative lield displacements, in. 
(0 0.992 0.608 
(2) 0.0420 -0.0680 
(u i) max/11 1.03 0.676 
(u i ) pr.ob/11 0.993 0.612 

(f) total relative dis~lacements, in. 
(u i) max 3.09 2.03 

(uj)prob 2.98 1 .84 

Also, the base spring force can be estimated using the first 

mode approximation and the quasi-static building approach. In 

the building code approach, the base spring force is calculated 
N 

from the expression (Ql) d = Al .E l m. where m. is the lumped co e 1= I I 

mass at the i-th degree-of-freedom and N is the number of 

degrees-of-freedom. Thus 

(Ql)lst = 103k 

(Ql) d = (54.1 in./sec
2

) (1.0 k'=sec2/in. + 1.0 k-sec2/in.) 
n co e 

= 108 k 

The time-history response values are obtained from Fig. 

E.5(a) and (b) for the spectra where 111 = 3. Thus, (u 1)y = 

0.70(10 in./sec)/(6.283 rad/sec) = 1.11 in., (u1)m = 3(1.11 in.) = 

3.33 in. and (u
2

)o = 0.53(10 in./sec)/(6.283 rad/sec) = 0.844 in. 

Also, (Ql)y= (103.4·k/in.) (1.11 in.) = 115 k and (Q2)o = 
(103.4 k/in.)(0.844 in.) = 87.3 k. 

The entries to Table E.2 can now be obtained by normal izing 

the response quantities calculated above using the modal method 

and the approximate procedures by the corresponding time-history 

response quantities. 
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Second Spring Permitted to Yield while First Spring Remained Elastic. 

In Table E.3 comparisons are presented for the case where the base spring 

responded elastically and the second spring responded with a ductil ity of 3. 

The modal method and approximate calculations were performed using the 

response spectrum for ~ = 3 in Fig. E.4. For all frequency ranges, the 

modal method and approximate procedures gave estimates of the elastic base 

spring forces, (Ql)max' (Ql)prob' (Ql)lst and (Ql)code that were signifi

cantly under the time-history values. The elastic base spring deformations, 

(u 1) and (u 1) b' were in general overestimated by the modal calculations. max pro 

In short, the estimates of the response quantities for the elastic base 

spring were poor. 

further, for most frequencies even the inelastic second spring forces, 

(Q ) and (Q ) and the inelastic second spring deformations. 2 max 2 prob' . 

(u 2)max and (u 2)prob' were underestimated by the modal method calculations. 

Both Springs Permitted to Yield. The comparisons are extended in 

Table E.4 to the case where both springs responded with a ductility of 3. 

Once again the modal and approximate calculations were performed using 

the response spectrum for ~ = 3 in Fig. E.4. In all cases, it can be 

observed that the modal and approximate calculations gave response values 

that were quite close to the time-history values. 

Summary. From the studies on two-degree~of-freedom elastoplastic 

systems sUbjected to pulse base motion, the following observations can 

be made: 

(1) Good estimates of the response quantities were obtained using 

the modal method in conjunction with response spectra for elastic systems. 

And for elastic systems the sum of the absolute values of the modal 
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quantities procedure was the most appropriate method to use to combine 

modes. 

(2) For systems with fundamental frequencies of elastic vibration 

in the medium and high frequency ranges of the elastic response spectrum, 

the elastic response was primarily in the first mode. Consequently, the 

quasi-static building code approach gave good estimates of the elastic 

base spring force for such cases. 

(3) Provided yielding was concentrated in the base spring, the modal 

method used in conjunction with inelastic response spectra gave reasonable 

estimates of the response quantities for the base spring. The response 

quantities in the elastic second spring were poorly predicted. 

(4)· Provided yielding was concentrated in the base spring, and 

provided the fundamental frequencies of elastic vibration of the systems 

fell in the medium and high frequency ranges of the elastic response 

spectrum, the inelastic base spring forces were predicted with reasonable 

accuracy using the building code approach. 

(5) If yielding was concentrated in the second spring, all response 

quantities were poorly predicted using the modal method and approximate 

calculations. 

(6) For the one special case studied where both springs could yield 

and both springs responded with the same ductility, the response quantities 

predicted by the modal method, by the first mode approximation, and by the 

building code approach were nearly the same as the time-history response 

quantities. 
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E.5 Design Appl ications 

It is the objective of this ·section to discuss the appl ication of 

some of the knowledge gained from the study of simple elastoplastic 

multi-degree-of-freedom systems to the design of low-rise steel buildings. 

In order to facil itate comparisons, it is necessary to define some 

of the dynamic characteristics of low-rise steel buildings of the types 

considered in this study. The fundamental frequencies of elastic vibration 

of two- or three-story low-rise steel buildings are often in the range of 

about 1 to 8 cps. Thus, the frequencies fall in the medium or high 

frequency ranges of elastic design response spectra for earthquake base 

motion. The yie1d story shear capacities of low-rise steel buildings 

often are reasonably uniform over the heights of the structures, and the 

comments to follow pertain in general to this type of building. 

In interpreting the theoretical studies in the 1 ight of practical 

applications, it is necessary to focus on the behavior of the two-degree-

of-freedom simple systems in the medium and high frequency ranges when 

subjected to the pulse base motion. For frequency parameters in these 

frequency ranges, i.e., fltl > 0.6, it can be seen from Fig. E.5 that the 

quantity (V
1
)y is nearly equal to or is larger than the quantity (V 2)oo 

This impl ies that, if the yield resistances of the base spring and the 

second spring are about equal, yielding will 1 ikely be concentrated in 

the base spring. 

Also pertinent to this discussion are the findings of Veletsos and 

Vann (1971) who studied simple, uniform, elastoplastic, shear-beam systems 

of a few degrees-of-freedom subjected to pulse and earthquake base motion. 

In their studies all springs of the systems were permitted to yield. 
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They found that, except for a relatively narrow portion of the low 

frequency region of the elastic response spectrum, the maximum elastic 

deformation of the base spring was significantly greater than the elastic 

deformations in the upper portions of the system. Further, in the high 

frequency range and a portion of the medium frequency range, the elastic 

response was primarily in the first mode, with the maximum deformations of 

the individual springs being reached, for all practical purposes, simulta

neously. Consequently, when the systems were allowed to yield, the maximum 

deformation occurred in a spring other than the base spring only for systems 

with a small ductil ity and only for systems with a fundamental elastic 

frequency of vibration in a relatively small portion of the low frequency 

range. Thus, in the frequency ranges of interest for low-rise buildings, 

the maximum deformations occurred in the base spring. 

From consideration of simple systems subjected to pulse and earthquake 

base motion generally, it appears unl ikely that a building will respond with 

uniform inelasticity during earthquake ground motion. In fact, the studies 

referred to above strongly imply that the maximum inelastic deformations 

will often occur in the base story. This suggests developing a design 

criterion for certain types of low~rise buildings which assumes the base 

story is the critical link in the seismic load resisting system. 

in the frequency ranges of interest for low-rise steel buildings, 

the results of the studies recorded in this appendix indicate that the 

modal method or the quasi-static building code approach can be used to 

estimate response quantities. 



fltl (Ql )max/(Ql) 0 

(u 1) /(u1)o max 

O. 1 1. 15 

0.2 1. 01 

0.3 1. 01 

0.4 1.02 

0.6 1. 0 1 

0.8 1. 01 

1.0 1. 02 

1.4 1.02 

2.0 1. 03 

3.0 1 .03 

TABLE E.l COMPARISON BETWEEN MODAL AND TIME-HISTORY 
CALCULATIONS, BOTH SPRINGS ELASTIC 

(Ql)prob/(Ql)o (Ql)lst/(Ql)o. (Ql) code/ (Ql) 0 (Q2)max/(Q2) 0 

(u 1) b/(u 1)0 . pro (u2) /(u2)o max 

0.85 0,77 0.81 1. 26 

0.73 0.62 0.65 1 .01 

0.80 0.77 0.81 1. 01 

o. ~33 0.93 0.98 1. 06 

o. ~39 0.98 1.04 1 .03 

o. ~38 0.98 1 .03 1.02 

0.99 0.99 1 .04 1 . 13 

0.98 0.98 1 .03 1 . 19 

o. ~39 0.99 1 .05 1 . 16 

o. ~37 0.96 1 .02 1 .26 
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TABLE E. 2 CO~~PARISON BETWEEN MODAL AND TIME-HISTORY CALCULATIONS, BASE SPRING ELASTOPLASTIC* 

~1 tl (Ql) max! (Ql) y (Ql)prob!(Ql)y (Ql) 1st! (Ql ) y (Ql)code!(Ql)y (Q2)max!(Q2) 0 (Q2)prob!(Q2)o (u2) !(u2)o max (UZ)prob!(U2)o 

(u 1) !(u 1) max m (u 1) b!(u 1) pro m 

0.1 0.99 0.78 0.74 0.79 0.78 0.56 2.34 1.68 

0.2 1.39 1.00 0.81 0.85 0.79 0.59 2.37 1.77 

0.3 1. 23 0.91 0.79 0.84 0.65 0.47 1. 95 1.41 

0.4 0.94 0.82 0.81 0.86 0.49 0.38 1. 47 1. 14 

0.6 0.90 0.86 0.86 0.90 0.51 0.45 1.53 1.35 

0.8 0.91 0.88 0.88 0.93 0.53 0.49 1. 59 1.47 

1.0 0.93 0.90 0.90 0.94 0.81 0.73 2.41 2.18 

1.4 0.97 0.92 0.92 0.97 0.81 0.72 2.43 2.16 

2.0 1. 08 1. 01 1. 01 1.07 1. 13 0.97 3.39 2.91 

3.0 0.99 0.93 0.93 0.98 1. 02 0.88 3.06 2.64 

* For the time-history calculations, the ductility of the base spring was 3 and the second spring \"!as elastic. 

U1 
o 



TABLE E.3 COMPARISON ISTORY , SECOND SPRI ELASTOPLASTIC* 

r 
(Ql)max!(Ql)o (Ql) prob!(Ql) 0 

(u 1) !(u 1)o (u 1)prob!(u 1)o (Ql)lst!(Ql)o (Ql)code!(Ql)o (Q2)max!(Q2)y (Q2) prob! (Q2\ fl tl max 

(u 2)max!(u2)m (u 2) prob!(u2)m 

0.1 0.34 0.27 1. 02 0.81 0.26 0.27 0.96 0.68 

0.2 0.46 0.33 1.38 0.99 0.27 0.28 0.74 0.55 \J1 

0.3 0.39 0.29 L 17 0.87 0.25 0.27 0.55 0.39 

0.4 0.51 0.45 1. 53 1.35 0.44 0.47 0.72 0.56 

Cl.6 0.48 0.46 1. 44 1. 38 0.46 0.48 0.67 0.59 

0.8 0.52 0.50 1. 56 1. 50 0.50 0.53 0.79 0.72 

1.0 0.55 0.53 1. 65 1. 59 0.53 0.56 0.86 0.78 

1.4 0.64 0.61 1. 92 1.83 0.61 0.64 1.00 0.89 

2.0 0.51 0.48 1. 53 1.44 0.48 0.51 0.79 0.68 

3.0 0.82 0.77 2.46 2.31 0.77 0.82 1.25 1. 08 

* For the time-history calculations, the base spring was elastic and the ductility of the second spring was 3. 

1--.... __ _ _____ ~. ____ ._._~.~._ .. ___ ~ ___ ._. ____ ~ ___ .. __ "_~ _____ . ____ ~ ____ ,_.~ ___ ~ ______________ --
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max m 

1 .0 1 .00 

TABLE E.4 COMPARISON BETWEEN MODAL AND TIME-HISTORY 
CALCULATIONS, BOTH SPRINGS ELASTOPLASTIC 

(Ql)prob/(Ql)y (Ql) Ist / (Ql)y (Ql)code / (Ql)y (Q2)max / (Q2)y 

(u 1) b/(u 1) pro m 
(u

2
) I (u2

) 
max m 

'0.96 0.96 1 .01 1.24 

* For the time-history calculations, the ductility of both springs was 3. 
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APPENDIX F. DETAILED RESULTS OF THE TIME-HISTORY CALCULATIONS 

This appendix contains the detailed numerical data that were generated 

from the time-history analyses of the building designs considered in this 

study. The four time-history analysis cases considered are described in 

Chapter 4. 

The inelastic hinge rotations for the building designs are given in 

Figs. F.l through F.4. In Figs. F.2 and F.4(a), the maximum inelastic 

hinge rotations and the locations of the inelastic hinges on the structures 

during dynamic motion are presented. In Figs. F.l, F.3 and F.4(b) the 

cumulative hinge rotations, i.e., the sum of the absolute values of all 

the inelastic rotations occurring at a given hinge location during dynamic 

motion, are presented. The cumulative hinge rotations are normal ized by 

the associated maximum inelastic hinge rotations. The data presented in 

Figs. F.l through F.4 are supplementary to the data discussed in Section 

4.2.2. 

In Tables F.l through F. 12 are tabulated (a) the story shear 

coefficients, i.e., the story shears divided by the corresponding 

building weight, (b) the maximum story displacements relative to the 

ground, and (c) the maximum (relative) story drifts for the building 

designs considered. Tables F.l through F.12 supplement the information 

discussed in Sections 4.2.3 and 4.2.4. 
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TABLE F.l TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUilDING DESIGN 2-A 

Elastic Inelastic Inelastic + P~ 

Story Shea r Coefficients 

2 0.320 0.315 0.314 
1 0.731 0.626 0.622 

Story Displacements ( in. ) 

2 L 17 1 • 17 1. 18 
1 0.879 0.821 0.822 

Story Drifts (%) 
2 0.268 0.264 0.263 
1 0.611 0.570 0.571 

TABLE F.2 TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUilDING DESIGN 2-B 

Elastic Inelastic Inelastic + p~ 

Story Shear Coefficients 

2 0.355 0.251 0.252 
1 0.792 0.326 0.326 

Story Displacements ( in. ) 

2 3.11 2. 18 2.20 
1 2.16 1 .89 1. 94 

Story Drifts (%) 
2 0.673 0.475 0.481 
1 1. 50 1. 31 1.35 
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TABLE F.3 TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUILDING DESIGN 2-C 

Elastic Inelastic Inelastic + P-fl 

Story Shear Coefficients 

2 0.250 O. 118 O. 11 1 
1 0.528 0.144 O. 154 

Story Displacements ( in. ) 

2 5.21 3.31 3.90 
1 3.66 2.91 3.46 

Story Drifts (%) 
2 L 21 0.571 0.543 
1 2.54 2.02 2.40 

TABLE F.4 TIME-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-D 

Elastic Inelastic Inelastic + Pfl Inelastic + FEF 

Story Shear Coefficients 

2 0.430 0.344 0.340 0.343 
1 0.814 0.517 0.510 0.510 

Story Displacements ( in. ) 

2 3.01 2.46 2.48 2.45 
1 1. 59 1. 54 1. 56 1. 52 

Story Drifts (%) 
2 0.990 0.750 0.743 0.750 
1 1. 10 1. 07 1 .08 1 .06 
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TABLE F.5 TIME~HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-E 

Elastic Inelastic Inelastic + P~ Inelastic + FEF 

Story Shear Coefficients 

2 0.237 0.184 0.187 O. 185 
1 0.441 0.276 0.272 0.276 

Story Displacements ( in.) 

2 3. 12 2.54 2~70 2.63 
1 1. 95 1. 91 2.06 1 .99 

Story Drifts (%) 
2 0.963 0.739 0.757 0.740 
1 1. 35 1. 33 1. 43 1.38 

TABLE F.6 TIME-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-F 

Elastic Inelastic Inelastic + P~ Inelastic + FEF 

Story Shear Coefficients 

2 0.445 0.445 0.445 0.351 
1 0.655 0.655 0.658 0.626 

Story Displacements ( in. ) 

2 2. 14 2.14 2.16 2.12 
1 0.832 0.832 0.846 0.806 

Story Drifts (%) 

2 0.925 0.925 0.931 0.920 
1 0.578 0.578 0.588 0.560 
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TABLE F.7 TIME ... HISTORY RESPONSE QUANTITIES FOR X~BRACED FRAME DESlGN 2-G 

Elastic Inelastic Inelastic + P~ 

Story Shear Coefficients 

2 0.376 0.197 0.190 
1 0.883 0.197 o. 194 

Story Displacements ( i' n . ) 

2 2~76 3.78 4.05 
1 1.94 3.41 3.86 

Story Drifts (%) 
2 0.574 0.313 0.291 
1 1. 35 2.37 2.68 

TABLE F.B TIME-HISTORY RESPONSE QUANTITIES FOR X-BRACED FRAME DESIGN 2-H 

Elastic Inelastic Inelastic + P~ 

Story Shear Coefficients 

2 0.309 0.235 0.220 
1 0.738 0.333 0.330 

Story Displacements ( in. ) 

2 1 .28 1.83 1 .68 
1 0.956 1. 59 1. 48 

Story Drifts (%) 
2 0.278 0.212 0.199 
1 0.664 1.11 1 .03 
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TABLE F.9 TIME'""-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 3-A 

Elastic Inelastic Inelastic + PLi 

Story Shear Coefficients 

3 0.184 0.137 0.134 
2 0.351 0.233 0.221 
1 0.499 0~253 0.241 

Story Displacements ( in.) 

3 5.86 3.98 4.19 
2 4. 14 2.98 3.10 
1 1.89 1. 87 1.95 

Story Dr i fts (%) 

3 1.65 1 . 15 1 . 15 
2 1 ~ 77 1. 16 1. 15 
1 1.43 1. 41 1.48 

TABLE F.10 TIME~HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 3-B 

Elastic Inelastic I ne 1 as tic + P Li Inelastic + FEF 

Story Shear Coefficients 

3 0.249 0.199 0.194 0.192 
2 0.331 0.301 0.304 0.299 
1 0.467 0.442 0.438 0.436 

Story Displacements ( in. ) 

3 3.54 3.62 3.61 3.45 
2 2.06 2. 12 2.16 2.06 
1 0.840 0.832 0.857 0.805 

Story Drifts (%) 

3 1. 26 1. 33 1.32 1. 22 
2 0.989 1. 01 1. 03 0.993 
1 0.636 0.630 0.649 0.610 
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TABLE F.11 TIME ... HISTORY RESPONSE QUANTITIES FOR X~BRACED FRAME DESIGN 3-C 

Elastic Inelastic Inelastic + Pll 

Story Shear Coefficients 

3 0.205 0.142 0.108 
2 0.529 0.197 0.195 
1 0.618 0.197 0.194 

Story Displacements ( in. ) 

3 3.53 4.03 3.71 
2 2.99 3.69 3.44 
1 1. 61 2.87 2.95 

Story Drifts (%) 

3 0.406 0.281 0.215 
2 1 .05 0.711 0.614 
1 1 .22 2.18 2.23 

TABLE F.12 TIME-HISTORY RESPONSE QUANTITIES FOR X-BRACED FRAME DESIGN 3-D 

Elastic Inelastic Inelastic + Pll 

Story Shear Coefficients 

3 0.226 0.194 0.167 
2 0.632 0.317 0.315 
1 0.827 0.317 0.313 

Story Displacements ( in. ) 

3 2.74 2.46 2.34 
2 2.37 2. 17 2.17 
1 1. 34 1. 70 1.70 

Story Drifts (%) 

3 0.278 0.239 0.207 
2 0.779 0.426 0.409 
1 1.02 1.29 1. 29 
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