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CHAPTER 1 

INTRODUCTION 

1.1 General Remarks 

Earthquake-resistant design, perhaps more than any other branch of 
engineering, is characterized by very high levels of uncertainty, because 
(1) of the unpredictability of the characteristics and intensities of the 
ground motion of future earthquakes; (2) the lack of precise information 
on the structural properties, especially those pertaining to the dynamic 
behavior of systems; and finally, (3) the numerous assumptions and 
simplifications that the designer is forced to make in order to reduce 
the complexity of the dynamic problem for practical applications. Under 
these circumstances, the correct determination' of the levels of risk 
implicit in the design of structures located in seismic areas becomes an 
important objective of the process of design. In fact, this is the basis 
for the development of a proper earthquake-resistant design. 

Current earthquake-resistant design techniques, as represented by 
construction codes, recognize the existence of uncertainty, but rely on 
intuitively determined overall factors of safety to obtain proper designs. 
As a consequence, the true levels of risk underlying a given design are 
unknown. Moreover, the results of new investigations and new developments 
that could reduce the existing uncertainties cannot be incorporated 

systematically into the design process. 
For these purposes, a method of reliability evaluation is required. 

In this regard, it should establish the basis for the assessment of the 
reliability of each of the potential modes of failure in a structure under 
the various earthquake intensities. In doing this, it may be emphasized 
that meaningful expressions of safety can only be formulated if the 
uncertainties in the loads and the structural properties, as well as the 
inaccuracies of the load and resistance prediction models, are duly 

considered. 
Appropriately, several authors have suggested the use of probability 

concepts in the analysis of structural safety [11,22, 37, 72J. 
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It is recognized, in particular, that the proper treatment of uncertainty 
requires concepts of the theory of probability; accordingly, the loads 
and strengths are treated as random variables, and the reliability of a 
structure, or conversely of the risk involved in a given design, is 
expressed in terms of the probability of failure. This study is concerned 
with such reliability analysis with special reference to reinforced 
concrete structures subjected to earthquake forces. 

1.2 Related Previous Studies 

The problem of structural safety involves two main areas of study; 
the analysis and assessment of uncertainties, and the quantitative 
evaluation of risk [3J. The analysis of uncertainties associated with 
earthquake loadings and structural response, may be divided into three 

groups: 

1. Those concerned with the estimation of future earthquake 
intensities commonly referred to as "seismic risk analysis". 
In these studies, the maximum ground intensity at a site 
(usually expressed in terms of the maximum value of the ground 
displacement, velocity, or acceleration) is expressed in terms 
of the return period. The first seismic risk models were 
introduced by Cornell [30J, Milne and Davenport [67J, and 
Esteva [35J. Implicit in these models is the assumption that 
the energy released during an earthquake is concentrated at a 
point (point-source models). Although this assumption may be 
acceptable for small earthquakes, it would not be valid for the 
case of major earthquakes in which the energy ;s released along 
fault slips that may be hundreds of kilometers long. To overcome 
this difficulty, Ang [9J and Der-Kiureghian and Ang [31J developed 
a model which takes into account the relation between magnitude 

and the length of the fault slip (line-source model). 

2. Those dealing with the modeling of the random earthquake motion 
itself; appropriately, stochastic models were used for this 
purpose. Examples of these models include stationary processes, 
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such as white-noise, continuous Gaussian random process 
(see for example References [56, 72, 77J)~ and non~stationary 
processes, obtained by multiplying a stationary process 

by a deterministic envelope function of time [7, 53, 83J. 
These are then used to generate artificial earthquakes, for use 
in time history analysis, or for the direct estimation of the 
maximum response statistics through random vibration theory. 
More recently, response spectra corresponding to specified 
probability levels have been used to represent the statistical 
properties of the ground motion at a site. These are obtained 
through the analysis of normalized earthquake records [21,69,71, 

89J'or by '-inear regression analysis techniques [36, 64J. 

3. Those whose objective is the statistical evaluation of the 
response. In the case of linear structures, the theory of random 
vibrations is commonly used for this purpose [9, 41, 56, 77, 94, 

95J. The results of recent studies [17, 58J seem to indicate that 
the response spectrum approach may also be used to estimate the 
statistics of the response of multidegree of freedom systems. 
In the case of nonlinear systems the response statistics are 
usually obtained by time-history analysis of artificially generated 
earthquake motions [78J, although some approximations for elasto­
plastic systems, or systems with mild nonlinearities are possible 

through random vibration theory [41,56, 57J. All of these 
studies, however, consider the structural properties to be 

deterministic. The problem of systems with random structural 
properties subjected to random earthquake motions remains an 

area for further study. 

The problem of structural safety under extreme hazards in general was 
discussed by Ang [10J. Rosenblueth and Esteva [86J indicated conceptually 
how the statistics of the load effects may be obtained for the case of 
earthquakes of prescribed intensity. Similarly, Esteva and Villaverde [36J 
presented a formulation for the analysis of the probability distribution 
of the maximum seismic response of systems with imperfectly known properties. 

Although these studies are important steps in the analysis of 
structural safety under earthquake loading, the actual levels of risk 
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involved in modern earthquake-resistant design of reinforced concrete 
structures remain unknown because: (1) realistic values of the uncertainties 
in the properties of structures under dynamic loading are not available; 
and (2) a general procedure that includes the uncertainties in the load 
effects and the structural response evaluation has not yet been developed. 

1.3 Objectives and Scope of Present Study 

This study is intended to provide a basis for determining the level 
of risk involved in current earthquake-resistant designs, with special 
reference to reinforced concrete structures. For this purpose, the loads 
and structural properties are assumed to be statistically independent 
random variables. It is so assumed that the first and second moment 
statistics of these variables are sufficient to estimate the required 
risks. 

As a first step, the basic variabilities of the loads and structural 
properties, as well as the inaccuracies in the loads and resistance 
prediction methods are carefully examined and assessed; the required risks 
are then obtained by evaluating the probabilities of failure, in flexure 
and shear, of individual components of reinforced concrete buildings 
designed in accordance with current design codes when subjected to 
earthquakes of prescribed intensities. In this regard, available 
reliability model [8, llJ is used as the basis of the reliability 

analysis (see Sect. 1.4). 
Only linear structures are considered, and IIfailure ll pertains to the 

first sign of distress in one or more members of a structure. Thus, 
failure means that a structure (or structural element) has been stressed 
beyond the elastic range; in particular, this does not necessarily mean 
that collapse or even serious structural damage has occurred, unless the 
structural elements are not provided with adequate ductility. However, 
from the observation of the performance of modern structures during 
earthquakes [lOlJ, there is evidence to indicate that when a structure 
becomes inelastic, architectural damage usually occurs which may 
represent an important portion of the total cost of the building 
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(especially in framed structures). On this basis, the probability of 

failure calculated herein represents the risk of some (may be only local) 
structural damage. 

1.4 Basic Reliability Model 

Existing reliability model [8, llJ will form the basis for this 
study. The essence of this model may be described as follows. 

Let Y be a random variable representing, for example, the resistance, 
R, or the applied load effect, 5, in a given member of a structure. 

Invariably, Y is a function of other variables; e.g., 

( 1 . 1 ) 

Presumably, the model for Y, as represented by the function of 
Eq. 1.', as well as X, , ... ,X n, would represent reality exactly. In 
practice, however, this is not possible; f and Xl 'D .. ,Xn must be predicted 
or estimated, and thus are subject to prediction errors. To adjust for 
an imperfect prediction, corrective factors Nf and NX. are introduced, 
such that 1 

and 

A 

f = N f 
f 

X. = NX X. 
1 . 1 

1 

(1 .2) 

(1 .3) 

where f is the empirical or theoretical function adopted as a model of f, 
A A 

and X. is the model of X .. 
1 1 

means Nf , NX
i 

and xi' and 

Here, Nf , NXi and Xi are random variables with 

coefficients of variation (c.o.v.) DNf ' ~Xi 

and oX;, respectively. The uncertainties associated with the basic 

variability in Xi are, therefore, measured by 0Xi ; whereas ~X; represents 
the prediction uncertainty in X .. Consistent with the first-order 

1 
approximation, ~Xi will be ascribed entirely to the uncertainty in the 

predicted Xi. Furthermore, the mean values Nf and NX. represent, 
1 
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A 

respectively, the bias in the model f (usually a deterministic function) 

and the estimated mean xi" 
By first-order approximation, the total c.o.v. of X. then (by virtue 

1 
of Eq. 1.3) is 

Similarly, the total c.o.v. of f is 

where of r~presents the basic variability about the model function f 

of = 0 if f is deterministic. 

(1 .4) 

(1 .5) 

Substituting Eqs. 1.2 and 1.3 into Eq. 1.1, and using a first-order 

approximation, the mean and c.o.v. of Yare easily found to be [99J 

and 

(~12 aX. 
1 

1-1 

in which AX. X. is the correlation coefficient between X. and X .. 
l' J 1 J 

Procedures for estimating the basic variabilities and prediction 

uncertainties, as well as PX. X. , from typical sources of information 
l' J 

are given in Refs. [99~ 105 J. 

(1 .6) 
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In some cases, the component variables Xl"",Xn may be functions 
of other variables; e.g., 

Xi = gi (Zl' Z2'··· ,Zm) for i = 1, ... ,n (1.8) 

In such cases, the mean and c.o.v. of Xi may be found using a procedure 
similar to the one just described for Y. The estimation of the correla­

tion coefficient (or covariance) between Xi and Xj ' necessary for the 
estimation of Qy (see Eq. 1.7) may be difficult to obtain in general. 
However, if the correlation between Xi and Xj exists because of functional 
relationships (e.g., X. and X. are functions of certain common variables), 

1 J 
an approximate expression for COV[X.X.], consistent with the first-order 

1 J 
approximation, is given by (see Appendix A), 

(1.9) 

where Z~, for ~ = 1, ... , p are the variables common to both X. and X .. 
x- 1 J 

Finally, for statistically independent Rand S, the failure probability 
is easily obtained for prescribed distributions [8J. In particular, for the 
case of lognormally distributed Rand S 

1 + Q2 
S 

where ~(-) is the standard normal probability distribution function. 

1.5 Organization 

Chapter 2 contains the formulation of resistance models, in 

flexure and shear, of typical beams and columns found in 'reinforced 

concrete earthquake-resistant designs. 

(1.10) 
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Chapter 3 contains an analysis of structural system models for 
dynamic response determination. Its purpose is to assess the variabilities 
in the properties of reinforced concrete structural systems and those 
underlying their mathematical idealization. The dynamic properties of 
the systems, mainly, natural frequencies, model shapes, and damping, 
are examined. 

The analysis and modeling of loads are discussed in Chapter 4. 

Various dead and live load models are reviewed relative to the determination 
of loads for seismic consideration. Different methods for specifying the 

ground motion inputs are studied; these include the time-history approach~ 
response spectrum techniques, and random vibration analysis. Mean-values 
and coefficients of variation of the maximum response of multi-degree-of­
freedom systems calculated using these models are compared, and the adequacy 
of the response spectrum approach to represent earthquake motions is 
discussed. On these bases, the statistics of the total load effects, as 
obtained from the simultaneous action of dead, live, and earthquake loads 
are assessed. 

Risk levels involved or implicit in present design codes are evaluated 
in Chapter 5. For this purpose, typical designs of reinforced concrete 
structures are obtained by applying the provisions of the SEAOC code [90J, 
and the probabilities of failure are evaluated accordingly. 

Chapter 6 contains the summary and principal conclusions of this study. 

1 . 6 Nota t ion 

When applicable, conventional ACI notation is used herein. The other 
basic symbols used in this study are as follows: 

o 
E 

L 

Pf 

random variable describing 
random variable describing 

random variable describing 
probability of failure 

the unit dead load 
the earthquake load 
+hl"\ 
1,,111:::: unit live load 

R random variable describing member resistance 
Si random load effect from load i 
X predicted mean of random variable X 

(psf units) 

(psf units) 
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/).X prediction uncertainty in X 

Ox coefficient of variation (c.o.v.) of X 

llX mean value of X 

PX. ,X. correlation coefficient between Xi and X. 
1 J J 

aX standard deviation of X 

Q
X total uncertainty in X, equal to /o~ + /).2 . X 
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CHAPTER 2 

ANALYSIS OF RESISTANCE MODELS 

2.1 Introductory Remarks 

The purpose of this chapter is to formulate resistance models needed 
in the reliability analysis of reinforced concrete structures under dynamic 
loading. Resistances in flexure, shear, and axial load are considered. 

Because of the way that members are fabricated or constructed, the 
resistances between any two points along a member are invariably highly 
correlated. In particular, the yield strengths and areas of reinforcing 
bars may be assumed to be perfectly correlated along a member; however, 
the flexural and shear reinforcements may be assumed to be statistically 
independent. 

2.2 Flexure and Axial Load 

2.2. 1 Equat i on's of Fl exura 1 Capaci ty -- For the purpose of thi s 

study, flexural failures are assumed to occur when the tension reinforce­
ment yields (tension failure), or when the strain at the extreme edge of 

the concrete compression zone reaches a maximum value of ECU = 0.004 
(compression failures). Properly then, the flexural resistance should be 

expressed in terms of the yield moment capacity, My, in the case of 
tension failure; whereas the ultimate moment capacity, Mt , should be 
used for this purpose in the case of compression failure. However, 
the difference between Mt and My in the first case is very small, and, 
for practical purposes, Mt may be used instead of My' On this basis, 
the ultimate moment, Mt , will be used in formulating the flexural 
strength of reinforced concrete members in general. 

The ultimate moment capacity of reinforced concrete members is not 
affected by load reversals if adequate shear capacity is provided [16, 
27, 40, 87J. Thus, expressions for Mt may be obtained through the 
application of the lI ultimate strength" theory of reinforced concrete 
[49, 61J. For rectangular sections, having the steel placed parallel 

to the two end faces (neglecting slenderness effects) 
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(2.1) 

in which conventional ACI notation [4J is used; Mt is measured from the 
mid-height of the section, which corresponds to the plastic centroid in 
the case of symmetrically reinforced sections; n = k2/klk3 is a parameter 
describing the characteristics of the concrete stress block distribution 
[49, 61J; and P is the applied axial load. 

If the compression reinforcement yields (i.e., f' = f ), f may be s y s 
found by solving a strain compatibility equation simultaneously with the 
stress-strain curve of the reinforcement. This gives 

(2.2) 

in which 

c 1 = 1 [A ~ (f - k f I) - Es E - ~J 2 As y 3 c cu As 
(2.3) 

1 3 c + ~ (f _ k f') - ~ E 
[

k k f' bd A' J 
As As y 3 c As s ECU 

(2.4) 

Similarly, if the tension reinforcement yields (i.e., fs = fy)' then 

where 

(2.6) 

and 
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c
4 

__ [kl k3 f ~ bd i _ k f I _ As f - -h-J E E: 

A~ 3 c A~ y As s cu (2.7) 

2.2.2 Uncertainties in Flexural Capacity -- If the axial load is 
zero, as in the case of pure bending of beams, the flexural strength is 
fully defined by the section and material properties, and the statistics 

of Mt may then be evaluated from Eq. 2.1. The limitations on the maximum 
amount of tension reinforcement in structures subjected to seismic 
loading [4, 90J, makes tension failures nearly certain [33J; that is, the 

stress in the tensile reinforcement can be assumed to be equal to the 

yield stress. This is not necessarily true, however, for the compression 

reinforcement. If f~ < fy' then Eq. 2.5 must rst be substituted into 
Eq. 2.1 before the statistics of Mt can be evaluated. A possible approxi­

mation for this later case, that greatly simplifies the amount of numerical 

computation, is obtained by substituting f' in Eq. 2.1 by cSf , where _ _ s Y 
c5 = f~/fy (i.e., c5. is assumed to be constant). The error introduced in 
~Mt is negligible, as has been verified numerically. This is also true 
for the case in which P f O. 

In the case of beam-columns, that is when P f 0, there is no closed 

form function describing jointly the behavior of M and P, needed to 
evaluate the respective uncertainties. The uncertainty analysis is 
therefore complicated by the resistance being a function of the relative 
load effects. Resistance and load are no longer statistically independent, 

and simplifications must be sought. 
Ellingwood and Ang [33J assumed the applied moment and applied axial 

thrust to be perfectly correlated, and computed the statistics of the 

axial capacity in terms of material strengths, section parameters and 
load eccentricity. This assumption, however, does not seem appropriate 

for the case of structures subjected to seismic loading, because in many 

cases, moments and axial loads, may be induced by different types of loads. 

For example, in the case of an interior column of a symmetrical building, 

the axial load depends almost entirely on the dead and live loads, whereas 

the moment is due almost entirely to the earthquake load. Since the 

correlation between the load effects of different loads is small (in this 
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study they are assumed to be statistically independent), it is more 
appropriate to assume 
independent. 

moments and axial loads are statistically 

In computing the statis cs of M
t 

from Eq. 2.1, two types of column 
failures may be identi ed: when the axial load is small (i.e., P < PB), 
the section fails by yi ding of the tensile reinforcement (tension 

failures), and fs = fy; whereas for high axial loads (i.e., P > PB) 
failure is governed by the concrete reaching its ultimate strain, while 

the tensile reinforcement is still elastic (compression failure), and 

Eq. 2.2 must be substituted into Eq. 2.1 before the statistics of Mt can 
be estimated. Since P and PB are random variables, it is generally not 

possible to a tension or a compression failure will govern 

the design [33, 86J. However, in the case of reinforced concrete 
structures desi against earthquake loads, most columns are subjected 

to low axial loads, i.e., P < [20J, except in the case of extremely 

tall buildings; thus, ilure can be assumed to occur through tensile 
yielding. For simplicity this will be assumed in the following (the 

adequacy is assumption 11 be verified in the analysis of specific 
design examples). However, if needed, various procedures to include the 

possibility of compression failures may be included [33J. 
On the basis of the above assumptions, the relevant statistics of the 

flexural capacity of reinforced concrete beams and columns found in 
structures designed to resist earthquake forces are determined with Eq. 2.1 
where f = f and fi = (flff)f = cef . For this purpose, the statistics 

5 y S S Y Y ~ Y 
of the material and section properties given in Ref. [33J (as summarized 

in Table 2.1) are used. The statistics of P may be determined as described 

in Chapter 4. 

to its component, 

Appendix B. 

sions al derivatives of with respect 

ables needed in the evaluation of nM ' are given in 
t 

The total coeffi ents of variation are summarized in Fig. 2.1 for 
the following: (a) symmetrically doubly reinforced beams, as a function of 
the reinforcement ratio p; (b) unsymmetri ly doubly reinforced beams, as 

a function of the ratio of compressive to tensile reinforcement pUfp; and 
(c) symmetrically reinforced columns, as a function of the applied load 
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to the ba 1 anced load:l p/PB. I t may be observed from th is fi gure tha t, 
in the case of beams, nMt is almost constant for all values of the 
reinforcement ratio; whereas for columns, nMt depends on the axial load 
PIPB and, of course, also on the uncertainty in P. 

TABLE 2.1 UNCERTAINTIES IN DESIGN PARAMETERS 

Parameter 

f 
Y 

(Nominal 40 ksi) 

fy 
(Nominal 60 ksi) 

fc 
(Nominal 3 ksi) 

f c 
(Nominal 4 ksi) 

As 
b 

d 

h 

klk3 
n 

2.3 Shear 

Predicted 
Mean 

47.7 ksi 

64.0 ksi 

3.5 ksi 

4.7 ksi 

0.72 
0.59 
0.004 

Basic 
Variability 

0.09 

0.07 

0.12 

0.12 

0.02 
0.04 
0.07 
0.04 
0.12 
0.05 
0.12 

Prediction 
Uncertainty 

0.12 

0.12 

0.18 

0.18 

0.03 
0.02 
0.05 
0.02 
0.05 
0.00 
0.10 

Total 
Uncertainty 

0.150 

0.139 

0.21.6 

0.216 

0.036 
0.045 
0.086 
0.045 
0.130 
0.050 
0.156 

2.3.1 Equations for Shear Resistance -- The other mode of potential 
failure is through shear. The members are subjected to load reversals, as 
expected of structures under earthquake loading. In this regard, shear 
failure of a member is assumed to occur before the corresponding yield 

moment capacity is exceeded. 
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The so-called "shear-failure" is in fact a failure under combined 
shear and bending plus, occasionally, axial load and torsion [1, 14J. 
Shear stresses are transferred from one plane to another in various ways: 
shear stress in the uncracked concrete; interface shear transfer; dowel 
action; arch action; and through the shear reinforcement. Expressions 
for the shear capacity of reinforced concrete members that take into 
account all of these shear transfer mechanisms are not available. 

Usually, the so-called IItruss-ana1 0gy" is used for this purpose [14J. 
In this context, the shear capacity of a section is expressed as 

Vt = V + V c s 

where Vc is the "shear carried by the concrete ll at ultimate, and Vs is 
the shear carried by the transverse reinforcement. For the purpose of 
this study, Eq. 2.8 will suffice. 

(2.8) 

The shear carried by the concrete, assumed to be equal to that 
causing the first diagonal crack in a member without shear reinforcement, 
may be expressed as 

Vc = Vc bd (2.9) 

where Vc is an average stress (the nominal shear stress) assumed to be 
uniform over the area bd. The shear force carried by the web reinforcement 
is calculated on the assumptions that the inclined cracking has a horizontal 
projected length, d, and the reinforcement is yielding. If the stirrups 
are vertical and of the same size, then [14J. 

\I _ d 1\ .&: 

V S - S MV I Y (2.10) 

where s is the stirrup spacing and Av the stirrup area. The shear capacity 

is then 
d V = v bd + - A f t c s v y 

(2.11) 

Tests in which load reversals were applied indicated that the 
behavior of beams is not significantly affected by the application of a 
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few number of rel vely high loads, provided that the longitudinal 

reinforcement is kept within the elastic range [5, 14]. On this basis, 
information obtained from members loaded in one direction (no reversal) 
may be applied to the case of members subjected to load reversals. 
However, if the flexural reinforcement yields, test results indicated 

the necessity of ignoring the concrete shear-resisting mechanism -- at 
least its contribution [74J must be reduced. 

A number of semi-rational expressions have been developed to 
predict the shear cracking load of reinforced concrete members [1, 60, 

81,82, 106]. According to ACI [1, 4J, the shear stress at cracking 
may be calculated by 

TTl Vd -
Vc = 1.9 vf~ + 2500 p M ~ 3.5 If~ 

If axial load is present, Eq. 2~12 can still be used, except that M is 

substituted by 

However, v should sa sfy 
c 

v c ~ 3. 5 It; 11 + O. 002 :h 

(2.12) 

(2.13) 

(2.14) 

2.3.2 Uncertainty in Shear Capacity -- For purposes of this study, 
the statis cs of v are evaluated on the basis of Eqs. 2.12 through 2.14. 

c 
In doing this, it is assumed that the applied axial load and shear are 
statistically independent. Moreover, based on the analysis of various 

available expressions for vc ' it was determined that the ratio V/Mm (or 
VIM when P = 0) in . 2.12 may be assumed to be a random variable, 

statistically independent of the applied shear, with mean V/Mm and 

coefficient of variation, r2V/M . Suitable values of r2V/'M were obtained 
m m 

by comparing the total c.o.v. of v obtained from Eq. 2.12 with those 
c 

obtained from Eq. 2.14 and the expressions developed by Zsutty 06J, 

Rajagopalan and Ferguson [81J~and Ragan [82J. On this basis, r2V/Mm = 0.10 
is estimated when P = 0; whereas r2V/M varies from 0.17 (when r2p = 0.20) 

m 



17 

to 0.25 (when Qp = 0.60) for members with axial compression. 
If Mm is substituted for M in Eq. 2.12, the mean and the c.o.v. of 

Vc are 

Vc = 1. 9n. + 2500 P ( V ) d c -
Mm 

(2.15) 

and 

[ ]

2 11/2 
1 . 9/ f~ 2 - V - 2 2 2 2 
.. 2 Qf I + (2500 p ( =- ) d ) (QA + Qb + Qy 1M ) 

c Mm s m 
(2.16) 

However, if Eq. 2.14 controls, then 

v c = 3. 5 if: / 1 + O. 002 P 
c btl 

(2.17) 

and 

(2.18) 

Figure 2.2 shows the coefficient of variation obtained from Eq. 2.14 for 
the cases of QY/Mm = 0.10 (P = 0) and Qy/ Mm = 0.17 (p ~ 0, Qp = 0.20). 

Also included for comparison is Qvc obtained by assuming QV/Mm = o. 
Similarly, Q as obtained from Eq. 2.18 is illustrated in Fig. 2.3 as 

Vc 
a function of the axial load. 

Test results [1, 81J indicate that the ACI equations underestimate 

the nominal shear strength for members with reinforcement ratios greater 
than about 1 to 1.5% and low Vd/M values, but may yield unconservative 
results for members with lower amounts of reinforcement. For the purpose 
of a reliability analysis, this bias must be corrected. This may be 
accomplished through the analysis of test data in the form of test versus 

calculated values of Vc (or Yc/bd). For the case in which Vc is 
calculated through Eq. 2.12, the bias and uncertainty of this equation 
are obtained on the basis of the data reported in References [1, 81J; 

the results are summarized in Table 2.2. 
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TABLE 2.2 BIAS AND UNCERTAINTY OF EQ~ 2., 12 

Data Source Case Bias Prediction 
Uncertainty 

Rajagopalan et ala [81J; 
Table 2 P = 0; 0.005 < P < 0.01 0.96 0.16 

ACI-ASCE Com. 326 [lJ; 
Table 5.20 P = 0, p > 0.01 1 .18 o. 16 

ACI-ASCE Com. 326 [lJ; 
Table 7.4 P f 0 1 s 29 0.12 

The bias and prediction uncertainties shown above were evaluated as 

the mean-value and c.o.v. of the ratio of test to calculated values of ve' 
These may be illustrated using the test data of Ref. [81J as shown in 

Table 2.3, which gives 

c.o.v. of Vc test/vc calc = 0.16 

No data is available to evaluate the error in Eq. 2.14; thus, 
it will be assumed herein that the results obtained for Eq. 2.12 may 

be applied also for Eq. 2.14. 
The mean and c.o.v. of Vt may be evaluated using Eqs. 2.11 through 

2.18; obtaining 

and 

- -- d-­Vt = [v b d + - A f J c - v y s 
(2.19) 

(2.20) 



19 

TABLE 2.3 SUMMARY OF TEST VERSUS CALCULATED VALUES OF v 
FROM TABLE 2, REF. [81] (0.005 < p < 0.01) c 

Beam 

S-2 
S-3 
S .. A 

S ... 5 

S-9 
A2 
A3 

A4 

V-a-19 

V-a-20 

VI-b-21 

VI-b-23 

IV-13A2 

267 

246 

180 

143 

152 

153 

103 

104 

107 

116 
164 

166 

166 

B56E2 

Vc test (psi) 

132 

111 
99 

122 

90 
157 
128 

132 

112 

117 

126 

133 

145 

86 

88 

87 

104 

117 

114 
132 
118 

90 

138 

123 

142 

132 

103 

Vc* calc. (psi) 

138 
128 

135 
124 

118 
137 
107 

124 

117 
122 

124 

134 

109 

108 

124 

138 

101 

108 

108 
130 
120 

122 

124 
138 
143 

142 

92 

0.96 
0.87 

0.73 
0.98 

0.76 
1 . 15 

1 . 19 

1 .07 
0.96 

0.96 

1 .01 

0.99 

1.33 

0.80 

0.71 
0.63 

1.03 

1.08 

1.06 

1 .01 
0.98 

0.74 

1 . 11 
0.89 

1.00 

0.93 

1 . 13 

* v is based on Eq. 2.12 where Vd/M is assumed t9 be equal to d/a, c calc. 
in which a is the shear span. 



where: 

and 

or 

rs = 

20 

V b cf c 

d - T - A I 
- V Y s 

3.S/ii 
c=2----

c = 0.002 P/b h 
+ 0.002 p/f) 11 

(2.21 ) 

(2.22) 

(2.23) 

depending on whether Eq. 2.12 or 2.14 is used to estimate the shear capacity. 
All but the c.o.v. of sand Av have thus far been defined. Since 

stirrups are normally formed with smaller reinforcing bars, ~A = ~A may be 
v s 

used. No data is available to evaluate the uncertainties in s, but as these 
pertain to errors in spacing the stirrups, it seems reasonable to assume 
that the uncertainties in s are about the same as those of d [33J. 

An inspection of the data shown in Refs. [1, 42J indicates that Eq. 2.11 
underestimates the shear capacity of members with shear reinforcement, even 
after the bias in v has been removed. The bias and prediction uncertainty 

c 
in Vt may be estimated from the ratio of observed to calculated values of 

Vt (or Vt/bd), after the bias of Vc has been removed. 
The results are summarized in Table 2.4 

TABLE 2.4 BIAS AND UNCERTAINTY OF EQ. 2.11 FOR Vt 

Data Source Case Bias Prediction 
Uncertainty 

ACI-ASCE Com. 326 [lJ; Table 6.1 P = 0 1 . 14 0.16 

Haddadin, et ale [42J; Table 2 P ~ 0 1 .23 o. 11 

It may be mentioned that the bias shown in Table 2.4 for the case of P = 0 
has a tendency to decrease as the amount of web reinforcement increases. 
This is consistent with the observation that stirrups designed according 
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to ACI [4J tend to be more conservative for low percentages of web 

reinforcement [14J. 
The total C.O.v~ of Vt is illustrated in Fig. 2.4 as a function of 

rs' As the amount of web reinforcement increases (small r s)' the influence 
of Vc (and of ~vc) on the total shear capacity becomes less important 
resulting in a smaller coefficient of variation [33]. The presence of 

axial load also decreases ~V (whereas it increases ~vc; see Fig. 2.2). 
. t 

This is mainly due to the difference in the bias and prediction uncertainty 
for this case, and the case of no axial load. It may also be observed from 
Fig. 2.4 that the C.o.v. 's for the total shear capacity obtained on the 
basis of Eqs.· 2.12 and 2.14 agree very closely when the mean values of Vc 
from the two equations are equal. 
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CHAPTER 3 

MODELING OF STRUCTURAL SYSTEMS FOR DYNAMIC ANALYSIS 

3.1 Introduction 

The necessary modeling of structural systems for dynamic response 

analysis, and"the key parameters associated therewith are summarized 

herein. The variabilities in the dynamic properties of reinforced 
concrete structural systems, such as the natural frequencies, modal 

shapes, and damping, and the uncertainties associated with the 

mathematical idealization for purpose of dynamic analysis, are assessed. 

Only framed structures without shear-walls are considered. It is 

assumed that the systems are stressed within the elastic limit and that 

no stiffness degradation occurs; thus, their behavior may be assumed to 

be approximately linearly elastic, even under load reversals. 

3.2 The Eigenvalue" Problem 

3.2.1 General Formulation -- The eigenvalue problem of linear 

structural systems is formulated in terms of the characteristic equatiJn 

([K] - A.[M]){~.} = 0 
1 1 

where [K] and [M] are, respectively, the effective stiffness and mass 
matrices, Ai is the ith eigenvalue, and {~i} is the ith eigenvector. 
The ith natural frequency of the system is given by 

and the participation factor corresponding to the ith mode is 

{~i}t [M] {I} 

Yi = {~i}t [M] {~i} 

where {I} is a unit vector. 

(3.1) 

(3.2) 

(3.3) 
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Since both the stiffness and mass matrices are random, the natural 
frequencies, modal shapes, and participation factors are, in general, also 
random scalars or random vectors. Several approximate methods for solving 
the eigenvalue problem of systems with random structural properties are 
available [43, 46 s 88J. Further approximations for reinforced concrete 
buildings are possible; these are described in the sequel. 

3.2.2 The Mass Matrix -- For practical applications, the total mass 
of a framed structure may be idealized as lumped masses concentrated at the 
floor levels. The mass concentrated at the ith story level of a building 

may be expre$sed as Mi = Wi/g, in which Wi is the total load (dead + live 
load) acting at that level, and g is the acceleration of gravity. Since 
9 may be assumed to be constant, it follows that 

W. 
M. = -' (3.4) , 9 

and 

nM• = n (3.5) W. , 1 

Similarly, the correlation coefficient between the masses of two floors, 
M. and M. is , J 

p = p M.,M. W.,W. 
, J 1 J 

(3.6) 

The total load acting on the ;th floor may be expressed as 

W. = [D. + L{A.)J A. , 1 , 1 
(3.7) 

where Di and L(Ai ) are the average dead and live load intensities, and Ai 
is the area of the floor under consideration. For statistically independent 
o and L it follows that 

w. = [D. + L{A.)J A. 
1 1 1 , 

(3.8) 

and 
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[D~ n2 + L (A . ) 2 n2 ] 1 /2 
1 O. 1 L(A.) 

1 1 = 
(L(A.) + 0.)2 

1 1 

(3.9) 

A plot of nWi as a function of the floor area, obtained on the basis of 
the dead load and live load models described in Chapter 4, is shown 

in Fig. 3.1. It may be observed from this figure that the results obtained 
with the two live load models (the white-noise and Peir's) are very close. 
Also it may be observed that nW' is not sensitive to the mean value of the 

1 . 
dead load; at least, not for typical dead to live load ratios found in 
office buildings. This is especially true for large areas, as in the case 
of the total floor area of a building. Thus, a reasonable approximation 

is to take nWi = 0.12 for all floors (see Fig. 3.1); this is assumed in 
the sequel. 

The correlation coefficient between the total loads on two floors, 
W. and W., is 

1 J 
cov [w.w.] 

P = 1 J 
W.,W. Ow Ow 1 J .. 

1 J 

(3. 1 0)· 

If the areas of the two floors are approximately the same, and considering 
the dead load for the two floors to be equal and perfectly correlated (but 
statistically independent of the live load) it follows that 

pw.,w. = -02 2 L(A)2 ~2 
1 J nO + ~GL(A) 

02 nD
2 + COV [L(A.) L(A.)] 

1 J (3.11) 

in which Ai = Aj = A and 0i = OJ = O. 
Expressions for the COV [L(Ai ) L(Aj )] (and for PWi,Wj)' obtained with 

the load models described in Chapter 4, are given in Appendix C. Fig. 3.2 
shows PW' W. obtained with Eq. 3.11 as a function of the floor area. It is 

1 9 J 
observed that PW. W. becomes fairly constant for large areas and that it 

l' J 
increases with D. In particular, it becomes of the order of 0.9 for 

IT: 100 psf and A ~ 2000 ft2. Since dead load intensities in office 
buildings are typically of the order of 100 psf or more, and the total 

floor areas are commonly larger than 2000 ft2, it is reasonable to assume 
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that the total load in two different floors of a building are highly 
correlated. Accordingly, for the purpose of this study, the total loads 
on two different floors will be considered to be perfectly correlated. 

On the basis of the above discussions, the mass matrix may be 
expressed as 

M = M* [M] (3.12) 

where M* is a random variable with mean equal 1.0 and c.o.v. ~M*= ~M = 0.12, 
and [M] is a deterministic matrix consisting of the mean values of the 
floor masses obtained from Eq. 3.4~ 

3.2.3 The Stiffness Matrix -- The stiffness matrix of a structural 
system is obtained from the stiffness matrices of its elements. For the 
case of framed structures (without shear walls) of moderate height, the 
effects of axial and shear deformations are usually unimportant and may 
be neglected. Thus, the stiffness matrix of the ith element of the system 
may be expressed as 

112 

Ki 
EI. 

l6L _ 1 
- -C- -12 

1 

6L 

6L 
4L2 

-6L 
2L2 

-12 6L 1 
-6L 2L2 

12 -6L 
2 

-6L 4L J 

where Eli is the equivalent flexural rigidity, and L; the length of the 
element. In general, any uncertainty in L is negligible. Hence, the only 
uncertainty in the element stiffness matrix is associated with the flexural 
rig i d i ty E I. 

The ijth stiffness coefficient of the system, kij , may be expressed 

as 
n 

k .. = L (C n Elf)) 
1 J ,Q,=l N N 

where C,Q, is a constant (i.e., l2/L~ , 4/Li , ... , etc.) and EI,Q, is the 
flexural rigidity of the ,Q,th element connecting into the ith joint. 

(3.13) 
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In order to estimate the statistics of k .. through Eq. 3.13, 
lJ 

expressions for E12 are required. In formulating these, it is assumed 
that the members of a structure subjected to earthquake loading may be 
stressed up to, but not exceeding, their yield capacity. It is further 
assumed that representative equivalent rigidities, of reinforced concrete 
members, even for the case of load reversals, may be obtained from the 
ratio of the yield moment capacity to yield curvature at the critical 
section [12], i.e., 

M 
EI - ~ - cry 

In computing the yield moment and curvature, a linear strain and 
stress stribution, as shown in Fig. 3.3, is assumed. On this basis, 
it lows 

M = C (d i ~ ~) + T (d _ d ' ) + p(d - d ' ) 
Y c 352 

and 

(3.14) 

(3.15) 

(3.16) 

C :: {- [pU(n-l) + pHn] +/[pl(n-l) + pllnJ 2 + 2[pR(n-l) d'jd + plln] } d 

~tbd-C ~ 

n :: Esl 

f y 

:: modular ratio 

As + P/fy 
P II = ---,--:--

bd 

Equations 3.15 and 3.16 are valid as long as the stress-strain curve 

for concrete is linear (i.e., for fc max ~ 0.7 f~), and the stress in the 
compression reinforcement is below its yield stress. However, reasonable 
values of E1 can be obtained from the above formulation, even for cases in 
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which these conditions are violated. This may be observed from Fig. 3.4 
where values of EI calculated by Eqs. 3.14 through 3.16 are plotted 
together with moment-curvature relationships obtained by a more exact 
method [-80J .. The only exception occurs for columns with high axial 
loads and low reinforcement ratios. This is not of major concern in 
earthquake-resistant structures, because most columns found in reinforced 
concrete buildings that are designed to resist earthquake motions are 
subjected to low axial loads (i.e., less than the IIbalance" load), except 
in the case of very tall buildings. 

The statistics of EI may be found from Eqs. 3.14 through 3.16. For 
these purposes, expressions for the partial derivatives of EI with respect 
to the basic variables are needed; these are shown in Appendix D. The 
modulus of elasticity of steel is assumed to be constant -- equal to 
29,000 ksi. The statistics of the modulus of elasticity of concrete are 
obtained, based on the equation of ACI 318-71 [4J for normal weight 
concrete; i.e., 

Ec = 57000~ 

from which, 

and 

The variabilities of the other variables involved in Eqs. 3.14 through 

3.16 are summarized in Table 2.1 [33]. 
The coefficient of variation of EI is shown in Fig. 3.5a for the case 

of symmetrically doubly reinforced beams as a function of the reinforcement 
rati 0 P. Simi 1 ar i nformat i on is summa ri zed in Fi g _ 3 .. 5b for unsymmetri ca lly 
doubly reinforced beams as a function of the ratio of compressive to tensile 
reinforcement, p'fp; and in Fig. 3.5c for symmetrically reinforced concrete 
columns as a function of the ratio of the applied axial load to the balanced 
load, PIPS' It may be observed from these figures that the c.o.v. of EI is 
not very sensitive to p or pl/p, or to P/PB when ~P < 0.30. In computing 

the equivalent flexural rigidity of reinforced concrete columns, only the 
axial load due to the dead and live loads is considered. From the load 
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models to be described in Chapter 4, it may be shown that Qp is less than 
0.30 for typical dead to live load ratios found in office buildings. Under 
these circumstances, a reasonable approximation is to take a single value 

of the c.o.v. of EI for all members. Based on Figs. 3.5a through 3.5c, a 
value around 0.20 appears reasonable. 

Before proceeding further, it is important to examine and assess any 
imperfection underlying the estimation of EI by Eqs. 3.14 through 3.16. 
For this purpose, consider a typical flexural member of a reinforced 
concrete frame subjected to anti-symmetric bending (as in the case of a 
structure subjected to earthquake motions). Also, take a simple beam 
subjected to a concentrated load at mid-span (these are shown in Fig. 3.6). 
It may be seen that the end moment-end rotation relationship of the anti­
symmetric member is the same as the ratio of the mid-span moment to the 
mid-span deflection divided by half the span length of the simple beam 
(see Fig. 3.6). It follows that the moment-rotation relationship of anti­
symmetric members can be evaluated empirically by studying the test data 

for simple beams Q2]. 
Similarly, the assessment of uncertainties in the equation for the 

rigidity of anti-symmetric members may be based on test data obtained from 
simple beams loaded at mid-span. In this regard, it may be observed that 
the ratio of measured to calculated values of EI is the same as the ratio 
of calculated to measured values of the mid-span deflection corresponding 
to the first yielding of the tension reinforcement. This may be shown as 
follows: let Py be the load causing first yielding in the tension reinforce­
ment and d the corresponding measured mid-span deflection. Then, an y 
estimate of the true (or measured) equivalent flexural rigidity is given by 

EI= [~] (3.17) 

'" Similarly, if EI is the theoretical flexural rigidity (obtained, for 
example, from Eqs. 3.14 to 3.16), the calculated mid-span deflection is 

d'" = ~ L3 
Y tI 48 ( 3 . 18) 
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Then, it follows that 

"" EI d 
_=-L 

A (3.19) 
EI dy 

On the basis of the above discussion, the uncertainty associated 
with the equation for EI is estimated by examining test data for simple 
beams, in the form of calculated versus test values of the mid-span 
deflection at first yielding of the tension reinforcement. 

Mattock [59] and Corley [29] tested, respectively, 31 and 40 beams 
with simple supports and loaded at mid-span. No axial load was applied 
to the test specimens. The theoretical yield deflections were obtained 
based on the idealized bending moment diagram developed in Appendix IV of 
Ref. [59]. The results obtained from these investigations are summarized 
in Table 3.1. 

TABLE 3.1 IMPERFECTIONS IN THE ESTIMATION OF EI 

Data Source 

Mattock [59] 
Corley [29] 
McColl i ster, etal.[63] 
Burns, et ale [26] 
Yamashiro & Siess [103] 
All data 

ACI Com. 435 [2] 
Yu & Winter [104] 
Branson [25] 

Branson [25] 

No. of 
Tests Bias 

Beams with Concentrated 
31 0.79 
40 0.64 
19 0.79 
17 0.81 
12 0.93 

119 0.76 

Prediction 
Uncertainty 

Loads 
0.20 
0.20 
0.15 
0.04 
0.14 
0.21 

Beams with Uniform Load 
30 1.08 o. 11 

90 1.05 o. 14 

{ 
1 .02 0.22 
(with top 

107 reinforcement) 
0.95 O. 12 
(without top 
reinforcement) 
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Yamashiro and Siess [103J investigated the moment-rotation 
characteristics of reinforced concrete members subjected to bending, 
shear, and axial load. The axial load varied from 0 to about 60% of the 
balanced load. The results of tests performed by Burns, et ale [26J and 
by McCollister, et ale [63] were also included. The type of members 
tested are shown in Fig. 3.7. In computing the yield deflections, a 
linear curvature distribution along the span was used. The curvature 
distribution for the stub was estimated empirically. These results are 
also summarized in Table 3.1. If the deformation in the stub is neglected, 
the bias shown in Table 3.1 is reduced by about 20% and the prediction 
uncertainty remains approximately the same. 

Data on uniformly loaded members is also included for comparison 
purposes [2, 25, 104J; these included some tests of continuous and T-beams. 
Theoretical deflections were estimated using the fully-cracked sections 
for simple beams, and the average moment~of~inertia of the positive and 
negative moment regions for continuous beams. The results obtained from 
these tests are also 'shown in Table 3.1. 

The evaluation of the bias and prediction uncertainty of EI, as shown 
in Table 3.1, may be illustrated using the data of Mattock [59J, which are 
summarized below in Table 3.2; this set of data gives 

E [d /d J - bias = 0.79 Y calc. y test -

C.o.v. of dy calc./dy test = prediction uncertainty = 0.20 

It may be observed from Table 3.1 that the equation bias obtained on 
the basis of the uniformly loaded beams is clearly different from those 
of simple beams subject to concentrated loads applied at mid-span. One 
explanation of this behavior is given in Reference [103]. It is based 
on the observation that, in regions with high shear and moments, the 
cracks in reinforced concrete members are inclined rather than vertical, 

causing concentrated rotations. Since the behavior of structural members 
subjected to earthquake loads is closer to that of beams under concentrated 
loads, the results for uniformly loaded beams will be ignored. 
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TABLE 3.2 SUMMARY OF TEST DATA FROM MATTOCK [59J 

Beam d y test d y calc. d /d y calc. y test 

Al 0.098 0.065 0.67 
A2 0.374 0.272 0.73 
A3 1 .100 1 . 116 1 .01 
A4 O. 119 0.070 0.59 
A5 0.321 0.297 0.93 
A6 1.249 1.203 0.96 
B1 0.230 0.143 0.62 
B2 0.523 0.514 0.98 
B3 0.244 o. 147 0.60 
B4 0.760 0.582 0.77 
C1 0.112 0.068 0.60 
C2 0.327 0.274 0.84 
C3 1 . 117 1.050 0.94 
C4 0.147 0.079 0.54 
C5 0.448 0.336 0.75 
C6 "I JI,-r> , I)I"\!:" (\ 0') 

I • '+:JL I.LVO V.OJ 

01 0.203 0.135 0.66 
02 0.635 0.550 0.87 
03 0.278 0.160 0.58 
04 0.784 0.648 0.83 
E1 0.143 0.085 0.59 
E2 0.411 0.344 0.84 
E3 1.460 1.348 0.92 
F1 0.134 0.083 0.62 
F2 0.360 0.335 0.93 
F3 1.300 1.398 1.08 
G1 0.240 0.173 0.72 
G2 0.770 0.687 0.89 
G3 0.270 0.165 0.61 
G4 0.840 0.731 0.87 
G5 0.660 0.659 1 .00 

There are differences between the bias, and the prediction uncertainty, 

obtained through simple-beam tests from those for beams with stubs (see 

Table 3.1). However, it is believed that this difference is mainly due 
to the wider range of variables considered by Mattock and Corley, and by 

the use of an empirical curvature distribution in the stub used by 

Yamashiro and Siess. Also, it is recognized that the presence of the 

stub influences the location of the failure section [103J. 
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The information of these investigations was combined in various 
ways (such as lumping all data together, computing simple or weighted 
averages of the means and c.o.v. obtained by the various investigators, 
etc.). On the basis of the results summarized in Table 3.1, a bias of 
0.76 and prediction uncertainty of 0.20 in the estimation of EI appear 
reasonable. 

The analysis of E1, up to this point, is based on the assumption 
that a member has been subjected to stresses close to its yield capacity_ 
If this is not the case, equivalent flexural rigidities calculated on the 
basis of the above formulation might not be applicable; in particular, 
the mean value of the member stiffness may be greatly underestimated. 

On the basis of these results and on those shown in Figs. 3.5a 
through 3.5c, the total c.o.v. of E1 of reinforced concrete beams and 
columns is 

nE1 = ~(0.20)2 + (0.20)2 = 0.28 (3.2Q) 

Even if the stiffness of individual members can be estimated correctly, 

there may be inaccuracies in the stiffness matrix of complete structures. 
This is due, in part, to the idealizations that are usually made in 

constructing the stiffness matrix (for example, taking the center-to­
center distance between supports as the effective length of the elements, 
neglecting shear deformations in the joints, etc.), and to the fact that 
members in a structure do not behave exactly the same as simple beams. 

The imperfections in the estimation of k;j may be assessed by 
systematically comparing stiffness coefficients obtained experimentally 
and theoretically (i.e., by Eq. 3.13 through 3.16). For this purpose, 
the results of a series of tests on one-story portal frames [13, 15, 16, 
40, 92] were examined. The stiffness matrices of the frames were 
constructed using equivalent rigidities calculated on the basis of Eqs. 
3.14 through 3.16. The center-to-center distances were used as the 
effective length of the members. The results of the investigations were 
reported in the form of load-deformation (P-~) diagrams, thus comparisons 

were made by plotting the theoretical stiffness on the p-~ diagrams. 
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In general, for the case of first loading, the agreement between 
the theoretical stiffness and the ones obtained by joining the origin and 
the points in which first yielding occurs on the experimental p-~ curves 
was good. There was no systematic bias between the theoretical and the 
experimental results, once the bias in E1 is corrected. However, in some 
cases, reduction in the stiffness of the frame was observed for cyclic 
loading. Most of the reduction took place in the first few cycles and 
then stabilized as the number of cycles increased [16, 92J. This behavior 
was also observed by Ruiz and Winter [87] in tests of simply-supported 
beams to load reversals. This is due, mainly, to the loss of bond between 
the reinforcement and the concrete, and to the redistribution of cracks 
along the length of the member. 

A two-story frame tested by Hidalgo and Clough [48J was also 
examined. The structure was about 1/4 scale of a typical 2-story building. 
The flexibility matrix was determined experimentally and then inverted to 

obtain the stiffness matrix. The results obtained by comparing the 
theoretical and experimental results were similar to those of the one­
story frame, described above. 

On the basis of the results above, suitable values for the bias and 
prediction uncertainty in the formulation of the stiffness matrix of 
reinforced concrete structural systems are estimated to be 1.0 and 0.20, 
respectively. In this regard, it may be mentioned that it has been 
assumed that no stiffness degradation occurs as a result of bond and 
shear stresses; if this is not the case, additional bias correction 
may be necessary. 

In order to estimate the statistics of the stiffness coefficients 
from Eq. 3.13, the correlation coefficients (or covariance) between the 
equivalent rigidities of the members must first be determined. Because 
of common construction and workmanship, it is likely that the properties 
of the members in a given structure would be highly correlated. Thus, a 
plausible approximation is to assume that these are perfectly correlated. 

It follows then that 

k .. 
lJ 

(3.21) 
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and 

p, 2 
0.

2 
= (0.20)2 + -'- (CQ,IT~) 

S"lEI Q, J k· . -2 
lJ k .. 

lJ 

Then, in light of Eq. 3.20 

0. = vi (0.20)2 + (0.28)2 = 0.34, for all i,j k .. 
lJ 

On these bases, the stiffness matrix of a structural system may be 
expressed as 

[K] = K* [KJ 

in which K* is a random variable with mean K* = 1.0 and c.o.v. 

nK* = ~k .. = 0.34 (for all i,j), and [K] is a deterministic matrix 
lJ 

consisting of the mean stiffness coefficients obtained with the mean 

(3.22) 

(3.23) 

(3.24) 

flexural rigidities ,of the members. Eq. 3.24 implies that the stiffness 
coefficients in [K] are constant factors of each other. 

3.2.4 Uncertainties in Natural Frequencies and Modal Shapes --
It was shown in Sect. 3.2.3 that the floor masses, as well as the member 
stiffnesses, may be assumed to be perfectly correlated and with equal 
coefficients of variation. Since the modal shapes depend only on the 
relative value of these quantities, it follows (as shown in Appendix E) 
that the modal shapes are deterministic vectors, depending only on the 
means of the mass and stiffness matrices. Moreover, replacing [M] with 
M*[M] in Eq. 3.3, it may be observed that the participation factor is 
also a deterministic quantity. 

The ith natural frequency is found by substituting Eqs. 3.12 and 

3.24 into Eq. 3.2; yielding 

(3.25) 

from which it follows that the mean and total coefficient of variation 

of w. are, respectively, 
1 
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Wi = I {<p / [~] { <P i } l' /2 

I {<P/ [M] {<Pi} 
- -

r 2 1 2 2 ] 1/2 
stw . = L (0. 10) +"4 (st K* + stM*) 

1 

(3.26) 

(3.27) 

where an additional uncertainty of 0.10 is ascribed to the estimation of 
Wi reflecting the influence of non-structural elements, soil-structure 

interactions, etc. With stk* = 0.34 and stM* = 0.12, Eq. 3.27 yields st
wo 

= 0.21. 
1 

3.3 Analysis of Uncertainty in Structural Damping' 

3.3.1 Introduction -- Damping is the third important dynamic property 
of structures. Unlike the natural frequencies and modal shapes, the damping 
of the structure cannot be evaluated on the basis of the damping in the 
individual components. Perhaps the only way to represent the energy 
dissipation characteristics of structural systems is by means of equivalent 
damping, of the viscous type (denoted hereafter by S), obtained experi­
mentally through dynamic tests** of full-scale structures. Damping depends 
on the stress level (and on the cracking level, in the case of reinforced 
concrete members [62, 102J). Thus, non-destructive and low-amplitude 
vibration tests will produce damping values that underestimate the true 
energy dissipation capacity of structures subjected to intense excitations. 
Since ultimately it is the response of structures subjected to strong 

earthquake motions that is of interest, the results of small vibration 
tests should be modified when applied to structures subjected to high 

seismic excitations. 
It is the purpose here to analyze the damping of reinforced concrete 

structures subjected to earthquakes. It is assumed that the structures are 
stressed up to but not exceeding their yield capacities. Test results 
on full-scale and model structures of reinforced concrete and steel-

** The term IIdynamic test ll is used here to indicate that a structure has 
been excited dynamically either by artificial means, or by natural 
causes (see Ref. [51])? 
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reinforced concrete are the basis for these evaluations. 
The dynamic tests included in this study are summarized below. 

The test procedures are well known or are reported elsewhere (see for 
examp 1 e [51]). 

Full-Scale Structures 

Forced Vibration Tests: (Low to very low amplitudes) 
Rotating Eccentric Weight Exciter 
Man-excited Vibration 

Transient Vibration Tests: (Low to high amplitudes) 
Micro-tremors 
Wind-excited Vibrations 
Blast and Explosion 
Natural Earthquakes 

Model Structures 
Forced Vibration Tests 

Rotating eccentric weight exciter 
Shaking table 

Forced-static Tests 

3.3.2 Data from Full-Scale Structures -- A number of forced 
vibration tests of actual structures using rutating eccentric weight 
exciters have been reported [6, 19, 34, 38, 39, 55, 70, 73, 79, 84, 

85, 93, 98]. Damping values were estimated from the resonance curves. 
Results of such tests are summarized in Fig. 3.8, where the estimated 

damping coefficients (for the 1st mode) are plotted against the respective 
natural frequencies of the test structures (the natural frequencies are 

determined from the tests). The mean value of S from all the tests was 
6.0% of critical and the corresponding c.o.v. is 0.62 (from 67 measurements), 

The dispersion of the data is immediately apparent from Fig. 3.8. 
Certain trend between frequency and damping may be observed -- damping 
appears to decrease with increasing period of the structure. The same 
trend was also observed by Tanaka, et ale [98]. What is striking is the 

fact that damping values as high as 10% (or more) of critical were measured 
under very small vibrations. It may be observed, however, that the results 
of references [6, 19, 70], obtained from tests conducted before 1960, gave 



37 

consistently higher values of damping than more recent tests. 
If the damping factors from these earlier tests were removed, the 
resulting plot would be as shown in Fig. 3.9. The values enclosed by dotted 

lines in Fig. 3.9 involve considerable soil-structure interaction [84, 85J, 
which may explain the high damping values. If these results are also 
ignored, damping values higher than 5% were obtained in only two cases (see 
Fig. 3.9). The remaining data give a mean value of 2.73% of critical and 
a coefficient of variation of 0.57 (if the data from Refs. [84, 85J are 
included, then S = 3.59% and Os = 0.71). It may also be observed from Fig. 
3.9 that the correlation between frequency and damping, observed earlier 
in Fig. 3.8, no longer exists. It is believed that damping values obtained 
from tests of old structures are not directly applicable to modern structures 
which are lighter and more flexible than older constructions. In this 
light, the data shown in Fig. 3.9 is probably the most representative of 
the structural damping of modern reinforced concrete buildings subjected 
to low-amplitude excitations. 

Man-excited vibration tests are reported in References [100, 102]. 
The vibration amplitudes were extremely small. Damping was also calculated 
from the resonance curve. The mean and c.o.v. obtained from 6 measurements 
were 1.22% of critical and 0.19, respectively. As expected, very low 
damping factors were reported. 

Tanaka [ 98J reported damping values estimated from the response of 
reinforced concrete and steel-reinforced concrete structures to micro­
tremors. Damping was estimated by means of the power spectral density of 
the response. The mean damping, estimated from 30 measurements, was 2.7% 
of critical with a coefficient of variation of 0.43. 

A lO=story building subjected to wind excitations was studied by Ward 
and Crawford [102J. The damping, estimated using the power spectral 
density, was 1% of critical in both translational directions. 

Damping coefficients of 4 buildings, ing from 20 to 30 stories, 
were calculated by Blume [18J from the response of structures to nuclear 
explosions. The modal damping values were calculated by reconciling the 
empirical and theoretical responses while keeping the elastic properties 
of the structure constant. From 30 such measurements, a mean value of 
5.67% of critical and a c.o.v. 0.51 were obtained. Damping coefficients 
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estimated by this procedure are naturally affected by errors in the 
estimation of the natural frequencies and modal shapes of the systems. 

Hart, et ale [44, 45J, Tanaka, et al. [98J and Tajimi [97J 
calculated damping values from the response of structures to natural 

earthquakes using Fourier-transform techniques, power spectral densities, 
and auto-correlation analysis, respectively. Seven buildings subjected to 
the San Fernando Earthquake were studied by Hart, et ale Estimated damping 
coefficient for the first mode ranged from 2.8 to 16.4% of critical and· 
observed maximum ground accelerations varied from 0.10 to 0.27 g. Five of 
these buildings were analyzed in a separate study [101J; it was found that 
four of these buildings responded inelastically during the earthquake, 
whereas one responded within the elastic limit. An equivalent damping of 
10% of critical was calculated for this building by reconciling the 
theoretical and measured responses against 4.9% estimated by Hart. No 
further information was found on the remaining two buildings; however, 

the undamped response spectra calculated by Hart for these two buildings 
seem to indicate that the response could have been within the elastic 
range. The mean and coefficient of variation of the equivalent damping 
obtained from the last three buildings were 4.10% and 0.17. If the data 
of all buildings is considered, S becomes 7.39 and aS = 0.58. 

The buildings studied by Tanaka, et al. [98J (17 in all) under 
natural earthquakes were also analyzed under forced vibration and micro­
tremors (the damping values calculated from these tests were already 
discussed). This reference, therefore, is useful in comparing 
damping values for the same building under different types of excitations. 

The observed maximum ground acceleration ranged from 0.062 g to 0.22 g. 
S (obtained from 30 observations) is 3.33%, compared with 3.13% from 
forced-vibration tests and 2.70% from micro-tremors; whereas On = 0.50, 

p 

against 0.55 and 0.43 from the forced-vibration tests and micro-tremors. 
Tajimi [97J measured the response of one building to the Matsushiro 

earthquakes. The maximum ground acceleration of one of the earthquakes 
was 0.14 g. Damping estimates from different response records yielded 
values ranging from 1.6 to 5.7% of critical for the first translational 
mode. A number of comparisons between the measured and calculated 
responses based on modal analysis yielded values between 3 and 5% of 

critical. 
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The various results described above are summarized in Table 3.3 

below. 

TABLE 3.3 SUMMARY OF DAMPING FULL-SCALE STRUCTURES 

Testing Procedure S Variability, Os No. of 
Tests 

Man~excited Vibrations 1.22 0.19 6 

Micro-Tremors 2.65 0.45 32 

Rotating Eccentric Weight Exciter 2.73 0.57 30 

Natural Earthquakes 3.52 0.45 37 

Blast and Explosions 5.67 0.51 30 

These results seem to confirm the common belief that damping increases 
with the level of excitation. 

3.3.3 Damping of Model Structures -- Tests on model structures may be 
used to establish a quantitative relation between damping and excitation 
level. With this information, damping values obtained from low-amplitude 
vibration tests of ll-scale structures may be used to estimate the 
damping expected at higher excitations. 

McCafferty and Moody [62] investigated the dynamic characteristics of 
reinforced concrete beam~column specimens at four levels of cracking. 
Experimental damping values were as follows: 1.7% of critical foy' uncracked 
specimens, 2.4% for minor cracks, 2.7% for intermediate cracks, and a wide 

range of values (from 2.4% to 6%) for severely cracked specimens. 
Hidalgo and Clough [48J tested a two-story reinforced concrete model 

structure (1/4 scale) representing a typical small apartment or office 
building. The structure was subjected to various amplitude levels by means 
of a shaking table. Damping coefficients obtained from these tests varied 
from 1.0% for the uncracked structure to 3.7% just before the structure 
yielded. Damping was calculated from free vibration tests. 

Shiga, et ala [92J tested two types of models: (1) space frames 
(1/2 - 1/4 scale) which were single-story and two-story reinforced concrete 
bents, loaded with a small-amplitude exciter; (2) reinforced concrete 
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portal frames which were subjected to large oscillations on a 
vibrating table. Damping values of the single-story space frames were 
calculated through free vibration and forced vibration tests. The free 
vibration tests yielded damping values between 1 and 1.5% (using the 
logarithmic decrement of the vibration), whereas damping factors between 
1 and 3% were observed in the forced vibration tests. 1% damping was 
obtained through forced vibration of the two-story space frames when the 
deflection was smaller than the cracking deflection. Equivalent damping. 
factors for the reinforced portal frames calculated from the area of the 
hysteresis loop (corresponding approximately to the yield deflection) 
were estimated to be of the order of 8% of critical. 

Using a similar procedure, Shiga and Ogawa [91J found damping 
coefficients of the order of 2.5% of critical for reinforced concrete 
portal frames at amplitudes of vibration that are approximately equal to 
70% of the yield deflection. 

3.3.4 Summary and Conclusions on Damping -- The main observations 

and conclusions obtained from the above analysis of reported data are 
as follows: 

(a) Equivalent damping values vary, on the average, proportionally 

to the amplitude of vibration. 
(b) In some cases, damping appears to decrease with the natural 

period [98]; however, when data from different sources are lumped 
together this effect practically vanishes. Thus s damping and natural 
periods may be assumed to be statistically independent. 

(c) The coefficient of variation of damping obtained from different 
tests are all of the order of 0.50. Thus, Os = 0.50 will be assumed for 

purposes of this study. 
(d) By comparing the means and individual values of S obtained 

from different dynamic tests 5 it appears that average equivalent damping 
factors higher than about 4 or 5% of critical are difficult to obtain for 
reinforced concrete structures within the elastic range (unless the 
influence of non-structural elements or soil-structure interaction is 
important). Thus, S = 4% of critical is assumed in the following. It is 
easy to see that there could be significant error in this value; to account 



41 

for this error, a prediction uncertainty of 0.25 is assumed$ 
(e) Information concerning damping in the second and third modes 

is reported in References [18, 39, 44, 45, 48, 73, 79, 84,85, 97J. 
However, reliable estimates of the statistics of the damping factors for 

the higher modes could not be obtained from these data; thus, it is assumed 
in the following that the damping coefficients for the first mode are also 
applicable for the higher modes. 
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CHAPTER 4 

ANALYSIS OF LOAD MODELS AND LOAD EFFECTS 

4. 1 Introductory Remarks 

Structures are subjected to many types of loads; they may include 
permanent loads from the weight of the structure and permanent fixtures, 
live loads from occupancy and movable furnitures, lateral loads induced by 
wind and earthquakes, stresses due to temperature, differential settlement, 
creep, shrinkage, etc. The total load effect may be due to many possible 
combinations of such loads. 

A statistical treatment of the problem of load combination requires a 
suitable definition of the loads under consideration. Loads are, in general, 
time and space dependent. For studying their combinations, the variability 
with time and space must be considered. (A general treatment of load 
combination is given by Borges and Castenheta [24J. 

In the following, dead, live, and earthquake loads are considered. It 
is assumed that the different loads are mutually statistically independent 
and also independent of the resistance. The uncertainty in the estimation 
of future earthquake intensities is not considered; i.e., the reliability 
analysis performed herein is for structures subjected to earthquakes of 
prescribed intensities. 

4.2 Dead Load 

The dead load consists of the weights of the structure and permanent 
installations. The weight of a structure is obtained from its geometry 
and depends on the unit weight of the elements and their dimensions. 

The weight of a reinforced concrete member may be expressed as 

(4.1) 

where we and wst are the unit weights of the concrete and the reinforcement, 

and Ac = bh and Ast are their respective areas. The basic variability 
of WD can be easily calculated from Eq. 4.1; however, with the typical 
reinforcement ratios found in modern reinforced concrete buildings, a small 
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error in the estimation of QWD is introduced if the variability in the 
weight of the reinforcement is neglected. Moreover, any uncertainty in 
the member length is negligible in comparison with those in wand A . c c 
Thus, an approximate expression for QW is given by [33J 

D 

(4.2) 

With the values for Qb and Qh estimated in Ref. [33] (as shown in Table 
2.1) and Q = 0.03 [23], we obtain QW = 0.70. 

Wc D 
Additional uncertainties arise from the weight of non-structural 

elements such as partitions, etc. [23]. These uncertainties can only be 
estimated subjectively and must be combined with QWD to obtain the total 
uncertainty in the dead load intensity, QO" These additional uncertain­
ties could be of the order of 0.10 [33J. Then QO is found to be = 

1(0.07)2 + (0.10)2 = 0.12. The mean dead load can usually be estimated 
fairly accurately; thus, any bias would be negligible. 

The theoretical dead load effect, SO' is obtained by translating the 
dead load intensity, 0, into the desired load effect through structural 
analysis. Conceptually, this may be expressed by 

where Co is an influence coefficient. The mean value of SD is then 

So = cD IT 

and its c.o.v. is 

An uncertainty of 0.10 is assumed for possible error in the method of 

static analysis. 

4.3 Live Load 

4.3.1 Introduction ~- Live loads are those arising from movable 
equipment and fixtures, and other non-permanent loads. A number of 

(4.4) 

(4.5) 
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studies concerning live loads have been performed. Surveys of these 
studies are available in the literature (e.g., Heaney [47J and Peir [75J). 

The temporal variation of live loads has long been recognized. A 

typical representation of temporal variation is shown in Fig. 4.1 [75, 76J. 
This can be decomposed into two parts; namely, a sustained load which 
exists on the floor for a long time, and the extraordinary (transient) 
load which has' a relatively high intensity but whose load duration is 
very short. The sustained live load consists of the normal working 
personnel, furniture, equipment, etc. This portion of the total live 
load may have abrupt changes from time to time due to changes in tenants 
of the floor area, or to changes in the use of the floor area. Examples 
of extraordinary loads include large groups of people occupying a floor 
area during special occasions, concentration of furniture in a room 
during remodeling, etc.; its duration could be only for a few hours or 
a few days. 

The probability of simultaneous occurrence of a strong earthquake 
and high extraordinary load is small and, therefore, may be neglected; for 
this reason, only the sustained portion of the live load will be considered. 

4.3.2 Live Load Models =- Denote the sustained live load [75, 76J as 

(4.6) 

where wL(x,y) is the load intensity at a location (x,y) in a given floor; 

mL is the mean live load (e.g., office occupancy); Ybld and Yflr are zero­
mean statistically independent random variables representing, respectively, 
the variation of the average load from one building to another, and from 
one floor to another (within a given building); whereas s(x,y) is a zero­
mean random variable, statistically independent of the Y terms, representing 
the spatial variation of the load intensity. 

In general, s(x,y) has a non-zero spatial correlation; i.e., 

COV[s(xO'YO) s(xl 'Yl)] f O. Different forms of the covariance between 
s(xO'YO) and s(xl,y,) may be used; s(x,y) may be assumed to be a 
ilwhite noise ll process, in which case the correlation between the values 
of S at two different points is zero. In this latter case, 
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for 

(4.7) 

for 

Peir [75J proposed two forms for the covariance function. For two points 

(xO'YO) and (x"Yl) on the same floor 

_ 2 _r2/d 
COV [s(xO'YO)s(xl'Yl)] - asp e (4.8) 

where d is a constant to be estimated, and r is the distance between the 

two points. For (xO,YO) and (x2'Y2) located on different floors 

(4.9) 

where Pm is the correlation between the spatially varying load intensities 
at two points that are one above the other. 

Let WL(At ) be the total live load acting over a given area, At' i.e., 
WL(At ) = f wL(x,y)dA, and L(At ) is the average unit load, or L(At ) = 

At 

WL(At)/At = (l/At ) I wL(x,y)dA. The mean and variance of the unit load 
At 

are 

and 

L(A t ) = E {i- f WL (X,Y)dA) = i- f E [WL (x,y)] dA 
t At t At 

a~(At) = VAR rAl f wL (X,Y)dA} = 
~ t At 

= ~ II COY [WL(XO'YO) wL(xl,y l )] dxodyo dx1dYl 
At A 

t 

(4.10) 

(4.11) 

The covariance of the two load intensities wL(xO,YO) and wL(xl ,Yl ) 
may be obtained from the assumptions above. Furthermore, if the unit load 
comes from n different floors with equal areas, A, (i.e., At = nA) the mean 
and variance of L(At ) = L(nA), from Eqs. (4.10) and (4.11), are 
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L(nA) = m£ (4.12) 
and 

(4.13) 

where (xO'YO) and (xl,y,) are points located on the same floor; whereas 

(xo'YO) and (x2'Y2) are points on different floors. 
The value of Eq. 4.13 depends on the form of the covariance function. 

Thus, for the "white noise" model (substituting Eq. 4.7 into 4.13) 

a
2 

0 2 
2 = 02 . + Yflr + ~ 

°L(na) Ybld n nA 

If the covariance functions of Peir [75J are used 

in which 

2 
°L(nA) 

0
2 

0
2 

TId K(A) 
= 0 2 + Y fl r + _s_P----::,..--_ [1 + (n-l) J 

Yb1d n nA n Pm 

and erf(-) is the error function. 

(4.14) 

(4.15) 

(4.16) 

Peir [75J used the data from the load survey of Mitchell and Woodgate 
[68J to estimate the parameters of the sustained load model. McGuire and 
Cornell [65, 66J estimated the value of us' to be used with the white noise 

model, so as to fit the more accurate Peir1s model. The results are as 

follows: 
mL = 11.8 (psf) 

2 3 (ps f) 2 
0 = 
Yb1d 

2 17.25 (psf)2 0 = 
Y f1 r 
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2 260 (pSf)2 CJsp = 

p = 0.7 m 
2 2 

CJ = 8230 (psf) 
s 

d = 9(ft)2 

The coefficient of variation of the live load intensity obtained 
from the above formulation is shown in Fig. 4.2 as a function of the 
floor area A.' It is apparent from this figure that the results of the 
white noise model and that of the Peir's model are very close to each 
other, except for very small floor areas. 

4.3.3 Arbitrary-Point-in-Time Load -- As mentioned earlier, 
the sustained load will change from time to time (due to functional or 
occupancy changes of the area). The unit load intensity, as defined 
previously, should be understood to be the unit load at time t; i.e., 
the "arbitrary-point-in-time" load. Under the assumption that the 
process is stationary, i.e., 

for all t 

(where fL(A) (tj is the probability density function of L(A) ) , the 
distribution of the lifetime maximum sustained load may be found for 
known or assumed distributions [65~ 75J. 

Because of the rare occurrence, and short duration, of earthquakes 
it is believed that the use of the arbitrary-point-in-time load in 
investigating the combined effect of dead, live, and earthquake loads 
should yield meaningful measures of the risk involved in current 
earthquake-resistant designs. For this reason, only this portion of 
the live load is considered in the sequel. 

4~3.4 Live Load Effects -- To translate the live load intensity, 
wL(x,y), into load effects, the concept of influence surfaces is necessary 
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[86J. The ordinate, I(x,y), of the influence surface is equal to the 
desired load effect on a given member of a structure resulting from the 
application of a unit load at floor location (x,y). The total live load 

effect, SL' is then found by integrating the product of the load intensity 
and I(x,y) over the entire floor area; or 

SL = II WL(X,Y) I(x,y) dx dy 
A 

(4.17) 

For the mid~span bending moment in a beam in framed buildings, the 
influence area can be considered as the length of the beam times twice 
the distance to an adjacent beam in a parallel frame; whereas, for the 

axial load in a single-story column', this is twice the beam lenqth in 
one frame times twice the distance between frames [75]. Other load 
effects have similar influence areas. 

The mean and variance of SL may be found with Eq. 4.17 and the basis 
of the assumption stated in Sect. 4.3.2 [75J. Consider first the case in 
which the load effects are due mainly to the load acting on only one floor 
(i.e., beam moments and shear, axial load in a column supporting one floor, 
etc.). Then, the mean and variance of SL are given by 

(4.18) 

and 

VAR [SLJ = 0 2 
c
2 

+ 0
2 c

2 
+ 

Ybld L Yflr L 

+ JJ JJ CQV[E(xO ,yO) E(xl,y,)] I(xO ,yO) I (xl ,y,) dxodyO dx, dYl 

A A (4.19) 

where cL = IA1(x,Y)dA is an influence coefficient that translates the 
unit load intensity into the desired load effect. 

McGuire and Cornell [65,66J showed that, as in the case of unit load 

intensities, the coefficient of variation for different load effects 
obtained from the IIwhite-noise ll and Peir's models are very close (see Sect. 
4.3.2). On this basis, the "white-noise ll model will be adopted in the 
sequel. From Eqs. 4.7 and 4.19, the variance of SL may be expressed as 
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222 221 2 VAR [SLJ = cr cL + cr cL + cr I(x,y) dA 
y b 1 d Y fl r E: 'A 

(4.20) 

and its coefficient of variation is 

S"ts = r _1 ( i + i + (J~ u 
2 

) + (0. 1 0) 2 ] 1 /
2 

L _ mf Y b 1 d Y fl r A 
(4.21 ) 

where, 
1 

ffI(x,y)2 dA 
2 0 u = --=-----r Ij I (x,y) dAT 

(4.22) 

and (0.10) represents the uncertainty associated with the method of static 
analysis. The value of u2 depends on the type of load effect (i.e., 
bending 3 shear, axial load, etc.). Based on theoretical forms of the 
influence functions, McGuire and Cornell [65] calculated the values of u2 

to be 2.20 for axial load, 2.04 for beam end-moments and 2.76 for beam 
mid-span moment. A plot of S"tS L as a function of the influence area, 
obtained with the first three terms of Eq. 4.21, is shown in Fig. 4.3. 
Also shown, for comparison purposes, is the c.o.v. for the load effects 
obtained by Rosenblueth and Esteva [86J based on the data of Mitchell and 
Woodgate [68J. It can be observed that S"tS L is not very sensitive to u2, 
except for very small areas. This and the relative insensitivity of u2 

to the different load effects, allows the use of a single value of u2 for 
all load effects [65J. In the following, a value of u2 = 2.20 (corresponding 
to axial load and very close to the end-of-span shear) is used for all load 
effects. This results in coefficients of variation that are slightly 
conservative for the end-of-span moment and slightly unconservative for 
mid-span moment and shear. 

The c.o.v. of a column supporting n floors may be found as follows. 
Let SL(n) be the total load in the column under consideration. Then, 
according to Eq. 4.17, 



50 

SL(n) = i~l II ~(x,y) Ii(x,y) dx dy 
Ai 

(4.23) 

where I;(x,y) is the influence function for the ith floor, and Ai is the 
corresponding influence area. If the areas and the influence surfaces 

are equal for all floors, the mean and c.o.v. of SL(n) are given by 

(4.24) 

and 

(4.25) 

A plot of QSL(n) as a function of the influence area, obtained from 
Eq. 4.25 (excluding the uncertainty of 0.10 in the method of structural 

that as the number of floors supported by a column increases, the c.o.v. 
of the axial load decreases. This is better observed also from Fig. 4.5 
where the ratio QS /QS is presented. 

L(n) L(l) 

4.4 Earthquake Load 

4.4.1 Introduction -- The description of seismic ground motions at 
a site involves two main steps: (1) the prediction of future earthquake 
intensities expected at the site C'intensityll is any measure of the motion 
that is important to the response of the structure}; and (2) modeling and 
analysis of the ground shaking effects corresponding to the intensity 
estimated in step one. 

The prediction of future earthquake intensities is the object of 
seismic risk analysis [30, 31]; this topic is outside the scope of this 
study. Only the second step is considered here; i.e., the analysis and 
assessment of the uncertainties underlying the determination of the 
response and earthquake load effects corresponding to a prescribed 
intensity. In doing this, it is assumed that the response of structures 
can be evaluated through linear methods of analysis, and that the 
structural properties of the systems are random. 
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4.4.2 Methods of Earthquake Response Analysis -- The earthquake 
loading may be described in various ways; by equivalent static lateral 
force, time-history (of past or artificial earthquakes), response spectrum, 
and stochastic process models. The first of these is found in construction 
codes as a design-aid, but the true dynamic nature of the earthquake 
forces is ignored. 

The use of time-histories to evaluate the statistics of the response 
of a multi-degree-of-freedom system requires repeated analysis of the 
system for many earthquake records. Because of the excessive amount of 
computation required to cover a sufficient range of random properties in 
the system, this method will not be pursued. 

The response spectrum approach is a simple way of including the 
dynamic effects. With this method, as will be shown later,the uncertainties 
of the structural properties can be treated systematically through first­
order approximation. The method requires the combination of the maximum 
modal components to predict the peak responses of MDOF systems; the square­
root-of-the-sum-of-squares of the modal peaks (SRSS method) is commonly 
used. 

Random vibration recognizes the probabilistic nature of earthquake 
ground motions; however, a practical method for systems with random 
structural properties has yet to be developed. 

The response statistics obtained by these methods are examined in 
the following. A four-degree-of-freedom system was analyzed in Ref. [17] 
for 39 real accelerograms normalized to the peak ground acceleration. 
The statistics of the maximum response, expressed in the form of peak 
inter-story displacements, were first obtained from a time-history analysis. 
Then the mean response spectrum and its variance were calculated, and the 

inter-story displacements were evaluated from the mean and mean + cr 
response spectrum (using the SRSS method). When the mean response spectrum 
is used, the results agree very closely with the mean of the 39 time-history 
analysis. The same is true for the mean plus one standard deviation, or at 
any other probability levels. Similar results were obtained by McGuire [64J, 

who used linear regression analysis techniques in the analysis of 47 elose­
coupled 2 d.o.f. systems, subjected to 68 (unsealed) time-histories of 

34 earthquakes. 
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Gungor [41J compared the response statistics obtained by random 
vibration and the response spectrum method (using the SRSS) , with the 
response spectrum generated from the same power spectral density of the 
random vibration analysis. The agreement in the results for a 10 d.o.f. 
system was also very close. 

A five degree-of-freedom system was analyzed in this study to compare 
the response statistics obtained from random vibration theory and those of 
the response spectrum method, when the response spectrum is obtained from 
a set of real earthquake records. A stationary Gaussian excitation process, 
with the power spectral density of Kana; [54-1 and Tajimi [96J J was used in the 
random vibration analysis. The mean and mean + 0 responses were obtained 
by a method described in Ref. [41J. The results are shown in Table 4.1, 

TABLE 4.1 5 OOF SYSTEM: RELATIVE DISPLACEMENT OF THE FLOORS 

Level 

1 

2 

3 

4 

5 

2 

3 

4 

5 

E[Xmax] 

Random Vibration 
1 .00 

2.20 

3.59 

4.69 

5.27 

Response Spectrum 
1.00 

2.20 

3.60 

4.70 

5.29 

Theory 

(MHN) 

c.o.v. 

0.16 

0.16 

0.16 

0.16 

0.16 

0.38 

0.38 

0.38 

0.38 

0.38 

where the relative displacements of the floors with respect to the base 

are tabulated (these are normalized to the relative displacement of the 
first floor). The mean and mean + 0 values of a response spectrum 
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obtained Mohraz, et ale [69J from 28 records normalized to peak ground 
acceleration were used for the response spectrum analysis. Its results 
are also shown in Table 4.1. Close agreement in the mean-value estimates 
is obtained. This is mainly due to the fact that the mean response 
spectrum obtained by Mohraz, et al. can be approximated very closely with 
the power spectral density proposed by Kanai, for the frequency range at 
which the structure is located (the fundamental period of the system is 
0.5 seconds). For other systems, wider differences may be expected. 
However, the mean + a response obtained by random vibration lies below the 
corresponding response calculated with the response spectrum method. 
Assuming that the c.o.v. of the response can be approximated by 

[(~ + a)RS - ~RSJ/~RS' where (-)RS are the mean or mean plus one standard 
deviation obtained by the response spectrum approach, it is observed that 
these values are more than twice those obtained through stationary random 
vibration analysis. 

On the basis of the results described above, it is concluded that the 
response spectrum approach can be used to obtain reliable predictions of 

the effect of ground motions at a site. The c.o.v. of the response 
depends on the procedure used to generate the mean and standard deviation 
of the response spectrum. In particular, stochastic process models yield 
c.o.v. IS that are only about half as large as those obtained on the basis 
of real earthquake records. The c.o.v. obtained from the random vibration 
analysis, of course, does not include uncertainties associated with the 
nonstationarity of the ground motions and local site conditions, whereas 
the c.o.v. obtained through the response spectrum approach for a set of 
real earthquake records may be too high since the available records are 
not from the same site. In the sequel, the response c.o.v. based on 
available earthquake records will be used, recognizing that it may be on 

the conservative side. 

4.4.3 Statistics of Maximum Response -- There are various procedures 
to generate response spectral shapes for given probability levels. These 
include the analysis of normalized earthquake records [21, 50, 69, 71J, 
linear regression analysis techniques [36~ 64], and random vibration 
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analysis [41]. For the purpose of this work, the response spectrum 
proposed by Mohraz, Hall and Newmark [69] is used. In this study [69], a 
statistical analysis of the data from 9 strong earthquakes (28 records 
in the horizontal direction and 14 in the vertical direction) was 
performed. The records were normalized with respect to the maximum 
ground acceleration, a, in the high-frequency range (2 to 4 Hz in the 
horizontal direction, and 3 to 10 Hz in the vertical direction), to the 
maximum ground velocity, v, in the middle-frequency range (0.4 to 2 Hz 
in the horizontal direction and 0."3 to 3 Hz in the vertical direction), 
and to the maximum ground displacement, d, in the low-frequency range 
(0.2 to 0.4 and b.lto 0.3 Hz in the horizontal and vertical directions, 
respectively). By normalizing the earthquake records to different ground 
parameters, as indicated above, it is intended to minimize the variance 
of the response spectrum at different natural frequencies. 

The mean and standard deviations of the amplification factors 
(i.e., the ratio of the computed maximum response to the maximum ground 
motion) for prescribed damping values, were evaluated from these data 
for 38 frequencies. On the basis of these results, the amplification 
factors for displacement and velocity may be considered to be constant 
over the low and intermediate-frequency ranges, whereas the amplification 
factor for acceleration may be assumed to be constant up to a frequency 
of about 6 to 10 Hz and then to decrease exponentially to a value of 1.0 
at frequencies of 20 to 50 Hz (the values of these frequencies depend on 
the damping and on the direction of the motion). Plotted on a tripartite 
logarithmic paper, the response spectral shape is as shown in Fig. 4.6 
As can be seen in this figure, a response spectrum is defined by straight 

lines between the control frequencies fl through f4' defining ranges of 
constant displacement, velocity and acceleration, and a transition region 
between f3 and f4. The conditional means and standard deviations of the 
amplification factors for the constant displacement, velocity and 

acceleration ranges (denoted hereafter by O',d' O',v and O',a)' as obtained 
in Ref. [69J, are summarized in Table 4.2, and Figs. 4~7 and 4.8, 
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TABLE 4.2 STATISTICS OF THE AMPLIFICATION FACTORS 

DAMPING MEAN (STD. DEV.) 
% dd a aa f3 f4 v 

HORIZONTAL DIRECTION 
0.5 1 .97 ( 1 .02) 2.58(1.23) 3.67(1.45) 6 40 
2.0 1 .68 (0.83) 2.06(0.92) 2.76(0.89) 6 30 
5.0 1. 40( 0.64) 1.66(0.66) 2.11 (0.56) 6 20 

10.0 1.15(0.47) 1.34(0.47) 1.65(0.36) 6 20 

VERTICAL DIRECTION 
0.5 1.86(0.92) 2.52(1.29) 4.02(2.13) 10 50 

2.0 1.65(0.76) 1.97(0.94) 2.80(1.33) 10 50 

5.0 1.40(0.61) 1.51(0.67) 2.05(0.77) 10 50 
10.0 1.16(0.46) 1.17(0.47) 1.59(0.49) 10 50 

The amplification factors for acceleration in the transition range 

(f3 < f < f 4) may be expressed, with reference to Fig. 4.6, as 

(4.26) 

from which its statistics may be obtained. Also shown in Table 4.2 are 
the estimated values of f3 and f4 [69J. 

An attempt has been made [69J to include the local soil properties 
by treating the data from rock and alluvium separately. However, no 
really valid statistical inference could be made from the available 
information although separate design spectra for alluvium and rock have 
been suggested [69J. On the basis of the data considered, the response 
spectrum proposed by Mohraz, et al. is probably representative of stiff 
soil conditions [89J, and of sites located at moderate distances to the 
epicenter [31, 64, 89J. Thus, reliable results can only be obtained for 

similar type of soils and epicentral distances. 
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In examining the response amplifications, especially in the ranges 

of constant velocity and acceleration~ Mohraz, et al~ [69] inferred 
that earthquakes with low ground acceleration have greater amplifications 

than those with high ground acceleration. It was also observed [69J that 
the presence of sharp peaks in the acceleration record reduces the 
amplification for high frequencies. This observation is important in 
deciding what ~arthquake records should be considered to obtain valid 
statistical estimates. 

Also investigated were the ratios ad/v2 and via of the earthquake 
records referred to above (only the results for the horizontal direction 
are reported here). These quantities are useful in constructing response 
spectra curves when only one or two of the peak ground motion components 
can be obtained. The mean and c.o.v. of ad/v2 and via in the horizontal 
direction are shown in Table 4.3. Also shown are the mean and c.o.v. of 

TABLE 4.3 SUMMARY OF via AND ad/v2 (HORIZONTAL DIRECTION) 

SITE 

Alluvium & rock 

Alluvium & rock* 

Alluvium 
Rock 
Rock* 

Alluvium & rock (a > 0.1 g) 
Alluvium & rock* (a > 0.1 g) 
Alluvium a > 0.1 g 
Alluvium a < 0.1 g 

San Fernando 

No. Rec. 

28 
I"Ir 
LO 

22 
6 

4 

20 
18 
14 
8 

118 

via 
mean c.o.v. mean c.o.v. 

5.6 

5.7 
5.4 

5.7 

5.9 
5.3 

5. 1 

0.65 

0.72 
0.24 

0.72 

0.84 
0.40 

0.43 

45 0.51 
48 0.45 
52 0.41 
22 0.55 

28 0.36 

39 0.53 
43 0.45 
47 0.41 
60 0.39 

45 0.40 

* Not including the extreme ratios of the San Francisco Golden Gate 
Park earthquake. 
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these quantities as estimated in this study based on 60 records of the 

San Fernando earthquake [52]. The mean values of both ad/v2 and via, 
and the c.o.v. of via, obtained from the two sets of data are in 
reasonable agreement, as shown in Table 4.3. The coefficient of 
variation of ad/v2 obtained from the San Fernando data, however, is 
significantly smaller than those from the Mohraz, et ale [69] study. 
It must be emphasized that these ratios are, at least in part, function 

of the focal distance, soil conditions, attenuation of motion in the 
ground, earthquake magnitude, etc. [72]. Thus, by ignoring these 

factors, it is not surprising to obtain discrepancies, such as those 
shown in Table 4.3, in the estimation of ad/v2 and via when data from 

different sources are considered together. 

4.4.4 Maximum Earthquake Load Effects -- The earthquake load effect 

on any given member of a structure can be expressed, as a function of the 
relative displacement of the floors with respect to the base, as 

~
n 21/2 
L: { CEy. {cp.} D.} 

i=l 1 1 1 

where D. is the spectral displacement corresponding to the ith mode, 
1 

(4.27) 

and cE is an influence coefficient that translates the relative displacement 
of the floors into the desired load effects. 

Alternatively, the same load effect may be determined on the basis of 
the inertial forces acting on each floor; i.e., 

SE = L: {CE'y·[M]{cp.} M* w. D.} ~
-n - 2 11/2 
i=l 1 1 1 1 

(4.28) 

In a deterministic analysis these two approaches are equivalent; however, 

some differences could arise in the corresponding probabilistic problem. 

In particular, the c.o.v. of SE obtained with Eq. 4.27 may be different 
from that obtained through Eq. 4.28. 
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For purposes of this study, the statistics of the earthquake load 
effects will be estimated with Eq. 4.27, except in the case of very rigid 
structures, in which Eq. 4.28 may be preferable. In Sect. 3.3.3, it was 
shown that the modal shapes and the participation factors may be assumed 
to be deterministic quantities. On this basis, the mean and c.o.v. of SE 
may be expressed as 

and 
~

. n -1/2 
S = L {SI OO}J E . 1 E. 1 

1= 1 

~1/2 
+ (O.ls)J 

(4.29) 

(4.30) 

in which SED = cEYi {¢;}, and a prediction uncertainty of 0.15 is ascribed 
1 

to the imperfection in the method of dynamic analysis. 
For simplicity, 0i and OJ are assumed to be perfectly correlated; then 

'\ = ~~ t~l (SE; D/ nDJ + (O.lS)~1/2 (4.31) 

This yields conservative nS E; also, any error would be small since the first 

mode usually contributes the major part of QSE (see Chapter 5). However, 
if desired, the correlation coefficient between 0. and O. can be evaluated 

1 J 
using the procedure shown in Appendix A. 

In order to find the statistics of SE from Eqs. 4.29 and 4.31, the 
statistics of 0; must first be determined. For this purpose, expressions 

for 0i may be obtained with reference to Fig. 4.6, depending on the natural 
frequency of the structure under consideration; i.e., 
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- in the constant displacement range: 27TW. 
1 

D. 
1 

= a d d. 
1 

- in the constant velocity range: f, < 27Twi 

Q.'v. v 
D. 1 ---

1 w. 
1 

- in the constant acceleration range: f2 < 

- in the transition range: f3 < 27Twi < f4 

a (w)a a. 
1 o i = ---=20----
W. 

1 

< f 1 

(4.32) 

< f2 

(4.33) 

27TW. < f3 1 

(4.34) 

(4.35) 

The natural frequency, wi' as well as fl and f2 are random variables; 
therefore, it is not possible to state a priori which of these equations 
is applicable. This is especially true when w. is close to one of the 

1 

control frequencies. However, in Sect. 4.4.2, it was shown that in the 
case of systems with known properties, the mean response obtained from a 
set of real earthquake records through time-history analysis agrees very 
closely with the response obtained from the mean response spectrum (of 
the same set of records). This implies that in calculating the mean value 
of the response, the governing equation for Di may be established on the 

basis of the mean value of Wi' fl and f2; that is, if 27TWi < fl then 
D. = ad- d (Eq. 4.32); if fl < 27TW,. < 12, O. = avo v/w. (Eq. 4.33); etc. 

1 1 1 1 , 

The c.o.v. of Di may be estimated also on the same basis; however, 
for systems whose frequencies are in the neighborhood of the control 

frequencies f l , f2' or f3' the C.O.v. may be evaluated using either of 
two equations. The difference in the calculated coefficient of variation 
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of the total load effects is small (as has been verified numerically) 
and for practical purposes may be neglected. 

The mean and c.o.v. of Di' therefore, can be obtained as follows: 

D. - d = a 
1 d. 

1 
(4.36) 

~2 = ~2 + ~2 
D. ad. d 

1 
1 

(4.37) 

For f, < 2'Tfw. < f2 1 - -
avo V 

o. 1 = 
1 

(4.38) 
w. , 

~2 = ~2 + ~2 + ~2 o. a_ v ill. 
I v· --, 

1 

(4.39) 

For f2 < 2'Tfw. < f3 1 

- -
aa. a 

o. = 1 
1 -2 (4.40) 

w. 
1 

2 = ~2 + ~2 + 4~2 ~o~ a a w. , a. 1 
1 

(4.41) 

and for f3 < 2'Tfw. < 14 1 -- -
aa~w) a 

D. = 
, 

1 -2 (4.42) 
w. , 

Eq. 4.43 was obtained by using an interpolating procedure between the 

c.o.v. 's of SE at 2'TfWi = 13 and 2'TfWi = f4' determined as follows: (1) in 



61 

the case of very rigid structures, the maximum floor accelerations tend 
to be the same as the maximum ground acceleration and, therefore, the 
load effects may be estimated with greater accuracy based on the inertial 
forces; in particular, it may be shown that for single-degree-of-freedom 

system~ with 2~wi ~ f 4, QSE' as obtained fro~ Eq. 4.28, is Q~E = (0.15)2 + 

~~ + ~M*; and (2) from Eqs. 4.31 and 4.41, ~SE= (0.15)2 + ~&ai + ~~ + 
2 --

4~ at 2nw. = f3 . wi 1 

When only one or two of the peak ground motion components is 

available, information on via andlor ad/v2 may be used to estimate the 
statistics of D .. For example, suppose that only the value of the maximum 

1 

ground acceleration is available, and that fl < 2'ITw; < f 2; then 

v = ( ~ ) a 
a 

and assuming via and a to be statistically independent, it follows from 
Eq. 4.33 that 

~ (.Y..) -
a v· a 

D. 1 
= 

1 
W. 

1 

and 

~2 = ~2 + ~2 + ~2 + ~2 
D. a via a w· 

1 V. 1 
1 

in which (i) and ~v/a can be obtained from Sect. 4.4.3. 

In the present study, it is assumed that the ground spectrum is given; 
thus, the uncertainty in the peak ground motions is not considered. In more 
general cases, this uncertainty must be included which may be determined 

through a seismic risk analysis [30, 31, 32J. 
SO far, all but the statistics of the amplification factors have been 

defined. To determine these, it should be recognized that the amplification 
factor for the pth ground motion component in the ith mode ap.' and the 

damping coefficient in the ;th mode Si' are jointly distribut~d random 
variables. Thus, the mean and variance of a are 

Pi 
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E[a J = E{E[a Is,.J} p. p. 
, 1 

(4.44) 

and 

Yarra ] = E{Var[a Is.J} + Var{E[a Is.J} p. p. 1 p. 1 ,. 1 , 
(4.45) 

where E[a IS.J and Yarra Is
1
·] are, respectively, the conditional mean p. 1 p. 

1 . 1 

and conditional variance of the amplification factor. 

Letting 

f (s.) = E[a Is.J 
Pl 1 Pi' 

and 

f2p (S.) = Yarra Is.J 
2 1 Pi 1 

it follows from Eqs. 4.46 and 4.47 that (on the basis of first-order 

approximation) ; 

and 

( 

af (S. ))2 
f2 CS.) + Pl 1 s~ 

P2 1 as. 1 
1 -s· 1 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

Values of fp (S.) and f (S.) are given in Table 4.2 and Figs. 4.7 and 4.8, 
1 1 P2 1 

whereas Sand nS are given in Sect. 3.3.4. 

In evaluating na with Eq. 4.49, it is convenient to have a 

mathematical expressio~ifor fPl(Si). For this purpose, an expression 

of the form 

(4.50) 

was assumed, and the parameters a1, a2, and a3 were determined using the 

data of Table 4.2. The resulting values of these parameters are summarized 
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in Table 4.4 (for S in percent); their applicability is limited to 
damping values in the range 0.5 < S < 10% of critical. 

TABLE 4.4 SUMMARY OF COEFFICIENTS IN EQ. 4.50 

ACCEL. 
VELOC. 
DISPL. 

4.40 
2.98 
2. 13 

1 .30 
1.20 
0.58 

With Eq. 4.50, Eq. 4.49 then yields 

r.2 ,"7 , _?,~ ,~? 2 11/2 

I
T- u~·) + t- U3·)S: QS-J 

P2 1 P3 1 1 i 

f CS.) 
Pl 1 

in which, 

-0.365 
-0.300 
-0.310 

(4.51 ) 

(4.52) 

Table 4.5 summarizes the c.o.y. of the amplification factors in the 
constant displacement, velocity, and acceleration ranges, as obtained from 
Eqs. 4.51 and 4.52. 

TABLE 4.5 COEFFICIENTS OF VARIATION OF AMPLIFICATION FACTORS 

13(%) 

4 

5 

0.47 
0.47 

0.43 
0.42 

0.34 
0.32 

Similarly, the c.o.y. of Di (assuming Qa ' Qv and Qd = 0) for the 
constant displacement, velocity, and acceleration ranges, obtained 
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from Eqs. 4.37, 4~39 and 4.41, respectively, are summarized in Table 4.6 
below. 

S (%) 

TABLE 4.6 COEFFICIENT OF VARIATION OF O. 
1 

27TW. < f, 
1 -

0.47 
0.47 

0.48 

0.47 

4.5 Total Load Effect 

0.54 
0.53 

The total load effect, due to the combined action of dead, live, 

and earthquake loads is 

The load effects, SO' SL and SE are generally statistically 
independent. Recognizing that the same method of analysis is used in 
transforming the dead and live load intensities into load effects, 
it is easily shown that the mean and c.o.v. of S are 

and 

(4.55) 

(4.56) 

(4.57) 
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CHAPTER 5 

RELIABILITY OF CURRENT DESIGNS 

5. 1 Introductory Remarks 

On the basis of the results obtained in the previous chapters, 
the safety of specific reinforced concrete structures, designed in 
accordance with the provisions of the 1974 edition of the SEAOC code [90J, 

is evaluated in terms of the calculated probability of failure. The 
primary objective is to determine the levels of risk in different failure 
modes and indifferent members of a structure, implicit in current 
earthquake-resistant designs. 

Uncertainties in the prediction of the ground motions at a site are 
not considered; thus, the probabilities of failure calculated herein are 
really conditional probabilities, i.e., the probabilities of failure when 
subjected to a specified intensity of ground motion. The total failure 
probabilities during the lifetime of a structure may be obtained by 
combining these conditional probabilities with the results of a seismic 
risk analysis for the site in which the structure is located (see for 
example [10]). 

An earthquake is assumed to act in only one horizontal direction; 
no interaction with the other horizontal direction, nor with the vertical 
direction is considered. The influence of soil-structure interaction and 
accidental torsion are also disregarded. 

5.2 Risk Implicit in Current Designs 

To determine the seismic safety underlying structures designed 
according to current codes, it is necessary to examine specific structures. 
For this purpose, a ten-story building was designed with the seismic 
provisions of the 1974 SEAOC Code. 

The typical plan and elevation of the structure considered are 
shown in Fig. 5.1. In designing the structure according to the SEAOC code, 
uniformly distributed loads equal to 50 psf for live load, 20 psf for 
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partitions, and 10 psf for mechanical equipment and ceiling, were 
assumed for all floors; except for the roof, in which only the load 
corresponding to the mechanical equipment was used. The floor 
weights, obtained from a preliminary analysis, are shown in Table 
5.1. Also shown are the equivalent lateral forces calculated 

through Eq. 1.1 of the SEAOC code [90J (in which Z = 1.0, 1=1.0, 
K = 0.67, C = 0.067, and S = 1.5). The load effects due to dead, 

TABLE 5. 1 DESIGN LATERAL FORCES 

Floor Level Height Story Wei ght Lateral Story 
(from base) hx (in ft) Wx (k) Wx hx Force Shear 

10 120 230 27600 40.15 40.15 

9 108 270 29160 28.50 68.65 

8 96 270 25920 25.34 93.99 

7 84 270 22680 22.16 116.15 

6 72 290 20880 20.41 136 ~'56 

5 60 290 17400 17.00 153.56 

4 41 290 13920 13.60 167 . 16 

3 36 300 10800 10.55 177.71 

2 24 300 7200 7.04 184.75 

1 12 300 3600 3.51 188.26 

live, and earthquake loads for each member were determined using 
a STRUDL analysis and combined according to Eqs. (2.1) and (2.2) of 
the SEAOC code, from which the design member forces were obtained. 

On the basis of the above information and the design requirements 
given in the SEAOC and ACI codes, member dimensions and flexural and 

shear reinforcements were determined. Two different structures were 

examined: Structure 1 (as designed according to the SEAOC provisions) 
has a fundamental period of 1.27 sec., in which the period is based on 

the gross moments of inertia of the members. The second structure 
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(Structure 2), with stiffer members than those of Structure 1, has a 
period of 1.0 sec. Based on the fully-cracked sections, the corresponding 
periods of these structures are 1.75 and ].5 sec, respectively. The 
member dimensions for the two structures are shown in Fig. 5.2. 

Modal analyses of the two structures were performed and the statistics 
of the total load effects for various ground spectra were calculated by 
the method described in Chapter 4. In doing this, the axial deformations 
of the elements were neglected, and their effective lengths were taken 

equal to the distance between the center lines of the supports. The ground 
spectrum was assumed to have via and ad/v2 ratios equal to 47in.;/s~c/g 
and 6, respectively. 

The coefficient of variations of the live load effects, were obtained 
from Fig. 4.4, in which the influence areas for the beams and columns were 
taken as follows: 

Beams: 1056 ft2 (all load effects) 
Exterior Columns: 1056 ft2 (all load effects) 
Interior Columns: 1056 ft2 (for shear and moments) 

2112 ft2 (for axial load) 

The total load effects in the members of Structure 1, and the 
respective resistances and failure probabilities for a = 0.1 g, are 
summarized in Table 5.2. Beams and columns are examined with regard to 
their adequacy in flexure and shear. 

The probability of failure in flexure and shear for the members of 

the two structures, when subjected to a ground acceleration of 0.1 g, is 
shown in Figs. 5.3 and 5.4. From these figures it may be observed that 

the probability of a flexural failure in the beams is practically constant 
at all story levels, except at the roof which is designed on the basis of 
the minimum reinforcement limitations. The probability of flexural 
failures in the columns, 
indicating that the code equivalent lateral forces tend to produce 
II wea ker" columns for the upper stories. This observation agrees with 

the results of other investigations; for example [28]. The comparison 
between the risk levels for beams and columns (failing in flexure) is 



TABLE 5.2 FAILURE PROBABILITIES OF THE MEMBERS OF STRUCTURE 1 FOR a = 0.1 9 

Story BENDING (kips-in) SHEAR (kips) 
Member Level 

SM ~M 
Mt r2Mt P

f Sv r2S Vt r2V 
V t 

Ext. Beam 1 4227 0.42 9038 0.17 2.99E-2 38 0.36 139 0.24 
2 4637 0.42 9889 0.18 2.96E-2 41 0.36 148 0.23 
3 4321 0.42 9496 0.18 2.52E-2 39 0.36 146 0.23 
4 3867 0.42 8776 0.17 2.13E-2 36 0.35 139 0.24 
5 3622 0.40 8185 0.17 1. 98E-2 34 . 0.34 132 0.24 
6 3318 0.40 7398 0.17 2.07£-2 34 0.31 129 0.24 
7 2871 0.39 ·6172 0.17 2.32£-2 31 0.29 112 0.24 
8 2531 0.37 5282 0.17 2.39E-2 28 0.27 111 0.24 
9 1950 0.33 4089 0.17 1.58E-2 23 0.23 95 0.23 

10 1297 0.22 2792 0.17 2.48E-3 16 0.17 92 0.24 
Int. Beam 1 4872 0.40 9823 0.18 3.67E-2 42 0.36 144 0.23 

2 5182 0.41 10609 0.18 3.53E-2 44 0.37 154 0.23 
3 5033 0.41 10478 0.18 3. 17£-2 43 0.36 152 0.23 
4 4780 0.40 10019 0.18 2.97E-2 41 0.36 146 0.23 
5 4448 0.40 9364 0.17 2.77E-2 39 0.35 139 0.23 
6 4210 0.39 8709 0.17 2.91E-2 37 0.34 130 0.24 
7 3602 0.37 7256 0.17 3.06E-2 33 0.31 111 0.24 
8 3184 0.36 6270 0.17 3.11E-2 30 0.30 110 0.24 
9 2491 0.32 5083 0.17 1.82E-2 25 0.26 94 0.24 

10 1469 0.26 2792 0.17 1.46E-2 16 0.20 91 0.24 
Ext. Column 1 2614 0.48 9588 0.17 2.07E-3 30 0.46 393 0.20 

2 2360 0.42 6421 0.18 7.83E-3 34 0.42 361 0.20 
3 2419 0.41 5709 0.18 1.59E-2 33 0.41 356 0.20 
4 1933 0.43 5809 0.16 3.89E-3 27 0.43 297 0.20 
5 1910 0.41 4359 0.16 1.79E-2 26 0.41 279 0.20 
6 1801 0.40 3323 0.16 5.25E-2 25 0.40 260 0.20 
7 1553 0.41 2741 0.16 6.66E-2 21 0.40 151 0.18 
8 1442 0.38 2186 0.15 1.19E-1 20 0.38 113 0.18 
9 1199 0.37 1732 0.15 1. 36E-1 16 0.36 131 0.18 

10 896 0.29 1423 0.15 6.22E-2 12 0.28 111 0.18 
Int. Column 1 6209 0.49 19912 0.15 4.59E-3 65 0.49 527 0.22 

2 4215 0.49 12732 0.15 6.44E-3 60 0.49 508 0.22 
3 3956 0.49 12071 0.14 5.86E-3 56 0.49 488 0.22 
4 3837 0.49 13765 0.15 2.30E-3 53 0.49 440 0.20 
5 3495 0.49 10474 0,14 6.76E-3 48 0.49 438 0.19 
6 3152 0.49 8905 0.14 9.35E-3 43 0.49 406 0.19 
7 2910 0.49 7407 0.14 1. 63E-2 39 0.49 348 0.19 
8 2484 0.49 5695 0.14 2.72E ... 2 33 0.49 300 0.19 
9 2003 0.49 3356 0.14 1. 02E-1 26 0.49 235 0.18 

10 1194 0.50 2482 0.14 4.49E-2 14 0.50 185 0.18 

P
f 

8.01E-4 
8.40E-4 
5.75E-4 
4.02E-4 
3.11E-4 
2.17E-4 
1. 99E-4 
4.31E-5 
6.55E-6 
5.11E-10 

1 .15E-3 
1.13E-3 
9.54E-4 
8.24E-4 
6.76E-4 
7.37E-4 
6.87E-4 
1. 92E-4 
4.27E-5 
4.25E-9 

1. 58E-8 
3.47£-8 
1.43E-8 
3.26E-8 
2.01E-8 
9.37E-9 
1.16E-6 
6.07E-6 
3.44E-8 
2.24E-12 
8.72E-6 
6.57E-6 
4.30E-6 
4.93E-6 
1.99E-6 
1.53E-6 
2.39E-6 
2.40E-6 
2.00E-6 
6.36E-7 

-

0'1 
co 
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of significance. The Code is presumably intended to give structures 
with strong columns and weak beams, so that yielding will occur first in 
the beams. However, the results of Figs. 5.3 and 5.4 would suggest that 
this may not always be fulfilled by the provisions of the SEACO Code; the 
columns may yield before the beams, especially those in the upper stories. 

It may also be observed from Figs. 5.3 and 5.4 that the probability 
of shear failure is lower than the probability of flexural failures. On 
these bases, the SEAOC Code appears to give sufficiently conservative 
designs for.shear as to avoid premature shear failures. 

Figure 5.5 shows the probability of failure in flexure and shear 
for the interior and exterior columns, and for the interior beam at story 
level 5 of Structure 1, as a function of the maximum ground acceleration. 
In calculating these probabilities it is assumed that Qp is less than 
or equal to the c.o.v. of the axial load induced by the earthquake load 
alone (this avoids the problem of unlimited Qp when P = 0). The discon­
tinuities in the shear failure probability curves for the columns (Fig. 
5.5) are due to the change in the governing equation for the determination 
of Vc (i.e. ,from Eq. 2.12 to Eq. 2.14). These curves are typical of most 
of the members of the two structures. The sensitivity of the calculated 
probability to the maximum ground acceleration is apparent from Fig. 5.5. 

Figures 5.6 through 5.9 compare the failure probability of Structure 
for different values of the natural periods and damping. As expected, 

these results show that the probability of failure decreases for structures 
with higher natural periods (see Figs. 5.6 and 5.7) or higher damping 
values (see Figs. 5.8 and 5.9). 

The influence on the failure probability of the number of modes 
considered in the analysis is shown in Figs. 5.10 and 5.11. Calculations 
based on only the fundamental mode gives a good approximation for the 
failure probability in the lower stories; however, it underestimates the 
risk for the upper stories. The use of the first 2 modes gives a good 
approximation for most cases. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 Summary of Study 

A model is developed that provides the basis for the determination 
of the levels of risk implicit in current earthquake-resistant design 
procedures. The basic variabilities in the loads and structural properties, 
as well as the errors in the mathematical models used to predict these 
quantities in design, are carefully examined and assessed from available 
information. These uncertainties lead to risk estimates that are 
consistent with the present state of knowledge. 

Only linear structures are considered; thus the failure probabilities 
calculated herein must be regarded as an indication of the likelihood of a 
structure (or a structural member) being stressed beyond the elastic range, 
and not necessarily that collapse, o~ even serious structural damage, will 
occur. 

The levels of risk implicit in the 1974 SEAOC Code for bending, shear, 
and axial load, are evaluated. This is accomplished by examining specific 
typical structures designed according to the Code. 

On the basis of the calculations performed for a 10-story building 
designed according to the SEAOC Code, failure probabilities of the major 

structural components to specified earthquake intensities are presented 
in Figs. 5.3 to 5.11; the main results are summarized in Table 6.1 for 
three intensities ·of ground acceleration. 

TABLE 6.1 CALCULATED FAILURE PROBABILITY 

FAILURE MODE 

Beams in Flexure 
Beams in Shear 
Ext. Col. in exure and Axial 

lower stories 
upper stories 

Int. Co 1. in Flexure and Axial 
lower stories 
upper stories 

Columns in Shear and Axial Load 

FAILURE PROBABILITY 
a = 0.1 g a = 0.2 g a = 0.3 g 
0.020-0.035 0.25-0.34 0.50-0.63 
10-3_10-4 0.02-0.05 0.15-0.20 

Load 
0.002-0.016 0.13-0.39 0.54-0.85 
0.06 -0.14 0.44-0.64 0.72-0.90 

Load 
0.002-0.006 0.08-0.14 0.28-0.40 
0.016-0.100 0.25-0.57 0.57-0.85 
10-8-10-4 0.001-0.010 0.015-0.20 
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6.2 Main Conclusions 

On the basis of the results developed in this study, the following 
conclusions may be drawn: 

1. Current earthquake-resistant design provisions can be apprised 
in terms of risk measures. The basic variabilities and prediction errors 
(bias and prediction uncertainty) in the variables involved, as well as 
those underlying the mathematical models, must be included. 

2. As expected, the probabilities of failure to specified ground 
motion intensity depend on the structural members and the mode of failure. 
On the basis of a 10-story building designed according to the SEAOC Code, 
the failure probabilities of the beams under bending and axial load are 
fairly constant for all story levels, whereas for the columns the 
corresponding probabilities increase with the story level. 

3. The comparison between failure probabilities for the beams and 
columns of the structure examined indicates that the SEAOC Code may not 
necessarily give columns that are stronger than the beams (especially in 
the upper stories); that is, yielding may occur first in the columns. 

4. In code-designed structures, shear failures have lower probability 
of occurrence than flexural failures. This is mainly due to the limitations 
in the shear design and minimum reinforcement. Therefore, the SEAOC Code 
provides sufficiently conservative designs for shear as to avoid premature 
shear failures. 

5. As expected, the mean values of the natural frequencies and damping 
have an important effect in the risk levels of the structure. In particular, 
higher natural frequencies and damping tend to decrease the probability 
of failure. 



72 

LIST OF REFERENCES 

1. ACI-ASCE, Committee 326, "Shear and Diagonal Tension ll
, ACI Journal, 

Proc., Vol. 59, January, February and March 1962. 

2. ACI Committee 435, IIVariability of Deflections of Simply Supported 
Reinforced Concrete Beams ll

, ACI Journal, Proc., Vol. 69, January 1972. 

3. ACI Task Committee on Structural Safety, IIStructural ... Safety ... A 
Literature Review!!, Journal of the Structural Division, ASCE, No. ST4, 
Apri 1 19720 

4. ACI Standard 318-71, "Building Code Requirements for Reinforced 
Concrete and Commentaryll, 1971. 

5. Alatorre, G. and Casillas, J., IIShear Strength Behavior of Reinforced 
Concrete Beams Subjected to Alternate Loads!!, International Symposium 
on the Effects of Repeated Loading of Materials and Structures, RILEM, 
Mexico, September 1966. 

6. Alford, J. and Hausner, G., IIA Dynamic Test of a Reinforced Concrete 
Building li

, Bull. Seism. Soc. of America, 43(7),195,3. 

7. Amin, M. and Ang, A. H.-S., IlA Nonstationary Stochastic Model for 
Strong-Motion Earthquake", Structural Research Series No. 306, 
University of Illinois, April 1966. 

8. Ang, A. H.-S., "Structural Risk Analysis and Reliability Based Design li
, 

Journal of the Structural Division, ASCE, No. ST9, September 1973. 

9. Ang, A. H.-S., IIProbability Concepts in Earthquake Engineeringll, 
Applied Mechanics in Earthquake Engineering, The Winter Annual Meeting 
of ASME, New York, November 1974. 

10. Ang, A. H.-S., IIRisk and Reliability Analysis in Engineering Design", 
Symposium on Structural and Geotechnical Mechanics, Urbana, Ill., 
October 1975. 

11. Ang, A. H.-S. and Cornell, C., IIReliability Basis of Structural Safety 
and Design ll

, Journal of the Structural Division, ASCE, No. ST9, 
September 1974. 

12. Aoyama, H., IIMoment-Curvature Characteristics of Reinforced Concrete 
Members Subjected to Axial Load and Reversal Bendingll, Flexural 
Mechanics of Reinforced Concrete, Proc. of the International Symposium, 
Miami~ Fla., November 1964. 

13. Aoyama, H., Endo, T. and ~1inami, T., IIBehavior of Reinforced Concrete 
Frames Subjected to Reversals of Horizontal Forces/!, Proc. of Japan 
Earthquake Engineering Symposium, Tokyo, Japan, October 1966. 



73 

14. ASCE-ACI, Committee 426, liThe Shear Strength of Reinforced Concrete 
Members " , Journal of the Structural Division, ASCE, No. ST6, June 1973. 

15. Beaufait, F. and Williams, R., IIExperimenta1 Study of Reinforced 
Concrete Frames Subjected to Alternating Sway Forces li

, ACI Journal, 
Proc., Vol. 65, November 1968. 

16. Bertero, V. and McClure, G., IIBehavior of Reinforced Concrete Frames 
Subjected to Repeated Reversible Loads tl

, ACI Journal, Proc., Vol. 66, 
October 1964. 

17. Biggs, J., Hansen, R. and Holley, M., liOn Methods of Structural Analysis 
and Design for Earthquake ll

, Symposium on Structural and Geotechnical 
Mechanics, Urbana, Ill., October 1975. 

18. Blume, J. 5) liThe Motion and Damping of Buildings Relative to Seismic 
Response Spectra ll

, Bull. Seism. Soc. of America, 60 (1), February 1970. 

19. Blume, J. and Meehan, J., IIA Structural Dynamic Research Program on 
Actual School Buildings", Proc. 2nd World Conf. in Earthquake Eng., 
Tokyo, Japan, 1960. 

20. Blume, J., Newmark, N. and Corning, L., IIDesign of Multistory Reinforced 
Concrete Buildings for Earthquake Motions Dl

, Portland Cement Association, 
Skokie, 1961. 

21. Blume, J., Sharpe, R. and Dalal, J., IIEvaluation and Recommendations 
for Shape of Earthquake Ground Motion Response Spectra Based on 
Statistical Analysis of 33 Records", John A. Blume and Associates, 
Engineers, San Francisco, Cal., 1972. 

22. Bolotin, V., IIStatistica1 Methods in Structural ~1echanicsll, Holden-Day 
Series in Mathematical Physics, Holden-Day Inc., 1969. 

23. Borges, J. and Castenheta, M., UlStructura1 Safety", 2nd ed., National 
Civil Engineering Laboratory, Lisbon, Portugal, March 1971. 

24. Borges, J. and Castenheta, M., "Statistical Definition and Combination 
of Loads ii

, Probabilistic Design of Reinforced Concrete Buildings, 
ACI-SP-31,1972. 

25. Branson, D., ilDesign Procedures for Computing Deflections ll
, ACI Journal, 

Proc., Vol. 65, September 1968. 

26. Burns, N. and Siess, C., ilLoad-Deformation Characteristics of Beam­
Column Connections in Reinforced Concrete il

, Structural Research Series 
No. 234, University of Illinois, Urbana, Ill., January 1962. 

27. Burns, N. and Siess, C., "Repeated and Reversed Loading in Reinforced 
Concrete", Journal of the Structural Division, ASCE, No. ST10, 
October 1966. 



74 

28. Clough, R. and Benuska, K., IIFHA Study of Seismic Design Criteria for 
High Rise Buildings", Report HUD, TS-3, Washington, D.C.: Federal 
Housing Administration, 1966. 

29. Corley, W., DlRotational Capacity of Reinforced Concrete Beamsll~ 
Journal of the Structural Division, ASCE, No. ST5, October 1966. 

30. Cornell, C., "Engineering Seismic Risk Analysisll, Bull. Seism. Soc. 
of America~ Vol. 58, No.5, October 1968. 

31. Der-Kiureghian, A. and Ang, A. H.-S., "A Line-Source Model for Seismic 
Risk Analysis", Structural Research Series No. 419, University of . 
Illinois, Urbana, Ill., October 1975. 

32. Donovan, N., "Earthquake Hazards for Buildingsll, Building Practices 
for Disaster Mitigation, Building Science Series No. 46, U.S. Department 
of Commerce, National Bureau of Standards, February 1973. 

33. Ellingwood, B. and Ang, A. H.-S., IIA Probabilistic Study of Safety 
Criteria for Design li

, Structural Research Series No. 387, University 
of Illinois, Urbana, Ill., June 1972. 

34. Eng1ekirk, R. and Matthiesen, R., "Forced Vibration of an Eight Story 
Reinforced Concrete Building", Bull. Seism. Soc. of America, Vol. 57 
(3), June 1967 .. 

35. Esteva, L., "Seismic Risk and Seismic Design Decisions ll
, Seismic Design 

of Nuclear Power Plants, The M.I.T. Press, Cambridge, Mass., 1971. 

36 . E s te va, L. a nd Vi 11 a ve rd e, R., II S e ism i c R i s k, De sign Spec t r a and 
Structural Reliability", Proc. 5th World Conf. in Earthquake Eng., 
Rome, Italy, 1973. 

37. Freudenthal, A., "Safety of Structures!!, Transactions, ASCE, Vol. 112, 
1947. 

38. Funahashi, 1. and Kinoshita, K., liThe Vibrational Analysis of the 
Tower Buildingll, Proc. 3rd World Conf. in Earthquake Eng., New Zealand, 
1965. 

39. The Group for Dynamic Tests of High-Rise Buildings 3 IISummarized Report 
on Dynamic Tests of High-Rise Buildings and Cooperative Plan for Large­
Scale Vibration Tests in Japan", Proc. 4th World Conf. in Earthquake 
Eng., Santiago, Chile, 1969. 

40. Gulkan, P. and Sozen, M., "Response and Energy-Dissipation of Reinforced 
Concrete Frames Subjected to Strong Base Motions", Structural Research 
Series No. 377, University of Illinois, Urbana, Ill., May 1971. 

41. Gungor, I., "A Study of Stochastic Models for Predicting Maximum 
Earthquake Structural Response", Ph.D. Thesis, Civil Engineering 
Department, University of Illinois, Urbana, Ill., 1971. 



75 

42. Haddadin, M., Hong, S. and Mattock, A., IIStirrup Effectiveness in 
Reinforced Concrete Beams with Axial Force ll

, Journal of the Structural 
Division, ASCE, No. ST9, September 1971. 

43. Hart, G., IIEigenvalue Uncertainty in Stressed Structures il
, Journal of 

the Engineering Mechanics, ASCE, No. EM3, June 1973. 

44. Hart, G., Lew, M. and DiJulio, R., IIHigh ... Rise Building Response: 
Damping and Period Non-Linearitiesl!, Proc. 5th World Conf. in 
Earthquake Eng., Rome, Italy, 1973. 

45. Hart, G. and Vasudevan, R., IIEarthquake Design of Buildings: Damping!', 
Journal of the Structural Division, ASCE, No. ST1, January 1975. 

46. Hasselman, T. and Hart, G., BiModal Analysis of Random Structural 
Systems", Journal of the Engineering Mechanics Division, ASCE, No. EM3, 
June 1972. 

47. Heaney, A., "A Reliability-Based Study Concerning Live Loads and 
Codified Structural Design", Ph.D. Thesis, Department of Civil 
Engineering, University of ~~aterloo, March 1971. 

48. Hidalgo, P. and Clough, R., ('Earthquake Simulator Study of a Reinforced 
Concrete Frame il

, Earthquake Engineering Research Center, University of 
California, Berkeley, December 1974. 

49. Hognestad, E., Hanson, N. and McHenry, D., IIConcrete Stress Distribution 
in Ultimate Strength Design Ui

, ACI Journal, Proc. Vol. 52, December 1955. 

50. Housner, G., IIBehavior of Structures during Earthquakes ll
, Journal of 

the Engineering Mechanical Division, ASCE, No. EM4, October 1959. 

51. Hudson, D., "Dynamic Tests of Full-Scale Structures II , Earthquake 
Engineering, Chapter 7, Wiegel, R., editor, Prentice-Hall, 1970. 

52. Hudson, D., IIDestructive Earthquake Ground Motions ll
, The Winter Annual 

Meeting of the American Society of Mechanical Engineering, New York, 
N.Y., November 1974. 

53. Jennings, P., Housner, G. and Tsai, N., "Simulated Earthquake Motions ll
, 

Earthquake Engineering Research Laboratory, Pasadena, Cal., April 1968. 

54. Kanai, K., "Semi-empirical Formula for the Seismic Characteristics of 
the Ground!!, Bull. of the Earthquake Research Inst., Univ. of Tokyo, 
35, 1957. 

55. Kuroiwa, J., lIVibration Test of a Multistory Building il
, Earthquake 

Engineering Research Laboratory, Calif. Inst. of Technology, June 1967. 

56. Lin, Y., II Probabi 1 i sti c Theory of Structura 1 Dynami cs ", McGraw-Hi 11 
Book Co., Inc., New York, 1969. 



76 

57. Lutes, L., IiEquiva1ent Linearization for Random Vibration!l, Journal 
of the Engineering Mechanics Division, ASCE, No. EM3, June 1970. 

58. M.I.T. Department of Civil Engineering, IIStatistical Studies of 
Response of MDOF Systems to Real and Artificial Ground Motions il

, 

Internal Study Reports No.4 and 6, M.I.T. Dept. of Civil Eng., 
January and August 1975. 

59. Mattock, A., "Rotational Capacity of Hinging Regions in Reinforced 
Concrete Beams il

, Flexural Mechanics of Reinforced Concrete, Proc. of 
the International Symposium, Miami, Fla., November 1964. 

60. Mattock, A., IIDiagonal Tension Cracking in Concrete Beams with Axial 
Forces il

, Journal of the Structural Division, ASCE, No. ST9, September 
1969. 

61. Mattock, A.9 Kriz, L. and Hognestad, E., "Rectangular Concrete Stress 
Distribution in Ultimate Strength Design ll

, ACI Journal, Proc., Vol. 57, 
February 1961. 

62. McCafferty, R. and Moody, M., IIDynamic Characteristics of Reinforced 
Concrete Beam-Column Specimens for Various Levels of Cracking", Proc. 
5th World Conf. in Earthquake Eng., Rome, Italy, 1973. 

63. McCollister, H. " Siess, C. and Newmark, N., "Load-Deformation 
Characteristics of Simulated Beam-Column Connections in Reinforced 
Concrete ll

, Structural Research Series No. 76, University of Illinois, 
Urbana, Ill., June 1954. 

64. McGuire, R.9 "Seismic Structural Response Risk Analysis, Incorporating 
Peak Response Regressions on Earthquake Magnitude and Distance lt

, 

M.I.T. Dept. of Civil Eng., R74-51-Structures Publication No. 399, 
August 1974. 

65. McGuire, R. and Cornell, C. 9 IILive Load Effects in Office Buildings", 
M.I.T. Dept. of Civil Eng~, R73~28 Structures Publication No. 365, 
July 1973. 

66. McGuire, R. and Cornell, C., IILive Load Effects in Office Buildings", 
Journal of the Structural Division, ASCE, No. ST7, July 1974. 

67. Milne, W. and Davenport, A., ilDistribution of Earthquake Risk in 
Canada ll

, Bull. Seism. Soc. of America, Vol. 59, (2), April 1969. 

68. Mitchell, G. and Woodgate, R., "Floor Loadings in Office Buildings. 
The Result of a Survey", CP3/71 Building Design Station, Garston, 
United Kingdom, January 1971. 

69. Mohraz, B., Hall, W. and Newmark, No? "A Study of Vertical and 
Horizontal Earthquake Spectral!, Division of Reactor Standards, U.S. 
Atomic Energy Commission, Washington, D.C., December 1972. 



77 

70. Nakagawa, KG, IIVibrational Characteristics of Buildings Part II. 
Vibrational Characteristics of Reinforced Concrete Buildings Existing 
in Japanll, Proc. 2nd Worl d Conf. in Earthquake Eng., Tokyo, Japan, 1960. 

71. Newmark, N., Blume, J. and Kapur, K., "Design Response Spectra for 
Nuclear Power Plants li

, Paper presented at the Structural Engineers 
ASCE Conference, San Francisco, Calif., April 1973. 

72. Newmark, N. and Rosenbleuth, E., IIFundamentals of Earthquake Engineering ll
, 

Prentice-Hall Inc., 1971. 

73. Nielsen, N., IIDynamic Response of Multistory Buildings", Earthquake 
Engineering Research Laboratory, Calif. Inst. of Technology, 1964. 

74. Park, R. and Paulay, T., IIReinforced Concrete Structures!!, Wiley­
Interscience, 1975. 

75. Peir, J., IIA Stochastic Live Load Model for Buildingsll, Research Report 
R7l-35, M.I.T. Dept. of Civil Eng., October 1971. 

76. Peir, J. and Cornell, C., IiSpatial and Temporal Variability of Live 
Loads il

, Journal of the Structural Division, ASCE, No. ST5, May 1973. 

77. Penzien, J., IIApplications of Random Vibration Theoryll, Earthquake 
Engineering, Chapter 13, Wiegel, R., editor, Prentice-Hall, 1970. 

78. Penzien, J. and Liu, S.-C., "Nondeterministic Analysis of Nonlinear 
Structures Subjected to Earthquake Excitations ll

, Proc. 4th World Conf. 
in Earthquake Eng., Santiago, Chile, 1969. 

79. Petrovski, J., Jurukovski, D. and Paskalov, T., "Dynamic Properties of 
Fourteen Story R.C. Frame Building from Full Scale Forced Vibration 
Study and Formulation of Mathematical Model ll

, Proc. 5th World Conf. 
in Earthquake Eng., Rome, Italy, 1973. 

80. Pfrang, E., Sozen, M. and Siess, C., IILoad ... Moment-Curvature 
Characteristics of Reinforced Concrete Cross Sections ll

, ACI Journal, 
Proc., Vol. 61, July 1964. 

81. Rajagopalan, Kt and Ferguson, P., "Exploratory Shear Tests Emphasizing 
Percentage of Longitudinal Steel Ii , ACI Journal, Proc., Vol. 65, 

, August 1968. 

82. Ragan, B., "A Comparison of Code Requirements for Shear Strength of 
Reinforced Concrete Beams!!, Shear in Reinforced Concrete, ACI-SP-42, 
1974. 

83. Rascon, O. and Cornell, C., IiA Physically Based Model to Simulate 
Strong Earthquake Records on Firm Ground", Proc. 4th World Conf. in 
Earthquake Eng., Santiago, Chile, 1969. 



78 

84. Reay, A. and Shepherd, R., "Steady State Vibration Tests of a Six-Story 
Reinforced Concrete Buildingll, Bull. New Zealand Soc. for Earthquake 
Engineers 4, 1, March 1971. 

85. Reay, A. and Shepherd, R., IIDynamic Characteristics of Three Adjacent 
Reinforced Concrete Buildings", Proc. The Institution of Civil 
Engineers, Paper No. 7388, September 1971. 

86. Rosenblueth, E. and Esteva, L., "Reliability Bases for Some Mexican 
Codes", Probabilistic Design of Reinforced Concrete Buildings, 
ACI-SP-31, 1972. 

87. Ru;z, W. and Winter, G., IIReinforced Concrete Beams under Repeated 
Loads il

, Journal of the Structural Division, ASCE, No. ST6, June 1969. 

88. Schitf, A. and Bogdanoff, J., IIAn Estimation of the Standard Deviation 
of Natural Frequencies", Journal of Applied Mechanics Parts 1 and 2, 
39, Series E, June 1972. 

89. Seed, H., Ugas, C. and Lysmer, J., "Site Dependent Spectra for 
Earthquake-Resistant Design li

, Report No. EERC-74-l2, College of 
Engineering, University of California, Berkeley, Cal., 1974. 

90. Seismology Committee, Structural Engineers Association of California, 
"Recommended Lateral Force Requirements and Commentary", 1974. 

91. Shiga, T. and Ogawa, J., "An Experimental Study on Dynamical Behavior 
of Reinforced Concrete Frames ll

, Proc. of Japan Earthquake Engineering 
Symposium, Tokyo, Japan, October 1966. 

92. Shiga, T., Ogawa, J., Shibata, A. and Shibuya, J., liThe Dynamic 
Propert i es of Rei nforced Concrete Members II, Proc. U. S. -Japan Semi na r 
on Earthquake Engineering with Emphasis on the Safety of School 
Buildings, Sendai, Japan, September 1970. 

93. Shiga, T., Shibata, A. and Shibuya, J., "Dynamic Properties and 
Earthquake Response of a 9-story Reinforced Concrete Building", 
Proc. 5th World Conf. in Earthquake Eng., Rome, Italy, 1973. 

94. Shinozuka, M., "Probability of Structural Failure under Random Loadingll, 
Journal of the Engineering Mechanics Division, ASCE, No. EM5, 
October 1964. 

95. Shinozuka, M., "Dynamic Safety Analysis of Multistory Buildings", 
Journal of the Structural Division, ASCE, No. ST1, January 1968. 

96. Tajimi, H., IIA Statistical Method of Determining the Maximum Response 
of a Building Structure during an Earthquake ll

, Proc. 2nd World Conf. 
in Earthquake Eng., Tokyo, Japan, 1960. 



79 

97. Tajimi, H., IIDynamic Behavior of a Multistory Building during 
the Matsushiro Earthquake ll

, Recent Researches of Structural Mechanics, 
Tokyo, Japan, 1968. 

98. Tanaka, T., Yoshizawa, S. and Osawa, Y., IIPeriod and Damping of 
Vibration in Actual Buildings during Earthquakes", Bull. of the 
Earthquake Research Institute, University of Tokyo, Vol. 47, 
November 1969. 

99. Tang, W. and Ang, A. H.-Sq "Modeling, Analysis and Updating of 
Uncertainties ll

, ASCE, National Structural Engineering Meeting, 
San Francisco, Cal., April 1973. 

100. Taoka, G., Furumato, A. and Chiu, A., "Dynamic Properties of Tall 
Shear-Wall Buildings", Journal of the Structural Division, ASCE, 
No. ST2,February 1974. 

101. U.S. Department of Commerce, IISan Fernando, California Earthquake 
of February 9, 1971", National Oceanic and Atmospheric Administration, 
Washington, 1973. 

102. Ward, H. and Crawford, R., IIWind-Induced Vibration and Buildings 
Modes", Bull. Seism. Soc. of America, 56 (4), August 1966. 

103. Yamashiro, R. and Siess, C., IIMoment Rotation Characteristics of 
Reinforced Concrete Members Subjected to Bending, Shear and Axial 
Load 'l , Structural Research Series No. 260, University of Illinois, 
Urbana, Ill., December 1962. 

104. Yu, W. and Winter, G., IIInstantaneous and Long-Time Deflections of 
Reinforced Concrete Beams under Working Loads", ACI Journal, Proc., 
Vol. 57, July 1960. 

105. Yucemen, M., Tang, and Ang, A. H.-S., IIA Probabilistic Study of 
Safety and Design of Earth Slopes il

, Structural Research Series No. 
402, Univ. of Illinois, Urbana, Ill., July 1973. 

106. Zsutty, T., iftBeam Shear Strength Prediction by Analysis of Existing 
Data", ACI Journal, Proc. Vol. 65, November 1968. 



r2M 
t 

0.20 

0.18 

0.16 

0.14 

0.005 

0.18 >-

I­-
0.16f-

0.14f-

0.18 

0.16 

0.14 

80 

0.009 0.013 0.017 0.021 0.025 P=p· 
(a) 

SYMMETRICALLY REINFORCED BEAM 

p = 0.20 

i I I I I I I I I J 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 p'!p 
(b) 

DOUBLY REINFORCED BEAM 

- - - p= 0.010 
--p= 0.020 

~P = 0.30 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 -P/PB 
(c) 

SYMMETRICALLY REINFORCED COLUMN 

FIG. 2.1 COEFFICIENT OF VARIATION IN FLEXURAL CAPACITY 

fc= 4.7 ksi, 7y = 47.7 ksi 



0.13 

O. 11 

0.09 

0.07 

0.05 

0.14 

0.12 

0.10 

0.24 

0.22 

0.20 

81 

PrO n V /M = 0. 17 
m 

~--~--~--~--~--~--~--~--~--~--~~~ Vd/~ 5.0 [2500 =- v'f I ] 

FIG. 2.2 COEFFICIENT OF VARIATION OF v (EQ. 2.14) 
C 

FIG. 2.3 COEFFICIENT OF VARIATION OF vc (EQ. 2.18) 

- v from Eq. 2.12 
c 

--- v from Eq. 2.14 
c 

P = 0, 2500 p~d :: O.20~ 
M 

Qp = 0.20 !. = 1000 ps i 
bh r;ZfIZIl1>~~-~CIlJII!ICII---~ 

~<S!lIZI3~~ 
~QliIS~~ ---

!_=lOOO psi, 2500 p~d = 4.10~ --
bh !Vlm 

1 .0 2.0 3.0 4.0 5.0 

FIG. 2.4 COEFFICIENT OF VARIATION IN SHEAR CAPACITY 

M C 
m 

p/bii 



82 
r2W. 

1 

0.30 

I 
- Peir's Model 

I --- White-noise Model , , 
0.20 

0.10 IT = 50 psf 

400 800 1200 1600 2000 2400 2800 3200 3600 4000 

FIG. 3.1 COEFFICIENT OF VARIATION OF TOTAL DEAD AND LIVE LOAD ON A FLOOR 

pw. ,w. 
1 J 

1 .0 

0.8 

o 

- Peir's Model 

--- White-noise Model 

IT = 150 psf 

~~~~_II!Zi:CD~lDI/Il!lII'El!I!l/lIDImlB\D--

..... - IT = 100 psf 

~---~~~--~-~~----~-~-~-
""""..,------- IT = 50 psf 

FIG. 3.2 CORRELATION COEFFICIENT BETWEEN TOTAL LOADS ON TWO FLOORS 



h 

C::==::===:==::J 

AI 
S 

A s 
'--, _____ ...11 

1-
b 

t d ' 

ES= Ey 

strain diagram 

fc 

:; l' Cs 
Cc 

c 

... p 

Ts 

stress diagram 

FIG. 3.3 ASSUMED STRAIN AND STRESS DISTRIBUTION FOR CALCULATION OF E1 

co 
w 



p p 
P = 0 o 85 f'bh = 0.26 o 85 f'bh = 0.52 

0.50 . c • C 
/ 

0.40 / 

Pt = 0.04 
/ 

/ 
Pt = 0.04 / 

0.30 / r- f 
, 

Pt = 0.02 
/' /' 

0.20 
/' 

,/" 

Pt = 0.02 
I 

0.10 
C\I 
..c 
..0 

-u P P :£14-

~ 0.50 0.85 f~bh = 0.80 // 0.85 f~bh = 1.20 - Ref. [81]1 00 
~ 

0 / ---Eq. 4.14 
/ ..c 

/ / ..0 
0.40 

/ / - u 
/ // Pt = 0.04 / 0... 4- 0.80 

/ / L.(') 

0.30 /~ / co 0.52 
/ 

/ / 0 0.26 / / / 0.20 / 

I Pt =OOO21£ P
t 

= 0.04 
/ 

~ 
t1 

0.10 0.85 f'bh2 
- 1"'\ "'''' 

c· 

I 

0.002 0.004 0.002 0.004 0.002 0.004 ¢h 

FIG. 3.4 MOMENT-CURVATURE RELATIONSHIP OF REINFORCED CONCRETE MEMBERS 



Q
EI 

0.23 f-

0.21 f-

f-

0.19 i"""'" 

0.17 -

-

0.23 -
-

85 

I I I I I I I I I I I I I I I I I I I I I 

0.007 0.011 0.015 0.019 0.023 p=p. 
(a) 

SYMMETRICALLY REINFORCED BEAM 

0.201="-------------------

0.19f-

0.19 -
-

0.17 -

-
p = 0.02 

I I I I I i I I I I 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 pl/p 
(b) 

DOUBLY REINFORCED BEAM 

~p = 0.30 

~p 

P = 0.02 

I I I I I I I I 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 
(c) 

SYMMETRICALLY REINFORCED COLUMN 

FIG. 3.5 COEFFICIENT OF VARIATION OF EI 
f~ = 4.7 ksi, fy = 47.7 ksi 

0.15 

i 

0.90 

--

I 

1 .00 P/PB 



M 

86 

M 
---- ~--- ---,,- ~ 

..... ..... ---
p 

/ --

M - EI x §. e- £ 
M = (P£/4) = 

8/£/2 (P£/4)(£/6EI) 
6 EI x -
£ 

FIG. 3.6 END MOMENT-END ROTATION RELATIONSHIP 
OF ANTI-SYMMETRIC MEMBERS 

t·1c C 0 11 i s t e r, eta 1 [ 63 ] Burns and Siess [26J 

Yamashiro and Siess [103] 

FIG. 3.7 TYPES OF ELEMENTS TESTED 



s(%) 0 

13 
0 

12 

11 0 
0 

101- % 
0 

0 

:t 0 

°C) 

0 0 

7~ 0 
0 0 

:t 0 

0 
0 

0 

41- 0 

3 I-- 0 0 
0 0 

0 

21--

1 ~ 
.L 

00 

0 
0 

0 
0 
0 

0 
0 

0 

0 

0 

0 
0 

0 00 
0 

00 0 

00 

0 

0 
() 

0 

0 

00 

00
0 

0 

0 

o 

o 
00 

o 

0 

o 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Peri od (sec) 

FIG. 3.8 DAMPING VALUES OBTAINED FROM 
FORCED VIBRATION TESTS OF 
FULL-SCALE STRUCTURES (ALL DATA) 

s(%) 

13t 
12 l!-

II rr-

10 I!-

:[ 
7 t I 

I 

61-' 
I 

51-' J 
I 

4 ~ \ 
3rr-

~[ 

-, 
/ " 

/ 0 "\. 
I \. 

o \ , 
o \ 

o \ 

o 

o / 
/ 

/ 

I 
/ 

I 

I 

I 

" 0 \ / 0 0 
\ / 

\.. ~/ 0 0 00 

o 

0 0 

0 

0 0, 

0 

0 

0 0 

o 000 0 

o 
o 

o 
00 

1_ ..... l . .1 __ ---.....1.---'.. 

co 
'-J 

o 

o 

o 

0.1 0.2 0.3 0.4 0.5 0 .. 6 0.7 0.8 0.9 1.0 Period (sec) 

FIG. 3.9 DAMPING VALUES OBTAINED FROM FORCED 
VIBRATION TESTS OF FULL-SCALE 
STRUCTURES (DATA OF 1965-1973) 



88 

load 

ORDINARY SUSTAINED LOAD 

load 

EXTRAORDINARY LOAD 

max. total load 

load 

TOTAL LOAD 

FIG. 4.1 LIVE LOAD MODEL 

i max. sustained 
load 

time (years) 

time (years) 

time (years) 



1.10 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

1.10 

1.00 

0.90 

0.80 

0.50 

0.40 

0.30 

0.20 

0.10 

I 
\ 
\ 
\ 
\ 
\ 
\ 

89 

- Peir's Model 

--- White-Noise Model 

, 
" .......... "------- n = 1 

n = 2 
n = 4 
n = 

400 800 1200 1600 2000 2400 2800 3200 3600 4000 

FIG. 4.2 COEFFICIENT OF VARIATION OF UNIT LIVE LOAD INTENSITY 

= 2.76 

2.20 

- White-Noise Model 

--- Rosenb1ueth & Esteva 

400 800 1200 1600 2000 2400 2800 3200 3600 4000 

FIG. 4.3 COEFFICIENT OF VARIATION OF LIVE LOAD EFFECT 



r2 

90 

SL(n) 

1.10 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

400 800 1200 1600 2000 2400 2800 3200 4000 

FIG. 4.4 COEFFICIENT OF VARIATION OF AXIAL LOAD IN A COLUMN SUPPORTING n FLOORS 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

A = 100 ft 2 

A = 4000 ft 2 

1 2 3 4 5 6 7 8 9 10 number of floors 

FIG. 4.5 REDUCTION IN COEFFICIENT OF VARIATION OF AXIAL LOAD 
IN A COLUMN AS A FUNCTION OF NUMBER OF FLOORS SUPPORTED 



200. <:: x x A A. X X >< X >< j( ; 

1 00 I-~-.:/ I 7( '\ / '\ / ~ / " 7 " 7 "" 7/ "" 7/! X I' / I' / I X I" / I . "7 "7 "7 

50 

u 20 I X I " )('<';t,. I X /5( I )( 1)( )( I V 1)( )( I (;~( / I V 
<l.l 
(/'J 

........... 
c: 

OF""" 

I--t 

U 
o 
.-J 
W 
> 

1 I '\: 7( X "" 7/ ",,- 7/ )( ", 7/ '" 7~ Y "7/"\" 7/ I's" ... IV ", >/ 

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 

FREQUENCY, cps 

FIG. 4.6 BASIC SHAPE OF THE RESPONSE SPECTRUM [69J 

'-D 
--I 



a p 
~ 

t-- \ 
\ 
\ 
\ 

I- \ 
\ 
\ 
\ 

3.01- \ 

.... 

\ 
\ 
\ 

° \ 
\ 

" 
\ 

.... \ 

f-

2.0'- '\ 

!-

I-

I-

\ 
\ 

\ 

, 

\ 

" 

\ , 
'0 

" '0 

"-
"-

" 

, 
'\ , 

"-
"-

' ................. 

"-
"­ , 

............ 

'0 a 
' ..... a ..... 

...... 
....... 

' ....... 
0.... a

v ............ -..... 

....... , 
....... ..... ....... ....... 

....... - ..... -"'E 

--' ....... ..... , ------ --'""II -..... ad -0 __ 

---
----------"'E 

1.OLI __ ~ __ ~~ __ ~ __ ~ __ ~ __ ~~ __ ~ __ ~ 

1 2 3 4 56 7 8 9 
S(%) 

FIG. 4.7 CONDITIONAL MEANS OF 
AMPLIFICATION FACTORS 

10 

a ap 

1-

.... 

2.011-

I-

1-

~~aa 
\ 

f-,\\ a 
'k- v ~ 

0... \\.~ad 
1 ~O "~g, 

..... 0' ..... , 
"""" .......... ' ..... 

........... -.::::- ..... -
' ...... --'::::8::::::::::::_ 

>- -'..... .._----------." '0 ... _ 
I- ----------- .... 

o[ 

I.D 
N 

2 3 4 5 6 7 8 9 10 
S(%) 

-FIG. 4.8 CONDITIONAL STANDARD DEVIATIONS 
OF AMPLIFICATION FACTORS 



93 

3 @ 22' 

-
N 

- :..... - '-- - :..... - '--

concrete slab -110_0_0110_0_0110_0_0 ~7!! 
II II II '11 
II " II II 
1IiiII""----"i!t-----iI£I!------liIiI-
TT----~----Jt-----..".. 

II II II II 
II II II II 

...-llo_o_oLLo_o_o_11 0_0_0 _II 

FIG. 5.1 PLAN AND ELEVATION OF STRUCTURES CONSIDERED 



I 
--' --' --' 

'" '" '" >< >< >< 
W W W 
0'\ 0'\ 0'\ 

I 
(/) 

-I I 
;0 .,., c: 

....... n 
GJ -I 

c: 
;0 

U1 

N 

111 f 8X28 28X28 28X28 23X23 

I 

3: 
111 
3: 
CO 
111 
;0 ,23 X23 23 X2~ 23X23 20X20 

0 ....... 
3: 
111 
:z 
(/) 
....... 
0 
:z 
(/) 

0 .,., 
(/) 

-I 
;0 
c: 
n 
-I 
c: 
;0 
111 

I 
)::> --' --' --' 
:z '" '.J '" 0 >< >< >< 

W W W 
(/) ill ill ill 
-I 
;0 I 
c: (/) 

n -I I 
-I ;0 
c: c: 
;0 n 
111 -I 

c: 
N ;0 

111 ,20X37 20 X37 2QX37 17X31 
N 

I 

,17 X31 17X 31 17 X31 16X 25 

176 

--' --' --' 

'" '.J '.J 
>< >< >< 
W W W 
0'\ 0'\ 0'\ 

23:X23 23X23 2lX21 

20X20 20X20 18Xl8 

--' --' --' 

'" '" '.J 
>< >< >< 
W W W 
\..0 \..0 \..0 

17X31 17 X31 )2 X30 

16X25 16 X 25 12X24 

--' --' 
0'\ 0'\ 
>< >< 
W W 
0 0 

21X21 21X21 

l8X 18 18 XI8 

--' --' 
0'\ 0'\ 
>< >< 
W W 
U1 U1 

12X 30 12X 30 

12X24 12X24 

--' 
0'\ 
>< 
W 
0 

21X21 

18 XIS 

--I 

0'\ 
>< 
W 
U1 

12X~ 

12X24 

0'\ 
>< 
W 
o 

0'\ 
>< 
W 
U1 



95 

ff~ -
EXT. COL. = -

~' 
-

/I " 
§ --- INT. COL. -

~~ 
INT. BEAM 

1\ , 
§ \ 

I I \ EXT. BEAM-if V 

1---"" INT. BEAM 

I' L! 
~ ..... \ -....... \ 

' ..... r-
\ 

EXT. BEAM \ 
\ 

~ 
\ 

l , 

\ 
\ , 
\ I 
\ II 

INT. COL • 
.... 

..... 1----1'. I I 

'" I I, I 
\ 'r-f-~- I~ ~ L 

r- ........ ~/ I I 

~ I , \ 
\ , I 

II FLEXURE" .11 

...L 
, .eo SHEAR ~ I I~ ---

; I 

" I 

10-7 
8 I Ii\ 
I \ 11\ I 

EXT. COL. c' 
I 

II 
6 II 

/ \ / .... If II ..... 

i' \,," 1', 
\ I 

II II 

I II ,~ I II 

1 2 3 4 5 6 7 8 9 10 STORY LEVEL 

FIG. 5.3 PROBABILITY OF FAILURE OF SEAOC DESIGN, 
STRUCTURE 1; a = 0.1 g, S = 4% 



96 

/ -........... EXT. COL. -

/ 
~II' / 

-
'-... 

INT. COL. 

II - ~ 
- - -~ 71" 

~ --.... .... , = EXT. BEAM = -
I r\ I -

~ I I I 

I \ I ./ 
......, I I 

/ \ ~ J r--..... v. INT. BEAM - I--

II 

-' l"- I! 
"- " II 

iI{, -, .Ii' ~ 

" r .. " /1', 
'", ~/ 1--..., 

" 
INT. BEAM 

\ 

" \ 

EXT. BEAH , 
I 

\ \ 
\ \ , 

INT. COL. ~ \ 

"7 ... . 
A " I .... " I 1"- I,' I 

f \ , 
' .... , I 

\ '. I 
" rT 

\ \ 
\ \ 

, 
, I 
\ I 

\ I 

I 
, I 

- FLEXURE EXT. COL. III 
r.... tr 

I ". 7' N --- SHEAR I .... 7 ""-,~" 
lill 

t' '\ ,// 1', I II , I 
I 

r"-" 
I 1\ • 

I 
" I : I III I' 

l\ 

II I 

II 

III 
II 

III 

1 2 3 4 5 6 7 8 9 10 STORY LEVEL 

FIG. 5.4 PROBABILITY OF FAILURE OF SEAOC DESIGN, 
STRUCTURE 2; a = 0.1 g, S = 4% 



97 
L w 

~EXT. , BEAM 

~ ~i""" - INT. 

COL. 

COL. 
~ 
,. .... V I I 

/' /'/' 
BEAM 

",- I I 
INT. COL. 

I , 
U ,. 

/ I B 
,( I 
II / / m 

/ I /'" 
EXT. COL. 

A' 

/ J /'" 
/ / 

~ " , , 
" L , 

'" f 

I I / I 
I ,f I 

I fI I 
/ I , , 

/ I 
I l! I / 

I 
I J r , I I 

f I 
I 

I I 

j 
I 

I I 
I 

I---~ I 1----
I 

f---~ , 
£' 

I ,I 
I , 
I I : 

I 

I 

II 
I I 

I / I 
I . I 

, 1 -== 8 

; - FLEXURE = 
I I -

I -
I 

I ... -- SHEAR 
; J 

I -
I 

I f 
I I 

I I' 
I I 
I I 
I 
I I 
I I 

0.100 0.200 0~300 a (g) 

FIG. 5.5 PROBABILITY OF FAILURE OF INTERIOR BEAM 
AND COLUMNS AT LEVEL 5 OF STRUCTURE 1 5 

"8 = 4% 



P
f 

10-1 

10-2 

10-3 

10- 4 

...... .............. 

'" --"- "'" T 1.0 
'-

~ ,,- T = 1.2 "--. ---- ... 
, I • -- " '" T = 1 .5 

m 

-r---r--... ~ 
.... 

" 
T = 1.7 

I I 

T 2.0 
-I--- __ - - I-- ___ _ ______ .... __ ... I ____ ... :P.'iI 

1 2 3 4 5 6 7 8 9 10 
story 1 eve 1 

FIG. 5.6 FAILURE PROBABILITY OF INTERIOR BEAMS 
FOR DIFFERENT NATURAL PERIODS, ~ ~ 4% 

o sec 
5 sec 

o sec 

5 sec 

o sec 

Pf 

/. " 
10-1 ~ 

~ //J ~ .-..- "'" 11 11 "- "'-
~~ § ...". if II! "--- , § ...". if if ~ 

""' "- -' ./ I I '\. '\. 
7 .., , /' II '\. 

"., 
A 
/' II '\ 

V' ~ / V / I 

10 ... 2 
~ '\ V J V' / 

V I 
V ~ / 

"-
"- D .,. ... ~ ~ 

./ " A' 
~ '\. , /' 

'\ I V 
V ............ \ \ 1(/ 

10 ... 3 '\ / 

10-4 
2 3 4 5 6 7 8 9 10 

story level 

T = 1.0 sec 

I 1 
T = 1.2 

T = 1.5 

T = 1.7 
T = 2.0 

5 sec 
o sec 
5 sec 
o sec 

1..0 
OJ 

FIG. 5.7 FAILURE PROBABILITY OF INTERIOR COLUMNS 
FOR DIFFERENT NATURAL PERIODS, ~ = 4% 



P
f 

10-1 

......... ....... r-- "-
""""'" --.. '-- '" -,- '" ~ s= 3% 

10-2 

r-- ...... 
~ r--- ~ I' r-- - "8 = 4% 

..... 13 = 5% : -
r-..... --

-.. ~ 
~ - f3 6% = 

" I 

"- I 
'\ 

"""'- f3 = 10% 

10-3 
l...-

I 

10-4 
2 3 4 5 6 7 8 9 10 

story 1 evel 

FIG. 5.8 FAILURE PROBABILITY OF INTERIOR BEAMS 
FOR DIFFERENT DAMPING, lr = 1.75 sec 

Pf 

10-1 
II 71>'1'lt; 'It; I 

f3 = 3% 
13= 4% 

13= 5% 

13= 6% 

I 10-21 I~ t:= Y 1/ III ~IB= 10%1 
--,- ID 

1..0 

1 
1 2 3 4 5 6 7 8 9 10 

story level 

FIG. 5.9 FAILURE PROBABILITY OF INTERIOR COLUMNS 
. FOR DIFFERENT DAMPING, lr= 1.75 sec 



Pf f""""""" 

10-1 

~ 

~ --f',...., -~ 

I' '\ ~ n=4 

10-2 ~ , 
n = 3-" -

I{ 
n = 2 = 

~ 
\ 
\ 
\ 

10-3 
~ n = 1 

10-4 
1 2 3 4 5 6 7 8 9 10 

story 1 evel 

FIG. 5.10 INFLUENCE OF THE NUMBER OF MODES ON 
PROBABILITY OF FAILURE (INTERIOR 
BEAMS OF STRUCTURE 1), S = 4% 

Pf 

10- l1 

1 O-~ 

1 O"'~ 

1 o-t 
2 3 4 5 6 7 8 9 10 

story level 

FIG. 5.11 INFLUENCE OF THE NUMBER OF MODES ON 
PROBABILITY OF FAILURE (INTERIOR 
COLUMNS OF STRUCTURE 1), B = 4% 

o 
o 



101 

APPENDIX A 

COVARIANCE BETWEEN MATHEMATICAL MODELS 

In many cases of practical interest, the correlation between two 
mathematical models, X and Y, depends only on some type of correlation 
between their component variables. An approximate expression of COV[XY] 
for this case, consistent with the first-order approximation is developed 
here. 

Let X and Y be two equations, 

and (A. 1 ) 

where Nfl and Nf2 are corrective factors for the mathematical functions 
adopted, and Xl' ... ' Xn and Yl ,· .. , Ym are the true component variables 

with true means ~Xl'··· ~Xn and ~Yl'···' ~Ym and total coefficients of 
variation ~Xl'···' ~Xn and ~Yl'···' ~Ym· It is further assumed that Xi 
and X., as well as Y. and Y. are, respectively, statistically indepp.ndent 

J 1 J 
variables for all i and j. 

Expanding X and Y in Taylor series about the true mean value of 

Xi' ... , Xn and Y j' ... , Ym, respectively, 

A n fdf 1 1 v = 1\1 .;: (, 11 , + Nf L: - ()( - llX.) + 1\ "f I 1 \ IlX , ••. , .... X J 

ldXd)J 
\"; 

1 1 n 1 i =1 1 

and (A.2) 

A m 
[df 21 Y = Nf f2(~Y , ... , ~y ) + Nf L: (Y . - ~Y.) + ... 

i =1 dYe 1 21m 2 1 
1 

The product of X and Y is 



and its expected value 
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[~J ax. 
1 

11 

A-

" 'oF (,. -' \ f-lX I I 2 \ f.Ay , ••• , l-ly J 
n 1 m 

+ i~l j~l [:~~L [:~~L{E[Xi¥j] - ~Xi~¥/ ] 
but (from Chapter 1) 

A-

Nf ,fl (l1Xl '···' 11X
n

) = 11X 

and 
A-

Nf2f2(l1Yl'· •. , 11X
m

) = 11y 

then, Eq~ (A.4) may be written as 

(A.3) 

(A.4) 

(A.5) 

E [XV] = ~X~¥ + Nf,Nf2 i~l j~l [:~~L [:~~L{ E[Xi¥j] - ~Xi~¥/ (A.6) 

Recalling from elementary probability theory that 

COV[Z.Z.]=E[Z.ZjJ-E[Z.] E[Z.]=PZ Z oZ,a (A.7) 
1 J 1 1 J .,.. Z. 

l' J 1 J 

where PZ3~Z. is the correlation coefficient between Zi and Zj' and GZ. 
1 J 1 
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is the standard deviation of Zi' it is easily shown that 

COV [XV] = Nfl~2 )1 '~l [:::] [:~~] PX1. ,Y .S"2X.S"2y .1lX.lly. (A.B) 
1= J= . 1)l JJ)l J 1 J 1 J 

For the case in which some of the component variables of X and Y 
are the same, otherwise statistically independent, i.e., 

PX., Y . =0 for 
1 . J 

Px. ,Y . = 1 for 
1 J 

it can be shown that 

X. "I Y. 
1 J 

X. = Y. 
1 J 

Nx.2 I~ S"2 2 
1 X. 

1 1 

(A.9) 

where Xi for i = 1, ... , p are the variables common to both X and Y, and 
llX. has been substituted by NX I .. 1 i 1 
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APPENDIX B 

ANALYSIS OF M
t 

The moment capacity of reinforced concrete elements failing through 

yielding of the tension reinforcement may be expressed as 

where 

and 

c = 'p + T - C c s s 

The c.o.v. of Mt may be expressed as 

0.2 = L C2 0.
2 

M
t 

k k 

in which 

The derivatives of Mt with respect to its component variables are 

ad' 
P ... C +­

S 2 

(8.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 
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aA s 

rf _A~ (cf -kf'l] [d-2C ~J+ I Y A 5 y 3 c· C f' b 
- s c 

AI 
+ ~ (c f - k3fc') (d - d') 

A 5 y 
s 

(in which A~ and As are assumed to be perfectly correlated) 

_t = AI k dB aM r 
af' s 3 

'c -

aMt d + d l 

--
ap 2 

aMt c2 
c 

-= -
an 

2C - n ] 
c f~b 

n 
2C --

c fl b 
c 

n 
+ c2 -­C 2 fl. b 

c 

(B.7) 
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APPENDIX C 

CORRELATION BETWEEN THE TOTAL LOAD ACTING ON TWO FLOORS 

The total load acting on a given floor may be expressed as 

W. = [D. + L(A.)] A. 
1 l' 1 1 

(C.l ) 

where Di and L(Ai ) are the averag~ unit dead and live loads, and A is the 
area of the floor under consideration. 

For statistically independent 0 and L, the covariance between the 
total loads acting on two different floors, W. and W., is 

1 J 

COV[W.W.] = { COV[D.D.] + COV[L(A.) L(A.)] } A.A. 
lJ lJ 1 J lJ 

If Di and OJ are perfectly correlated, then 

-- 2 COV[D.D.] = aD aD = D.D.nD 1 J .. 1 J 
1 J 

Also, on the basis of the assumptions given in Sect. 4.3.2, it may be 
shown that 

and the corresponding correlation coefficient becomes 

(C.2) 

(C.3) 
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COV[W.w.] 
= 1 J 

Pw . ,W • Ow . Ow . 
1 J 1 J 

= 

For the case of equal areas, i.e., Ai = Aj = A, and 0i = OJ = 0, Eq. C.5 
becomes 

Pw . ,W. = -2 2 L--r-riA) 2 2 
1 J 0 Qo + -V' QL ( A ) 

For the white-noise model (see Eq. 4.7) 

thence, 

ffff COV[€(xO'YO)€(x2'Y2)] dxOdyO dx2dY2 = a 
AA 

02Q2 + 0'2 
D Ybld 

P =-------
W.,W. 22 22 

1 J 0 Q + C(A) Q 
D L(A) 

Similarly, for the Peir1s model [75, 76] (see Eq. 4.9) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

Pm o~p 'lTd K(A) 

~ fIII COV[€(xO'YO)€(x2'Y2)] dxOdyO dX2 dY2 = A (C.9) 
A A A 

where (C.10) 

and erf(-) is the error function. Hence, 
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(C.ll) 
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APPENDIX 0 

ANALYSIS OF EI 

The equivalent rigidity of reinforced concrete members may be 
expressed as 

EI = ~ 
<Py 

(0.1) 

in which My and <Py are, respectively, the yield moment capacity and yield 
curvature at,the critical section. 

If a linear stress and strain distribution is assumed, it may be 
shown that 

M = C (d' -~) + T (d _ d l ) + p(d - d') 
y c 3 s 2 

and 
f 

<P - y 
y - Es(d - c) 

in which 

and 

K3 = pltn 

n = Es/Ec 

P
I! _ As + P <f y 

- bd 

1 c
2 ~ 

Cc = "2 b d - c n 

(0.2) 

(D.3) 

(0.4) 

(D.5) 

(0.6) 

(0.7) 

(0.8) 

(D.9) 

(0.10) 

(D.l1) 
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If x
k 

is some parameter, then 

Letting 

aEI aEI 3M aEI a¢ 
_ = _ -.Y + _ --.:..:L = 

aX k aMy 3xk a¢y 3X k 

= ¢y aMy/axk .. My 3¢y/aXk 
¢2 
y 

The derivatives of My are given as 

~ = .. ~ fd I .. f.l + C K4 ~de + Ts + 1:. ad d-e _ 31 e 0 2 

aM ae 
~ = C K4 3A + f (d eo d') 

s e s y 

(0.12) 

(0.13) 

(0.14) 



and those of ¢ as 
y 

~=~ ae 
ab d-e ab 

111 

~=~ -1 +-a¢ ¢ [ aeO 
ad d-e ad 

~=~ ae 
ap d-e W 

a¢ ¢ ~ f _ae l ~=~ 1 +---1 
af f d-e afy_ y y-

a¢ ¢ n ae 

~ = (d-~) - ~ an 

The derivatives of care 

~ = l[K d _ (K~ + 2K2 + K3) d + c] 
ad d 1 R 

(0.15) 
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_c_ = - _ [p , (n-1) + pnJ + -------",-R-----=---
a d t Kl [p I (n ... 1) + p n ] + K2 + p n ] 

aAs As 

(0.16) 

The uncertainty in EI is found from 

(0.17) 

where 

(0.18) 
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APPENDIX E 

ANALYSIS OF Wi and {¢i} 

The eigenvalue problem of linear structural systems is formulated in 
terms of the characteristic equation 

([K] - A[M]) {¢} = 0 

where [K] and [M] are, respectively, the effective stiffness and mass 
matrices, Ai is the ith eigenvalue and {¢i} the ith eigenvector. 

(E. 1 ) 

In the ~ase of systems in which the floor masses, as well as the 
members stiffnesses, are perfectly correlated and with equal coefficients 
of variations, [K] and [M] may be expressed as (see Sect. 3.2.3) 

[K] = K* Ci<] (E.2) 

and 
[M] = M* [M] (E.3) 

in which K* and M* are random variables, and ti<] and [M] are deterministic 
matrices consisting of the mean values of the floor masses and stif~ness 
coefficients, respectively. 

Substituting Eqs. E.2 and E.3 into Eq. E.l and dividing by K*, it 
fo 11 ows that 

in which 

Since [K] and [M] are deterministic matrices, it follows that the 
eigenvalues A! for i = 1, ... , n of Eq. E~4 are also deterministic 

1 
quantities. 

The ;th eigenvalue of Eq. E.l then may be expressed as 

(E.4) 

(E.5) 

(E.6) 
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from which the mean and c.o.v. of A. may be found. The corresponding 
1 

eigenvector is found by substituting Eq. E.6 into Eq. E.1, yielding 

Using Eqs. E.2and E.3, Eq. E.7 becomes 

Since [K], (M"] and Ai are deter~inistic, it follows then that {<Pi} is 
also deterministic. 

(E.7) 

(E.8) 


