4%
UILU-ENG-76-2018
1294
¢ 433
CIVIL ENGINEERING STUDIES

Structural Research Series No. 433

vopy S

EVALUATION OF SAFETY OF REINFORCED
CONCRETE BUILDINGS TO EARTHQUAKES

Metz Reference Roem

Civil Engineering Department
B106 C. E. Building
University of Illinois
Urbana, I1linois 61801

by
M. PORTILLO GALLO
and
A. H-S. ANG

Technical Report of Research
Supported
by the
National Science Foundation
under Grant GK-36378

UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN
OCTOBER 1976







EVALUATION OF SAFETY OF REINFORCED CONCRETE
BUILDINGS TO EARTHQUAKES

, by
M. Portillo Gallo
and

A.H-S. Ang

Technical Report of Research Supported

by the

NATIONAL SCIENCE FOUNDATION
under

Grant GK-36378

University of Illinois at Urbana-Champaign

October 1976






ACKNOWLEDGMENT

This report is based on the doctoral thesis of M. Portillo Gallo
submitted to the Graduate College of the University of I1linois at
Urbana-Champaign in partial fulfillment for the Ph.D. degree. The study
was directed by A.H-S. Ang, Professor of Civil Engineering, as part of
a research program in the Department of Civil Engineering supported
partially by the National Science Foundation under grant GK-36378.

The various discussions‘her with, and constructive comments offered
by, Professors W. J. Hall, M. Sozen, and W. Tang during the course of

the study are gratefully acknowledged.






iv

TABLE OF CONTENTS

CHAPTER

1.

INTRODUCTION .

.1 General Remarks

2 Related Previous Studies

.3 Objectives and Scope of Present Study .
4 Basic Reliability Model

5 Organization

.6 Notation

ANALYSIS OF RESISTANCE MODELS

2.1 Introductory Remarks

omed  med omed cewed  weed e
s e .

2.2 Flexure and Axial Load

2.2.1 Equations of Flexural Capacity .
2.2.2 Uncertainties in Flexural Capacity

2.3 Shear

2.3.1 Equations for Shear Resistance .
2.3.2 Uncertainty in Shear Capacity

MODELING OF STRUCTURAL SYSTEMS FOR DYNAMIC ANALYSIS

3.1 Introduction .
3.2 The Eigenvalue Problem

3.2.1 General Formulation
The Mass Matrix .
The Stiffness Matrix

w ww
[AS RSN
=W N

and Modal Shapes

(O8]
"

w
p

Anal

Introduction .

Data from Full- Sca1e Structures
Damping of Model Structures
Summary and Conclusions on Damping

ANALYSIS OF LOAD MODELS AND LOAD EFFECTS
4.1 Introductory Remarks

4.2 Dead Load

4.3 Live Load

4.3.1 Introduction .

.2 Live Load Models .

.3 Arbitrary-Point-in-Time Load
.4 Live Load Effects

Wwww
wwww o]
WD <<

R
OOQJ(,O

Uncertainties in Natural Frequenc1es

sis of Uncertainty in Structural Dampin

RNV RS



Page

4.4 Earthquake Load . . . . . . . 50

4.4.1 Introduction . . . . . . . 50

4.4.2 Methods of Earthquake Response Analysis . . b1

4.4.3 Statistics of Maximum Response . . . . b3

4.4.4 Maximum Earthquake Load Effects . . . 57

4.5 Total Load Effect . . . . . . . 64

5. RELIABILITY OF CURRENT DESIGNS . . . . . . 65
5.1 JIntroductory Remarks . . . . . . 65

5.2 Risk Implicit in Current Designs . . . . 65

6. SUMMARY AND CONCLUSIONS . . . . . . . 70
6.1 Summary of Study . . . . . . . 170

6.2 Main Conclusions . . . . . . .71
LIST OF REFERENCES . . . . . . . . .72

APPENDIX . ;

A. COVARIANCE BETWEEN MATHEMATICAL MODELS . . . . 101

B. ANALYSIS OF Mt . . . . . . . . 104

C. CORRELATION BETWEEN THE TOTAL LOAD ACTING ON TWO FLOORS . 106

D. ANALYSIS OF EI . . . . . . . . 109

E. ANALYSIS OF wi AND {¢1} . . . . . . . 113

VITA . . . . . . . . . . . 115



(o))
-

g oot B DD D DWW W N
N = O U1 D W RN — W N =

vi
LIST OF TABLES

UNCERTAINTIES IN DESIGN PARAMETERS
BIAS AND UNCERTAINTY OF EQ. 2.12

SUMMARY OF TEST VERSUS CALCULATED VALUES OF Ve
FROM TABLE 2, REF. [81] (0.005 < p < 0.01)

BIAS AND UNCERTAINTY OF EQ. 2.11 FOR Vi
IMPERFECTIONS IN THE ESTIMATION OF EI

SUMMARY OF TEST DATA FROM MATTOCK [59]

SUMMARY OF DAMPING OF FULL-SCALE STRUCTURES

5 DOF.SYSTEM: RELATIVE DISPLACEMENT OF THE FLOORS
STATISTICS OF THE AMPLIFICATION FACTORS

SUMMARY OF v/a AND ad/v2 (HORIZONTAL DIRECTION)
SUMMARY OF COEFFICIENTS IN EQ. 4.50

COEFFICIENTS OF VARIATION OF AMPLIFICATION FACTORS
COEFFICIENT OF VARIATION OF D.

DESIGN LATERAL FORCES

FAILURE PROBABILITIES OF THE MEMBERS OF STRUCTURE 1
FOR a =0.1g

CALCULATED FAILURE PROBABILITY .

Page
14
18

19
20
29

31

39
52
55
56
63
63
64

66

68
70






Figure

w

=~
(&3]

w NN
Laad ~ T O I b}

W W W W W W w
O ~N Oy O BN

T

[Sa BN S) BN & B S R
W N — 0 N Oy

Bow Ny

vii
LIST OF FIGURES

COEFFICIENT OF VARIATION IN FLEXURAL CAPACITY
f = 4,7 ksi, f y = 47.7 ksi

COEFFICIENT OF VARIATION OF Ve (EQ. 2. 14)
COEFFICIENT OF VARIATION OF vC (EQ. 2.18)
COEFFICIENT OF VARIATION IN SHEAR CAPACITY .

COEFFICIENT OF VARIATION OF TOTAL DEAD AND
LIVE LOAD ON A FLOOR -

CORRELATION COEFFICIENT BETWEEN TOTAL LOADS ON TWO FLOORS
ASSUMED STRAIN AND STRESS DISTRIBUTION FOR CALCULATION OF EI
MOMENT-CURVATURE RELATIONSHIP OF REINFORCED CONCRETE MEMBERS
COEFFICIENT OF VARIATION OF EI ?2 = 4.7 ksi, ?& = 47.7 ksi

END MOMENT-END ROTATION RELATIONSHIP OF ANTI-SYMMETRIC MEMBERS,

TYPES OF ELEMENTS TESTED .

DAMPING VALUES OBTAINED FROM FORCED VIBRATION TESTS
OF FULL-SCALE STRUCTURES (ALL DATA)

DAMPING VALUES OBTAINED FROM FORCED VIBRATION TESTS
OF FULL-SCALE STRUCTURES (DATA OF 1965-1973)

LIVE LOAD MODEL . .
COEFFICIENT OF VARIATION OF UNIT LIVE LOAD INTENSITY
COEFFICIENT OF VARIATION OF LIVE LOAD EFFECT

COEFFICIENT OF VARIATION OF AXIAL LOAD
IN A COLUMN SUPPORTING n FLOORS '

REDUCTION IN COEFFICIENT OF VARIATION OF AXIAL LOAD
IN A COLUMN AS A FUNCTION OF NUMBER OF FLOORS SUPPORTED

BASIC SHAPE OF THE RESPONSE SPECTRUM [69]

CONDITIONAL MEANS OF AMPLIFICATION FACTORS .

CONDITIONAL STANDARD DEVIATIONS OF AMPLIFICATION FACTORS
PLAN AND ELEVATION OF STRUCTURES CONSIDERED

MEMBER DIMENSIONS OF STRUCTURE T AND STRUCTURE 2 .

PROBABILITY OF FAILURE OF SEAOC DESIGN,
STRUCTURE 1; a = 0.1 g, B = 4% .

PROBABILITY OF FAILURE OF SEAOC DESIGN,
STRUCTURE 2; a = 0.1 g, B = 4% .

Page

80
81
81
81

82
82
83
84
85

86
86

87

87
88
89
89

90

90
91
92
92
93
94

95

96



Figure
5.5

5.6
5.7
5.8

5.9

viii

PROBABILITY OF FAILURE OF INTERIOR BEAM AND
COLUMNS AT LEVEL 5 OF STRUCTURE 1, B = 4%

FAILURE PROBABILITY OF INTERIOR BEAMS
FOR DIFFERENT NATURAL PERIODS, B = 4%

FAILURE PROBABILITY OF INTERIOR COLUMNS
FOR DIFFERENT NATURAL PERIODS, B = 4%

FATLURE PROBABILITY OF INTERIOR BEAMS
FOR DIFFERENT DAMPING, T = 1.75 sec .

FAILURE PROBABILITY OF INTERIOR COLUMNS
FOR DIFFERENT DAMPING, T = 1.75 sec

INFLUENCE OF THE NUMBER OF MODES ON PROBABILITY
OF FAILURE (INTERIOR BEAMS OF STRUCTURE 1), B = 4%

INFLUENCE OF THE NUMBER OF MODES ON PROBABILITY
OF FAILURE (INTERIOR COLUMNS OF STRUCTURE 1), B = 4%

Page
97
98
98
99

99

100

100



CHAPTER 1

INTRODUCTION

1.1 General Remarks

Earthquake-resistant design, perhaps more than any other branch of
engineering, is characterized by very high levels of uncertainty, because
(1) of the unpredictability of the characteristics and intensities of the
ground motion of future earthquakes; (2) the Tack of precise information
on the structural properties, especially those pertaining to the dynamic
behavior of systems; and finally, (3) the numerous assumptions and
simplifications that the designer is forced to make in order to reduce
the complexity of the dynamic problem for practical applications. Under
these circumstances, the correct determination of the levels of risk
implicit in the design of structures located in seismic areas becomes an
important objective of the process of design. In fact, this is the basis
for the development of a proper earthquake-resistant design.

Current earthquake-resistant design techniques, as represented by
construction codes, recognize the existence of uncertainty, but rely on
intuitively determined overall factors of safety to obtain proper designs.
As a consequence, the true levels of risk underlying a given design are
unknown. Moreover, the results of new investigations and new developments
that could reduce the existing uncertainties cannot be incorporated
systematically into the design process.

For these purposes, a method of reliability evaluation is required.
In this regard, it should establish the basis for the assessment of the
reliability of each of the potential modes of failure in a structure under
the various earthquake intensities. In doing this, it may be emphasized
that meaningful expressions of safety can only be formulated if the
uncertainties in the loads and the structural properties, as well as the
inaccuracies of the load and resistance prediction models, are duly
considered.

Appropriately, several authors have suggested the use of probability
concepts in the analysis of structural safety [11, 22, 37, 72].



It is recognized, in particular, that the proper treatment of uncertainty
requires concepts of the theory of probability; accordingly, the loads

and strengths are treated as random variables, and the reliability of a
structure, or conversely of the risk involved in a given design, is
expressed in terms of the probability of failure. This study is concerned
with such reliability analysis with special reference to reinforced
concrete structures subjected to earthquake forces.

1.2 Related Previous Studies

The problem of structural safety involves two main areas of study;
the analysis and assessment of uncertainties, and the quantitative
evaluation of risk [3]. The analysis of uncertainties associated with
earthquake Toadings and structural response, may be divided into three
groups:

1. Those concerned with the estimation of future earthquake
intensities commonly referred to as "seismic risk analysis".
In these studies, the maximum ground intensity at a site
(usually expressed in terms of the maximum value of the ground
displacement, velocity, or acceleration) is expressed in terms
of the return period. The first seismic risk models were
introduced by Cornell [30], Milne and Davenport [67], and
Esteva [35]. Implicit in these models is the assumption that
the energy released during an earthquake is concentrated at a
point (point-source models). Although this assumption may be
acceptable for small earthquakes, it would not be valid for the
case of major earthquakes in which the energy is released along
fault slips that may be hundreds of kilometers long. To overcome
this difficulty, Ang [9] and Der-Kiureghian and Ang [31] developed
a model which takes into account the relation between magnitude
and the length of the fault slip (Tine-source model).

2. Those dealing with the modeling of the random earthquake motion
itself; appropriately, stochastic models were used for this
purpose. Examples of these models include stationary processes,
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such as white-noise, continuous Gaussian random process

(see for example References [56, 72, 77]), and non-stationary
processes, obtained by multiplying a stationary process

by a deterministic envelope function of time [7, 53, 83].

These are then used to generate artificial earthquakes, for use
in time history analysis, or for the direct estimation of the
maximum response statistics through random vibration theory.
More recently, response spectra corresponding to specified
probability levels have been used to represent the statistical
properties of the ground motion at a site. These are obtained
through the analysis of normalized earthquake records [21, 69, 71,
89] or by Tinear regression analysis techniques [36, 64].

3. Those whose objective is the statistical evaluation of the
response. In the case of linear structures, the theory of random
vibrations is commonly used for this purpose [9, 41, 56, 77, 94,
95]. The results of recent studies [17, 58] seem to indicate that
the response spectrum approach may also be used to estimate the
statistics of the response of multidegree of freedom systems.

In the case of nonlinear systems the response statistics are
usually obtained by time-history analysis of artificially generated
earthquake motions [78], although some approximations for elasto-
plastic systems, or systems with mild nonlinearities are possible
through random vibration theory [41, 56, 57]. A1l of these
studies, however, consider the structural properties to be
deterministic. The problem of systems with random structural
properties subjected to random earthquake motions remains an

area for further study.

The problem of structural safety under extreme hazards in general was
discussed by Ang [10]. Rosenblueth and Esteva [86] indicated conceptually
how the statistics of the load effects may be obtained for the case of
earthquakes of prescribed intensity. Similarly, Esteva and Villaverde [36]
presented a formulation for the analysis of the probability distribution
of the maximum seismic response of systems with imperfectly known properties.

Although these studies are important steps in the analysis of
structural safety under earthquake Toading, the actual levels of risk



involved in modern earthquake-resistant design of reinforced concrete
structures remain unknown because: (1) realistic values of the uncertainties
in the properties of structures under dynamic loading are not available;

and (2) a general procedure that includes the uncertainties in the load
effects and the structural response evaluation has not yet been developed.

1.3 0Objectives and Scope of Present Study

This study is intended tc provide a basis for determining the level
of risk involved in current earthquake-resistant designs, with special
reference to reinforced concrete structures. For this purpose, the loads
and structural properties are assumed to be statistically independent
random variables. It is also assumed that the first and second moment
statistics of these variables are sufficient to estimate the required
risks.

As a first step, the basic variabilities of the loads and structural
properties, as well as the inaccuracies in the Toads and resistance
prediction methods are carefully examined and assessed; the required risks
are then obtained by evaluating the probabilities of failure, in flexure
and shear, of individual components of reinforced concrete buildings
designed in accordance with current design codes when subjected to
earthquakes of prescribed intensities. In this regard, available
reliability model [8, 11] is used as the basis of the reliability
analysis (see Sect. 1.4).

Only Tlinear structures are considered, and "failure" pertains to the
first sign of distress in one or more members of a structure. Thus,
failure means that a structure (or structural element) has been stressed
beyond the elastic range; in particular, this does not necessarily mean
that collapse or even serious structural damage has occurred, unless the
structural elements are not provided with adequate ductility. However,
from the observation of the performance of modern structures during
earthquakes [101], there is evidence to indicate that when a structure
becomes inelastic, architectural damage usually occurs which may
represent an important portion of the total cost of the building



(especially in framed structures). On this basis, the probability of
failure calculated herein represents the risk of some (may be only local)
structural damage.

1.4 Basic Reliability Model

Existing reliability model [8, 11] will form the basis for this
study. The essence of this model may be described as follows.

Let Y be a random variable representing, for example, the resistance,
R, or the applied load effect, S, in a given member of a structure.
Invariably, Y is a function of other variables; e.g.,

Y = f(X1, X2’°"’ Xn) (1.1)

Presumably, the model for Y, as represented by the function of

n
practice, however, this is not possible; f and X1""’Xn must be predicted

Eq. 1.1, as well as X],,..,X , would represent reality exactly. 1In

or estimated, and thus are subject to prediction errors. To adjust for
an imperfect prediction, corrective factors Nf and NX are introduced,

such that 1

f=N f (1.2)

and
X (1.3)

where f is the empirical or theoretical function adopted as a model of f,
and 21 is the model of Xi“ Here, Nf, in and Xi are random variables with

means N%, in and ?}, and coefficients of variation (c.o.v.) QNf . Axi
and 8% 5 » respectively. The uncertainties associated with the basic
variability in X. are, therefore, measured by 8x; 3 whereas Ay. represents
the prediction uncertainty in Xi' Consistent with the first-order
approximation, Axi will be ascribed entirely to the uncertainty in the

predicted E}. Furthermore, the mean values N% and Nk. represent,
i



respectively, the bias in the model ? (usually a deterministic function)
and the estimated mean i}.

By first-order approximation, the total c.o.v. of X1 then (by virtue
of Eg. 1.3) is

-] <2 2
Qx_ —\/ 5x. Ay (1.4)
1 1 1
Similarly, the total c.o.v. of f is
- 2 2
2 =/ 82 + A% (1.5)

where Sf rgpresents the basic variability about the model function ; ;
Gf =0 if f is deterministic.

Substituting Egs. 1.2 and 1.3 into Eq. 1.1, and using a first-order
approximation, the mean and c.o.v. of Y are easily found to be [99]

w = Np £ (0, X, W, T, W X)) (1.6)
1 2 n
and
2 9 W?c Noraf V2 o _p 9
Qc =05 + — | 3 = N X5 o o+
y = 9f u§ A {axil X, M

n on o '

D L B ki oy ¢ M WX X o 0 (1.7)
i=15=1 | %%4 3 X5 KK ;

i U U -

in which gxisz is the correlation coefficient between X. and Xj'
Procedures for estimating the basic variabilities and prediction
uncertainties, as well as pXisX- , from typical sources of information
are given in Refs. [99, 105 ].



In some cases, the component variables X1""’Xn may be functions
of other variables; e.qg.,

Xi = g; (21, ZZ”"’Zm) for i =1,...,n (1.8)

In such cases, the mean and c.o.v. of Xi may be found using a procedure
similar to the one just described for Y. The estimation of the correla-
tion coefficient (or covariance) between Xi and X., necessary for the
estimation of Q (see Eq. 1.7) may be difficult to obtain in general.
However, if the correlation between Xi and Xj exists because of functional
relationships (e.qg., Xi and Xj are functions of certain common variables),
an approximate expression for COV[Xin], consistent with the first-order
approximation, is given by (see Appendix A),

CoV[X.x.] =N W PSS %% R o2 2 (1.9)
I R P b T 2oy I A :

where Zz, for 2 = 1,..., p are the variables common to both Xi and Xj'

Finally, for statistically independent R and S, the failure probability
is easily obtained for prescribed distributions [8]. In particular, for the
case of lTognormally distributed R and S

/ 1+sz§

an | w/ue | ——

RS 1+ af

Pe=1-06]|— (1.10)
Jan (1 + ) (1 + d)]

where &(-) is the standard normal probability distribution function.

1.5 Organization

Chapter 2 contains the formulation of resistance models, in
flexure and shear, of typical beams and columns found in reinforced
concrete earthquake-resistant designs.



Chapter 3 contains an analysis of structural system models for
dynamic response determination. Its purpose is to assess the variabilities
in the properties of reinforced concrete structural systems and those
underlying their mathematical idealization. The dynamic properties of
the systems, mainly, natural frequencies, model shapes, and damping,
are examined. |

The analysis and modeling of loads are discussed in Chapter 4.

Various dead and live load models are reviewed relative to the determination
of loads for seismic consideration. Different methods for specifying the
ground motion inputs are studied; these include the time-history approach,
response spectrum techniques, and random vibration analysis. Mean-values
and coefficients of variation of the maximum response of multi-degree-of-
freedom systems calculated using these models are compared, and the adequacy
of the response spectrum approach to represent earthquake motions is
discussed. On these bases, the statistics of the total load effects, as
obtained from the simultaneous action of dead, live, and earthquake loads
are assessed.

Risk Tevels involved or implicit in present design codes are evaluated
in Chapter 5. For this purpose, typical designs of reinforced concrete
structures are obtained by applying the provisions of the SEAOC code [90],
and the probabilities of failure are evaluated accordingly.

Chapter 6 contains the summary and principal conclusions of this study.

1.6 Notation

When applicable, conventional ACI notation is used herein. The other
basic symbols used in this study are as follows:

D random variable describing the unit dead Toad (psf units)
random variable describing the earthquake load
L random variable describing the unit 1ive load {(psf units)
P probability of failure
R random variable describing member resistance
S; random Toad effect from load i
X  predicted mean of random variable X



prediction uncertainty in X
coefficient of variation (c.o0.v.) of X
mean value of X

correlation coefficient between Xi and Xj
standard deviation of X

total uncertainty in X, equal to /&3 + Ay |
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CHAPTER 2

ANALYSIS OF RESISTANCE MODELS

2.1 Introductory Remarks

The purpose of this chapter is to formulate resistance models needed
in the reliability analysis of reinforced concrete structures under dynamic
Toading. Resistances in flexure, shear, and axial Toad are considered. .

Because of the way that members are fabricated or constructed, the
resistances between any two points along a member are invariably highly
correlated. In particular, the yield strengths and areas of reinforcing
bars may be assumed to be perfectly correlated along a member; however,
the flexural and shear reinforcements may be assumed to be statistically
independent.

2.2 Flexure and Axial Load

2.2.1 Equations of Flexural Capacity -- For the purpose of this

study, flexural failures are assumed to occur when the tension reinforce-
ment yields (tension failure), or when the strain at the extreme edge of
the concrete compression zone reaches a maximum value of E;u = 0.004
(compression failures). Properly then, the flexural resistance should be
expressed in terms of the yield moment capacity, My, in the case of
tension failure; whereas the ultimate moment capacity, Mt’ should be

used for this purpose in the case of compression failure. However,

t
for practical purposes, M

the difference between M, and My in the first case is very small, and,
+ may be used instead of My, On this basis,
the ultimate moment, Mt’ will be used in formulating the flexural
strength of reinforced concrete members in general.
The ultimate moment capacity of reinforced concrete members is not
affected by load reversals if adequate shear capacity is provided [16,

27, 40, 87]. Thus, expressions for M, may be obtained through the

, t
application of the "ultimate strength" theory of reinforced concrete
[49, 61]. For rectangular sections, having the steel placed parallel

to the two end faces (neglecting slenderness effects)
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P+ Af - A(f - k)
= _AV(Er ) _ S's s''s 3¢
Mt = [P + AsfS As(fs k3 fc)][; n

d

fé bd
(2.1)
d - d')

+ A;(f; - k3fé)(d -d') - P( 5

in which conventional ACI notation [4] is used; My is measured from the
mid-height of the section, which corresponds to the plastic centroid in
the case of symmetrically reinforced sections; n = k2/k]k3 is a parameter
describing the characteristics of the concrete stress block distribution
[49, 61]; and P is the applied axial load.

If the compression reinforcement yields (i.e., fg = fy), fs may be
found by solving a strain compatibility equation simultaneously with the
stress-strain curve of the reinforcement. This gives

- / 2
fg=cptvyer+o, g_fy (2.2)
in which
— v
__]_ S i __P_
Cp =3 K;'(fy - k3 fc) - ES €cy As:] (2.3)
k. k, f' bd A
- 13 ¢ _s _ oo P
Cy = As + As (fy k3 fc) AS:IES €cu (2.4)

Similarly, if the tension reinforcement yields (i.e., fs = fy), then

4 =y
where
A
=1 t 4 S P
¢y = 5 ]:Esecu + kg L+ Al fy * AJ (2.6)

and



12

=

N i - P 4
4 AL 3 ¢ Al AT

y s fcu
s

2.2.2 Uncertainties in Flexural Capacity -- If the axial load is

zero, as in the case of pure bending of beams, the flexural strength is
fully defined by the section and material properties, and the statistics
of Mt |
amount of tension reinforcement in structures subjected to seismic

may then be evaluated from Eq. 2.1. The Timitations on the maximum

loading [4, 90], makes tension failures nearly certain [33]; that is, the
stress in the tensile reinforcement can be assumed to be equal to the
yield stress. This is not necessarily true, however, for the compression
reinforcement. If f; < fy, then Eq. 2.5 must first be substituted into

Eq. 2.1 before the statistics of Mt can be evaluated. A possible approxi-
mation for this later case, that greatly simplifies the amount of numerical
compq&gtipn, is obtained by substituting fé in Eq. 2.1 by»csfy, where

Cg = f;/fy (i.e., c5‘is assumed to be constant). The error introduced in
QM is negligible, as has been verified numerically. This is also true
for the case in which P # 0.

In the case of beam-columns, that is when P # 0, there is no closed
form function describing jointly the behavior of M and P, needed to
evaluate the respective uncertainties. The uncertainty analysis is
therefore complicated by the resistance being a function of the relative
Toad effects. Resistance and load are no longer statistically independent,
and simplifications must be sought.

E1lingwood and Ang [33] assumed the applied moment and applied axial
thrust to be perfectly correlated, and computed the statistics of the
axial capacity in terms of material strengths, section parameters and
load eccentricity. This assumption, however, does not seem appropriate
for the case of structures subjected to seismic loading, because in many
cases, moments and axial loads, may be induced by different types of loads.
For example, in the case of an interior column of a symmetrical building,
the axial Toad depends almost entirely on the dead and live loads, whereas
the moment is due almost entirely to the earthquake load. Since the
correlation between the load effects of different loads is small (in this
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study they are assumed to be statistically independent), it is more
appropriate to assume that moments and axial Toads are statistically
independent.

In computing the statistics of Mt from Eq. 2.1, two types of column
failures may be identified: when the axial Toad is small (i.e., P < PB)’
the section fails by yielding of the tensile reinforcement (tension
failures), and fs = fy; whereas for high axial loads (i.e., P > PB)
failure is governed by the concrete reaching its ultimate strain, while .
the tensile reinforcement is still elastic (compression failure), and
Eq. 2.2 must be substituted into Eq. 2.1 before the statistics of Mt
be estimated. Since P and PB are random variables, it is generally not

can

possible to know whether a tension or a compression failure will govern
the design [33, 86]. However, in the case of reinforced concrete
structures designed against earthquake Toads, most columns are subjected
to Tow axial Toads, i.e., P < PB [20], except in the case of extremely
tall buildings; thus, failure can be assumed to occur through tensile
yielding. For simplicity this will be assumed in the following (the
adequacy of this assumption will be verified in the analysis of specific
design examples). However, if needed, various procedures to include the
possibility of compression failures may be included [33].

On the basis of the above assumptions, the relevant statistics of the
flexural capacity of reinforced concrete beams and columns found in
structures designed to resist earthquake forces are determined with Eq. 2.1
where f_ = fy and f_ = (fZY?&)fy = CSfy . For this purpose, the statistics
of the material and section properties given in Ref. [33] (as summarized
in Table 2.1) are used. The statistics of P may be determined as described
in Chapter 4. Expressions for the partial derivatives of Mt with respect

to its component, variables needed in the evaluation of @, , are given in

. My
Appendix B.

The total coefficients of variation are summarized in Fig. 2.1 for
the following: (a) symmetrically doubly reinforced beams, as a function of
the reinforcement ratio p; (b) unsymmetrically doubly reinforced beams, as
a function of the ratio of compressive to tensile reinforcement p'/p; and

(c) symmetrically reinforced columns, as a function of the applied load
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to the balanced load, 57§é. It may be observed from this figure that,
in the case of beams, QMt is almost constant for all values of the
reinforcement ratio; whereas for columns, QMt depends on the axial Toad
P/PB and, of course, also on the uncertainty in P.

TABLE 2.1  UNCERTAINTIES IN DESIGN PARAMETERS

Parameter Prﬁg;gted ‘ Var?gg;%ity E:igiiggggy Unclgig}nty
fy 47.7 ksi 0.09 0.12 0.150
(Nominal 40 ksi)
fy 64.0 ksi 0.07 0.12 0.139
(Nominal 60 ksi)
fc 3.5 ksi 0.12 0.18 0.216
(Nominal 3 ksi)
fc 4.7 ksi 0.12 0.18 0.216
(Nominal 4 ksi)
AS 0.02 0.03 0.036
b 0.04 0.02 0.045
d 0.07 0.05 0.086
h 0.04 0.02 0.045
k]k3 0.72 0.12 0.05 0.130
n 0.59 0.05 0.00 0.050
€y 0.004 0.12 0.10 0.156
2.3 Shear

2.3.1 Equations for Shear Resistance -- The other mode of potential

failure is through shear. The members are subjected to Toad reversals, as
expected of structures under earthquake loading. In this regard, shear
fajlure of a member is assumed to occur before the corresponding yield
moment capacity is exceeded.
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The so-called "shear-failure" is in fact a failure under combined
shear and bending plus, occasionally, axial load and torsion [1, 14].
Shear stresses are transferred from one plane to another in various ways:
shear stress in the uncracked concrete; interface shear transfer; dowel
action; arch action; and through the shear reinforcement. Expressions
for the shear capacity of reinforced concrete members that take into
account all of these shear transfer mechanisms are not available.
Usua]]y,'the so-called "truss-analogy" is used for this purpose [14].

In this context, the shear capacity of a section is expressed as

v, = vC + VS (2.8)

t
where VC is the "shear carried by the concrete" at ultimate, and VS is
the shear carried by the transverse reinforcement. For the purpose of
this study, Eq. 2.8 will suffice.
The shear carried by the concrete, assumed to be equal to that

causing the first diagonal crack in a member without shear reinforcement,
may be expressed as

VC = Ve bd (2.9)
where Ve is an average stress (the nominal shear stress) assumed to be
uniform over the area bd. The shear force carried by the web reinforcement
is calculated on the assumptions that the inclined cracking has a horizontal
projected length, d, and the reinforcement is yielding. If the stirrups
are vertical and of the same size, then [14].

£
i

v Y

—
o
S

v =9,
= —AR
S

's

—
[N

where s is the stirrup spacing and AV the stirrup area. The shear capacity

is then .
d
E’Av f (2.11)

vV, = Ve bd + y

t

Tests 1in which Toad reversals were applied indicated that the
behavior of beams is not significantly affected by the application of a
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few number of relatively high loads, provided that the Tongitudinal
reinforcement is kept within the elastic range [5, 14]. On this basis,
information obtained from members loaded in one direction (no reversal)
may be applied to the case of members subjected to load reversals.
However, if the flexural reinforcement yields, test results indicated
the necessity of ignoring the concrete shear-resisting mechanism -- at
least its contribution [74] must be reduced.

A number of semi-rational expressions have been developed to
predict the shear cracking load of reinforced concrete members [1, 60,
81, 82, 106]. According to ACI [1, 4], the shear stress at cracking
may be calculated by

] Vd je1
v = 1.9 /?C‘ + 2500 p 5 < 3.5 /] (2.12)

If axial load is present, Eq. 2.12 can still be used, except that M is
substituted by

4h - d)

M =M-P ( g

- (2.13)

However, V. should satisfy

, P
V. < 3.5 /wi /1 + 0.002 oh (2.14)

2.3.2 Uncertainty in Shear Capacity -- For purposes of this study,
the statistics of v, are evaluated on the basis of Eqs. 2.12 through 2.14.
In doing this, it is assumed that the applied axial load and shear are

statistically independent. Moreover, based on the analysis of various
available expressions for Ve it was determined that the ratio V/Mm (or
V/M when P = 0) in Eq. 2.12 may be assumed to be a random variable,
statistically independent of the applied shear, with mean VYMh and
coefficient of variation, QV/Mm' Suitable values of QV/Mm were obtained
by comparing the total c.o.v. of Ve obtained from Eq. 2.12 with those
obtained from Eq. 2.14 and the expressions developed by Zsutty [1061],
Rajagopalan and Ferguson [81], and Ragan [82]. On this basis, QV/Mm = 0.10

varies from 0.17 (when Q. = 0.20)

m

is estimated when P = 0; whereas Q

V/M P
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to 0.25 (when QP = 0.60) for members with axjal compression.
If Mm is substituted for M in Eq. 2,12, the mean and the c.o.v. of

v, are .
Vo= 1.9/F + 25005 (L) d (2.15)
M
m
and
12 1/2
‘ 1.9/ f! i
9 =1 |- Cl g2, + (2500 p (L)T V(o2 +a2+ a2, ) (2.16)
v — 2 f , W A b V/M
v c - Mm S m

However, if Eq. 2.14 controls, then

V. =3.5/F /1 +0.002 — (2.17)
C C T i
b h
and
r ) 12
112 0.002 P/b h 2 2 2 |
Oy =% |05, + 2N l(as + o + af) (2.18)
€ 2 Lfc 1+0.002P/6K ) ¢ b hT

Figure 2.2 shows the coefficient of variation obtained from Eq. 2.14 for
the cases of QV/Mm = 0.10 (P = 0) and QV/Mm =0.17 (P #£ 0, Qp = 0.20).
Also included for comparison is QVC obtained by assuming QV/Mm = 0.
Similarly, QVC as obtained from Eq. 2.18 is illustrated in Fig. 2.3 as

a function of the axial Toad.

Test results [1, 81] indicate that the ACI equations underestimate
the nominal shear strength for members with reinforcement ratios greater
than about 1 to 1.5% and low Vd/M values, but may yield unconservative
results for members with Tower amounts of reinforcement. For the purpose
of a reliability analysis, this bias must be corrected. This may be
accomplished through the analysis of test data in the form of test versus
calculated values of Ve (or Vc/bd). For the case in which Ve is
calculated through Eq. 2.12, the bias and uncertainty of this equation
are obtained on the basis of the data reported in References [1, 81];
the results are summarized in Table 2.2,
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TABLE 2.2  BIAS AND UNCERTAINTY OF EQ. 2.12

. Prediction
Data Source Case Bias Uncertainty

Rajagopalan et al. [81];

Table 2 P=0; 0.005< p < 0.01 0.96 0.16
ACI-ASCE Com. 326 [1];

Table 5.20 ’ P=20, p>0.01 1.18 0.16
ACI-ASCE Com. 326 [1];

Table 7.4 P#0 1.29 0.12

The bias and prediction uncertainties shown above were evaluated as
the mean-value and c.o0.v. of the ratio of test to calculated values of Ve
These may be illustrated using the test data of Ref. [81] as shown in
Table 2.3, which gives

E [v 1=0.96

c test/vc calc

/v = 0.16

c.o.v. of v c calc

c test

No data is available to evaluate the error in Eq. 2.14; thus,
it will be assumed herein that the results obtained for Eq. 2.12 may
be applied also for Eq. 2.14.

The mean and c.o.v. of V, may be evaluated using Eqs. 2.11 through

2.18; obtaining

t

V<[V, bd+ZA T ] (2.19)

and

(2.20)
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TABLE 2.3  SUMMARY OF TEST VERSUS CALCULATED VALUES OF v
FROM TABLE 2, REF. [81] (0.005 < p < 0.01) ©

Beam Ve test (PST) V" ca1c._(p51) Ve test/Ve calc.
-2 132 138 0.96
S-3 I 128 0.87
S-4 ' 99 135 0.73
$-5 122 . 124 0.98
$-9 | 90 118 0.76
A2 ~ 157 137 1.15
A3 128 107 1.19
A4 | 132 124 1.07
V-a-19 112 117 0.96
V-a-20 | 17 122 0.96
VI-b-21 | 126 124 1.01
VI-b-23 i 133 134 0.99
W-1382 145 109 1.33
267 - 86 108 0.80
246 88 124 0.71
180 87 138 0.63
143 104 101 1.03
152 117 108 1.08
153 114 108 1.06
103 132 130 1.01
104 | 118 120 0.98
107 90 122 0.74
116 138 124 1.1
164 123 138 0.89
166 142 143 1.00
166 132 142 0.93
B56E2 103 92 1.13
* Ve calc. is based on Eq. 2.12 where Vd/M is assumed to be equal to d/a,

in which a is the shear span.
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1
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1

or

0.002 P/b
1+ 0.002 P/

h (2.23)

b h

depending on whether Eq. 2.12 or 2.14 is used to estimate the shear capacity.
A1l but the c.o.v. of s and Av have thus far been defined. Since

stirrups are normally formed with smaller reinforcing bars, Qp = @ may be
v s

used. No data is available to evaluate the uncertainties in s, but as these
pertain to errors in spacing the stirrups, it seems reasonable to assume
that the uncertainties in s are about the same as those of d [33].

An inspection of the data shown'in Refs. [1, 42] indicates that Eq. 2.11
underestimates the shear capacity of members with shear reinforcement, even
after the bias in Ve has been removed. The bias and prediction uncertainty
in Vt may be estimated from the ratio of observed to calculated values of

vV, (or Vt/bd), after the bias of Ve has been removed.

t
The results are summarized in Table 2.4

TABLE 2.4  BIAS AND UNCERTAINTY OF EQ. 2.11 FOR Vt

. Prediction
Data Source Case Bias Uncertainty
ACI-ASCE Com. 326 [1]; Table 6.1 P=20 1.14 0.16
Haddadin, et al. [42]; Table 2 P#0 1.23 0.11

It may be mentioned that the bias shown in Table 2.4 for the case of P = 0
has a tendency to decrease as the amount of web reinforcement increases.
This is consistent with the observation that stirrups designed according
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to ACI [4] tend to be more conservative for Tow percentages of web -
reinforcement [14].

The total c.o.v. of Vt is illustrated in Fig. 2.4 as a function of
re- As the amount of web reinforcement increases (small rs), the influence
of v, (and of QVC) on the total shear capacity becomes less important
resulting in a smaller coefficient of variation [33]. The presence of
axial load also decreases Qvt (whereas it increases QVC; see Fig. 2.2).
This is mainly due to the difference in the bias and prediction uncertainty
for this case, and the case of no axial load. It may also be observed from
Fig. 2.4 that the c.o.v.'s for the total shear capacity obtained on the
basis of‘Eqs§'2.12 and 2.14 agree very closely when the mean values of Ve
from the two equations are equal.
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CHAPTER 3

MODELING OF STRUCTURAL SYSTEMS FOR DYNAMIC ANALYSIS

3.1 Introduction

The necessary modeling of structural systems for dynamic response
analysis, and the key parameters associated therewith are summarized
herein. The variabilities in the dynamic properties of reinforced
concrete structural systems, such as the natural frequencies, modal
shapes, and damping, and the uncertainties associated with the
mathematical idealization for purpose of dynamic analysis, are assessed.

Only framed structures without shear-walls are considered. It is
assumed that the systems are stressed within the elastic limit and that
no stiffness degradation occurs; thus, their behavior may be assumed to
be approximately Tinearly elastic, even under load reversals.

3.2 The Eigenvalue Problem

3.2.1 General Formulation -- The eigenvalue problem of linear

structural systems is formulated in terms of the characteristic equation

(K] - A;[MI) {6} = 0 (3.1)

where [K] and [M] are, respectively, the effective stiffness and mass

th

matrices, Ai is the i~ eigenvalue, and {¢i} is the 1th eigenvector.

The 1th natural frequency of the system is given by

{¢i}t [K] {65} 172

95 = = | 13t I te,) (3.2)
and the participation factor corresponding to the ith mode is
{9.3% M1 (1}
= (3.3)

Y =
EERCRAR RN

where {I} is a unit vector.
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Since both the stiffness and mass matrices are random, the natural
frequencies, modal shapes, and participation factors are, in general, also
random scalars or random vectors. Several approximate methods for solving
the eigenvalue problem of systems with random structural properties are
available [43, 46, 88]. Further approximations for reinforced concrete
buildings are possible; these are described in the sequel.

3.2.2 The Mass Matrix -- For practical applications, the total mass
of a framed structure may be idealized as lumped masses concentrated at the
th story level of a building

floor levels. The mass concentrated at the i
may be expressed as Mi = wi/g, in which wi is the total load (dead + live .
load) acting at that level, and g is the acceleration of gravity. Since

g may be assumed to be constant, it follows that

o
Mi = i v(3.4)
and
QM_ =0 (3.5)
i i

Similarly, the correlation coefficient between the masses of two floors,

M; and Mj is
pMi’Mj = owi’wj (3.6)
The total load acting on the ith floor may be expressed as
W = [o; + L(Ai)] A; (3.7)

where Di and L(Ai) are the average dead and Tive load intensities, and Ai
is the area of the floor under consideration. For statistically independent
D and L it follows that

)1 A, (3.8)

and
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D T, * L(A;) L)
q, - — (3.9)
i (L(Ai) + Di)

A plot of @, as a function of the floor area, obtained on the basis of
the dead Toad and live load models described in Chapter 4, is shown
in Fig. 3.1. It may be observed from this figure that the results obtained
with the two 1ive load models (the white-noise and Peir's) are very close.
Also it may be observed that §; is not sensitive to the mean value of the
dead load; at least, not for typical dead to live load ratios found in
office buildings. This is especially true for large areas, as in the case
of the total floor area of a building. Thus, a reasonable approximation
is to take ij = 0.12 for all floors (see Fig. 3.1); this is assumed in
the sequel.

The correlation coefficient between the total loads on two floors,
wi and wj, is

COV [W.W,
= __[_l_xll 7 (3.10)

If the areas of the two floors are approximately the same, and considering
the dedad load for the two floors to be equal and perfectly correlated (but
statistically independent of the live load) it follows that

2 Qg + COV [L(A;) L(A)] -
0 Sp— 3.11
WysW, 52 Qg + ()2 QE(A)

in which Ai = Aj = Aand D, = Dj = D.
Expressions for the COV [L(Ai) L(Aj)] (and for pwi’Wj)’ obtained with

the Toad models described in Chapter 4, are given in Appendix C. Fig. 3.2

shows pWist obtained with Eq. 3.11 as a function of the floor area. It is

observed that ij,wj becomes fairly constant for large areas and that it

increases with D. In particular, it becomes of the order of 0.9 for

D < 100 psf and A > 2000 ft2. Since dead load intensities in office

buildings are typically of the order of 100 psf or more, and the total

FoYaYaYa)
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that the total load in two different floors of a building are highly
correlated. Accordingly, for the purpose of this study, the total loads
on two different floors will be considered to be perfectly correlated.

On the basis of the above discussions, the mass matrix may be
expressed as

M= M* [M] (3.12)

where M* is a random variable with mean equal 1.0 and c.o.v. QM*= QM = 0.12,
and [M] is a deterministic matrix consisting of the mean values of the
floor masses obtained from Eq. 3.4,

3.2.3 The Stiffness Matrix -- The stiffness matrix of a structural

system is obtained from the stiffness matrices of its elements. For the
case of framed structures (without shear walls) of moderate height, the
effects of axial and shear deformations are usually unimportant and may

.th

be neglected. Thus, the stiffness matrix of the i~ element of the system

may be expressed as

12 6L -12 6L
LR a2 -6 212
Ly |-12 --6L2 12 -6L2
6L 2L° -6L 4L

where EI,i is the equivalent flexural rigidity, and L; the length of the
element. In general, any uncertainty in L is negligible. Hence, the only
uncertainty in the element stiffness matrix is associated with the flexural
rigidity EI.

The 1jth stiffness coefficient of the system, kij’ may be expressed
as
n
kij = 251 (C2 EIQ) (3.13)
where C2 is a constant (i.e., ]Z/Lg , 4/L§ ,..., etc.) and EIQ is the

flexural rigidity of the ch element connecting into the ith joint.
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In order to estimate the statistics of kij through Eq. 3.13,
expressions for EIQ are required. In formulating these, it is assumed
that the members of a structure subjected to earthquake loading may be
stressed up to, but not exceeding, their yield capacity. It is further
assumed that representative equivalent rigidities, of reinforced concrete
members, even for the case of load reversals, may be obtained from the
ratio of the yield moment capacity to yield curvature at the critical
section [12], i.e.,

M
EI = 6’1 (3.14)
y
In computing the yield moment and curvature, a linear strain and

stress distribution, as shown in Fig. 3.3, is assumed. On this basis,
it follows that

Moo= v _ C g d -d'
My = Cc(d - 3) + Ts(d d') + P( 5 ) (3.15)
and
€ f
= = N
¢y d ~-c Es(d - C) (3.16)
where:
;
¢ = {-[p'(n-1) + p"n] +/Tp'(n-1) + p"n]% + 2[p'(n-1) d'/d + 0"n] } d
2
I S
Cc=7bgTT =
T, = AS fy
n = Es/Ec = modular ratio
A+ P/fy
T
Equations 3.15 and 3.16 are valid as long as the stress-strain curve
for concrete is Tinear (i.e., for fc Max < 0.7 fé), and the stress in the

compression reinforcement is below its yield stress. However, reasonable
values of EI can be obtained from the above formulation, even for cases in
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which these conditions are violated. This may be observed from Fig. 3.4
where values of EI calculated by Egs. 3.14 thrbugh 3.16 are plotted
together with moment-curvature relationships obtained by a more exact
method [80]. The only exception occurs for columns with high axial
loads and low reinforcement ratios. This is not of major concern in
earthquake-resistant structures, because most columns found in reinforced
concrete buildings that are designed to resist earthquake motions are
subjected to low axial Toads (i.e., less than the "balance" Toad), except
in the case of very tall buildings.

The statistics of EI may be found from Egs. 3.14 through 3.16. For
these purposes, expressions for the partial derivatives of EI with respect
to the basic variables are needed; these are shown in Appendix D. The
modulus of elasticity of steel is assumed to be constant -- equal to
29,000 ksi. The statistics of the modulus of elasticity of concrete are
obtained, based on the equation of ACI 318-71 [4] for normal weight
concrete; i.e.,

E. = 57ooo/f‘g
from which, -

E, - 57000/ r
and

Q- = Qe./2

EC fC

The variabilities of the other variables involved in Eqs. 3.74 through
3.16 are summarized in Table 2.1 [33].

The coefficient of variation of EI is shown in Fig. 3.5a for the case
of symmetrically doubly reinforced beams as a function of the reinforcement
ratio p. Similar information is summarized in Fig. 3.5b for unsymmetrically
doubly reinforced beams as a function of the ratio of compressive to tensile
reinforcement, p'/p; and in Fig. 3.5c for symmetrically reinforced concrete
columns as a function of the ratio of the applied axial load to the balanced
Toad, 575%, It may be observed from these figures that the c.o.v. of EI is
not very sensitive to p or p'/p, or to P/PB when p < 0.30. In computing
the equivalent flexural rigidity of reinforced concrete columns, only the
axial Toad due to the dead and Tive loads is considered. From the load
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models to be described in Chapter 4, it may be shown that QP is less than
0.30 for typical dead to live load ratios found in office buildings. Under
these circumstances, a reasonable approximation is to take a single value
of the c.o.v. of EI for all members. Based on Figs. 3.5a through 3.5c, a
value around 0.20 appears reasonable.

Before proceeding further, it is important to examine and assess any
imperfection underlying the estimation of EI by Egs. 3.14 through 3.16.

For this purpose, consider a typical flexural member of a reinforced
concrete frame subjected to anti-symmetric bending (as in the case of a
structure subjected to earthquake motions). Also, take a simple beam
subjected to a concentrated load at mid-span (these are shown in Fig. 3.6).
It may be seen that the end moment-end rotation relationship of the anti-
symmetric member is the same as the ratio of the mid-span moment to the
mid-span deflection divided by half the span length of the simple beam
(see Fig. 3.6). It follows that the moment-rotation relationship of anti-
symmetric members can be evaluated empirically by studying the test data
for simple beams [12].

Similarly, the assessment of uncertainties in the equation for the
rigidity of anti-symmetric members may be based on test data obtained from
simple beams loaded at mid-span. In this regard, it may be observed that
the ratio of measured to calculated values of EI is the same as the ratio
of calculated to measured values of the mid-span deflection corresponding
to the first yielding of the tension reinforcement. This may be shown as
follows: let Py be the Toad causing first yielding in the tension reinforce-
ment and dy the corresponding measured mid-span deflection. Then, an
estimate of the true (or measured) equivalent flexural rigidity is given by

(P L3
El = HX I (3.17)
y

Similarly, if é& is the theoretical flexural rigidity (obtained, for
example, from Eqs. 3.14 to 3.16), the calculated mid-span deflection is

~ P 3 :
i =y (3.18)
Y E1 48



Then, it follows that

On the basis of the above discussion, the uncertainty associated

29

1l d
B
fd,

(3.19)

with the equation for EI is estimated by examining test data for simple

beams, in the form of calculated versus test values of the mid-span

deflection at first yielding of the tension reinforcement.
Mattock [59] and Corley [29] tested, respectively, 31 and 40 beams

with simple supports and loaded at mid-span.

No axial load was applied

to the test specimens. The theoretical yield deflections were obtained

based on the idealized bending moment diagram developed in Appendix IV of
Ref. [59]. The results obtained from these investigations are summarized

in Table 3.1.

TABLE 3.1  IMPERFECTIONS IN THE ESTIMATION OF EI

_— o 2F s presiction
Beams with Concentrated Loads
Mattock [59] 31 0.79 0.20
Corley [29] 40 0.64 0.20
McCollister, et al. [63] 19 0.79 0.15
Burns, et al. [26] 17 0.81 0.04
Yamashiro & Siess [103] 12 0.93 0.14
A1l data 119 0.76 0.21
Beams with Uniform Load
ACI Com. 435 [2] 30 1.08 0.11
Yu & Winter [104] 90 1.05 0.14
Branson [25] 1.02 0.22
(with top
107 reinforcement)
Branson [25] 0.95 0.12

(without top
reinforcement)
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Yamashiro and Siess [103] investigated the moment-rotation
characteristics of reinforced concrete members subjected to bending,
shear, and axial load. The axial load varied from 0 to about 60% of the
balanced load. The results of tests performed by Burns, et al. [26] and
by McCollister, et al. [63] were also included. The type of members
tested are shown in Fig. 3.7. In computing the yield deflections, a
linear curvature distribution along the span was used. The curvature
distribution for the stub was estimated empirically. These results are
also summarized in Table 3.1. If the deformation in the stub is neglected,
the bias shown in Table 3.1 is reduced by about 20% and the prediction
uncertainty remains approximately the same.

Data on uniformly loaded members is also included for comparison
purposes [2, 25, 104]; these included some tests of continuous and T-beams.
Theoretical deflections were estimated using the fully-cracked sections
for simple beams, and the average moment-of-inertia of the positive and
negative moment regions for continuous beams. The results obtained from

these tests are also shown in Table 3.1.
' The evaluation of the bias and prediction uncertainty of EI, as shown
in Table 3.1, may be illustrated using the data of Mattock [59], which are
summarized below in Table 3.2; this set of data gives

E[d = bias = 0.79

y ca]c‘/dy test]

c.0.v. of d /d = prediction uncertainty = 0.20

y calc.” 7y test

It may be observed from Table 3.1 that the equation bias obtained on
the basis of the uniformly Toaded beams is clearly different from those
of simple beams subject to concentrated loads applied at mid-span. One
explanation of this behavior is given in Reference [103]. It is based
on the observation that, in regions with high shear and moments, the
cracks in reinforced concrete members are inclined rather than vertical,
causing concentrated rotations. Since the behavior of structural members
subjected to earthquake Toads is closer to that of beams under concentrated
loads, the results for uniformly loaded beams will be ignored.
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TABLE 3.2  SUMMARY OF TEST DATA FROM MATTOCK [59]

Beam dy test dy calc. dy ca]c./dy test
Al 0.098 0.065 0.67
A2 0.374 0.272 0.73
A3 1.700 1.116 1.01
A4 0.119 0.070 0.59
A5 0.321 0.297 0.93
A6 1.249 1.203 0.96
B1 0.230 0.143 0.62
B2 0.523 0.514 0.98
B3 0.244 0.147 0.60
B4 0.760 0.582 0.77
Cl 0.112 0.068 0.60
c2 0.327 0.274 0.84
C3 1.117 1.050 0.94
C4 0.147 0.079 0.54
C5 0.448 0.336 0.75
Co 1.452 1.205 0.83
D1 0.203 0.135 0.66
D2 0.635 0.550 0.87
D3 0.278 0.160 0.58
D4 0.784 0.648 0.83
E1 0.143 0.085 0.59
E2 0.411 0.344 0.84
E3 1.460 1.348 0.92
F1 0.134 0.083 0.62
F2 0.360 0.335 0.93
F3 1.300 1.398 1.08
G1 0.240 0.173 0.72
G2 0.770 0.687 0.89
G3 0.270 0.165 0.61
G4 0.840 0.731 0.87
G5 0.660 0.659 1.00

There are differences between the bias, and the prediction uncertainty,
obtained through simple-beam tests from those for beams with stubs (see
Table 3.1). However, it is believed that this difference is mainly due
to the wider range of variables considered by Mattock and Corley, and by
the use of an empirical curvature distribution in the stub used by
Yamashiro and Siess. Also, it is recognized that the presence of the
stub influences the Tocation of the failure section [103].
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The information of these investigations was combined in various
ways (such as lumping all data together, computing simple or weighted
averages of the means and c.o.v. obtained by the various investigators,
etc.). On the basis of the results summarized in Table 3.1, a bias of
0.76 and prediction uncertainty of 0.20 in the estimation of EI appear
reasonable.

The analysis of EI, up to this point, is based on the assumption
that a member has been subjected to stresses close to its yield capacity.
If this is not the case, equivalent flexural rigidities calculated on the
basis of the above formulation might not be applicable; in particular,
the mean value of the member stiffness may be greatly underestimated.

On the basis of these results and on those shown in Figs. 3.5a
through 3.5c, the total c.o.v. of EI of reinforced concrete beams and
columns 1is

. =/ (0.20)2 + (0.20)% = 0.28 (3.20)

EI
Even if the stiffness of individual members can be estimated correctly,
there may be inaccuracies in the stiffness matrix of complete structures.
This is due, in part, to the idealizations that are usually made in
constructing the stiffness matrix (for example, taking the center-to-
center distance between supports as the effective length of the elements,
neglecting shear deformations in the joints, etc.), and to the fact that
members in a structure do not behave exactly the same as simple beams.
The imperfections in the estimation of kij may be assessed by
systematically comparing stiffness coefficients obtained experimentally
and theoretically (i.e., by Eq. 3.13 through 3.16). For this purpose,
the results of a series of tests on one-story portal frames [13, 15, 16,
40, 92] were examined. The stiffness matrices of the frames were
constructed using equivalent rigidities calculated on the basis of Egs.
3.14 through 3.16. The center-to-center distances were used as the
effective length of the members. The results of the investigations were
reported in the form of load-deformation (P-A) diagrams, thus comparisons
were made by plotting the theoretical stiffness on the P-A diagrams.
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In general, for the case of first loading, the agreement between
the theoretical stiffness and the ones obtained by joining the origin and
the points in which first yielding occurs on the experimental P-A curves
was good. There was noysystematic bias between the theoretical and the
experimental results, once the bias in EI is corrected. However, in some
cases, reduction in the stiffness of the frame was observed for cyclic
loading. Most of the reduction took place in the first few cycles and
then stabilized as the number of cycles increased [16, 92]. This behavior
was also observed by Ruiz and Winter [87] in tests of simply-supported
beams to load reversals. This is due, mainly, to the loss of bond between
the reinforcement and the concrete, and to the redistribution of cracks
along the length of the member.

A two-story frame tested by Hidalgo and Clough [48] was also
examined. The structure was about 1/4 scale of a typical 2-story building.
The flexibility matrix was determined experimentally and then inverted to
obtain the stiffness matrix. The results obtained by comparing the
theoretical and experimental results were similar to those of the one-
story frame described above.

On the basis of the results above, suitable values for the bias and
predictﬁon uncertainty in the formulation of the stiffness matrix of
reinforced concrete structural systems are estimated to be 1.0 and 0.20,
respectively. In this regard, it may be mentioned that it has been
assumed that no stiffness degradation occurs as a result of bond and
shear stresses; if this is not the case, additional bias correction
may be necessary.

In order to estimate the statistics of the stiffness coefficients
from Eq. 3.13, the correlation coefficients (or covariance) between the
equivalent rigidities of the members must first be determined. Because
of common construction and workmanship, it is 1ikely that the properties
of the members in a given structure would be highly correlated. Thus, a
plausible approximation is to assume that these are perfectly correlated.
It follows then that

(3.21)
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and
n 2
22 = (0.20)% + 1 L (C,ET.) @ (3.22)
Ks s : 2 - L8 TEI ’
ij .. =1 L
ij I |
Then, in light of Eq. 3.20
o, =V (0.20% + (0.28)% = 0.34, for all i,] (3.23)
1J
On these bases, thebstiffness matrix of a structural system may be
expressed as '
[K] = k* [K] (3.24)

in which K* is a random variable with mean K*¥ = 1.0 and c.o.v.
Qx = 9, = 0.34 (for all 1,j), and [K] is a deterministic matrix
1]
consisting of the mean stiffness coefficients obtained with the mean
flexural rigidities of the members. Eg. 3.24 implies that the stiffness

coefficients in [K] are constant factors of each other.

3.2.4 Uncertainties in Natural Frequencies and Modal Shapes --
It was shown in Sect. 3.2.3 that the floor masses, as well as the member
stiffnesses, may be assumed to be perfectly correlated and with equal
coefficients of variation. Since the modal shapes depend only on the
relative value of these quantities, it follows (as shown in Appendix E)
that the modal shapes are deterministic vectors, depending only on the
means of the mass and stiffness matrices. Moreover, replacing [M] with
M*[M] in Eq. 3.3, it may be observed that the participation factor is
also a deterministic quantity.

The 1th natural frequency is found by substituting Eqs. 3.12 and
3.24 into Eq. 3.2; yielding
(0,38 [R] 0,377V2 e 71/2
w, = — (3.25)

AR I CN e

from which it follows that the mean and total coefficient of variation

of w, are, respectively,
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_ e R te3]Y?
ws = (3.26)
(6,0 [M] {0,
and
- 1/2
o, = | (0.10)% + 3 (a2, + gzpzd*):[ (3.27)

1 b

where an additional uncertainty of 0.10 is ascribed to the estimation of

W reflecting the influence of non-structural elements, soil-structure

interactions, etc. With Qk* = 0.34 and QM* =0.12, Eq. 3.27 yields Qu) =0.21.
: i

3.3 Analysis of Uncertainty in Structural Damping

3.3.1 Introduction -- Damping is the third important dynamic property

of structures. Unlike the natural frequencies and modal shapes, the damping
of the structure cannot be evaluated on the basis of the damping in the
individual components. Perhaps the only way to represent the energy
dissipation characteristics of structural systems is by means of equivalent
damping, of the viscous type (denoted hereafter by B), obtained experi-
mentally through dynamic tests** of full-scale structures. Damping depends
on the stress Tevel (and on the cracking level, in the case of reinforced
concrete members [62, 102]). Thus, non-destructive and low-amplitude
vibration tests will produce damping values that underestimate the true
energy dissipation capacity of structures subjected to intense excitations.
Since ultimately it is the response of structures subjected to strong
earthquake motions that is of interest, the results of small vibration
tests should be modified when applied to structures subjected to high
seismic excitations.

It is the purpose here to analyze the damping of reinforced concrete
structures subjected to earthquakes. It is assumed that the structures are
stressed up to but not exceeding their yield capacities. Test results
on full-scale and model structures of reinforced concrete and steel-

** The term "dynamic test" is used here to indicate that a structure has
been excited dynamically either by artificial means, or by natural
causes (see Ref, [51]).
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reinforced concrete are the basis for these evaluations.
The dynamic tests included in this study are summarized below,
The test procedures are well known or are reported elsewhere (see for
example [51]).
Full-Scale Structures
Forced Vibration Tests: (Low to very low amplitudes)
Rotating Eccentric Weight Exciter
Man-excited Vibration
Transient Vibration Tests: (Low to high amplitudes)
Micro-tremors
"Wind-excited Vibrations
Blast and Explosion
Natural Earthquakes
Model Structures
Forced Vibration Tests
Rotating eccentric weight exciter
Shaking table
Forced-static Tests

3.3.2 Data from Full-Scale Structures -- A number of forced

vibration tests of actual structures using rotating eccentric weight
exciters have been reported [6, 19, 34, 38, 39, 55, 70, 73, 79, 84,

85, 93, 98 ]. Damping values were estimated from the resonance curves.
Results of such tests are summarized in Fig. 3.8 , where the estimated
damping coefficients (for the 1st mode) are plotted against the respective
natural frequencies of the test structures (the natural frequencies are
determined from the tests). The mean value of B8 from all the tests was
6.0% of critical and the corresponding c.o.v. is 0.62 (from 67 measurements).
The dispersion of the data is immediately apparent from Fig. 3.8.

Certain trend between frequency and damping may be observed -- damping
appears to decrease with increasing period of the structure. The same
trend was also observed by Tanaka, et al. [ 98]. What is striking is the
fact that damping values as high as 10% (or more) of critical were measured
under very small vibrations. It may be observed, however, that the results
of references [6, 19, 70], obtained from tests conducted before 1960, gave
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consistently higher values of damping than more recent tests.

If the damping factors from these earlier tests were removed, the

resulting plot would be as shown in Fig. 3.9. The values enclosed by dotted
Tines in Fig. 3.9 1involve considerable soil-structure interaction [84, 85],
which may explain the high damping values. If these results are also
ignored, damping values higher than 5% were obtained in only two cases (see
Fig. 3.9). The remaining data give a mean value of 2.73% of critical and

a coefficient of variation of 0.57 (if the data from Refs. [84, 85] are
included, then B = 3.59% and SB = 0.71). It may also be observed from Fig.
3.9 that the correlation between frequency and damping, observed earlier

in Fig. 3.8, no longer exists. It is believed that damping values obtained
from tests of old structures are not directly applicable to modern structures
-which are lighter and more flexible than older constructions. In this
Tight, the data shown in Fig. 3,9 1is probably the most representative of
the structural damping of modern reinforced concrete buildings subjected

to low-amplitude excitations.

Man-excited vibration tests are reported in References [100, 102].

The vibration amplitudes were extremely small. Damping was also calculated
from the resonance curve. The mean and c.o.v. obtained from 6 measurements
werek1.22% of critical and 0.19, respectively. As expected, very low
damping factors were reported.

Tanaka [ 98] reported damping values estimated from the response of
reinforced concrete and steel-reinforced concrete structures to micro-
tremors. Damping was estimated by means of the power spectral density of
the response. The mean damping, estimated from 30 measurements, was 2.7%
of critical with a coefficient of variation of 0.43.

A 10-story building subjected to wind excitations was studied by Ward
and Crawford [102]. The damping, estimated using the power spectral
density, was 1% of critical in both translational directions.

Damping coefficients of 4 buildings, ranging from 20 to 30 stories,
were calculated by Blume [18] from the response of structures to nuclear
explosions. The modal damping values were calculated by reconciling the
empirical and theoretical responses while keeping the elastic properties
of the structure constant. From 30 such measurements, a mean value of
5.67% of critical and a c.o.v. of 0.51 were obtained. Damping coefficients
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estimated by this procedure are naturally affected by errors in the
estimation of the natural frequencies and modal shapes of the systems.

Hart, et al. [44, 45], Tanaka, et al. [98] and Tajimi [97]
calculated damping values from the response of structures to natural
earthquakes using Fourier-transform techniques, power spectral densities,
and auto-correlation analysis, respectively. Seven buildings subjected to
the San Fernando Earthquake were studied by Hart, et al. Estimated damping
coefficient fof the first mode ranged from 2.8 to 16.4% of critical and .
observed maximum ground accelerations varied from 0.10 to 0.27 g. Five of
these buildings were analyzed in a separate study [101]; it was found that
four of these buildings responded inelastically during the earthquake,
whereas one responded within the elastic 1Timit. An equivalent damping of
10% of critical was calculated for this building by reconciling the
theoretical and measured responses against 4.9% estimated by Hart. No
further information was found on the remaining two buildings; however,
the undamped response spectra calculated by Hart for these two buildings
seem to indicate that the response could have been within the elastic
range. The mean and coefficient of variation of the equivalent damping
obtained from the last three buildings were 4.10% and 0.17. If the data
of all buildings is considered, B becomes 7.39 and 85 = 0.58.

The buildings studied by Tanaka, et al. [98] (17 in all) under
natural earthquakes were also analyzed under forced vibration and micro-
 tremors (the damping values calculated from these tests were already
discussed). This reference, therefore, is useful in comparing
damping values for the same building under different types of excitations.
The observed maximum ground acceleration ranged from 0.062 g to 0.22 g.

B (obtained from 30 observations) is 3.33%, compared with 3.13% from
forced-vibration tests and 2.70% from micro-tremors; whereas 58 = 0.50,
against 0.55 and 0.43 from the forced-vibration tests and micro-tremors.

Tajimi [ 97] measured the response of one building to the Matsushiro
earthquakes. The maximum ground acceleration of one of the earthquakes
was 0.14 g. Damping estimates from different response records yielded
values ranging from 1.6 to 5.7% of critical for the first translational
mode. A number of comparisons between the measured and calculated
responses based on modal analysis yielded values between 3 and 5% of
critical.
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The various results described above are summarized in Table 3.3
below.

TABLE 3.3  SUMMARY OF DAMPING OF FULL-SCALE STRUCTURES

Testing Procedure B Variability, 68 ?gétgf
Man-excited Vibrations 1.22 0.19 6
Micro-Tremors 2.65 0.45 32
Rotating Eccentric Weight Exciter 2.73 0.57 30
Natural Earthquakes 3.52 0.45 37
Blast and Explosions 5.67 0.51 30

'Thése results seem to confirm the common belief that damping increases
with the Tevel of excitation.

3.3.3 Damping of Model Structures -- Tests on model structures may be

used to establish a quantitative relation between damping and excitation
level. With this information, damping values obtained from low-amplitude
vibration tests of full-scale structures may be used to estimate the
damping expected at higher excitations.

McCafferty and Moody [62] investigated the dynamic characteristics of
reinforced concrete beam-column specimens at four levels of cracking.
Experimental damping values were as follows: 1.7% of critical for uncracked
specimens, 2.4% for minor cracks, 2.7% for intermediate cracks, and a wide
range of values (from 2.4% to 6%) for severely cracked specimens.

Hidalgo and Clough [48] tested a two-story reinforced concrete model
structure (1/4 scale) representing a typical small apartment or office
building. The structure was subjected to various amplitude levels by means
of a shaking table. Damping coefficients obtained from these tests varied
from 1.0% for the uncracked structure to 3.7% just before the structure
yielded. Damping was calculated from free vibration tests.

Shiga, et al. [92] tested two types of models: (1) space frames
(1/2 - 1/4 scale) which were single-story and two-story reinforced concrete
bents, Toaded with a small-amplitude exciter; (2) reinforced concrete



40

portal frames which were subjected to large oscillations on a

vibrating table. Damping values of the single-story space frames were
calculated through free vibration and forced vibration tests. The free
vibration tests yielded damping values between 1 and 1.5% (using the
Togarithmic decrement of the vibration), whereas damping factors between
1 and 3% were observed in the forced vibration tests. 1% damping was
obtained through forced vibration of the two-story space frames when the
deflection was smaller than the cracking deflection. Equivalent damping
factors for the reinforced portal frames calculated from the area of the
hysteresis Toop (corresponding approximately to the yield deflection)
were estimated to be of the order of 8% of critical.

Using a similar procedure, Shiga and Ogawa [91] found damping
coefficients of the order of 2.5% of critical for reinforced concrete
portal frames at amplitudes of vibration that are approximately equal to
70% of the yield deflection.

3.3.4 Summary and Conclusions on Damping -- The main observations

and conclusions obtained from the above analysis of reported data are
as follows:

(a) Equivalent damping values vary, on the average, proportionally
to the amplitude of vibration.

(b) In some cases, damping appears to decrease with the natural
period [ 98 ]; however, when data from different sources are lumped
together this effect practically vanishes. Thus, damping and natural
periods may be assumed to be statistically independent.

(c) The coefficient of variation of damping obtained from different
tests are all of the order of 0.50. Thus, 68 = 0.50 will be assumed for
purposes of this study.

(d) By comparing the means and individual values of B obtained
from different dynamic tests, it appears that average equivalent damping
factors higher than about 4 or 5% of critical are difficult to obtain for
reinforced concrete structures within the elastic range (unless the
influence of non-structural elements or soil-structure interaction is
jmportant). Thus, B = 4% of critical is assumed in the following. It is
easy to see that there could be significant error in this value; to account
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for this error, a prediction uncertainty of 0,25 is assumed,

(e) Information concerning damping in the second and third modes
is reported in References [18, 39, 44, 45, 48, 73, 79, 84, 85, 97].
However, reliable estimates of the statistics of the damping factors for
the higher modes could not be obtained from these data: thus, it is assumed
in the following that the damping coefficients for the first mode are also
applicable for the higher modes.
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CHAPTER 4

ANALYSIS OF LOAD MODELS AND LOAD EFFECTS

4.1 Introductory Remarks

Structures are subjected to many types of 1oad$; they may include
permanent loads from the weight of the structure and permanent fixtures,
1ive loads from occupancy and movable furnitures, lateral loads induced by
wind and earthquakes, stresses due to temperature, differential settlement,
creep, shrinkage, etc. The total load effect may be due to many possible
combinations of such loads.

A statistical treatment of the problem of load combination requires a
suitable definition of the loads under consideration. Loads are, in general,
time and space dependent. For studying their combinations, the variability
with time and space must be considered. (A general treatment of Toad
combination is given by Borges and Castenheta [24]. ,

In the following, dead, 1ive, and earthquake loads are considered. It
is assumed that the different loads are mutually statistically independent
and also independent of the resistance. The uncertainty in the estimation
of future earthquake intensities is not considered; i.e., the reliability
analysis performed herein is for structures subjected to earthquakes of
prescribed intensities.

4.?2 Dead Load

The dead load consists of the weights of the structure and permanent
installations. The weight of a structure is obtained from its geometry
and depends on the unit weight of the elements and their dimensions.

The weight of a reinforced concrete member may be expressed as

Wy = Length (wcAc + wstAst) (4.1)

where W and Wy are the unit weights of the concrete and the reinforcement,

and AC = bh and Ast are their respective areas. The basic variability
of wD

reinforcement ratios found in modern reinforced concrete buildings, a small

can be easily calculated from Eq. 4.1; however, with the typical
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error in the estimation of Qy s introduced if the variability in the
weight of the reinforcement is neglected. Moreover, any uncertainty in
the member length is negligible in comparison with those in W and AC.

Thus, an approximate expression for y is given by [33]
D

Y/ S
o, =vVal +al +al

4.2
; % (4.2)

With the values for Qb and Qh estimated in Ref. [33] (as shown in Table

2.1) and e, = 0.03 [23], we obtain Qw = 0.70.
o D
Additional uncertainties arise from the weight of non-structural

elements such as partitions, etc. [23]. These uncertainties can only be
~estimated subjectively and must be combined with QWD to obtain the total
uncertainty in the dead load intensity, QD' These additional uncertain-
ties could be of the order of 0.10 [33]. Then Qp 1s found to be =
V?b,07)2 + (0.10)2 = 0.12. The mean dead load can usually be estimated
fairly accurately; thus, any bias would be negligible.

The theoretical dead load effect, SD, is obtained by translating the
dead load intensity, D, into the desired load effect through structural
analysis. Conceptua]]y, this may be expressed by

D (4.3)

5p % Sp

where <p is an influence coefficient. The mean value of SD is then
D (4.4)

and its c.o0.v. is

-V (0.10)% + o
D

Q = 0.16 (4.5)

2
S D

An uncertainty of 0.10 is assumed for possible error in the method of
static analysis.

4.3 Live Load

4.3.1 Introduction -- Live loads are those arising from movable

equipment and fixtures, and other non-permanent loads. A number of
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studies concerning live Toads have been performed. Surveys of these
studies are available in the Titerature (e.g., Heaney [47] and Peir [75]).
The temporal variation of live loads has long been recognized. A
typical representation of temporal variation is shown in Fig. 4.1 [75, 76].
This can be decomposed into two parts; namely, a sustained load which
exists on the floor for a long time, and the extraordinary (transient)
Toad which has a relatively high intensity but whose Toad duration is
very short. The sustained 1ive load consists of the normal working
personnel, furniture, equipment, etc. This portion of the total Tive
load may have abrupt changes from time to time due to changes in tenants
of the floor area, or to changes in the use of the floor area. Examples
of extraordinary loads include large groups of people occupying a floor
area during special occasions, concentration of furniture in a room
during remodeling, etc.; its duration could be only for a few hours or
a few days.
The probability of simultaneous occurrence of a strong earthquake
and high extraordinary load is small and, therefore, may be neglected; for
this reason, only the sustained portion of the T1ive load will be considered.

4.3.2 Live Load Models -- Denote the sustained live load [75, 767 as

w (6y) = m + oy gt v toe(xsy) (4.6)

where wL(xgy) is the Toad intensity at a location (x,y) in a given floor;
m is the mean live load (e.g., office occupancy); Yb1d and Yg1p are zero-
mean statistically independent random variables representing, respectively,
the variation of the average load from one building to another, and from

one floor to another (within a given building); whereas e(x,y) is a zero-
mean random variable, statistically independent of the y terms, representing
the spatial variation of the load intensity.

In general, e(x,y) has a non-zero spatial correlation; i.e.,
COV[e(xO,yO) e(x],y])] # 0. Different forms of the covariance between
e(xo,yo) and e(x1,y]) may be used; e(x,y) may be assumed to be a
"white noise" process, in which case the correlation between the values
of € at two different points is zero. In this latter case,
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0 for (xgsyg) # (xq5y7)
cov [S(XO:YO) E(X]sy1)] = ) (4-7)
oo for (x5:yy) = (x{5¥7)
Peir [75] proposed two forms for the covariance function. For two points
(xo,yo) and (x],y]) on the same floor

2
COV [e(xg,yg) e(xqayp)] = o5 & /¢ (4.8)

where d is a constant to be estimated, and r is the distance between the
two points. For (xo,yo) and (x2,y2) located on different floors

2
_ 2 _-r-/d
cov [E(Xosyo) E(xzsyZ)] = pm OSP e (4,9)

where Pm is the correlation between the spatially varying load intensities
at two points that are one above the other.

Let WL(At) be the total live Toad acting over a given area, At’ i.e.,
W (A = JA w (x,y)dA, and L(At) is the average unit load, or L(At) =

t

W (A)/A, = (1/A,) w, (x,y)dA. The mean and variance of the unit load
LYVt t t A L
t
are
L) = E{a- | w (xoy)ddd= | E [w (x,y)] dA (4.10)
t A L A L
t At t At
and
UE(A y = VAR {}%— j wL(x,y)dAj} =
t t At
1
= AZ JJ cov [wL(xO,yO) wL(x1,y])] dxodyO dx]dy] (4.17)
t At

The covariance of the two Toad intensities wL(xo,yO) and mL(x1,y])
may be obtained from the assumptions above. Furthermore, if the unit load
comes from n different floors with equal areas, A, (i.e., At = nA) the mean
and variance of L(At) = L(nA), from Eqs. (4.10) and (4.11), are
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and o

Y
GE(nA) = 03 4 _flr “17‘ J[[J COV [exy5y,) e(x1,y])] dxqdy, dxqdy,
bld n nA 2
t't

-1) fj[f COV [e(xgsyg) €(x5.¥,)] dxgdyy dx,dy, (4.13)

where (xo,yo) and (x],y]) are points located on the same floor; whereas
(xo,yo) and (xz,yz) are points on different floors.
The value of Eq. 4.13 depends on the form of the covariance function.
Thus, for the "white noise" model (substituting Eq. 4.7 into 4.13)
2
o

‘ 2
n Y g (4.14)
OE(na) =g+ ——%lf-+ ﬁ%
Yb1d
If the covariance functions of Peir [75] are used
03 ogp nd K(A) )
2 _ 2 flr n-1
OoL(nA) =%, .t T TTm [1+0 ] (4.15)
bld
in which
’ _ 2
k() = [ert ¢/ B) /L (1 oAy (4.16)

and erf(—) is the error function.

Peir [75] used the data from the load survey of Mitchell and Woodgate
[68] to estimate the parameters of the sustained Toad model. McGuire and
Cornell [65, 66] estimated the value of Oc» to be used with the white noise

model, so as to fit the more accurate Peir's model. The results are as

follows:
m = 11.8 (psf)
02 = 3 (psf)2
Yb1d
o =17.25 (psf)?
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ogp = 260 (psf)?
oy = 0.7

of = 8230 (psf)°
d = 9(ft)2

The coefficient of variation of the live load intensity obtained
from the above formulation is shown in Fig. 4.2 as a function of the
floor area A. It is apparent from this figure that the results of the
white noise model and that of the Peir's model are very close to each
.other, except for very small floor areas.

4.3.3 Arbitrary-Point-in-Time Load -- As mentioned earlier,

the sustained Toad will change from time to time (due to functional or
occupancy changes of the area). The unit load intensity, as defined
previously, should be understood to be the unit load at time t; i.e.,
the "arbitrary-point-in-time" load. Under the assumption that the
process is stationary, i.e.,

fL(A’t)(i):fL(A)(z) for all t

(where fL(A)(Q) is the probability density function of L(A) ), the
distribution of the lifetime maximum sustained load may be found for
known or assumed distributions [65, 75].

Because of the rare occurrence, and short duration, of earthquakes
it is believed that the use of the arbitrary-point-in-time load in
investigating the combined effect of dead, live, and earthquake loads
shouid yield meaningful measures of the risk involved in current
earthquake-resistant designs. For this reason, only this portion of
the 1ive load is considered in the sequel.

4,3.4 Live Load Effects -- To translate the Tive load intensity,

wL(x,y)9 into load effects, the concept of influence surfaces is necessary
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[86]. The ordinate, I(x,y), of the influence surface is equal to the
desired load effect on a given member of a structure resulting from the
application of a unit load at floor location (x,y). The total live load
effect, SL’ is then found by integrating the product of the load intensity
and I(x,y) over the entire floor area; or

SL = JJ mL(x,y) I(x,y) dx dy (4.17)
A

For the mid-span bending moment in a beam in framed buildings, the
influence area can be considered as the length of the beam times twice
the distance to an adjacent beam in a parallel frame; whereas, for the
axial Toad in a single-story column, this is twice the beam length in
one frame times twice the distance between frames [75]. Other Tload
effects have similar influence areas.

The mean and variance of SL may be found with Eq. 4.17 and the basis
of the assumption stated in Sect. 4.3.2 [75]. Consider first the case in
which the load effects are due mainly to the load acting on only one floor
(i.e., beam moments and shear, axial load in a column supporting one floor,
etc.). Then, the mean and variance of SL are given by

S, = cm (4.18)
and
2 2 2 2
VAR [S,] = 0o cr +o el o+
L g b Y b
* “”COV[e(xo,yO)e(x],yﬂ] I(xqsYg) 1{xyyq) dxydy, dxqdy,
(4.19)
where ¢ = AI(x,y)dA is an influence coefficient that translates the

unit load intensity into the desired load effect.

McGuire and Cornell [65,66] showed that, as in the case of unit load
intensities, the coefficient of variation for different load effects
obtained from the "white-noise" and Peir's models are very close (see Sect.
4.3.2). On this basis, the "white-noise" model will be adopted in the
sequel. From Egs. 4.7 and 4.19, the variance of SL may be expressed as
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2 2 2 2 2 2
VAR [S,] = o ¢t + o c, +o [ I(x,y)" dA - (4.20)
L5 Tvpg b Y €

and its coefficient of variation is

- ) ci ul , 172
Qg = —2(0 + 0 + ——)+ (0.10) (4.21)
L m Yb1d  Yfir A
where,
1
JJI(X,Y)Z dA
u2 = ? (4.22)

2
J I(x,y) dA
__0

and (0.70) represents the uncertainty associated with the method of static

2 depends on the type of load effect (i.e.,

analysis. The value of u
bending, shear, axial load, etc.). Based on theoretical forms of the
influence functions, McGuire and Cornell [65] calculated the values of u
to be 2.20 for axial Toad, 2.04 for beam end-moments and 2.76 for beam
mid-span moment. A plot of QSL as a function of the influence area,
obtained with the first three terms of Eq. 4.21, is shown in Fig. 4.3.
Also shown, for comparison purposes, is the c.o.v. for the Toad effects
obtained by Rosenblueth and Esteva [86] based on the data of Mitchell and

Woodgate [68]. It can be observed that g is not very sensitive to u2,
2

2

except for very small areas. This and the relative insensitivity of u
to the different load effects, allows the use of a single value of u2
all load effects [65]. 1In the following, a value of u? = 2.20 (corresponding
to axial load and very close to the end-of-span shear) is used for all Toad
effects. This results in coefficients of variation that are slightly
conservative for the end-of-span moment and slightly unconservative for

for

mid-span moment and shear.

The c.o.v. of a column supporting n floors may be found as follows.
Let SL(n) be the total load in the column under consideration. Then,
according to Eq. 4.17,
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n

SLn) = L, fj w (x,y) I;(xy) dx dy (4.23)
Ai

where Ii(x,y) is the influence function for the ith

floor, and Ai is the
corresponding influence area. If the areas and the influence surfaces

are equal for all floors, the mean and c.o.v. of SL(n) are given by

§[Zn) =nc m (4.24)
and
ol o> ul 172
Q. = || o+ i, © + (0.10)2 (4.25)
L) fm | Ybid n nA

A plot of QSL(n) as a function of the influence area, obtained from
Eq. 4.25 (excluding the uncertainty of 0.10 in the method of structural
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that as the number of floors supported by a column increases, the c.o.v.
of the axial load decreases. This is better observed also from Fig. 4.5

where the ratio QS /QS is presented.
L(n) “L(1)

4.4 Earthquake Load

4,4.1 Introduction -- The description of seismic ground motions at

a site involves two main steps: (1) the prediction of future earthquake
intensities expected at the site ("intensity" is any measure of the motion
that is important to the response of the structure); and (2) modeling and
analysis of the ground shaking effects corresponding to the intensity
estimated in step one.

The prediction of future earthquake intensities is the object of
seismic risk analysis [30, 31]; this topic is outside the scope of this
study. Only the second step is considered here; i.e., the analysis and
assessment of the uncertainties underlying the determination of the
response and earthquake load effects corresponding to a prescribed
intensity. In doing this, it is assumed that the response of structures
can be evaluated through linear methods of analysis, and that the
structural properties of the systems are random.
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4.4.2 Methods of Earthquake Response Analysis -- The earthquake

loading may be described in various ways; by equivalent static lateral
force, time-history (of past or artificial earthquakes), response spectrum,
and stochastic process models. The first of these is found in construction
codes as a design-aid, but the true dynamic nature of the earthquake

forces is ignored.

The use of time-histories to evaluate the statistics of the response
of a multi-degree-of-freedom system requires repeated analysis of the
system for many earthquake records. Because of the excessive amount of
computation required to cover a sufficient range of random properties in
the system, this method will not be pursued.

The response spectrum approach is a simple way of including the
~dynamic effects. With this method, as will be shown later,the uncertainties
of the structural properties can be treated systematically through first-
order approximation. The method requires the combination of the maximum
modal components to predict the peak responses of MDOF systems; the square-
root-of-the-sum-of-squares of the modal peaks (SRSS method) is commonly
used.

Random vibration recognizes the probabilistic nature of earthquake
grouhd motions; however, a practical method for systems with random
structural properties has yet to be developed.

The response statistics obtained by these methods are examined in
the following. A four-degreeQOf-freedom system was analyzed in Ref. [17]
for 39 real accelerograms normalized to the peak ground acceleration.

The statistics of the maximum response, expressed in the form of peak
inter-story displacements, were first obtained from a time-history analysis.
Then the mean response spectrum and its variance were calculated, and the
inter-story displacements were evaluated from the mean and mean + o

response spectrum (using the SRSS method). When the mean response spectrum
is used, the results agree very closely with the mean of the 39 time-history
analysis. The same is true for the mean plus one standard deviation, or at
any other probability levels. Similar results were obtained by McGuire [64],
who used linear regression analysis techniques in the analysis of 47 close-
coupled 2 d.o.f. systems, subjected to 68 (unscaled) time-histories of

34 earthquakes.
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Gungor [41] compared the response statistics obtained by random
vibration and the response spectrum method (using the SRSS), with the
response spectrum generated from the same power spectral density of the
random vibration analysis. The agreement in the results for a 10 d.o.f.
system was also very close.

A five degree-of-freedom system was analyzed in this study to compare
the response statistics obtained from random vibration theory and those of
the response spectrum method, when the response spectrum is obtained from
a set of real earthquake records. A stationary Gaussian excitation process,
with the power spectral density of Kanai [54] and Tajimi [96], was used in the
random vibration analysis. The mean and mean + o responses were obtained
by a method described in Ref. [41]. The results are shown in Table 4.1,

TABLE 4.1 5 DOF SYSTEM: RELATIVE DISPLACEMENT OF THE FLOORS

Level : E[ Xmax] C.0.V.

Random Vibration Theory

1 1.00 0.16
2 2.20 0.16
3 3.59 0.16
4 4.69 0.16
5 5.27 0.16
Response Spectrum (MHN)
1 1.00 0.38
2 2.20 0.38
3 3.60 0.38
4 4.70 - 0.38
5 5.29 0.38

where the relative displacements of the floors with respect to the base
are tabulated (these are normalized to the relative displacement of the
first floor). The mean and mean + o values of a response spectrum



obtained by Mohraz, et al. [69] from 28 records normalized to peak ground
acceleration were used for the response spectrum analysis. Its results
are also shown in Table 4.1. Close agreement in the mean-value estimates
is obtained. This is mainly due to the fact that the mean response
spectrum obtained by Mohraz, et al. can be approximated very closely with
the power spectral density proposed by Kanai, for the frequency range at
which the structure is Tocated (the fundamental period of the system is
0.5 seconds). For other systems, wider differences may be expected.
However, the mean + o responsé obtained by random vibration lies below the
corresponding response calculated with the response spectrum method.
Assuming that the c.o.v. of the response can be approximated by

[(u + G)RS - URS]/“RS’ where (—)RS are the mean or mean plus one standard
- deviation obtained by the response spectrum approach, it is observed that
these values are more than twice those obtained through stationary random
vibration analysis. ;

On the basis of the results described above, it is concluded that the
response spectrum approach can be used to obtain reliable predictions of
the effect of ground motions at a site. The c.o.v. of the response
depends on the procedure used to generate the mean and standard deviation
of the response spectrum. In particular, stochastic process models yield
c.0.v.'s that are only about half as large as those obtained on the basis
of real earthquake records. The c.o.v. obtained from the random vibration
analysis, of course, does not include uncertainties associated with the
nonstationarity of the ground motions and local site conditions, whereas
the c.o.v. obtained through the response spectrum approach for a set of
real earthquake records may be too high since the available records are
not from the same site. In the sequel, the response c.o.v. based on
available earthquake records will be used, recognizing that it may be on
the conservative side.

4.4.3 Statistics of Maximum Response -- There are various procedures

to generate response spectral shapes for given probability levels. These
include the analysis of normalized earthquake records [21, 50, 69, 71],
linear regression analysis techniques [36, 64], and random vibration
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analysis [41]. For the purpose of this work, the response spectrum
proposed by Mohraz, Hall and Newmark [69] is used. In this study [69], a
statistical analysis of the data from 9 strong earthquakes (28 records
in the horizontal direction and 14 in the vertical direction) was
performed. The records were normalized with respect to the maximum
ground acceleration, a, in the high-frequency range (2 to 4 Hz in the
horizontal direction, and 3 to 10 Hz in the vertical direction), to the
maximum ground velocity, v, in the middle-frequency range (0.4 to 2 Hz
in the horizontal direction and 0.3 to 3 Hz in the vertical direction),
and to the maximum ground displacement, d, in the low-frequency range
(0.2 to 0.4 and 0.1 to 0.3 Hz in the horizontal and vertical directions,
respectively). By normalizing the earthquake records to different ground
parameters, as indicated above, it is intended to minimize the variance
of the response spectrum at different natural frequencies.

The mean and standard deviations of the amplification factors
(i.e., the ratio of the computed maximum response to the maximum ground
motion) for prescribed damping values, were evaluated from these data
for 38 frequencies. On the basis of these results, the amplification
factors for displacement and velocity may be considered to be constant
over the low and intermediate-frequency ranges, whereas the amplification
factor for acceleration may be assumed to be constant up to a frequency
of about 6 to 10 Hz and then to decrease exponentially to a value of 1.0
at frequencies of 20 to 50 Hz (the values of these frequencies depend on
the damping and on the direction of the motion). Plotted on a tripartite
logarithmic paper, the response spectral shape is as shown in Fig. 4.6
As can be seen in this figure, a response spectrum is defined by straight
Tines between the control frequencies f] through f4, defining ranges of
constant displacement, velocity and acceleration, and a transition region
between f3 and f4. The conditional means and standard deviations of the
amplification factors for the constant displacement, velocity and
acceleration ranges (denoted hereafter by Cys Oy and aa), as obtained
in Ref. [69], are summarized in Table 4.2, and Figs. 4.7 and 4.8,



55

TABLE 4.2  STATISTICS OF THE AMPLIFICATION FACTORS

DAMPING MEAN (STD. DEV.)

% dy Y oy f3 f4

HORIZONTAL DIRECTION

0.5 1.97(1.02) 2,58(1.23) 3.67(1.45) 6 40
2.0 1.68(0.83) 2.06(0.92) 2.76(0.89) 6 30
5.0 1.40(0.64) 1.66(0.66) 2.11(0.56) 6 20
10.0 1.15(0.47) 1.34(0.47) 1.65(0.36) 6 20
VERTICAL DIRECTION
0.5 1.86(0.92) 2.52(1.29) 4.02(2.13) 10 50
2.0 1.65(0.76) 1.97(0.94) 2.80(1.33) 10 50
5.0 1.40(0.61) 1.51(0.67) 2.05(0.77) 10 50
10.0 1.16(0.46) 1.17(0.47) 1.59(0.49) 10 50

The amplification factors for acceleration in the transition range

(f3-< f < f4) may be expressed, with reference to Fig. 4.6, as

2 o n (f4/f)
aa(w) = exp a (4.26)
Qn(f4/f3)

from which its statistics may be obtained. Also shown in Table 4.2 are
the estimated values of f3 and f4 [69].

An attempt has been made [69] to include the local soil properties
by treating the data from rock and alluvium separately. However, no
really valid statistical inference could be made from the available
information although separate design spectra for alluvium and rock have
been suggested [69]. On the basis of the data considered, the response
spectrum proposed by Mohraz, et al. is probably representative of stiff
soil conditions [89], and of sites located at moderate distances to the
epicenter [31, 64, 89]. Thus, reliable results can only be obtained for
similar type of soils and epicentral distances.
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In examining the response amplifications, especially in the ranges
of constant velocity and acceleration, Mohraz, et al. [69] inferred
that earthquakes with Tow ground acceleration have greater amplifications
than those with high ground acceleration. It was also observed [69] that
the presence of sharp peaks in the acceleration record reduces the
amplification for high frequencies. This observation is important in
deciding what earthquake records should be considered to obtain valid
statistical estimates. '

Also investigated were the ratios ad/v2 and v/a of the earthquake
records referred to above (only the results for the horizontal direction
are reported here). These quantities are useful in constructing response
spectra curves when only one or two of the peak ground motion components
can be obtained. The mean and c.o.v. of ad/v2 and v/a in the horizontal
direction are shown in Table 4.3. Also shown are the mean and c.o0.v. of

TABLE 4.3  SUMMARY OF v/a AND ad/v2 (HORIZONTAL DIRECTION)

2
SITE No. Rec. ad/v v/a

mean C€.0.v. mean C.0.V.
Alluvium & rock 28 5.6 0.65 45 0.51
Alluvium & rock* 26 - - 48 0.45
AlTuvium 22 5.7 0.72 52 0.41
Rock 6 5.4 0.24 22 0.55
Rock* 4 - - 28 0.36
Alluvium & rock (a > 0.1 q) 20 5.7 0.72 39 0.53
Alluvium & rock* (a > 0.1 g) 18 - - 43 0.45
ATluvium a > 0.1 g 14 5.9 0.84 47 0.41
Alluvium a < 0.1 g 8 5.3 0.40 60 0.39
San Fernando 118 5.1 0.43 45 0.40

* Not including the extreme ratios of the San Francisco Golden Gate
Park earthquake.
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these quantities as estimated in this study based on 60 records of the
San Fernando earthquake [52]. The mean values of both ad/v2 and v/a,
and the c.o.v. of v/a, obtained from the two sets of data are in
reasonable agreement, as shown in Table 4.3. The coefficient of
variation of ad/v2 obtained from the San Fernando data, however, is
significantly smaller than those from the Mohraz, et al. [69] study.
It must be emphasized that these ratios are, at least in part, function
of the focal distance, soil conditions, attenuation of motion in the
ground, earthquake magnitude, etc. [72]. Thus, by ignoring these
factors, it is not surprising to obtain discrepancies, such as those
shown in Table 4.3, in the estimation of ad/v2 and v/a when data from
different sources are considered together.

4.4.4 Maximum Earthquake Load Effects -- The earthquake load effect
on any given member of a structure can be expressed, as a function of the

relative displacement of the floors with respect to the base, as

n 5_1/2
Sp = 'Z] {CEYi {¢1} Di} (4.27)
'l:

th

where D_i is the spectral displacement corresponding to the i~ mode,

and Cp is an influence coefficient that translates the relative displacement
of the floors into the desired load effects.

A]ternative]y, the same load effect may be determined on the basis of
the inertial forces acting on each floor; i.e.,

1/2

2 Dl.}2 (4.28)

£, {epy; Mo ) Mx u

w
1]
i
H~Mse
o |

In a deterministic analysis these two approaches are equivalent; however,
some differences could arise in the corresponding probabilistic problem.
In particular, the c.o.v. of SE obtained with Eq. 4.27 may be different
from that obtained through Eq. 4.28.
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For purposes of this study, the statistics of the earthquake load
effects will be estimated with Eq. 4.27, except in the case of very rigid
structures, in which Eq. 4.28 may be preferable. 1In Sect. 3.3.3, it was
shown that the modal shapes and the participation factors may be assumed
to be deterministic quantities. On this basis, the mean and c.o.v. of SE
may be expressed as

_ n _ 1/2
SE = b} {Sé Di} (4.29)
i=1 i
and
1 {” =4 2 n 2 2
9 — {2 (SLD.)Qs+ &z (SED.)(SED.)p QQ}+
Sg gg s E5 10 7De Ly 5oy By EJ J Dj,DJ D, DJ
i#]
o 1/2
+ (0.15) (4.30)

in which SE- = CpY; {¢1}, and a prediction uncertainty of 0.15 is ascribed
to the imperfection in the method of dynamic analysis.
For simplicity, Di and Dj are assumed to be perfectly correlated; then
Qg = :E'{ z (Sé Di) QD.} + (0.15) (4.31)
E SE i=1 i i

This yields conservative QSE; also, any error would be small since the first
mode usually contributes the major part of QSE (see Chapter 5). However,

if desired, the correlation coefficient between Dj and Dj can be evaluated
using the procedure shown in Appendix A.

In order to find the statistics of SE from Eqs. 4.29 and 4.31, the
statistics of Di must first be determined. For this purpose, expressions
for Di may be obtained with reference to Fig. 4.6, depending on the natural
frequency of the structure under consideration; i.e.,
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- in the constant displacement range: wai < f]

d (4.32)

- in the constant velocity range: f1 < 2ww1 < f2

D, = —1 (4.33)

- 1in the constant acceleration range: f2 < 2mu1 < f3

D, = — | (4.34)

- in the transition range: f3 < 2ﬂwi < f4
_ i
Dy = —%— (4.35)

" The natural frequency, W5 as well as f] and f2 are random variables:

therefore, it is not possible to state a priori which of these equations
is applicable. This is especially true when ws is close to one of the
control frequencies. However, in Sect. 4.4.2, it was shown that in the
case of systems with known properties, the mean response obtained from a
set of real earthquake records through time-history analysis agrees very
closely with the response obtained from the mean response spectrum (of
the same set of records). This implies that in calculating the mean value
of the response, the governing equation for Di may be established on the
basis of the mean value of Ws f, and fz; that is, if 2moj < f1 then
Dj = oy d (Eq. 4.32); if F; < 2#55 < ?é, D1 = avj v/wi (Eq. 4.33); etc.
The c.o0.v. of Di may be estimated also on the same basis; however,
for systems whose frequencies are in the neighborhood of the control
frequencies f], fz, or f3, the c.o0.v. may be evaluated using either of

two equations. The difference in the calculated coefficient of variation
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of the total load effects is small (as has been verified numerically)
and for practical purposes may be neglected.
The mean and c.o.v. of Di’ therefore, can be obtained as follows:

For ZMEi < f

1"
D; = 5‘51. d (4.36)
2 2 2
QD. - Qa * Qd (4.37)
1 d.
i
For f} < Zﬂmi < f2 . L
Gy Vv
5; - _1 : (4.38)
©3
2 _ .2 2 2
QD_ - Qa_ * Qv * Qm. (4-39)
i V. _
;
For f2 < wai < f3 :
. aai a
D; = = (4.40)
W .
;
2 _ 2 2 2
fp. =8y 07 4Qw. (4.47)
1 a. i
j
and for f3 < wai < f4 : B
. aagm) a
D, = (4.42)
! w2
i
an(F,/2mw,)
Qs = _ﬂ _ i (92. + 4w$ ~Qﬁ*)-+9§+ Qs* (4.43)
i Qn(f4/f3) a_i

Eq. 4.43 was obtained by using an interpolating procedure between the

c.o.v.'s of S at 2ﬂﬂ% = ?} and ZWB} = f,. determined as follows: (1) 1in
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the case of very rigid structures, the maximum floor accelerations tend
to be the same as the maximum ground acceleration and, therefore, the
load effects may be estimated with greater accuracy based on the inertial

forces; in particular, it may be shown that for single-degree-of-freedom
2 2

systems with 2ﬂ£% 3_?4, Qgps as obtained from Eq. 4.28, is Q5. = (0.15)° +
2 2 :
9% + Oyy; and (2) from Egs. 4.31 and 4.41, 5, = (0.15)2 + ggai + 0+
2 — =

When only one or two of the peak ground motion components is
available, information on v/a and/or ad/v2 may be used to estimate the
statistics of Di’ For example, suppose that only the value of the maximum
ground acceleration is available, and that f] < Zﬂwi < f2; then

v = g-) a

and assuming v/a and a to be statistically independent, it follows from
Eq. 4.33 that

= (V) 3
av.(a) a
D, = !
T w
i
and
2 _ .2 2 2 2
QD° = Qu + Qv/a + Qa + Q )
1 V. 1
i
in which (§~)and Qv/a can be obtained from Sect. 4.4.3.

In the present study, it is assumed that the ground spectrum is given;
thus, the uncertainty in the peak ground motions is not considered. In more
general cases, this uncertainty must be included which may be determined
through a seismic risk analysis [30, 31, 32].

So far, all but the statistics of the amplification factors have been
defined. To determine these, it should be recognized that the amplification

th ground motion component in the ith

damping coefficient in the ith
variables. Thus, the mean and variance of ap_ are
i

factor for the p mode ap, and the

3
mode By, are jointly distributed random
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E = E{E .
[api] { [apile1]} (4.44)
and
Var[a ] = E{Var[o_ [B8.]} + Var{E[a_ |B.]} (4.45)
Py Py 1 Py 1
where E[ap.lsi] and Var[ap 161] are, respectively, the conditional mean
i i
and conditional variance of the amplification factor.
Letting v
f (B,) =E .' ,
p](81) [ap1{81] (4.46)
and
2 =
fp2(81> Var[apiIBi] (4.47)

it follows from Eqs. 4.46 and 4.47 that (on the basis of first-order
approximation);

%, fpi(Bi) (4.48)
and
3, (8;)\° 1/
Q = ?f*%::jy £ (B,) + A B2 A (4.49)
%o, py B Pp 1 o8, | P
B

Values of fp (Bi) and fp (Bi) are given in Table 4.2 and Figs. 4.7 and 4.8,
1 2
whereas B and QB are given in Sect. 3.3.4.

In evaluating &, with Eq. 4.49, it is convenient to have a
mathematical expressionifor fp1(81)‘ For this purpose, an expression
of the form
_ a
fp](Bi) = a,[1 + a,8l"3 (4.50)
was assumed, and the parameters s 3y, and a5 were determined using the
data of Table 4.2. The resulting values of these parameters are summarized
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in Table 4.4 (for B in percent); their applicability is Timited to
damping values in the range 0.5 < B < 10% of critical.

TABLE 4.4  SUMMARY OF COEFFICIENTS IN EQ. 4.50

a

1 2 3
ACCEL. 4.40 1.30 © -0.365
VELOC. 2.98 1.20 -0.300
DISPL. 2.13 0.58 -0.310
With Eq. 4.50, Eq. 4.49 then yields
1/2
2. 2. _ .2 2]
f )+ f JRT 0
1T, 1) 0, B0 BiJ
8, = — — (4.51)
p] fp] (51) .
in which,
_ 3.1
fp3(Bi) = a1a2a3[1 + 3281] (4.52)

Table 4.5 summarizes the c.o.v. of the amplification factors in the
constant displacement, velocity, and acceleration ranges, as obtained from
Egqs. 4.51 and 4.52,

TABLE 4.5 COEFFICIENTS OF VARIATION OF AMPLIFICATION FACTORS

B(%) 9) Q Q
% Oy %a
4 0.47 0.43 0.34
5 0.47 0.42 0.32

Similarly, the c.o.v. of D, (assuming 2y 5 9, and 2 = 0) for the

constant displacement, velocity, and acceleration ranges, obtained
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from Eqs. 4.37, 4,39 and 4.41, respectively, are summarized in Table 4.6

below,
TABLE 4.6  COEFFICIENT OF VARIATION OF D_i
B8 (%) 21@1 5__13_]— T_<_21T51 5_;“—2- ?55_217(»1. i§
4.0 0.47 0.48 0.54
5.0 0.47 0.47 0.53

4.5 Total Load Effect
The total load effect, due to the combined action of dead, live,

and earthquake loads is

S = SD + SL + SE

S, and SE are generally statistically

The load effects, S L

(4.55)

D9
Recognizing that the same method of analysis is used 1in

independent.
transforming the dead and live load intensities into load effects,

it is easily shown that the mean and c.o.v. of S are

and

(4.56)

(4.57)
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CHAPTER 5
RELIABILITY OF CURRENT DESIGNS

5.1 Introductory Remarks

On the basis of the results obtained in the previous chapters,
the safety of specific reinforced concrete structures, designed in
accordance with the provisions of the 1974 edition of the SEAOC code [90],
is evaluated in terms of the calculated probability of failure. The
primary objective is to determine the levels of risk in different failure
modes and in different members of a structure, implicit in current
earthquake-resistant designs.

Uncertainties in the prediction of the ground motions at a site are
not considered; thus, the probabilities of failure calculated herein are
really conditional probabilities, i.e., the probabilities of failure when
subjected to a specified intensity of ground motion. The total failure
probabilities during the lifetime of a structure may be obtained by
combining these conditional probabilities with the results of a seismic
risk analysis for the site in which the structure is located (see for
example [10]).

An earthquake is assumed to act in only one horizontal direction;
no interaction with the other horizontal direction, nor with the vertical
direction is considered. The influence of soil-structure interaction and
accidental torsion are also disregarded.

5.2 Risk Implicit in Current Designs

To determine the seismic safety underlying structures designed
according to current codes, it is necessary to examine specific structures.
For this purpose, a ten-story building was designed with the seismic
provisions of the 1974 SEAQOC Code.

The typical plan and elevation of the structure considered are
shown in Fig.5.1. In designing the structure according to the SEAOC code,
uniformly distributed loads equal to 50 psf for live load, 20 psf for
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partitions, and 10 psf for mechanical equipment and ceiling, were
assumed for all floors; except for the roof, in which only the load
corresponding to the mechanical equipment was used. The floor
weights, obtained from a preliminary analysis, are shown in Table
5.1. Also shown are the equivalent lateral forces calculated
through Eq. 1.1 of the SEAOC code [90] (in which Z = 1.0, I = 1.0,
K=0.67, C =0.067, and S = 1.5). The load effects due to dead,

TABLE 5.1  DESIGN LATERAL FORCES

Story Weight Lateral Story

Floor Level Height
(from base) hy (in ft) Wy (k) wy h Force Shear
10 120 230 27600 40.15 40.15
9 108 270 29160 28.50 68.65
8 96 270 25920 25.34 93.99
7 84 270 22680 22.16 116.15
6 72 290 20880 20.41  136.56
5 60 290 17400 17.00 153.56
4 41 290 13920 13.60 167.16
3 36 300 10800 10.55 177.71
2 24 300 7200 7.04 184.75
1 12 300 3600 3.51 188.26

live, and earthquake loads for each member were determined using

a STRUDL analysis and combined according to Egs. (2.1) and (2.2) of

the SEAOC code, from which the design member forces were obtained.

On the basis of the above information and the design requirements

given in the SEAOC and ACI codes, member dimensions and flexural and

shear reinforcements were determined.

examined: Structure 1 (as designed according to the SEAOC provisions)

Two different structures were

has a fundamental period of 1.27 sec., in which the period is based on

the gross moments of inertia of the members.

The second structure
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(Structure 2), with stiffer members than those of Structure 1, has a
period of 1.0 sec. Based on the fully-cracked sections, the corresponding
periods of these structures are 1.75 and 1.5 sec, respectively. The
member dimensions for the two structures are shown in Fig. 5.2.

Modal analyses of the two structures were performed and the statistics
of the total load effects for various ground spectra were calculated by
the method described in Chapter 4. In doing this, the axial deformations
of the elements were neglected, and their effective lengths were taken
equal to the distance between the center lines of the supports. The ground
spectrum was assumed to have v/a and ad/v2 ratios equal to 47 1in./sec/g
and 6, respectively.

The coefficient of variations of the live load effects, were obtained
~from Fig. 4.4, in which the influence areas for the beams and columns were
taken as follows:

Beams: 1056 ft° (all load effects)

Exterior Columns: 1056 ft° (all load effects)
Interior Columns: 1056 ft2 (for shear and moments)
2112 £t° (for axial load)

" The total load effects in the members of Structure 1, and the
respective resistances and failure probabilities for @ = 0.1 g, are
summarized in Table 5.2. Beams and columns are examined with regard to
their adequacy in flexure and shear. '

The probability of failure in flexure and shear for the members of
the two structures, when subjected to a ground acceleration of 0.1 g, is
shown in Figs. 5.3 and 5.4. From these figures it may be observed that
the probability of a flexural failure in the beams is practically constant
at all story levels, except at the roof which is designed on the basis of
the mipimum reinforcement limitations. The probability of flexural
failures in the columns, however, increases for the upper stories,
indicating that the code equivalent lateral forces tend to produce
"weaker" columns for the upper stories. This observation agrees with
the results of other investigations; for example [28]. The comparison
between the risk levels for beams and columns (failing in flexure) is



TABLE 5.2  FAILURE PROBABILITIES OF THE MEMBERS OF STRUCTURE 1 FOR a = 0.1 g

Member EZS?{ _ BENDINi(kms in) _ SHTR (kips)
S M Q P S Q v Q P
M S t Mg £ v Sy t v, £

Ext. Beam 1 4227 0.42 9038 0.17 2.99E-2 38 0.36 139 0.24 8.01E-4
2 4637 0.42 9889 0.18 2.96E-2 41 0.36 148 0.23 8.40E-4

3 4321 0.42 9496 0.18 2.52E-2 39 0.36 146 0.23 5.75E-4

4 3867 0.42 8776 0.17 2.13E-2 36 0.35 139 0.24 4.02E-4

5 3622 0.40 8185 0.17 1.98E-2 34 -0.34 132 0.24 3.11E-4

6 3318 0.40 7398 0.17 2.07E-2 34 0.31 129 0.24 2.17E-4

7 2871 0.39 6172 0.17 2.32E-2 31 0.29 112 0.24 1.99E-4

8 2531 0.37 5282 0.17 2.39E-2 28 0.27 111 0.24 4.31E-5

9 1950 0.33 4089 0.17 1.58E-2 23 0.23 95 0.23 6.55E-6
10 1297 0.22 2792 . 0.17 2.48E-3 16 0.17 92 0.24 5.1E-10

Int. Beam 1 4872 0.40 9823 0.18 3.67E-2 42 . 0.36 144 0.23 1.15E-3
2 5182 0.41 10609 0.18 3.53E-2 44 0.37 154 0.23 1.13E-3

3 5033 0.41 10478 0.18 3.17E-2 43 0.36 152 0.23 9.54E-4

4 4780 0.40 10019 0.18 2.97E-2 41 0.36 146 0.23 8.24E-4

5 4448 0.40 9364 0.17 2.77E-2 39 0.35 139 0.23 6.76E-4

6 4210 0.39 8709 0.17 2.91E-2 37 0.34 130 0.24 7.37E-4

7 3602 0.37 7256 0.17 3.06E-2 33 0.31 mm 0.24 6.87E-4

8 3184 0.36 6270 0.17 3.11E-2 30 0.30 110 0.24 1.92E-4

9 2491 0.32 5083 0.17 1.82E-2 25 0.26 94 0.24 4.27E-5

) 10 1469 0.26 2792 0.17 1.46E-2 16 0.20 91 0.24 4,.25E-9
Ext. Column 1 2614 0.48 9588 0.17 2.07E-3 30 0.46 393 0.20 1.58E-8
2 2360 0.42 6421 0.18 7.83E-3 |. 34 0.42 361 0.20 3.47E-8

3 2419 0.41 5709 0.18 1.59E-2 33 0.41 356 0.20 1.43E-8

4 1933 0.43 5809 0.16 3.89E-3 27 0.43 297 0.20 3.26E-8

5 1910 0.41 4359 0.16 1.79E-2 26 0.41 279 0.20 2.01E-8

6 1801 0.40 3323 0.16 5.25E-2 25 0.40 260 0.20 9.37E-9

7 1553 0.41 2741 0.16 6.66E-2 21 0.40 151 0.18 1.16E-6

8 1442 0.38 2186 0.15 1.19E-1 20 0.38 113 0.18 6.07E-6

9 1199 0.37 1732 0.15 1.36E-1 16 0.36 131 0.18 3.44E-8
10 896 0.29 1423 0.15 6.22E-2 12 0.28 111 0.18 2.24E-12

Int. Column 1 6209 0.49 19912 0.15 4.59E-3 65 0.49 527 0.22 8.72E-6
2 4215 0.49 12732 0.15 6.44E-3 60 0.49 508 0.22  6.57E-6

3 3956 0.49 12071 0.14 5.86E-3 56 0.49 488 0.22 4.30E-6

4 3837 0.49 13765 0.15 2.30E-3 53 0.49 440 0.20 4.93E-6

5 3495 0.49 10474 0.14 6.76E~3 48 0.49 438 0.19 1.99E-6

6 3152 0.49 8905 0.14 9.35E-3 43 0.49 406 0.19 1.53E-6

7 2910 0.49 7407 0.14 1.63E-2 39 0.49 348 0.19 2.39E-6

8 2484 0.49 5695 0.14 2.72E-2 33 0.49 300 0.19 2.40E-6

9 2003 0.49 3356 0.14 1.02E-1 26 0.49 235 0.18 2.00E-6

10 1194 0.50 2482 0.14 4.49E-2 14 0.50 185 0.18 6.36E-7
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of significance. The Code is presumably intended to give structures
with strong columns and weak beams, so that yielding will occur first in
the beams. However, the results of Figs. 5.3 and 5.4 would suggest that
this may not always be fulfilled by the provisions of the SEACO Code; the
columns may yield before the beams, especially those in the upper stories.
It may also be observed from Figs. 5.3 and 5.4 that the probability
of shear failure is lower than the probability of flexural failures. On
these bases, the SEAOC Code appears to give sufficiently conservative
designs for .shear as to avoid‘premature shear failures.
Figure 5.5 shows the probability of failure in flexure and shear
for the interior and exterior columns, and for the interior beam at story
level 5 of Structure 1, as a function of the maximum ground acceleration.
In calculating these probabilities it is assumed that QP is less than
or equal to the c.o.v. of the axial load induced by the earthquake load

alone (this avoids the problem of unlimited Q, when P = 0). The discon-

tinuities in the shear failure probability cuives for the columns (Fig.
5.5) are due to the change in the governing equation for the determination
of Ve (i.e., from Eq. 2.12 to Eq. 2.14). These curves are typical of most
of the members of the two structures. The sensitivity of the calculated
probability to the maximum ground acceleration is apparent from Fig. 5.5.

Figures 5.6 through 5.9 compare the failure probability of Structure 1
for different values of the natural periods and damping. As expected,
these results show that the probability of failure decreases for structures
with higher natural periods (see Figs. 5.6 and 5.7) or higher damping
values (see Figs. 5.8 and 5.9).

The influence on the failure probability of the number of modes
considered in the analysis is shown in Figs. 5.10 and 5.11. Calculations
based on only the fundamental mode gives a good approximation for the
failure probability in the lower stories; however, it underestimates the
risk for the upper stories. The use of the first 2 modes gives a good

approximation for most cases.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary of Study

A model is developed that provides the basis for the determination
of the levels of risk implicit in current earthquake-resistant design
procedures. The basic variabilities in the loads and structural propertfes,
as well as the errors in the mathematical models used to predict these
quantities in design, are carefully examined and assessed from available
information. These uncertainties lead to risk estimates that are
consistent with thebpresent state of knowledge.

Only linear structures are considered; thus the failure probabilities
calculated herein must be regarded as an indication of the 1ikelihood of a
structure (or a structural member) being stressed beyond the elastic range,
and not necessarily that collapse, or even serious structural damage, will
occur.

The Tevels of risk implicit in the 1974 SEAOC Code for bending, shear,
and axial load, are evaluated. This is accomplished by examining specific
typical structures designed according to the Code.

On the basis of the calculations performed for a 10-story building
designed according to the SEAOC Code, failure probabilities of the major
structural components to specified earthquake intensities are presented
in Figs. 5.3 to 5.11; the main results are summarized in Table 6.1 for
three intensities of ground acceleration.

TABLE 6.1  CALCULATED FAILURE PROBABILITY
FATLURE PROBABILITY

FAILURE MODE

a=0.1g a=0.2g a =0.3g
Beams 1in Flexure 0.020-0.035 0.25-0.34 0.50-0.63
Beams 1in Shear 10'3—10'4 0.02-0.05 0.15-0.20
Ext. Col. in Flexure and Axial Load
lower stories 0.002-0.016 0.13-0.39 0.54-0.85
upper stories 0.06 -0.14 0.44-0.64 0.72-0.90
Int. Col. in Flexure and Axial Load
lower stories 0.002-0.006 0.08-0.14 0.28-0.40
upper stories 0.016-0.100 0.25-0.57 0.57-0.85

Columns in Shear and Axial Load 10'8—10"4 0.001-0.010 0.015-0.20
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6.2 Main Conclusions

~ On the basis of the results developed in this study, the following
conclusions may be drawn:

1. Current earthquake-resistant design provisions can be apprised
~in terms of risk measures. The basic variabilities and prediction errors
(bias and prediction uncertainty) in the variables involved, as well as
those underlying the mathematical models, must be included.

2. As expected, the probabilities of failure to specified ground
motion intensity depend on the structural members and the mode of failure.
On the basis of a 10-story building designed according to the SEAOC Code,
the failure probabilities of the beams under bending and axial load are
fairly constant for all story levels, whereas for the columns the
corresponding probabilities increase with the story level.

3. The comparison between failure probabilities for the beams and
columns of the structure examined indicates that the SEAOC Code may not
necessarily give columns that are stronger than the beams (especially in
the upper stories); that is, yielding may occur first in the columns.

4. In cdde-designed structures, shear failures have lower probability
of occurrence than flexural failures. This is mainly due to the limitations
in the shear design and minimum reinforcement. Therefore, the SEAOC Code
provides sufficiently conservative designs for shear as to avoid premature
shear failures.

5. As expected, the mean values of the natural frequencies and damping
have an important effect in the risk levels of the structure. In particular,
higher natural frequencies and damping tend to decrease the probability
of failure.
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APPENDIX A

COVARIANCE BETWEEN MATHEMATICAL MODELS

In many cases of practical interest, the correlation between two
mathematical models, X and Y, depends only on some type of correlation
between their component variables. An approximate expression of COV[XY]
for this case, consistent with the first-order approximation is developed
here. A v -

Let X and Y be two equations,

~

Y = Np fo(XquXosenn,y X))

X = f1(X],X2,,.., X f1 1K K

n

and (A.1)

Y = fz(Y],Yz,..., Ym) = Nfzfz(Y],Yz,..., Ym)
where N, and Nf2 are corrective factors for the mathematical functions
adopted, and Xy,..., X, and Yiseres ¥
with true means uyys... MY

q are the true component variables

q and uyqs..., by, and total coefficients of
variation Qyq,..., Ox, and Qyq,..., Qy. It is further assumed that X,
and Xj’ as well as Y1 and Yj are, respectively, statistically independent
variables for all i and J.

Expanding X and Y in Taylor series about the true mean value of

Xi”"’ Xn and Yj’“"’ Ym, respectively,

. n [8f1}
X=M f](}ixs---su )+N b - (X;-ux)-'—"

f 1 A R [axi} T i
u
and (A.2)
R m 8f2
Y = No oy seees Uy ) + N o= (Y. -y, )+
f 2 Yo e ey, | T Y

The product of X and Y is
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XY = N N f (My seees Hy ) ? (Hy seees Hy )
f, fz[: 1, AL & Yo

N n raf]"
+ fz(UY]s---a Uym) 151 EX;; (Xi - Uxi)
u
" m fafz’
+ f](ux]so'-s an) jz] S??; (Yj - ij)

nom af] 3f2
+ X I |5 = (X:-uy (Y -1y )
i=1 j=1 axi y SYj y i Xi J Yj

and its expected value

[ 1 - N % (u ] s H % VHy s s M )
T1 f2' 1 X1 “Xn’ 2 Y, Ym
n m 8"] afz
P IOl ) (DT gy )
i=1 j=1 i . J .

? (Hy 5eees By ) =M
.1 X1 Xn X
and

N f (U see09 M ) = H
f2 2 Y] Xm Y

then, Eq. (A.4) may be written as

1 72 14=1 j=1

o I af] af
E [XY] UXUY + Nf Nf z z . 3Y { E[X Y. ] - pX UY }

U

Recalling from elementary probability theory that

cov [zz.]=E[z.2,]-E[Z2]E[Z4]= DZZUZO’Z

where p-, -7 is the correlation coefficient between Z. and Z-, and o
Z3l5 i i 7.

J

J

(A.3)

(A.4)
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is the standard deviation of Zi’ it is easily shown that
o nom af] af2
cov [XY] = Nlefz 151 351 [5?;} [573} pxi’YjﬂxiﬂYjuxiqu | (A.8)
: H H
For the case in which some of the component variables of X and Y

are the same, otherwise statistically independent, i.e.,

pXi’Yj.= 0 for Xi # Yj
it can be shown that
A L 1 LT R
COV [XY] = N. N I e — N X5 Q (A.9)

u

where X1 for i = 1,..., p are the variables common to both X and Y, and
X..
.

Hy. has been substituted by N
;

i X



104

APPENDIX B

ANALYSIS OF Mt

The moment capacity of reinforced concrete elements failing through

yielding of the tension reinforcement may be expressed as

where

and

1]

1

The c.o.v.

2
Q
My

in which

Cy

The derivatives of Mt with respect to its component variables are

BM
Bb

BMt

—==C_ +Cg -

ad

Ce [i - C. i bd—ld +C (d d') - P(

of M may be expressed as

2 2
z Ck {0

1 [ zaM,C l
— | T My
My 13X, " k

i

[NTiae}

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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BMt A; ) _ n
—Eo | f S (e f -k f) | [d-2c — |+
9A, Yoo 5y 3¢ b

+ = (c kyfl) (d - d)

As

Sfy -

(in which A; and AS are assumed to be perfectly correlated)

My A k. {é rzb " :l cz
L - 1 v - +
' s 3 C c 12,
afL | fib £1°b
oM, d + d! n
t
= - 26, ——
op 2 £l b
2
aM, . c2
an f(‘:b
oM n(A_ - c. A")
—top 4- cg Al d' - 2C S_ 535S
of S S ¢ £ b
y c

(B.7)
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APPENDIX C

CORRELATION BETWEEN THE TOTAL LOAD ACTING ON TWO FLOORS

The total load acting on a given floor may be expressed as

Wy = [D; + L(A))] A, (c.1)

where D, and L(Ai) are the average unit dead and live loads, and A is the
area of the floor under consideration.

For statistically independent D and L, the covariance between the
total loads acting on two different floors, wi and W., is

COV[WiNj] = { COV[DiDj] + COV[L(Ai) L(Aj)] } AiAj (C.2)

If D17 and Dj are perfectly correlated, then

= =5 2
COV[DiDj] = ODi GDJ D; D D (C.3)

Also, on the basis of the assumptions given in Sect. 4.3.2, it may be
shown that

COVILIAL(A)] = fJJICOV[w Xg+¥g) (Xp¥,)] dxgdyy déydy,
A

ol

2 o ol (] feovietxggletng vy laxgay dxgay, (.4)
bld 775 474

173

and the corresponding correlation coefficient becomes
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i COV[WiN.] _
UMy " oy oy
J i "
D.0.0% + o 1 COVIe(Xnsyn)e(Xosys) Tdxady, dxod
it oy A, 0¥/ E\Xp2Yp/ 1dXg0Yg AXody,
bld 1] vy
= L (.5)
(D% + [P of 1'% D305 + LT A)J‘/2
For the case of equal areas, i.e., Ai = Aj = A, and Di = Dj = D, Eq. C.5
becomes ’
22 ., 2 1
D™y + oy XE—JJJJ covle(x ,yo (x2,y2)] dxgdyy dxody,
A A
o = = (C.6)
R Dol + CTA)? % (a)
For the white-noise model (see Eqg. 4.7)
JJ { COV[e(xO,yO)E(xz,ya)] dxodyO dxzdy.2 =0 (C.7)
A A
thence, ~
5202 + g2
D Ypid
Pyl T o 2 2 (c.8)
1] -
Dap + LA™ @ ()
Similarly, for the Peir's model [75, 76] (see Eq. 4.9)
2
: P GSp md K(A)
Kﬁ-JJJJ COV[e(xO,yO)s(xz,yz)] dxqdyg dx, dy2 = R (C.9)
A A
2
where K(A) = [:erf /—5 - V/Er (1 -e A/d;} (C.10)

and erf(-) is the error function. Hence,




(C.11)
oy W, =
w.ist

2.2
o5 + CTA) 2 ()
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APPENDIX D

ANALYSIS OF EI

The equivalent rigidity of reinforced concrete members may be

expressed as

M
EI=$¥—
y

(D.

in which My and ¢y are, respectively, the yield moment capacity and yield

curvature at the critical section.

If a linear stress and strain distribution is assumed, it may be

shown that
= ' c i (d'dl)
My = Cc(d - 3) + Ts(d -d') +P 5
and
. f
¢y;= Es(d - C)
in which
_ V2 _
¢ = 1Ky VIS + 2Ky +K) T d = oKy * RY d
and
Ky =p'(n=1) + p"n
K2 = p'(n-1) d'/d
Ky = p"n
n = Es/Ec
A + P/f
|1 — s Q
P T Thd
2 f
=ty ¥
Cc -2 b d-c¢c n
T.=A_f

(D.

(D.

(D.
(D.
(D.

(D.

(D.

1)

.2)

3)

4)

.5)

6)
7)
8)
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Letting
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is some parameter, then

9 9EI 3M_ 9EI 3
T L, 0y _
o oM ax 36 3,
by M 73X -ZMy 90, /9%
by

The derivatives of M_ are given as

y

M, C

A o TR ac

% - D [F :[* Cc X4 30

oM c
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APPENDIX E

ANALYSIS OF Ni and {¢i}

The eigenvalue problem of Tinear structural systems is formulated in
terms of the characteristic equation

([KI - A[MD) {o} = 0 (E.1)
where [K] and [M] are, respectively, the effective stiffness and mass
matrices, xi is the ith eigenvalue and {¢i} the ith eigenvector.

In the case of systems in which the floor masses, as well as the
members stiffnesses, are perfectly correlated and with equal coefficients
of variations, [K] and [M] may be expressed as (see Sect. 3.2.3)

[K] = k* [K] (E.2)

‘and
M* [M] (E.3)

[M]

in which K* and M* are random variables, and [K] and [M] are deterministic
matrices consisting of the mean values of the floor masses and stiffness
coefficients, respectively.

Substituting Eqs. E.2 and E.3 into Eq. E.1 and dividing by K*, it
follows that

(K] - A' [M]) (6} =0 (E.4)
in which
Al = T’g (E.5)

Since [K] and [M] are deterministic matrices, it follows that the
eigenvalues A% for i =1,..., n of Eq. E.4 are also deterministic
quantities.

The 1th eigenvalue of Eq. E.1 then may be expressed as

i
cn
~—

A; =y Al
i M* 74
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from which the mean and c.o.v. of Ai may be found. The corresponding
eigenvector is found by substituting Eq. E.6 into Eq. E.1, yielding

(K] - & A1 4] 1o, = 0 (E.7)
Using Eqs. E.2 and E.3, Eq. E.7 becomes
([K] - A3 IMD) {93} =0 (E.8)

Since [K], [M] and A% are deterministic, it follows then that‘{¢i} is
also deterministic.



