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1. INTRODUCTION 

leI Objective and Scope 

The application of dynamic loads to a body generates stress 

waves which propagate through the medium. Within a linearly elastic, 

isotropic, homogeneous solid both dilatational and distortional waves 

can exist. Solutions to elastic wave propagation problems are custom

arily sought in terms of potential functions which satisfy the wave 

equation and the boundary and initial conditions and determine the 

state of stress within the body. Application of the usual boundary 

conditions, however, results in an involved coupling of the potential 

functions which often makes the elastic wave propagation problem diffi

cult to solve. Solving even relatively simple three-dimensional 

problems can be a major undertaking. 

The objective of this study is to develop an efficient and 

useful technique for determining the three-dimensional wave propaga

tion that results from couples applied at a point beneath the surface 

of an elastic half space. This problem is of distinct engineering 

importance because it provides a basis for earthquake modeling. The 

disturbances from couple sources simulate the elastic motion following 

a fault dislocation and occurring in the presence of an initial strain 

state. For example, the single couple of Fige 3 might simulate the 

strike-slip dislocation of a point on a vertical faulte A review of 
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the literature shows that actually some controversy exists concerning 

what arrangement of couples best models a particular fault disloca-

tion. This study does not intend to defend any specific model but to 

provide an approach that represents any arrangement of couple sources 

as a superposition of five fundamental TTdouble forceT!* cases .. 

Chapter 6 provides guidance for the application of these cases to some 

specific earthquake models .. 

This study seeks the solution to the fundamental double 

force cases with the aim of reducing the inherent complexity of the 

three-dimensional elastic wave propagation problem. Representation 

of the double force problem by the method of rotational superposition 

reduces the three-dimensional problem to more easily solved two-

dimensional problems.. These two-dimensional problems are expressed 

in terms of derivatives of the plane problems that evolve from formu-

lation of the single force case by rotational superposition. An 

application of the method of self-similar potentials provides the 

solution to the plane problems associated with the double force by a 

slight modification of the potential functions for the plane problems 

associated with the single force. The time variation of the double 

force emerges in the most natural fashion as a linear function of 

time. Superposition can then yield other time variations of interest. 

* A Ttdouble force!! is a single couple applied at a point. A more 
detailed definition and discussion of this term is provided in 
Sec .. 1 ",2 
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This approach to the solution of double force problems is very direct 

and allows clear identification of the wave front pattern during each 

stage of the solution process. 

1.2 Concept of a Double Force 

This study focuses on the double force as the building block 

for earthquake fault modeling. Definition of a double force and 

agreement on a notation for referring to the fundamental cases will 

aid the work that follows. 

A !Tdouble force TT is the limit of a situation involving two 

equal but opposite forces that are parallel or collinear. The magni

tude of each force is P(t)oAh-1, and Ah is the distance between the 

points of application of the forces. As 6h goes to zero, the forces 

increase in magnitude but the product of the magnitude and 6h remains 

constant. In the limit as 6h goes'to zero, the double force becomes 

a loading at a point. The double force may be either a double force 

with moment (See Fig. 1) or a double force without moment (See Fig. 

2). The description TTdouble horizontal force Tf indicates the direc

tion of the forces comprising the double force. This description 

provides a necessary distinction because a double horizontal force 

with moment and a double vertical force with moment produce different 

dynamic effects even though the double forces may be statically 

equivalent. 
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A convenient notation employed in this study permits quick 

reference to the fundamental double force cases. This notation con

sists of two letters, e.g., tTVh,TT plus, at most, two subscripts. The 

upper-case letter gives the orientation of the constituent forces and 

the lower-case letter indicates the orientation of the line drawn 

between the points of application of the forces. TTV TT indicates a 

vertical orientation and TTh,TT the horizontal. This notation allows 

one to quickly visualize the double force as a coupleo For example, 

TTVhH refers to the double vertical force with moment shown in Fig. I. 

Subscripts, TTn TT and TTe TT for TTnorth!l and TTeastTT , respectively, indicate 

the relative orientation of horizontal forces and horizontal dis

tances. Case Hnhe is a double horizontal force with moment (See 

Fig. 3), and Case Hehe is a double horizontal force without moment 

(See Fig. 5). The five fundamental double force cases mentioned in 

Sec. 1.1 are sho\-vn in Figs. 1 thru 5 and can be listed using this 

notation as: 

1. Case Vh; double vertical force with moment. 

2. Case Vv; double vertical force without momento 

3 9 Case Hnhe; double horizontal force with moment, forces 

in a horizontal plane. 

4. Case Hv; double horizontal force with moment, forces in 

a vertical plane. 

5. Case Hehe; double horizontal force without moment. 
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1.3 Previous Related Studies 

Several methods have been employed in the past to solve prob-

lems of wave propagation in an elastic half space. Lamb* (1904) and 

Ewing, Jardetsky, and Press (1957) used harmonic wave techniques to 

solve some problems of transient loading of an elastic half space. 

Cagniard (1962) used two applications of Laplace transforms to solve 

Lamb's problem when the actual transformation was not necessary because 

of special conditions. Gakenheimer and Miklowitz (1969) used Laplace 

and double Fourier transforms to study a transient normal load on a 

half spacee Both the harmonic wave and the transform techniques pre-

sent well-known computational difficulties@ With the former method 

one has the formidable task of evaluating a Fourier integral unless the 

source varies in a harmonic fashions In the latter, the transformations 

are difficult to carry out except in special cases. The method of self 

similar potentials is a powerful alternative technique for solving 

two-dimensional dynamic problems and is simpler and more direct than 

the other techniques. Smirnov and Sobolev (1933) developed the method 

but its use outside the U.S.S.R. has been limited. Thompson and 

Robinson (1969) presented a description and bibliography of the method 

and applied the method to solve a dynamic contact problem. 

* An authorTs name followed by a date of publication refers to entries 
in the List of References. 
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The difficulties encountered when applying most methods to 

two-dimensional problems are greatly compounded when a three

dimensional problem is attempted. Smirnovand Sobolev (1933) developed 

the method of rotational superposition to represent the three

dimensional problem as a superposition of two-dimensional problems. 

This permits the retention of the convenience of the method of self 

similar potentials in the three-dimensional problem. The method of 

rotational superposition was applied to some axially sywmetric problems 

by Zvolinskii (1957) and PodTTyapolTski (1959). Johnson and Robinson 

(1972) used the methods of rotational superposition and self similar 

potentials to solve the nonsymmetric problem of a horizontal force 

applied beneath the surface of a half space. This solution avoided 

the formidable mathematics associated with other methods and involved 

only one quadrature in the complex plane. The study contained herein 

is the first use of the methods of rotational superposition and self 

similar potentials to solve three-dimensional double force problems. 

Others have conducted various studies concerning different 

types of double force disturbances. Ben-Menahem (1961) used double 

Fourier integrals to consider the displacements at long ranges due to 

Rayleigh and Love waves from a moving single couple source. Burridge, 

Lapwood, and Knopoff (1964) investigated the radiation patterns of 

first motions due to a TTdouble couple TT source on the surface using a 

Fourier integral technique. Gupta (1967) approximated the far-field 
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patterns caused by double force sources using the dynamic reciprocity 

theorem. 

The application of the methods of rotational superposition 

and self similar potentials in this study permit efficient solution 

of double force problems for both near- and far-field locations. The 

solutions presented for the fundamental double force cases can be 

easily superposed to obtain a variety of seismic models. As in 

Johnson and Robinsonfs work, formidable mathematical manipulations are 

avoided and physical insight into the wave motions is maintained 

throughout the solution process. 

1.4 Organization of the Study 

Chapter 2 provides a review of the methods of rotational 

superposition and self similar potentials in order to give a basis for 

the developments in succeeding sections. The method of rotational 

superposition permits treatment of three-dimensional problems as a 

superposition of two-dimensional problems. The method of self similar 

potentials is an efficient technique for solving plane problems con

cerned with an elastic half space and is, therefore, a natural 

complement to the method of rotational superposition. 

Chapter 3 presents the solutions for a dynamic vertical and 

a dynamic horizontal force applied at a point beneath the surface of 

an elastic half space using the above methods. The solutions in this 

form are essential to the subsequent solution of the double force 
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cases. Although Pekeris and Lifson (1957) have considered the problem 

of a subsurface vertical force, some of the intermediate results 

obtained by the method of self similar potentials are useful for solv

ing double force problems. The solution of the problem of a sub

surface horizontal force by rotational superposition and self similar 

potentials was carried out by Johnson and Robinson (1972) and only the 

results are summarized here. 

Chapter 4 presents the procedures and relationships that 

permit the application of the methods of rotational superposition and 

self similar potentials to the solution of problems involving a 

dynamic double force. Arbitrarily inclined double forces are repre

sented as a superposition of double vertical and double horizontal 

forces. Expressing the inclined double force as a superposition of 

fundamental double forces permits quick solution for a variety of 

cases once the fundamental solutions are in hand. Rotational super

position allows the double force to be represented as a superposition 

of two-dimensional problems that are in turn related to the two

dimensional problems associated with the single force. The relation

ship among the two-dimensional problems turns out to be more useful 

computationally than the more obvious relationship that exists among 

the three-dimensional problems. A particular application of the 

method of self similar potentials gives the solution to the plane 
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problems associated with the double force by a simple modification of 

the potential functions for the single force. The time variation of 

the double force examined in this way comes out directly and in a 

natural fashion as a linear function of time. Chapter 5 provides the 

solution for the displacements on the surface of the half space for 

the five fundamental double force cases shown in Figs. 1 thru 5. 

Chapter 6 summarizes the developments in this study and 

gives guidance on the application of the results to some specific 

earthquake fault models. The use of the linear time variation of the 

double force to obtain other time variations is also discussed. 

1 .. 5 Notation 

Symbols in this study are defined where they first appeare 

Those symbols used most frequently are listed below. 

a S d f h ( fA m+ 2~) pee 0 t e P wave \f' 

b Speed of the S wave (~) 

c Speed of Rayleigh wave 

Same as a 

Same as b 

Contours of integration 

Constants defined by Eqse (3 .. 44b) and 

(3.47a) 



G1, G12 , etc. 

~he' Hv, Hehe 

i 

m 

p 

p. 
l 

r 

R( 82 ) 

t 

t p ' tps' t pp ' ts 

t ss ' t sp ' tH 

-v -H u , u 
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See EqG (2.9) 

See Eq. (3.21) 

Double horizontal forces (See Sec. 1.2 

for a complete description.) 

Unjt vectors corresponding to (p, ill, Y) 

space coordinates 

Mass density of the elastic solid 

Magnitude of the load 

See Eq. (2.22) 

Ix2 + y2 

Rayleigh function (See Eg. (2.31c)) 

Time coordinate 

Arrival time of P, PS, PP, S, SS, SP and 

head waves respectively 

Components of the displacement field for 

the plane strain problems 

Displacement field for the anti plane 

problem 

Displacement field for the three-

dimensional problem 

Displacement field for a vertical and 

horizontal force respectively 



u f u d 
x' x 

F u D 
up' P 

Vh, Vv 

x, Y, Z 

x, y, z 

Yo 

a 

11 

Components of a two-dimensional field 

corresponding to a single force and a 

double force respectively 

Components of a three-dimensional field 

corresponding to a single force and a 

double force respectively 

Displacement field in cylindrical 

coordinates for the three-dimensional 

problem 

Double vertical forces (See Sec. 1.2 for 

a complete description.) 

Self similar displacement function for 

the antiplane problem 

Cartesian global space coordinates for 

the three-dimensional problem 

Cartesian space coordinates for the two-

dimensional problem 

The y coordinate of the point of 

application of the load 

Speed of expanding region within which a 

loading is applied 

Angle of incidence (See Fig. 11.) 
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81 , 82 

811 ' 812 

821 , 822 

8p ' 8s ' 8pp ' 

8ss ' 8ps ' 8sp 

~ 8· u 8i , l 

p, w, Y 

ax' ay ' Tyx' etc. 

aX' cry, Txy ' etc. 

12 

Angle of orientation for an inclined 

double force (See Fig. 15.) 

See Eq s. (3.8) 

See Eq s. (3. 1 0 ) 

See Eq s. (3.15) 

Distance between forces comprising a 

double force 

Variable of integration (= w - wo ) 

Complex variables defined by Eqs Q (3.8) 

Complex variables defined by Eqs" (3.10) 

Complex variables defined by Eqs. (3.15) 

Value of complex variable at arrival of 

the respective front 

Values of complex variable 8i at the end 

points of integration 

Lame constants of elasticity 

Poisson f S ratio 

Cylindrical space coordinates correspond-

ing to (X,Z,Y) (See Fig. 6a.) 

Components of stress for plane problems 

Components of stress for three-

dimensional problems 

Components of stress in cylindrical co-

ordinates for three-dimensional problems 



I:, I:, T ,etc G x y zx 

¢, ¢1' ¢11' ¢12 

il?, il?1' 'P11 ' il?12 

~z' ~2' ~21' ~22 

"l', '1'2' 'l'21' '1'22 

( 

( 
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Self similar stresses for plane problems 

Scalar dilatational potentials 

Complex dilatational potentials associ-

ated with ¢, ¢1' ¢11' ¢12 

Scalar distortional potentials 

Complex distortional potentials associ-

ated with ~z' ~2' ~21' ~22 

Angle of orientation of plane problem 

with respect to XY plane 

Component associated with P, S, PS, 

Rayleigh, and head waves respectively 
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2. THE METHODS OF ROTATIONAL SUPERPOSITION AND 
SELF SIMILAR POTENTIALS 

2.1 General Equations 

Wave propagation in a homogeneous, isotropic, linearly elas-

tic solid is governed by the equations of motion; which can be written 

in terms of displacements as: 

(2.1) 

where (X, Y, Z) are cartesian coordinates, m is the mass density of 

the solid, A and ~ are the Lame constants which define the elastic 

properties of the medium, and ux, uy, and Uz are the components of the 

displacement vector u. The dilatation ~ and the Laplacian operator ~2 

are defined by: 

OUX dUZ oUy 
6 = -+-+ 

oX oZ oY 

(2.2) 
* The order (X,Z,Y) is used to correspond to the (p,m,Y) coordinate 

system used later. (See Fig. 6a.) 



V2 = ~ + ~ + 0
2 

oX2 oZ2 oy2 

15 

The Helmholtz Theorem (Schwartz et ale, 1960) is customarily 

applied to the displacement vector to represent it by the sum of the 

gradient of a scalar potential and the curl of a vector potential. 

That is, 

u = grad ¢ + curl * (2.3) 

The scalar potential determines the irrotational (P) portion of the 

displacement; the vector potential, the equivoluminal (S) portion. 

For the equations of motion to be satisfied, it is both a 

necessary and sufficient condition that the potentials satisfy the 

wave equations (Duhem, 1898), 

(2.4) 

where a = JA m+ 2f.,L and b = ~ are the P and S wave speeds, 

respectively. 

For the case of plane strain in which the displacements are 

zero in the z* direction, the x and y components of * are zero. The 

* Coordinates in lower-case letters refer to two-dimensional problems 
in this study; coordinates in upper-case letters, to three
dimensional problems. 
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solution to this two-dimensional wave propagation problem can then be 

expressed in terms of scalar potentials, ¢ and *z' by: 

(2 .. 5) 

Another plane problem of interest in this study is one of 

the antiplane type for which the displacement vector is (0, 0, uz ) and 

is a function of x, y, and t only. The equations of motion reduce to 

2 
1 0 U z ::::---

b 2 ot2 
(2.6) 

As will be demonstrated in the succeeding sections, the solu-

tion to the three-dimensional problems of interest can be represented 

by rotational superposition of appropriate two-dimensional plane 

strain and antiplane problems. 

2.2 Rotational Superposition 

2.2.1 General Approach 

While a number of techniques are available for the solution 

of plane wave propagation problems, few techniques have been success-

fully developed for solution of three-dimensional problems. The 

method of rotational superposition simplifies the three-dimensional 
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problem by representing it as a superposition of more easily solved 

plane strain and antiplane problems. The fundamental concepts of 

this method are briefly reviewed here before the specific applications 

that follow in succeeding sections. Thompson and Robinson (1969) and 

Johnson and Robinson (1972) provide a more detailed treatment. 

Consider the effect in three-dimensional space, (p, w, Y)*, 

of applying a plane strain displacement field, Ux (x, y, t) and 

Uy (x, y, t), and an antiplane field, Uz (x, y, t), at an angle Wo 

with respect to the XY plane. As indicated in Fig. 6b, the radial, 

circumferential and vertical displacements would be: 

(2.7) 

The three-dimensional problem is obtained by multiplying each of the 

plane problems by a weighting function of Ub and superposing the 

effects for all values of Wo from 0 to TI. This leads to: 

* (p, w, Y) are cylindrical coordinates corresponding to (X, z, y). 
Fig. 6a shows the relation between the two coordinate systems. 
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li = In lix co s (w - Wo ) £ 1 ( Wo ) d Wo 
p 

0 

+ in liz sinew - wo) £2(wo) dUb 
0 

li = _In 
liX sinew - Ub) £1(wo) dwo w 

0 
(2.8a) 

+ in liZ cos(w - wo) £2(wo) dwo 
0 

li = in liy £1 (wo) dwo y 
0 

and 

a = in ax £ 1 ( wo) d wo p 
0 

fn 2 - 2~€xcOS (w - wo) £1(wo) dwo 
0 

+ fn 2Txz cos(w - (Do) sinew - wo) £2(wo ) dwo 
0 

a = fn CYx £ 1 ( wo) d Wo + (2 .. 8b) w 
0 
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- f 
TT 

2f.1€x cos2(w - wo) f1(wo ) dUb 

o 

_ f TT 
2~xz sinew - wo ) cos(w - wo ) f 2(wo) dwo 

o 

cry co fo TT cry f1 ( UJo ) dUJo 

. Typ co fo TT Tyx cos( UJ - UJo ) f1 ( UJo ) dUJo 

+ (
TT 

~yz sine w - wo ) f2( wo ) dwo 
'0 

(2.8c) 

where 

The weighting functions are taken in the following form for the 

problems of interest: 
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f 1 ( wo ) = co s n Wo (2.9) 

For problems exhibiting axial symmetry, n is taken as zero (Smirnov et 

al., 1933, and Zvolinskii, 1957)and thus only a plane strain problem 

is superposed. For the problem of a horizontal force parallel to the 

X axis, n is equal to one (Johnson and Robinson, 1972). 

2.2.2 Determination of the Two-Dimensional Plane Strain Problem 
Corresponding to a Three-Dimensional Axisymmetric Problem 

As indicated by Eqs. (2e8), a three-dimensional axisymmetric 

problem can be represented by a rotational superposition of a unique 

(Thompson and Robinson, 1969) plane strain problem. The inversion of 

this relationship, finding the two-dimensional boundary value problem 

defined by the three-dimensional problem, is the next major step of 

concern .. 

Before carrying out this inversion, some assumptions concern-

ing the character of the plane problem can be made in order to simplify 

the general relations. The two-dimensional field associated with the 

axisymmetric three-dimensional problem will be symmetric. That is, 

~(-x, y, t) (2.10) 

uy(-x, y, t) = 
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This assumption coupled with the change of variable, ~ = w - wo ' lead 

to the following simplification of Eqs. (2.8): 

(2.11a) 

Uy = fan uy d~ 

ap = fan ( ax - 21-1 ~ sin 2 ~ ) d~ 

aw = Fan (az + 21-1 €:x: sin2~) d~ 

ay = fan ay dy (2 .. 11b) 

'TPy = rn 'Txy cos~ d~ 
0 

'T pw = ,. wy = 0 

Note that the two-dimensional quantities such as Ux are 

functions of pcos~, y, and t while the three-dimensional quantities 

such as up are functions of p, y, and t only. 
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The symmetry indicated by Eqse (2.10) permits the last of 

Eqse (2.11b) to be written: 

(2 .. 12) 

'T" xy co s 1') d 1') 

The change of variables, v = pcos1'), then yields: 

2 f P d v 
cry = cry 

Vp2 2 
- v 

0 

'l"y= ~fP 'T"xy 
v d \) 

p P 
Vp2 - \)2 

0 

Solving these equations as Abel integral equations (Hamel, 1949) 

provides: 

cr = y 
1 d - -TIOr 

(2,,14) 
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Eqs. (2.14) provide the boundary conditions for the two-

dimensional plane strain problem in terms of the boundary conditions 

for a three-dimensional axisymmetric problem. As will be discussed in 

Sec. 2.3, the plane problems can be solved with relative ease by the 

method of self similar potentials and then the three-dimensional 

problem can be reconstructed by direct rotational superposition. Note 

that if each two-dimensional problem satisfies the equations of motion 

the superposed problems satisfy the equation of motion and hence the 

three-dimensional problem satisfies the equation of motion. 

2.2.3 Determination of the Two-Dimensional Plane Strain and Antiplane 
Problems Corresponding to a Single Force Perpendicular to the 
Axis of Rotation 

This section considers the determination of the unique set 

of plane strain and antiplane problems associated with a particular 

three-dimensional problem. This amounts to a inversion of Eqs. (2.8) so 

as to define the two-dimensional boundary values in terms of the 

boundary values for the three-dimensional problem. 

As before, some simplifying assumptions concerning the char-

acter of the plane problems can be made before proceeding to the actual 

inversion. The two-dimensional plane strain field associated with the 

three-dimensional problem of a single force parallel to the X axis is 

antisymmetric about the y axis. That is, 
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llx(-x, y, t) = 
(2.15a) 

uy(-x, y, t) = - uy(x, y, t) 

The antiplane problem is symmetric, or 

uz(-x, y, t) = uz(x, y, t) (20 15b) 

These observations coupled with the change of variables, ~ = Wo - w, 

lead to the following simplifications of Eqs. (2.8): 

up = cosw( fan Ux cos2~ d~ 

{n Uz sin2 i] di] } 

uw = Sinw( -rn Ux sin2~ d~ 
0 

+ fa TI Uz cos
2

i] d~ (2 .. 16a) 

Uy = cosw [0 TI uy cos~ d~ 

and: 



0' = P 
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11 

cosT) dT) - Z~ [0 

- Z . fo TT T zx sinZT) cosT) d~ 

croo = coSoo { [oTT crx cosT) dT) - Z~ [0 TT ex cos 3T) dT) 

+ fo TTZ TZX sinZT) cosT) d7 

O'y = cosw foTT cry cosT) dT) 

'fYp = cosOO { [0 TTTyX cos2T) dT) - foTT Tyz sin
2

T) d~ 

TyW = sinoo { fo ~Tyx sinZT) dT) + fa TT Tyz cosZT) d~ 

'rpw = sinw { [0 TTTzx(COs2T) - sin2T)) cosT) dT) 

- 2~ L TT ex sin2T) cosT) dT)) 

(2.16b) 

Note that all of the field quantities in the integrands are two-

dimensional and are functions of x = pcosT), y, and t. The strain, €x' 

is equal to dUx/ OX. 
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The stresses Typ and Tyw can be written in the equivalent 

form: 

Typ = cosw [ IoTI Tl dll + IoTI T2 cos21l dllJ 
(2 .. 17a) 

Tyw = sinw [ - faTI Tl dll + £TI T2 cos21l dllJ 

where 

T - Tyz 
Tl = yx 

(2 .. 17b) 
2 

T2 = 
Tyx + Tyz 

2 

For a disc of uniform horizontal traction T in the X direction, 

Tyx = - Tyz = 'T (2 .. 18) 

The boundary tractions then become: 

ay = cosw fo TI ayC pcos'T\, y, t) cos'T1 d'T1 

(2 .. 19) 

Typ = cosw fo TI T(pCOS'T1, y, t) d'T1 

11 

T =- Sinw( T(pcos'T\, y, t) d'T\ Yw 
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As in the previous section, these equations can be inverted by intro-

ducing the variable v = pcos~, taking advantage of observed symmetry, 

and solving as Abel integral equations (Hamel, 1949). The results are: 

aye v, y, t) 

cosw 

JT 
(2.20) 

1 0 Typ[ v, y, tJ \) dv 
'T[r, y, tJ = ;:; OT 0 cosw 

Jr2 - v2 

JT tJ 1 0 Tyw[ v, y, \) d \) 
- -

n or 0 sinw yr2 _ \)2 

= Tyx = - Tyz 

Eqs. (2.20) provide the boundary conditions for the two-

dimensional plane strain and antiplane problems in terms of the 

boundary conditions for the three-dimensional problem of a single force 

parallel to the X axis. In this way, the three-dimensional problem 

degenerates to a solution of plane problems which, as will be shown, 

can be conveniently handled using the method of self similar 

potentials. 
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2.3 The Method of Self Similar Potentials 

The method of self similar potentials has proven to be an 

extremely efficient means of solving two-dimensional wave propagation 

problems. The method applies to self similar problems - those whose 

boundary and initial conditions are homogeneous functions of time and 

space. The method avoids formidable mathematical manipulation and, in 

fact, provides the solution to some problems almost by inspection. 

Unlike many wave propagation approaches, the method of self similar 

potentials engenders physical insight at every stage of the solution 

process. 

This approach to two-dimensional wave propagation problems 

was developed by V.I. Smirnov and S.1. Sobolev (1933) but has not 

been widely used outside the U.S.S.R. Thompson and Robinson (1969) 

presented a motivation, development, and bibliography of the method. 

More recently, Johnson and Robinson (1972) explored the application of 

the method in conjunction with rotational superposition to solve three

dimensional problems involving a single force parallel to the surface 

of an elastic half space. 

This section reviews only those elements of the method that 

are essential to the developments in this study. For additional 

details, see the aforementioned references. 
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2.3.1 General Comments 

The homogeneity of the boundary values for self similar 

problems permits a reduction in the number of independent variables 

necessary to describe the motion of a body, e.g. (x, y, t) becomes 

(x/t, y/t). This reduction is accomplished by introducing an auxil

iary function which is the general solution of the wave equation. The 

wave equation becomes a partial differential equation of new variables 

which are elliptic behind the wave front and hyperbolic beyond it. 

The plane strain and antiplane problems which form the three

dimensional problem by rotational superposition uncouple and may be 

solved separately. The solution for the plane strain problem 

involves P and SV waves; the antiplane solution consists of an 

SH wave only. 

2.3.2 Solution of a Plane Strain Problem Self Similar Potentials 

Consider that the solution to the plane strain problem can 

be expressed in terms of the self similar potential functions, ¢ and 

~z, which are the real parts of corresponding complex potential func

tions, ~ and ~G The complex potentials are functions of complex 

variables 91 and 920 That is, 

(2.21) 
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The variables 81 and 82 parameterize the characteristic surfaces of the 

wave equation and any function of the variable ei with continuous first 

and second derivatives automatically satisfies the wave equation. The 

following implicit function defines the variables 81 and 82, 

(2.22) 

where i = 1,2 and c1 = a and c2 = b. For loadings at the origin of the 

(x, y, t) space, only the characteristic surfaces through the origin 

are of interest and Pi(8i) = O. Consider for this general discussion 

that the loading is applied at the origin. For the subsurface load-

ings considered in subsequent sections Pi(8i) will not be zero. 

Solution of Eq. (2.22) provides the values of the 8i vari

ables and defines a mapping of the (x, y, t) space into the complex 

8i plane. 

t x + i Y ;2 _ r2 
c. 2 

l 

and for x2 + y2 > co 2 t 2 
l ' 

e· = l 

t x + 

(2.23a) 

if x < 0 

(2.23b) 
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if x > 0 

where r2 = x2 + y2. The signs of the radical in the above equations 

conform to the definition of the radical JCi-2 - 9i
2 in Eq. (2.22) 

as positive when 9i is positive imaginary with a cut on the real 9i 

axis from -Ci-1 to ci - 1 . This definition is consistent with 

SmirnovYs work (1964). Note that the variable 9i is real beyond the 

wave front and complex behind it. The characteristic surfaces 

parameterized by 9i are planes tangent to the cone x2 + y2 = ci2 t 2 

as shown in Fig. 7a. The value of 9i is constant in a characteristic 

plane and the variables are equal at pOints on the surface y = 0 where 

the characteristic planes for 91 and 92 meet. As will be shown, this 

fact eases the solution of boundary value problems when y = 0 is the 

boundary. 

The mapping defined by Eqs. (2.23) maps the lower half space 

into the upper half 8i plane. Fig. 7b shows the mapping of some 

typical points. The surface y = 0 as well as the region outside and 

on the wave front map onto the real 9i axis. The area inside the wave 

front maps into the region off the real 9i axis. Since 91 = 92 on the 

y = 0 surface, the surface maps into the real 9i axis independent of 

d E 1 f e b t d · 1 dO -1 d +c·-1 wave spee. very va ue 0 i e ween an lnc u lng -ci an l 

represents a characteristic plane. 
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The complex displacements can be written in terms of the 

complex self similar potentials as: 

oil?( 81) 0'1'( 82) 
llx::: + 

ox oy 

U ::: 
oil?( 91) 0'1'( 92) 

(2.24) y oy ox 

No confusion will arise by referring to complex displacements; the 

real part is the physical displacement. 

where 

Hence, 

Eg. (2.22) defines the derivatives of 8· as 
1 

ox 0: 
1 

of = ... x + 
1 

08· 
_1::: 

oy 

y 9. 
1 

JC{-2 ... 8i2 

0: 
1 

09-
--2:. = 
at 

1 

0' 
i 

(2.25a) 

(2.25b) 

(2.26a) 
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J -2 8 2 82 a - 1 u == !p '( 81 ) - '1" ( 82) y 
6 ' 6' 1 2 

where 

!p' == ~ and '1" = 0'1' (2.26b) 
081 oe2 

The displacements of Eqs. (2.26) can be written in a slightly more 

general form as: 

0 
u =-

x ot 

d 
u ==-

y at 

[ -fa 9
1 

-fa 92 

[ -fa 91 

8 !p'(e) de 

Jb-2 - 92 'fIe 9) d~ 

J a -2 - e2 !p' ( e) d e 

r 82 
+ 8 '1"(8) 

o 
The complex stresses are then: 

(2.27 ) 



0 X 
"d2 

[ {9

1 
-

"dt2 \-L 

+ {9
2 

~2 [ {e1 
~= 

\-L 

0Z 
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(b-2 + 282 _ 2a-2) g?'(8) d8 

28 Jb-2 _ 82 
'¥'( 9) d~ 

28 J a -2 - 82 g?' ( 8) d 8 

(b-2 _ 292) '¥'( 9) d9] 

(b-2 - 2a-2 ) ~'( 9) de J 

(2.28) 

The complex variables 8i and hence the potential functions 

of Eqs. (2.27) are self similar. That is, they are homogeneous func-

tions of degree zero. Any loading that is homogeneous in spatial and 

time coordinates can be represented by an appropriate integration or 

differentiation of Eqs. (2.27) depending on the degree of homogeneity. 

For example, a self similar loading, i. e ., homo geneous boundary 

tractions of degree zero, is represented by: 

(2.29a) 
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and, 

+ (0
82 

29 ./b-2 ) ( V - 92 'l' I ( 9) d 9 

(2.29b) 

On the surface y = 0, 91 = 92 = e = t/x and Eqs. (2.29) become: 

'-'x "fat -[foe [e~'(e) + Vb-2 - e2 'i"(9)J de] d-r 

(2.30a) 
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-
L.x =( [(b-2 + 292 _ 2a-2) ~/(9) 
~ 

+ 29 Jb-2 - 92 '¥ I ( 9) ] d 9 

(2.30b) 

~ = foe Ib-2 -[(b-2 - 282) ~ '( 9) - 29 92 '¥ I ( 8) ] d 9 
~ 

The derivatives of the self similar potentials may now be found in 

terms of the derivatives of the complex boundary tractions from the 

last two of Egs. (2.30b). The results are: 

'( ) 1 (b-2 - 281
2) ry(81) + 291 Vb- 2 - 91

2 T;x(91) 
~ 81 =------........;;----------~--

~ R( 91
2 ) 

(2.31a) 

1 ( b - 2 - 2 9 2) Tyx' - 2 92 J a - 2 - 92
2 L '( 92) 

,¥'( 8
2

) = _____ 2_~ __ ....__,.------7..:;..........-
~ 2 

R( 8
2 

) 
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where 

2::' ( ei ) = _0_ 2:: (e.) T' (e.) = L T (e.) (2.31b) 
y oe. y l yx l 09. yx l 

l l 

and 

R( 9i
2) = (b-2 - 2ei

2)2 

+ 49. 2 
l 

Ja- 2 - 9. 2 
l 

Jb-2 - 9. 2 
l 

(2.31c) 

is the Rayleigh function. 

The complex tractions Ly and Tyx on the surface y = 0 are 

usually determined from the specified tractions by application of the 

Schwarz integral theorem (Churchill, 1960) for the half plane. The 

complex tractions on the boundary are then written as functions of 

e = t/x. It is clear that once the complex tractions on the boundary 

are known, the complex self similar potentials are determined by 

Eqs. (2.31). The stresses and displacements throughout the half space 

are then determined by equations such as Eqs. (2.29). 

2.3.3 Solution of an Antiplane Problem by Self Similar Potentials 

The antiplane problem is solved in much the same manner as 

the plane strain problem. The principal difference occurs because the 

solution for the antiplane case is sought in terms of a complex self 

similar displacement function w(92). The real part of this 
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displacement function constitutes the physical displacement for a 

problem whose displacements are self similar. 82 is defined by 

Eq. (2.22). 

For a problem with self similar tractions, homogeneous 

tractions of degree zero, the displacements and stresses are found in 

a manner analogous to Sec. 2.3.2 to be: 

liZ ~ ( [ fo 92 
w I( 8) d9 ] d-r (2.32a) 

Tyz = 
- [0

92 
Vb-2 - 82 w '( 8) d 8 

~ 

(2 .. 32b) 

-J0
82 

8w /(8)d8 

The general approach outlined in the last paragraph of 

Sec. 2.3.2 applies equally well to the antiplane case .. 
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3. SURFACE DISPLACEMENTS CAUSED BY A SUBSURFACE 
VERTICAL OR HORIZONTAL DYNAMIC FORCE 

3.1 General Remarks 

This section considers the effect in an elastic half space 

of applying a subsurface dynamic point force that varies as a step 

function in time. The solutions presented in this section for both a 

vertical and horizontal force as a rotational superposition of self 

similar problems are necessary to the solution of double force problems 

in subsequent sections. 

Section 3.2 gives the solution for surface disturbances 

caused by a subsurface vertical force. Although Pekeris and Lifson 

(1957) have considered this problem, some of the intermediate results 

obtained by the method of self similar potentials are useful for solv-

ing double force problems. The solution in this form incidentally 

illustrates the application of the methods of rotational superposition 

and self similar potentials to a specific problem. 

Johnson and Robinson (1972) formulated the solution to an 

interior horizontal point force by the method of self similar poten-

tials. The solution in this form is also necessary to the work that 

follows and the results are briefly summarized in Sec. 3.3. 

3.2 Surface Displacements Caused by a Subsurface Vertical Force 

The solution for the vertical point force of Fig. 8a is 
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considered in two major stages. The first includes that period of time 

prior to incidence of the waves on the free surface and is identical to 

consideration of a point force in an infinite medium. The second stage 

considers time after the free surface is set in motion and is accom-

plished by superposition of the waves for a point force in an infinite 

medium with appropriate reflected waves to give a stress free condition 

on the surface. 

3.2.1 Point Force in an Infinite Medium 

A point force in an infinite medium can be treated by joining 

the two half spaces of Fig. 9a. The loading Pt2/4 is the resultant of 

self similar stresses applied over an expanding circular region p ~ at 

on the surface of each connecting half space. The self similar stresses 

applied on the surface of the lower half space are 

P 
cry = - for 0 :::. p < at 

4TIct 
(3.1) 

cry = o for p > at 

and on the upper half space are 

cry = + P for 0 ~ p < at 
4rra,2 

(3.2) 

cry = 0 for p > at 
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In addition, symmetry requires that up be zero on the surface of each 

of the connecting half spaces. In the limit as a goes to zero, the 

above boundary conditions describe a vertical concentrated load of 

magnitude Pt2/2 acting at a point, (O'Yo,O), in an infinite medium. 

As previously indicated, any three-dimensional axisymmetric 

problem can be represented by rotational superposition of a two-

dimensional plane strain problem. The boundary conditions for the two-

dimensional problem corresponding to the lower half space are deter-

mined from the first of Eqs. (2.14), (3.2), and (2.11a) to be: 

P 
for 0 < Ixl < at cry = ---

4rrJ 

P 
[ 1 -

1 ] for Ixl > at (3.3) cry - -
4n2a 2 

Vl-a2t 2/x2 

u = 0 
x 

Since these are self similar boundary tractions on the surface of a 

half space, they can be represented as functions of e = t/x (See 

Sec. 2 .. 3) by: 

L 
P 

[ 1 -
1 ] for all I xl - -y 

4n2a2 VI _ a2e2 

(3.4) 

u.x= 0 
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Note that as a goes to zero, Eqse (3.4) supply the boundary conditions 

for the point load, Pt2/2. The first derivatives of these complex 

self similar boundary tractions with respect to e are: 

(3.5) 

U I = 0 
X 

A suitable definition of the radical 

expressions to apply to both the upper and lower half planes. In this 

study, the radical VI - a 2e2 is defined to be positive for e positive 

imaginary. This definition corresponds to previous studies (Johnson 

and Robinson, 1972). The limit of 2e2 . h - a as a goes to zero lS t en 

-1 when approached from the lower half e plane (the upper half space) 

and +1 when approached from the upper half e plane. 

In the limit as a goes to zero the boundary conditions for 

the upper half space become: 

z.:;' = 
y 

pe 
4rf 

U I = 0 
X 

(3.6) 

Note that the imaginary portion of the boundary conditions is zero and 
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consequently the imaginary portion of the final solution should be 

zero. This fact will be computationally useful later. 

As determined from the first of Eqs. (2.30a) and the second 

of (2.30b), the potentials for the plane strain problem are: 

Sl?{ ( 81 ) = Pb2 
81 ---

2 
4n ~ 

Pb2 8 2 
'1"(8 ) = + 2 
2 2 2 

4n ~ Vb-2 2 - 82 

where 91 and 82 are implicitly defined by: 

01 = t - 81 x - (y - Yo) J -2 a -

1-

e 2 = 0 1 

For [x2 + (y - YO) 2J2 > cit, the solution of Eqs. (3 5 8) is 

8· = l 

JX2 + (y - Yo. )2 
xt + (y - Yo) - 2 - t 2 

c. 
l 

(3.7) 

(3.8) 

(3.9a) 

for x > 0 and (y - Yo) < 0 

and x < 0 and (y - Yo) > 0 



and for [x2 + 

9. = 
1 

xt - (y -

1-
(y - YO)2J2 
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yo) jx2 + 
2 

(y - yo) 

C. 2 
1 

X2 + (y _ Y )2 
0 

for 

and 

< cit, 

- t 2 

x > 0 and (y - y ) > 0 
0 

x< 0 and (y - Yo) < 0 

(3.9b) 

As in Sec. 2.3, Eqs. (3.9) define a mapping of the (x,y,t) 

space into the complex 81 and 82 planes. 

3.2.2 Solution for Time After the Free Surface is Set in Motion 

The solution for time after incidence of the disturbance on 

the free surface can be found by superposing the incident potentials 

for the point force in an infinite medium and the reflected potentials 

to give a stress free condition on the boundary y = 0. This super-

position may be conveniently considered as two separate uncoupled two-

dimensional problems: 

1. Incidence of the P wave portion resulting in reflected 

PP and PS waveS e 
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2. Incidence of the S wave portion resulting in reflected 

SS and SP waves. 

The three-dimensional problem can then be reconstructed by 

direct rotational superposition. 

3.2.2.1 Incident P Wave Portion 

The incident P wave is described by the incident dilatational 

potential g?' given in Eqs .. (3.7). The superposition of this potential 
1 

field with that of the reflected PP and PS waves must provide a stress 

free condition on the boundary y = O. Fig. 10 shows a typical wave 

front pattern for the P, PP, and PS waves. 

The reflected waves may be considered to emanate from within 

a fictitious half space that lies above the surface y = O. The 

reflected potentials g?{l and f{2 are considered to be functions of the 

complex variables 911 and 912 respectively. As will be seen, the 

appropriate definitions of the complex variables are: 

611 = t - 911x + (y + Yo) Ja-2 911 
2 = 0 

(3.10) 

612 = t - 912x + Y /b-2 912 
2 

+ Yo Va-2 912 
2 = 0 

The sign of the y term differs from that used in Eqs. (3.8) in order to 

describe a disturbance originating from the half space y ~ O. 
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The variable 811 specifically characterizes a disturbance 

originating at (0, -Yo' 0). The forms of °12 and °22 are chosen to 

provide the same value for 811' 812 and 822 on the boundary. While 

011 can be solved for 811 directly, 812 must be found numerically off 

the surface. 

setting the tractions in terms of potentials e~ual to zero to indicate 

a stress free surface. These stress-potential relations can be 

derived in the same manner as were the stress-potential relations when 

only two potentials were involved. The resulting relations in this 

case would be: 

:i '" L
81 

(b -2 - 2 82) p{ ( 8) d 8 
I-L 

0 

+ f811 
(b-2 - 282) PI1 (8) d8 

0 

+ f812 

0 

28 Vb-2 - 82 'Y I (8) d 8 
12 

(3.11) 

T:", (1 28 J a - 2 - 82 P { ( 9) d9 

'0 

J" 911 -J " 29 Va-2 - 92 p' (9) 
11 d9 + 

u 
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On the boundary, e1 = ell = e12 = e and; = Tyx = 0. Hence the above 

equations can be solved for the reflected potentials. The results are: 

482 Ja-2 _ e2 Vb-2 _ e2 _ (b-2 _ 2e2 )2 ___________ ~ ___ ....<..o_ Cf!{( e) 

4e(b-2 - 2 e2) 

R( e2) 

R( e2 ) 

where Rce2) is the Rayleigh function. 

(3,,12) 

The values of the reflected potentials off the boundary are 

uniquely determined (Thompson and Robinson, 1969) by substituting the 

appropriate complex variable for e in the above expressions. The 

expressions for the reflected potentials then become: 

(3.13) 
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The displacement field for the incident and reflected 

waves is simply: 

u = x 
081 0 811 0812 , 
- g?'(8 ) + -- g?' (8 ) + -- 'Y

12
(8

12
) oX 1 1 OX 11 11 

oy 

08 
u = _1 g?{ ( 8) + 

y oy 

3.2.2.2 Incident S Wave Portion 

The incident S wave portion of the disturbance can generate 

both SS and SP waves. The reflected potentials are found in the same 

manner as were those for the incident P wave. Differences result, 

however, for angles of incidence less than arccos (b/a). For these 

angles of incidence the reflected P wave becomes a surface phenomenon 

and a head wave is formed. Figs. 11 and 12 show typical wave patterns 

for the two ranges of the angle of incid~nce. 

As in the case of the incident P wave, the reflected 

potentials, 'YZ1 and '¥~2' are implicitly defined in terms of complex 

variables. In this case: 

(3 .. 15) 
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Note that 822 clearly parameterizes a disturbance emerging from the 

point (0, -Yo' 0). On the boundary both complex variables, 821 and 

822 , are equal to 82 of the incident S wave. 822 may be solved for 

directly from 022 but 821 must be found numerically for points not on 

the y = 0 surface. 

As in the previous section, the reflected potentials are 

found by setting the stress in terms of the potentials equal to zero to 

indicate a stress free boundary and solving for the reflected potentials. 

The stress potential relations for the incident and reflected waves 

would be: 

2Y 1
921 

(b-2 - 282) q?;1(8) d8 = 
~ 

0 

(2 28 Jb -2 - 82 '1'2 ( 8) d 9 
0 

1
922 

28 J b-2 - 92 '1' I (9) d 9 + 
22 

0 

(3.16) 

Tyx = _1 821 
J a-2 - 92 q?Zl (8) de + 29 

~ 
0 



+ [922 
o 
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As before, the reflected potentials become: 

(3.17) 

4822
2 Va-2 - 822

2 Vb-2 - 822
2 - (b-2 - 2822

2)2 
'l'22(822) = -------------------.==-- '¥2(@22) 

The plane strain displacement field is then: . 

(3.18) 

u = y 

3.2.3 Three-Dimensional Displacement Field 

The displacement field for the three-dimensional problem of 

a point force in an elastic half space can be reconstructed by direct 
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rotational superposition of the two-dimensional problems just consid-

ered. This superposition is expressed generally by Egs. (2.11) and can 

be written as: 

[

TT 

U = P 
o 

+ iJ? (8 )+-,¥'(9)+ '¥ (8) 'Tld'Tl 
0821 , 092 0922 , ] 
~ 21 21 oy 2 2 ~ 22 22 COS

I
I II 

u = 0 w 

Transformation of variables from 11 to 8 provides: 

Vb-2 - 812
2 '¥12 cos11 

---------- d 812 + 
G12 

(3.19) 
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f 921 ~21 cosT] 
+ - d912 (3.20) 

G21 C21 

f - Jb-2 2 '¥i cosT] - 92 + d92 

C2 
G2 

Vb-2 _ 

f 922 
2 

'1'22 cosT] 
+ . d9.22 

C22 
G22 

u = w 0 

J -2 -f 9 2 ~ I a - 1 1 
Uy = d91 

C1 
G1 

Va-2 

f - 911 
2 ~' 

+ 11 d9 

GIl 
11 

C11 

f 912 if{2 
d912 + r Ja-2 - 921 

2 I 

~21 
+ d921 

G12 G21 C12 C21 

~ 
9 ~' J 922 if22 

+ 22 d92 + d922 G2 G22 
2 C22 

where, for i = 1, 2: 

1-

G· = [p2 9
i 

2 - [t - (y - y ) VC i -2 - 9. 2 J2 } 2 (3e21a) l 0 l 



cos 1l == 

and for ii == 11, 22: 

t + (y + Yo) 
cos 1l == 

pe .. 
l:;L 
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./c .-2 - e .. 2 
V l II 

and for i == 1, j == 2 and i == 2, j == 1: 

G .. == [p2e .. 2 - [t + Y ~l·-2 lJ lJ 

+ y a 
I -2 c. -

J 

Pe .. lJ 

2 e· . lJ 

(3.21b) 

(3 .. 21c) 

The integrands of Eqs. (3.20) are analytic off the real axis 

except for the branch cuts for the G functions. These branch cuts are 

taken outward from the end points of integration, ei
u £ and ei ,to 

positive infinity. Fig. 13 shows the admissible contours of integra

tion in the 8i plane and Fig. 14 shows those for the 9i
2 plane. Note 

that C~ is the contour corresponding to the variation of 1l from 0 to TI. 

On the surface y = 0, Eqs. (3.20) become: 



-[ U = 
P 

C1 

t 
Uw = 0 

where for y = 0: 
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49 b-2 Va-2 2 Vb-2 - 9 2 
1 - 91 1 g?{ cosl1 d91 2 G1 oR( 91 ) 

';b-2 2b-2(b-2 - 292
2 ) 2 - 92 

'¥~ co s 11 d 92 
2 

G2 eR( 92 ) 

2b-2(b-2 ... 291
2 ) Va-2 - 91

2 

------------ g?{ d 91 
G1 "R( 91

2 ) 

492 b-2 Va-2 ... 922 Ib-2 - 922 

-------------------------- '¥~ d92 
G

2 
oR( 9

2
2) 

G· 1 

1-
-_ f p2 9i2 _ [t + Y , I -2 9 2 J2 } 2 

l 0 VCi - i 

p9..: 
.L 

(3 .. 22) 

(3 .. 23) 

For the incident potentials defined as in Eqs. (3.7), the 

displacements on the surface are: 

291
2 Ja-2 - 91

2 'Ib-2 ... 91
2 

2 
G1 R( 91 ) 
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-f 82
2(b-2 - 2822) 

cos'll d 82 
G2 R( 82

2) C2 

uw = 0 (3.24) 

Va-2 

2;2f.L Uy " f 8 (b-2 _ 28 2) _ 8 2 
1 1 1 

2 
d81 

C1 
G1 R( 81 ) 

V~-2 - 82 2 +[ 282
3 

d82 
2 

C2 G2 R( 82 ) 

3.2.4 Disturbances on the Surface near the Wave Fronts 

Although the equations of the previous section can provide 

numerical results for displacements throughout the half space, the 

specific character of the disturbances in the vicinity of the wave 

fronts is of particular interest. The following sections consider the 

disturbances on the surface near the wave fronts. Although not specif-

ically studied here, disturbances off the surface could be examined 

without difficulty by a similar approach. The approach in this section 

parallels that of Johnson and Robinson (1972). 

3.2.4.1 P, PP, and PS Wave Fronts 

The first integral in each of Eqs. (3.24) defines the portion 
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of the disturbance caused by the P, PP, and PS waves. The end points 

of the contour of integration are defined for points on the surface by: 

t 2 
P 

2 
= 8 u = 1 92 

P 

= 
2 2 

P + Yo 

a2 

p2 + Y 2 
o 

for t < tp 

for t = tp 

for t > tp 

(3.25) 

where tp is the arrival time of the P, PP, and PS waves at the point of 

interest on the surface and 8p is the corresponding 81 value. Note 

h f f 8 u2 - -8 ,,2 d h d h t at or all values 0 time 1 - 1~ an teen pOints lie on t e 

same vertical line in the 82 planes To determine the variation of 
~2 

81 near the 

81 
~2 

wave 

= 

front, it is 

[ 9p + 
p~t - i 

convenient to rewrite it as 

J 2tp6t 
6t

zJ yo + 
(3.26) 

p2 + Y 2 
0 
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where 6t = t - tp' Eq. (3.26) shows that, for small values of 6t, the 

endpoints lie to the left of a-2 . The integrands of the first terms 

of Eqs. (3.24) are analytic to the left of a-2 and hence a straight 
2 2 

line joining 81£ and 81
u would be an admissible contour of integra-

tion. Expanding the integrands in an infinite series and integrating 

term by term provides an estimate of the integrals to any desired 

degree of accuracy. 

The integrands are of the form: 

(3.27 ) 

A(81
2 ) is expanded about 8p

2 and G1 about its branch points. Expanding 

A(81
2 ) about 8p

2 yields: 

(3.28a) 

where 

2 
AO = A( 8p ) 

( 3. 28b) 

fI 
d A( 81

2 ) 
A2 

d2 A( 81
2 ) 

~ = D.l 2 
d8 2 d( 81

2) 1 
8 2 8 2 8 2 8 2 = = 1 P 1 P 
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G1
2(81

2 ) can be rewritten (Zvolinski, 1957) before expanding to give 

(3.29) 

1 1 
2 2 ~. 2 2 -

Dividing out the radicals (81
U - 81 ) and (81- - 81£ )2 and expanding 

the first Ja-2 - 81
2 about 81

u2 and the second about 81£2 in the 

remaining quantity yields: 

2 U 2 2 ,,2 
1 (81 - 81 ) + 1 (81 - 81 N ) 

(3.30) 

4 (-2 U2 ) 4 ( -2 U
2) a - 81 a - 81 

r 
Term by term integration of Eqo (3.27) now yields: 

1 1 

A( 81
2) 2(a-2 _ 

2 4 ( -2' £2 4 

~ d81
2 -= 

81 u ) a - 91 ) 

2 !.. G1 (81 ) (p2 + Y02)2 1 
(3.31) 

* !TOn refers to TTon the order OfTT. 
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. [ 
2 

+ 0 (81
U2 

- 81~2)2 1 
If one uses Eqse (3.25) to express 81~2 and 81

u2 as functions of p, y, 

t, and tp to examine the variation with time, Eq. (3.31) becomes 

[ 
(3.32) 

The displacements on the surface in the vicinity of the fronts 

can now be expressed for t > t as 
. - p 

P y8 Va -2 - 8 2 Vb -2 _ 8 2 
u p

P ~ - 0 p p p + OCt - t
p

) 

a2TT~(p2 + Yo2) R(8p
2) 

(3.33) 
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Eg. (3.33) shows that the radial and vertical surface dis-

placements experience a step discontinuity upon arrival of the combined 

P, PP, and PS wave fronts and vary linearly thereafter. 

3.2.4.2 S, SS, SP, and Head Wave Fronts 

The character of the distortional portion of the disturbance 

depends on the angle of incidence, ~ (See Fig. 11). When the angle of 

incidence is greater than arccos (b/a), no head wave is formed, the wave 

front pattern is like that shown in Fig. 11, and the S, SP, and SS 

fronts are coincident on the surface. When the angle of incidence is 

less than arccos (b/a), a head wave is formed, the wave front pattern is 

like that shown in Fig. 12 and, on the surface, the SP front is coinci-

dent with the head wave front and the S front is coincident with the SS 

wave front. For the latter range of S, the S front is totally reflected 

as an SS front and the SP wave exists only as a surface phenomenon .. 

The distortional portion of the disturbance on the surface 

of the half space appears as the second integral in each of Eqse (3 m24)0 

The endpoints of the contours of integration are: 



92 
).;2 

= 

92 
).;2 = 

~2 
92 = 

t 2 
s = 
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u2 [btP - Yo Jp2 + Y 2 -b2t2 J 0 92 = 
b(p2 + Y02) 

for t < ts 

2 -2 
u2 P b 9 2 82 = = 

p2 + (_Y )2 
s 

0 

for t = ts 

for t > ts 

P
2 + 2 

Yo 
(3 .. 34) 

where ts is the arrival time of the S wave at the point of interest and 
2 -).;2 

9s is the corresponding 92 value.. As in the P wave case, 92
u = 92 

Note that 9s
2 is always less than or equal to b-2• If no head wave 

passes through the point of interest, 9s
2 is also less than a-2 • If a 

head wave does pass through the point of interest, 9s
2 will be greater 

than a-2 but less than b-2 . 

Consider first the case when the point on the surface has an 

angle of incidence greater than arccos bfa, no head wave is formed, and 

fl 2 92 lies to the left of a-. The integrands of Eqse (3624) are 

analytic to the left of a-2 and hence the method just used for the P 

wave may be employed. The results for the combined S, SP, and SS fronts 



on the surface are: 

s 
urn = 0 

62 

b-2 _ 29 2 
______ s __ + OCt - t ) 

(p2 + Yo2) R(8s
2) s 

(3.35) 

Egs. (3.35) show that the radial and vertical displacements on the 

surface experience a step discontinuity upon arrival of the combined 

S, SS, and SP wave fronts and vary linearly thereafter. 

Now consider the case where the point of interest on the 

surface has an angle of incidence less than arccos bias A head wave 

is formed in this case and the wave fronts for the SP and H (head) 

waves coincide on the surface. The fronts of the Sand SS waves 

also coincide on the surface (See Fig. 12). The ends of the contour 

of integration in this case lie between 9s
2 and a-2 and are determined 

by the first of Egs. (3.34). The contour of integration is then a 

path connecting the endpoints and crossing the real axis to the left 

of a-2 (See Fig. 13). The front of this reflected distortional wave 

is defined by: 
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b2t 2 = p2 + (y + Yo)2 for ~ < bt 
y 

/p ~2 + Y 2 _ b2t 2 
0 

(3.36) 

t = P a -2 

+ (y + Yo) Vb-2 -2 £ > 
bt 

- a for 
y 

/p ~2 + Y 2 - b2t 2 
0 

where 

= at ..... Yo 

The first expression defines the SS wave front; the second, the head 

wave front. 

To examine the character of disturbances in the vicinity of 

the head wave front, it is convenient to rationalize the denominators 

of the integrands by multiplying by the complex conjugate of the 

Rayleigh function. To illustrate the calculation, consider the radial 

displacement, 

92 cos~(b-2 - 292
2) 

-------- d92
2 
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-2 2 3 

- 4TI~~ f 
92 cos~(b - 292 ) 2 

= d92 
2 - 2 

C 
G2 R (92 ) .. R (92 ) 

(3.37 ) 

+ 4~~f [ (e2 
3 

co s Tl (b - 2 
- 2 el ) · 

C 

4Va-2 _ 92 Vb-2 - 9 2 

] dS/ 2 

2 - . 2 G2 R( 92 ) eR( 92 ) 

The first integrand of Eg .. (3.37) is analytic to the left of b-2 and, 

hence, contributes nothing to the solution. The character of the 

disturbance in the vicinity of the head wave front is then determined 

by the last integral. To the right of a-2 for the upper half space, 

the radical Va-2 - 92 is defined to be negative imaginary below the 

branch cut and positive imaginary above it. Egs. (3.37) therefore 

reduce to 

(3.38) 
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To perform the calculation, the integrand is expanded in an 

infinite series and integrated term-wise. Consider the integral tobe 

of the form 

-2 d9 2 - a 2 (3.39a) 

where 

(3.39b) 

Expanding A(92
2 ) in a Taylorfs series about a-2 provides 

(3.40a) 

where 

(3.40b) 

Expanding G2 2( 92
2) of Eq" (3 .21a) about 82 ~2 yields 

(3.41) 
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where 

BO = 1 + 

(p2 + Yo 2) Vb-2 - 92 ,e2 

Carrying out the integration of Ego (3.39a) provides 

(3.42 ) 

The following approximation for (92 ,e2 - a-2) can be obtained from 

Eg s. (3.34), 

2(t - t H) Vb-2 - a-2 

- a-2 - - ---;:::=====--- + OCt - tH)2 

ap Vb-2 - a-2 - Yo 

(3 .. 43) 

where tH is the arrival time of the head wave 0 The character of the 

disturbance in the vicinity of the head wave front may now be written 

as: 

H 
u = 0 p for t < tH (3.44a) 
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(t - tH) 2 
::: 2AO C p 1 + 0 (t - t H) fo r t 2: t H 

(p2 + Y02)2 

where 

(3 .44b) 

By the same approach the expression for vertical displacement would be 

H 
liy = 0 for t < tH 

(3.45a) 

Note that EO is zero at the arrival of the S wave and, hence, 

Cp and the indicated displacements become infinite. To examine this 

singularity, expand A( 92
2) and G2 ( 92 2) of Eq. (3. 39a) about 9);2 = 8s 

2 

to obtain: 

1-

G2 ( 82
2) - - (p 2 + Yo 2) 2 (8 s 2 - 92 

2 ) 

(3.46) 
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- -

and 
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4( 2 2) (b-2 _ 9
S

2)3/2 
P + Yo 

tb3 jp2 + Yo 2 

4(-YO)2 

9s
2(b-2 - 29

S
2) (t + Yo Jb-2 - 9S

2) Vb-2 - 9
S

2 

P R ( 8s 
2 ) • R ( 8s 

2 ) 

Performing the integration indicated by Eq. (3.39a) expresses the 

logarithmically singular portion as 

where 

1-
2Pyo (e s 2 - a -2) 2 

CL = ----------
,,2~b &(p2 + yo2)3/4 

(3.47a) 
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By the same approach, 

L 
u = y (3.47b) 

Eqs. (3.44) and (3.45) show that, in the region on the sur-

face where a head wave is formed, the displacements caused by the SP 

and head wave fronts are continuous on arrival and vary linearly 

thereafter. The rate of variation with time is inversely proportion-

al to the distance from the origin of the disturbance. As shown by 

Eqs. (3.47) a logarithmic singularity occurs behind the head wave 

front near the combined Sand SS front. This singularity does not 

occur when the load is applied on the surface and occurs for the sub-

surface loading only when a head wave is formed. 

3.2.4.3 Surface Wave Front 

For the subsurface loading, no physical point maps into the 

complex plane at the Rayleigh pole at ~ c-1• Consequently, no point 

experiences an infinite displacement due to the Rayleigh wave but 

points near the Rayleigh pole will be significantly affected. 

To examine the Rayleigh effect on the surface, Eqs. (3.24) 

are written in the form 



- + p u - --
P 

2~~ 

+ 
p 

+ -p-

2 4n ~ 

+ -p-

4';~ 

where 
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( 
1 

(3.48a) 

(3.48b) 



71 

(3.48c) 

Only the second and fourth integrals of Ego (3.48) vary 

rapidly near the front of the surface wave. Evaluation of these 

integrals gives 

~ 

[ Pi(p2 + 2) 2 2 I 1(c-2) R Yo 
up = 

2TTl-1 R '(c-2) J( -1 £) ( -1 u c - 91 c - 91 ) 

+ 
12(c-2) 

] (3.49) 

. J ( c -1 - 9
2 

£) ( c-1 - 92
U ) 

Writing all sin~ and cos~ terms as functions of t, y, and 
1-

S = (p2 + Yo2)2 - ct and expanding in a binomial series approximates 

the Rayleigh portion of the radial displacement as: 

u R '" Pci(p2 + Yo2) -'4 [2 JCa-2 - c-2)(b-2 - c-2) 

P 4 V2 T1J.1 R '(c-2) (~+iYo h - c2/a2)~ 

(3"SOa) 
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In a similar manner, 

(3 0 50b) 

[ b-2 _ 2c-2 
2c-

2 
] + 

VI - c2jb2)~ (~ + iyo 11 - c 2ja2 ) (~ + iyo 

1 

VI 
1-

+ o( ~ + iyo c 2ja2 )2 + o(~ + iyo )1 c2jb2)2 

Eqs. (3.50) show that the displacements in the vicinity of 

the surface wave depend on: 

1. The distance from the source. 

2. The distance from the surface wave. 

3.. The relative values of ~ and y 0 

o 

For points beneath the surface, a slight complication 

arises because 921 and 912 are not explicitly known. Although not 

considered in this study, the effect in this region could be 

examined numericallYe 

3 .. 2 .. 5 Numerical Results on the Surface 

Numerical evaluation of Eqs. (3.24) for Poissonfs ratio 

equal to .25 provide results identical to those of Pekeris and Lifson 
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(1957). The integration involves a simple quadrature in the complex 

plane and the techniques employed are discussed in the Appendix. 

The numerical results also demonstrate the singularities and nature 

of the displacements in the vicinity of the wave fronts that were 

derived in detail in the previous section. 

3 9 3 Surface Displacements Caused by a Subsurface Horizontal Force 

This section provides the solution by the methods of rota-

tional superposition and self similar potentials for the displacements 

of the surface of an elastic half space which are caused by the sub-

surface horizontal force of Fig. Sb. This formulation was obtained by 

Johnson and Robinson (1972) and is summarized here only to the extent 

necessary to support the developments that follow. 

The solution for the horizontal force that varies as a step 

function in time is obtained in much the same fashion as that for the 

vertical force. Differences arise because the loading is not axisym-

metric and consequently an antiplane as well as a plane strain problem 

must be superposed to obtain the three-dimensional problem. The 

potential functions for the plane strain problem in the upper portion 

of an infinite medium are: 

2 
81 ~' = 

1 - - ---;=======
.1 :'2 . 
Va - 8 2 

1 
(3.51a) 
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These functions are comparable to those obtained for the vertical 

force in Egs. (3.7). The displacement potential that defines the 

associated anti plane problem is 

(3,,51b) 

The potentials* of Egs. (3.51a) describe the incident P and SV waves. 

The displacement potential* of Eg. (3.51b) describes an incident SH 

wave. 

Insertion of the incident potentials of Egs. (3.51a) into 

Eqs. (3.13)** and (3.17) determines the reflected PP, PS, SS, and SP 

waves generated at the y = 0 surface by the incident P and SV waves. 

In a similar fashion, the displacement potential for the reflected 

SH wave caused by the incident SH wave is determined by 

(3.52) 

The antiplane displacement field for the combined incident 

* A factor of ~ has been applied to these potentials to represent a 
force of magnitude P instead of 2P. 

** Note that the subscripts TT12TT and T121 Tf used by Johnson and 
Robinson have been interchanged in this study to provide direct 
correspondence with the geophysical terms PS and SP, respectively. 
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and reflected SH portion is 

, 082 ,0822 
U z = w2 _. + w22 

ot at 
(3.53) 

Rotational superposition of the two-dimensional problems 

described by the incident and reflected potentials along with an 

appropriate change of variables provides the following expressions 

for displacements on the surface of the half space: 

, 2 
81 PI cos Il 

G1 

la-2 Jb-2 -4b-2 2 8 2 - 81 1 
d81 

R( 81
2) 

']:' 
2 

cos21l 

G2 

2b-2(b-2 _ 28
2

2) Vb-2 - 8 2 
2 

d92 
R( 8

2 
2) 

-[ 
C2 

2 I • 2Tl w2 Sln 
(3 .. 54) d82 

G2 



sinw 

+ 

+ ~ 

U

y =-J 
cosw 

+ 

2 

8 I • 2'T1 
1 <.PI Sln 'I 

2 
'1'~ sin 11 
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82 '1'2 cosTl 4b-2 Jb-2 - 82
2 

------------ d82 

where Gi , sinTl, and cosTl are defined as in Sec Q 3 0 2.3 0 See Johnson 

and Robinson (1972) for a discussion of the numerical results for 
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Eqs. (3.54) as well as a discussion of the wave front characteristics. 

Note, however, that the numerical results graphed in Johnson and 

RobinsonTs work should be divided by a factor of n4 to provide the 

correct results. 
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4. APPLICATION OF THE METHODS OF ROTATIONAL 
SUPERPOSITION AND SELF SIMILAR POTENTIALS 
TO THE SOLUTION OF DOUBLE FORCE PROBLEMS 

4.1 General Remarks 

The objective of this section is to develop the procedures 

and relationships that permit the application of the method of rota-

tional superposition and, in turn, the method of self similar 

potentials to dynamic problems involving a double force applied at a 

point beneath the surface of an elastic half space. This section 

focuses on those double force problems that are used in simulation of 

earthquake fault dislocations. The approach developed herein can also 

be applied to other nuclei of strain problems. 

The two general orientations of double forces used insimulat-

ing earthquake fault dislocations are shown in Figs. 15 and 160 The 

forces comprising the double force of Fig. 15 are parallel to the 

strike* of the fault. The forces comprising the double force of 

Fig. 16 lie in a plane that is perpendicular to the strike. As shown 

in Sec. 4.2, these general double forces can be obtained by an appro-

priate superposition of five fundamental double vertical and double 

horizontal forces. In Sec. 4.3 the method of rotational superposition 

represents these fundamental double force problems as a superposition 

* The ttstrike TT is the compass direction of a horizontal line in an 
inclined plane. 
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of plane problems. This formulation permits the relationship between 

single and double force problems to occur between the two-dimensional 

problems instead of the three-dimensional ones. As derived in Sec. 4.4, 

an application of the method of self similar potentials gives the 

potential functions for these plane problems as a product of the 

potential functions for the single force and a simple function of the 

complex 6i variable. The time variation of the double force problem 

formulated in this manner emerges in a natural fashion as a linear 

function of time. 

4.2 Representation of an Inclined Double Force with Moment as a Super
position of Double Horizontal and Double Vertical Forces 

Expressing an arbitrarily inclined double force as a super-

position of fundamental double horizontal and double vertical forces 

permits one to obtain quick solution to any orientation by linear 

superposition once the fundamental solutions are in hand. The next 

two sections present this representation for two categories of inclined 

double forces - the double fOrce at an arbitrary angle in a vertical 

plane (Fig. 16) and the double horizontal force in an inclined plane 

(Fig. 15). These double forces represent the two general orientations 

used in simulating fault dislocations because they correspond to dip-

slip and strike-slip directions. 
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4.2.1 Double Force at an Arbitrary Angle in a Vertical Plane 

Consider the forces of magnitude p o 6h-1 shown in Fig. 16a. 

In the limit as 6h goes to zero, this force system becomes a double 

force with moment applied at a point. Before taking the limit, 

resolve each of the constituent forces into vertical and horizontal 

components to obtain the force systems Rand Q of Fig. 16b. Consider 

these systems separately in Figs. 17a and 17b respectively. 

At point g in Fig. 17a, apply two equal and opposite forces 

of magnitude R = p o 6h-1 ·siny. Assume that the displacement field for 

a downward vertical force at point g and of magnitude P would be 

-V u (X,Y,Z,t). The displacement field of the force system shown in 

Fig. 17a would then be 

-R uV(X,Y,Z,t) - uV(X,Y+6h-cosy,Z,t) 
u = siny ---------------------------------

- siny 
uV(X,Y,Z,t) - uV(X-6h e siny,Y,Z,t) 

6h 

Multiplying the first term by cosye(cosy)-l and the second by 

siny.(siny)-l yields 

-R 
u = 

-V -V 
(siny)(cosy) u (X,Y,Z,t) - u (X,Y+6hecosy,Z,t) +, 

6h·cosy 

(4.1) 

(4.2) 
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-v( ) -v( . . 2 u X,Y,Z,t - u X-6hoslnY,Y,Z,t) 
- Sln y --~~~~~------~--------~~~~ 

6h "siny 

In the limit as 6h goes to zero, the above expression becomes 

R ouV 
u = - (siny)(cosy) 

oY 

-:::,.-V 
. 2 uu 

Sln y --
OX 

( 4.3) 

The first term of Eg. (4.3) is of the form of a double vertical force 

without moment (Case Vv); the second, of a double vertical force with 

moment (Case Vh). 

By the same procedure the displacement field of force system 

Q of Fig. 17b could be written as 

~ ouR 2 ouR 
u = siny cosy --- + cos y 

aX oY 
( 4.4) 

where uH(X,Y,Z,t) represents the displacement field of a horizontal 

force of magnitude P applied in the positive X direction at point g in 

Fig. 17b. The first term of Eg. (4.4) is of the form of a double 

horizontal force without moment (Case Rehe); the second, of a double 

horizontal force with moment (Case Rv). 

Since the superposition of liR and ~ provides the double 

force of Fig. 16a, it is clear that any arbitrarily inclined double 

force in a vertical plane can be represented by a superposition of 

fundamental double horizontal and double vertical forces. The angle 
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of inclination, y, of the force determines the magnitude of the funda-

mental double forces that are superposed to obtain the inclined double 

force. 

4.2.2 Double Horizontal Force in an Inclined Plane 

Consider the double force with moment that is shown in Fig. 

15a. Let the magnitude of each force bt p.~-le Add two equal 

but opposite forces at point d as shown ~n Fig. 15b. Assume that 

uHeX,Y,Z,t) is the displacement field for a horizontal force of 

magnitude P and applied at point d in the positive X direction. The 

displacement field for the force system of Fig. 15b would then be 

~H -H U = u eX,Y,Z,t) - u eX,Y,Z-~·siny,t) 
~ 

-He ) -He u X,Y,Z,t - u X,Y+~ cosy,Z,t) 

~ 

By multiplying the first term by siny·esiny)-l and the second by 

cosy·ecosy)-l, Eq. (4.5) becomes 

- . uHeX,Y,Z,t) - uHeX,y,Z-~ siny,t) + 
u = slny ----------------------------------~~ 

~·siny 

e 4 .. 5) 

( 4. 6) 
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-H( ) -H( ) u X,Y,Z,t - u X,Y+6h cosy,Z,t 
- cosy --~~~----------~--------~--~ 

6h. cosy 

In the limit as 6h goes to zero, Eq. (4.6) becomes 

. ooH ouH 
u = slny -- + cosy oZ oY 

( 4.7) 

Eg. (4.7) shows that the double horizontal force in an inclined plane 

can be represented by a superposition of the fundamental double hori-

zontal forces of Cases ~he and Hv. The magnitude of the double 

forces so combined depends on the angle, y. 

4.3 Representation of Double Horizontal and Double Vertical Force 
Problems by Rotational Superposition 

The last section showed that an inclined double force can be 

obtained by a linear superposition of double horizontal and double 

vertical forces. We now proceed to develop a convenient method for 

solving the fundamental double force cases. 

The ease with which two-dimensional problems can be solved 

as compared with three-dimensional problems motivates us to explore the 

use of rotational superposition as a technique for solving the funda-

mental double force cases. This method expresses the three-dimensional 

problem as a superposition of plane problems rotated about an axis -

hence, the name rotational superposition. Although the method has 
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proven quite suitable for single force problems (Johnson and 

Robinson, 1972), it has not been applied to double force or other 

nuclei of strain cases. 

This section presents the derivation of the expressions 

which represent the fundamental double force problems by rotational 

superposition of associated two-dimensional problems. This formulation 

makes it possible to relate the two-dimensional problems instead of the 

three-dimensional single and double force problems. Later, in Sec. 

4.4, an adaptation of the method of self similar potentials will 

provide the basis for solving the plane problems that evolve from this 

formulation. 

The adaptation of the method of rotational superposition in 

this section is presented first in Sec. 4.3.1 for double vertical 

forces and then in Sec. 4.3.2 for double horizontal forces. 

4.3.1 Double Vertical Force 

4.3.1.1 Case Vh 

Fig. 1 shows Case Vh, a double vertical force with moment. 

The following analysis leads to representation of this double force as 

a rotational superposition of plane strain fields. 
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Consider that the plane strain displacement field, 

-1 -f( ) * 6h 'U x,y,t, is related to the axisymmetric displacement field for 

a vertical force by Eqs. (2.11a). Apply this field at an angle Wo 

with respect to the XY plane (See Pig. 18). Next apply an equal but 

opposite field, -6h-1 .uf (x-6x,y,t), at the same angle but shifted by 

an incremental amount 6h in the positive X direction. Superposition of 

these displacement fields yields: 

d 
llx = 

uxf(x,y,t) - uxf (x-6x,y,t) 

6h 

= Uyf(x,y,t) - uyf(x-6x,y,t) 

6h 

(4.8) 

Note that since the plane strain field is not a function of z, only the 

x coordinate is affected by the incremental shift. The increments are 

related by 6h" co swo = D.x,. In the limit as 6h goes to zero, the combined 

fields become 

u d 
x 

* The YTfTT superscript will be employed to denote two-dimensional fields 
associated with a single force; the TTd Tt

, two-dimensional fields asso
ciated with double forces. The upper-case superscripts nptf and TTDTt, 
denote the corresponding three-dimensional fields. 
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o f + coswo Ox uy (x,y,t) 

where (ux
f , uy

f ) is the two-dimensional displacement field correspond-

ing to a vertical force. 

If the applied loading is symmetric with respect to the y 

axis, then the associated two-dimensional fields will be symmetric. 

That is, 

f llx (x,y,t) 

( 4.10) 

The spatial derivatives of the displacement field and hence the double 

force field will necessarily be antisymmetric. That is, 

d 
Ux (x,y,t) = d 

Ux (-x,y,t) 

(4.11) 

d( ) d· ) uy x,y,t = - uy (-x,y,t 

The three-dimensional double force field can now be constructed 

by applying the method of rotational superposition as in Eqs. (2.8a) and 

taking advantage of the symmetry just observed. The resulting three-

dimensional field for the double vertical force of Case Vh is: 

D ITI up = cosO) 

o 
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au f 
_x_ sin21\ d1\ 
Ox 

au f 
.:::.:L. cos 1\ d 1\ ox 

(4.12) 

where (uxf , uyf ) is the plane strain field associated with an axially 

symmetric force such as that considered in Sec. 3. 

It will be noted that in the presentation just given the 

differentiation with respect to a variable to obtain the double force 

is obtained before integrating the two-dimensional problems. It is 

natural to ask what occurs if this order is reversed. Consider that 

-1 -F the three-dimensional displacement fields, Ah eu (p,Y,t) and minus 

1 -F 
hh- . u (P-6P,Y,t), are superposed as in Fig. 19. The first field is 

symmetric about the Yaxis. The second field is equal but opposite to 

the first and is displaced by' an incremental distance, hh, in the 

positive X direction. The superposition of these fields can be 

expressed as: 

u D = 
P 

up F ( p, Y, t) - co s 6w· u ~l ( p-6 p, Y, t ) 

hh 

sin6w o u F(p-6p,Y,t) 
u D = 

ill (4.13) 
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uy = 

88 

uyF(p,Y,t) - uyF(p_~p,y,t) 

till 

Noting that till· cosw = - ~p and till· sinw R::I p. ~w and taking the limit as 

till approaches zero provide: 

OU F 
u D - + cosw ~ 

p - op 

u D = sinw F 
w - --p- up 

au F 
uyD = + cosw ~y~ 

op 

(4.14) 

As before, the displacement field for the axially symmetric force is 

expressed as a superposition of associated two-dimensional plane fields 

by: 

u/ =[11 
o 

llx f co s 11 d 11 

Uy
f dl1 

(;1 1C:\ 
\.-r • .l.Uj 
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Substitution of Eqse (4.15) into the former expressions then gives: 

ou f 
x 2 -- cos 11 dl1 ox 

ou f 
:.::L- cos 11 d 11 
ox 

(4.16) 

Eqs. (4.16) are obviously identical to those previously developed in 

Eq s. (4 .. 12 ) . 

Vectorially what has just been done can be expressed more 

compactly by taking a partial derivative of the vector field for a 

force. Let the three-dimensional axisymmetric displacement field of 

Eqs. (4.15) be written in vector form as: 

(4.17) 

The vector displacement field for the double force of Case Vh could be 

described by 
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Considering that X = pcoswand Z = psinw, one may write Eq. (4.18) as 

F F 
-D oU p Op 7 F 0 ~ ouy op ~ 
u = ----l + u -1. p + ---J 

op c p p oX op OX 

It can easily be shown that Eqs. (4.19) may be simplified to give 

ou f 2 
_x_ cos 11 dl1 i p 
ox 

sinwf TT f -
~ cosl1 dl1 iw 

p 0 

ou f _ 
-y- cosl1 dl1 j 
ox 

(4.19) 

(4.20) 

An integration by parts will show that Eq. (4.20) is equivalent to 

Eq s. (4 • 12 ) • 

4.3.1.2 Case Vv 

The following analysis leads to representation of Case Vv 

(Fig" 2) as a rotational superposition of plane strain fields. 

Consider that a plane strain displacement field, 

6h-1 ·uf (x,y,t), is related to the three-dimensional axisymmetric 

displacement field for a vertical interior force by Eqs. (2.11a). 

Apply this field at an angle Wo with respect to the XY plane as was 
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done for Case Vh in Fig. 18. Next apply an equal but opposite field, 

-1 -f -6h ·U (X,y-6y,t), at the same angle but shifted by an amount 6h in 

the positive Y direction. Superposition of these fields yields: 

llx
d = 

llxf(x,y,t) - ux
f (x,y-6h,t) 

6h 

(4.21) 

u d = 
uyf(x,y,t) - uyf(x,y-6h,t) 

y 6h 

In the limit as 6h gives to zero, the combined fields become simply: 

d au f x 
Ux = 

ay 

(4.22) 
au f 

d Y 
Uy = --

ay 

The displacement field of the applied vertical force is 

symmetric with respect to the y axis as indicated by Eqs. (2.10). The 

field indicated by Eqs. (4.22) will also be symmetric. That is, 

(4.23) 
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Substitution into Eqs. (2.8a) and taking advantage of the 

symmetry indicated above provide: 

u D = 0 
ill 

[

TT 
D _ 

uy - 0 

au f 
-y- dTl 
oy 

(4.24) 

Eqs. (4.24) depict the three-dimensional problem of a double 

vertical force without moment (Case Vv) as a rotational superposition 

of plane strain problems which are related to the single force problem. 

4.3.2 Double Horizontal Force 

The three fundamental double horizontal force cases are 

Cases ~he' Hv, and Hehe and are shown in Figs. 3, 4, and 5~ respec

tively. The following sections present the representation of these 

cases by rotational superposition. 



93 

4.3.2.1 Case ~he 

Case ~he is a double horizontal force with moment with the 

forces in a horizontal plane. The following analysis leads to repre

sentation of this double force as a rotational superposition of plane 

strain fields. 

Consider that the two-dimensional fields associated with a 

horizontal force of magnitude, p.~-l, and oriented as in Fig. 8b are a 

plane strain displacement field, ~-l.uf(x,y,t), and an antiplane 

displacement field, ~-l.uxf(x,y,t). Apply these fields at an angle 

Wo with respect to the XY plane as in Fig. 20. 

Next consider that equal but opposite fields, 

~-l·uf(x_~,y,t) and ~-l.uzf(x_~,y,t), are applied at the same 

angle but are shifted by an incremental amount ~ in the positive z 

direction. The superposition of these fields can then be represented 

by: 

d uxf(x,y,t) - uxf(x_~,y,t) 
lix = 

~ 

d 
uyf(x,y,t) - uyf(x_~,y,t) 

(4.25) uy = 
~ 

d = 
uzf(x,y,t) - uzf(x_~,y,t) 

Uz 
~ 
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Note that lili .. sinUb = 6x and thus, in the limit as lili approaches zero, 

the above relations become: 

d 
sinwo 

ollxf 
Ux = 

ox 

(4.26a) 
f 

u d = sinw 
OUy 

y 0 ox 

d 
auf 

z (4.26b) Uz = sinwo ox 

Eqs. (4.26) express the two-dimensional fields associated 

with the double horizontal force of Fig. 3 in terms of the two-

dimensional fields associated with a single horizontal force. 

In Eqs. (2.15), the plane strain field associated with a 

single horizontal force was taken as antisymmetrical and the antiplane 

field symmetrical. The plane strain field in Eqs. (4.26a) will then 

necessarily be symmetrical and the antiplane field in Eq. (4.26b) will 

be antisymmetrical. That is, 

uxd(x,y,t) = - uxd(-x,y,t) 

(4 .. 27a) 
d uyd(-x,y,t) uy (x,y,t) = 

d Uz (x,y, t) = - uzd(-x,y,t) (4 .. 27b) 
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Rotational superposition together with the observed symmetry 

2~TI 

u D = i
TI 

cos2w w 
0 

. 2 [TI + Sln w 

0 

r + cos211 

0 

D 

Ia
TI 

sinw cosw uy = 

ou f x -- cos'T\ cos2'T\ d'T\ 
ox 

auf 
sin

2
'T] d~ z -- cos'T\ 

Ox 

auf 
_x_ sin2'T\ cos'T\ d'T\ 
ax 

auf z -- cosi) d'T\ 
ox 

ou f 
_z_ cos'T\ 
ax 

sin21l d'T\ 

auf y 
-- cos2'T\ dll 
ax 

(4.28) 

Egs. (4.28) express the three---dimensional displacement field 

for Case Ruhe (See Fige 3) as a rotational superposition of more easily 

determined plane fields. 

The interchange of the order of differentiation and super-

position in this case leads to the correct result as well but yields a 
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more complicated form than that of Eqs. (4.28). Consider the dis

placement field, 6h-1 .(u p
F, uw

F, uyF) , of a force p.(6h)-l in the 

positive X direction. This field can be expressed as a rotational 

superposition of plane strain and antiplane fields by: 

-f f 
sin

2 11 d l1] U z 
0 

6h-1 .uw
F(p,w,y,t) = llh -1, sinw [ -f 11 U x f sin 211 d 11 ( 4.29 ) 

0 

+i
11 

0 

ul cos2 11 d l1] 

6h-1 ' uyF(p,w,y,t) = 6h-1.cosw fn uyf cosl1 dl1 

0 

Superpose over this field one corresponding to an equal but opposite 

force that is shifted an incremental distance 6h in the positive Z 

direction. This superposition can be expressed as: 

U p
F(p+6p,wt6W,y,t) cos 6w 

6h 

up (p+6p,w+l1w,Y,t) (-sin 6W) 

6h 
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uwF(p,w,Y,t) u w F ( p+ 6 p, UJ1- 6W, Y , t ) cos 6W 
Uw = (4.30) 

lili lili 

upF( p+6p,UJt-6W, Y,t) (sin 6W) 

lili 

uyF(p,w,Y,t) uY F ( p+ 6p, UJ1- 6W, Y, t) 
u = Y lili lili 

Noting that lili"cosw Z -p.6W and lili.sinw = -6p and taking the limit as 

lili goes to zero yields: 

au p
F 

cosw Ou p
F 

cosw F 
up = sinw -- + · -- - -- Uw 

op p ow p 

ou F cosw ou F cosw F Uw = sinw _w_ + -- " 
_w_+ --u (4.31) 

op p oW p p 

auF auF . Y cosw Y 
uY = Slnw -- + -- . 

op p ow 

Substitution of Eqs. (4.29) into (4.31) yields expressions which are 

equivalent to Eqs. (4.28), although this equivalence is not immediately 

apparent. The form of Eqs. (4.28) is preferred beca~e the derivatives 

are of the same order in each term. 
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4.3.2.2 Case Hv 

The following analysis leads to representation of the double 

horizontal force of Case Hv (See Fig. 4) as a rotational superposition 

of plane fields. 

Consider that a plane strain displacement field, 

~-l.uf(x,y,t) and the antiplane field, ~-l.uzf(x,y,t), are related 

to a three-dimensional displacement field for a horizontal force of 

magnitude p.~-l by Eqs. (2.16a). Apply these plane fields at an 

angle Wo with respect to the XY planee Next apply equal but opposite 

fields, ~-1·uf(x,y-6y,t) and ~-1.uzf(x,y-6y,t), at the same angle 

but shifted by an incremental amount ~ in the positive Y direction. 

The resulting displacement field is: 

d uy 

d 
Uz 

= uxf(x,y,t) - ux
f (X,y-6y,t) 

~ 

uy (x,y,t) - uy (X,y-6y,t) 
= 

~ 

= 
uzf(x,y,t) - uz

f (X,y-6y,t) 

~ 

(4.32) 

Note that ~ = 6y and, in the limit as ~ goes to zero, Eqs. (4032) 

become: 
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d au F 
= x 

Ux 
oy 

(4.33a) 

d auf y 
uy = --

oy 

u d 
auf 

= z (4.33b) z 
ay 

where (ux
f , uy

f , uz
f ) is the two-dimensional displacement field 

corresponding to an interior horizontal force in three dimensions. 

Some observations concerning the character of this displace-

ment field can be made. The plane strain field is antisymmetric and 

antiplane field is symmetric (See Eqs. 2.15). The expressions of 

Eqs. (4.33a) will then necessarily be antisymmetric and Eq. (4.33b) 

will be symmetric. That is, 

d d 
Ux (x,y,t) = + Ux (-x,y,t) 

(4 .. 34) 

Rotational superposition of the fields expressed by Eqs. 

(4.26) and simplifying according to the symmetry noted in Eqs. (4.27) 

yield: 
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u D = [{IT aU f 
cosw _x_ cos 2 T) dT) 

P oy 

-J IT 00£ ] _z_ sin2 T) dT) 
oy 

0 

[f,IT f 
D - sinw 

oux 2 
(4.35) u = -- sin T) dT) w 

oy 

_ r IT £ ] 
oUz 2 
-- cos T) dT) 
oy 

0 

D [IT aU f y 
uy= cosw -- cosT) dT) 

oy 
0 

Egs. (4.35) express the three-dimensional displacement field for the 

double horizontal force of Case Hv as a rotational superposition of 

more easily determined plane fields. 

The following analysis leads to representation of the dpuble 

horizontal force without moment of Case Hehe (See Fig~ 5) as a rota-

tional superposition of plane fields. 

Consider that a plane strain field, 6h-1 .uf (x,y,t) and an 

antiplane field, 6h-1 .uz
f (x,y,t), are related to the three-dimensional 
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field for a horizontal force of magnitude p.6h-1 by Eqs. (2.16a). 

Apply these plane fields at an angle Wo with respect to the XY plane 

(See Fig. 21). Next apply equal but opposite fields, 

6h-1 .uf (x-ax,y,t) and 6h-1 .uz
f (x-ax,y,t), at the same angle but 

shifted by an incremental amount 6h in the positive X direction. 

combined displacement field is: 

d uxf(x,y,t) - uxf(x-ax,y,t) 
~ = 

6h 

u d = 
uyf(x,y,t) - uyf(x-ax,y,t) 

y 
6h 

d uzf(x,y,t) - uzf(x-ax,y,t) 
Uz = 

lili 

The 

(4 .. 36) 

Note that lili=coswo = ax and, in the limit as lili goes to zero, the above 

expressions become: 

. f 
d_ ill aux 

Ux - cos 0 

u d = y cosw o 

ox 

au f y 

ox 
(4.37 ) 



d au f z Uz = cosw 
o ox 
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Eqs. (4.37) express the two-dimensional fields associated 

with Case Hehe in terms of the plane fields associated with a single 

horizontal force. 

Rotational superposition of the above plane fields using 

Eqs. (2.8) coupled with the simplifications of symmetry provided by 

Eqs. (4.27) yield: 

JTI au f 
u D = cos2w cos 31l _x_ dll 

p ax 
0 

JTI 
aU f 

+ sin2w x 
cosll -. - dll 

Ox 0 

[TI au f 
cos2w cosll sin2Tl _z_ dll 

ax 

u D = - sinUJ cOSUJ J TI 
auf 

2 sin21l cosll _x_ dTl (4.38) w ox 
0 

i
TI au f 

+ sinw cosw _z_ cos21l cosll dll 
ax 
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D JTI au f 
uy = cos2w cos211 -y- dl1 

Ox 
0 

(TI (Juf 

+ . 2 y 
dl1 Sln w 

oX 

Eqs. (4.38) express the three---dimensional displacement field 

for the double force Case Hehe as a rotationa.l superposition of more 

easily solved plane problems. 

4.4 Application of the Method of Self Similar Potentials to Two
Dimensional Problems Associated with a Three-Dimensional Double 
Force 

The last section explained the formulation of a double force 

applied at a point as a rotational superposition of two-dimensional 

problems. This section completes the general theory required for 

solution of double force problems by adapting the self similar poten-

tials which have already been found for the single force case to handle 

the two-dimensional problems that evolved in the last section. In 

fact, as the derivation shows, the two-dimensional field associated 

with a double force can be obtained by simply multiplying the two-

dimensional potentials for the single force case by an appropriate 

function of the complex variable, ai, of Sec. 3.2.1. 
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The two-dimensional fields of Sec. 4.3 for the double force 

loadings are related in each case to the two-dimensional displacement 

fields for the single vertical or horizontal force by a partial 

derivative with respect to x or y. A simpler relation exists as a 

result of the nature of the method of self similar potentials and is 

proven by the arguments that follow. Consider that lif is the two-

dimensional displacement field associated by rotational superposition 

with a single force that varies as a step function in time. As dis-

cussed in Sec. 2.3.2, the components of this displacement field can 

be expressed in terms of self similar potentials by Egs. (2.27). As 

shown in Sec. 4.3, the components of the two-dimensional field for the 

double force are of the form 

d 
~ = a f -u 

ox x 

Inserting the first of Egs. (2.27) into Eg. (4.39) yields 

e 
a a f 2 

- at ox 0 

e CJ?{ de 

( 4.39) 

(4.40 ) 

Recognizing the relationship between time and space derivatives in 

Eg. (2.25a), one obtains 
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11x d = - ~ [ 9 ~'. (-9 ) d91 ] 
at 1 1 1 dt 

(4.41) 

Letting E'(91) and F'(9) equal -91~' and -92'2' respectively, yields 

(4.42 ) 

Ib-2 2 I d92] V -92 F-
dt 

which can be rewritten as 

eE/de] 

(4.43 ) 

or 

(4.44) 
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Note that the form of Eq. (4.44) is identical to that of the first of 

Eqs. (2.27) except that E' and pI have replaced the potentials ~I and 

~/. The first time integral of ~d is then simply a two-dimensional 

displacement component associ9.ted with a double force that varies as a 

linear function in time. Hence, formal replacement of the potentials, 

~' and ~/, of the single force varying as a step function by the 

potentials E' and p' in the method of self similar potentials provides 

the two-dimensional field associated with a double force that varies as 

a linear function in time. The modified potentials are the product of 

the potentials for the single force and a simple function of eio This 

function of ei comes from the relation between the time and space 

derivatives of Eqs. (2.25a). The relationships between the potential 

functions ~' and E' and between ~I and pI may be summarized as follows: 

Pora double force related to a single force by 2-, 
ox 

For a double force related to a single force by 2-, oy 

E' - - Va - 2 - e 2 
1 

~ I 

p' = - Vb-2 e 2 
2 ~' 

(4.45) 

( 4.46) 
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As a result of the above representation, the convenience of the self 

similar method in the single force problem is retained in the double 

force problem. See the next chapter for specific applications of this 

derivation. 
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5. SURFACE DISPLACEMENTS CAUSED BY A SUBSURFACE 
DOUBLE VERTICAL OR DOUBLE HORIZONTAL FORCE 

5.1 General Remarks 

The previous chapters have provided the theory necessary to 

solve wave propagation problems involving a dynamic double force in an 

elastic half space. This chapter demonstrates the application of these 

developments by solving for the surface displacements caused by the 

five fundamental double forces shown in Figs. 1 thru 5. As will be dis-

cussed in Chapter 6, superposition of these fundamental cases can yield 

a variety of models for simulation of earthquake fault dislocations. 

The time variations of the moments of the double forces considered in 

this chapter are taken to be linear because the method of self similar 

potentials (See Sec. 4.4) naturally leads to this time variation. As 

will be discussed in Chapter 6, superposition can provide other time 

variations of interest. 

5.2 Double Vertical Force 

5.2.1 Case Vh; Double Vertical Force with Moment 

The derivation of Sec. 4.3.1.1 showed that the double vertical 

force with moment, of Fig. 1 can be expressed as a rotational super-

position of plane fields by: 
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cosw J n 
dU f 

U = _x_ cos 2'll d'll 
p dX 

0 

- sinw r n 
dU f 

U = _x_ sin2'll d'll (5.1) w 

0 dX 

cosw f n 
dll f y 

U = -- cos'll d'll y 
(Jx 

0 

f f where (ux , uy ) is the plane strain field associated with a single 

vertical force .. 

Application of the derivation of Sec. 404 yields the follow-

ing expressions for the partial derivatives in Eq. (5.1) when the 

moment of the double force described by Eqs. (5.1) varies as a linear 

function in time: 

dX 

dll f 
Y ---

dX 

(5.2) 
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The potentials in Eqs. (5.2) are those for the single vertical force 

and are defined by Eqs. (3.7), (3.13), and (3.17). Insertion of 

Eqs. (5.2) into Eqs. (5.1) and transformation of variables from ~ to 

the appropriate e variable provides: 

cosw 

sinw 

+ 

92 Jb-2 - 92
2 

------ cos2 11 '1'2 d92 
G2 

91
2 sin2 11 

---- ~{ d9l -
G1 

j n 2 
912 Vb-'::' - 912 

G12 (5.3) 



U f y - + 
cosU) C 

1 

III 

82 Jt-2 - 82
2 

sin 211 '1'2 d 8
2 

G2 

91 J~-2 - 9
1

2 

cos 11 ~{ d 81 

921 J a - 2 - 821 
2 

I 8 
-.:.:::...------ P21 d 21 
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where the G functions are defined as in Eqs. (3.21). 

For points on the surface, the displacements for Case Vh can 

be expressed in terms of the incident potentials for the single vertical 

force by: 

Up 

I 
HI ~{ 

cos2
'T\ d 91

2 ---cosw 2 
C1 

G1 R( 81 ) 

+ I 
H2 '¥2 

cos2T1 d82
2 

2 
C2 

G2 R( 92 ) 

Uw -f HI ~{ 
sin21l d 81

2 (5.4a) ---
sinw 2 

C1 
Gl R( 81 ) 

Ie 
H2 '¥2 

sin21l d 822 -
2 

2 G2 R( 92 ) 

Uy 

fe 
II ~{ 

cosll d 81 2 ---
cosw G1 R( 81

2) 
1 

fe 
I2 '¥~ 

cosll d 82 2 + 
2 G2 R( 82 ) 

2 

where 
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H = 
1 

291 b-2 Va-2 _ 9 2 
1 

Jb-2 _ 9 2 
1 

H2 = b-2(b-2 - 292
2 ) Vb-2 - 9 2 

2 

J -2 
(5.4b) 

I = b-2(b-2 - 29
1

2 ) 9 2 
1 a - 1 

Inserting the values for the incident potentials yields: 

p cosw 

p cosw 

2 8
1 

3 J a -2 - 8
1 

2 Y b -2 _ 9
1 

2 

------------ cos 21l d81 

8
2 

3 (b -2 _ 28
2

2 ) 

------ cos 21l d82 
G2 R(82

2 ) 

92
3(b-2 - 282

2 ) 
------ sin21l d82 

G2 R( 82
2 ) 

(5.5) 

9
1 

2 (b -2 _ 28
1 

2 ) J a -2 _ 8
1 

2 

----------- cosll d 81 + 
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282 4 V a -2 - 82
2 

2 G
2 

R( 8
2 

) 

Note for computational convenience that placing a -8cos~ in the 

integrands of Eqs. (3.24) produces integrals identical to those in the 

first and third of Eqs. (5.5). 

5.2.2 Case Vv; Double Vertical Force without Moment 

The double vertical force of Case Vv can be expressed by a 

rotational superposition of plane fields by Eqs. (4.24). An applica-

tion of the derivation of Sec. 4.4 expresses the partial derivatives 

in the integrands of Eqs. (4.24) as: 

ou f 
x ---

oy 

+ 

ou f 
:::::i...-. = 
oy 

082 

oy 

081 

oy 

Vb-2 

Va-2 

0811 81
2 ~ I + 

1 Ox 

- 82 2 '1'2 + 
0822 

oy 

8 2 I - 1 ~1 + 
0811 

oy 

/b-2 - 8222 '1'22 (5 .. 6 ) 

Ja-2 8 2 I - 11 ~11-
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+ 
d812 Jb-2 8122 '¥12 + 

d821 Ja-2 - 8212 ~21 --
dx dY 

d92 /b-2 d822 Jb-2 p 

- ~2 '¥2 - 822 
2 

'¥22 + ---
dX dx 

where the potentials are for the single vertical force and are 

defined by Eqs. (3.7), (3.13), and (3.17). Insertion of Eqs. (5.6) 

into Eqs. (4.24) and transformation of variables from ~ to the 

appropriate 8 value yield the following expression for the surface 

displacements caused by the double force of Case Vv: 

= - f up 

C1 

+f 
C2 

u = W 0 

u .. 7 = ( 
r 

}C 
1 

281 
b-2(b-2 _ 28

1
2) j a-2 _ 8 2 

1 
~1 cos~ d81 2 G1 R( 81 ) 

46 2 b-2 /-2 8 2 Ib 9 2 
2 a - 2 - 2 

'¥2 cos~ d82 
2 

G2R( 82 ) 

(5 .. 7) 

481 (2a-2 _ b-2) la-2 - 91
2 /b-2 _ 8 2 __________________ 1_ ~ I dell 

2 8
2 

(2a -2 - b -2) (b -2 _ 2 8
2 

2 ) J b -2 - 8
2 

2 

~-----------------2---------------- '¥2 d82 
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where ~{ and ~; are defined by Eqs. (3.7). 

5.3 Double Horizontal Force 

5.3.1 Case Hnhe; Double Horizontal Force with Moment, Forces in a 

Horizontal Plane 

The double horizontal force of Case ~he can be expressed by 

a rotational superposition of plane fields by Eqs. (4.28). As before, 

the partial derivatives of the plane strain fields may be written as 

in Eqs. (5.2) but with the incident potential functions now defined 

in Eqs. (3.51a) for the horizontal force. Application of the deriva-

tion of Sec. 4.4 permits expression of the derivatives of the anti-

plane field in Eqs. (4.28) as 

auf 
z 

(5,,8) 
oX 

where w~ and w~2 are defined by Eqs. (3.51b) and (3.52). 

Substituting into Eqs. (4.28) and transforming variables 

from ~ to the appropriate e variable yields the following expressions 

for surface displacements for Case ~he: 

----= 
sinw cosw 
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+ t H2 '1:'2 
cos 11 cos2 11 d 82 2 G2R( 82 ) 

2f 
I 

w2 2 2 
+ - cosl1 sin 11 dB2 

G2 
C2 

Uw 

~ 
Hlil?{ 

sin2 11 cos 11 d 81
2 = 2 

cos2w G1R(8
1 

) 
1 

+ f H2 '1:'2 
sin2 11 cosl1 d 82

2 (5.9) 
2 

C2 
G2R( 82 ) 

f 
Wi 

-1 sin2 1l cosll d 92
2 

G2 
C2 

sin2w f w2 2 - cosT] d82 
cos2w G2 

C2 

Uy 
sP 

II il?{ 
= Jc 

cos211 dEJ1 2 

2 sinw cosw G1R( 81 ) 
1 

+ f 
12 '1:'~ 

cos211 d 82 2 

G2R( 82
2 ) C2 

where HI' H2 , II' and 12 are defined in Eqs. (5.4b). 
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5.3.2 Case Hv; Double Horizontal Force with Moment, Forces in a 
Vertical Plane 

The double horizontal force of Case Hv can be expressed by 

a rotational superposition of plane fields by Egs. (4.35). The 

partial derivatives of the plane strain fields may be written as in 

Egs. (5.6) b~t with the incident potentials now defined in Egs. 

(3.51a) for the horizontal force. Application of the derivation of 

Sec. 4.4 permits expression of the derivatives of the antiplane 

field in Egs. (4.35) as 

(5.10) 

Note that w~ = w~2 and hence, the surface where 82 = 822 , the above 

derivative is zero. 

As before, substitution into Egs. (4.35) and transformation 

of variables lead to the following expressions for surface displace-

ments for Case Hv: 
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----- ( 
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f 
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P sinw 

C1 
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C2 

p cosw 
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91 3 (b -2 - 2 91 2 ) 
------ cos21l del 

G R( 9 2 ) 
1 1 
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3 Ja-2 - 92

2 Jb-2 - 92
2 

----------- cos 21l d 9 2 
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G2R( 92 ) 

9
1 

3 (b -2 _ 29
1

2 ) 
sin21l d91 (5.11) 

G1R(91
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29 3 2 9 2 
2 

/a-2 - e2 
/b-2 _ 

2 
sin21l d 92 

2 
G2R( 92 ) 

291
4(2a-2 - b-2 ) {b-2 - 91

2 

----------- cosll d 91 

92
2(2a-2 - b-2 ) Vb-2 - 91

2 

G2R( 92
2 ) 
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5.3.3 Case Hehe; Double Horizontal Force without Moment 

The double horizontal force of Case Hehe can be expressed by 

a rotational superposition of plane problems by Eqs. (4.38). As 

before, the partial derivatives of the plane strain field in Eqs. 

(4.38) may be written as in Eqs. (5.2) with the incident potentials 

defined for the single horizontal force. The derivative for the 

antiplane field is as shown in Eq. (5.8). 

In the same manner as before, the surface displacements for 

up = cos2w 

+ cos2w f H2 '1'2 
COE? 311 d 82

2 
2 G2R( 82 ) 

C2 

f Hl~{ 
cos11 d81

2 
2 

G1R(81 ) 
C1 

+ sin2w J 
H2 'Y~ 

cos 11 d 82
2 

G2R(82
2) 

C2 

+ cos2w [, 282w~ 
cos 11 s in211 d 82

2 

G2 
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zf 
I 

liw HI g?1 
sin21l cos1l d81

2 - -
2 

sinw cosw 
C1 

G1R( 81 ) 

zJ 
H2 '¥~ 

sin21l cos1l d82
2 (5 .. 12) 

2 
C2 G

2
R( 8

2 
) 

f 282w2 cos21l cos1l d822 
G2 

C2 

~ = cos2w f II g?{ 
cos21l d8 2 1 ' 

2 
G

1
R( 8

1 
) 

C1 

+ cos2w f 12 '1'; 
cos21l d 822 

2 
G2R( 82 ) 

(1 

'-'2 

+ sin2w ( II g?{ 
d8 2 

) 2 1 
G

1
R( 8

1 
) 

C1 

. 2 f 12 '¥~ 
d82

2 + SlnW 
2 GoR( 8n ) 

'"' L. ' k ' 
lJ

2 

where the incident potentials are for the horizontal force and are 

defined by Eqse (3.51)0 
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5.4 Disturbances Near the Wave Fronts 

This section presents the determination or the character of 

the displacements on the surface in the vicinity of the wave fronts 

for each of the fundamental cases except Case Vv. The wave front 

analysis for Case Vv is almost identical to that for the vertical 

force of Sec. 3.1 and is not included here. As before, the analysis 

is performed in the 82 plane. The procedures are identical to those 

outlined in detail in Sec. 3 and only the results are presented here. 

5.4.1 Case Vh 

The expressions for displacement of the surface in the 

vicinity of the combined P, PP, and PS wave fronts are: 

cosw 

u P 
w ---

sinw 

P 
uy 
---
cosw 

P 
[AO+O(t-tp )] 

a 2( p2 + Yo 2) 

P Yo 
[AO + oC t - t p )] 

T1j..L a 2 C p2 + Yo 2 ) 

(5.13) 

where AO is the value of the first integrand in each of Eqs & C 5.4) 

when sin2~ and G1 are omitted and 81
2 = ep2. The foregoing equations 
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show that the radial and vertical displacements on the surface exper-

ience a step discontinuity on arrival of the combined P, PP, and PS 

wave fronts; the circumferential displacement is continuous. 

For angles of incidence greater than arccos (b/a), the fol-

lowing variations of surface displacements occur in the vicinity of the 

combined S, SS, and SP wave fronts: 

P 

u S 
P Yo w 

[Ao (t - t p) + 0 (t - t s ) 2 ] (5.14) -- -
1 

sinw TIJ..L p2( p2 + Yo 2)2 

S 
Uy P Yo 

[AO + 0 (t - t s ) ] --- + 

cosw Tf\.L b2 ( p2 + Yo 2) 

where AO is the value of the second integrand in each of Eqs. (5.4) 

when sin21l and G1 are omitted and 82
2 = 8s 

2
• The above equations indi

cate that the radial and vertical displacements on the surface exper-

ience a step discontinuity on arrival of the combined S, SS, SP front; 

the circumferential displacement is continuous. 

For angles of incidence less than arccos (b/a) the head wave 

contribution to displacement of the surface is: 



u H 
P ---

cosw 

u H w 

sinw 

u H 
Y 

cosw 
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t - tH 
-----1 + OCt - tH)2 
(p2 + Yo 2)2 

2a-4 Jb-2 - a-2 

3 
(b-2 _ 2a-2) 

where Cp is defined by Eq. (3.44b) and 

1-
a2 Jb-2 -2 PB02 - a 

~= - --
J '> '> 

4~ ap Vb-/-' -/-, 

- a - Yo 

. k-2 -2 VU - a 

(5.15a) 

t - tH 
-----;:- + OCt - tH)2 

( p2 + Yo 2) 

(5.15b) 

The coefficient Cp becomes infinite in the vicinity of the S 

wave front and a logarithmic singularity occurse The form of this 

singularity is: 
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L [1 -
Yo 2 ] 

L~ CL 1n 
bt 

cosw Vp2 + 

1 

48 4 2 cos2~(b-2 _ 292
2)(b-2 _ 82 

2)2 

2R ( 82 
2 ) Q R ( 92 

2 ) 
8 2 = 8 2 
2 s 

u L w 
0 (5.16) ---

sinw 

L 

In [ 1 -
Yo2] · 

uy bt --- CL 
cosw Jp2 + 

2 1 

8 3 cos~(b-2 - 282
2) (a-2 - 82

2)2 2 

R ( 82 
2) to R ( 82 

2 ) 

8 2 = 8 2 
2 s 

where CL is defined as in Eq. (3.47a) .. 

The above equations show that all displacements are continu-

ous on arrival of the head wave and that the radial and vertical 

displacements experience a logarithmic singularity on arrival of the S 

wave. 

The variation of the displacements in the vicinity of the 

surface wave may be expressed by: 
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u R Pie p2 + Yo 2) 3/
4 

-p- = - -------
cosw nMC3p2(2)~R/(C-2) 

1 1 [ ([:2_-i:~2gr~)2 

2 

+ 

u R Pi ( 2 ) ~ (p2 + Yo 2 ) ~ w ...., 

--- (5.17) 

sinw TTj..L cR I( c-2 ) 

[ 1 1 

(c-·2 -2)2( -2 _ b-2)2 - a c 

+ 0 [s -iyo j -:~ J 3/2 

+ 0 ~ - iy 0 )1 - :~ r/2 
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[ 

+ 

+ - iy o 

127 

1-
where R '(c-2) is defined by Eqo> (3 .. 48b) and S = [( p2 + Y 2)2 - ct]. 

o 

The expressions for the displacement of the surface in the 

vicinity of the combined P, PP, and PS fronts are: 

U P 
----= 
sinw cosw 

= 
cos2w 

p Yo 
[AO + O( t - t p)] 

Tij.1 a 2 (p2 + Yo 2 ) 

P Yo 
[AO(t - t p ) + OCt - t p )2] 

(5.18) 
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p 

where AO is the value of the first integrand in each of Eqs. (5.9) 

when sin2~ and G1 are omitted and 91
2 = 9p 2. The above equations show 

that the radial and vertical displacements experience a step discon-

tinuity on arrival; the circumferential displacement is continuous. 

For angles of incidence greater than arccos (b/a), the 

variation of the surface displacements in the vicinity of the combined 

S, S8, and SP wave fronts is: 

u S 
P '" 

sinw cosw 

P 
=: cos2w - (5.19) 

[ 
+ 

J-
e (b-2 _ e 2) 2 ( ) sst - tp + 
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+ 

+ 

+ oCt - t ) 
p 

u S 
Y p Yo 

-

sinw cosw 'fl1.L b 2 (p2 + Yo 2 ) 

1 1 

[ e 2 (a-2 _ 8s 2)2(b-2 - 2f ] 8s s 
+ OCt - t p ) 

R( 8s 2) 

The above equations show that the displacements experience a discon-

tinuity on arrival of the combined S, SS, and SP wave front except for 

the circumferential displacement when sinw is zeros 

For angles of incidence less than arccos (b/a), the variation 

on the surface in the vicinity of the head wave is: 

u H 
-~p--= - C 

P 
sinw cosW 

(t + Yo -2) - a e 



u H w 

----=-c 
sinw cosw 

p 
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[ 2(t + Yo 

1 

- a 
_2)2 

2 
2a-2 ) 

- a -2) 

t - t 
H 

- a -2 ] 

1 
2 2 2 2 

P (p + Yo ) 

where C
p 

is defined as before. The above equations show that all dis-

placements are continuous on arrival of the head wave. As before, Cp 

becomes infinite in the vicinity of the S wave front and hence the 

displacements experience a logarithmic singularity. 

The variation of the displacements in the vicinity of the 

surface wave may be expressed by: 
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5.4.3 Case Hv 

The similarity between the form of Eqs. (5.4a) and Eqs. (5.11) 

causes the variation of the displacements in the vicinity of the wave 

fronts for Case Hv to be of the same form as those for Case Vh. Only 

the coefficients will differ and these can be easily obtained using the 

approach of Sec. 3.2.4. 

The expressions for displacement of the surface in the vicin-

ity of the combined P, PP, and PS fronts are: 

{ 

P ; P Uw 

cos2w 

1.-
29p3(b-2 _ 9p2)2 

R( 9 2) 
P 

.Y6 
(5.22) 
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1 

49 3(b-2 _ 9p
2 )2 

sinw cosw p (t - t p ) 

R(9 p
2

) 

2 
+ o( t - t ) p 

{ 9p
3(b-2 _ 29 p

2) 
cos2w ~--------~-

R( 9 2) 
P 

For angles of incidence greater than arccos (b/a), the varia-

tion of the surface displacements in the vicinity of the combined S, SS, 

and SF wave fronts is: 

p 

cos2w 

Yo 

2 
Yo ) 
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u S p Yo w 
(5.23) = 

1-
sinw cosw TT1-L p2 (p2 + Yo 2 ) 2 
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1- 1 

3( -2 8s 
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R( 8s 

2) 

The above equations show that all displacements experience a step dis-

continuity on arrival of the combined S, SS, and SP fronts Q 

For angles of incidence less than arccos (b/a), the variation 

of the surface displacements in the vicinity of the head wave is: 

{ 

4a-2(b -2 _ a -2) 

3 
(b-2 _ 2a-2) 

- a -2) (t + Yo Vb-2 

cos2w -------------------
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As before, Cp becomes infinite in the vicinity of the S wave front and 

hence the displacements which contain Cp experience a logarithmic 

singularity. 

The variation of the displacements in the vicinity of the 

Rayleigh surface wave may be expressed by: 

[COS2W 
p2 + Y 2 ] o + sin2w 

p2 

[ [ S - iy g J 1 - 2' 0 

a 

+ 0 [s -iyo p]~] 
1- 1 

Pi(b-2 _ c-2) 2 (p2 + "4 
- 2c-2) y 2) (b-2 

0 -' 
T11-1R I ( c - 2 ) 2 {2 c2 p 

[ p2 + Yo 
2 

sm W] cos2w p2 + (5.25) 



138 

u R 
1 3/4 

Pi fi (b -2 _ c -2 t (p2 + Y 2) 
to 0 

-

sintO costO 1l}..LR I (c -2) p2 

{ ~ - iyo RJ 1-
2 

2 

(b -2 _ 2c -2) R] 
1-

[s 
2 

+ - iy 

2c-2 b
2 

[s -iyo i1J 
3/2 

+ 0 

+ o [s -iyo )1 -~ J 3/2} 
1 

Pi(p2 + Y02)4(b-2 -2) 
u R - c 

- -y 

TTl-LR I (c-2 )c 3 2 2 p2 

[2 2 . (p + Yo ) costO _ Y 2 
0 sintOJ • 



+ 

5.5 Numerical Results 

o 
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Numerical evaluation of the integrands of Secse 4.2 and 4.3 

provide with relative ease a time history of the displacements on the 

surface for any focal depth. Sample results for the fundamental 

cases are shown in Figs G 23 through 28" These results were 

obtained using a value of PoissonTs ratio of .25. The numerical 

results are actually of higher quality than indicated by the figures 
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because the slight roughness is actually a result of the graphical 

output equipment. 

No attempt is made in this study to compare the various 

cases or their variation with focal depth. As indicated in Sece 

6.2, any desired comparison of the fundamental cases or comparison of 

any models derived therefrom can easily be made using the information 

provided in this study. 



141 

6. SUMMARY AND PROPOSED APPLICATIONS 

6 .. 1 Summary 

In this study, the methods of rotational superposition and 

self similar potentials have been extended to solve problems involv

ing a dynamic double force acting at a point beneath the surface of 

an elastic half space. Solutions have been obtained for five funda

mental double vertical and double horizontal forces. These solutions 

can be superposed to yield a wide variety of models for earthquake 

fault dislocations. As a necessary intermediate step, the case of a 

vertical force applied at a point within a half space was solved by 

the same methods. 

The combined use of the methods of rotational superposition 

and self similar potentials has proven to be a direct and useful 

approach to the solution of double force problems. A particular 

application of the method of rotational superposition represents the 

three-dimensional double force problem as a superposition of plane 

problems related to the single force case. When the moment produced 

by the double force varies as a linear function in time, the solu

tions for the plane problems are obtained by a simple modification of 

the self similar potentials for the single force. The resulting 

integrals are easily evaluated on the surface of the half space and 

involve only quadrature in the complex plane. The simplicity of the 
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computations makes superposition of these solutions to obtain specific 

fault models a simple matter. In addition, the solution process 

involves physically meaningful quantities at every stage. The posi-

tions of the wave fronts to include the head wave are always apparent 

and the specific character of the disturbances on the surface can be 

extracted without difficulty. 

In summary, this extension of the methods of self similar 

potentials and rotational superposition to solve double force problems 

clearly illustrates the power and convenience of these methods for 

solving practical dynamic problems in elasticity. 

6.2 Applications to Earthquake Modeling 

The relationship between a double force at a point and an 

elementary slip which might simulate part of an earthquake source at a 

point is not a straightforward one. Indeed, the literature indicates 

that considerable controversy exists concerning what arrangement of 

forces best models a particular fault dislocation. The two primary 

contenders are the single couple (double force) of Nakano (1930) and 

the so-called double couple* (pair of double forces) of Honda (1957)@ 

Figure 16a shows a single couple model for a dip-slip fault with a dip 

angle, yo Figure 22a shows the corresponding pair of couples that is . 

* The Tldouble couple TT used in this context in the literature refers to 
a pair of couples and does not imply the same relationship between 
couples as exists between a single force and a double force. 
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used to represent the same dip-slip fault dislocation. Actually, 

some controversy even exists concerning selection of the orientation 

of the double force with the fault plane. See Stauder (1962) and 

Benioff (1964) for a detailed review and bibliography of this and 

other aspects of the controversy over fault models. On first con

sideration, the single couple model presents obvious correspondence 

with Reid's (1910) elastic strain theory for fault mechanisms. The 

single couple does, however, produce a net moment whereas the pair 

of couples does not. Studies of seismograms have provided support 

for both models but neither has received general acceptance. 

Obviously, more research is necessary before conclusive decisions on 

model selection can be made. The fundamental double force solutions 

supplied in this study will assist this research by permitting quick 

solution to a variety of models and permit easy variation of the 

orientation of the fault plane. Table 1 (next page) illustrates how 

the fundamental double force solutions may be superposed to give 

various models. This table gives the contribution of each fundamental 

double force solution to a dip-slip and a strike-slip model formulated 

first by a single couple and then by pairs of couples. 

Many models other than those in Table 1 can be formed using 

the solutions presented in this study. For example, Case Hehe of 

Fig. 5 with the forces in the opposite direction is the simplest 

model for a tensile fault. Burridge, Lapwood, and Knopoff (1964) 
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TABLE 1 G 

FACTORS FOR SUPERPOSITION OF FUNDAMENTAL CASES 
TO OBTAIN DIP-SLIP AND STRIKE-SLIP MODELS 

Vv Vh Hv ~he 
Single Couple, 

-sin2y 2 Dip-Slip -siny cosy 0 cos y 
Strike-Slip 0 0 siny cosy 

Pair of Couples, 
. 2 cos2y cos2y Dip-Slip -Sln y 0 

Strike ... Slip 0 cosy siny-siny* cosy 

Hehe 

siny cosy 
0 

. 2 Sln y 
0 

* This case requires that coordinates X and Z be substituted for 
coordinates Z and negative X, respectively, to give the correct 
orientation. 

give a description of a more involved tensile fault model that can 

also be formed from fundamental double force solutions. By super-

position, faults of finite length may also be modeled. Using the 

TTpair of couplesTt as the basic model, a dip-slip fault dislocation 

of finite length may be modeled as in Fig" 22b. Propagating faults 

may be modeled by considering the point models to originate at 

different times. In addition, Johnson and Robinson (1972) provide 

guidelines for extending the self similar solution to consider multi-

layered media .. 
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6.3 Superposition of the Fundamental Linear Time Variation to Obtain 

Other Time Variations 

The time variation of the moment produced by the double 

forces in this study is linear. Other time variations of interest 

may be obtained by superposition of this fundamental ramp variations 

As the succeeding derivation shows, any variation of loading that is 

initially zero and has a finite first derivative can be obtained by 

this approach. The versed sine time variation that has been used in 

the past (Newmark et ale, 1972) possesses these characteristics and 

could be obtained from the fundamental ramp variation. 

Let M(t) represent the loading of interest as a function of 

time and consider U(t) to be the response to this general time varia-

tion. If u(t) is the response to a unit ramp, the response to the 

loading M(t) can be expressed by the superposition integral as 

U(t) = rt 

o 

M'(t - T) " au('T) d'T 

0'1' 

when M(O) = 0 

where M'(t - '1') is the first derivative of the loading M(t). The 

partial derivative of u('T) with respect to T is, of course, the 

response to a unit step. Integration of EgG (6@1) by parts gives 

U(t) = IM'(t I
T=t rt 

'T)eu('T) '1"=0 + M"(t - T)e('T) d'T 

o 

(6.1) 

(6 .. 2) 
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and finally, 

U(t) = M;.u(t) +f 
t 

M"(rr) .. u(t - rr) drr (6.3) 

o 

where M; is the first derivative of M(t) at t = 0 and M" is the 

second derivative of M(t). 

The foregoing derivation shows that the fundamental ramp 

time variation that emerges naturally by the method of self similar 

potentials is useful for obtaining other desired time variations. 
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global axes for three-dimensional description. 

FIGURE 6e GEOMETRY OF ROTATIONAL SUPERPOSITION 
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FIGURE 9. REPRESENTATION OF A POINT LOAD IN AN INFINITE 
MEDIUM BY THE ADDITION OF TWO HALF SPACES. 
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(a) Angle of incidence. 

FIGURE 11. TYPICAL WAVE FRONT PATTERN FOR THE S, SS, AND SP WAVES 
WHEN S ~ arccos (b/a). 
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IN A VERTICAL PLANE. 



163 

P R == siny 
till 

y 

(a) Force system R of Fig. 16b. 

, , , , 

P 
Q == 

y 

(b) Force system Q of Fig. 16b. 

FIGURE 17. SUPERPOSITION OF DOUBLE FORCES 
TO OBTAIN THE INCLINED DOUBLE 
FORCE OF FIG. 16a. 

till 

-x 

cosy 



z z z 
1 

164 

-1 f 
~ ·ux (x-~x,y,t) 

~~ 
-1 f 

LTh ·ux (x,y, t) 

FIGURE 18. SUPERPOSITION OF TYPICAL VECTORS OF 
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FIELD FOR THE DOUBLE FORCE OF 
CASE Vh. 
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APPENDIX. NUMERICAL TECHNIQUE 

The numerical analYpis conducted in this study is performed 

in the e plane. For points on the surface or above y = Yo' the end

points of integration (9. £ and e. U) lie in the lower half e plane. 
l l 

The path of integration corresponding to a range of ~ from 0 to TI is 

the path Cll of Fig .. 13 .. By the Cauchy-Goursat theorem (Churchill, 

1960), this path may be deformed into one that is more convenient com-

putationally. In this study, the linear path C1 is used. Note that 

this path is an admissible contour of integration even though it 

passes through a region that does not correspond to a physical point 

in the medium (See the mappings contained in Johnson and RobinsonTs 

work, 1972). The path C1 was chosen instead of a straight line con

necting 9i £ and eiu in order to avoid any singularities that occur at 

the origin. 

The numerical integration is carried out using SimpsonTs 

rule except for five small intervals at the ends of the contour of 

integration. A special quadrature formula must be used near the end-

points because a square root Singularity occurs at the endpoints when 

the integrands contain the term pei·sin~ in the denominator. The form 

of Eq. (3.29) clearly illustrates this behavior. A special quadrature 

formula can be derived (Jeffreys and Jeffreys, 1956) by considering 

the integrand to be of the form 



en+ 1 

fen 
A + Be de 

Ve - e.e 

176 

(A. 1 ) 

over each interval in the region near the endpoints.. The resulting 

formula is 

1 

Q = ( 2A - ~ [2Cen - 82,) + hJ J cen+1 92,)2 

(A.2) 

where en and en+1 = (eP - h) are the e values at the start and end of 

each interval, respectively, and 

A = F n 

where Fn and Fn+l are the values of the integrand (apart from the 

radical Ve - e.e) at the start and end of each interval. 

(A.3) 

Particular care must be taken in the evaluation of square 

roots to insure that the values obtained agree with the definitions 

used in the earlier derivations. In this study, the radical 

Vc-2 - e. 2 is defined as positive when e is positive imaginary with 
l 
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a branch cut from _c-1 to +c-1 • Considering (c-1 + e.) as a vector of 
l 

the form r 1ei ¢1 where the range of ¢1 is from -TI to TI and considering 

(c-1 _ 8i ) to be of the form r 2ei
¢2 where the range of ¢2 is from 2TI 

to 4TI provide values that are consistent with this definition. 

The Gi functions (See Eqs. 3.21) also involve a square root. 

The branch cuts for these functions are taken outward to infinity from 

the branch points, 8i £ and 8iu , as shown in Fig. 13. The fact that 

Gi =: p8i sin 11 must equal + p8i when 11 =: rr/2 defines the sign of the 

square root. Consider that Gi is of the form 

G· =: [(p8i +t+yo Vc-2 - ei 
2 ) . 

l 

Jc-2 
1 

- 8i 2) J 2 
(p8. -t-y 

l 0 (A.4) 

((r1e
i

¢1) .. (r2ei
¢2) J 1 

2 
=: 

The first term in Eqs. (A.4) goes to zero at 8iu ; the second, at ei £. 

By considering these terms in polar form shown in Eqs. (A.4) with the 

same range for ¢1 and ~, as used above, one obtains the proper value 

and branch cuts for the Gi function. Because the same ranges of ¢1 

and ¢2 are used as before, the same function subprogram used to 

evaluate Jc-2 
- ei

2 may be used to evaluate Gio Note that the 
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square root singularity is pulled out of the Gi function when the 

quadrature formula of Eq. (A.2) is used and care must be exercised 

to ensure that the resulting sign is the same as that obtained by 

evaluating Gi with the square root included. 

Once the square roots are properly defined, carrying out 

the integration to determine displacements on the surface is a simple 

matter. The fact that the integration is carried out in the complex 

plane is computationally useful because, as was pointed out in Sec. 

3.2, the imaginary portion of the computed displacements should be 

zero. Consequently, any errors committed in carrying out the compu

tations will reveal themselves by yielding a nonzero value in the 

imaginary part of the solution. 
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