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ABSTRACT 

A library system has been developed for the acquisition, compila­

tion and storage of information relating to the fatigue behavior of metal 

members and structures. Test data obtained from the various information 

sources are stored on both data sheets (for individual examination), and 

on standard computer punch cards. A computer program has been developed 

to sort the data into sets satisfying certain stipulated specimen types 

and loading conditions. A Ilbest-fit" S-N curve for each specified data 

set is then established using a least squares regression analysis. The 

output information includes the equation, the standard error of estimate 

and correlation coefficient of the regression line, and the lower tolerance 

limits for 99 percent survival at 50 percent and 95 percent confidence 

levels. The data and S-N curve are visually displayed using a CALCOMP 

plotter printout. 

Information obtained from an analysis of the data in the Fatigue 

Data Bank for several selected details indicates that the current AASHO 

bridge design specification provisions, for these details, do not provide 

consistent correlations nor properly model the fatigue behavior of the 

details as established by laboratory tests. 
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FATIGUE DATA BANK AND DATA ANALYSIS INVESTIGATION 

10 INTRODUCTION 

101 Object and Scope 

Extensive research on metal fatigue has been carried out and is 

continuing both in the United States and throughout the world. In a single 

investigation, the number of variables included for study is usually 

limited by the high cost of fabrication and testing of laboratory specimens 0 

However, in order to establish and adequately quantify the relative 

influence of the various parameters that affect the fatigue behavior of 

structural materials, members and assemblages, it is necessary to have 

available the data from a large samp'ling of laboratory testso One method 

of accumulating the bUlk information n~cessary to obtain statistically 

significant fatigue evaluations is to compile and combine the data reported 

in the literature from numerous individual investigations. Once these data 

have been accumulated, computer-aided analytical techniques can effectively 

be used to empirically interrelate the variables found to be most important 

to the fatigue processo 

The overall objectives of a system such as that outlined above 

are to make available to those persons responsible for design specifications, 

to structural designers, and to persons associated with research in this 

field, both the means for efficiently evaluating currently available fatigue 
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information, and the capability of quickly processing new data for inclusion 

in the information bank, It is toward these ends that the program described 

herein has been directed-

102 Description of Program 

As indicated above, the task of handling the large volume of 

data required to analyze the relative effects of the variables that affect 

the fatigue process must by necessity be re~egated to an extensive information 

retrleva1 system The generatl0n of useful information rests on the ability 

of the system to rapidly retrieve, organize and process the data in a form 

suitabl~ for efficient computer analysis. In terms of operational require­

ments, this ~equires both an expeditious procedure for the collection of 

fatigue references, and a thorough and reliable data reduction process to 

minimize bias in the recordlng and analysis of the data, Furthermore, the 

retri eva 1 p"rocess of the sys tem mus t prov; de the necessary channe 1 s for 

evaluating data by organizing such data in a form which facilitates the 

application of the analytical techniques developed to meet the program objec­

tives, ThlS feature requires a coherence between the form of the summarized 

data and the facilities (computer-o r lented) available for data analysis. 

In schematic form an information-retrleval system of this type is illustrated 

in Fi g, 1 0 10 

The information-retrieval system designed to assist in achieving 

the objectives of this program is the Fatigue Library System described in 

Section II, 

Figo 1,2a): 

It has three modes of indexing bibliographic data (see 

author, information source, and bibliography number. Each of 
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these prOVides a file which is cross-linked to at least one other file, as 

shown in Fig. '.2c, In addition, duplicate information appears in several 

files, so that it is possible to retrieve desired information in a number 

of way~c Figure lc2b indicates the type of information stored in each of 

the three indexing fi Jes and in the data file~ From Fig. 1.2a, it can 

be seen that lndividua) data sheets can be located in four ways: by author, 

source, bibl10graphy number, and, through the data file itself by the 

type of test specimen Although other retrieval operations are possible 

through the linkage of indexes, the system is primarily designed to 

retrieve fatigue test datac 

Besides indexing bibliographic information, the system also in­

cludes an extensive classification procedure which contains thir~-three 

(33) categories for indexing test data for subsequent computer analysis. The 

computer program, described in detail in Section III, provides the means of 

obtaining statistical evaluations of the relative effects of individual 

paramete~s on fatigue; the parametric relationships thus obtained, taken 

collectively, should provide the informatlon necessary for the generation 

of new or revised fatigue design requirements~ The principal output from 

the computer program is in the form of standard S-N curves, complete with 

test p01nts, and the standard error of estimate and lower tolerance 

limits for various survival percentages. In addition, the printed results 

in,:lude a listing of the input requirements, the data satisfying these 

requirements, and duplication of the output information displayed on the S-N 

diagrams, 
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II. ACQUISITION, COMPILATION 
AND RETRIEVAL OF FATIGUE INFORMATION 

2.1 General Description 

The fatigue source filing system, described in detail in Section 

2.2, provides the means by which literature concerning fatigue can be 

expedi ti ous ly compi 1 ed, catalogued, and fi 1 ed for future reference. A 

diagrammatic representation of the interrelationships among the various 

components of the filing system is presented in Fig. 2.1. 

Fatigue data from the literature included in the source library 

are extracted, classified, and recorded on appropriate data sheets using 

the procedures outlined in Section 2.3. In addition to direct storage of 

these sheets for future access, the data are coded and recorded on standard 

punch cards for computerized sorting and subsequent analysis; the coding 

system is discussed in Section 2.4.* 

2.2 Compilation and Cataloguing of Fatigue Literature 

It is intended that all accessible literature concerning fatigue 

be included in the fatigue library, irrespective of the inclusion or 

absence of actua 1 II raw ll fati gue data ina parti cul ar reference. Each such 

report is identified both by author (Author Index File) and by source (Source 

Reference List). In addition, if the report is found to contain usable 

* User1s Manuals have been prepared as guidelines for the operation of the 
library system, including instructions on the preparation of fatigue data 
sheets, and the coding of these data for storage on computer punch cards. 
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data,* it is subsequently assigned a reference number (bibliography number) 

by which it is further identified in the filing system. Thus, the library 

consists basically of a source file, an author index file, and a chrono-

logically ordered fatigue bibliography list (see Fig. 2.1) which are 

appropriately cross-referenced, Fig. 1.2, to facilitate retrieval of a 

particular document. A brief. description of the contents of each of these 

files is presented below. 

2.2.1 Source File 

The Source File contains information on the literature related to 

fatigue; this information includes listings of documents which contain usable 

data, those searched but which contain no data, and those for which a data 

search has not been conducted. The latter group includes reports referenced 

in searched articles but which have not as yet been examined by the reviewers. 

The Source File is comprised of Source Reference Lists, of which 

there are two general types--those for recording information from periodicals 

and those to be used for nonperiodical literature. There are five standard 

forms used for these lists, depending upon the type of source from which a 

* IIUsable" fatigue data: data is compatible to the system if the fatigue 
tests conducted were of constant stress amplitude and if sufficient infor­
mation has been reported so that stress vs. cycles to failure (S-N) diagrams 
can be generated. In addition, for the data to be properly recorded in the 
data file the test specimen must be clearly described for purposes of classi­
fication, and the base metal identified (base metal identification may, 
however, be quite general; e.g., "mild steel"). 

The system at the present time cannot accomodate fatigue data obtained 
from variable stress amplitude cycling such as programmed load-histogram 
cycling or random loading, nor can it accomodate data from strain controlled 
cycling unless the stress and strain were proportional throughout the test. 
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particular article or report has been taken (see Fig. 2.1 and descriptions 

below). For each Source Reference List or series of lists, there is a corres­

ponding Source Information Sheet which provides instructions describing the 

procedure to be followed in completing the Source Reference List, together 

with other appropriate information concerning the particular periodical or 

report type. 

The Source Reference List and companion Source Information Sheets 

are organized in the Source File in accordance with the index shown in 

Fig. 2.2. Within each category the lists are filed alphabetically by the 

name of the sponsoring agency (professional society, university, etc.). 

For sec~ions in which a sponsoring agency designation does not apply (e.g., 

books, unpublished individual papers), the lists are filed alphabetically 

by the last name of the senior author. If a sponsoring agency for a publi­

cation is not known, the lists are temporarily placed in an unclassified 

source section until the sponsor is determined. 

Details concerning the contents of the Source Information Sheets 

(Fig. 2.3) and Source Reference Lists (Fig. 2.4) are presented below. 

As noted above, five standard forms (Figs. 2.4a-2.4e) are avail­

able to record bibliographic information, depending upon the type of source 

from which the information was obtained. Information for a periodical (a 

publication that has a volume number and an issue number and mayor may not 

be published at regular intervals) is recorded on Form 1, 2, or 3, depending 

upon the publication interval of the source (Figs. 2.4a, 2.4b, or 2.4c). In­

structions describing the format to be used in completing the Source 

Reference Lists for periodicals are given on the Source Information Sheet­

Periodicals (Fig. 2.3a). An illustrative example of the method for com-
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completing the Source Information Sheet-Periodicals and the Source Reference 

Lists is shown in Figs. 2.5a and 2.5b, respectively. 

Bibliographic information on fatigue literature contained in a non­

periodical such as a special report, thesis, book, bulletin, etc., is listed 

on either Form 4 or 5 (Figs. 2.4d and 2.4e). Form 4 is used when the non­

periodical is sponsored by a specific group, such as a government agency, a 

university, etc., and is part of a series of reports issued at varying inter­

vals, each with its own report number or other identifying designation. This 

form is used in conjunction with a Source Information Sheet-Nonperiodicals 

(Fig. 2.3b), which is to be completed in a manner similar to that used for 

periodicals. The report type, as required on Form 4, would include such 

entries as bulletins, technical reports, memoranda, etc. 

Form 5 is used primarily for reports or papers given at conferences, 

and for books. These sources are issued only once and are not part of a 

series. They may be published by a sponsoring agency, however. The infor­

mation given may include the author or authors, the title of the report, 

the date published, the publisher (if applicable), and the bibliography 

number if data is included. 

2.2.2 Author Index File 

An Author Index File (see Fig. 2.1) is maintained for all docu­

ments concerned with fatigue, regardless of whether the report contains 

usable data for subsequent analysis. This file thus serves as the major 

index to the entire fatigue library; as such, it is cross-referenced with 

the Source File and, where applicable, with the Fatigue Bibliography Num­

ber List and the fatigue data files (see Section 2.3). 
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A sample of a completed Author Index Card is shown in Fig. 2.6. 

The front of the card is completed as soon as it has been ascertained that 

a document is concerned with fatigue. Under IIsource,1I all information 

necessary for locating and identifying the source is recorded, including 

as appropriate, the source title, date, issue or report number, sponsoring 

agency, page numbers, etc. The source title should be identical to that 

used to identify and file the source in the Source File discussed previously. 

The local library call number or other location information should also be 

the same as that listed on the Source Information Sheet. If the report con­

tains usable fatigue data, a bibliography number is assigned from the 

Fatigue Bibliography Number List (see Section 2.2.3) and recorded on the 

front of the index card. 

The back of the Author Index Card is completed when the report 

is summarized. The information includes, in coded form, the specimen types 

tested (see Section 2.4 for specimen type classification and coding), the 

types of steel, and any additional information deemed important, such as 

cross referencing of bibliography numbers when data have been reported 

in more than one source. If a material other than steel has been tested, 

it should be identified on the card, using appropriate material specifi­

cations when available. 

The index card is filed in the Author Index File alphabetically 

by the author's last name, and by the date of publication when several 

reports are listed for one author. In the event the report is presented 

by an agency, with no author(s) listed, the report is filed alphabetically 

by the name of the sponsoring agency. 
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Until a document is summarized (i.e., data extracted and placed 

on Fatigue Data Summary Sheets) the Author Index Card is filed in a IINon_ 

Summarized ll section of the Author Index File (see Fig. 2.1). When a report 

containing fatigue data has been summarized, its author card is then trans­

ferred to a IISummarized-Data'l section of the file. If a report does not 

contai n usab 1 e data, the card- is fi 1 ed ina II Summari zed-No Data ll secti on 

of the Author Index File. 

2.2.3 Fatigue Bibliography Number List 

A Fatigue Bibliography Number List is maintained which includes 

entries for all documents that have been found to contain usuable fatigue 

data. The bibliography number assigned to a report consists of the year 

in which the report was printed and the sequence in which it was reviewed 

among other reports printed in the same year. (A report will have more than 

one bibliography number if it was published in more than one source.) The 

sequence number is assigned when the report is entered in the Fatigue 

Bibliography Number List, an example of which is shown in Fig. 2.7. The list 

includes, for each report, the year of publication, the sequence number 

assigned, the author's name, and, after the information has been summarized 

(i.e., fatigue data extracted and recorded), a notation to that effect. 

Once a bibliography number has been assigned to a document, this 

number is recorded both on the Author Index Card and in the appropriate 

space on the Source Reference List, as indicated previously. The document 

itself is then placed in a permanent Master File of Fatigue References for 

Steel Structures (see Fig. 2.1). Documents in this collection are filed 

by bibliography number. 
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2.2.4 Bibliography of Fatigue Data References for Steel Structures 

As the fatigue library expands and additional fatigue data are 

added to the data bank, a Bibliography of Fatigue Data References for Steel 

Structures is to be maintained and updated periodically to include all new 

entries into the system. Part I of this list contains, in chronological 

arrangement, all the reviewed documents concerning fatigue of steel struc­

tures for which a bibliography number has been assigned. Each entry is 

listed, by bibliography number, using the standard reference format followed 

for published articles, books, etc., as illustrated in the sample shown in 

Fig. 2.8. Part II (see sample, Fig. 2.9) consists of an author index to all 

documents referenced in Part I. 

2.3 Summarizing and Filing of Fatigue Data 

All usable fatigue data (see definition, Section 2.2) are being 

summarized and maintained in a permanent Master Fatigue Data File. The 

process of summarizing data is accomplished by completing appropriate 

Fatigue Data Summary Sheets, two types of which are used, one for welded 

joints and assemblages, and the other for riveted and bolted joints and 

assemblages, Figs. 2. lOa and 2.10b, respectively. The test results for 

plain specimens (e.g., plain plates and bars, rolled beam sections, etc.) 

are summarized on the form for welded specimens. A User's Manual has been 

prepared with complete instructions regarding the completion of the Fatigue 

Data Summary Sheets. Samples of completed sheets for several different 

types of test specimens are shown in Figs. 2. lla-2. llf .. 
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After the data from a particular test or series of tests have been 

recorded on the appropriate data sheets, the sheets are filed in the Master 

Fatigue Data File. The filing is alphabetical by test specimen classifica­

tion (see specimen category 10 in Section 2.4). The data sheets in each 

classification are then arranged in sequence by bibliography number. 

2.4 Coding of Fatigue Data for Computer Analysis 

In order to assemble and analyze, by computer, the fatigue data 

from various sources, it is necessary to record on computer punch cards the 

information summarized on the Fatigue Data Summary Sheets. The parameters 

selected for inclusion on the cards are: 

1. Those necessary to describe the test specimen and 

testing environment, and 

2. Those others considered to affect most markedly 

the fatigue behavior of the test members. 

A total of thirty-three (33) parameters, coded to facilitate 

recording on the cards, have been established to characterize each fatigue 

test; the categories are listed in Fig. 2.12. The six-character code used to 

describe the type of test specimen (category 10, Fig. 2.12) on the computer 

cards is the same as that used to identify the specimen types on the Author 

Index Cards (see Fig. 2.6), and serves also as the descriptor by which the 

individual Fatigue Data Summary Sheets are filed. 

The 33 fatigue data parameters listed in Fig. 2.12 are broadly 

classified under four divisions: 
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1. General Information 

2. Material and Specimen Description 

3. Specimen Fabrication Description 

4. Test Conditions and Failure Description 

Of the four divisions, (1), (2), and (4) are common to all specimen types, 

while division (3) has been further subdivided into two groups, one for 

welded specimens and one for riveted or bolted specimens. For the eight 

entries included in the first division, the actual numerical values (except 

category 3) are recorded in the appropriate FORTRAN format; the remaining 

parameters (categories 9 through 33) appear in coded form. The detailed 

description of the various parameters and their identifying codes are 

included in the User1s Manual, which also contains the computer program 

developed to sort and analyze the data. 

Since each of the 33 categories listed in Fig. 2.12 is essentially 

self-explanatory, it is necessary herein to expand only upon category 10, 

viz., "Description of Test Specimen. II Each test specimen is identified 

by a six-digit descriptor, the coding of which is presented in Figs. 2.13a 

to 2.13f. The first letter or number (Fig. 2.13a) corresponds to a 

general description of the type of test specimen (plain material, welded 

joint, riveted or bolted joint, etc) and the type of loading applied to 

the specimen (whether axial, flexural, torsional, or some combination 

thereof). The second letter or number describes the overall configuration 

of the specimen, while the remaining digits describe the details of the 

connection, fasteners, etc. (see Figs. 2.l3b to 2.l3f for the detailed 

descriptions applicable to each of the general specimen types listed in 
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Fig. 2.13a). Examples of several types of typical fatigue test specimens 

and their corresponding coded descriptions are presented in Fig. 2.14 (see 

also data sheets for these specimen types, Figs. 2.11a through 2.11f). 

The many specimen types included in Ftg. 2.13 cover the vast 

majority of structural details tested to date under fatigue loading. How­

ever, if necessary, it would -be a relatively simple matter to include other 

specimens not presently covered in the system by expanding as necessary 

one or more of the columns used as the specimen descriptors. 

As noted above, the same six-digit code established to describe 

the test specimens for computer identification is used also to identify 

the specimen types on the Author Index Cards and on the individual Fatigue 

Data Summary Sheets. This facilitates the cross-referencing of the Author 

Index File with the Master Fatigue Data File and permits easy manual access 

to desired specimen data stored in the data file. 

2.5 Information Retrieval 

For the fatigue library system to fulfill its purpose, the inform­

mation contained within the system must be readily accessible. As described 

below, the system is organized to permit the retrieval of fatigue data 

either manually or by means of a computer printout. 

2.5.1 Manual Data Retrieval 

The manual method of data retrieval is most efficient when the 

information desired is from a single report or a few reports. It is not 

suited to overall analysis or large withdrawals of information. 
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If the fatigue test specimen types reported in a particular 

reference are known, the data sheets may be obtained directly from the 

Master Fatigue Data File since, as described in Section 2.3, this file is 

indexed by test specimen classification. In addition, the data sheets for 

a particular report may be located if anyone of the following items of 

information about the report is known: author~s name, report source, or the 

bi b 1 i ography number of the report ,. The data retri eva 1 process us i ng each 

of these items is outlined below. 

If the author is known, the Author Index Card is located in the 

Author Index File; this card contains a list of the type(s) of specimens 

tested and the report bi iography number. With this information the data 

can be found in the Maste~ Fatigue Data File. 

If only the source of a particular report is known, the Source 

Reference Lists must be searched. When there is more than one report 

listed for the source, the search becomes a trial and error process. The 

author and bibliography number are given on the appropriate Source Reference 

Listc Having the name of the author, the Author Index Card can be obtained 

to determine the test specimen types. It may be necessary to examine the 

data sheets from several reports before the correct one is found if more 

than one report 1s listed for a particular source. 

If the bibliography number is known, the Master Bibliography 

Number List is entered directly to find the name of the author. Then, the 

Author Index Card can be obtained and the specimen types found as described 

aboveo 
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20502 Computer-Aided Data Retrieval 

It is in this function that the system is most useful and efficient. 

Rather than obtaining the data from specific reports, the system retrieves 

the data stored for each specified specimen type and test parameters 5 analyzes 

the data (i,e0, establishes S-N curves, etc.), and prints both the original 

data and the analytical results in a directly usable format 0 

In most cases the user wl11 be interested primarily in the in­

fluence of certaln material or geometric parameters on the fatigue behavior 

of a specific ~pe of specimen under one or various loading conditions. 

Section III contains a complete discussion of the computer program and the 

procedure for obta1nlng the deSired information from the computerized system. 
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1110 COMPUTER-AIDED ANALYSIS OF FATIGUE DATA 

3, 1 I ntroducti on 

As a result of the basically probabilistic nature of fatigue, 

and in recognition of the large number of diverse material 9 geometrical 

and environmental factors which affect the behavior of a structure when 

considered in its entlretY;J empir'lcal fatigue analyses are commonly 

developed using data from tests of those specimens and models whlch,it 

is assumed 9 closely simulate the behavior of various components of the 

structure ,tn !J-iw. It must be recognized that the extrapolation of infor­

mation, and the conclusions drawn from such analyses, are at best approxi­

mateo The Justification for use of this approach, however, is threefold: 

lc There is currently available a considerable amount of 

laboratory data for scaled structural members and 

details designed and tested for just this purpose; 

20 Certain empirical relationships relating cyclic stress 

(or strain) to fatigue life have attained widespread 

acceptance in the engineering community as being 

r'elevant for a variety of materials 5 specimen details, 

loadings, and environmental conditions resulting in 

fatigue failures over several orders of magnitude of 

1 i fe; and 

30 Design recommendations derived from such relationships 

are genera'l'ly of sufficient simplicity as to be easily 

interpreted and applied by the design engineer. 
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Since design formulas based on empirical fatigue relationships 

obtained for complex structural details do not necessarily provide a 

fundamental understanding of the basic mechanisms involved in fatigue crack 

nucleatlon and propagations the present level of technological advance­

ment 1n this field still does not permit the extrapolation of data from a 

single type of sma111aboratory specimen to explain or predict (except 

1n a qualitative way) the response of a complex system in which is embodied 

simultaneous1y several of the parameters considered critical to fatigueo 

Until such time as analytica1 tools are developed which can be applied to 

this problem with greater confidence, and recognizing the immediate need 

of the deslgn englneer to have at his disposal recommendations for con­

sidering fatigue In deslgn, the empirical approach pursued herein will 

continue to merit use. 

As a result of many investigations with a variety of materials, 

it has been found that a curve of the type illust'ratedin Figc 3.1 

satisfactorily depicts the interrelationship between maximum applied 

* st(ess~ for constant amplitude, stress controlled fatigue tests, and 

the resultant number of cycles to failure, where the two variables are 

plotted to ~ogar1thmic scales. The upper end of the liS-Nil curve, re­

presenting lives normally from one-half cycle (static tensile test) to 

about 103 cycles to failure, is ill-defined since the nominal applied 

stresses are usually well above yield and plastic deformations (strains) 

predominate and control behavior. The S-N curve in this region has been 

found to be nearly horizontal for many materials, as might be expected; 

Defin1tions of the terms used are presented in Appendix A. 
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small changes in controlled stress range reflect large increments 1n strain 

range and, therefore, result in large variations in fatigue life expectancy. 

The central portion of the S-N curve illustrated in Fig. 3.1, 

represent1ng the application of elastic cyclic stresses, may be reasonably 

approximated by a stralght line on the logarithmic plot; it is this constant 

slope portion of the curve that has been used in the development of the 

fatigue formulas presented hereln" For structural steels, the S-N curve 

then approaches a horizontal asymptote, usually somewhere between 106 and 

107 cye 1 es to fa i 1 ure; the correspondi ng eyc'-j i c stress is referred to as 

the fatigue limit, the cycl1c stress below which the material would not be 

expected'to fall in fatlguec For purposes of the present analysis ~ it is 

assumed th~t the ]ong-11fe end of the fatigue spectrum may be approximated 

by the two 1 i near curves i q us trated by the dashed 1 i nes in Fi g G 30 l. The 

point of iritersection of the finite life S-N curve with the horizontal line 

is' taken at 2 x l06 cyc'ies to failure (except as noted in Appendix B) 0 

302 Derivation of Fatigue Life Relationship 

In order to develop the fatigue relationships used in the com­

puterlzed analysis of avaflable test data, it is first necessary to 

delineate the assumpt~ons upon which the formulas are based. These 

assumptions, reflecting in part presently accepted postulates relating 

the ~esponse of a member or detail to the influence of constant amplitude 

stress cycling, are as fo'l1ows: 

lc A linear relationship exists, on a log-log basis, between 

the applied maximum cyclic stress (and, consequently, the 
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cycllc stress range) and the total number of cycles to 

failure. This linear ~egress10n line~ Fig. 3.2~ is taken 

to be valid for stresses below a state of "nominal!! yielding 
If 

over the member cross-section, Sy (or Sp)' at the low life 

end of the fatigue spectrum, and to fatigue lives to a 

maximum of appro~1mately 2 x 106 cycles at the long life end. 

20 For a specific materia'l, specimen type, and testing environ­

ment, the linear log maximum stress-log life regression 

curves are appllcable to tests conducted at all individual 

values of constant cyclic stress ratio, R = Smin/Smax' as 

shown 1n Figr. 302c (This linearity of log Smax vSo log Nf 
may be assumed valjd, independently, for all values of 

cyclic mean stress or minimum stress instead of stress 

ratioL However, such assumptions are not mutually com­

patible, ioeo, if it is determined that log Smax 1s 

linearly re~ated to log N~ for all values of constant 
I 

stress ratio, the corresponding log Smax (or log Srange) 

VS0 log Nf reg~ession lines for various values of 

constant mean stress or minimum stress will not~ 1n 

general ~ be ~inearo) 

From the above assumptions, it follows that the fatigue life 

expectancy of an individual specimen type may be described by the following 

exponential relationship: 

* For flexural tests, this state has been taken to correspond to an 
idealized condition of full yielding over the member cross section. See 
Appendix B for derivation of expressions for "nominal" flexural stress 
under this condition. 
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B 
N
f 

= M . Sa, b, c ... 
a, b,c. . . max 

or 

log Nf = A b + B . log S (1) a, ,c... a,b,c... max 

where 

A = log M 

The constants A and B (B is the inverse of the slope of the S-N 

curve*) are determined empirically from the experimental data for specimens 

tested at various constant stress ratios, Ra, Rb, Rc ' etc., Smax is the maxi­

mum stress per cycle under constant amplitude loading, and Nf is the total 

number of cycles to failure. 

3.3 Description of Computer Program for Analysis of Data 

A computer program has been developed to perform the calculations 

necessary to generate the constants for the fatigue life relationship 

expressed by Equation 1. The program is written in FORTRAN IV language 

for use on the University of Illinois· IBM 360 computer system, with the 

S-N curves and specified tolerance limits being depicted graphically by a 

CALCOMP plotter. Details concerning the input data with which the computer 

operates, the expressions used to generate "best-fit" S-N curves, and the 

nature of the ouput information are presented in the following paragraphs. 

* For some specimen types, this slope has been found to be nearly constant 
for tests conducted at several stress ratios. The more general case is used 
here, however. 
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A flow diagram illustrating the various operations of the program is pre-

* sented in Figo 303c 

Initially, the computer program selects, from the complete bank 

of aval1able test resu~jts, the data for specimens which satisfy desired 

comb1nations of specific member type(s), fabrication procedures and test 

conditions, referred to herein- as prescribed parameters or data "sets"o 

(As described in Sect10n 204 and shown in Figo 2012, a total of thirty-

three parameter categor1es are available to describe an individual fatigue 

specimen and testa) The program then generates and plots an S-N curve 

for the data whose test conditions match each set of prescribed parameters 0 

By varylng the composition of the specified data sets and comparing the 

resulting S-N curves, and fatigue relationshipsg the user can evaluate the 

relative effects on fatigue of various parameters, either individually or 

in combination with others. 

After a desired parameter set has been prescribed, a "best fit" 

regress10n line 1s generated by applying the method of least squares l to 

the linear logarithmic fatlgue life relationship expressed by Equation 1: 

log Nf ~ A + B log Smax 

For purposes of computation, Equation 1 has been expressed in 

the following manner: 

x ;;; A + By (2) 

where x = log Nf and y = log Smax represent the transformed fatigue life 

* The complete computer program and operating instructions are contained 
in a separate Userls Manual. 
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and cyclic maximum stress, respectively. Assuming this stress, Smax 9 

to represent the independent variable and the fatigue life, Nf , to be the 

dependent variable, the constants A and B are established by the least 

squares regression analysis for a set of (n) fatigue data points as 

fol1ows~ 

A ::: 

2 
l: xo L:(y,) - E y. E (x, y,) 

'1 1 1 1 1 
2 2 n E (y . ) - (E y.) 

1 1 

(3) 

B ::: 
n L: (xo y.) - E x, L: Yo 

1 1 1 1 (4) 

where all summations are from 1 to n. 

It should be noted at this point that only data for tests con­

ducted at maximum stresses below the "nominalll yield strength of the test 

member (see Appendix B) are included in the (n) data points. Similarly. 

* a procedure has been developed to insure that data from IIrun-outll tests 

are not indiscriminately included in the S-N curve computations. This 

procedure is presented also in Appendix B. 

* Run-out tests are those conducted with the intention of determining the 
fatigue limit for the test material or specimen. Basicallys the cyclic 
stresses in successive tests are altered in a step-wise fashion until lives 
greater than 2 x 106 cycles are achieved without failure. Such tests are 
often not carried to comolete failure, i.e., the tests are usually stopped 
somewhere beyond 2 x 106 cycles. 
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After the regression coeffients A and B have been determined by the 

method of least squares as outlined above, the standard error of estimate 

correlation coefficient, and the 50 percent and 95 percent confidence lower 

tolerance limits for 99 percent survival are computed. The determination 

of these quantities as ~sed herein is based upon the following assumptions: 

10 Fatigue life, Nf , is a random varidb'le at each stress 

1 eve 1 exami ned c, 

2, The transformed fatigue lives, log Nf , follow a normal 

* (Gaussian) distribution at each stress level (i.e., 

the fatigue lives follow a "log-normal" distribution). 

30 The standard error of estimate of the transformed 

fatigue Jives is the same for all stress levelsD 

The correlat10n coefficient, r, represents an expression of the 

adequacy of the fit of the regression line to the observed fatigue data. 

If r = ~ 15 all pairs of Xi' Y1 data points lie on the straight line 

expressed by Equation 20 As r deviates from the two limits, a decreasing 

adequacy of fi t 1 s i ndi cated for the regress ion 1 i ne 0 Basi ca 11y 5 then ~ 

the correlation coefficient may be considered an indicator of how well a 

set of observed fatigue data can be described by the assumed exponential 

relationship, Equation 10 

'* Provision for use of other distribution functions, as for example, the 
widely accepted Weibulldistrlbution,2~3 can be accomplished with only 
minor changes to the present program if considered advisable at a later 
dateo 
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The correlation coefflcient~ r, is computed as follows: 

where B 1S deflned by Equation 4 and all summations again extend from 1 

to n, 

(5) 

The standard error of estimate, s, expressive of the distribution 

of the data about tne mean (best-fit) line for the assumed log-normal fatigue 

life distribution function~ is determined by: 

2 s 

, - .,2 
1: tX, - xi) 

n - 2 

where x, 1S the observed transformed fatigue life, log Nf ., and ii is , 

(6) 

the va'lue of the transformed fatigue 'l,fe estimated by the regression line, 

-x. ~ A + By, 
1 1 

Substituting the above expression lnto Equation 6, one obtains, 

I [x. - (A + Byo)J2 52 _, 1 
- n - 2 (7) 

By expanding the numerator and sUbstituting Equation 3 for A 

1n the above, the following expression is obtained, after appropriate re­

arrangement of terms: 

[n E \X i )2 - (r x,)2] - 82 [n ~ (Y1)2 - (r Y1)2] 
n (n - 2) (8) 
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or, the standard error of estimate, s, is equal to: 

_ r [n E ( xi) 2 - (E xi) 2] - B 2 [ n ~ (Yi) 2 _ (E y;) 2] ] 1 /

2 

( 9 ) 

5 - L -- - n (n - 2) 

Equation 9 1S the form of the expression for the standard error 

of estimate as calculated by the computer. 

The regression line established by Equation 1 represents the best 

estimate of the lives which 50 percent of the test specimens will survive 

and, consequently, the other 50 percent of the specimens will not attaino 

For purposes of design, it is usually required that curves for survivals 

well above 50 percent be determined as well 1 In the present program~ the 

lower tolerance limits for 99 percent survival (at confidence levels of 50 

'* percent and 95 percent) are computed. The lower tolerance limit for a 

particular percent survival is of the form l
: 

Xi = xi - k (n, p, y) · s (10) 
. p 

-where, as above, x. is the predicted transformed fatigue life and s is 
1 

the standard error of estimate obtained from the regression analysis for a 

set of data containing n data points. The factor k(n, p, y) is a 

function of the number of points (n), the specified percent survival (p), and 

the confidence level (y)n The transformed fatigue life at the lower 

tolerance limit, xi ' corresponding to p percent survival for y 
p 

confidence, is then'determined from Equation 10,where the function 

k(n, p, y) is obtained from the appropriate statistical tables for a 

normal distributionv 4 ,5 These tables have been included in the computer 

* Other survival limits can be computed if desired, by a straightforward 
modification of the computer program. 
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program, and the lower tolerance limits for 99 percent survival at 50 percent 

and 95 percent confidence are reported in the computer printout for each S-N 

curve, together with the correlation coefficient and the standard error of esti-

mate (see Appendix C). The two lower tolerance lines are also displayed on 

the CALCOMP plot containlng the S-N regression line and the data points. 

The complete printed output, for each computed S-N curve, consists 

of the following: 

10 A notation of the variable held constant in the generation 

of the log Smax (or log Srange) vs~ log Nf regression line 

(i.eo, whether the curve represents tests conducted at constant 

stress ratio, constant mean stress, or constant minimum stress). 

20 A coded listing of the stipulated data parameter set for which 

the S-N curve was established. 

30 A listing, including specimen number, cyclic maximum stress 

and fatigue life, of all specimens satisfying the specified 

test parametersc 

40 A listing of the specimens rejected by the computer as 

having cyclic stress levels or fatigue lives beyond the 

limits permitted by the program for inclusion in the S-N 

curve computations (see Appendix B). 

5. The constants A and B which define the equation of the best-

fit S-N curve as established by the least squares regression 

analysiso Also, the correlation coefficient and standard 

error of estimate (see Appendix C). 
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6. A tabulation of the computed fatigue strengths at several 

selected fatigue lifetimes estimated by the best-fit 

regression line, together with the stresses corresponding 

to the standard error of estimate to either side of the re­

gression line, and the stresses corresponding to the lower 

tolerance 1 imit· for 99 percent survival at 50 percent and 

95 percent confidence, also computed at the same selected 

lifetimes (see Appendix C). 

3.4 Program Flexibility 

There is considerable flexibility incorporated in the program for 

the generation and display of the S-N regression lines. Specific examples 

include: 

1. From one to five S-N curves, representing different specified 

parameter sets, can be plotted on one set of axes, permitting 

direct visual comparision of several curves. 

2. Data satisfying one set of desired parameters can be combined 

in a single regression analysis with data satisfying up to 

four other specified parameter sets. 

3. If a large scatter in certain fatigue data is anticicpated and 

no S-N curve is desired, points satisfying a desired parameter 

set may be plotted on the CALCOMP graph without computing and 

drawing an S-N curve through the points. 

4. The program can generate and plot S-N curves relating either 

maximum stress or stress range to cycles to failure. These 

curves can be obtained for tests conducted at a constant 
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specified stress ratio, mean stress, minimum stress, or 

maximum stress (when the ordinate is stress range). 

5. When a constant stress parameter (ratio, mean, minimum, 

or maximum) is specified for a desired parameter set, 

provision can be made for accepting only those data whose 

corresponding values of that stress parameter vary from the 

stipulated value by no more than a prescribed amount (e.g., 

tests conducted at a stress cycle of 1.0 ksi to 60.0 ksi 

could, if desired, be included in the analysis of specimens 

tested at a stress ratio of zero). 

These are some of the variations that can be introduced into the program. 

However, because of the general manner in which the program has been developed, 

many other variations are possible also. 
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IV. ANALYSIS OF SAMPLE FATIGUE TEST DATA 

4. 1 In troducti on 

As stated in Section I, the major function of the system described 

herein is to provide for the rapid and efficient accumulation and statisti-

cal evaluation of fatigue test data. Such an evaluation will be of great value 

to researchers, structural designers, and to specification-writing agencies. 

The evaluative process provides for both the direct assessment of the fatigue 

behavior of structural materials and components, and of the relative effects 

of those design-oriented (member geometry, joining methods, etc.) and 

environmental parameters that influence the fatigue process. In addition, 

such evaluations can reveal those areas where data are currently inadequate 

or where the results indicate that some revision of current fatigue design 

philosophy or specifications is in order. This, in turn, will lead to spe­

cific recommendations for further fatigue research, thereby completing the 

full test-evaluate-modify-retest cycle. 

In the following paragraphs, the operation of the fatigue analy-

sis system is demonstrated by examination of the behavior of three types of 

fatigue test members: (a) plain plates, (b) full penetration butt weldments 

with reinforcement intact, and (c) full penetration butt weldments with 

reinforcement removed prior to testing. Comparisons are made among the members 

for specimens fabricated from each of three general classifications of steel: 

structural carbon steel; high-strength, low-alloy steel; and high yield 

strength quenched and tempered alloy steel. In those instances where 

large scatter in the fatigue test data for a specific member type precluded 
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meaningful statistical analysis, an examination of the parameters contri­

buting to the wide dispersion of fatigue lives is presented. 

The results for each of the member types and steel categories are 

compared to the corresponding fatigue design requirements included in the 

current and tentative AASHO specifications. 7 It must be emphasized, however, 

that these comparisons are intended to be preliminary at this time, for the 

data upon which the computerized analyses are based represent only those 

tests currently in the fatigue library system. These data, although relatively 

complete, do not represent all of the appropriate data presently available 

in the literature, nor, of course, do they include information just becoming 

available at the time of preparation of this report. It should be noted, 

further, that the specimen categories of the AASHO specifications (A, D),7 

with which the results are compared, are used also for types of members other 

than the three considered herein. Nevertheless, certain observations from 

such comparisons are appropriate, insofar as they may be used to indicate 

when a gross disparity exists between test data and specification limitations 

which could be quite significant if the specifications are shown to be 

unconservative. 

4.2 Results of Fatigue Data Analysis 

4.2.1 Plain Plate Material 

The plain plates considered in this study consist only of those 

tested in the lias-received" condition; i.e., full thickness plates con­

taining the original plate surface with mill-scale intact. No specimens that 

were surface treated (e.g., descaled, polished, painted, galvanized, etc.) 
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have been included. For purposes of S-N curve formulation, the plates 

were grouped into three general classifications as follows: 

Classification 

1. Structural Carbon Steel 

2. Hi gh-Strength, 
Low-Alloy Steel. 

3. Hi gh Yi e 1 d Strength, 
Quenched and Tempered 
Alloy Steel 

Steel Grades 

A7, A36, A373, "mild steel ll 

A242, A44l, A572 

A514, A517 

The results of the regression analysis for plain plates of each of 

the three steel classifications are presented in Tables 4.1,4.2, and 4.3, 

and represented graphically in Figs. 4.1 through 4.3, and Figs. 4.9 through 

4.11. The computed S-N curves and regression line constants from which the 

fatigue strengths reported in the tables were obtained are given in Appendix 

C, Plots 1 through 7. 

Tables 4.1,4.2, and 4.3 include the computed fatigue strengths 

at selected lifetimes of 105, 5 x 105, and 2 x 106 cycles corresponding to 

the regression lines for "best fit,!! and the lower tolerance limit for 99 

percent survival at 50 percent confidence.* The results are reported for data 

from tests conducted at stress cycles of complete reversal, zero-to-tension, 

and, where available, for half-tension-to-tension. By means of simple linear 

interpolation, the fatigue strengths corresponding to other stress ratios 

can be approximated for fatigue lives of 105 and 2 x 106 cycles from the 

fatigue diagrams (modified Goodman) of Figs. 4.1,4.2, and 4.3. (Only the 

computed fatigue strengths corresponding to the lower tolerance limit for 

* See discussion of regression analysis, Section 3.3. 
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99 percent survival at 50 percent confidence are included in the modified 

Goodman diagrams.) 

An examination of the three grades of steel covered in Tables 4.1 

through 4.3 reveals that, at short lives (105 cycles) there is a direct 

relationship between the fatigue strength ("best-fit curve") and the static 

tensile strength for stress cycles of both complete reversal and zero-to-

tension. Further, as shown in the table below, the ratio of fatigue 

strength to tensile strength is approximately the same for all three grades 

and a given stress cycle (except for the quenched and tempered steel at 

zero-to-tension reflecting, perhaps, the lower tolerance of the material 

for the localized plastic deformations that are present in specimens for 

tests conducted near the material yield point). 

ComQlete Reversal Zero-to-Tension 

Static Fatigue Fatigue 

Tensile Strength Fatigue Strenqth Strength Fatigue Strength 
Strength F100,000 F10O,000 

Steel Grade (ksi) (ksi) Tensile Strength (ks i ) Tensile Strength 

Structural 60 27 0.45 54 0.90 Carbon Steel 

High-Strength 70* 37 0.53 64 0.91 Low-Alloy Steel 

High Yield Strength 
Quenched & Tempered 115 62 0.54 90 0.78 

Alloy Steel 

* Median value used; range is from 60 ksi to 80 ksi. 

At the long life end of the fatigue spectrum, there appears to 
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be no consistent relationship between fatigue strength and static tensile 

strength. For example, at a fatigue life of 2 x 106 cycles, the fatigue 

strengths of the three grades of steel are within approximately 9 ksi of one 

another for a stress cycle of complete reversal, while at zero-to-tension 

the variation in fatigue strength is only about 6 ksi. Thus, at long fatigue 

lives corresponding to cyclic stresses well below the tensile strengths of 

the respective steel grades, the evidence indicates that a common fatigue 

strength (and, consequently, a common allowable stress for fatigue design) 

may be suitable to represent the entire range of steels examined herein, at 

least for stress cycles varying from complete reversal to zero-to-tension. 

In Figs. 4.1 through 4.3. the fatigue test results from the plain 

plate material may be compared to AASHO design specifications 7 for lives 

of 105 cycles and 2 x 106 cycles. The comparisons can be made between the 

design curves and the computed fatigue strengths corresponding to the lower 

tolerance limit for 99 percent survival at 50 percent confidence. The 

design curves contain a cut off at a maximum stress corresponding to the static 

allowable stress values* but are shown also extrapolated linearly beyond 

the cut off point to provide a more meaningful comparison with test 

results. 

The design relationshi ps 7 for base metals (AASHO Category A) are: 

a. For 100,000 cycles, 

60 
l-R but not more than 0.55Fy ...... . 

b. For 500,000 cycles, 

(1·1 ) 

* The maximum allowable static stress corresponds to 0.55 x yield strength. 
For the high-strength low-alloy steels, a representative allowable static 
stress of 27 ksi, corresponding to a yield strength of 50 ksi, has been used. 
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Fr 
36 but not more than 0.55F (12 ) l-R y 

c. For 2,000,000 cycles, 

Fr 24 but not more than 0.55Fy (13 ) l-R 

where 

Fr = allowable fatigue stress, ksi (maximum stress) 

R = Algebraic ratio of the minimum to the maximum stress 

F = ~1 i n i mum y i e 1 d strength of the material y 

These correspond to constant ranges of stress of 60, 36, and 24 ksi for the 

three conditions shown. 

If it is assumed that the fatigue resistance correspondinq to the lower 

tolerance limit (LTL) for 99 percent survival at 50 percent confidence pro-

vides a suitable factor of safety for design (an assumption consistent with 

many fatigue specification requirements), a number of observations may be 

made concerning the present fatigue provision of the AASHO specifications 7 

in relationship to the fatigue behavior of axially loaded plain plates. 

These are as follows: 

a. Structural Carbon Steel (Figs. 4.1, 4.9. and Table 4.1) 

For Nf = 100,000 cycles there is no fatigue desiqn 

problem and only the basic maximum allowable stress 

(0.55Fy) need be considered. In fact, the LTL (lower 

tolerance level) in complete reversal is 20 percent above the 

allowable stress and for a zero-to-tension loading is 
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115 percent above the allowable stress. For Nf = 2,000,000 

cycles the LTL in complete reversal is 48 percent above the 

allowable stress and for zero-to-tension is 27 percent above 

the allowable stress. However, if the fatigue relationship of 

Equation 13 is extended above the basic design stress limit 

(cut-off), the zero-to-tension ratio is 6 percent rather than 

27 percent. Thus, it is evident that the current design rela­

tionshi ps 7 do not provide a consistent correlation with the 

behavior of axially loaded plain plates. 

b. High Strength Low Alloy Steel (Figs. 4.2,4.10 and Table 4.2) 

The low alloy steels, just as the structural carbon steels, 

are governed by the basic maximum allowable stress (0.55F ). 
y 

The ratios of LTL to the specified allowable stresses are: 

lif = 100,000 ~f = 2,000,000 

Complete Reversal 1.26 2.00 

Zero-to-Tension 1.82 1.30 

It is evident that the design relationships do not model 

properly the fatigue behavior of the axially loaded plain 

plates under the loading conditions represented by the data 

in Fig. 4.2. 

c. High Strength Quenched and Tempered Alloy Steel 

(Figs. 4.3,4.11 and Table 4.3) 

The safety provided by the current fatigue design 

requirements 7 for the quenched and tempered steels is not as 
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great as that noted above for the other structural steels. 

The ratios of the LTL to the specified allowable stresses 

are: 

Complete Reversal 

Zero-to-Tension 

l1f = 100,000 

1 .22 

1 .10 

[if = 2,000,000 

1 .03 

0.98 

Furthermore, the value of 1.03 would be 0.95 if the allowable 

were not limited by the basic maximum allowable stress 

(0.55Fy). In addition, it can be seen that the design relation­

ships again do not model properly the fatigue behavior of the 

axially loaded plain plates under the loading conditions re­

presented by the data in Fig. 4.3. (The slopes of the solid 

and dashed lines differ considerably.) 

From the above discussion it is evident that the current AASHO 

fatigue design requirements 7 for base metal (Category A) do not provide good 

correlations with the behavior observed on the laboratory plain plates sub­

jected to axial loads. 

4.2.2 Transverse Butt Welds with Reinforcement Intact 

Transverse butt welds with the reinforcement intact and fabricated 

in the three classifications of steel considered above (Section 4.2.1) 

have been included in this phase of the investigation. The results of the 

regression analyses, where possible, are presented in Tables 4.1,4.2, and 

4.3 and represented graphically in Figs. 4.4 through 4.6 and Figs. 4.9 
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through 4.11. The computed S-N curves and regression line constants from 

which the fatigue strengths reported in the tables were obtained, are given 

in Appendix C, Plots 8 through 14. The results are reported for data from 

tests conducted at stress cycles of complete reversal, zero-to-tension, 

and where available, for half-tension-to-tension. In the tables best fit, 

lower tolerance limit (99 percent survival and 50 percent confidence), 

and AASHO allowable 7 stress values are reported. (Only the computed fatigue 

strengths corresponding to the LTL and the AASHO allowables are included 

in the modified Goodman diagrams.) 

An examination of fatigue resistance of the welded joints in terms 

of the static tensile strength of the base metal in the joints reveals a 

significant variation in magnitude. The ratios for the lower strength steels 

(structural and low-alloy) were 50 percent greater than those for the quenched 

and tempered steels, again reflecting the lower fatigue tolerance of the 

quenched and tempered steels; however, in this case, the relationships 

existed both at shorter lives (100,000 cycles) and at longer lives 

(2,000,000 cycles). 

Of major importance in this analysis is the comparison of the 

fatigue resistance of the butt-welded joints with the AASHO allowable 

fatigue design stresses. 7 As in the case of plain plate material the 

comparisons are made between the design curves and the computed fatigue 

strengths corresponding to the lower tolerance limit (LTL) for 99 percent 

survival at 50 percent confidence, and for lives of 105 and 2 x 106 

cycles. The AASHO design relationshi ps 7 for weld metal or base metal adjacent 

to butt welds (Category' D) are: 
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a. For 100,000 cycles (Structural Carbon Steel--A36) 

Fr 
20.5 but not more than 0.55F (14 ) 1-0.55R Y 

b. For 500,000 cycles (Structural Carbon Steel--A36) 

Fr 
17.2 but not more than 0.55Fy (15 ) = 1-0.62R 

c. For 2,000,000 cycles (Structural Carbon Steel--A36) 

Fr 
15 but not more than 0.55Fy (16 ) = 1-O.67R 

The allowable stresses obtained from these relationships are increased by 

as much as 63 percent for the quenched and tempered steel at 100,000 

cycles, 22 percent at 500,000 cycles, and no increase at 2,000,000 cycles. 

The increases for the high-strength low-alloy steels are about 8 percent 

at 100,000 cycles, 3 percent at 500,000 cycles and no increase at 2,000,000 

cycles. Comparisons of these fatigue design relationshi ps 7 for butt welds 

with reinforcement intact, with the LTL for 99 percent survival at 50 per-

cent confidence obtained from axially loaded transverse butt welds provide 

the following: 

a. Structural Carbon Steel (Fig. 4.4, 4.9 and Table 4.1) 

A large scatter, believed to be a result of variability 

in weld quality, was obtained under a complete reversal of 

stress (see Plot 8, Appendix C). Because of the degree of 

this scatter, S-N curves were not computed for the data and 

comparisons with the design relationships are difficult to 
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make. Nevertheless, an examination of the data reveals that 

at a stress cycle of ±16.0 ksi lives ranging from 28,000 

cycles to 1,634,300 cycles were obtained and these lives 

can be compared with an extrapolation from the design relation­

ships of Equations 14, 15, and 16 of about 22,000 cycles. 

Thus, even with.this tremendous variability in the data, the 

design relationships appear to provide adequate safety for 

complete reversal of stress. 

For a zero-to-tension loading there also was a large 

amount of scatter but not of such magnitude as to preclude 

the calculation of an S-N curve. In this case it is found 

that for Nf = 100,000 cycles the LTL is well above the 

maximum allowable stress (0.55Fy). However, for 2,000,000 

cycles the LTL is only 72 percent of the allowable stress 

and the average fatigue strength only 12 percent above 

the allowable stress. Thus, for long-life conditions the 

current design relationship appears to be unconservative and 

in need of adjustment. 

b. High-Strength Low-Alloy Steel (Figs. 4.5,4.10 and Table 4.2) 

Because of a lack of data for axially loaded transverse 

butt welds in high-strength low-alloy steel subjected to a 

complete reversal of stress, S-N curves are not available and 

data cannot be plotted on the fatigue diagram of Fig. 4.5. 

Thus, a great need exists for information on the fatigue be-

havior of such members under reversal. 
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For the zero-to-tension loading, just as in the case of 

the structural carbon steel, there was a considerable scatter 

in the fatigue behavior. Nevertheless, an S-N curve has been 

computed and selected values are presented in Table 4.2 and 

Fig. 4.5. Again it can be seen that for Nf = 100,000 cycles 

the LTL is well above (40 percent) the maximum allowable 

stress. However, at 2,000,000 cycles the LTL is only 90 

percent of the allowable stress, whereas the average 

fatigue strength is 38 percent above the allowable design 

stress. The long-life relationship would thus appear to be 

in need of revision. 

A limited amount of data is available also for a loading 

of half-tension-to-tension. These data indicate that, for the 

half-tension-to-tension loading, a significant factor of safety 

exists even for Nf = 2,000,000. When combined with the zero­

to-tension information, as shown in Fig. 4.5, it appears that 

the form of the basic design relationships may be in need of 

change also. However, such a change should be made with care. 

c. High-Strength Quenched and Tempered Alloy Steel (Figs. 4.6, 

4.11 and Table 4.3) 

Extensive data are available for axially loaded trans­

verse butt welds in the high-strength quenched and tempered 

alloy steels, thereby providing for an excellent comparison 

with the current design specifications. 

The smallest amount of data is available for members 
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subjected to a stress cycle of complete reversal. Never­

theless, the ratio of the fatigue resistance to the allowable 

stress appears to be satisfactory at both 100,000 and 

2,000,000 cycles. 

Ratio of Average 
to Allowable 7 

Ratio of LTL to 
Allowable 7 

~f = 100,000 ~f = 2,000,000 

1 .59 1 .51 

1 .08 1 .02 

For a zero-to-tension loading, extensive data exists 

for the steels considered and S-N curves have been established. 

Again there is considerable scatter in the data, but this can 

be expected from the higher strength materials because of their 

fatigue sensitivity. In this instance the correlation with 

the specifications is not as good as for the case of reversal. 

Ratio of Average 
to Allowable 7 

Ratio of LTL 
to Allowable 7 

~f = 100,000 ~f = 2,000,000 

1 .62 1 .43 

0.99 0.87 

The allowable stress at 2,000,000 cycles appears to be 

somewhat high in this case. 

Because of the high strength of the quenched and tempered 

steels, testing under half-tension-to-tension is possible, 

even to the shorter lives. Consequently, considerable data 
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have been obtained under this type of loading cycle, and S-N 

curves established. When presented on the fatigue diagram 

of Fig. 4.6, it is readily evident that for this loading cycle 

the allowable stresses are overly conservative. Much more con-

sistent design could be obtained from design relationships of 

the following type: 

1. For 100,000 cycles (quenched and tempered steels) 

33 = l-R 

33 = 1-0.5R 

(for tensile loads only) . 

(for cycles with 
reversal of stress) 

but not more than 0.55Fy . 

(17 ) 

(18 ) 

2. For 500,000 cycles (quenched and tempered steels) 

20 = l-R (for tensile loads only). (19) 

(F)± = 20 (for cycles with ( 
r 1-0. 5R reversal of stress) · 20) 

but not more than 0.55Fy. 

3. For 2,000,000 cycles (quenched and tempered steels) 

13 = l-R (for tensile loads only). (21) 

(F)± ~ 13 (for cycles with (22) 
r 1-O.5R reversal of stress) · 

but not more than 0.55Fy . 

The following tabulation provides a comparison of the 



Stress Cycle 

Complete 
Reversa 1 

Zero-to-
Tension 
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results of the laboratory tests with the above relationships 

and shows a very consistent pattern of reliability or safety 

with the suggested design relationships. 

Comparison of Fatigue Data with Allowable Stresses 
Provided by Equations 17 to 22 Inclusive 

Ratio of Average Ratio at Lives of, 

or LTL to Allowable N = f 100,000 Nf = 500,000 N = f 

ave/all. 1 .56 1 .57 
LTL/all. 1 .01 1 .06 

ave/all. 1 .65 1 .65 
LTL/all. 1 .00 1 .00 

2,000,000 

1 .56 
1 .06 

1 .65 
1 .00 

Half-Tension- ave/all. 1 .51 1 .49 1 .47 
to-Tension LTL/all. 1 .01 1 .00 0.98 

Just as in the case of plain plates, it is evident from the 

above discussion that the current AASHO fatigue design require­

ments for transverse butt welds 7 could be improved to provide 

a more consistent relationship to the fatigue behavior ob­

served in the laboratory. 

4.2.3 Transverse Butt Welds with Reinforcement Removed 

The third type of member considered in this study is a full-

penetration transverse butt weld for which the weld reinforcement has been 

removed and the surface ground in a direction parallel to the direction of 

loading to remove local transverse notches. A limited amount of data is 

available for this type of member. Nevertheless, where sufficient data exist, 
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a regression analysis has been made and the resulting information is presented 

in Tables 4.1,4.2, and 4.3 and in Figs. 4.7 through 4.11. The computed S-N 

curves and regression line constants from which the fatigue strengths reported 

in the tables were obtained are given in Appendix C, Plots 15 through 19. 

Because of the limited data available the computed fatigue strengths 

are available only for a zero-to-tension loading cycle. However, an examina­

tion of Tables 4.1 and 4.2 indicates that in general the fatigue resistances 

of the members with the weld reinforcement removed is not greatly different 

than that of the members with the reinforcement intact. Thus, the benefits 

often reported for members with the reinforcement removed may not be a bene­

fit that can be depended upon. Because of this the design specification for 

welds with the reinforcement removed may be less conservative than expected 

or possibly unconservative, particularily for welds with internal defects. 

The AASHO design relationshi ps 7 for butt welded splices for which 

the weld reinforcement has been removed are the same as for the base metal 

(see Equations 10,11, and 12). Thus, higher allowable stresses are permitted 

when the weld reinforcement is removed. Comparisons of the allowable 

design stresses for butt welds with the reinforcement removed, with the 

LTL for 99 percent survival at 50 percent confidence obtained from axially 

loaded transverse butt welds provides the following: 

a. Structural Carbon Steel (Figs. 4.7,4.9 and Table 4.1) 

Sufficient data are available only for an examination of 

a zero-to-tension loading, and even then the data are com~ 

promised by a large amount of scatter. Nevertheless, at 

100,000 cycles, the LTL is well above the maximum allowable 
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stress (0.55Fy). However, at 2,000,000 cycles, the maximum 

allowable stress is 58 percent above the LTL and only 8 

percent below the average fatigue resistance. Thus, for long-

life conditions the current design relationship appears to be 

unconservative and in need of adjustment. 

The ratios- of the fatigue resistance to the allowable 

stress are as follows: 

Ratio of Average 
to Allowable 7 

Ratio of LTL to 
Allowable 7 

Nf = 100,000 ~f = 2,000,000 

2.08 1 .08 

1 .21 0.63 

b. High-Strength Low-Alloy Steel (Figs 4.8, 4.10 and Table 4.2) 

As in the case of the structural carbon steel, a regression 

analysis was made only for a zero-to-tension loading, and then, 

only a limited amount of data was available. The relationship 

to the allowable design stress is also much lower than desired, 

indicating that for this type of steel the design relationships 

are also in need of adjustment. 

The ratios of the fatigue resistance to the allowable 

stresses are as follows: 

Ratio of average 
to allowable 7 

Ratio of LTL 
to allowable 7 

~f = 100,000 ~f = 2,000,000 

1 .31 1 .21 

0.79 0.72 
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c. High-Strength Quenched and Tempered Alloy Steel (Fig. 4.11 

and Table 4.3) 

Extensive data are available for the axially loaded 

transverse butt welds in the high-strength quenched and tem­

pered alloy steels (see Plots 17, 18, and 19 of Appendix C). 

However, because of the large amount of scatter it was not 

possible to establish reasonable regression relationships from 

these data. In order to establish some measure of the validity 

of the AASHO design relationships the allowable stresses 

have been compared with the bottom of the scatter bands in 

Plots 17, 18, and 19 and provide the following: 

Relation of Allowable to Bottom of Scatter Band* 

Stress Cycle Nf = 100,000 Nf = 500,000 Nf = 2,000,000 

Complete Reversal Below Below Below 

Zero-to-Tension Above Above Above 

Half Tension-to-Tension Below Below Below 

* "Below ll indicates that the design relationship is conservative and 
"above" indicates that it is unconservative, assuming that the 
allowable stress should not be above the bottom of the scatter band. 

The above tabulation suggests that the current design pro-

visions may be in need of adjustment for a zero-to-tension 

loading. However, if the several unusually low data points 

in Plot 18 are neglected (they appear to be extremely low), 

then all of the zero-to-tension values could be categorized 
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Ilbelow" also and the specification would then appear to be 

very consistent. This matter, and the effect of weld defects 

on the behavior of these quenched and tempered members needs 

to be studied in more detail. Through the introduction of 

weld quality control it should be possible to obtain for 

these materials-the same excellent correlations shown above 

for welds with the reinforcement intact and the design rela­

tionships of Equations 17 to 22 inclusive. 

4.3 Discussion 

It is readily evident from the discussions of the preceding sections 

that a data analysis system has been developed that can be used to provide 

an effective and important evaluation of the current AASHO design specifica­

tions. 7 It is also important to note that the system has been designed in 

such a manner that, as additional data become available, a re-analysis of 

all existing data or, if necessary, selected data can readily be made to update 

and improve design requirements. 

Specifically, an analysis has been made of the fatigue behavior 

of (a) three types of members: plain plates, butt welds with the rein­

forcement intact, and butt welds with the reinforcement removed; (b) in 

three types of steel: structural carbon steel, low-alloy steel, and high­

strength quenched and tempered steel; and (c) for various types of loading 

cycles: reversal, zero-to-tension, and half-tension-to-tension. In the 

analysis this behavior is compared in detail with the fatigue provisions of 

the current AASHO bridge design specifications. 7 
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Based on the fatigue analyses it can be concluded that: 

1. The current design relationshi ps 7 for the three types of 

members studied do not provide consistent correlations nor 

properly model the fatigue behavior of the members established 

by laboratory tests. 

2. In some instances the current design relationships are un­

conservative when related to the lower tolerance limit for 99 

percent survival at a 50 percent confidence level of the 

available fatigue data. 

3. The correlations with Equations 17 to 22 inclusive demonstrate 

the excellent reliability that can be established in desi~n 

relationships when adequate laboratory data are available and 

a suitable number of design relationships are provided to 

cover both tensile loadings and loadings in reversal. 
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v. RECOMMENDATIONS 

A fatigue analysis system has been developed and reported herein 

whereby large volumes of fatigue data can rapidly be retrieved, and statis­

tically analyzed in terms of numerous interrelated parameters. In addition, 

the effectiveness of the system has been demonstrated by using the system 

to evaluate, for several types of members, the manner in which the current 

AASHO bridge design specifications 7 related to the existing data in the 

"Fatigue Data Bank." In view of the relatively poor correlations obtained in 

several instances between the design specifications and the laboratory data for 

the limited number of structural details studied, extensive additional evalua­

tions are clearly needed. To make these evaluations and to make more effE:ctive 

use of the system described herein, the following steps are recommended. 

1. To assemble and place in the Fatigue Data Bank all existing 

suitable fatigue data. Numerous new references are now avail­

able and provide data that should be added to the Fatigue 

Data Bank. 

2. To analyze the available fatigue data for all types of struc­

tural members and details covered by the current bridge design 

specifications. 

3. To evaluate the existing bridge design specifications in terms 

of the best available data, and to recommend modifications in 

these design requirements where necessary_ 

4. To define in detail those areas in which added fatigue data are 

required to better define the appropriate fatigue design rela­

tionships. 



52 

5. To initiate parametric studies of the many variables that 

affect the fatigue behavior of various types of members and 

connections in order that improvements in fatigue resistance 

might be realized through design and fabrication recommenda­

tions. 

6. To expand the bibliographical data to include member descrip­

tions in order that existing references for the many different 

types of members and details might be readily located by those 

possessing the Fatigue Data Bank bibliography. 

The completion of these tasks will require a tremendous amount of 

time and effort. Nevertheless, the benefits that can be realized in terms 

of structural safety and reliability in structures that are subjected to re­

peated loads will be invaluable. 



53 

LIST OF REFERENCES 

1. Reemsnyder, H. S., "Procurement and Analysis of Structural Fatigue 
Data,1i JOulLnal. 06 ;the SbLucXulLcU Viv~ion, ASCE, Vol. 95, No. ST7, 
Proc. Paper 6693, July 1969, pp. 1533-51. 

2. American Society for Testing and Materials, IIA Guide for Fatigue 
Testing and the Statistical Analysis of Fatigue Data,1I ASTM Special. 
TeehniecU Publieation No. 91-A, Second Edition, ASTM, Philadelphia, 
Pae,1963. . 

3 . t~ irs chi n g, P. H. and Y a 0, J. T . P ., II S ta tis tic a 1 Me tho d sin S t ru c tu r a 1 
Fatigue~'" JOulLnal. 06 ;the SbLuc;tulLcU Viv~ion, ASCE, Vol. 96, No. ST6, 
Proc. Paper 7377, June 1970, pp. 1201-19. 

4. Owen, D. B., IIFactors for One-Sided Tolerance Limits and for Variables 
Sampling Plans,1I Sandia COILpolLa.:tf..on MonoglLaph SCR-607, Office of Technical 
Services, Dept. of Commerce, Washington, D. C., March 1963. 

5. Natrella, M.G., IIExperimental Statistics," Na.:tf..oncU BulLeau 06 S;tandafLdo 
Handbook 91, U. S. Government Pri nti ng Offi ce, t~ashi ngton, D. C., 1963 
(reprinted 1966). 

6. Munse, t~. H., Fa.:tf..gue 06 Welded SbLuc;tU/Le..6, Helding Research Council, 
New York, N. Y., 1964. 

7. American Association of State Highway Officials, S;tandafLd Speci6iea.:tf..on6 
60IL H~ghway BfLidg~, Tenth Edition, 1969, with Interim Specifications, 
1971 . 



TABLE 4.1 

COMPARISON OF FATIGUE TEST DATA WITH AASHO DESIGN SPECIFICATIONS 
FOR STRUCTURAL CARBON STEEL 

COMPLETE REVERSAL ZERO TO TENSION 
I 

HALF TENSION TO TENSION 

~ 
I 

* 
I 

L.T.L.* 
, 

L.T.L.* Best L. T.L. AASHO Best AASHO I Best AASHO 
Fit 99% Survival Allowable Fit 99% Survival Allowable 

I 
Fit 99% Survival Allowable 

S2ecimen Tt2e 50% Confi dence Stress** 50% Confidence Stress ** 50% Confidence Stress** 

FATIGUE STRENGTH AT 100,000 CYCLES (KSI) 

Plain Plate 26.5 24.1 (20.0) 54.0 42.9 (20.0) (20.0) 

Transverse Butt Weld with 
Reinforcement Intact 13.2 40.3 25.7 (20.0) (20.0) 

Transverse Butt Weld with 
Reinforcement Removed (20.0), 41.7 :24.3 (20.0) (20.0) 

FATIGUE STRENGTH AT 500,000 CYCLES (KSI) 

Plain Plate 22.4 20.4 18.0 40.9 32.5 (20.0) (20.0) 

Transverse Butt Weld with 
Reinforcement Intact 10.6 25.3 16.1 17.2 (20.0) 

Transverse Butt Weld with 
Reinforcement Removed 13.8 27.8 16.2 (20.0) (20.0) 

FATIGUE STRENGTH AT 2.000,000 CYCLES (KSI) 

Plain Plate 19.4 17.7 12.0 32.1 :~5. 5 (20.0) (20.0) 

Transverse Butt Weld with 
Reinforcement Intact 9.0 16.9 '10.8 15.0 (20.0) 

Transverse Butt Weld with 
Reinforcement Removed 9.0 19.6 111.4 18.0 (20.0) 

---

* Lower Tolerance limit 
** 

Numbers in parentheses indicate maximum allowable stress based on static design considerations (0.55 x Yield Strength) 

(J1 

+::> 



TABLE 4.2 

COMPARISON OF FATIGUE TEST DATA WITH AASHO DESIGN SPECIFICATIONS 
FOR HIGH STRENGTH, LOW ALLOY STEEL 

~ 
'COMPLETE REVERSAL ZERO TO TENS ION 

Best L.T.L.* AASHO Best L.T.L.* AASHO 
Fit 99% Survival A 11 owab 1 e Fit 99% Survival Allowable 

S~ecimen T~~e. 50% Confidence Stress** 50% Confidence Stress** 

FATIG"UE STRENGTH AT 100,000 CYCLES (KSI) 

Plain Plate 37.1 33.9 (27.0) 63.5 49.0 (27.0) 

Transverse Butt Weld with 
Reinforcement Intact 15.0 49.8 32.5 23.2 

Transverse Butt Weld with 
Reinforcement Removed 22.5 35.5 21.2 (27.0) 

FATIGUE STRENGTH AT 500,000 CYCLES (KSI) 

Plain Plate 30.8 '28.2 18.0 50.0 38.5 (27.0) 

Transverse Butt Weld with 
Reinforcement Intact 11 .1 31.1 20.3 18.0 

Transverse Butt Weld with 
Reinforcement Removed 13.8 27.3 16.3 (27.0) 

FATIGUE STRENGTH AT 2,000,000 CYCLES (KSI) 

Plain Plate 26.3 24.0 12.0 40.7 31.3 24.0 

Transverse Butt Weld with 
Reinforcement Intact 9.0 20.7 13.5 15.0 

Transverse Butt Weld with 
Reinforcement Removed 9.0 21.8 13.0 18.0 

* Lower Tolerance Limit 

** 

------

HALF TENSION TO TENSION 

Best L.T.L.* AASHO 
Fit 99% Survival All owabl e 

50% Confidence Stress** 

(27.0) 

(27.0) 

(27.0) 

(27.0) 

69.3 52.0 26.1 

(27.0) 

(27.0) 

42.0 31. 6 22.4 

(27.0) 

Numbers in parentheses indicate maximum allowable stress based on static design considerations (0.55 x Yield Strength) 

Ul 
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TABLE 4.3 

COMPARISON OF FATIGUE TEST DATA WITH AASHO DESIGrl SPECIFICATIONS 
FOR HIGH YIELD STRENGTH, QUENC~lED AND TEMPERED ALLOY STEEL 

~ 
COMPLETE REVERSAL ZERO TO TENSION 

~l 
HALF TENSION TO TENSION 

Best IL.T.L.* AASHO Best L.T.L.* AASHO Best L.T.L.* AASHO 
Fit 99% Survival A 11 owab 1 e Fit 99% Su rvi va 1 Allowable Fit 99% Survival Allowable 

Specimen Type 50% Confidence Stress** 50% Confidence Stress** 50% Confidence Stress** 

FATIGUE STRENGTH AT 100,000 CYCLES (KSI) 

Plain Plate 62.0 36.7 30.0 90.2 56.8 (55.0) (55.0) 

Transverse Butt Weld with 
Reinforcement Intact 34.4 23.3 21. 6 54.6 33.2 33.6 99.6 66.B 46.3 

Transverse Butt Weld with 
Reinforcement Removed 22.5 45.0 (55.0) 

FATIGUE STRENGTH AT 500,000 CYCLES (KSI) 

Plain Plate 36.0 21.3 lB.O 56.2 35.4 36.0 (55.0) 

Transverse Butt Weld with 
Reinforcement Intact 20.9 14. 1 13.0 33.0 20.1 21.1 59.4 39.9 30.6 

Transverse Butt Weld with 
Reinforcement Removed 13.8 27.5 55.0 

FATIGUE STRENGTH AT 2,000,000 CYCLES~ 

Plain Plate 22.5 13.3 12.0 37.4 23.5 24.0 4B.0 

Transverse Butt Weld with 
Reinforcement Intact 13.6 9.2 9.0 21.4 13.0 15.0 38.1 25.5 22.4 

Transverse Butt Weld with 
Reinforcement Removed 9.0 18.0 36.0 

1< 

Lower Tolerance Limit 

** ') Numbers in parentheses indicate maximum allowable stress based on static design considerations (0.55 x Yield Strength 

<.Jl 
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Collection 
of Data 

Storage of 
Data in 

,..---- ----- Retrievable Form __ t!IZID __ _ .... - ... .., 
~ ~l;;~iE ~ll~ __ .J 

............. ~ Efficienc 11- _____ Y I ____ ..A 

External 
Directives 

, q 

Computer Data Fi 1 e 
Analysis Access 

FIGo LI DATA PROCESSI NO OUT FUNCTIONS 



AUTHOR 
j 

(A) 

Author Index File 

Item Located in File 
I Author A B C 0 
ITitle A - - 0 
l Source A - C 0 
l Bib 1 i o. No. A B C 0 
ISpecimen Type A - - 0 
ISteel Type A - - 0 

Index Information 
(b) 

FIG. 1.2 SCHE IC OF T 

SOURCE 

B1 

(c) 
Source Reference List 

SPECH~EN TYPE 

t 

(D) 
Master Fatigue Data File 

FATIG 

Access to Data Sheets 
(a) 

BRA SYSTEM 

BIBLIOGRAPHY NUMBER 

(B) 
Fatigue Bibliography 

Number List 

Linkaae of Indexes 
~ (c) 

01 
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SOURCE FILE 

Source Information Sheet 

~riodicalr Non-Periodicals 
Form 

I 
Form Form I Form Form 

4 5 123 

Source contains data Source contains no date 

1 
Master 

Fatigue Bibliography· 
Number List 

Summarized 

Master File of 
Fatigue References for 

Steel Structures 

~ 

Unsummarized 

AUTHOR INDEX FILE 

No Data 
Author Index Card "'" 

Data Author Index Card Author Index Card 
Side 2 Surrmarized Side 1 Side 1 & 2 

I 

FIG; 2.1 IGUE INIFORMAT SOURCE LING SYSTE 
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FILE SECTION 

I I 

III 

IV 

v 

VI 

VII 

VIII 

IX 

X 
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SOURCE CATEGORY 

Government Agency Publications 
United States 
Foreign 

Professional Society Publications 
National 

United States 
Foreign 

International 

Private Research Organization Publications 
United States 
Foreign 

Educational Institution Publications 
United States 
Foreign 

Corporation Publications 
United States 
Foreign 

Trade Publications 
Uni ted States 
Foreign 

Conferences 
International 
National 

Books (Private Publishing Houses) 
United States 
Foreign 

Individual Papers 
U nit e d S ta t e s 
Foreign 

Unclassified Sources 

SOURCE FILE 



Source: 

61 

SOURCE INFORMATION SHEET 
PERIODICALS 

1. Instructions for filling out Source Reference list: 
a. Select appropriate Source Reference list Form (based on issue interval): 

weekly (Form 1) monthly (Form 2) Quarterly (Form 3) 

other (specify and use Form 1,2, or J) 

b. Record progress of search 
1. being conducted 

the completion of a search 
c. Record bibliographic information in author cplumn 

1 On Eonn 1 • record lIluthor-weeki month (i s5We number) 
II pag. 'bibL no. ) 

2. On Form 2: record author-month (issue number) II page. (bibl a no. ) 
3. On Form 3: record author- (issue number). page ( bi b 1. no. ) 

2. brary call no.: 

3. Facilities for location of source: 

4. Frequency of gue information: 
periodic frequent occasional seldom 

F 2.30 EI 
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SOURCE INFORMATION SHEET 
NON-PERIODICALS 

Source: 

1. Reports on Source Reference List (Form 4) are arranged by: (select one) 
Chronological order Series Number Other (specify) 

2. library call no.: 

3. Facilities for location of source: 

4. Frequency of fatigue information: 
periodic frequent occas4onal 

5. Remarks: 

2.3b EI 



Yr Weeks 

1 2 3 lX 1 

Ja V My 

Fe V Ju 

Ma V Jy 

Ap V Au 

Yr 

Ja V My 

Fe V Ju 

Ma V Jy 

Ap V Au 

'Yr 

Ja V My 

Fe V Ju 

Ma V Jy 

Ap V Au 

'Yr 

Ja / My 

Fe / Ju 

Ma / Jy 

Ap / Au 

'Yr 

Ja V ~ 
Fe V JIIJ 

Ha V Jy 

Ap V Au 

Source : 

2 3 ~~ 
l/~ Se 
l/t' Oc 
l/~ No 

k< Dc 

~~ Se 
Vi Oc 

V No 
~/ Dc 

~: Se 

V Oc 
k/ No 

k< Dc 

L Se 
/1 Oc 
LI No 
/1 Dc 

L: Se 

L' OC 
~' No 

V< Dc 

1 3 ! ~ 
/ 
L 
V 
~ 

~ 
V 
lL: 
V 

lL 
V 
V 
V 

V 
V 
V 
V 

L 
V 
V 
V 

SOURCE REFERENCE LIST (FORM I) 
(Weekly Periodical) 

AUTHOR 

FIGm 2.40 SOURCE RE RENCE LIST 11 FOR 

-,--

_. 

OJ 
W 



SOURCE REFERENCE LIST (FORM 2) 
(Monthly Periodical) 

1 Vr I~: I:: I:: I: I:: I: 1 AUTHOR 

Source: 

FI 2. b SOURCE FERE LI , FOR 2 

01 
.+;::. 



SOURCE REFERENCE LIST (F~~ 3) 
(Quarterly Periodical) 

Ivr I d 21 3\ 4\ AU~TH~OR~ ______________________ ~ 

Source: 

Ge 204c SOU E REFERENCE LIST, FORM :3 

O'l 
U1 



i Yr I Mo IDay I AUTHOR _1 REPORT TYPE 

Source : 

Go 20 d SOU F 

SOURCE REFERENCE LIST (FORM 4) 
(Non-Per i ad i ca 1 ) 

REPORT NO. 

ST, FOR 

REPORT TYPE REPORT NO. BI alNO 

O'l 
m 
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SOURCE REFERENCE LIST (FORM 5) 
(Non-Peri od1 ) 

BIBLIOGRAPHIC INFORMATION BIBL. NO. 

2. E REFER E LI 5 



Source: 

68 

SOURCE INFORMATION SHEET 
PERIODICALS 

WELDING JOURNAL - RESEARCH SUPPLEMENT 

1. Instructions for filling out Source Reference list: 

cl. (based on 

other (specify and use Form 14Ll or 3) 

b. Record progress of search 

1. 

the completion of a search 
c. Record b1bl10gragh1c information in author column 

1 On FOnD ] . record author-weekg month (issue number) D 

2. On Form 2 : record author-month ( 1 ssue number) 11 page. 
3. On Form 3: record author- (issue number) !l page ( bi b 1. 

2 • Lib r a r y call no.: 669. 1 730 6 A~l 

3. Facilities for location of source: Engineering Library 
professor W. H. Muose 

4. Frequency of fatigue information: 

fre uent 

5. Remarks: Journal of the American Welding Society 

FIG. 2.50 PLE 
R 

R IN R 

page OJ] 0] • 00.) 

(bib' I no. ) 

no. ) 

SH T 



Yr Ja fe Ma !Ap 

19 Jy Au Se Oc 

60 X X X X 

X X X X 

61 
X X X X 

X X X X 

62 
X X X X 

X X X X 

X· X X X 
63 

X X X X 

64 
X X X X 

X X X X 

65 
X X X X 

X X X X 

66 X X X X 

X X X ' X 

67 
X X X X 

X X X X 

6~ 
X X X X 

X X X ,X 

69 X X X X 

X X X X 

My Ju 

No De 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

SOURCE REFERENCE LIST (FORM 2) 
(Monthly Periodical) 

AUTHOR 

Munse .. AD (4) 172s fN7Tf): 

Sanders" De (12) 529s~: 

Fall" Ap (4) 145s~: Kalbfleisch - Ja (1) 23s(62-n): We 1 ter - Au (8) 3685 (62-17) : 

Vac .. AD (4) 182s(N75): Koo is t ra .. Jy (?) 2q 75 ffiZ[): 

Ro 1 fe .. Ju (6) 2525 CfllID : Welter - De (12) 5655 ~: Yen - Ju (6) 2615 UilQ): 

Mind 1i n .. Ju (6) 2765 CB::12J 
Berman - Jan (1) 245 ~ : Manson - Au (8) 3445 @Z[) : 

De Paul" Se (9) 4095 (HZ[): Reemsnyder .. Oc (10) 458s ~: Freytag - Ap (4) 1455 ffiZ[): 

Rolfe" Ja (1) 405 ~: Sanders" Fe (2) 495 ~ : Wu .. Au (8) 3655 ~: 

Payvar .. Ap (4) 1615 ~: Wood - Fe (2) 90s (N!D): Yeniscavi ch - Ma (3) 1115 lliZID: 

Crooker .. Jy (?) 3225 ffiZ[) : Kal tenhauser - Se (9) 39 15 CfrlQ): We 1 ter .. Ja (1) 395 ~ : 

Nippes - Ag ( 8 ) 37 15 ffiZID : 
Hickerson .. Fe (2) 635 ffiZID: 

Hersh - Se (9) 3895 <I0D: Howes .. De (12) 5435 (]I[): Reemsnyder .. Ma (5) 2135 ~: 

Toprac .. Ma (5) 195s ~: Li ndh .. Fe (2) 455 (frill: 

Source : Welding Journal - Research Supplement 

F 2 b D E FERE E LI 

-=1 

I 
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AUTHOR Sanders, W. W. 2 Derecho, A. T.; Munse, W. H. 

TITLE Effects of External Geometry on Fatigue Behavior 

of Welded Jojnts 

SOURCE Welding Journal--Research Supplement 
Vol. 30, No.2, February 1965 p. 49s 
American Welding Society 

LIB. CALL NO. 669.17306 AM 
....IP~r~o:..J..f_e ....",M.l.blybb,An .... s e_____ B i a L. NO. -..6'-W-5---<7t..--__ 

SPEC. AAFKBI 
TYPES 

STEEL ASTM A36-61T 

ADDITIONAL INFORMATION 

Front (side 1) 

AADXBI 

See also Bibliography Numbers 65-37 & 65-38 

References to be checked--Done 

Back (side 2) 

IN o 
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FATIGUE BIBLIOGRAPHY NUMBER LIST 

Year 1965 

Ref. 
No. Author 

1 . + Harrison, J. D. 

2.+ Rolfe, S. T. ; Haak, R. P.; Gross, J. H. 

3.+ Kampschaefer, G. E., Jr.; Havens, F. E. ; Bruner 

4.+ Macfarlane, D. S. ; Harrison, J. D. 

5.+ Payvar, K. ; Vasarhelyi, D. D. 

6.+ Munse, W. H. ; Stallmeyer, J. E. , & Rone, lJ. vI. 

7.+ Sanders, W. W. ; Dorecho, A. T. & Munse, W. H. 

8.+ Toprac, A. A. 

9.+ Se 1 by, K. A. ; Stallmey_er, J. E. & Munse, W. H. 

10. + King, D. C.; S 1 u t te r , R. G. ; Dri s co 11, G. C., Jr. 

11 . + Reemsnyder, H. S. 

12.+ Braithwaite, A.B.M. 

13.+ Harrison, J. D. 

14. Marsh, K. J. 

15.+ Newman, R. P. ; Dawes, M. G. 

16.+ Harr;son, F. D. 

17.+ U. s. Navy, NASL, T. M. #31 

18. + U. S. Navy, NASL, T. M. #34 

19. + U. S. Navy, NASL, T. M. #39 

20.+ Gyorgy;, F. 

21 . + Walls, J. C. ; Sanders, W. W.; Munse W. H. 

* Code: Yes--report has been summarized 
+ References available in File 

E 81 

* Summarized 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

I 
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1969 (continued) 

69-11* Toprac, A. A. "Fatigue Strengtb of Hybrid Plate Girders," Helding 
Journal Research Supplement, Vol. 48, No.5, May 1969, pp. 195s-202s. 

69-12* Reemsnyder, H. S. "Some Significant Parameters in the Fatigue Proper­
ties of Weld Joints," Welding Journal Research Supplement, Vol. 48, 
No.5, May 1969, pp. 213s-20s. 

6']-13* Gurney, T. R. "A Re-Analysis of Some Fatigue Test Results Obtained 
for Specimens with Longitudinal Non-Load-Carrying Fillet Welds," The 
Welding Institute, Report E19/l/69, January 1969. 

69-14* Nord, E. (Larsson, B., Editor). "Effect of Hot Dip Galvanizing on 
Fatigue Strengths of Steel," Swedish State Power Board, International 
Lead-Zinc Research Organization, Inc., Private Communication to Pro­
fessors Birkemoe and Munse, Laboratory Report 12/19/63, June 25, 1969. 

69-15* Fromm, K. "Dynamic Strength of Welded High Tensile Steels," Inter­
national Institute: of Welding 1969 Annual Assembly Public Session, 
July 14, 1969. 

69-16* Nakamura, H., Kuriyama, Y. and Yamazaki, Y. "Application of 80 kg/mm
2 

Grade High Strength Steel to High Pressure Vessels," International 
Institute of Welding Annual Assembly 1969 Kyoto, Japan, Public Session, 
July 14, 1969. 

69-l7~" International Institute of Welding, Commission XIII. "The Effect of 
Slag Inclusions on the Fatigue Strength of Machined Butt Welds," 
Commission XIII Working Group, "welding in the ~\Torld," Vol. 7, No.4, 
1969, pp. 212-38. 

69-18* Kloppel, K., Seeger, T. and Nowak, B. "Experimentelle und Theoretische 
Untersuchungen Zum Schodigungsverhalten Danerbeanspnichter Geschweipter 
Krenzstope aus St 37," Veroffentlichung des Instituts fur Statik und 
Stahlbau der Technischen Hochschule Darmstadt, Heft 5, 1969. 

69-19* Colson, G. and Hassonnet, C. H. "Essais de Fatigue .t'.LaSI:lque sur des 
Eprouveltes lisses et Entailles," Centre de Reserches Scientifiques 
et Techniques de l'industrie des Fabrications Metal1iques (CRIF), 
MT 46, Belgium, March 1969. 

69-20* Sperle, J. O. "Influence of Static Mean-Stress on the Fatigue Strength 
of \tJelded Joints, II Unpublished work--Summary of results taken from 
Monograph on Fatigue Strength of Welds, Section II, issued by 
Svetskommissionen Ingeniorsvetenskapsakademien (Royal Swedish Academy 
of Engineering Sciences), Stockholm, 1969, pp. 04lA-041-l7. 
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FAT IGUE DATA SUMMARY- DEPARTMENT OF CIVIL ENGINEERING- UNIVERSITY OF ILLINOIS- URBANA, ILLINOIS 
WELDED SPECIMENS Data R(IIcord(lld on Faillilue Coding Form No 

BASE METAL PROPERTIES SPECIMEN PROPERTIES Rel/IIIIWflr: CII 'd : {IO} SPECIMEN TYPE: 
-~-----

(III)Specificaflon Insignotioo: Yield Point Ultimate Str Datlll: ( I ) BIBLIOGRAPHY NO: _____ 51'1"1 __ 01 __ 

Monufacfurill4ll Procus;: Library Rlllf No.: Aulhor(s) : 

Shope or Pla1111 Ducr ipt ion: AVE. FATIGUE STRENGTH TEST CONDIT ION S Title: 

Stril1Ss Cycl(ll: U!!'I) Enl/ironm@nt. 

MECHANICAL PROPERTIES (COUPON I CVCIIllIll 5tn)$$ (2111) Temperature: Source: 
---~~-------

(4) Viold Point: 100,000 (271 Loading Fr@quency. ___ 

(s)Ultimah Strength: 2 000,000 Volume ' ________ Number: 

Porc@nf Rllld. of Ar@o: (H)Typ@of Loodil1Q:----- Dote: Pages : 

PIHc10nf Elong. In. __ Gog@ Length: IC The!llll Data f rom Pages: 

INDIV IDUAL FAT IGUE TE ST RESULTS 
(5) Units for Tut Data ' ___ 

CHEMICAL COMPOS IT ION PflIrCfllnt 
C ___ Mill ___ P ___ S II 21Spfl1c StnllSllll Cycle (II) Cycles to (52) Location of F rocluni 55) CP~ (n) Method of Load M@ollurement; 

SI--- --- --- No 6) Min. (11 Max. Failure TFL 

--- --- ---

SPECIMEN AND FRACTURE DETAILS 

(II)ThiCklullu: ___ 112,R@{I».Dim@nliona: __ 
(!!O) 80lis for StrellB Calculation: 

Ii Rat io Crock Pr02agat lon, L Ih (5llFailurlll Crlt@rion: 
, Total Fat iQue LIt. 

WELDING DESCRIPTION 
W1HWeiding Process: 

(IIljl Welding Gas Uud: (1111) Welding Position: 

(t11l)Electrode Type and Handling Ducriptlon: 

(20) WlHd D@hct Ducripfion: 

Penis (It,) Elect rode (tl1llAwips Speed of Bock Ch~. 01 (I'IIl) Polarity: (21) N.D.T. Oluerl/otionll: 

No. Sin allld Sp@c. A.C.-D.C. Volts Welding Grinding IU) W@ld Insp@ctlon: 
YIIlS or No 

(24) PrGft@at 
T@mp@ratur@: 

(HiIITII@oT@ticol Str@ss Conc. FactOYjK,: (u) Weld R@pair History: 

(17) C r i tical Stress Int@nsity Foctor; Ke: Intl1lrpass 

Fabricotion, Sp@c., Notes, Remarks i T@mplllrature: 

(15) a (14) Surface Treatm@nt, Finish, Coating: 

(111) Mechanical and/or Th@rmal Strus Alteration Treatm@nt Ihfcfe or 
After Welding: 

FI 2@1 IGUE EL o s 

I 
I 

-......J 
..j::::. 



FATIGUE DATA SUMMARY- DEPARTMENT OF CIVIL ENGINEERING- UNIVERSITY OF ILLINOIS - URBANA, ILLiNOIS 
RIVETED AND BOLTED SPECIMENS Doto Recorded or, FOllgue Coeli"!;) Form No 

BASE METAL PROPERTIES SPECIMEN PROPERTIES Rel/,eIll/IiH: ---~~--- (IO)SPEC!MEN TYPE ------- -- _ .. _-----_._--

(9)SpoclficotiOO O®!ilgoohoo: Yield POint I Ultllnat. Sty Dote ( ! ) BIBL IOGRAPHY NO ' _____ SIHM~ ... _ot __ 
Manufacturing ProullIII, Library Ref No .. ______ Author(s) . ____ . .----

-~-.~ ---_. ----
Shope or Plat@ Oellcrlption: AVE. FAT IGUE ST RENGTH TE ST CONDIT ION S TIII@: __ .. --------- -"--- .,.--.- --- -----

--.---- Strull Cycle: _____ . ___ (llS) Environment, --_._- ---- --_.---_. -.-~ - --------------.--_._---- -----
._----------.----

MECHANICAL PROPERTIES (COUPON 1 Cvtln SIron (Ui) Temperotur@,_. _____ Source. --_._-- ._._-_.- _._ .. _._---
(4lYleld Point: _____ .. ---

ICO 000 (1l7) Loadll'l~f Fr@quency ____ .----... - . __ ._-- ._-----

(slUIt,mah Strength; !.tCOO,OOO Volume Number --' 

Percl!nt R@d. of Ar@a: (mlType of Loading: Dote -_. Pagu _._ .... _ .. _. ______ 

PGHCent E long In __ Goge Lengt .. : K; The!>e Data from Paglilll; 

INDIV IDUAL FATIGUE TEST RESULTS 
(!I I uniTS Tor Test Data ' ____ 

CHEMICAL COMPOS IT ION Percent 
C __ . __ Mn ___ P ___ S ____ !)~ StrUli C~ (@)Cycles to 

(U) Loca1 ion of F r acturll ")cp~ In) MlilThod of Load M@OlJlufemenf; 
Si '-- --- --- ---- No IIIIMin. (7) MOl!. Failure TFL 

---- -'-- --- ----

SPECIMEN ANO FRACTURE DETAILS 

(II I T h,cltflell II; ___ II! 1 Re" D.tMlfllllons: __ 

(Ml Ratio, ::::: : ISOI lkIlJlill for StrlillillJl (Alculcltion' 

lit R@tio Cr@etl Prol!)"@tlon lif\1l Oil! Failure Cri1lilrion: 
, Tot@1 Fctl~ Ufe 

FASTENERS 

(illll TYI" : ___ lIllll Splilciflcotioo II Country: !tllll OiatMItlilv : 

Yi®ld StrenGth: (till) Ultimatlil Strength: E 10nGot 101'1, 4iiJo : Hardnlllu: 

Chlllmi~1 Comp,: C __ Mn __ P __ S __ Si -- -- ----lIO) Hollil Clearance; 

(ItO) ClampinG Forclil: (10) Hole Prlllparaflon; 

RIVETS BOLTS 

Ullll Heod TYI": (11ll) Type: ---------------_ .. 
UtO) Manu1/acture : Hot Formed --Cold Form@d (til Type of Thread; (!lie) Type of Nui: 

(.lill Thliloretical Str-It!))lII Cone. foctor;I<,; ___ ... __ (llO) DrillinG: Hot ___ Cold IU) No. and Type of 'IIasI'l0H1: 

('7)Cr,fical Strlil!l\\l Int0nslty Factor,Kc: ____ Manool Mochinlll (231No of Threodll in Grip ' __ ._ 

Fabrication, Spec., Notelll, Rlilmorltll : OUWllr; (201ln5tollot ion PrOCEtdUflil' --- ---_.-._--------

(13) II (14) Foylng SurfaclII Treatment, Cleaning, Finish and/or Coating; ___ 
--------.------.. -- -.-.----.-.--.---- ._- --- -----_._-------

-.--~ 

lilt;) M@chanical and/or Th@rmal Treatm@nt B@for@ or Aft@r Fabrication ,_ 
-

F 2 b RI ED s 

-.J 
01 



FATIGUE DATA SUMMARY- DEPAIRTMENT OF CIVIL ENGINEERING- UNIVERSITY OF ilLiNOIS- URBANA, llLlNOIS 

WELDE 0 SPEC I ME NS Data Recorded or, FalillUiII Cod I nil ""orm No QQJ..J_ 

BASE METAL PROPERTIES SPEC IMEN PROPERTIES """.,,"'" ;=,~"-:;9#hJl ,,01 SPECIMEN TYPE' AAXl( X.L. _ -~----. 
(9lSpeclflcotlon DeSlgnOtlo.n .• lL&.J; .. ::/ Cfs. //If Yield POln! '.UI.t .. lmOle. SIr Dat!l:~~. ..flL_-,I.{.L.i'BiL .. (: lB!8L!OGR.AP. HY .. Nl.' JO. 5..:::_ .. G_she.Il~.---.Lo.'_.tt_ 
Monufaclurlnll Process. _________ 4-,9l"r) 'j Library Ref No : ________ .. ___ Au'hor1s:' ~"'-5_(,W_ji.-, S1~£:L~~ 
~d.E..._ZZS S ZB __ /iJY':!_L. J k/ .... _ .___ __ _ _______ . --

Shope or Plate Descrlpf lon, ________ .____ AVE FAT IGUE ST RENGTH TE ST CONDIT iON S T "I e : __ EAT/t;-_~--&nAJ/.LJ:JjLJ2P--Ll.&.,y-..L?£..A...r.!E. 
_ .. _,3.V¥~~_x_..2.'·;,CI,eE X f/8. //~d~tF Stress Cycle: _Q_~ __ !:_, ____ (251 Env Ironmant j'llll ______ ~.L12LJ .. , £«[.7'..:. . .1:1;.£ L12i£..<? ;l£u,yL~_._Ld. _7=L_.$J'£€L 

MECHANICAL PROPERTIES (GOUPON) C vc I@s Stress (~~;;;;~rot-~r~-:_=.R.!2.~~ Sourc;·:Q.:,,~::::_~/' .4f. f~g-r-~£;;;e-____.;;;,~~2... _5-';;;;z... 
(4) Yield Point: __ ~.z_'__~ __ . ____ 100,000 h r, ? (27)Load ln ll Frequ@ncy _______ ...t:&..Iff~~_, _____ .. ________ .. _. 
(5)Uliimate Strenlltl1;~/S ~OO(~OQQ __ ~B, I /00 D~~_'"1 ___ Volume' ________ "'umber 

Percent Red. of Ar@o'dna/- jI,'tu'h. (2e)TypeofLooding:~~ Dal!l:M~'£y~>_ Poges,_./=£J. .-------;-
Percent Elong. in.~~_Gallll Length:_~ K, 0.200 Cp'1ce.kr"J<. These Data from Pages: TAA<.&J /Z Yj" LiF, I"" y'_y".;L 

CHEMICAL COMPOS IT ION. Percent 
INDIV IDUAL FATIGUE TEST RESUL TS 

(3) Unds for ot13~ Doto. 
A"~p - /.A.)C# - j-Ec.. -~ 

(2ISp@C (elCycles to (52) Location of Fracture 33)CPL (z9lMell1od of Loae MllJaSLIrlilmenf: 
No Failure TF L L 0"'10 ON 5' P6c.;;,,,,FA.-i /'12A'S"'IU'O 

C~MnO.7/ P~S~~ 
SI .0....?:.LA/i _Q,J1Cr~ v' o. oS 
!if.. O,¥'''1{_C" ~U l?~ usp- I' 173. bOO ':£,,;7'/'a.fed ;.., ;~A"5;r/u.., i?a... d>v.. 5 1 rio f Ily' />?£.4,.,)S o,c ""1 Py',v""".,,,,,..,,lif're-

te 

/' - 0",", 7"'#'.<"" rA'T/&-wE ~-Pc..-¥/,v/!, 
'"', .... " .......... ~ .. '-' '''~'''v" .... UL-'~''-'-' ",S7.': I 3/8 ':;00 I,,)r)a./c.d /h 7esr sec..r..",~ 'five,., 

\d)ThicknllJ5s:~ (12)RIili).Dlmlilnsions: 7"-/' IUSP-31 0.0 I..-GO. 0 I 203.6 00 1 ( C<.T eel?!!' ne ... - r"-a'1S/T;.o~ I I 
- - ).o·t-7'O,ol//Z3~.yoolJ Y'a.c!)UY 5.. 1 

-I- ¥O, 0 3/50% 00 /1/0 /"""'/L U Rc f::: L "Ased 0'" 
~5o, 0 5"SB /9'0 7n';7",,,,,/,,,,/ ,.., r;:"'M,7/"" Ra.r/<-<.5 k. rJ . / I r. /. nOm",.,,,,, ,P /A ~ 

1""10,0 ///$%oo;z:, .7';$'/'ecn .... neAr "RJ, .... S ~ a0-""e;-rs/O/lS 

o 0 J ~ _Ratio Crock Propagation Life ( .. 3.llFa.ilure C.fitlillri.on:EKC.£S.S/V"; L)':-C=oRm4DQ,v_C&W5EO c9 Mu,A'o-<lIn. ) Total Fat igue L iff! WI rGd ;Co .[ro e pVfCK/NE: C)ffPlt:.K IASt;.o~L.'("Y- Y2: T#Ro ... 6-H SP':cu""F-v 

~ WELDING DESCRIPTION 
, (I~lW@lIding ProcliIss: No r ,;'9 PP....=L_c/--"C....r..tti''--''''8 .... L. .... tE"''''-_____________ _ 

I~ 5" '1'8" wnW411ding Gas Used: _____________________________________ (19) Wlilldint! POSltl-·o-n-.-=--=--_-_--_-_---_-__ ,._ 

-..l (l9)Electrode Type and Handling Description : _________________________________ _ 

o 0 

1f.';V ~ i 1 1 I-

L~ --t-9-"-~~ .J-l.--~" 
(16) Thllloreiical Stress Conc. FactorjK,: nor~ 
(I71Criticol Stress IntenSity Factor;Kc:no;/'1/rl-E'n 

Fabrication, Spec., Notes, Remarks: 

20110 OF 

(20) Weld Defect Description: 

Pas~; I (lfoI) Electrode I(lSlAm!)S 
No. Size and Spec. A.C,-DC.I Volts 

Speed Ofl8acl\ Ch.ip, 01 (I'll) POlarity 
Welding Grlndlnll 

Yes or No 

(24) Preheat 
Templilroture: 

Intsrposs 
Temperature, 

(13) a (14) Surface Treatment) Finish, Coating ;..dL._R.(2~!fi:L. . .:2.<orEA!cES ___ _ 
E04FE'S A!1£C-A//,vEO, PgAlAl //.:.EP ~ 'pc''-/uL£~. _______ _ 

WI) llilechanical and/or Thermal Stress Alteration Treatment Befere or 
Aftlilf Welding:~£...~E.t!' .. _....LS_ . .t'£......d.~_f'<~?2i'ff~L~o S'~~?4..... 

T UE 

(211 N.D.T. Observo! ,ons, 
(22' We Id Inspect ion 

(jt5) Weld Repair History; 

T- p 

'-J 
m 



FAT IGUE DATA SUMMARY- DEPARTMENT OF CIVIL ENGINEERING- UNIVERSITY OF ilLINOiS -- URBANA, ILLINOIS 

WELDED SPEC IMENS Dote Recorded on Fatigue Coding Form No 

BASE METAL PROPERT IES SPEC IMEN PROPERTIES Revl~wer :g..(J--'sL-_i;k 'd : D.5J~ (10) SPEC IMEN TYPE. _LLDAALL _____ 
(9 )SpeCificatian Designation: 1-1 '{-flQ Yield Point Ultimate Str Date: St!'";9.c~?? (I )BIBUOGRAPHY NO :J§.4-/~Sheel_/_ol ~ 
Manufacturing ProclIss, t2t7/"'" !1/I.I<:17 Library Ref No,: __________ Author(s) :El_s;,L(LL-/-t1.~{i,+S.s;.JiLyJLfLT-.'---bLg!-r--

jVLLLD1Y~r-_6!.,_,.e~ __ _ --' -- -- -- --------------
Shape or Plate Duc;iption :~~~ AVE. FAT IGUE STRENGTH TEST CONDIT ION S T it Ie: _A_5~fli2Y _.fL!':~C!.":C::.J;)("--L-f-.-£A.LL.6':.hLL----
-------- Stress Cycle: ~_ C (25) Environment :~ __ ~r £L.N:t:ZIff __ DE. (:--.E!.-t":!Ptl£S s {k'L 5"p£r;:,t~~..5-_ 

~qE~Y..JfL~L.L_~u;:_YM'Jc.L_d_:"L~~L_ 
MECHANICAL PROPERTIES !COUPON) C vc lEIS S t re $S (-;-;;)Tempero ~~--;:k~ Source : _Ss.,~LL-LyY<£5r_Lf'f5~_~~~ 

(4) Yiclid Point: 'l~,z ------- 100,000 (21lLoading Frequency: ___ ~~_&Z-~L&!L ",u".·JJ:.L.175:_._. L/qr. "'r:.:LV~ 

(5)Ultimale Strength: /t>¥. fZ 2,000,000 /0- /Z. C l!. t!:Z Volume ' _________ Number, -------
Percent Red. of Ar@la: ~t2./- q/4/-e,., (2®)Typeof Loading: Dot~ : £?~~~~<L Pages _../....£2_£ ---
Percent Elong. in.3~_Gog@ -c@ngth:.d~ K: t£Y/~L - Ce;rce~r"l c.. These Data from Pages: ?£ Z 

INDIV IDUAL FAT IG UE RESULTS 
(5) Units for Tes! Doto ' ____ 

CHEMICAL COMPOS IT ION i PIHc@nt 
TEST ~A.lc.#'- SEC.. - ~ 

C ___ Mn ___ P ___ S _____ ( !)Spoc Stress Gyc Ie (1IlCycles fo (32) Location of Fracture 33) CP~ (29) Method of Lood M@asurem@nt; 

SI--- --- ---- - Na. (6) Min. (7) Mall. Failure TFL 
;#E.A15u.A!EIVJ£ NT o,c J.-1'c.k 

--- --- --- ------ I -45.s /3/000 ?~ESSU"(!E cro/ES ""'A'~AJ/r"OE 
0,0 AJr gAls.!!" 0/ .Norc/-! Nor 

SPECIMEN AND FRACTURE DETAILS 2-
0/ AI.P"p,L/E"GJ ..:<>'#0 

-S2,6 0.0 3/779 j?RoPAl6'l'9r /AJ6- /1.40 N 9'LL y G-IVIi!.AJ 
(1iIThicknnll:~(llf)R@p.Dimen!lions:~ 

3 i -5{,.'? 0.0 2/2 0 0 /A.J w/9R 0 (30) Basis for Stress Calculation: 

- 4- -{;£J. 3 0,0 1/+34-
/VET ~/I!f!'A' A'/" ,Morc..¥ 

/' " ,J?"Dr: 
-f = ff9 

( I 5 -7-4. 0 0,0 SIO 

"- ./ 
ill! Rat ia Crack Pro2agat ion, L ih ulI,2,!aiJuu Criterion: L.NIL.t..&!.L/<2.&!. atE. ljr/6'~€. u,,!l!,;,:& .d.:i. 

, Total Fat igue L IhI 'ETEcTEO GV L/~ rfi'A<:"". c. T':C <;;r/A. ~ - WELDING DESCRIPTION 

(tIilIWelding P~aceu: /'VQz:. t!1.1!.~'('L.CE1..ti..L~ 
v 

1 
(leI W@lding Gas Us@d: (till) WeldIn(! Position: 

~2.Z.5~ !islElectrade Type and Handling Description: -

~"""r-/.5'~ 
./ 

~"~ i"i . (2o)W@ld D@hct Description: 
(.ot; 

........... Pass (itill Elillct rode (l9lAVilps Sp®ed af Back Chip, or 1I'iI) Polarity: all N,D,T. Observa t ions: V/ 
No, Sin cnd Spec, A.C.-D.C. Volh Welding Grinding (ul We Id Inspect ion: 

Yes or No 

A 
(24) Preheat 

V Temp@rature: 

(1I!IITheof@tical Stress Conc. foctOf;KI:~_ (UI Weld Repair History; 

(I7)Crifical Stress Intensity foctor;K,::&oz:lill4':tfAI. Inhrpass 

fabrication, Spec., Notes, RemcHks ; Temp@rature: 

5 PEc../~L:/!J M,#C/?"/A/EO • .&-"A'O/o/ 

2. i ,/ r#/C.k:, ;P~A'TE.s. THE 
(13) a (14) Surface Treatment, finish, Coating : ___ . 

STEEL. --------
--

NOTC#' rH.4c.¥/,AJEo. ,w.-?~ 
!l!Jl M®chonical and/or ThllIrmal Stress Alteraflon Trtilatm@nt Befcre or 

SPEC/AlI;:""; w4.r /.AJ:f:r.R~.-.fP4;r#O After WiIIldinj.:~~~-.d.. /OZ~~-.LJ. /,NOucE 

.7d tJ.tFT.t!f!CA .A¥/A/.5" SrR-9/4 /l4A).rr£ ,4,t:>o 
7EAI.sU.{(E~/OUd,L.. Srj?E.5S d'r C#.E &orC~_.A'j>g~"""£-£:~-;ez ~"'r 
E§l«"A'L /P z:~e !:yEL.L) STRESS 

lib s D 
R 

L 

'-.I 
'-.I 



FATIGUE DATA SUMMARY- DEPARTMENT OF CIVIL ENGINEERING- UNIVERSITY OF iLLINOiS-- URBANA, ILLINOIS 

WELDED SPEC IMENS Date Recorded on Fatigue Coding Form No OD8~ 

BASE METAL PROPERTIES SPECIMEN PROPERTIES Rl!lviEIWer:-1'~":!t( J:;~'(L~h (10) SPECIMEN TYPE: DAAABlI _____ _ 
(9)Speclficafion Deslgnaflon:d~r-I Yield Point r Ultlmafe Sfr Date:fi.oll /.0 /1~_L ___ (I )BIBLlCJGRAPHY No:65 ___ 6_Shee I Lol_Z_ 

MOnUfjfUrtng process . ./ (Asm /!{/'iE) I /,z 5, ~~ Llbra~.R~~f ~~ ___________ Aulhor(s): (VJg,y_SLr-_ld.fi.>,,_--.5TA_U.J'!'l.£~L.y 

~ or :;'a~:~:~;'Pti~n: M"r#A' )( t",.JlO AVE FAT IGUE ~~~~NG~H TEST ,rCO~~~{~ON S r-,~~XT,~;d'j_-b'£HA;~_~g_:12£ -A-&~A~rL-
1 __ ~!.£~_ . _~~ ___ Stress Cycle; __ Q_~L ____ (25)Envlronment. k.tt.. ALYJLg.ur,r--W.£L..t2E£L..JeLAJr~ ___ .uy .T-=/.574'5f:.{,.. 

//E,-,r A)". 7.5' S ,.,7 $ -- ---
MECHANICAL P ROPE RTIE S TcQUPOi\iT-- r- C v c Ie 5 S t r e ss (;;)T empera ;;re :~g::;~= SOme-;-.lZ#:;~2~-1!,~;:';~-:;'~ __ J'g -;';U.J~~.iZ:-: ~~= 

(4)Yield Paint: ___ /ozJL ______ 100,000 "/7 Z (27lLoading Frequency: ______ .....2£.6"E...£. __ CO;e? _____________ ~ ____________ _ 

(5)Ulfimate Strength: //{,. /5 2 1000,000 22. 2 /t20-?/80~ _____ Volume ________________ Number. 

Percent Red. of Area: __ no t- ~/I/en (20lType of Loading: /1X(,#L Dat~. ~-:rLZ62 Pages __ 1.:::.£3 ------.--
Percent E long. in._~'~Gage L;,)9th: 28,0 K: O. 25 C c..ONc~",)T"e(C These Data from Pages: 7c:6/eS ,.; Z,] 8 . ..&. Loa. ..£.. 

~ 3) Units for lest Data. 

CHEMICAL COMPOS IT ION • Percent 
C ~Mn 0.71 P O.o/d? S 0.020 

SI~ M'..Q2LC ... ~ V~ 
Jl1D~ Cu..Q:ll8~ 

Ec/j'e S H'lach';-'7ed TO s4a.,P€ 

rhe~ dror.w f> led a.nd 
pol/she/ w,;;r4 e~e7 clorA 

G02mllc LE F 

INDIVIDUAL FATIGUE T EST R E SU L T S 

·jp.o (19) Polarity: 
Grinding 

.-::~- t?::'::esEO 
vES 

;24) Preheat 
/l~,c"'RE Tem perature: 

22- I". '1-/2. 0 I ,P;4''55 
/SOo _ 2000 

AJo. S ".8 -/2.0 I Interpass 22 
Temperature: 

Zz.. 6,Z I I ISo· _ zoo 0 

(13)8 (14) Surface Treatment; Finish, Coating 
Vy'£'L.,o ,1(£ ,A) ceo X,-e!A1.£...J;r ...Q&L ___________________ _ 

(15) Mechanical and/or Thermal Stress Alteration Treatment Befcre or 
After Welding: &JOAJ(f A'c-rER t-JeLo/A.J& ._.....L~_.sL£€.'::. ___ _ 
~ ,t,/ffA)c r~E"rEp ST/!~ __ --r ________________ . __ _ 

T su 

.6:J.R.,.-- /--Uc:/-/ - 5ECJ>,.);;-:-°"c-

NO OErke-rs 

(u) Weld Repair History: 

NONE 

-WELDED PLATE 

'-J 
CO 



FAT IGUE DATA SUMMARY- DEPARTMENT OF CIVIL ENGINEERING- UNIVERSITY OF ILLINOiS - URBANA, ILLINOIS 

WELDED SPECIMENS Dot Recorded n Fatlllu0 Coding Form No 
~~---

BASE METAL PROPERTIES SPECIMEN PROPERTIES Reviewer: .o12-~~l,~_~ ____ (10) SPECIMEN TYPE: ~t:iEv~:LQ_~ ______ 
( \I) Speclf Icat ion Designation:A.S..ZN. ~ d.-,Z~ Yield Paint Ultimate Str. Dote: !L,L! L7/~ ( I) BIBLIOGRAPHY NO.:2Q..-=_'1_ Sheet_l_of ___ 

MonufocturinQ ProCIiISS: 
L ~~~~ '3:Jw. ~~; r- D.aR-';", Y 

Author(s) :_£ll...!::dL~L"'~L .. L~~L<.JI,· J-!U!0-.MA./· 
M~~£.~r-~~/l:':Z-----~-~--~---~---·-- .. ---

Shope or Plate DescripTion: ~.dj;./£?Q AVE. FATIGUE STRENGTH TEST CONDIT IONS T itla :J: P.E<£"-L: .. -P£ .. _k1L4:"~.N£ .. :L Pd..LH..L_ .. --
t:U..a~c.,ve-e PL!Zr.4£.r. 1fJ..e. za," 'L6t'.K.. Stress Cycle: _____ .~ ___ (25) Environment :~ __ -.&..z:£.6-:l!!tL~5L.!l..~d££d..~~~t2E~~_ 8.Af~_.~~ 
)(' ¥.Ye "vv/Pi!' X ¥~o"J:.t:>AJII' 

* MECHANICAL PROPERTIES (COUPON) CYcles Stress (~emperature; _££QL!:J __ Sour Ce~a;.H~L~~")ft0~-;;V?C~.&--.&e---NAl7?"'.r,,)~ 

(4)Yi@ld Point: .3 Y. If'- 100,000 (27)Loodinll Frequ®ncy: ___ Co()eCgAtoy~_ .Lz!~-Lf'.E.ULlgfob!._2kt2~_~Z 

(5lUltimate Str®ngfh: ~L £..7 2 1OOOpOO 2bO - 800 c,e~- Volume : ______ ~ ____ Numblr, 

Percent Red. of A~@o: ~~ Dat~ : __ /~2Q ____ ~ Pagu:_ Lq~ .. ~ _____ 
(2alType of Loading: hE<>.«Lf.i£. 

Perclnt Elong. in.~N Gage L@ngth:J~ K: These Data from Pages:~ .y £.5' 77'" 

INDIVIDUAL FAT IG UE TEST RESULTS 
(3) Units for TIS! Data ' ___ 

CHEMICAL COMPOS IT ION ~I PIHc@nt ~.<.~-~ 

C ___ Mn ___ P ___ S (2)~ Stress Cycll (0lCyc105 to 
(32) Location of F raefura 35) CPE (nl Method of Load Meosurement: 

SI--- --- ---- No 6) Min. ('I') Mal(. Failure TFL 
!iYO,tlgul.'c. ;:'1'1"'5.$ .. A'IF IN T-4<xs 

--- --- ---- ----- Cfl./; ) Cfll9CK IN 11"/-4 fEO /AJ T-¥£ 
(;A'YE. fh""'" MA'G-A.//fWP"'- of r,.,,"'" 

13/ -(,.0 -f" 10.0 39'2,,5 0 0 TE.vS/QAJ ,rL/jPAJ6-E Nor 
SPECIMEN AND FRACTURE DETAILS 

AJ/!;9;e T#E /?,to-"'~/4IIf".tl J:.04.o. L DIDO 19!)j8lJTEtJ 
Cil.;fj CEAJ rEI(. 0';::- TAI'E W/i!7fh" /9f 7',-¥E 

(II) ThicknuSl:~ (12) Rlilp. DimliinSiions:ll..a.i /¢I -t.O .;- I¥. 0 /9'2, Z()O ToE' G-IVdAJ 
10 6/I/E .rNI£" S'r'A'N;~ oEr,.A'EO 

0",," fA'E rA'-"P'A.JS vEL::JE 
clll9 F/J:.Ler wEC.O COIVA>eC.//N(i'r#i!f' 

C.PlIII"<,,K 0;.) -rIFAlS "'N F"..t.A'AJ?1I! ~. .N¥ -t,.O -r I¥. cJ /7'-/ /00 COVGA' ,P£.I9riS' 70 Th"E rL./I'AJt:=E. 

1 
(50) Basis for StrlillU CalclIlklition: 

o~T,,, 1 ellA r"ye C-£.I9c.K PA'oPA"tf.A"rtE17 /AJTo 
No," ".1I'IL. r"L£Kd.<JtAtt SrJfPd!SS IN 

=A ::. =- = =- = =- 'll: = = = = = =- -= = = =, 
IS / - t,. 0 r/8. 0 II¥:, 4/00 rh'E .11&!'/j/H AP»O AU.DAJ~ ny'E' Ex nlllF/IPI1£" F/ $I£"L o.-r rN-1fl' llA'1fJ:' 

ro£ or' r#E vvLLP APGA.D;)' r#,t.' /nS'r;lL. Ar TN£'" II'N{)."fi: niYE 

(;:;-:::" i 'l~~ 2~ON %l/~o'tJ!o'~~f/ 
~L.4AJ6-t! w/t;;rH. Cft,~~ ... :~-:r:~ ~r;~/;:';;;::. f=£ f 

lI! Rot io Crock Prol2al1lat ion. Lih Olll Faillllr@ 5;)t@rion: AW 1AJc..8E-#£E /.t!d. t!lt.I2.Ie.t&l. ./Jt£C" 4:.c.Z::/0<5L (2.£ o.o~Q·: 
, Totol Fatigue L ttID C~C.K£O 'JI!.EA At... A,pdO~ -. y 7~?u ;P/"'" r.:>,,-.-9. --=-L.4_ ,""""" AA'e.4 

WELDING DESCRIPTION 
v 

T% .. (tI!lIWelding Prac@u: t!1.MTO<t1~r.-C. 3' E:J.t!l,ll'?i£e.(£~12. £..e.c... <¥ ~1Lt.E'-{2Ef2. PlEfA"<!. ~'" 
A !l1!I1 W@iding Gall USliid : ________ ~ (III) \'h1dil'll/l POllltioo :---.E~ 

~~V' 
~K --r q j,,,. (l1»Electrode Type and Handling Description: L-c;,O -%y -IN. OilfeYqU klJIR/f 780 r"ilLJ( Etuf, 

l. t 1 
I I 1:.0";(£1. CU t2~&1'f:L 8"-':£T isJ.,::,,, (2 - £AJO F/LL£r tJ€.'I::..o I P4..A/Gcto .A1#!t~..c.!i:t1:;.r..l:: ~/C':t. .£ 70£.£2 ~"'£<:.!2!l.o~S 

/tJ~O v 
(20) Weald D@hct Ducription: t'J,!'/h'J E 

/-YW/yo £OL.(.,':O PL4',,<1? .<J/Ctr.,-/ Pass (u) EI@ctrodlii II1!1lAmps Sp@ead of Bock Chip. 01 (1'111 Polarity; (21) N.D.T. Observat ions: 

No. S in and Sp@c. A.C.-D.C. Volts Walding Grindil'll/l IU) We Id Inspect ion: 
CovEt'i? ,o..t..ATES Yes or No ;VoT .:;, VEAl A'L.~ ~IS'-OS S"-f8Te"crEP TO /AJSr"E"C.foA/ 

LoAJ6-. L-&'o fi¥' 0) 3S0 30 /"/~/"" NO S/~/':'A"~ rc 5;rA'rL!" ~6"h'..wY' 
lJef<PJ (24) Pr@hoat 

7 "0 ,FL6L x Temp@faturea: ?,.f'ocFPu.ltE 

lUll) Th@oYliiticol StreSis Conc. Factor;K,:..vor ~/vE"; 7R~ £701$ fSz"p5 
;VO,N£/ "p.,o"", lUI W@ld R@poir History: 

(17lCritical Stress Inhlnsity FactoriKC:~z::G'""Ili".v Wt!"LP$ 
/L!!'*fP 

/ILL Pe"rEc.T/f/c t/Jf"LOY GO"'-6-EO 
Intlilrpass 

Fabrication, Sp@c., Notes, Remarks; Temperature: our A'AJi? Rt!!tJiFLOEO 

;fVER"~E M/!!ch';fAJ/c;fL. ;<7A'ol"e/f!f/e5 A/"'T Al ...... ".Ic. 

O.r S;:'Ec/.-EA.!J' CwT ".:::;;t'oA'? T# iF r"L'#.;e)h'. 11318(14) Surface Treatment, Finish, Coating: NONE" - /?s A"DL "'",a 
d Al (2 t&!..GLPE/l 

Coi/E'£ ;<7':'4rEs "",AlP J.<YE6S 

TE'F7'/Al6- -"1!9c,!//AlEs " .. Jt:A.'E /1",u~.EAC !i5) Mechanical and/or Thermal Sfrus Alt®ratlon Tr@atmont Befer@ or 

PU"'sArallls 
Aftllllr Welding: .tIIOA/1/!; ~ ____ ~_u _____ 

---.-~.----- ---

2mHd p TED E -8 

-......J 
1..0 



FAT IGUE DATA SUMMARY - DEP,ARTMENT OF CIVIL ENGiNEER ING - UN!VERS i Ti GF" IL~IN8IS - URBAN~" ILliNOIS 

RIVETED AND BOLTED SPECIMENS Jot:; Rlllc-orded on FollQue Coding Farm No 
.. - ===-=! 

MET AL PROPERTIES SPEC IMEN PROPERTIES (10) SPECIMU~ TYPE ;r HA C A A _.::;....---,.--~ __ --..:::..;..~ R e VoIl W fH: J(. S. C k dOD?! 

. 9lSpeclflcatla~ D89I gnatloo:./1SZ: .. ~. _A... :.--f:. .. /£. _~_~,eld PalntT Ultimate SIr Do te .~;~~--i~.~:L? Z.O-=:: 
Manufacturing ProclISs·/jIT~o..·_7!L'!~(L(~J>~ I Library Ref No.: ,-20,{" 
j!cAl7:._&!12. __ '--~_ft1...0..1~_..Lt!'~ e'-:lI}r~L_ c-Zps.;----
Shape or Plat@ DUCriptlon:. _ . ____ . _____ AVE FATIGUE STRENGTH TEST CONDITIONS 

f/r." r"oc.CffL5!.r4~_~~-!!LE._. __________ Stress Cycle: _C- T_ 
~,," 51P£ P~"T£S 

BASE 

(25IEnlilronm@nt. /Ill< 

( : ) BIBLIOGRAPHY NO ~ 9- 2. Shelllt /.. 0 1 /_f:. 
Aut hor \5 i : .8IglS.~ 1':1 P..€-;l-Et; .. ..;.M £..tN #.£ I.£,. O.£y· 

/I'1H~J.fi_"W. __ H. ___ . - ... _ .. ' - -- - -
Tille: E-"9r,r1X_t<J( or-..4-$'/¥. 5T££1.. .//'·1 __ 

.fl.cn: .. T_g.t? C O,A//V. _G r /. ON.s 

MECHANICAL Stress (261 Temperature: ;?;;-;-;;.,~- Sa-urce'A..5.C,t!f":-c JoI-<.5l;';'4;"~;'-'Z:-;;;£_ 5j4;;,.~;--;;,;e~ 
(4 I Yield Point: _j!.f!!l,j .!..~.l.<:>OO___ £_~.ff ______ (271 Loadlng- Frequency _!2,,-Y/.S..LQ&! - --
(5) Ultimate Strlllngth ; __ LL~ _____ ._ ~10'9().L~Q _? ~.!....!!. __ __ LP'.2. __ £,Pfl1 ________ Volume ___ ...2.L. Number ST /Q -.-. 

Percent Red of Area: __ ~8,~ ___ .____ _ _________ (z8ITypeofLoading:.&L~ Dote. C/~-/.Y~-- Pages. ~cJ//-i!.o..J..f? __ 
Percent Elong In .. 6"'-:~Gag@ L@ngth:_~.t:_.~ K : __ rz~ 2.. U _________ ________ . ___ . ___ These Data from Pages 

CHEMICAL COMPOSITION. Percent 
INDIV IDUAL TEST RESULTS FATIGUE 

--,....-

c o. ("._ Mn t?.J,lt:!.. pp,o~ s_e. QZ:~ 
51 o. Z£_ c ... JZ._S'O ~_ v _~._o_S_ 

(2)Spec (1IIlCycls5 to (321 Locat Ion of F r ac lure cptl 331-- (2\11 Method of Load M@asuroment 
TFL 

8 p, Ot2..f. T.:. (2,-q d ____ _ _____ . _'_ 
.,.5'0.0 

1l)''AJA'/P1o""Nr-'r.£/t o,v .I"'-?:T/6-uE 

Pl.,pc#/A.lA' U$4FO r'" /P1E'41St.44,E 

C"f/?CK //J/T",.,prEO 0# rNE ilVor I "- o/pP CJ,.,J S,PEct.-r/!"AJ 

No Failure 

Q3.8 .. I-.fo 0 

-S~P:-:E~C~I"""M~E~N-A:-:N""""!D~F:-:R:-:A:-:C~T~U~R-=E~D-=E-::T:-:A-I L~s:---41 g . 
C"AC.c OF r#E 

",)h",,,,,:dO" ,, /2:1, 000 l 
(24) Ratio Net Armo---;- 0 2)R@p. Dlm@.nSlonS:~'?5'1Q3l3-

'GroesArIB<l' • tG2. -- 3 -5'0 0 ~50 0 .-----'\ r:~'" = /'00:0.'.'0.. .' 11/, 000 FA'r,"'''' SuR, 
,+I ~ GJJA7- CEA.JTE€ ,PL4;T~ #:T 1- L /t:, -35.0 ""35.

0 
-',i/B DOO r /VcAPR :T#e c.a t:>A? I f«~!IOIFBo~s7is:-;f:-o:-r-;S:::-:t:----C----, ...,-/;T .. C",,- A.lEr 1 qUI alculollon: 

~Z.L" I 6138- SEcno"', pO''''''y p"", AJcr 5E<no.; 5r.""" 

I 4-1 ~.!-U j t
f

' .~ -28.0 -28.0 '~(,Io F'AlE'rr,--" BET.,EE<J ,Pur;;' f= t;p ,-9'her.«h. 
. -----t'0.. j I I ' ,00 . .,,-' _ e,g,k • rho_ ... /) 

I I 

~
Rat' "'U'-''' r-ropOQOTIOn Lilli! (311 /-allure Cri'larion: MAcHt.,.; .. ([ $th,IfTqE.r I2H£ ro £KG£:rS(V£ 

~ 
~ I r . :, 11-ft' 10, Total Fatigue life Pe;:=-"~AV9r.h!>..J CAus-t:.G Br "cA';r/6-uE C,RAC..v. 

!1 'I 2 Jv II FASTENERS 

'" -$--$- l- (l91Type :/3CJI..T5 (l!1) Specification Ii Country: .t9ST/J'I d.JZ5 t«'~ ____ (19) Diameter ~~~ _____ _ 

2 ~H 

+-+ +- - -- 'YjlU 'f-
I-

__ x!/g~ 

Yie!ld Strength: ~-- (19) Ultimate Strength: P'JiI' __ Elongation, ~o: _;;J-;f ______ Harcinus :~ ____ _ 

Chemical Camp .. C ___ Mn __ P ___ S __ Si__ __ __ (10) Hole Clearance ,_~_~~'Z!.~./~;t:.") 

(20) Clamping Force: ;'3. S )<:/ P5 (10) Hole Preparation :_12tIL'-t..E-' D 

) "/~ ~--..It-
It.. 

·V 

RIVETS BOLTS 

(19) Head Type: 

UfO) Manufacture; Hot Formed ___ Cold Formed ____ _ 

(19) Type:~_._S:'..:Lt4:'..~vr.J( - L&1_ ~.cf3!-'2 ___ _ 

(21) Type of Thread :/0 U~~(ZI!I Type of Nut :..i!Jf£yy "/-(45. 

(16lTheofllltlcal Strus Cone Foctor;KI:~.r:6=w.E~1 (2oIDrlving: Hot Cold ___ _ (22) No. and Type of Washers: / /14t<OE~ __ _ 

(17)(''',cal Stross IntenSity Foctor,Kc:~r.G,.-vo!"AJ 

FabricatIOn, Sp@c, Notes, Remarks; 

Jt /l'ftf!CcN',p.M"C~1.. P)ll?o,P.t!'6f'r/£r AAJifJ 

C;.;yEn?"C4'~ Co,;PJ'pO:;rr"o~ o.;iC -+ U 

TN'/(". c<,!,AJrEA! p.l,.".rE oAJ.ly' A'RE 

G/VEN J'/.IV ce /#/J 6JAI'$ /'h"E 

C.Rlrtc.AL. PL"tprE. 

PLA-rE.r /l"J'Af'C;Y/".)£o /b F'/..J",,­

f#tll'E /I;TEI"f -¥oLES &r)1E1if£ PJI(,/I..I..EO 

2.lle 

Monua , ____ _ Machine ___ _ (23INo. of Threads in Grip;_ .. e __ 
Other: ______________________ . __________________ _ (20) Insta lIat ion Procedure: .£gI!lAl .a./_AL!'!c ~~H6- 1". -i r ... A.AJ 

(13) Ii 114) Fa. ying surfo.ce Treatment, Cleaning, Finish and/or Coot ing; ... I"'''' Ro<n ,,~CUO<O 4« 
~~,gAJ£.l!._ ~AL./l.t;:~roAJE .--Lb~A/f,;vE _~_ CrA rr/..v~ ___ . -_._ __ /?'Ir"v/_w"", ft'IE£,v4AJ /c4"-

~""I11/""h'V~ /perEA! n4~tf ... RAt'/.;..?"..,)? --.-- jfEQullt£JllVE'AJrs ~-O,q t9ST,.., /9-3zr 

(1111 Mllchanical and/or Th@rmal Treotmlllnf Before Clr After Fabricotion :_ ,cA'ST.£A.lEIf s, 
===~~O~~~£~ ________________ _ 
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FATIGUE DATA SUMMARY- DEPARTMENT OF CIVIL ENG!NEERING- UNIVER~:-rY Dr: ! L ~ i NO j S - U?, BAN.t., i ~~ IN:) IS 

BASE METAL PROPERTiES 

'9'5peclf lcatlon De5Ignof lon:L'f5T:M_.I'l-J_:§5 r_ 
Manufacturing Process 

RIVETED AND BOLTED SPECIMENS 

SPECIMEN PROPERTIES Re\lluerIr.' I!. q_d 0l!~ 
Yield POln1 Ultimate Sir D a f @ '/1:1./1 l' ~ 0.; _ ~'l~~ ._. __ _ 

&:2./ Library Ref No: ~~O.Lf..£..f.~ 
P.IloF, /Nu.v$ E 

5T RENGT H 

o-T 

Dat'~ Recorded J~ rOl!yue :>::.dlng Form No ___ _ -------_._---------------------

,,-';-hh';~fLL.L."C' __ B/"(?!..EL~:J-~~~~~=-~~~~~~~~~~ _ _4~~~~~~-+--5~tr~e~s~s--__; (26lTemperature ~oo~ 
('II Yield Point, __ .5£../ -,-()()!O~~. __ ._ Z~~! (27) Load tng' Frequency 

50urC0 .iLtJJ/yEA'..s1 ry 

~'YB/_ 
(51 Ultimate Strength: _te£§ ________ .. ___ ~,OO~OQCl .If· ~ ____ ._~!?~C.p0 Volume Number 

Percent Red. of Area:_.~L--t!_ .--.-------- (211ITypeofLoadlng: &U!~ __ Date 
Percent Elong In _g~:"'GaQe Lllngth:_.?-_~·~ ___ K, .- -____ These Data froiT' Page5 

/,'1'6,.: Page~ .§'S 

CHEMICAL COMPOS IT ION P 1'1 r cent 
IND:VIDUAl FATIGUE TEST RESULTS 

..L/3. 
: 31 Un;is for Tl'Ist Dot a 
..%ffs - "L~c.gEs 

c Q. ?,7 __ Mn i2dSL P ~ sQ· 0_3.~_ (521 LocatIOn of F roc t UTe (291 Method cf Load Ml'lasuTllIment, 
S I Oy'AJ,4 ~oME7"'If't2 "AJ ,;Pf,IPGN,h4lF 

u,TEO r'a oKrA/N L0.-90 "'".) 

S'';o5c./,A>?.tfF,..} , 
1;:/2 I O. 0 1-30.0 SC,/9oo l C""'Ck /#,""drEd fir r#E 

SPECIMEN AND FRACTURE DETAILS 
/,c,fZ 0.0 -;-28.0 7/..4/ 0 0 

r.;Rsr A'c>t.J ~Alv""''-IIf'O 0,,) ;r-/t;..<"zE) 

(III Thickness ,d~ (12)Rl'lp. DimenSions :~"t8.::' 0"-:- /f'/vEr Ho,ES /,A/ Th"E 

(24) Ratio) G~:::~~:' : o,flJ.7 /,c-'C3 0.0 ,J-ZB.O 80 ... 9'00 CeAJr<!f1e ;O£-4r5 /I-""'D P.IlO.PA-

GAPrGD rowAPAeP r#E E£JG£ r: s: 9 = /. 00: 0.75: Z. 7) 4 IF .. , 
0.0 /-/8.0 

\ frf« Ir/lS 0.0 -1'-20.0 

~/. j'?R" 
0.0 1"/9.0 

¥/~ 200 ;19""'0 CEAJrJf€ 

:J/s.., 700 

~8s." '''0 

0"::- r#E PL..,rE. 

(501 Boll19 for Streu Calculation: 
.AlEr Sec.r/o,.) "'~ 

PLAr~,' 1'= !?;:9 
/1= (51'1FC., kJIDrll-;(H,,(..j[ fJI/)THK. 

-
!.£/f . ~ ~ 5',7'1. -~~~~ 
~ ¢ ~ ,.!-

-- ~ 

w 
S' ?EC/IIPf.tr,A/ rY,PE / "c:-.;e 

,-:.. 
~ 

f-

I--

if Rat' Crock Propagation Life 
10, Total Fatigue life 

(51) Failure Criterion: WM!.¢'"AtI C8,AC.1( IiEc.AlM"" 1.//[/Au.E 

FASTENERS 

(19lType :1l/VEr (/9) Specification 6i Country: 4STM 4-/¥/- 55 (19) Diameter: ""/8 d "uO,4fr"'-4<-

Yield Strength: Z 9'. ~ (19) Ultimate Strength: sa. £ __ Elongatiar.! l7Jo: :U.S /" £3 " Hardness : ________ ._ 

Chemical Comp,: C __ Mn __ P~So.oS Si _____ . ____ (101 Hole Clearance ; ___ ;if!.~. ______ _ 
(20) Clamping Force: (IO) Hole Preparation ;--'2.gj,-,,-~ __ =-_l~tPn 120ft. 

RIVETS BOLTS 

(19)Head Type :~",,) KE4CJ (J91Type; 

UW) Manufacture: Hot Formed V Cold Formed ____ _ (21) Type of Thread , _____ (22\ Type of Nut ' _____ _ 

(1IIITheoretlca! Stress Canc. Factor;Kl:#!,,(_6-(~ALI u!O) Driving: Hot~ Cold I (221No and Type of Washers .. __ .. ___ . ___________ _ 

IITICrltical Stress IntenSity Factor,Kc:&-~!Xlfd.j Manual Machine /Sor.. .. -I!()#IlSE-SJ!/Ist! IY.I!!!f (25INo. of Threads in Grip' 

Fabrication! SP(lIc., Not(llll, Remarks; 

rAP6Klc-'!rED IN S#"p of ,-9 S:r£~4.. 

F.I9IJItI c.-proJe 

£O(;IiF$ ,.Ufllzer P'lI'LL4rO 

2 ell f 
p T 

Other; U;V{'(SI4,9c- CelteE r.-9KEA.J /AJ PR/(//AJ~ A'"r4"nj (2011nstallatlon Procedure, 

(15) 6i (14) Faying Surface Treatment! Cleaning! Fin'lsh and/or Coating, ___ _ 
--~~---~----.--------------.--------.----- ---_._--_.-

(16) Mechanicol and/or Thermal Treatment Before or After Fobrication:_ 
';voN£' 
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Categor~ 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

25 
26 
27 
28 
29 
30 

31 
32 
33 

Column 

1-6 
7-12 

13 
14-16 
17-19 
20-24 
25-29 
30-34 

35-40 
41-46 

47 
48 

49-50 
51 . 

52-53 
54 

55-57 
58 

59-63 
64-65 

66 
67 
68 
69 

70 
71 
72 
73 
74 

75-76 

77 
78-79 

80 

FIG. 2. 
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DETAILED SPECIMEN DATA 

Bibliography Number 
Specimen Number 
Units for Test Data (kip - inch, kg - mm, MN - m) 
Base Metal Yield Strength 
Base Metal Tensile Strength 
Cyclic Minimum Stress 
Cyclic Maximum Stress 
Cycles to Failure 

MATERIAL & SPECIMEN DESCRIPTION 

Base Metal Specification 
Description of Test Specimen 
Material Thickness (at critical location in specimen) 
Representative Specimen Dimension (plate width; beam depth; etc.) 
Surface Treatment 
Surface Finish or Coating 
Thermal and/or Mechanical Residual Stress Alteration Treatment 
Theoretical Stress Concentration Factor, Kt Critical Stress Intensity Factor, K 
(Not Assigned) c 

SPECIMEN FABRICATION DESCRIPTION 

WELDED 

Welding Process Description 
Weld Defect Description 
Nondestructive Test Observation 
Weld Inspection Rating 
Weld Repair History 
Preheat Temperature 

RIVETED OR BOLTED 

Fastener Description 
Installation Procedure, Clamping Force 
Type of Thread 
Nut, Washer Details 
No. of Threads in Grip 
Ratio of Net to Gross Area 

TEST CONDITIONS & FAILURE DESCRIPTION 

Test Environment 
Test Temperature 
Frequency of Loading 
Type of Loading 
Method of Measurement (direct load record; strain gage record; etc.) 
Basis for Stress Calculation (nominal shear on fasteners; direct 

stress on net or gross area, etc.) 
Failure Criterion (crack initiation; complete fracture; etc.) 
Failure Location 
Ratio, Crack Propagation Life to Total Fatigue Life 

CLASSIF 
R 

IG 
R 

SPECI EN 
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CATEGORY 10 

GENERAL DESCRIPTION OF TEST SPECIMEN 

Column 41 SPECIMEN TYPE p~ LOADING 

PLAIN MATERIAL 

A Axially Loaded 
B Loaded in Flexure 
C Loaded in Torsion 
1 Combined 

WELDED JOINTS AND CONNECTIONS 

D Axially Loaded 
E Loaded in Flexure 
F Loaded in Torsion 
2 Combined 

RIVETED (OR PINNED) JOINTS AND CONNECTIONS 

G Axially Loaded 
H Loaded in Flexure 
I Loaded in Torsion 
3 Combined 

BOLTED JOINTS AND CONNECTIONS 

J Axially Loaded 
K Loaded in Flexure 
L Loaded in Torsion 
4 Combined 

WELDED ASSEMBLAGES 

M Axially Loaded 
N Loaded in Flexure 
o Loaded in Torsion 
5 Combined 

RIVETED (OR PINNED) ASSEMBLAGES 

P Axially Loaded 
Q Loaded in Flexure 
R Loaded in Torsion 
6 Combined 

BOLTED ASSEMBLAGES 

S Axially Loaded 
T Loaded in Flexure 
U Loaded in Torsion 
7 Combined 

FIG. 2.130 SYSTE CLASSIFICATION AND CODING 
OF EST SPECIMENS -- GENERAL DESCRI ION 

SPECI EN TYPE AND LOADING 



Column 42 

OVERALL CONFIGURATI ON 

A PLATE 

BAR 
B 1teCtangu 1 a r 
C Squa re 
D Circular 
E Eye 
F Defonned 

TUBE (Seaml ess) 
G "ReCfangu 1 ar 
H Square 
I Circular (pipe) 

WIRE 
J STri91e 
K Strand 
L Rope 

FASTENER 
M ~ 
N Rivet 

SHAPES 
0 -I--

P Cruci fonn 
Q Tee 
R Angle (equal legs) 
S Angle (unequal legs) 
T Channe 1 
U Zee 
V Corruga ted Sheet 
W Ri bbed Shee t (rectanqu 1 a r) 
Y Ribbed Sheet (trapezoidal) 
Z Cellular Sheet 

FIG. 2.13b 

DETAILED DESCRIPTION OF TEST SPECIMEN 

Column 43 

SURFACE OR CROSS SECTION DETAIL 

X NONE, NOT APPLICABLE OR SPECIFIED 

NOTCH 
A External 
B Internal 
C Platelet 
D Simulated Undercut 
E Simulated Butt Joint 
F Simulated Attachment 
G Simulated Lap Joint 

THREADS 
Stral ght 
Tapered 

DEFORMED BAR PATTERN 
J Pattern 1 
K Pattern 2 
L Pattern 3 
M Pattern 4 
N Pattern 5 
o Pattern 6 

WIRE CORE 
P~ 
Q Strand 

PLAIN r'1ATERIAL 

Co 1 umn 44 

GEOMETRY OF DETAIL 

NONE, NOT APPLICABLE OR SPECIFIED 

NOTCH SHAPE 
A (trlangular) 
B 
C 
D Circular 
E Ell iptical 
F Rectangu 1 a r wi th Saw_Cu t 
G Circular with Saw-Cut 
H Irregular (flame-cut) 
S Rectangular 

FILLET 
I~ 
J 90 0 

K Concave 
L Convex 

THREAD TYPE 
Amen can Natl ona 1 

M Unspecifi ed 
N Fine 
o Coarse 
P Whitworth (Briti sh) 
Q Square 
R Acme 

Column 4S 

LOCATION OF DETA1ic 

NONE, NOT APPLICABLE OR SPECIFIE[l 

LOCATION OF EXTERNAl NOTCH 
A One Face 
B Both Faces 
C One Edge 
D Both Edges 
E All Around 
F Partially Around 

LOCATION OF INTERNAL NOTCH 
G Face Centerll ne -
H Offset From Face Centerline 
I Multiple Locations on Face 
J Edge Centerl i ne 
K Offset from Edge Centerl ine 

LOCATION ALONG LENGTH 
[ All Along 
M Along Portion 

LOCATION IN SHAPES 
N Flange (element supported on one edqe) 
o Web (element supported on two edges) 
P Both Flange and Web 

SYSTE FOR CLASSIFICATION AND CODING OF TEST 
TAl 0 DESCRI ION OF PLAIN MATERIAL 

Column 46 

FABRICATION OF OETAIL OR ME~~BEP 

NONE, NOT APPLICABLE OR SPECIFIED 

FABRICATION OF DETAIL 
A Drl11ed 
B Drilled and Reamed 
C Dri 11 ed and Tapped 
D Fl arne-Cut 
E Sa\'I-Cu t 
F Punched 
r; Pressed 

Shea red 
Machi ned 
Upset 

FABRICATION OF MEMBER 
K Cold Rolled 
L Hot Roll ed 
M Forged 
NExt ruded 
o Machi ned 
P Machined From Deposited Weld Metal 
Q Cast 

SPECIMENS-

co 
..j:::::. 



Column 42 

OVERALL CONFIGURATION 

BUTT JOINT 
A Equa 1 Thi ckness and Wi dth 
B Equal Diameter 
C Transition in Width 
D Transition in Thickness 
E Transition in Thickness and Width 
F Unequa 1 Wi dth 
G Unequal Thickness 
H Unequa 1 Thi ckness and Wi dth 
I Unequa 1 Di ameter 

REDUCED SECTION BUTT JOINT 
J Hourglass 
K Hourgl ass Notched 
L Cylindrical 
M Rectangular (reduced thickness) 
III Cy 1 i nd ri ca 1 Notched 

LAP JOINT 
lfSTilgIe 
D Double 
P Multiple 

SPLICE 
QAri9Te 
R Sleeve 

TEE JOINT 
~ 
T Cruci form 

BUTT JOINT WITH NOTCH 
Saw-cut Slot 1n weld Parallel to 

Weld Axis (with or without hole) 
Ho 1 e Through We 1 d Perpendi cu 1 ar to 

Plate Surface 

HANGER CONNECTION 

FIG. 2J3c 

DETAILED DESCRIPTION OF TEST SPECIMEN 

WELDED JOINTS AND CONNECTIONS 

Column 43 

TYPES OF MEMBERS JOINED 

X NONE, NOT APPLICABLE OR SPECIFIED 

BUTTED OR LAPPED MEMBERS 
A Plates and/or Bars 
B Circular Bars 
C Deformed Bars 
D Rectangul ar Tubes 
E Circular Tubes (pipes) 

MEJ~BERS LAPPED WITH PLATES OR SHAPES 
F Angle to Plate 
G Channel to Plate 
H I Section to Plate 
I lee Secti on to Pl ate 
J Tee Section to Plate 
K Rectangular Tube to Plate 
L Circular Tube to Plate 
M Angle to Angle 
N Channel to Channel 
o I to I 
P lee to lee 
Q Tee to Tee 

HANGER CONNECTI ON 
R Tee to Tee 
S Tee to I 
T Angl e to Angl e 

Column 44 

TYPE OF WELD 

X NONE, NOT APPLICABLE OR SPECIFIED 

GROOVE 
Fu 11 Penetra ti on 

A Wi th Rei nforcement 
B Without Rei nforcement 
C With Contoured Rei nforcement 

Partial Penetration 
With Rei nforcement 
Without Rei nforcement 
With Contoured Rei nforcement 

FILLET 
Single Pass 
Multiple Pass 

PLUG 
FiTTef 
Fi 11 ed 

SLOT 
FITTet 
Fi 11 ed 

M Edge 
N Spot 
o Seam 

.SYSTE 
DETAI 

FOR CLASSIFICATION AND 
D DESCRIPTION OF 

Co 1 umr: 45 

CONFIGURATION OF WELD 

NONE, NDT APPLICABLE OR SPECIFIED 

GROOVE 
A Sifi9\eV 
B Double V 
C Single Bevel 
D Double Bevel 
E Single U 
F Double U 
G Single J 
H Double J 

Square Butt 
One Si de 
Both Sides 

FI LLET 
Cont1 nuous 
Intermittent 

L Chain 
M Staggered 

Column 46 

OR! ENTATION OF WELD WITH 
RESPECT TO DIRECTION OF LOAD 

OR REPORTED DIRECT STRESS 

X NONE, NOT APPLICABLE OR SPECIFIED 

A Longitudi na 1 
B Transverse 

Oblique 
Longitudi na 1 and Transverse 
Longitudinal and Oblique 
Trans verse and Ob 1 i que 
Longitudi na 1. Transverse and 

Obl i que 
Multiple Directions 
A 11 Around 

CODING 
JOINTS 

OF TEST SPECI MENS 
AND CONNECTIONS 

co 
U1 



Column 42 

OVERALL CONFIGURATION 

PLAIN SHAPES 
A I 
B Cruci form 
C Tee 
D Angl e ~ equa 1 leg,s) 
E Angle unequal legs) 
F Channel 
G lee 

WELDED SHAPES 
H 
I Cruciform 
J Tee 
K Angle (equal legs) 
L Angle (unequal legs) 
M Channel 
N lee 
T Box or Rectangul ar Tube 
U Circular Tube 

PLATE 

BAR 
P Rectangular 
Q Circular 

TUBE (seamless) 
Rectangular 
Circular 

FIG. 2.13d 

DETAILED DESCRIPTION OF TEST SPECIMEN 

Column 43 

TYPE OF ATTACHMENT OR DETAIL 

X NONE, NOT APPLICABLE OR SPECIFIED 

COVER PLATE 
Parti a 1 Length 

A Square End 
B Tapered End 
C Feathered End 

Circular End 
Concave 
Convex 

Full Length 

STIFFENER 
Transverse­
Longitudi na 1 
Longitudinal and Transverse 

SPLICE 
J Without Cope Hole 
K With Cope Ho 1 e 
L With Cope Holes Offset 

ATTACHMENT TO PLATE OR SHAPE 
M Pl ate or Bar 
N Studs 
o Angl e 
P Channel 
Q I 
R Tee 
S lee 
T Spi ra 1 Wi re 

MEMBER ATTACHED TO MEMBER 
o Tubes at 90 d Ang 1 e 
V Tubes at Obl'ique Angle 

WELDED ASSEMBLAGES 

Column 44 

CONFIGURATION OR LOCATION OF 
ATTAcHt.1ENT OR DETA! L -

NONE, NOT APPLICABLE OR SPECIFIED 

ATTACHMENT TO PLATE 
A One Face 
B Both Faces 
C One Edge 
D Both Edges 
E All Around 

ATTACHMENT TO SHAPES 
Web 

F One Side 
G Both Sides 

One Fl ange 
One Si de 
Both Si des 

Both Fl anges 
One Si de 
Both Si des 

J One Flange and One Side of Web 
K One Fl ange and Both Sides of Web 
L Both Fl anges and Both Sides of Web 

FLANGE SPLICE DETAIL 
N Thl ckness Trans It ion 
o Width Transition 
P Both Thi ckness and Wi dth Trans it ion 

WEB SPLICE DETAIL 
S fhlckness Transition 

Column 4S 

IYPE OF 1~[Li! 

NONE, NOT APPLICA,BU OR SPECIFIED 

GROOVE 
Full Penetration 

A vlithout Rei nforce;T'cnt 
B Wi th Reinforcement 

Partial Penetration 
Without Rei nforcernent 
Wi th Rei nforcement 

FILLET 
Contl nuous 
I ntermi ttent 

Chai n 
Stagqered 

PLUG 
FTTlet 
Fi 11 ed 

SLOT 
J FlIlet 
K Filled 

We 1 d Bead 

STUD 
M ----stUd 

Column 46 

CONFIGURATION OR ORIENTATION 
OF WELD 

NONE, NOT APPLICABLE OR SPECIFIED 

CONF I GURATION 
Slnqle V 
Daub 1 e 
Single Bevel 
Double Bevel 
5i ngl e 
Daub 1 e 
Sing 1 e J 
Double J 

Square Butt 
One Side 
Bath 5i des 

ORIENTATION 
LongITU~' 
rransverse 

11 Oblique 
N Longitudinal and Transverse 
o Lon<:1i tud; nal and Obl ique 
P Transverse and Obl ique 
o Lonai tudi na 1, Transverse 

and Oblique 
Mul tiple Di rections 
.All Around 

FOR CLASSIFICATION AND CODI G OF TEST SPECI ENS-
DE D DESCRI ION OF WELDED ASSEMBLAGES 

co 
(j) 



Collann 42 

OVERALL CONFIGURATION 

LAP JOINTS 

Short Joints (<. 4 rows) 

One Row of Fasteners 
A Fastener in single shear 
B Fastener in double shear 
C Fastener in multiple shear 

Two Rows of Fasteners 
o Fastener in single shear 
E Fastener in double shear 
F Fastener in multiple shear 

Three Rows of Fasteners 
G Fastener in single shear 
H Fastener in double shear 
I Fastener in multiple shear 

J 
K 
L 

Long Joi nts (~ 4 rows) 

Fastener n single shear 
Fastener n double shear 
Fastener n multiple shear 

t·, HANGER CONNECTION 

END PLATE CONNECTION 

DETAILED DESCRIPlION OF TEST SPECIMEN 

RIVETED OR BOLTED JOINTS AND CONNECTIONS 

Column 43 

:rvPE OF MEMBERS JOINED 

NOT SPECIFIED 

ll.. Plates 

I~EMBERS CONNECTED TO 
. PLATES OR SHApES 
B I to Plate 
C Tee to Pl ate 
D Angle to Plata 
E Channel to Plate 
F Zee to Pl ate 
G Tube to Pl ate 
Ii I to I 
I Tee to Tee 
,J Angle to Angle 
/( Channe 1 to Channe 1 
L lee to Zee 
,~ Tube to Tube 

I-!ANGER CONNECTION 
J~ Tee to Tee 
() Tee to I 
P Angle to Angle 

Column 44 

CONFIGURATION OF FASTENERS 
(No. of Lines of Fasteners) 

NOT SPECIFIED 

RECTANGULJl.R PATTERN 
A No. of Llnes NOt Specified 
B 1 
C 2 
o 3 
E 4 
F > 4 

STAGGERED PATTERN 
G No. of Lines Not Sped fi ed 
H 2 
I 3 
J 4 
K > 4 

Column 45 

HOLE CLEARANCE 

NOT APPLICABLE, NOT SPECIFIED 

Standard (1/16 in.) 

Less Than Standard « 1/16 in.) 

Above Standard (> 1/16 in.) 

Slotted Holes 

FIG. 2.13e SYSTEM 
DETAil 
CONN 

FOR CLASSIFICATION AND· CODING OF 
o DESCRIPTION OF RIVETED, BOLTED 
IONS 

Column 46 

HOLE FABRICATION 

NOT APPLI CABL E, NOT SP EC I F I ED 

Dr; 11 ed 

:B Punched 

Subpunched and Reamed 

Drill ed and Reamed 

Fl ame-Cut 

EST 
JOINTS 

S CI NS ..... 
AND 

co 
-.....,J 



Column 42 

OVERALL CONfIGURATION 

PLAIN SHAPES 
A I 
B Crucifonn 
C Tee . 
o Angle (equal legs) 
E Angle (unequal legs) 
F Channel 
G Zee 

BUILT UP SECTIONS 
I I 
J Box 
K Double Angle 
L Tee 

CRUCIFORM 
M Angles and Plates 
N Tees 

o PLATE 

P BAR 

TUBE 

OTHERS 

FIGe 2J3f 

Column 43 

TYPE OF ATTACHMENT OR DETAIL 

X NONE, NOT SPECIFIED 

COVER PLATE 
A Partlal Length 
B Fu 11 Length 

STIFFENER 
o Transverse 
E Longitudinal 
F Transverse and Longi t.udi na 1 

SPLICE 

ATTACHMENT TO PLATE OR SHAPE 
J pi ate or Bar 
K Angle 
L Channel 
M I 
N Tee 
o Zee 

DETAILED DESCRIPTION OF TEST SPECIMEN 

RIVETED OR BoLTED ASSEMBLAGES 

Column 44 

CONFIGURATION OR LOCATION 
OF DETAIL 

X NONE, NOT SPECIFIED 

ATTACHMENT TO PLATE 
A One Face 
B Both Faces 

ATTACHMENT TO SHAPES 
Web 

One Side 
Both Sides 

One F1 ange 
One Side 
Both Si des 

Both Fl anges 
GOne Si de 
H Both Sides 
I Fl ange and One Side of Web 
J F1 ange and Both Si des of Web 
K Both Fl anges and One Side of Web 
L Both F1 anges and Both Sides of Web 

SPLICE 
N W~ 
o Fl ange 
P Web and F1 ange 

Column 45 

HOLE CLEARANCE 

X NOT APPLICABLE, NOT SPECIFIED 

Standard (1/16 in.) 

B Less Than Standard « 1/16 in.) 

Above Standard (> 1/16 in.) 

Slotted Holes 

Column 46 

HOLE FABRICATION 

X NOT APPLICABLE, NOT SPECIFIED 

A Dri lled 

Punched 

Subpunched and Reamed 

Dri 11 ed and Reamed 

F1 arne-Cut 

SYSTE FOf~ CLASSIFICATION AND CODING 
RIVETED, BOLTED 

OF TEST SPECIMENS­
ASSEMBLAGES DETAIL DESCRIPTION OF 

00 
ex:> 
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SPECIMEN TYPE--AAXXXL 

--Plain plate in as rolled condition, no stress raisers 
--Tested under axial load 

CODE 

A 
A 
X 
X 
X 
L 

SPECIMEN TYPE--ADAAEI 

DESCRIPTION 

Plain material, axially loaded 
Specimen configuration, plate 
Stress raising detail studied: none 
Geometry of detail: not applicable 
Location of detail: not applicable 
Specimen fabrication method: hot rolled 

--Circular bar machined from plain plate with a machined V-shaped 
circumferential notch 

--Tested under axial load 

CODE 

A 
D 
A 
A 
E 
I 

SPECIMEN TYPE--DAAABB 

DESCRIPTION 

Plain material, axially loaded 
Circular bar 
Detail studied: external notch 
Notch geometry: triangular-V 
Notch location: all around 
Notch fabrication: machined 

--Full penetration transverse double-V butt-welded plate with 
reinforcement in place 

--Tested under axial load 

CODE 

D 
A 
A 
A 
B 
B 

DESCRIPTION 

Welded connection, axially loaded 
Butt joint, equal thickness and width 
Members joined: plates 
Full penetration groove weld with reinforcement 
Double V groove 
Load transverse to weld axis 

EXA PLES OF COOl VARIOUS TYPES FATIGUE 
T 
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SPECIMEN TYPE--NAAQEN 

--Rolled WF section with partial length cover plates attached 
with continuous fillet welds 

--Tested in flexure 

CODE 

N 
A 
A 
Q 
E 
N 

DESCRIPTION 

Welded assemblage, loaded in flexure 
Plain (not welded) I shape 
Partial length cover plates with square ends 
Cover plates on one side of both flanges 
Attached with continuous fillet weld 
Weld oriented both transverse and longi-

tudinal with respect to axis of beam 

SPECIMEN TYPE--JHACAA 

--Lapped plates with three rows and two lines of 3/4 inch bolts 
in double shear 

--Tested under axial load 

CODE 

J 
H 
A 
C 
A 
A 

DESCRIPTION 

Bolted connection, axially loaded 
Lap joint, three rows of bolts in double shear 
Members joined: plates 
Bolts in rectangular pattern, two lines 
Standard (1/16 inch) hole clearance 
Ho 1 e fabri ca ti on: dri 11 ed 

SPECIMEN TYPE--GEACAA 

2.' 

--Double lapped plates with two rows and two lines of 7/8 inch rivets 
in double shear 

--Tested under axial load 

CODE 

G 
E 
A 
C 
A 
A 

PL 
S 

DESCRIPTION 

Riveted connection, axially loaded 
Lap joint, two rows of rivets in double shear 
Members joined: plates 
Rivets in rectangular pattern, two lines 
Standard (1/16 inch) hole clearance 
Hole fabrication: drilled 

R T 
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Start 

Read in 
properties of 

all data points 

Draw and label 
a set of axes 

Read a set of 
desired parameters 

Select data points 
meeting above set of 
desired parameters; 

1 i st them on 
printout 

Plot da ta poi nts 
on axes 

if mUltiple oarameter 

_----~; __ -_""'IIsets are to be analyzed 
simul taneously~ 

Compute S-N curve 
using least squares 
regression analysis 

Draw S-N curve; 
write out: fatigue strengths, 
standard error of estimate 

correlation coeff., 
lower tolerance limits 

if more than one regression 
End ~~------------~--~-----------~-~~~~--~~ analysis is to be performed 

FIG. GEN F 01 
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Symbol 

A 

B 

R 

S max 

S . mln 

A-l 

APPENDIX A 

Glossary of Terms 

Definition 

An empirical constant related to the fati9ue behavior 

of a tes~ specimen. 

An empirical constiant, the inverse of the slope of the 

linear log Smax vs. log Nf regression l1ne. 

Modulus of elasticity. 

Applied bending moment corresponding to condition of 

first yielding at extreme fibers of cross-section of 

member loaded in flexure. 

Applied bending moment corresponding to condition of 

full yielding over cross-section of member loaded in 

flexure. 

The total number of applied cycles to fatigue failure. 

Applied load corresponding to condition of yielding 

over cross-section of member loaded in axial tensionL 

Stress ratio; ioeo 9 ratio of cyclic minimum stress to 

cyclic maximum stress. 

The stress having the highest algebra1c value in the 

stress cycle (tensile stress considered positive, 

compressive stress considered negative). 

The stress having the lowest algebraic value in the 

stress cycleo 



S mean 

S range 

n 

p 

y 

r 

s 

x 

y 

A-2 

The algebraic average of the maximum and minimum stress 

in one cyc 1 e; i, e", (S + S . ) /2 max mln 

The algebraic dlfference between the maximum and 

minimum stress in one cycle; i.ee, Smax - Smin" 

The yield strength of a material in uniaxial tension. 

A II nomi nal ll s tres s corres pond in g to a cond i ti on of fu 11 

yielding over the cross-section of member subjected to 

pure bending; i oeo, Sy 0 Zp/Zev 

Elastic section modulus of a member cross-section. 

Plastic section modulus of a member cross-section. 

Number of specimens satisfying the required conditions 

for which an S-N curve is to be determined. 

Percent survival for the lower tolerance limit at a 

specified confidence level. 

Confidence level specified for a particular lower 

tolerance limit. 

Correlation coefficient. 

Standard error of estimate. 

Transformed fatigue life; i.e., log Nf " 

Transformed cyclic maximum stress (or stress ran~e); 
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APPENDIX B 

Formulation of Upper and Lower Limits to S-N Curve 

Upper Limit to S-N Curve 

For a member loaded axially the nominal yield strength is simply: 
P 

Sy - ?rea (B1 ) 

where Py is the applied load necessary to produce yielding of the entire 

cross-section. This yield strength Sy is used as the upper limit for the 

cyclic maximum stress in determining the linear portion of the log Smax vs. log 

Nf regression line for members subjected to axial fatigue loadingso 

For a similar member subjected to pure bending, the stress cor­

responding to the point of 6~~ yielding at the outermost fibers of the 

member cross-section is related to the externally applied moment, Fig. Bla 9 

by: 
( B2) 

where Ze (elastic section modulus) is a geometrical property of the cross­

sectiono Equation B2 reflects the assumption of a linear variation in stress 

from the neutral axis of the cross-section to its extreme fibers. 

As the externally applied moment is increased beyond My' the 

stress at the extreme fibers of the cross-section remains essentially con­

stant (if, as in the case of most structural grade steels, the material 

exhibits a reasonably flat stress-strain relationship beyond yield), while 

the stresses on the remaining section increase progressively until such 

time as yielding is approached across the entire section, Fig. Blbc At this 
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stage, the yield strength of the material is related to the fully "nlastic" 

moment capac; ty of the member, ~'1p' by: 

= ~ Sy Z 
P 

(B3) 

where Zp' the pl as ti c secti on modul us, is a geometri ca '1 property of the 

member cross-section which relates Mp to Sy through the assumption of a 

rectangular stress block, Figo Blb, acting on the member section. The ratios 

of plastic modulus to elastic modulus for three common cross-sections are: 

rectangular cross-section 

circular cross-section 

I or wide-flange section 

'7 

Lp/Ze = 107 

1.1 ~ Zp/Z < 1.2 approx. 
e 

By equating relationships (B2) and (B3) above, the moment required 

to produce full yielding over the member section is related to the moment 

at first yielding by: 

Z 
.1 

Z e 
(B4) 

A maximum IInominal ll stress, sp (a computed value used to represent a 

numerical, though non-existent, stress by using an elastic section modulus 

for conditions of loading beyond the elastic range) corresponding to the 

external moment Mp' may now be defined as follows: 

~ M ~ S = = -1 
p Z Z Ze e e 

or 
Z 

Sp = S -f (B5) y e 
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For example, for a member of rectangular cross-section, the 

maximum II nominal ll stress corresponding to full nominal yielding of the 

section under flexure would be: 

Sp = 1.5 Sy (rectangular section) 

This II nominal ll or "pseudo" stress, Sp' Equation B5, is the 

value taken by the computer as the upper limit of the linear logarithmic 

S-N regression line for data obtained from flexural tests of structural 

members and details. The justification for using Sp as the upper limit 

rather than the actual material yield strength, Sy' as in axial fatigue 

tests, is simply that there is evidence that such a straight line extra­

polation of the S-N curve to this limit appears to describe flexural test 

data quite well in the low cycle fatigue region. 

Lower Limit to S-N Curve 

It has been observed, from numerous fatigue tests of structural 

steel members and components, that the S-N curve representative of the 

fatigue data changes slope and often becomes essentially horizontal at ap­

proximately 2 x 106 cycles. 6 In a first, or trial, analysis of an individual 

set of fatigue data, the computer program developed for this study also as­

sumes a lower limit of 2 x 106 cycles for the calculated linear logarithmic 

S-N regression line described in Section III. The procedure used in con­

sidering specimens having lives beyond two million cycles is outlined in 

the following paragraphs. 

As the first step in the analytical process, a trial S-N curve 

is obtained as follows. The specimen fatigue lives from all "run-out" 
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tests and tests in which failure occurred after 2 x 106 cycles are projected 

horizontally to two million cycles. An S-N regression line is then generated 

using these adjusted lives together with the actual data for specimens ex­

hibiting failure at lives less than 2 x 106 cycles. For this life, the fatigue 

strength and standard error of estimate at 2 x 106 cycles are computed. Next 

a "limit of acceptance" for the run-out test data is established (as a spe­

cified multiple of -1 x standard error of estimate), which is then projected 

as a horizontal line parallel to the line corresponding to the computed fa­

tigue strength at 2 x 106 cycles (see Fig. 82). Then, for a second trial, 

any run-out test data residing below the lower acceptance line is rejected 

while all other data points are again included in the second analysis. A 

new S-N curve is constructed and the above process repeated until no addi­

tional test points are rejected. It may be noted that, in establishing the 

fatigue strength at 2,000,000 cycles, this process is essentially a conser­

vative one, in that the long life fatigue strengths so computed will gen­

erally be lower than the strengths computed using data only for specimens 

exhibiting failure at less than 2 x 106 cycles. 

As noted above, the breaking point of the log S vs. log Nf curve 

was chosen arbitrarily at two million cycles on the basis of past obser­

vations. However, this assumed behavior may not be particularly repre­

sentative for all data. Therefore, if, upon subsequent examination of the 

plotted data and S-N curve for a particular series of tests, it appears 

that the breaking point occurs at some other life, say 3 x 106 cycles, the 

computer program can be run again using the new lifetime as the lower limit 

for the S-N regression line. The process of run-out data acceptance or 

rejection can then be repeated as explained in the preceding paragraph until 

a final S-N curve is established. 
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The program has a third option in this regard which assumes no 

flattening out of the S-N curve at long fatigue lives. If this option is 

specified, a single best-fit linear regression line is generated using all 

data for specimens actually exhibiting failures (i we" tests not carried 

to failure are rejected) regardless of whether or not the lives were beyond 

two million cycles. This alternative has been made availab'le for those tests 

in which it appears that no tendency toward a horizontal asymptote of the 

S-N curve can be distinguished from examination of the plotted data points. 

It is anticipated that the flexibility of the computational pro­

cess indicated by the three options outlined above will be sufficient to 

enable adequate analytical description of the fatigue behavior of the 

vast majority of structural members and details. In cases where it may be 

difficult to decide which of the alternatives offers the best representation 

of a particular data set, examination of the correlation coefficient cor­

responding to each of the alternatives should be helpful in a final assess­

mento 
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APPENDIX C 

COMPUTER PRINTOUT OF FATIGUE ANALYSIS RESULTS 

Plain Plate Material 

Structural Carbon Steel . 

High Strength, Low Alloy Steel. 

High Yield Strength, Quenched and Tempered Steel. 

Transverse Butt Welds with Reinforcement Intact 

Structural Carbon Steel . 

High Strength, Low Alloy Steel. 

High Yield Strength, Quenched and Tempered Steel. 

Transverse Butt Welds with Reinforcement Removed 

Structural Carbon Steel . 

High Strength, Low Alloy Steel. 

High Yield Strength, Quenched and Tempered Steel. 

Plot Nos. 

1 ,2 

3,4 

5,6,7 

8,9 

10. 11 

12.13.14 

15 

16 

17,18,19 



SpECI~EN TYPE ~ PL~IN PLATE 

STEEL TYPE ~ A"A36IA3'3,~J~D STErL 

STRESS CyC~F ~ CD~pLETE REVERSAL 

SuN CURVE - MAXIMUM STRESS VS. CYCLrs Tn FATLURr 

PLOT NUMBER 1 

NO~ OF nATA pOINTS uSED TO GFN~RATF s-~ CURvE u 13 

CONSTANTS COMPUTED F'ROM REGREStt;IDN AN~LYSI~ 

A:: 24,34106 R :::"'9.6A221 

STANDARD ERRa~ O~ rSTIM~TE : ~.61642 

CORRELATION CDEFFICIENT ::: n,90731 

ABSOLUTE VA~UE OF S~OPE 
or SuN CURVE ::: n.l0328 

COMPUTED VA~UES ~F FATIGUE STRrNGT~S AT SELEcTED LIvES 

tlIlONE TJMFS 
rATIGU£ STRF.~GTH STANJARD ERROR nr ESTTMATr 

rc 50000, :: 28,5 KSI ~7.3 Ksr 
rel00000) :: 26.5 25 I'l I~ 
,.(200000) :: 24,7 ?3,7 
reSOODOO' ::: 22~4 ? 1 ,,5 
ret MILL, ::: 20,9 ?O,,~ 
rC2 MILL) ::: 19.4 18.7 

r( 50000, I: 19641)2 MN/SQe M 1 ~ 8 t 4 M ~.I / S Q II M 
""(100000) :: 182 @ 6 1 7' 5" 4 
F'(200000) :: 17041)0 , 63, 3 
F(500000) ::: 154(17 148 1f1 tS 
r(1 MIL L , ::: 144.0 1 ~ 8, 3 
F"C2 MILL) :: 13 4 610 128.' 

50,; 

~OWER TOLl~ANCE ~TMITS 
rnR 9'" SURVIVAL 

cnNrlnE~ct 95, CONrIDENCE 
?5.8 KSI 24.6 KSI 
24.1 22.9 
22.4 21.3 
20.4 19.4 
19.('\ 18.0 
17 e 7 16,8 

178.' MN/~r.le\1 1"9.3 ~',HJ/Sr,'\.M 
1';5.9 "51.6 
154.4 146.7 
14n.5 133.5 
13n.~ 1?4.3 
12' ~ 7 115,7 

(""') 
I 

N 
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SPECI~EN TYPE ~ PLAIN ?LAJ~ 
PLOT NUMBER 2 

STEEL TypE A7,~36,~3/J'MTLD ST[rL 

STRE5S CYCLE" 7ERQ TJ Tr~Sr,N 

S-N CU~VE I!IO MAXIMUj~ STq£SS Vs. cyrLr:'S Tn rAJLURr 

~o@ D~ DATA pa'~T~ USE~ TO GENrRAT( SeM CURVE g ~t 

rATYGUE 
F'C 20000 ) 
rc 50000, 
"(100000, 
r(200000) 
re500000, 
r ( 1 MILL) 
fC2 MILL) 

r{ 2(.'000, 
r( 50000) 
"(100000) 
F"(200000) 
"(500000) 
rei MILL) 
re2 MILL) 

CONSTANTS CO~PlJTEf) FRUM ~Er,RrS(ION tHJALySI~ 

A:::: 240A5310 B ::::·5@1~?18 

STANDARD ERROR OF ESTIMATE :::: n.9S42? 

CORRE~ATIO~ CDErFlrlENT :::: n.18~22 

ABSOLUTE VALUE D~ s~opr 
or S~N CURVE :::: ~.17355 

COMPUTED vALUES OF ~ATIGUE STRrNGTHS AT SELfCTFD LIvES 

-ONE TI~fS 
STREI\JGTH srA~~ARD ERROP OF ESTTMATf.:'" 

:: 71.4 i(SI 6 ;~ /I 7 I( S T 
:: 60 eI 9 - 55.? 
:: 54.0 I~ 9 • I"l 

:::: 47.9 lJ 3 • I~ 
::: 40,9 37.0 
::: 36~2 3?~A 
:::: 3?411 ?9.1 

:: 492.6 MN IS Q @ ~4 lI46./~ ~1"11 SQ. M 
:::: 4;>0.1 380.8 
:: 372@5 ~3'1D6 
:: 330.3 ,99~3 

::: t81.7 255.3 
::: 24g e R '?6.4 
:: 2?105 ,no,l 

LnwfR TQLtpANcE ~TMIT~ 
rnR 9 Y! SUKVIVAL 

501 C~NFI~ENC~ 95, CONrIOFNcr 
~6.1 KSI 53. 9 KST 
~8.4 46.0 
4~.9 40. 8 
1B.1 3~Q2 
32.5 30.9 
?8.R 
?'.5 

~91.' M~I/~f.)$ "1 
333.7 
'95119 
?6,.3 
??3.~ 
1 9 R II 4 
175 0 9 

27.4 
~403 

371.9 MNI5~Q M 
317.2 
281 • 3 
249.4 
212.7 
18~t6 

167.2 

("') 
I 

-t::o> 
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SPECIMEN TYPE - P~AIN ~LATE PLOT NUMBER 3 

STEEL TYPE ·A242,A441JHJG~ sTRrNGT4 LOW ALLOY STEEL 

STRESS CyCLE • C04pLETE REvr~~AL 

S-N CURVE - M~XIMUM STRESS V5~ r,Vr,lrS rn FATLUR~ 

NO@ Or DATA pOINTS USED TO GENFRATE S-N CURvE. to 

CON S TAN T S COM PUT E D F" R fJ M R E' G R F' S S ION A i'l A L Y SIS 

A:: 21.77150 ~ =~801n'95 

STANDARD ERROR OF ESTIMATE = n.55721 

CORRE~ATION COErF"YCYENT = ~t96362 

ABSOLUTE VA~UE or S~OPE 
OF S-N CURVE = ~,11484 

COMPUTED VALUES Or FATIGUE STRtNGTHS .T SELEcTro lIVES 

-Qt\lr TIMES 
LOWER.T.OLLRANCE.LIMITS 

rOR 9~' SURVIVAL 
rATIGUE 'STRENGTH 

rc 10000) = 48t3 KSI 
rc 20000, ;: 44.6 

STANryARD E~ROR Or fSTTMATr 50~ CONFIDENC~ 95, CONrIDENCE 

rc 50000) :: 40.1 
rCI00000) ::: 37.1 
'(200000, ::: 34.2 
r(500000) ::: 30 t 8 
'(1 '4ILL' ::: 28,4 
"(2 ~l~~) ::: 26,3 

t( 10000, = 332.A ~N/SQ.~ 
rc 20000) = 307,4 . 
re 50000, :: ?.76,7 
'(tooooo, = 255,5 
r(200000) : ?35.9 
,e50(000) = :?12.4 
'(1 MI~L' :: 196.1 
r(2 MILL, ::: 181.1 

46.15 l<ST 
43.0 
381t 1 

35,7 
33.0 
'29.7 
2 7 ,,4 
:?5,,3 

320 1t 8 M"'/SQIIPM 
?96.2 
?66.6 
246.2 
227.4 
?O4.7 
tR9 11P O 
174.6 

44.2 KSI 41.7 ~SJ 
40.8 38.5 
36.7 34.6 
33.9 32.0 
31.3 29.5 
?B.2 26.6 
26.0 24.6 
24.0 22.7 

304.5 ~HJ/~Oelt.1 281.4 MN/~f!),M 
?R 1 " ?6504 
253.1 238,9 
233,8 2201116 
?15.9 203.7 

. 194 €I :I 183.4 
179,5 169.4 
165,1 '5!S.4 

("") 
D 
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SPECIMEN TYPE • PLAIN PLATE 

STEFL TypE ~A242,AQ41,~JG~ STR[NGT~ LOW ALLOY ~TEEL 

STRESS CyCLE • Z[RO TD T~NSInN 

S~N CURVf m MAXIMUM STRESS vs. rYCLFS Tn rAJlURE 

NO. Or DATA pOINTS USEO TO GENrRATF SeN CURvE ~ ?7 

CnNSTANTS COMPUTED rRDM RE~RES~ION ANALYSIS 

A ~ ~9(1152637 B =~6.7'386 

STANDARD ERROR Or EsTIMATE : 1 ~28Q38 

CORRELATION COErrICIENT = 0,68197 

ABSOLUTE VALU~ OF s~upr 
or SmN CURVE . = 0.14895 

COMPUTED VALUES ~r rATIGUE STRrNGTHS IT SELEcTED Ltv~S 

·~NE TIMES 
~owER TO~iRANCE LIMITS 

FOR 9YJ SUHVIVAl 

PLOT NUMBER 4 

rATIGUE STRENGTH STANnARD rqROR OF ESTYMATr 50~ C~NrInENC! 95, CONrYOrNCr 
rc 10000) 
r( 20000, 
rC 50000) 
rel00000) 
r(200000) 
'(500000) 
'(1 Ml~L' 
r(~ Ml~L' 

't 10000, 
rc 20000, 
r( 50000) 
r(100000) 
r(200000, 
r(500000) 
r(1 MIL.L) 
"(2 MILL) 

z ~9.5 KSI 
:: 80 illS -
:: 70 0 5 
:: 63.5 
:: 57.3 
:: 50tO 
:: 45~1 
:I: 40\'\1 

:: 61 7 $ 3 MN/SQ,M 
:: 556@8 
= 485.8 
:: 438@1 
:: 395,1 
:: 344.7 
:: 310.9 
:: ?80,,4 

RO,? 1(5T 
12 t 3 
631» 1 
56~Q 

51.3 
44 0 R 
4004 
36«14 

552,7 M"I/SQeM 
l!.98 II 5 
0.34 0 9 
392\112 
~5308 
308,6 
(>78.4 
?51.0 

69.0 KSI 63.4 KS' 
62.2 57.2 
54.3 49,9 
49(110 45.0 
44.2 40.6 
38.5 35.4 
34.8 31.9 
31.3 28.8 

4T5i~ MN/~Q.M 437,3 MN/SOtM 
429 0 1 394,4 
374,3 344,1 
337,6 310 19 4 
304@5 ?T9,9 

. ?6'5 0 7 244.2 
?39«16 ?20113 
216. , 198.7 
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D 
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SPECI~EN TYPE - PLAIN PLATE PLOT NUMBER 5 

STEEL TypE -A514,A517,~IGH STRFNGT~ Q ~ T STEFL 

STRESS CYCLE -COMPLETE REVERSAL 

SeN CURVE - MAXIMUM STqESS VS~ CyCl~S T~ r~TLURE 

~O$ or DATA PDINTS USED TO GENrRATr SeN CURVE e 3? 

CONSTANTS COMPUTE) fROM REGRFS~ION ANALy~IS 

A I: 17 111 34129 q ::GI$I209~?80 

STANDARD E~ROR D~ ESTIMATE = '.14353 

CORREL~TION COEF~IC1ENT :: n$72~39 

ABSOLUTE vALuE OF ~LOPE 
Dr SeN CURVE :: 0$33866 

COMPUTED vALUES Or ~ATJGUE STRrNGTHS AT SElfCTfO LIvES 

rATIGUE STRENGTH 
rc 20000, =101.0 KSI 
Fe 5(000) I: 7804-
'(100000) : 62.0 
'(200000) : 49.0 
'(500000, = 36.0 
F'CI \.1I~L' :: ~A!II4 
'(2 ~ILL) :: 22.5 

-O'l[ TJMrS 
STAN~ARD EQROR OF (5TTMATr 

85.,6 KST 
6241R 
49.~ 
39.2 
2B6I~ 

??R 

! R II! " 

r( 20000, ::: 737.6 MN/ SQ II \,1 590$1 M~.I/SQ$M ,C 50000' :: 54 9@8 432.7 F'ctooooo, =: 42 1i16 342,,1 
rc200DOO, :: 33B,? '2 1 0,6 
'(500000) ::: 247.9 198@4 
1'(1 MILl) :: 196.1 ,-56,,9 
rf2lvfILL) =: 155.0 1?4.0 

~OWrR.TOLtRANCl LIMITS 
rnR 9~' SURviVAL 

50~ CONrIOENct 95r CONrIDENCr 
63,3 K~I 54.4 KST 
4604 39$9 
36.7 31.5 
?9.0 24,9 
21 0 3 18.3 
1 6 • 8 1 4 I 5 
13.3 11,4 

43f,.6 MN/Sb'.'A 
:3 2 n. 1 
'253 t ? 
'on.? 
1.46i~ 
1 1 ~ • 1 

91 • ~ 

37411 8 ~N/S~oM 
214 41 8 
217.3 
1 71 41 9 
l?~.O 
99,6 
7R"S 
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SP[CI~E~ TYPE ~ PLAIN PLA1E 

STEfL TypE ~A51Q,A517,~IGH yIELD STREN~TH Q&T ~TEEL 

STRfSS CYCLE • ZERO TO T~NSTON 

SI!\iN CURVE I!\i MAXIMUM STRfSS V5. c:vrLrs Tn FATLURE 

NO. or DATA pOINTS USED TO GrN~RATr S-N CURVE· 115 

CONSTANTS COMPUTEO fRUM RfGRrS~ION ANILYSI~ 

A = 2 0 .• 9 5 9 5 9 ~ ::-3.3Q769 

STANDARD ERROR Of fSTIM~.Tr = 1.16Q80 

CORRELATION CDEfF1CIE~T ~ ".80628 

ABSOLUTE VALUE OF 5~OPf 
Dr SeN CURVE ::: 0.29432 

CDMPUTrn VALUES Or rATIGUE STRrNGT~S AT SELEcTED LTvES 

~ONE TIME'S 
LOWER TOL~RANCt LIMITS 

rnR 9~' SURvIVAL 

PLOT NUMBER 6 

fATIGUE STRENGTH 
FC 5000) =217.9 KSI 
rC 10000, :117.7 

STANnARD rqRDR nr ESTTMATr 
17'8,7 k'ST 

so. cnNrr~ENct 95~ CONrlDfNCE 

r( 20000, =144.9 
'C 50000, =110.6 
,.(100000) ::: 90.2 
r(200000, ::: 73.6 
'<500000' ::: 56.2 
'(1. ~IL.L) ::: 45.8 
r(2 MI~L' ::: 37.4 

'c 5DOO) :1502,2 MN/SQ.~ 
rr 10000, =1225@0 
r( 20000' :: 99B.9 
r( 50000, :: 762118 
r(100000) ::: 622,0 
F'(200000) ::: 501,2 
r(500000, ;: 387,3 
r(1 MI~L' ::: 315.9 
trC2 MILL' ::: 25 1 416 

145.7 
1 t 8, R 

90,,7 
74.0 
60 9 3 
4" 0 , 

,7.6 
30.f, 

1 ~ 3 1 • 9 M ~, I SQ. M 
1 004.6 
~19.? 
6?5.6 
5' 0", 1 
416, 0 
31 7 • 7 
?;9.0 
? 11 iii 2 

13'.? KSI 12A,6 KSI 
l11 t 9 104.9 
91.2 85.5 
~9.1 65.3 
~6.8 53,3 
46 0 3 43.4 
15~4 33.? 
?8.8 ?1.0 
'3.5 ~?1 

94';,7 ~N/~r.),~ 886,9 MN/~C.M 
'71 It' 7?3.2 
6?A@9 589.8 
48n,? 450,3 
~ 9, • " 367.2 
3,9.3 ?9QIiIS 
?43,9 2?R.7 
19A,Q ,Sf,.S 
16?' 1 5? t 1 

CJ 
B ....... 

N 



f----i 

en 
::s::::: 

en 
en 
w 
CL: 
I­
en 
x 

200 

100 

80 

60 

40 

IT 20 
L 

PLOT NUMBER 6 

II I II I I III I I 1--+-1 
LClWER TCILERANCE L! M! T - 99% 51.JAV r VAL . 

50%ccrNF !OENCE LEVEL - - -
951. CIJNF IOENCE LEVEl - - - - - -

L ANALYSIS - HETHClO R ---------~~-~-~ ~ m 

----::::------- --- [!] [!] 

----::::---::::---::::-- ----

[!] 

[!] (!]J[!] 

aJl!J 
[!] 

r5l 
[!] 

[!] 

-- -::::--..... ::::-- ~ -
..... _--::::---:::-..... ::::-- ----

..... --:::-.....:::- - ---­---- ..... :::-

PlAIN PLATE 

RS 1 ij. AS 1 7. H) GH n ELO STRENGTH OU STEEL 

ZERO Tel TENSION 

6 B 10 2 6 B 100 6 1000 

CYCLES TO FRILURE. IN THOUSRNDS 

I )II( [!] 

_tm1\r.)II( )II( 

)II( )11(-

2 5000 

1000 
900 
800 

700 

600 
:L 

SOO 
0 
(f) 

"-400 
Z () 
:L J 

300 Z 
W 

(f) 
(f) 

w 
200 a:: 

t-
(f) 

100 

70 



~PFCT~E~ TVP~· pLAIN p~~TE 

~T[rl TYPE· A514, A517, H~~H VTELD sTRr~GT4 Q + T ~Trrl 

5T~t5S cyclE </II HALF' Tf~Sln~ Tn T[~~JO~ 

~." euqv[ .. I.fA)(TMUV, STqr~5 ve 
@ cvrLrc::. Tn F"AJLlIRE 

"D Ii T A 1f N A 0 r ~ u t\ T r r ru~ c; E ~ r R '/I T T O~, fJ r ~ .... ~, r U R v r " 

PLOT NUMBER 7 

("") 
u ..... 
~ 



(J) 

:::s:::: 

(J) 
(J) 

W 
rr:: 
r-
(J) 

X 
IT 
::L 

I I 'IJ1~~ , -1--t---t--l---r-TT1-------+-. 20e -,-----l----l-

~ 
L .... _ ...... ____ + . -.'+'---+--+'-+-1--+-1--.. --- .. 1 -

100 

80 

60 

40 

20 

i 
i 
I 

I 
-+-

t 

PLA1N PLATE 

A514.A517.H1GH YIELD STRENGTH Q&.T STEEL 

HALF TENS1(jN TO lENS10N 

I I I 
6 8 10 

c-" 
~ 

eJ 

I I I ]- r- . I r I I -T - I 
8 100 

CYCLES TO FR I LURE, IN THOUSRNDS 

PLOT NUMBER 7 

~,Oi': C~NF 1 Df>L' r: ,.F.V[' 

9:;;/ C!)NF! D~~JC::: LEVF.: 
-+ 
I CO'" . ME? HelD R _ .. ---+--

mom rao L-3'~'~~Ji"_--"- _._"~_ =+= 

mm _ :+: 
~ ]I!( 

-t-f I I I I I I -+--+---
5 BlOOD 5000 

-+ 
-l 

1000 
900 
800 

700 

600 
:z 

500 
0 
Vi 

400 ',,-
Z 
:L 

300 :z: n 
I 

(J) 
(J) U1 

200 
Lu 
a:: 
I-
(J) 

100 

70 



~~rcr~EN TVpr - TQA~SV~QSr BJTT WFLn ~ITH Rr'~F~qc£~r~T '~TArT 

~TEF~ TYPE ~ Ar,A36,A373,M'~, ST[[L 

STRESS CVCLE. eD~p~~TE ~fV~R~~~ 

~~N euqvr ~ ~AXI~U~ STRr~SV~G cyclr~ TO ~AILURE 

"DATA TNAorQUATE rnR 3~~~R~TTO~ ~r SaN CURVE~ 

PLOT NUMBER 8 

("") 
I 

--.I 

0) 



200 

100 

80 

en 
::::c:: 60 

en 
()) 40 

W 
rr= 
I-
()) 

X 
IT 20 

L 

PLOT NUMBER 8 
I I I I I I I++----+--+-----+-+-r-++-t-++---+ + . LOWER T OL ERRNce L1" IT -

50% CBNF I DENC[ ~E\IEL 

I 95:< CBNF JOENCf. LE vF:L 

t---+-+-t 
99i: SURV J VRL 

T 
I RNRL YSIS - ME THl'lD R 

I 

I 
------------ --f-

TRANSVERSE BUTT WELD WITH REINFORCEMENT INTACT 

A7.A36.A373.MILD STEEL 

C('JMPLETE REVERSAL 

['] 

I!II 

[!J 

[!J 

[!J [!J1I"Il [!J 

[!J['] (liIIJ['] 

Hl [!J 

[!J 

[!J [!J 
[!J 

[!J 
[!J C!X!IIllllIiJ am [!I]!J[!J[!J[!J [!JrIDffi [!J 

[!J [!J ['] ['] 

[!l!] ['] [']['][!J [JlJ['] IID[,] [!J ~ I11III aII!JBl!J IBI ['] ['] (l) lID ['] ['] 
['] ['] 

I I I I I I I I I I I I I I I I I I I .I I I 
10 100 1000 

CYCLES TO FRILURE. IN THOUSRNDS 

['] 

5000 

1000 
900 
800 

700 

600 
L 

SOO 
0 
Ul 

400 '-.. 
z: 
2: 

300 z: n 
I 

Ul 

'" Ul 

200 
W 
a:: 
!-
Ul 

100 

70 



S PEe J '-1 E N T y P F'" T RAN S V ~. ~ ~ E ~ U r T ~! F I [) W T 1 H R F T N r nRC ~ M F ~l TIN , " r T PLOT NUMBER 9 

STFF~ TypE A7,A~73,~JLJ ~TFrL 

STRFSS CYCLE... 7ERD TO Tr~STON 

S·N C:JRV F 0!11 ~AXTM!JM STRESS vs. ryrLrS T11 rA.TLURF 

~o. OF DATA POINTS USE~ TO GfNfRATF SD~ CURVE ~ 1'3 

CJNSTANTS CO~PUTED r~JM RE~RF~~ION ANA!y~'~ 

A = 1.fl.33356 q ="'30 4 &:;'22') 

STaNDARD tRRnq OF ~STIMaTE ~ 1.15ulA 

CO~RELA1ION CDEFrT~l~~T ~ no64D~A 

ABSOLUTE vALUE OF SL~pr 

Or S""N CURVE :: n.28Q67 

COMPJTFO vALUES Qr FATT~UE ~TRrNGTHS aT SELfCTrD LTvES 
() 
I 

Lrtvn:-R TQL!:..J:?ANCE LIMITS ex:> "" Or.,! F TT~FS F'1R 9)1ey SUHVIVAL 
rATIGUE" STRENf,TH STA~D~RD fRROR r,F FSTTvATF r:;n~ C ,., ~I r r F) F N C ~ 95'r CONrIDE"Jrf. 

F'( 1.0(00) :: 7RoS ~SI f,4.7 k'ST c;, (') @ 1 k'«;Y 4 7 0 1 I(~T 

fC 20DOO, :: 641'12 5',9 II 1 II () 3R@6 
rc 5nOOO) :: 4902 lIo.f- 11 11> 4 ?9.t'l 
"(100000) :: 40113 33.? ?5$7 24,,? 
re200 DOO, :: 32.9 '?711? '? 1 e 0 19 0 A 
r(SODDDO) :: ?5.3 'Q.R , () • 1 , 1) • ? 
ret MILL) :: ? 0 II r 1 7 • n 1 3. ? 1 ? • 4 
"(2 VILL, ;:: 161\ 9 1 31\ q j () • 8 1 () 1\ 2 

F'e 10000) :: 54D@9 MN/SQoM 446,2 ~A ".1 / S Q e 1,,1 14t:;,,? M~/c::Qo~ 3?,00 MNI<;t:).~ Fe 20000, :: 44?c) 3fl5.0 ?R?o4 ?65.9 
r( 50DOO) :: 339\114 ,79.9 ?1A,f, 1'03.9 
rCl00DQO) :: ';?77.r:-. ??g e O 177.' 1f:,f,e8 
F'e20DDOO) :: ?27@1 1 B 7 @ 3 14,).1") 131;@5 
r{50~oOO' :: 1 74 fil ? 1 q 3 II 7 1 1 1 .? 1 () lJ fil 7 
ret ~ ILL' ::: 14205 1 1 7 • 5 9('\,0 ~C;1I6 
F'e2 \.jILL) .:: 1 1 6 I!I 6 961'12 74 e IJ 70.0 



200 

]00 

80 
>--i 

(j) 
~ 60 

(j) 
m !iD 

W 
a= 
f-
en 

X 
IT 20 
2::: 

PLOT NUMBER 9 t I I I I I II I Ii-II -+-i i I Ii-+- I I ---+-t 
i LClWER TCILERRNCE II MIT - 991. 3URV I VRL I 

Sell. CCINFIDENCE LEVEL + 
951. CONFIDENCE LEVEL I 

RNRl YS I 5 - NETHClO R i 
---;-

- - ------ ----- - ----..... ----
--_---- [!J 

.......... ----
.......... ----..... _---- I!I [!J[!JIB! -- ----.......... :::--gJ ____ 1!D1B![!J[!J[!J[!J[!J!!IMl!!'1I~[!Jcffi(IJJI!l~~[!J [!J[!J 

- - ----- - ----[!J- -JT5 (IJJ[!J [!J [!J[!J III!Im!I [!J-- )j!(') 

..... - ----
TRRNSVERSE BUTT HELD WITH REINF('JRCEMENT INTACT - - :::--_____ 

.......... ----A7.R373.MILD STEEL - ..... ____ 

ZERO TlJ TENS I ('IN - - :::--..... :::--..... ____ 

I I I I I , " ..... T :::--_, 
2 q 6 8 ]0 6 100 1000 5000 

CYCLES TO FRILURE, IN THOUSRNDS 

1000 
900 
800 

700 

600 
::L 

sao 
0 
Ul 

400 "" Z 
::L 

300 Z 
() 

I 

Ul 1..O 
Ul 

200 
w 
a:: 
t-
Ul 

]00 

70 



SpfCIME~ TYPE 8 TRANSVERSE ~UTT WFlD WTTH qEINrQRcrMrNT INIACT PLOT NUMBER 10 

STEfL TVPE -A24?,A57?,HIGH ~TR~N~Tu L[)W ALLOY STEEL 

STRESS CytL~ - 7[RO TO T~~Sr~~ 

SaN CURVE - ~AXIMU~ STRESS VS. rY~L~S T~ FATLURE 

NO. Or DATA pOINTS USED TO Gf~~RATr S-M CURvE - 3b 

CDNSTANTS Cn~PUTED FRU~ RE~RrS~InN ANAlYSIS 

A:: 17.5151~ A ::fiII'3.111863 

STANDARD fRRDR or ~S11MATf :: 1.08035 

CDRRELATID~ COEFFJCIE~T :: n.75739 

AaSOLUTf VALUE Of S~UP[ 
Dr SeN CURVE :: n.29?S' 

CD~PUTrD VALUES ~F ~ATrGJE STRrNGT~S AT SELfcTr~ LTvfS 

-DNr TTM[S 
LowfR TOLtPANC E LT.MTTS 

F"nR 9'" SUfiVlvAl 
FATIGUE STRENGTH 

rc 20000) :: 79.8 KSl 
rC 50000, :: 611110 
fiCl0(,)OOO) :: 49118 
r(200000) ~ 40'117 
r(500000, :: 31.1 

STANDARD ERROR OF FSTTMATr 50~ CnNrIDFNCt 95, CONrIorNC[ 
6~,&::; KST 

50.9 
lJ 1 • ~ 
33,Q 
?5 111 9 

re1 MILL) :: ?5,,4 ? 1 II , 

P(2 '4ILL) :: 201/7 1 7 II :3 

F'C 20000) :: 550.0 MN/SQ,v, l158.5 M '" IS Q • \1 
r( 50000, :: 420.7 350,,7 
"(100000, :: 343.5 ?R6.3 
rC200000, :: 280.fl ;:>33.R 
'(500000) :: 214.5 1 7 B • e 
F" ( 1 \I1I~L' :::: 175.1 , 461) 0 
r(? \I1JLL) :::: 1 4 3 19 0 11 9 • 2 

5?O K~l 4~.1 ~~J 
19.8 35.3 
3?"S ?R.A 
?6.5 ?3.5 
?O,3 15.0 
1"'.6 14,7 
13.5 l?O 

15A.6 MN'c:.Qe'4 
'74.1 
22 Lt .n 
19'.9 
1 39. 9 
11'I.? 
93,' 

31A,1 MN/C;t:'l,,~ 
243.3 
19A..7 
16?1112 
1 , II • 1 
10' 0 3 
~?,7 

CJ 
I 

N 
a 



200 

iOD 

80 

(j) 

:::s::::: 60 

(fJ 
(j) 40 

W 
CC 
r-
(j) 

x 
IT 20 

::L 

--.-----+----\----1--+--+I---l-! +-1 +-1 +-1 11------11 -+- I I I II! 

TRANSVERSE BUTT HELD WITH REINFORCEMENT INTRCT 

A242. R572. HI GH STRENGTH LOW RLLOY STEEL 

lERCl TG TENS I GN 

6 10 

[!J 

-----

[!J 

Cl!D [!J 

100 

PLOT NUMBER 10 

+--+---+-----t-+-++-+-t-+--+---+----+-i-
! LOWEM TGlERRNCE LI HlT - 99% SUIlV 1 VRL I 

[!J 

[!J 

[!J [!J [!J rri!? 

[!J 

[!J 

\ 50i: CQNF IDENCE LEVEL - - - + 
95% CQNF j DENCE LeVEL 

ANAL Y51 5 - METHDD A 

[!) 

[!) ~ 

[!J 

!ODD 

[!). 

-­[!) [!J 

5000 

CYCLES TO FRILURE. IN THOUSRNDS 

I 
i 
I 

]000 ---j 
900 
800 

700 

600 
:L 

500 
0 
(fl 

400 "-
Z 
:L 

300 z 
() 

I 
(fl 
(fl 

N 

W 
200 a: 

t-
(fl 

100 

70 



5 P Fer \1 E 'I T Y P E "" T q A \J S 1/ F ~ S r ~ U T T ~I F! D \AI T 1 ~ P F T N f:" (l R C r M r N T T N I ~ r T PLOT NUMBER 11 

S T F r L T y p E ... A ? 4 ? , A 5 1 2 , W ! G -1 ~ T Ii r ~! G T w L 0 \r,J ALL C1 y ~ T E r 1_ 

S T R ( 5 S eye L r: I!IiI ~ ~ L F T E ~I c:, 1 C] ~J T C1 T r '., ~ T 0 ~ 

StI>N CuRVE lEO MAxIMUV ST~E~S \/s. (,yrLf:"S 1" rATLIIRr 

"J J @ 0 FDA TAP J I N T S J ~ == n T D G r 1\, r RAT F S lEO "" C LJ R V f:' "" Q 

CO~STANTS CDMPUTEQ rQOM RE~RFS~TQN ANALvSIs 

A: ?0,10:,9(1 ~ ="'2.775?7 

STA~JARD E~ROR O~ ES11MhTE :: n.57~93 

CORRftATID"J rOErrTCIE~T = n@83451 

AB~nLUTE VALUE or SLU~E 
OF S·~ CURVE :: n@36n33 

CQMPUTrD VALUES Or rATTr,UF STRr~GT~S AT SFLrCTrD LTVr.S 

FATIGUE STRE~GTH 

re 50000' =15R.8 KSI 
F'etOOOOO) =1:>3.7 
F"(200000) = 96,4 
r(500000) :: 69.3 
r(i "'ILL, = 54,,0 
r(2 MILL) = 41.'110 

... [1~E" TTMES 
STA~~ARD FRROR ~F (STlMATr 

j,4111,I(S'I' 
1 :19@9 
~5eA 

f.'I.&; 

47.9 
37@3 

F'C 50000, :1095,0 "1N/SQIl"1 97?6 M "'I S Q, M 
'-CtOO000, : 853,0 7r::,7 1l 1 
r(200000) = 664.5 59C.2 
r(500~OO, ::: 47 7 916 it?4 It? 
r ( 1 \AJLL) ::: 372 e 1 310.5 
rC2 "1IlL) : 289,8 ?51./';' 

~~WfR TnL~RANCE LTMITS 
Ff1R 9~' ~~RVIVAL 

5 (),: en,,' r T 1) f ~ C ~ 9 5 , C 0 1\, rID r NCr 
l1 Q .? KSY 97.2 ~Sy 
9?,9 7~,1 

72.3 5Q.0 
~?.n 4?4 
an.5 33.0 
11.6 25 11 7 

81.'1.9 \4t\J/C:w@\.1 
fdl C"t? 
I.l9 R. 7 
~5Rel:) 

?79.~ 

?17.':; 

670.2 t.AN/SQ.~ 
52? e 1 
406\\1 7 
29'.3 
??71l7 
177@4 

("") 
I 

N 
N 



200 

100 

80 
f----i 

if) 

~ 60 

(f) 
if) 1,\0 

w 
a= 
t--
if) 

X 
IT 20 

L 

PLOT NUMBER I I 

I I III I I III I I+++- I 
LGWEA T GLEAANCE Ll M JT - 99% 5UAV J VAL 

~ 
50% CGNFJOENCE: LEVEL - - -

TRANSVERSE BUTT WELD WITH AEINFOOCEHfNT INTACT 

A21!2. AS72. HIGH STRENGTH LGI-I ALLOY STEEL 

HALF TENSJGN Tel TENSI~ 

2 10 

~ 95% CGNF JOENCE LEVEL - - - - - - T 
---- ANAL Y5 J 5 - METHGO A 

----~ ---- -------. ----
----

---- I!I 

---- ----
I!I 

---- ----
I!I 

----
I!I 

---- ---- ---- ----

100 2 8 1000 sooo 

C,CLES TD FRILURE. IN THDUSRNOS 

I 
! 

J 
1000 
900 

800 

700 

600 
L 

500 
0 
(J) 

400 '-.. 
Z 
L 

300 Z n 
I 

(J) N 
(J) W 

200 
w 
a: 
r-
(J) 

100 

70 



SPtCJ4[~ TYPE'" TRA~~V~qSE qLJ1T wflr) WllH RFII\JrnRCI="MI="NT Tt\;lflCT PLOT NUMBER 12 

S T r F ~ T y P E ... A 5 1 LJ , ~, 5 1 1 , i.j I r} rI Y 1 [L D S T R f N r~ T H Q ~ T ~ TEE L 

STRESS CYCLE'" CG4PLETE REVF~SAL 

SI!»N CURVt '"' MAXTMU~ SlRfSS VS .. ryrL.FS Tr'l r:fJYLURr 

~D. OF DATA POINTS USEO TO Gr~FRATr S-N CURVE... 33 

C~~STA~TS C~MPUTED FRJM RE~Rr~~TON AN~LYSI~ 

A::: 14,9n553 R ::"'3$??337 

STANDARD FRROR OF EST!~~TE r ~.93354 

CORRELATION CDEFI="TCrE~T ::: ~e9114~ 

AgSOLUTf VALUE OF SLUp[ 
or S&N CURVE ::: 0.310?3 

CDMPUTED ·vA.LUES Dr FATIGUE STRFNGTHS .AT SFLEcrrD LlvFS 

"'Ot.Jr TT~AFS 

rAT1GUE SlRFNr,TH STA~DARD fqROR nr ESTTMATr 
r( 5000' :: fI,'.2 KST 73.P k'ST 
Fe 10000, :: 70.4 :;q.c; 

rc ('0000, ::: SE.7 ~ B • (\ 
rc 50000) ::: 4?07 36. , 
relOODDO, ::: 311. 4 ;>9 0 ' 
rC20(000) :::: ?7.B ,3@t:; 
rcSonooo) ::: '099 , 7 • 7 
r ( 1 \1ILL) ::: 1 6 I; 9 14. 3 
F'(2 ~ILL) ::: 1 3 e 6 1 , I' c; 

r ( 15000) ::: 601 ill I.i MN/SQgYi ,09@C ~ 1\1 15 Q. M 

r( 1(000) :::: lIRS., (ltO.S 
f( ?OOOO) ::: 391.2 3 :3 1 0 1 
r( 5(000) :: ?941,14 ? (! 9 • ? 
rel00000) :::: 237.4 '01 @ 0 
r(20nOOo) :: 19'.5 , ~ 2 II' 1 
r{500DOO) :::: 144 II 1 1?2.0 
rct MIL L ) :: 11 I) 1)1 ? 91:L.I.I 
F(? "1llL) ::: 93$7 79@3 

5()~ 

LnwfR TnL~RANC[ LIMITS 
F"flR 9~f SURVIVAL 

cnNFlnE~ct 95, CO~F1DrNrr 
~R.9 K~I 5?7 ~sr 
47,5 4?5 
1R.3 34.3 
?R.9 25.8 
?3.3 20. 8 
18.8 1.6@8 
14.1 1?" 
1 , • 4 1 0 • 2 
9.? 

40~.4 Iv1N/~0."1 

3'7.'3 
?64 o l! 

199."" 
1~()t5 

1?9,,1I 
97. I. 
7~"t; 
~~.4 

8.? 

363.4 M~/5r.).M 
293. t 
?36.4 
177 9 9 
] 43.5 
11 5 li 7 
~ 70 1 
7n.2 
t":.,f,.6 

() 
I 

N 
+::-



200 
I 

_1 ,------, j I 1-1-t 'I 

I: ___ 1 

-'-------~ 

--i------\----+__ I i I 1-

PLOT NUMBER 12 

---1---+-; --t--+---+---J--+-f---- - +----+----j----
L Cl~ER j[jL[RP.NC:~ U M:;- - 991. 3URV 1 V p.~ 

50;~ CelNf I QU~::;- !_::VEL 

9Si~ c:et\F': j ;'J[i':':E L.E Vt L 

RNA~ is!::; - M':THClC 

-+-

~ :~ 
~ 60 + ------------~ 

T 
T 
t 

~ '0 + 
en 

x 
IT 
L 

20 

---

TRANSVERSE BUTT WELD W1TH REINFORCEMENT INTACT 

A514.A517.HIGH YIELD STRENGTH Q&.T STEEL 

COMPLETE REVERSAL 

I I I I I I 
2 10 

l!t---~~ 
[!] Il!II!J 

f!j[!] [!]~-~[!]-~ ~ ~ [!] 

--- --- --- --- ---[!] 

---
[!] 

[!] [!] • 
.... \ [!] 

I" 

+ 
t 
t 
I 

-+-
I 

• I 
I 

I I I I i I 1- 1 I 1 I 1- -I--T - --1--1 -- I-l- lTTT---1 - -i-
6 8 100 2 1000 5000 

CYCLES TO FRILURE 9 IN THOUSRNDS 

1000 
900 
800 

700 

600 
:L 

500 0 
VI 

400 "".. 
z: 
2: 

30D z n 
I 

N 
VI (J1 

If) 

200 
w 
a:: 
t-
VI 

100 

70 



sprCI~EN TVPF = TRA~SVERSE RUTT WFLD WT1H QFINrnqcrMF'NT TNI!CT 

STrrL TVpE ~A510,n517,~lG~ yIELD STREN~TH 0RT sTrEL 

STRESS CYCLF - ZE~n TJ TENSTJ~ 

S ... N CURVE ... ~AXIMUM STq[sS V~e ryC'Lrs Tn FATL!IRF 

~J@ OF DATA POTNTS USED TO GrN~RATr s ... ~ CUQV[ - 1~1 

CO~STA~TS COMPUTED FRJM REGRrS~TON ANAl ySIS 

A::: 17 11 39691 g :::"'3,lQ270 

STA~O~RD ERROR Or ESTIMATE = 1.'8310 

CORRELATION COEFFlr.IE~T ::: n@7B13 7 

ABSOLUTE VALUE OF SLJPF 
OF S-N CURvE = n@313?1 

COMPUTfD vALUES Jr FATT~UE STRrNGT~S AT SELfCTF'D LTVrs 

"':J~E TTN'rS 
LnW[R T~LtPANCt LTMYTS 

F'flR 9Y9' SURVIVAL 

PLOT NUMBER 13 

rA1IGUE STRENGTH 
r( 5000) =139.6 KSI 
Fe 10000) ::11:?e4 

S T A. ~ D f\ ~ J r ~ q D q r'\ r r S 1 T ~1 A T r 50~ cnNrTflF'~C~ 95~ CO~~IDrNr.F' 

rc ::>(000) ::: 90114 
F'( snooo) :: 67e9 
f(100800, :: 54,6 
r(200000, :: 44eO 
r(50nOOO) :: 33.('1 
Fei MILL) :: 26e6 
Fe2 MILL) :: ?1,il 

rc 500O) ::: 96206 
r.( 10000) ::::: 77'L,7 
fC ?DOOO) ::::: 6?3 e C) 

r( 50000, ::::: 4~R~(l 
1='(1000DO) ::::: 376@6 
F"(200000) :: 303@, 
r(500DOO, :: ??7.C:; 
,. ( 1 '-AILL) ::: 1 !l,3 9> 1 
F"{2 MILL) ::: 1 4 1 1\1 4 

\1N/SQ.1vl 

11 ?(lIP k''3 T 

9 0 • P 
73. 1 
511e~ 
lJ 4 • 1 

~5\1:; 

;:>6,7 
? 1 , t:; 

1 r • ~ 

777.(-' 
6~5.B 

sn3e 7 
:178,0 
3040? 
~44e9 

1F'3.A 
1 (~ r • 9 
1 1 9 .. (I 

~A ", I S Q, VI 

Ro.9 KST 8n.0 KST 
~R.3 6U.4 
C:;5.0 51. R 
41.3 39,9 
33.? 31.3 
?~ .. 7 
? () \I 1 
1 6 , 1 
1 3 • () 

C;R~.".\ MN / Sr,),"1 
1~71,O 

37Q II 1 
?Alto) 

??Q.n 
1 R IJ , 5 
13~@'1 

111 , '1 
8Q\l1!; 

?t:;e? 
19 m Q 

1 S, 2 
1 ? m ? 

5'11.4 MN/(,tJ.4 
4f~3.f' 

3,)7m2 
2 ~ ~ GI 1 
? 1 ) GI R 
, 7:3 m 7 
1 30m 3 

1nll.9 
AlJ.,4 

CJ 
I 

N 
0) 



200 

100 

80 

en 
~ 60 

if) 

en 140 

w 
a::: 
t-
en 

x 
IT 20 

:L 

r-~~~-~~I~I+I~II~~-+--+-~I~I ~UII~I-4 

~----~ ~ :::::--- ---
~~ --- --- ill 

~ - :::::--~:::::-- ---
- - - ==--- --- ---- ---

%~ 
ill 

ill 

1m 

ill 

ill 

ill 

ill 

ill ill C!ll!J 

---==---~ ___ ill 

- --::::---!;! 
- - ---

PLOT NUMBER 13 
I I I ' I I 
, 111 -1--
, L ClWfA T C1LEAANCE _.' 1/1 JT - 99% SUA V j VRL +' 
: SOi: CClNF 1 OENeE LEVEL 
I 9S% CONF I DENC[ LEVEL - - - - - -

~r515 - METH_C1D_F! __________ -l--

em 
ill ill 

ill ill )l( 

ill )l( • 

)l(~ • C!J C!J 

-- ---
- ~ - ==--- :::::--- ---

)I{ 
C!J 

T~NSVERSE BUTT WELD WI1H AEINF(]RCEHENT INTACT 

A514.AS17,HIGH YIELD STRENGTH QU STEEL 

ZER(] Tel TENSION 

6 8 10 6 B 100 

CYCLES TD FRILURE, IN THDUSRNDS 

• 
- - ==---:::::-- ---

~--

1000 2 5000 

1000 
900 

800 

700 

600 
L 

500 
0 
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YOO "-.. 
z: 
L 

300 z 
() 

I 
if) N if) 

'" w 
200 a:: 

r-
if) 

IDa 

70 



SPfCI"1E'\J TYPE'" TRA"I~V~PSf ?l!TT WELO WT1H prINr:(lRCI="MI="NT TNIlIrT PLOT NUMBER 14 

STffL TYPE -A514,A517,~lG~ yJELD STREN~TH 0~T ~Tl="rL 

S T R r sse y r L r ... H f,. L r T E \1 c: I Cl \! T C1 T f ~! S T n \J 

S ... N : U ~ V E ... tv! A X J vi LJ t...l S 1 Q E ~ S \/ s. r y r L r S T n FAT L U R F 

\JD. 'r DATA pDJNT~ JSrn TO GFNrQATr S ... ~ rUPVf... 71 

CQ~SlA~TS COMPUTED r~DM REGRFS~ION ANALYSIs 

A:::: ?0 11 4 151(') q ::"'3.t1441 

STANDARD FRRQR OF ~5TJMATf ::: n.92399 

CORRELATION CD[FrTCrt~T :: n.88146 

ABSOLUTE VALUE Dr S~JPr 
OF SaN CURVE :: ~.3?109 

COMPUTFD VALUES D~ rA1Tr;LJE STRI="NGT~S AT SELfCTF"[, LTv[S 

FATIGUE STRENGTH 
~( 10000) ::?0~.7 ~SI 
Fe ('0000) :::167,,0 
F"( 50000) :::11'4.5 
rCl00DOO) ::: Q9.d5 
F(200000, :: 79.7 
reSOODOO) ::: 59114 
r(1 "'!ILl) :::: 4716 
F'c2 MI~L) :::: 3~el 

~1~r TT~rs 
STA\Jn o Q0 FRRQP fir FSTJMAT~ 

17~,q ~ST 
, a (') , A 

1 [') it • Q 

~ll.(') 

,.,7.' 
50" 1 
II fL,' 
3? • 1 

F'( 1(000) ::: 1 II 3 8 e 7 M N I S (:) II 1.1 1 ? 1 ? • .., k: ",! I S Q II '" 

r( 20000) :::1151.7 g70 Bl 7 
rc 5(000) :::: 8SR II 1 7?3,3 
rCloaDOD' :::: 686.9 5 7 9,,0 
"(200000, ::: 549.B '~6315 
reSODDOD' ::: (~O9".., 345.3 
fret MILL) :: 3;;>7,9 ")76.4 
F'(? MILL) ;:; ?~?,5 ?? 1 fI 3 

5 () % 

LnwFR T~L~QANCE LTMITS 
Fr'JR 9~1f SUI-(VI\lAL 

cn~rlnFNc~ 95, CnNrIO~~CE 
l~O.O K~T 130_? ~SI 
11?,0 loa.? 

q'$5 77.6 
;:"6.8 
K;3.5 
39.9 
31 II 9 
?,.I:) 

96S.0 \o1N/~Q,,\.1 

77'1I~ 
575." 
46("1t r 
~~~,1~ 

?7t!." 
??0 1 () 

176 II 1 

(, ") II 1 
49.7 
3 7 1 1 
?9.7 
23,7 

897.4 MIIJ/~r:),M 

71~1I3 
53';.2 
4?~o4 

3 f!3.0 
?~e:;.5 

?nll,6 

1 " 3 " 7 

() 
I 

N 
co 
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PLOT NUMBER 14 
r---t---t---t---tl-+ I I I I I I I I I ! I I i I -r 

~ ~~ 

~-~ 

TAflNSVERSE BUTT WELD WITH REINfClRCEMfNT INTACT 

AS III • AS 17 • HIGH YI ELD STRENGTH Q4. T STEEL 

Ha.F TENSIClN Tel TENSION 

2 6 10 

--~ 
I!l I!l 

I!l I!l 

- ..... :::-- i!'Il I!l 

I!l --~ - ~ 
-- ~ I!l 

--~ - -:-
--~ - -:-

6 8 100 

CYCLES TO FRILURE, IN THOUSRNDS 

I!l 

I!l 
I!l 

L('lWER TOLERANCE LJ M JT - 99% SUAV I VAL 
50% CONF IDENCE LEVEL -
95% CONF I DENCE LEVEL 

ANRLYSIS - METHOD R 

• 
)I!( 

~ ~% -I!ll!l 
!Ill !liI! I!l - - ::-

liiIl!l-­
I!ll!ll!l 

~li( 
I!lli( 

--~ 
-_~ )I!( - -:-

1000 

I!l 

t I!l 

• 
• 

5000 

1000 
900 
800 

700 

600 
L 

500 
(3 
<n 

1.400 ""'-
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1 300 z n 
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N 
<n 1..0 
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200 
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t--
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SPfCT"1E~J TYPE'" TRANSVt:"R<)E ~L1TT r/rLDS wITH RFINFClRrFMffI.JT RtM!1VEU PLOT NUMBER 15 
STEFL TYPE ... A7, A36, \4ILD STEEL 

STRESS cyCLF • 7ERn TJ Tr~STJ~ 

s ... N CUR V r ... ~ A X I \.1 U ~1 S l RES S \1 S,. r y r L r' S T'" FAT l U R r 

~o. nF DATA pDINT~ JSEn TO GrNr'qATF S ... N CURVE _ ,~ 

FATIGUE 
r( 20000) 
r( 500001 
F(100000) 
r(200000) 
F(500000, 
r ( 1 MILL' 
F"(? \AILL) 

r( ?OC>OO) 
r( 5(lOOO' 
f(10DC>[)O) 
F'(200000) 
rc50nOOO) 
r ( t ""ILL' 
Fe2 VILL) 

CON S T A ~I T seD M PUT E D r RUM R E r; R r s ~ ION A "', A L Y SIC', 

/.\: 17$R~037 R :"'3.9"'627 

STANDARD ERROR DF FSTiMATE =, .56~98 
CORRELATION CQEFFlr.rE~T ::: ~.61QOl 

ABSOLUTE VALUE OF SLu pr 
OF S ... ~ CURVE = ~~25'13 

COMPUTED VALUES ~F r Al1GUf STRr~GT~S AT SELFrTFD LIVES 

"'O\l~ TT~rs 

STRF\Jr,T~ STA\J~A::(D F~ROP nr ~SrT'viATr 

:: 6?06 ~SI lf9,Q 1<5T 
::: 1~9,.7 ~9,~ 

:: ''1. a 7 33.' 
::: 35C10 ?7 11 Q 
:: '27 .. 8 ;:>?,., 
::: ? 3 II I~ 1 R Q f'. 
:: t 9 \I 6 1 5 II fi 

:: 43j l1l 7 ~ N IS (,'! ,. \1 3 4 3,7 ~II\II S Q til M 
::: 3{~?,.6 ?12 t11 f3 
:: ?8i'e7 ??9.1 
:: ?41 .. 6 1 92. 4 
:: 1 91 \I 7 152.7 
:: 16111() ~?~.2 
:: , 3:; • ? l 0 I \I 6 

5()~ 

L"'WrR.TnL~RANcE LTMlTS 
Ff1R 9)?~ SUI-tVIVAL 

CQNrInE~C~ 95, CONrlDfNCE 
1~.4 ~C',I ?~.1 ~Sy 
?8.9 22.3 
?4.3 1R,7 
?0.4 1~e7 
16m? 1?5 
13 11 6 1001) 
11 m 4 Ae R 

?~1.0 'v!N/~(.)Q4 
199\!13 
167@3 
14n.1:) 
111 Q 5 
9~1i!I~ 

7~.~ 

19~.6 M~/e;nll~ 
153.6 
1'29,0 
1.08.3 

R6.0 
7'&2 
6().6 

() 
I 

W 
a 
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IT 20 
L 

TRANSVERSE BUTT WELDS WITH RE I NFGRCEMENT REMGVED 

A7. A36. MILO STEEL 

ZERO TO TEN51DN 

2 6 B [0 

---

6 8 100 2 

CYCLES TO FRILURE, IN THOUSRNDS 

---

PLOT NUMBER 15 

I I 
LClWER TCllERANCE LIM I T - 991. SURV I VAL 

50"1. CClNFlDENCE LEVEL 

T ~ 1000 
951. Cf)NF lDENCE LEVEL ------

900 
ANAL rSlS - METHOO R 800 

700 

600 
L 

500 
0 
(f) 

LIDO "'" z: 
L 

300 z: n 
I 

W 
(f) 

en 
200 w 

a::: 
t-
(f) 

(!) 

):I( 

100 

70 

6 B 1000 2 5000 



SPECIMEN TYPE q TRANSvERSE RUTf wEI DS W1T~ REINFORCFuENT R~~nVEU PLOT NUMBER 16 
STEEL TypE -A242, HIG~ STRE~GTH lOw ALLOy ~TEEl 

STRESS Cyr.LF • lrqO TO TENSI~N 

SeN CURVE ~ MAXl~UM STRESS V~t cvrLrs Tn F~TLURF 

NO. OF DATA POINTS USED TO GfN~RAT[ S·N CURVE - '0 

CONSTANTS COMPUTED FROM REGR[St:::ION ANALySI<; 

A::: ?1~54790 q ="'()Gl1f.9~2 

STANDARD ERROR Dr ESTl~ftTE ::: ?e29h27 

CORRELATION COEFFIC!ENT ::: nGl52'~j 

ABSOLUTE VALUE Or t:::LOpF 
OF S·~ CURVE ~ "@16'08 

CO~pUTED vALuES Or FATIGUE STR~NGTHS ~T SELECTED LIvES 

rATIGUE STRENGTH 
r( 5000,::: ~797 KST 
fe 10000, ::: 51B!6, 
r( 20000) ::: 4flel 
rc 50000) ::: 39@7 
r(10DOOO, ::: 35.5 
r{200DOO) ::: 31B!l 
r(500000) ::: ?733 
ret MILL, :: 24.4 
r(2 ~JLL) :: ?l11B 

• 0 ~ t T J ~1 F S 
STANDARD ERROR Or ESTTMATr 

II~Clt< KST 
it 1 , 6 
37 11 , 
32. 1 
28.7 
~Si!6 

22.1 
, Q e 7 

1 7 II 6 

r( 50(0) ::: 397" p. tvlN/SQe M :3 21 " 1 MfI..I/SQ, M 
F"( 10000; ::: 355@5 ,~6,9 
r{ 200(0) :: 317 11 7 ?5b,,5 
F'( 50000, ::: ?73 e Q ?? 1 CD 1 
,(100000) ::: ?44 e A 1 9 r 6> 6 
r(200000, :: ?1F;.f1 1 7 (;).6 
P(500DOO, :: 1 R B II I) 15?? 
r(t MILL) ::: 16AII5 1 36 t) n 
"(2 "'ILL) :: 1c;O@6 1 ? 1 0 f 

Lnw(R TOL~pANCl LTMITS 
rrJR 9)1" SURVIVAL 

50~ cnNrI~ENC~ 95, CONrIDfNCE 
34.4 KST 24.~ ~ST 
30.8 22.0 
/7.5 19.6 
?3~7 16,9 
21.? 1').1 
18,9 13,5 
16.3 11.7 
14.6 10.4 
13.0 9,3 

'37@4 
'1 '€I 1 
,89.6 
1 (, 3 €I 4 
146 II 1 
130(lr; 

, t'@'; 
l00 11 6 
~9(1Q 

M/lJ/~~ • .." 169.5 MNI«;~.M 
1 5 , (\I 5 
135.4 
116.7 
104.3 

93C12 
~()1I4 

71 II 8 
64B!2 

(") 
I 

W 
N 



PLOT NUMBER 16 
200 I , I I I -+--+- I , , " --+-l~t~H--+-+---+t-t I L(}WER T(}LERRNCE LIM 1 T - 99% SURV I VRL I 

. 50" C",flOCN" LEVEL - - - j ~ 1000 , 95" CONfI OCN" LEVEL - - - - - . 

~~SlS -~~:~[} R 

900 

-t 800 
100 -L 1 700 

± 1~ 
BO 

± 
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500 
(3 (f) en 

:::s::::: 60 
400 "'-
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(f) 

t t 1: zn 
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W en W 
(L en W 
t-- [:J w 
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f-
en 
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2:: 
TRANSVERSE BUTT WELDS WITH REINFORCEMENT REM!WEO 

A242. HIGH STRENGTH LOW AlLOT STEEL 

T roo IEACI Tel TENS ION 

I I I I I I I I , I I -'-11 70 

2 6 8 10 6 B 100 2 B 1000 5000 

CYCLES TO FRILURE. IN THLJUSRNOS 
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TRANSVERSE BUTT WELDS WITH RE I NFClRCEHEN1 REMCIVEO 

RSILJ.A517.HIGH YIELD STRENGTH Q8.1 STEEL 

CClMPLETE REVERSAl 

2 1! 8 10 
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I I I 

I I I I I I 
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PLOT NUMBER 17 
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PLOT NUMBER 18 
200 I I I I I +- I I III I -+--+ 

LrJWER TCIlERANCE LIM 1 T - 991. SUflV 1 VAL 
50% CClNF 1 DENCE LEVEL -
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L 
TRfltGVERSE BUTT WELDS WlTH REINfCllRCEHENT REMCIVEO 

ASllt.AS17.HIGH YIELD STRENGTH QU STEEL 

T roo lERCI Tel TENSION 

I I I I I I I I I I I I I I I 70 

2 LA 6 B 10 2 6 8 100 2 1000 5000 

CYCLES TO FRILURE. IN THOUSRNDS 
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