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CHAPTER 1

INTRODUCTION

1.1 General

Secondary systems such as light appendages (penthouses, elevator
hous ings, piping systems, etc.) in nuclear power facilities or other
structures are usually designed after the primary System (building, nuclear
reactor, etc.) design is completed. The secondary system is supported by
connections to the primary structures. Under earthquake motion the base of
the primary system tends to move with the ground, and the secondary‘system
support motions follow the motion of the primary structure at the points
of attachment.

In general, earthquake motion is relatively rapid, thus having
‘great potential of causing severe damage to improperly designed structures.
When the secondary system is considered stiff in comparison to the primary
structure, it accelerates with the same motion as its support. However,
for a very flexible secondary system, the differential motions between the
masses and its base are large. Between these two Timiting conditions the
secondary system must be designed in a balanced fashion in order to survive
the dynamic motion. Explicitly, the secondary system must be strong enough
to resist the force acting on it as well as ductile enough to deform
without collapse. The amount of strength and ductility is controlled by
proper selection of the stiffness or flexibility of the system itself,

Several factors complicate the response analysis of the
dynamical system; for example, the number of degrees of freedom required
for reasonable modeling may be large, thus giving rise to problems of data
processing, even in modern computing facilities. Another major factor is

the lack of complete knowledge about the earthquake hazard for which these



components should be designed.

The effects on the secondary system depend not oniy on the
earthquake motion but also on the properties of the primary structure and
on the properties of the secondary system itself. The most important
properties are the energy absorption of each system and its support, its
natural frequency and strength or resistance.

Due to the unpredictability of future earthquakes, current
methods of seismic analysis often specify the design earthquake by a smooth
response spectrum. This permits an analysis to be made of the primary
system but provfdes no information for the design of the secondary systems.

Since the secondary system is generally a light system in
comparison to the supporting structure, it is quite reasonable and
convenient to have simple rules for the approximation of the strain and/or
maximum motion response of the secondary system as a function of the
separate parameters.of the primary and secondary systems. If such rules
can be developed and are applicable, they offer at least two advantages
in the preliminary design stage.

1. The secondary system can be analyzed for,any type of base
motions of the primary system.

2. By considering the primary and secondary systems separately,
computationaf difficulties of the combined system, due to different orders

of magnitude of the masses and stiffness elements, are avoided.

1.2 Object and Scope

In recent years, considerable studies have been carried out
towards the finding of approximate procedures which can be employed in the
preliminary design of secondary systems. The procedures which have been

suggested in many of the past studies involved decoupling of the primary



and secondary systems. But in most cases this is not possible and
interaction effects must be considered if reasonable results are to
be achieved.

The main objective of this research involves the study of the
dynamic response of the secondary system, whereby the interaction effects
are taken into account.

In order to permit an extensive parameter variation, relatively
simple analytical models'(mass-SPring systems) are used. In this study,
both primary and secondary systems remain in the elastic range, with the
primary system being a multiple-aegree-of-freedom system subjected to base
disturbances, while the secondary system ranges from a single-degree-of-
freedom system to a multiple-degree-of-freedom system, but is attached at
only one point to the primary structure. Attention is paid to the fesponse
of the secondary system, which is influenced to a major extent by the
nature and type of the response of the primary element on which it is
supported. The effect of damping upon response is also investigated
in detail.

After various parameters of interest have been carefully studied,
reasonable ranges of these parameters will be developed. The purpose of
this part of the study is to arrive at approximate procedures which can
be employed in the preliminary design of secondary systems and/or to

estimate the adequacy of such systems, pending more elaborate analysis.

1.3 Review of Related Work

Various procedures employing the assumption of neglecting
interaction effects between primary and secondary systems have been
suggested to simplify the design of light secondary systems mounted on

a responding structure subjected to earthquake or other dynamic motions.



Newmark (1) gave basic design criteria for very light subsystems. Based
on the forced response of separate two-degree-of-freedom systems, one for
each mode of the primary structure, Peniien and Chopra (2) presented an

approximate method for a single-degree-of-freedom secondary system.

Another simple design procedure has been suggested by Biggs and Roesset (3).

Two assumptions were employed in developing this latter method. Firstly,
the significant input to the equipment consists of a series of damped
harmonics, each of which corresponds to one of the normal modes of the
structure. Secondly, the most significant harmonic components of the
earthquake motioﬁ with respect to the equipment are those which are in

near EesonanCe with the equipment. Sato (4) simulated the building-machine
structure by an idea]izeditwo degree-of-freedom system, and characterized
the respoﬁse spectruh of .a single-degree-of-freedom secondary system when

the primary structure was subjected to earthquake motion.

A considerable amount of work has been carried out to study the

response characteristics of a secondary system with two-end connections.

Shibata et al. (5) treated each portion of a piping system as a simple beam
and simul ated fhe whole structure (pipiné and building) as a two-degree-of-
freedom system. Sato and Suzuki (6) investigated the dynamic response
characteristics of §imple building-machine structures subjected to two
seismic motions with certain time-lag intervals. Nakagawa et al. (7)
employed the principle‘of superposition and developed a method of modal
analysis of response of a structure subjected to two different earthquake
input motiohs at its two supporting points.

Attempts have béen;made to characferize the response of a
secondary system treated as a continuous beam. I[ncluded in this list are

Watari et al. (8) who used a transfer matrix formulation, and Shimizu and



Shibata (9) who analyzed a piping system subjected to multirandom input.

Hart et al. (10) discussed several modal synthesis procedures
for the dynamic analysis of large compoéite structural systems, and also
gave schematic flow charts of the analysis procedure used in prominent
ﬁefhods.

Berkowitz (11) performed an analysis of a primary piping system
by treating a reactor vessel and attached piping as @ single coupled
Tumped mass model.

Kassawara (12) investigated earthquake response of multiply
connected light secondary systems by spectrum techniques.

As indicated earlier, reliable results can be obtained only‘when
the interaction between the primary and secondary systems is taken into
account properly. The interaction is determined not only by the mass ratio,
as postulated by many authors, but also by the damping coefficients of

both primary and secondary systems. A sufficient condition for neglecting

the interaction has been obtained by Caughey (13) who performed qualitative

mathematical analysis of various approximate schemes.

The éonsideration of a single-degree-of-freedom primary system
and a single-degree-of-freedom secondary system as a coupled two-degree-
of-freedom system directly includes all interaction effects. Newmark et al.
(14) indicated that the maximum amplification factor, even when the light
secondary system was tuned to a frequency of the system on which it was
supported, could not exceed the square root of the ratio of the effective
maSSes* of the primary and secondary systems.

In a recent study by Newmark (15), involving a multiple-degree-

of-freedom primary system and a single-degree~of-freedom secondary system,

the amplification factors at resonance are shown to be affected by both

1

™ The effective mass is defined in Chapter 2.



the damping factor and the effective mass ratio, but details of these
combined influences have not yet been investigated.
Since the concept of effective mass ratio seems to be quite

promising, it is used throughout the research conducted here.

1.4 Notation

Most of the symbols used in this report are defined when they
first appear. However, a summary of frequently used symbols is also

presented below for convenience.

~t

k = spring constant factor

m = mass constant factor

K = stiffness matrix

M = diagonal mass matrix

= stiffness matrix of the combined sysfem

M = diagonal mass matrix of the combined system
—p=_first-natural-frequency--of-the -secondary-system — —— ——

P = first natural frequency of the primary system

Wy, = ith circular frequency of the secondary system

wpi = ith circular frequency of the primary system

T = shortest natural period of the system considered

Td = duration of the constant acceleration pulse

Cpi = ith primary participation factor

Csj = jth'secondary participation factor

&j = vector of the jth mode shape of the secondary system

dj = vector of the jth mode shape of fhe,secondary system normal ized

in such a way that the participation factor is equal to unity

U = vector of the ith mode shape of the primary system



vector of the ith mode shape of the primary system normalized

in such a way that the participation factor is equal to unity

amplification factor of the secondary system response due to the

effects of the jth mode of the secondary system and the it mode

total amplification factor of the secondary system response

vector of the absolute displacement of the combined system

vector of the relative displacement of the combined system

Ui =
aj(k) = k™M element of o
Ui(k) = Kth element of u.
u = modal displacement
S = modal spring distortion
S = secondary spring distortion
<] = effective damping factor
S = jth effective secondary mass

Epi = ith effective primary mass
8, Y = effective mass ratio
Aji =

of the primary system
A.F. = ol . se
X =
Y = vector of the absolute ground displacement
) _ .

with respect to the ground
D = spectral displacement
v = pseudo=-spectral velocity
A =

pseudo=spectral acceleration



CHAPTER 2

METHOD OF ANALYSIS

2.1 Introductory Remarks

A sketch of a mass-spring secondary system mounted on a mass=
spring primary system is illustrated in Fig. 2.1. Some of the reasoné for
not considering designing a structure with substrucfures as a single unit
had already been stated in sectidn 1.1. One additional reason is that
sometimes this approach may lead to unreliable results because of the
excessive number of degrees of .freedom. Nevertheless, for comparison
purposes, the solutions by this approach are regarded as exact solutions
here.

The assumption of deqoupling has been employed by many
investigators in developing approximate procedures for the design of
secondary systems mounted on a responding structure subjected to earthquake
or other dynamic motions. Since this asgumption (the same as neglecting
interaction effects) is shown to be invalid in most cases (Ref. 13), a
new approach which incorporates interaction effects should be investigated.

The concept of effective mass ratio* was first utilized by
Newmark (14, 15). 1In Ref. 14, a mass-spring secondary system supported by
a single mass—spring primary system was investigated. The spring
distortions for the two modes of the combined system were considered to be
added in numerical values. Hence, this approach gives the upper bound of
the secondary system response. In Ref. 15, the approximate procedures for

a single mass-spring secondary system mounted on a multiple-degree-of~

3

W

The effective mass ratio is defined by Eq. (2.38). It is worth noting
that when both primary and secondary systems are single-degree~of-freedom
systems, the effective mass ratio is the same as the mass ratio.



freedom primary system had been presented. Heuristic relationships had
also been given for a more complex secondary system with and without
damping. Since this effective mass ratio approach considered the entire
system as a single unit, therefore, interaction effects were included
automatically.

In this report, the effective mass ratio concept is emponed for
the approximate analysis of more complex primary and secondary systems
(mul ti-degree-of-freedom systems). Information concerhing the exact
analysis is provided in section 2.3.3, while the approximafe analysis is

discussed in section 2.3.4.

2.2 Details of the Study

2.2.1 Systems Considered

Before a real dynamic system can be analyzed it must be represented
by a physical (or mathematical) model to define its masses, resistance,
damping, strength and energy absorbing capacity. To obtain a basis for
extrapolation,,and at the same time to permit considering a number of
important conditions, primary and secondéry systems shown in Figs. 2.2 and
2.3, respectively, are investigated. Both primary and secondary systems are
composed of lumped masses and linear springs. Combined systems formed by
attaching the secondary to the primary systems are also illustrated in
Figs. 2.4 and 2.5. In order to proceed with the description of the study
presented here, it is first necessary to clarify what the primary,
secondary and combined systems really represent.

The primary system, répresentfng the building (or nuclear reactor,

etc.) which provides support for the secondary system, is modeled as a
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singly supported shear-beam system (Fig. 2.2).* A three-degree-of-freedom
nonuniform primary system is used. This particular system is carefully
proportioned to enable the natural frequencies to be spread wide enough
relative to each other.

Setback portions of a building or eqqipment located within the
nuclear reactor building or a light appendage (penthouse, elevator housing,
etc.) can be considered as a mass-spring éecondary system supported by the
primary structure. Figs. 2.3a and 2.3b illustrate a single~-degree-of-
freedom and a nonuniform two-degree—of-Freedom secondary systems,
respectively.

Natural frequencies and mode shapes of the primary and both
secondary systems are listed in Tables la, 1b and lc, respectively. The
mode shapes have a]réady been normalized chh that the participation
factors are unity (the purpose of this normalization will be clarified
later on in this chapter).

By appropriate choice of the relative magnitude of the masses
and spring constants, the frequencies of the systems considered can be
adjusted to any desired values (See Appendix A). The three frequencies
of the primary system are kept constant at 1, 2 and 3 hertz, respectively.
Once the masses and spring constants of the primary system are chosen,
the masses of the secondary system are defined by selecting the desired
effective mass ratio (Appendix A). The fundamental frequency of the
secondary system can now be defined through selection of the proper spring

constants.

~a

" This limitation is not significant. The theoretical approach is the
same for more complex systems. The limitation does simplify the analysis
and permits a wider range of parameter variation to be studied.
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The entire structural system (building and appendage, etc.) can
be represented by combinationskof primary and secondary systems. In this
study, the secondary system is limited, by being attached at only one point
to the main structure. The purpose of this limitation is for simplicity,
and to allow an extensive study to be made of the behavior of the secondary
system. The supports for the secondary systems are individual masses of
the shear-beam primary system. In order to study the effect of the support
point upon the response of the secondary system, the location of the
connection points will be varied. Figures 2.4 énd 2.5 show four- and five-
degree-of-freedom combined systems, respectively. The bases of these

systems will be excited by the ground motion.

2.2.2 Parameters Studied

fhe physicél parameters necessary for defining the system are the
mass values and spring constants for the primary and secondary systems and
the connectivity of the structure. For a specific primary or seéondary
system, frequency ratios femain constant and the only parameter necessary
to define the system is the magnitude of one of the natural frequeneies.

One of the objectives of this study is to observe the secondary
spring distortion bounds as the physical parameters aré varied.

One parameter most likely to affect the secondary spring
distortion bounds is the effective mass ratio of the secondary to the
primary systems. The secondary response chosen for observation is the
maximum distortion in each of the secondary springs. This response is
chosen because it provides a measure of the maximum strain at various
portions of the system. The results of the study, then, are'plots.of
s/(V/p) =S/D = S/(A/pz) vs log(p/P), where S = secondary spring
distortion, D, V, and‘A‘are spectral displacement, velocity and

acceleration for the ground motion applied to the primary system at
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frequency p, respectively, and p = fundamental frequency of the secondary
system, P = fundamental frequency of the primary system.

The other significant parameter affecting the dynamic response
of a system subjected to transient disturbances is the loss of energy
involved in damping, hysteresis, or other mechanisms. The nature of the
structure itself is not the only factor used in determining the energy
absorbing capacity from damping. The type of joints or connections within
the structure, the mechanism at the interface between the structure and.
its support, the level of stress or deformation permitted when the structure
undergoes dynamic motion, etc., all these factors contribute significant
portions to the total amount of damping.

Since damping is a very complicated matter, only limited
information is available. Values for the design levels of damping for
different types of structure are suggested in Refs. 15, 16 and 17.
Discussion of various types of damping commonly employed in dynamic analysis
of structural systems is available in Ref. 14.

By choosing damping* proportional to stiffness, the damping
ratios are proportional to mode frequencies. Certain fractions of critical
damping for the fundamental mode of vibration will be assigned to both
primary and secondary systems. Using the relations of Egs. (2.1) and (2.2),

the required damping constant can be obtained.

R =Ek (2.])
ZB]
g =TI (2.2)

)

" With this type of damping, the relative contributions of higher modes of
vibration in the response are negligible. There is no intention to convey
the thought that this type of damping is most appropriate for structural
systems.



where
k = spring constant
€ = a constant
R = damping constant
B] = fraction of critical damping for the
fundamental mode of vibration
w, = fundamental frequency

In summary, the following parameters are studied herein.

a) p/P, ratio of the fundamental frequency of the secondary
system to the primary system. Selection of the fundamental frequency is
sufficient tb define all the frequencies and mode shapes of the system for
which the relative magnitudes of masses and spring constants have been
chosen.

b) vy, effective mass ratio. This parameter indicates the
relative size of the secondary system with respect to the primary structure.

c) B, fraction of critical damping. This parameter indicates
the effect of damping on‘the response of the system (see section 4.6;2).

d) S/(V/p), amplification féctor. This parameter indicates
the relative magnitude of the secondary spring distortion to the responsé

spectrum value.

2.2.3 Base Accelerograms Considered

2.2.3.1 Constant Acceleration Pulse of Specific Time Duration

A 0.5g acceleration of 0.155 sec. duration is used as the base
accelerogram in this investigation. This ground motion gives a nearly constant
velocity spectrum of approximately 30 in/sec from very low frequency up to

about 2 cps; at that point a transition occurs. Beyond the transition
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zone (2-3 cps) the response spectrum is a constant acceleratioh of magnitude
1.0g (one way of calculating this response spectrum is discuséed in Appendix
B).' Figures 2.6a and 2.6b show the pulse and the corresponding elastic
response spectrum, respectively. With this selected base accelerogram, the
spring distortion ratio will be computed for a combination of constant

velocity and constant acceleration response spectra.

2.2.3.2 Earthquake Accelerogram

In order to substantiate the results obtained by the method
developed herein, a dynamic analysis of a system subjected to an earthquake
accelerogram was performed. The record used is the N21E component of the
Taft, California record of 7/21/52. This accelerogram was selected because
its response spectrum (Fig. 2.7) closely resembles a constant velocity
spectrum in the intermediate frequency range. The record had been adjusted

for base line positioh and the acceleration is assumed to have a linear

{
[

variation between two consecutive acceleration timé points. Zero ground
acceleration was added at the end of the record to account for the free
vibration response in the maximum response calculation. The time duration
of this zero ground acceleration was arbitrarily taken és'oné-half of the

longest natural period of the system considered.

2.3 Method of Analysis

2.3.1 General

The problem of the determination of the response of structures to
prescribed transient forces in theory can be formulated and solved in veryi
general terms, even for situations involving plastic deformation. Basic
analytical methods are available in detail in Chapter 1 through 6 of

Ref. 18. Due to the increasing effectiveness of high=-speed digital
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computers, lengthy analyses of any system can be performed. However,
thfs type of analysis is expensive; therefore, it is not generally
suitable for preliminary design purposes.

In general, when modal analysis is'used, the response of various
modes can be combined by taking their absolute sum to obtain an upper
bound, or by taking the square root of the sum of the squarés of the modal
responses to obtain the expected value (Ref. 19). For the approximate
method developed herein, the absolute sum concept is employed.

A computer program was developed. to perform all the necessary
analysis. Given.the physical parameters of the system (masses, spring
constants, damping factor, connectivity, etc.), the program performs
three main tasks:

a) Free vibration analysis of secondary, primary and combined
systems -- Stiffness and mass matrices are generated and the eigen=-value
problem is solved, giving frequencies and mode shapes. The mode shapes
are then normalized such that the participation factors are unity.

b) Time-history analysis of the combined system == This is a
dynamic analysis of an (mtn) degree-of-freedom system subjected to base
excitation; where m and n denotelthe number of degree-of=freedom of the
primary and secondary systems, respectively. The amplification factors
of the secondary spring distortions are then plotted vs. the fundamental
freqdency ratios of the secondary to the primary systems.

c) Approximate analysis of the secohdary system == Secondary
spring distortion bounds are computed by the approximate method developed
later.

Besides the routine analysis mentioned above, this program is

set to generate the response spectrum of the selected base accelerogram
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and then to plot the spectrum on tripartite logarithmic scales of maximum
relative displacement, maximum pseudo-relative velocity and maximum

pseudo-acceleration, against frequency of the system.

2.3.2 Equations of Motion (with Zero Damping)

In the following discussion, the subscript p will refer to the
primary system and the subscript s to the secondary system. In Fig. 2.8,
the absolute displacements of the primary and secondary masses are denqted
Xp and Xs’ respectively. The positive direction of displacements are shown:
in the same direction as the ground displacement.

The equations of motion of the complete structure are

1] i 1.
1 7 K 'k Z M § 0
"o 1 O P PP 1 PS p P i .
_____ s [ vl -—---i—--- ———— = - —---?---- Y (2.3)
i
0 : Mol s Ksp . Kss Zs 0 : Mg
[ 1 I _
or
Mz + K z= - M Y (2.4)
where
Y = ground displacement
Z =X =Y = relative displacement of the mass to the ground
(2.5)
M = diagonal mass matrix
K = stiffness matrix
] — 1
M 10 K 1K
- Pt - PP 1 ps
e e e K= |====-= Fo——— (2.6)
0 M K. 1K '
s Sp 1 ss

The partitioned stiffness matrix in Eq. (2.3) is a so-called
Hreduced!! stiffness. This particular type of stiffness relates the forces

and displacements in the direction in which information is required.
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In Eq. (2.3), the dimension of the matrices Mp and Kpp are mxm, those of
M _ and K__ are nxn, that of K is mxn, and that of K is nxm, where
s ss ps sp
m and n are the number of masses (i.e., number of degree-of-freedom) of
the primary and secondary systems, respectively.
Equation (2.3) may be rewritten in a number of ways. It may be

split up to reflect the primary and secondary systems as follows:

M 2 + K I +K 7 = -M Y (2.7)
P “p PP p ps s P .

and

Ms'z' + K 7+ K _ 1 = -MSV (2.8)

By limiting the secondary system to be attached at only one point

to the primary structure, Eq. (2.8) may be rewritten as

Mo Xo + Ko X = = M XP(J) (2.9)
or
Mg Xg + Koo Xg = Koo X () (2.10)
where
X (j) = absolute displacement of,the‘jth primary mass

P
(support point of the secondary system)

X =X =X ()

s relative displacement of the secondary mass

to the support point

2.3.3 Exact Analysis

2.3.3.1 Free Vibration Analysis

The equations of motion for free vibration are described by

MX + KX = 0 (2.11)
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For free vibration, the vector X is assumed to vary sinusoidally
with time, X = B sin ypt, in which  is the circular frequency, in radians

per second. From Eq. (2.11)
KB = % MB (2.12)

where ) = wZ is an eigen-value for free vibration problems, and B is'the
corresponding eigen-vector or mode shape. The solution to Eq. (2.12) can
be found in standard texts in vibration theory (Refs. 20, 21, 22).

For most free vibration analyses of the combined system, the
fundamental frequency of the secondary system was arbitrarily tuned to the

ala
3

= u)p]). As an

fundamental frequency of the primary system (i.e., Wg 1

example, mass and stiffness matrices of systems 2A, 2B and 2C for the

resonant case and 1 percent effective mass ratio are given in Appendix A.

2.3.3.2 Time-History Analysis

Analytical solutions to Eq. (2.4) are well known (Refs. 20, 21,
22). In this investigation, numerical solutions are regarded as exact
solutions in comparison to the‘solutions obtained by the approximate
techniques. Equation (2.4) is integrated at discrete time intervals using
a step-by-step procedure (Newmark's Beta-Method, Ref. 23). Beta = 0 is
employed in this case. Before continuing the discussion, some notations

should be introduced:

h, = 0.025T ‘ (2.13)

ts

" There is no intention to convey the thought that the tuning of
fundamental frequencies, which is expected to produce the most resonance
between the systems, will create the worst condition. It will be shown
in Chapter 4 that the maximum amplification of the secondary response
occurs off resonance, especially for high degrees of damping or large

effective mass ratios.
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h2 = 0.025Td (2.14)
where
h], h2 = time interval
T = shortest natural period of
the system considered
Tdk = duration of the pulse

lonla

During the pulse,”  the time interval used is either h, or h,,
whichever is smaller. After the pulse, h] is employed. Regardless of the
interval size, care is taken to insure that a response is computed at the
very end of the pulse.

The integration has been carried long enough to obtain the maximum
response (30 seconds for no damping, and decreasing in succession for higher
damping values). Displacement responses are computed for the secondary

masses and the corresponding maximum ampiification factors are obtained.

2.3.4 Approximate Analysis

Al though the symbolism has changed slightly, the analysis
presented in this section follows the same procedure as originally discussed
by Newmark (15). The analysis will be divided into two parts. The first
part considers the case when one of the frequencies of the secondary system
falls between two of the frequencies of the primary system. The second
part deals with the case of tuning one of the frequencies of the secondary

system to one of the frequencies of the primary system.

e

For the 0.5g constant acceleration pulse of Fig. 2.6a, the duration is
lTong enough to obtain 30 in/sec constant ground velocity.

** Refer to the pulse shown in Fig. 2.6a.
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Before proceeding with the analysis, some useful relations

should be introduced:
| ) ATKA
w, = —T—— (2.]5)
' A, M.A,
i i
where Ai = ith mode shape.
When Ai is normalized so that the participation factor is unity,
according to Eq. (2.16) :
I.M.Ai _
C‘ = e (2-]6)
! ATMLA.

then, the normalized displacement of the i h mode can be defined by Bi’

where ,
(2.17)

Since the participation factor is unity for the modal displacement

B., one can obtain the following relation
T (2.18)

By virtue of the orthogonality of the modal disp]aéement Bi and Bj

for mode i and mode j, it follows that
B?.M.BJA = 0 (2.19)

Several assumptions employed in the analyses described in the

following two subsections are summarized below:

1)

of the frequencies of the primary system.

Only one frequency of the secondary system is equal to one

2) The significant input to the secondary system consists of a
series of harmonic components with frequencies equal to the natural

frequencies of the primary system.

3) The modal shapes of the secondary system remain the same,
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except the magnitude has been enlarged by the result of the dynamic
interaction between the primary and secondary systems.

4) The modal shapes of the combined system are the same as
those for the primary system, with the addition of the amplified modal

defiections of the added secondary masses.

2.3.4.1 Nonresonant Case

Let Gi ith mode shape of the primary system

jth mode shape of the secondary system

a.
J

Then, with Eqs. (2.16) and (2.17)

Ui = Cpi Ui (2.20)
. = C_. a. (2.21)
J s J
. .th . T . . th
where C ;s the i primary participation factor, Csj is the j secondary

participation factor, Ui and aj are the normalized mode shapes, respectively.

For modal solutions of Eq. (2.10), X, is taken to be

o q (t) | | (2.22)

>
1
M3

r=]

where n = number of degree-of-freedom of the secondary system. Eq. (2.22)
is substituted into Eq. (2.10), which is then premultiplied by a}. The
relations of Eqs. (2.15) and 2.19) are used to obtain

ﬁj(t) + wij qj(t) = w., X (k). (2.23)

Let us consider the harmonic components of the base input to the secondary
system one at a time. By employing the assumptions given previously,

Xp(k) is taken to be
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Xp(k) = Ur(k) sin Qpit ' (2.24)

where Ui(k) is the kth component of U;" Thus, Eq. (2.23) becomes

. 2 2 : .
qj(t) + wsj qj(t) = wsj Ui(k) sin wpit (2.25)

The particular solution to Eq. (2.25) is a steady-étate harmonic
oscillation at the frequency of the disturbances (wpi in this case);

therefore, the solution is assumed to be

qj(t) = A,., sin w

{1 it, (2.26)

p

where Aji is the amplitude of oscillation. Substituting of Eq. (2.26)

into Eq. (2.25) yields
2 2 2

05 Aji + Wg ; Aji = ug; Ui(k)
SLE T
Pi"s]

In the light of Eqs. (2.22) and (2.28), Aji can be interpreted
as the amp]ifiéation factor of the secondary system response due to thev

effects of the jth secondary mode and the ith primary mode.

2.3.4.2 Resonant Case (w_. = w_.)
S| pi

It should be pointed out that Eq. (2.27) gives a very large

w ., A,
Sj pi? i

out to be infinity if there is no damping. Obviously, this is not the

value for Aﬁi when wsj is very close to wpi. When w_. = A.. turns

case. There should exist a reasonable upper bound to the amplification
factor of Eq. (2.27), and therefore the situation needs further

investigation when the secondary system is tuned to one of the frequencies

of the primary system.
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When one frequency of the secondary system falls on one of
the frequencies of the primary system, the frequencies of all the modes
of the combined system are shifted away in the same fashion, but there are
two frequencies at or near the resonant frequency such that one of them is
slightly above and one slightly below (Ref. ]5)5 Both frequencies will be
very close to the resonant frequency if the effective mass ratio of the
secondary to the primary system is small.

Due to the fact that the participation factof of the primary
modal disp]acemept Ui and the secondary modal displacement aj are unity,

it follows that

MU U?.MP.UE (2.28)
and
]'Ms'aj = M a; (2.29)
Based on the foregoing observations, let us consider the case of
wsj = wpi, with Aqiaj and -A{iaj representing the displacements of the

secondary masses of the two modes (mode q and mode r), whose frequencies
are close to the resonant frequency, and'A?i and _A;i are amplification
factors of the secondary responses for mode q and mode r of the combined
system, respectively.

Let us define also the displacements for mode q and mode r of
the primary masses as precisely one-half those of the displacements of
the ith mode of the pr}mary system.*

By forcing the participation factors of mode q and mode r to be

equal to unity, the following results similar to that of Eq. (2.18)

s

“ The displacements of the primary masses can be defined arbitrarily, but
by using this definition, very good approx:mate results of the secondary
responses are obtained.
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are obtained:

1, q _1,T g2, T _
2(1.Mp.ul.) + Aji(].Ms.o./J.) = 4(Ui'Mp'_Ui) + (Aji) (on. .Ms.cvj) (2.30)
1 r 1T r\2, T

Z(I.Mp.ui) Aji(].Ms.ozj) ’4(Ui'Mp'Ui) + (Aji) (on. .MS.Q'J.) | (2.31)»

Using the relations of Eqs. (2.28) and (2.29), Eq. (2.30) can be

put into the form

(A9)% o a9 - - BL | (2.32)
J I 4 E ‘
) sj
where
.th \ . T
Epi = i effective primary mass = Ui'Mp'Ui (2.33)
E_. = jth effective secondary mass = ol M., (2.34)
5] ' J s ] :
Similarly,
(a7 )"+ Al = - PL | (2.35)
ji i 4E \ Vs
sj

From Eqs. (2.32) and 2.35, we have immediately

q 1 ] E ; ,
R L'+ (2.36)
Jt 2 2 . .
. Sj
1 1 E ;
“AL, = .- 2L (2.37)
3 2 2 E_.
SJ
Esj jth effective secondary mass
Define Y.. = = (2.38)
ji .th . .
E_. i effective primary mass

Since mode q and mode r are very .close to each other, they are

additive directly to yield the following result:
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= q r ~ 1
A.i—lAJ.il + |AJ.i = (2.39)

J @ji

where A,. = amplification factor of secondary response due to

Ji
th th

resonance of the j~= secondary mode and the i

primary mode

2.4 Summary

Two important parameters which control the secondary spring
distortions are the effectfve mass ratio, Yy, as defined by Eq. (2.38), and
the damping factér, B. Only the approximate analysis for the secondary
system response without damping is developed in section 2.3.4. The
combined effect of the two parameters will be discussed in Chapter 4.

In order to substantiate the validity and accuracy of the
approximate technique, several analytical systems are studied extensively.
Procedures for preparation and analyzing of these systems are summarized
as follows:

(1) Select a primary system, arrange the magnitude of the
masses and spring constants for a desired fundamental frequency.

(2) Select a secondarywsystem, assign the rela£EVe magnitude
of the masses and spring constaﬁts for desired frequency ratio.

(3) Solve the eigen-value problems of both primary and secondary
systems to obtaiﬁ'the frequencies and mode shapes, then normalize the mode
shapes so that the participation factors are unity.

(4) Specify the value of the effective mass ratio, then the
secondary masses can now be obtained by the procedure described in
Appendix A.

(5) Adjust the secondary spring constants in order to get

the desired fundamental frequency (Appendik A).
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(6) Select the damping factor and obtain the damping constants
by Eqs. (2.1) and (2.2). |

(7) Perform the analysis of fhe combined system by the
procedures outlined in section 2.3.3.
(8) Repeat steps (6) and (7) for various damping factors.
(3) Repeat steps (5) through (8) for various fundamental
ies of the secondary system.

(10) Repeat steps (4) through (9) for different effective

mass ratios.
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CHAPTER 3

DISCUSSION OF FREE VIBRATION SOLUTIONS

3.1 Introductory Remarks

In this chapter, attention is directed to the investigation of
free vibration characteristics of the combined system when the effectfve
mass ratio is varied. Several topics which may provide some insight into
the behavior of the ;econdary system will be discussed. Section 3.2
provides the information of single~degree-of-freedom secondary system
while section 3.3 is for multiple~degree~of=freedom secondary system.

Because most of the free vibration analysis is performed on the
case of tuning the fundamental frequency of the secondary system to the
fundamental frequency of the primary system; therefore, the discussion
will be concentrated on this case. The attachment points of both one-
and two-degree of-freedom systems will be varied to three positions.

This is in order to provide some insight into the effects of the support
points upon the secondary system response. For the single-degree-of-
freedom secondary system, the effective mass ratio considered is 1 peréent.
The most extensive set of analyses is performed on the twb-degree-of—
freedom secondary system, where the effective mass ratio ranges from 1 to
20 percent.

Since the effective mass ratio plays an important role in this
investigation, henceforth for convenience and simplicity, the notation ¥y
will be used instead of Yipe which is the ratio of the fundamental

effective secondary mass to the fundamental effective primary mass.



28

3.2 SDF Secondary System

3.2.1 Discussion of Results

All significant information resulting from the analysis of
systems 1A, 1B and 1C is listed in Tables 3:1, 3.2 and 3.3, respectively.
The modal shépes presented have been normalized to obtain partiéipatién
factors of unity.

From an analysis of the frequencies of thé three combined systems,
it can be seen that the fundamental fréquencies are somewhat lower than the
resonant frequencies, while the‘Second natural frequencfes are slightly
higher. The deviations from the resonant frequencies in each case are
less than 10 percent. The third and fourth frequencies are nearly the
same as the second énd third natural frequencies of the primary system,
respectively. Explicitly, system 1A natural frequencies are within
5 percent of systems 1B and 1C, while system 1B is also withinvS percent
of 1C.

Considering only the modal shapes of the primary masses, there
are two importént points that should be noted. First, although there
exist some differences in the first and second modal shapes oflthe combihed
systems, the general shapes are nearly the same, . The magnitudes of the
displacements in each mode are about one-half those of the first mode of
the primary system. Second, the‘thikd and fourth modal shapes are identical
to the second and third modal shapes of the primary system, respectively.

For the secondary mass, the first two modes dominate the entire
response. The spring distortions of the third and fourth modes are less
than 5 percent of the first or second modes. This can be explained by the
fact that the first two modes are generafed by tuning of the fundamental

frequencies of the primary and secondary systems, thus resulting in



29

ampl ifying the corresponding modal responses. For this reason, the

contributions of the third and fourth modes are usually negligible.

3.2.2 Comparison of Results

Approximate modal shapes of the combined systems are presented
in Table 3.4. The secondary modal responses are computed by Eqs. (2.27),
(2.36) and (2.37).

Examination of the primary responses indicates an accuracy of
2 percent or less for the third and fourth modes. Although the first
and second modes' are somewhat off, the sums of the two modes tabulated at
the bottom of Tables 3.1, 3.2 and 3.3 are quite accurate. These results
confirm the validity of the assumption that the presence of the secondary

mass has very little or no influence upon the primary response.

Responses of the secondary masses are véry well predicted by
the approximate formulas. Generally, the approximate results are accurated
to within 5 percent of the actual values. Based on comparison of solutions,
the variation of support points does not have much influence upon the total
response. Thefefore, besides simplicity and good accuracy, one more
advantage of using Eq. (2.39) is that only one calculation is enough to

predict the response of various combined systems. .

3.3 MDF Secondary System

3.3.1 General .

The following discussion is based on the behavior of three
combined systems: 2A, 2B and 2C. Necessary information is tabulated in
Tables 3.5 through 3.7. The object of this section is to discuss phenomena

concerning the effective ratio.
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3.3.2 Effect of the Effective Mass Ratio upon Frequency Distribution

Additional information concerning the deviations from the resonant
frequency of the first two modes is preéented in Figs. 3.1 and 3.2.
Examination of these results reveals the following four aspects. First,
although the deviafion from the resonant frequency varies from 3 percent
when v = 1% up to 30% for y = 20%, the average of the first fwo frequencies
is still very close to the resonant frequehcy. Second,»the first two
natural frequencies of system 2A deviéte from the resonant fréquency more
than those of systems 2B and 2C, while ﬁhose of system 2C have the lowest
deviation. Thira, the Tirst two natufal frequen;?es of a]]ﬁsystems vary
nearly linearly with// v . The increasing of Y results in the decreasing
and increasing of the fundamental and second natural frequehcies,
respectively. FourtH, remaihing higher frequencies are very close to
the corresponding originai frequencies of the primary and secondary

systems, no matter how large the effective mass ratio is.

=]
w

A N 04-!'/-1:&3 k:ue a'lez\ hooan made far manv
e5i L Cas5e5, s5TuGie nayv i 5C oeen made YOI many

des r
general cases. All results lead to the indication that the variation of
the effective mass ratio does not change the frequency distribution pattern

(See section 3.4) of the combined systems.

3.3.3 Effect of the Effective Mass Ratio upon Response

To have a better idea of the effect of the effective mass ratio
upon modal: responses of primary masses, additional plots (Figs. 3.3 - 3.5) -
have been prepared. These plots illustrate the variation of the first two
modal shapes of the primary masses. Investigation of all existing
information gives the following fesults;

1) The effect on individual mode increases with Y.

2) The discrepancies of the approximate values from the sum of
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the first two modes are less than 10 percent, even for very large 7.

3) The variation of the support points has very little effect
upon the sum of the first two modes.

4) The differences of displacements of higher modes of vibration
between systems are increasing with 7.

5) The modal shape of system 2A, whose correSpondfng frequency
is closed to the second natural frequency of the secondary system, is
completely different from that of systems 2B and 2C. This result is also

applied when comparison is made between 2C and 2B.

The consideration of only the first two modes indicates very good
prediction of the secondary responses. Explicitly, the approximate values
are accurate to. within 10 percent, even for 20 percent effective mass
ratio. However, the advantage of having modal quantities by approximate
procedures no longer exists. The loss of this advantage is due to:

a) Only componenté of each modal displacements are computed by
the approximate procedures.

b) Procedures for combining components to give distinct values
of each mode have not yet been available.

Another interesting characteristic which should be pointed out
involves the modal quantities for higher modes of vibration. Thése quantities
are not small in comparison to that of the first or second mode. For
example, using the notation of section 2.3, A3(5)/AI(S) of system 2A
when 7 = 1% is about 1:6. When 7 is up to 20%, this ratio is increased
to 1:3. These results clearly give the idea that the effect of higher
modes should not be negligible. The consideration of higher modes will

make a drastic difference in total response, especially when 7 is large.
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From the foregoing fact, there remains the problem of combining
components to give total amplification factor. The required procedure

will be established in Chapter 4.

3.4 Observed Frequency Distribution Pattern of Combined Systems

One important property of the combined system which can
reasonably be predicted is the frequency distribution. The frequencies
of all the modes of the combined system will be either slightly higher or
lower than the frequencies of the primary and secondary systems (Ref. 24).
The patterns in thch these frequencies follow depend on the magnitudes
and distributions of frequencies of both original systems.

Figures 3.6 and 3.7 have been prepared from the observations of
frequency distributions of all combined systems considered. From these
two figures the following conclusions* can be drawn:

a) When one of the frequencies of either the secondary or

Tprimary system falls"Bétwgen two 6f’fﬁé“frequencies of the other system,
then the frequency distribution of the combined system is as shown in
Fig. 3.8a. |
b) When resonance occurs, the frequencies Qf all the modes of.
the combined system are as shown in Fig. 3.8b. There are two frequencies
ﬁear the resonant ffequency such that one Is slightly above and the other

one is slightly below when the effective mass ratio is small.

1,

" These same conclusions had already been presented by Newmark (18).
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CHAPTER 4

DISCUSSION OF TIME~HISTORY SOLUTIONS

4.1 Introductory Remarks

The results of free=vibration anafysis encourage the possibility
of estimating the maximum secondary response, when the supporting strﬁcture
is subjected to base disturbances, without going through the time=-history
analysis of the entire system. With the availability of Egs. (2.27) and
(2.39), components of total response, resulting from eaéh secondary mode,
can easily be computed. Formulas for total amplification factor will be
developed for multi=-degree-of=-freedom subsystems.

Besides the effective mass ratio, damping also governs the
response. The maximum amplification factor of the secondary system is

limited by the quantity 1/28, where B is the effective damping factor."

Hence, if the effective mass ratio becomes small enough so that damping

o ——_controls_the maximum. response, a further decrease in the effective mass

ratio has no effects on the spring distortion bounds. The combined effects
of the effective mass ratio and damping upon the response of the secbndary
system will be investigated in detail. Then, on the basis of observed
behavior of the subsystems, empirical rules for the secondary system
response with damping will be developed herein.

Before proceeding with the investigation, it is worthwhile
explaining the idea of selecting the constant acceleration pulse as base
input. Generally, the design response spectrum is approximated by three
boundaries: the constant displacement, velocity and acceleration bounds.

These bounds govern the low, intermediate and high frequency ranges,

o,

" The effective damping factor is defined in section 4.6.2.
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respectively. In most cases, dropping the consideration of constant
displacement bound would not affect the overall result. For this reason,
the use of the base accelerogram of Fig; 2.6a, which gives the response:
spectrum of Fig. 2.6b, serves the design analysis efficiently.

In following sections, time-history analyses of various combined
systems are generated. To cover the entire primary frequency rangé, the
primary and secondary damping factors are kept equal through most sets of
analyses except one. The damping factor range from 0.5 to 10 percent is
considered. The effective mass ratio is 1 percenf for SDF secondary systems

and ranges from 1 up to 20 percent for MDF secondary systems.

4.2 Time-History Solutions of SDF Secondary Systems

ngures 4.1 through 4.3 are prepared from time-history analyses
of systems 1A, 1B and 1C. Considering first the undamped case, the general
characteristics of the secondary spring distortion bounds can be described
as smoothly increasing to peak values at corresponding resonant conditions.
The peaks formed at p/P =1, 2 and 3, correspond to the tuning of the
secondary frequency to the first, second and third natural frequencies of
the primary system, respectively. It is clearly seen that the worst
condition occurs when the fundamental frequencies of the supporting
structure and subsystem are equai. Qutside the resonant zone,* the

secondary spring distortion bounds can be considered constant. For very

flexible secondary systems (small p/P), the magnitudes of these bounds

L.

" For SDF secondary systems, the resonant zone is considered spanning
between p/P = 0.5 and 3.5.
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are higher than those of very stiff secondary systems (large p/P).

The presence of damping not only results in the reduction of
the amplification levels but also produces significant changes in the
general characteristics of the bounds. With the type of damping considered
in this study, the secondary responses are reduced faster at the higher
frequency levels than at the lower one. Consequently, an increase in the
damping factor, which gradually diminishes the second and third peaks,
only flattens out the first peak.

Table 4.1 contains the maximum amplifications of the combined
systems. For thé undamped case, the amplifications are approximately equal
in all systems. However, with damping, the amplifications are not.
Explicitly, the highest amplification occurs in system 1A, while the lowest
one belongs to 1C. These discrepancies also increase with the dampfng
factors. Two reasons that might help explain this phenomenon are:

a)v The support, which does not affect the undamped response,
produces a greater influence on the overall response when damping is
increased. |

b) Since the primary and secoﬁdary damping consfants are
computed separately, when considering the entire system, the damping is
no longer proportioped to the‘stiffnass. Thus, it results in complex
responses, each differing in phase as well as magnitude. Consequently,
the support motions cannot be characterized by the existence of a fixed
mode, as would be the case if the systems are undamped or if the damping
is proportional (Ref. 20). This noted change in phase on the motion of
the system is believed to be one source of reducing the amplification

from the undamped case more in one system than in the other.
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Another interesting characteristic is the location of the peak.
It happens in some cases that the maxima do not occur at the resonant
conditions. Observation of results indfcates that there is no shifting
of maximum location for system 1A, slightly off to the Ieft* for 1B with a

high damping factor, and further left for IC.

4.3 MDF Secondary Systems

4.3.1 Effect of the Effective Mass Ratio upon Response

Figures 4.4 - 4.9 are used to illustrate the characteristics of
both inner and outer secondary spring distortion bbunds of systems 2A, 2B
and 2C. Of particular interest are the following:

a) The general characteristics are similar fn aTl systems.

The only differences'are in the magnitude of the amplification at

corresponding resonant conditions.

b) The ratio of the maximum amplifications of the inner spring
to the outer spring is nearly the same as the ratio of the fundamental
modal distortions of’the two springs of the secondary system.

c) ?or very high p/P, or in other words, when the Secondary‘
system is very stiff as compared to the primary structure, the acceleration
of both secondary masses are approximately équal to that of the support.
However, the suppért acceleration decreases with increasing 7.
Consaquent!y, the amplification has not been much affected by the
variation of 7. |

3) When the secondary system is quite flexible in comparison
to the primary system (small p/P), the secondary masses dé not move very

much while the support is in motion. Hence, 7 produces very little effect

“ To the left means smaller p/P.
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on the spring distortion.

e) The increase of 7 results in the reduction of the
amplification level, and at the same time flattening and shifting the
location of the resonant zone. For a very large y, there exists only
one visible peak, and the location of the maximum amplification has been
shifted from the resonant condition to a lower p/P. The larger the
effective mass ratio, the further to the left (smalter p/P) is the location.

In order to demonstrate the effect of ¥ upon ‘the maximum
secondary responses, Figures 4.10 and 4.]1 have been plotted. It can be
seen that the méximum amplification approximately.varies inversely as ,/ 7
for all systems. This relationship explains why Eq. (2.39) gives very

good predicted value.

4.3.2 Effect of the Effective Damping Factor upon Response

To emphasize the importance of B upon responses, the secondary
spring distortion bounds have been replotted in Figs. 4.12 - 4.17. On the
basis of obserVations made of the time-history solutions, several significant
characteristics are recognized. First, general characteristics simf]ar to
Vthose of SDF systems are obtained. The number of degrees-of-freedom do not
affect the basic behavior. Second, in cases where there is a high degree
of damping level or energy absorption, the variation of f causes quite a
change on the maximum amplification of system 2A, moderate change on 2B,
and practically no change at all for 2C. However, for very low or high
p/P, the variation of y makes no difference in the magnitude of the
amplification at any damping level. Third, the variation of B has more
pronounced effects on a lighter secondary system than on a heavier one.
Fourth, with the type of damping considered in this study, the dominance

of the fundamental mode of the secondary system is still preserved.
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Explicitly, the maximum inner spring amplification is about half of the
outer spring for all damping levels.

Observations of the maximum ahp!ification variation due to thé
effects of increasing B, (see Figs. 4.18 and 4.19), indicate the highest
reduction in system 2C, and the lowest in 2A. Nevertheless, one can still
conclude that the maximum amplification varies inversely witH g for all

systems.

4.4 Approximate Amp]ification Factor of Secondary System with Damping
In the Tight of preceding discussion concernihg the relationship
of B to the secondary responses, one can indicate the reduction in

amplification due to damping by considering the amplification factor as

A, = — (4.1)

il

where a constant

effective damping factor corresponding to the

w
]

jth secondary mode of vibration

The ﬁombinea effects of B and % upon the amplifjcation of thg .
secondary spring distortions are illustrated in Figs. 4.20 - 4.22. From-
these relationships_it can be seen that the variation of ¥ has lesser
effect on the amplification factor than the variation of . However,
they offer similar characteristics in that the rate of changing
amplification is decreasing when either B or 7'is increasing.

in any circumstances, the envelopes of the net ampiification
factors can be approximated as straight lines for all systems. The slopes
of these envelopes are the steepest for 2Avand reducing successively for

2B and 2C. The mathematical expression for this straight line envelope is



E 4 = (4.2)
BO

SR

where the subscript o referred to the values on the main axes.
Substitution of Egs. (2.39) and (4.1) for N7, and B into
Eq. (4.2), and after some manipulations, the net combined amplification

factor is obtained as

/S — (4.3)
Ty
Considering the two Timiting cases, it is now obvious that when
B is very small, the maximum amp]ifiéation is bounded by IA/; .  However,
when 7 becomes very small, the amplification is also limited by 1/28.
From these two limiting cases and the observations of the time—hisfory
solutions of systems 2A, 2B and 2C, it is suggested that an appropriate
value of a is 2 for BA/; either very small or very large; otherwise, a = 3

ta

is recommended.

4.5 Rules Used for Combination of Amplification Factors

Using the notation of section 2.3, assuming a secondary system
with n masses and trying to be on the conservative side, amplification
factors corresponding to secondary modes can be combined according to

Eq. (4.4).

0.02>B8/fr ; a=2
0.02555/ﬁ5}5 s a=3
B//7>20; a=2

In range 0.02 < B//7 < 0.025, or 15 < B//7y < 20 , interpolate ''a"
linearly.
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>

|

1]
Mo

A, . 4.4
I @

where A.F.

1

total amplification factor
For undamped vibration, Aji is cohputed either>From Eq. (2.27)
or Eq. (2.39). In cases where there is damping, Eq. (4.3) is emp]oyed
when w_. = w _.; when w_ . is close to w ., a@a modified amplification is
S] pi s] pi’ - _
required. By analogy with the undamped case, the following rule is

establ ished.

A = e (4.5)
Jt ag. + Jy..
J Ji
where
4 U. (k) 1
b=|—-—";T—2—|/-—_<_T~ (4.6)
I - wpi/msj A/Zji :
and
”Bmé- e —
B_] - ws] (4-7)

To demonstrate the applicability of the approximate procedure,
the following example is given.

System 2A 7 = 1%, B = 0.5%

First mode (ws] = wp])

Eq. (4.3) gives A . = !

i 3 x 0.005 + ,/.01

= 8.7
Second mode
Since the second natural frequency of the secondary system falls

between the first and second natural frequencies of the primary system,
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the consideration of W, and wpz will give the appropriate contribution

to the total amplification factor. Eq. (2.38) gives

Yoy = 1.67%
From Eq. (4.6)
b o= |—%8 |, —L— - o0.232
1 = 4/3 0.0167 ,
From Eq. (4.7)
Bz _ 0.5 x léZBZ x 21 - 0.866%
Then Eq. (4.5) gives
Ay = 0.232 = 1.48
3 x 0.00866 + ,/.0167
Therefore,
A.F. = 8.7+ 1.48 = 10.18
For outer secondary spring,
A.F. = 10.18 x 1 = 10.18
For inner secondary spring,
A.F. = 10.18 x 0.5 = 5,09

Maximum amplification factors from the time-history analyses and
approximate procedures are listed in Tables 4.1 through 4.5. Comparison

of results will be made in the following section.

4.6 Comparison of Results

4.6.1 SDF Secondary System

When there is no damping, Eq. (2.39) predicts the total
‘amplification factors very accurately for all three systems (1A, 1B and IC).

The approximate value is only 3 percent off on the underconservative side
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(see Table 4.1)7 This underconservatism comes from the fact that the
approximate procedure considers only the first two modes of vibration.
However, the discrepancy is so small thét it is not worth complicating
the procedure by taking account of the effect of higher modes of vibration.

In cases where there is damping or energy absorption, the total
amplification factor' is affected by the variation in the support of the
secondary system. From the time=history énalyses, it can be seen that
system 1C is more sensitive to dampingrthah the other two. Uhfortunate?y,
the consideration of the degree of senéitivity to damping will merely
complicate the épproximate analysis without giving any theoretical
justification. For this reason, the approximate analysis described in
sections 4.4 and 4.5 is considgred applicable to all systems.

On this baéis of comparison, it can be concluded that Eq. (4.3)
is too conservative for system 1C, slightly underconservative for 1A, and
very accurafe for 1B with low damping factor. Explicitly, the discrepancies
between the apﬁroximate and exact amplification factors of system 1A are
less than 10 percent for all damping levels considered. For damping less
than 1 percent; the approximate amplification factors of system }B are

accurate to within 2 percent of the actual values.

4.6.2 MDF Secondary System

Both undamped exact and approximate amplification factors of
systems 2A, 2B and 2C are providéd in Table 4.2. The approximate |
amplification factors are of great accuracy even though the effective
mass of the subsystem is as large as 10 to 20 percent of that of the
main system. For.exahple, considering inner and outer spring distortions
when ¥ = 20%, the approximate procedure overestimates the amplificatipn

factors of systems 2A and 2C by less than 10 percent, while slightly



43

underestimates 2B. The reasons for achieving these egcellent results are:

a) Ay computed by Eq. (2.39), does take account of the
rel ative mass of the subsystem- |

b) A5, computed by Eq. (2.27), although it does not consider
the relative values of the effective primary and secondary masses, does
take account of the relative motion of the support.

c) By adding Ayy to A]], the céntributions to the total
responses due to higher modes of vibration are included.

With the exception of system 2C, the procedure of section 4.4
estimates the amplification factors very accuraté]y. From observations of
results tabulated in Tables 4.3 and 4.4, it is apparent that the approximate
values are in good agreement with the exact values for all damping levels
and effective mass ratios considered (especially system 2A). Although the
responses of system 2C are not as well predicted as those of the other
systems, fo? the case of small damping and large 7, the approximate results
are not too far off. For example, when y = 20% andbﬁ = 0.5%, the approxi-
mate amplification factor is only 10 percent larger than the exact one.

ATl bf the previous discussions are for the situation of equal
damping in both primary and secondary systems. When the secondary damping
factor is not equal to the primary damping factor, the effective damping
factor is considered to be the average of the two values (Ref. 15). In
order to substantiate this belief, the time-history analyses of system 2A
with 7 = 1%, Bp = 2% and Bs varying from 0 upAto 10% were performed.

The spring distortion bounds are plotted in Fig. 4.23 = 4.24, while the
maximum amplification factors are recorded in Table 4.5. Although the
approximate results are not conservative for any damping level, the

differences between the exact and approximate values are less than 10
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percent for the‘inner spring and less than 5 percent for the outer spring.
One additfonal set of time=history éna]yses was perFormed on
system 2A with ¥ = 1%. For this, the sYstem was subjected to the
earthquake record of Taft NZIE. The effective damping factor considered
in this case is 2 percent. Although the general characteristics of the
secondary spring distortion bounds are not as smooth as the Sne subjected
to the éonstant acceleration pulse (see Fig. 4.25), the maximum
amplification factors are pretty wellnbounded by the ﬁredicted values.
In fact, the approximate values are'abdut 12 percent larger than the

actual values for both inner and outer springs.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDAT IONS

5.1 Summary and Conclusions

To accomplish the evaluation of the basic dynamic behavior
of subsystems, free vibration and base excitation analyses were perfdrmed
on several combined systems. Free vibration solutions were obtained by
the usual analytical methods, while fhe time-history solutions were
acquired by numerical integration.

Attempts have been made to develop simple rules for predicting
the maximum amplification factor of the dynamic response of secondary
systems when both primary and secondary systems do not have any dampfng.
Also conducted in this investigation was the study of the effect of
damping upon the secondafy system responses. Then, on the basis of
observed exact solutions and also by analogy to the undamped case,
additional empirical rules were developed.

The approach used in obtaining the approximate procedure was
discussed in Chapter 2. The information required by this method was the
response spectrum for ground motion, the independent normalized mode
shapes, and frequencies of the primary and secondary systems. Maximum
amplification factors of secondary system responses were obtained for
several combined systems using this approximate approach and corresponding
time-history solutions, considering the constant base acceleration pulse.
Results of these analyses indicate that, generally, a reasonable estimate
of the time-history maximum secondary spring distortions can be obtained

by this method.
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On the basis of limited amount of information obtained in this
inyestigation, the following specific conclusions can be drawn:

1) With the definition of Eq. (2.34), the effective mass of fhe
subsystem can even be as large as 10 to 20 percent of that of the main
system before the approximation becomes inaccurate, since the relationship
takes account of the interaction between the systems.

2) For a light secondary system (i.e., 7< ]%) without damping,
whenever tuning occurs between primary and secondary éystéms,‘an increase
in response usually resﬁ]ts. The greatest increase occurs when dominant
primary and secondary frequencies are tuned.

3) Without damping, the supports have very little influence on
the secondary system responses. With damping, the supporté provide a
tremendous differencé in the maximum amplification factor. Howevef, this
difference does decrease when 7 is large.

45' The increasing of B reduces the amplification more effectively

a1 [ -
[

than the increasing of 7, but the increasing o iTe

7 shitTts the location of
the maximum amplification to a lower p/P condition than B.
Although the maximum amplification factors of the secondary

responses do not necessarily occur at resonant condition, the approximate

procedure still gives a very good estimate of the maximum amplification.

5.2 Recommendation for Further Study

Only secondary systems with one point of attachment to the
supporting structure were investigated in this study. Modification of
the approximate approach is needed if the secondary system considered is
supported at more than one point. Since it is fe]tvthat the approach

described herein provides a promising method that leads to a better
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understanding and a reasonable approximation to the behavior of a
complex system, it therefore merits further investigation.

Further research should be carried out on the following
categories:

a) Investigation of secondary systems with two points of

attachment to the primary structure.

b) Investigation of secondary systems with more than two points

of attachment to the primary structure.

c) Investigation of multi-degree-of-freedom secondary systems
which have more than one frequency tuned to the ffequencies of a multi-

degree~of-freedom primary system.
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Table 1.1 Modal Values u and s of Primary and Secondary Systems.

(a)
Primary system
Mode 1, Mode 2, ° Mode 3,
"Mass Freq. = 1 cps Freq. = 2 cps Freq. = 3 cps
number ,
u s u s u S.
1 0.5 0.5 0.4 0.4 0.1 0.1
2 1.0 0.5 0.2 -0.2 -0.2 -0.3
3 1.5 0.5 -0.6 -0.8 0.1 0.3
(b)
SDF secondary system
Fundamental mode, Freq. = 1 cps
Mass
number
u s
1 1.0 1.0
(c)
MDF secondary system
: Mode 1, Freq. = 1 cps Mode 2, Freq. = 1.732 cps
Mass
number
u s s
1. 0.5 0.5 0. 0.5
2 1.5 1.0 -0. -1.0




Table 3.1 Modal Values u and s, System 1A, Effective Mass Ratio =

1%

Effective mass ratio = 1.00%;

Resonant frequency

Amplification factor

1.00 cycle/sec

10.00

Mass number
Mode Frequehcy Response
] 2 3 4
, u 0.2318 0.4799 0.7703 5.4367
! 0.9265 s 0.2318 0.2482 0.2904 4.6664
u 0.2744 0.5272 0.7276 -4.622]
2 1.0758 s 0.2744 0.2528 0.2005 -5.3497
: u 0.3943 0.1924 -0.5985 0.1979
3 2.0060 s 0.3943 -0.2019 -0.7908 0.7964
u 0.0996 -0.1995 0.1005 -0.0126
4 - 3.0008 s 0.0996 ~0.299] 0.3000 -0.1130
Max. displ acement Exact 0.5061 1.0071 1.4980 10.0588
Approx. 0.5000 1.0000 1.5000 10.0000
Exact 0.5061 0.5010 0.4909 10.0161
Max. strain

Approx. 0.5000 0.5000 0.5000 10.0000

Note: Exact is the sum of the absolute values of the first two modes.

[AI



Table 3.2 Modal Values u and s, System 1B, Effective Mass Ratio =

1%

Effective mass ratio = 1:00%; Amplification factor = 10.00

Resonant frequency = 1.00 cycle/sec
Mass number
Mode Frequency Response
I 2 3 4
u 0.2606 0.5338 0.7640 5.5398
! | 0.9506 s 0.2606 0.2732 0.2301 5.0060
u 0.2388 0.4652 0.7358 -4.,4980
2 1.0504 s 0.2388 0.2264 0.2706 ~4.963]
u 0.4015 0.2002 -0.5990 ~0.0667
3 | 20007 s | o.4015 ~0.2013 -0.7992 ~0.2669
u 0.0991 -0.1992 0.0993 0.0248
4 3.0034 s 0.0991 -0.2983 0.2985 0.2241
. Exact 0.4994 0.9990 1.4998 10.0378
Max. displacement

Approx. 0.5000 1.0000 1.5000 10.0000
Exact 0.4994 0.4996 0.5007 9.9691
Max. strain Approx. 0.5000 0.5000 0.5000 10.0000

Note: Exact is the sum of the absolute values of the first two modes.

€S



Table 3.3 Modal Values u and s, System 1C, Effective Mass Ratio =

1%

Effective mass ratio = 1.00%;

Resonant frequency

Amplification factor = 10.00

= 1.00 cycle/sec .

Mass number
Mode Frequency Response
1 2 3 4
. u 0.2810 0.5292 0.7743 5.5899
L 0.9743 s 0.2810 0.2482 0.2451 5.3089
|
u 0.2202 0.4699 0.7227 ~4.4450
2 1.0245 s 0.2202 0.2497 0.2528 -4.6651
u 0.3985 0.2011 ~0.5970 -0.1324
.002 |
3 2.0027 s 0.3985 -0.1974 ~0.7981 ~0.5309 .
u 0.1004 -0.2001 0.1000 ~0.0125
4 3.0008 s 0.1004 -0.3005 0.3001 —0»5129
‘ |
3
Exact 0.5011 0.9990 1.4970 10.0348
Max. displacement !
Approx. 0.5000 1.0000 1.5000 10.0000
. Exact 0.5011 0.4979 0.4980 9.9741
Max. strain
Approx. 0.5000 0.5000 0.59000 10.10000
|

Note: Exact is the sum of the absolute values of the first two modes.

£



Table 3.4 Approximate Modal Values u and s,
Effective Mass Ratio = 1%

Systems 1A, 1B and 1C,

Effective mass ratio = 1%;

Amplification factor = 10

Resonant frequency = 1.0 cps

. |
Primary mass Secondary mass
Mode
1 2 3 System 1A -{ System 1B |System 1C
|
u 0.25 0.5 0.75 5.52 5.52 5.52
] .
S 0.25 0.25 0.25 4.77 5.02 5.27
u 0.25 0.5 0.75. -4.52 -4.52 -4.52 |
2
s 0.25 0.25 0.25 -5.27. -5.02 -4.77
u 0.4 0.2 ~0.6 0.2 -0.0667 ~0.133
3 . '
s 0.4 -0.2 -0.8 0.8 -0.2667 -0.533
|
u 0.1 -0.2 0.1 -0.0125 0.025 -0.0125
4
0.1 -0.3 0.3 ~0.1125 -0.225 -0.1125

GS



Table 3.5a Modal Values u and s, System 2A

Effective mass ratio

1.00%;

Amplification factor = 10.00

Resonant frequéncy = 1.00 cycle/sec

Mass number

Mode Frequency Response
‘ 1 2 3 4 5
u 0.2379 0.493] 0.7931 3.2677 7.5860
! 0.9240
s 0.2379 0.2552 0.3000 2.4747 4.3183
u 0.2602 0.5009 0.6940 -1.7410 -7.4746
s 0.2602 0.2406 0.1931 -2.4350 -5.7335
; | 1261 u 0.0399 0.0403 -0.0189 -1.3675 1.3867
) s 0.0399 0.0004 -0.0592 ~1.3486 2.7542
‘ u 0.3629 0.1644 -0.5693 0.8724 -0.5044
4 2.0234
s 0.3629 -0.1986 -0.7336 1.4416 -1.3768
u 0.0990 -0.1987 1 0.1011 -0.0315 0.0063
5 3.0020 - _
s 0.0990 ~0.2977 0.2998 -0.1327 0.0378
. Exact 0.4981 0.9940 1.4871 5.0088| 15.0606
Max. displacement ‘
Approx. 0.5000 1.0000 1.5000 5.0000 15.0000
Exact 0.498] 0.4959 0.493] 4.9097 10.0518
Max. Approx. 0.5000 0.5000 0.5000 5.0000 10.0000

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.5b Modal Values u and s, System 2A

Effective mass ratio = 2.00%;

Amplification factor = 7.07

Resonant frequency = 1.00 cycle/sec

Mass number

Mode Frequency Response
1 2 3 4 5
u 0.2329 0.4895 0.8077 2.5362 5.4091
1 0.8926
s 0.2329 0.2566 0.3182 1.7285 2.8729
u 0.2631 - 0.4983 0.6668 -1.0143 ~5.2805
2 I.1008 s 0.2631 0.2352 0.1685 -1.6811 ~4.2662
; u 0.0721 0.0735 -0.0326 -1.2642 1.2974
3 1.7209 ;
5 0.0721 0.0014 -0.1060 -1.2317 2.5617
: u 0.3338 '0.1360 -0.5443 0.7741 -0.4324
4 2.0458 s 0.3338 -0.1979 ~0.6802 1.3184 -1.2066
u 0.0981 -0.1973 ©0.1023 <0.0318 0.0063
5 3.0041 ;
s 0.0981 ~-0.2954 0.2996 -0.1341 0.0382
: Exact 0.4960 0.9879 1.4746 3.5506 10.6896
Max. displacement ‘ %
Approx. 0.5000 1.0000 1.5000 3.5355 10.6066
" Exact 0.4960 0.4918 0.4867 3.4096 7.1390
ax. .
Approx. 0.5000 0.5000 0.5000 3.5355 7.0711
Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.5¢c Modal Values u and s, System 2A

Effective mass ratio = 5.00%;

Resonant frequéncy = 1.00 cycle/sec

Amplification factor = 4.47

Mass number
Mode Frequency Response
1 2 3 4 5
u 0.2239 0.4824 0.8326 1.8888 3:5027
' 0.8313 s 0.2239 0.2585 0.3502 1.0562 1.6139
u 0.2652 0.4870 10.6073 -0.3823 -3.3257
2 1.1522 s 0.2652 0.2218 0.1203 -0.9896 -2.9434
u 0.1421 0.1477 -0.0567 -1.0517 1.1107
3 1.7089 s 0.142] 0.0057 | -0.2044 -0.9950 2.1623
u 0.2739 0.0758 -0.4889 0.5779 -0.2942
4 2.1087 s 0.2739 -0.1981 -0.5647 1.0668 -0.8720
u 0.0949 -0.1929 0.1057 -0.0327 0.0065
5 3.0107 s 0.0949 -0.2878 0.2986 -0.1384 0.0392
) Exact 0.4891 0.9694 1.4399 2.2711 6.8284
Max. displacement
Approx. 0.5000 1.0000 1.5000 2.2361 6.7082
) Exact 0.4891 0.4803 0.4705 2.0458 4.5573
Max. strain
Approx. 0.5000 0.5000 0.5000 2.2361 4.4721
Note: Exact is the sum of the absolute values of the Tirst two modes.
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Table 3.5d Modal Values u and s, System 2A

. Effective mass ratio = 10.00%; Amplification factor = 3.16
Resonant freqﬁency = 1.00 cycle/sec
Ma§s number
Mode Frequency Response ‘
) 1 2 3 4 5

u 0.2153 0.4751 0.8555 ~1.5659 2.5710

1 0.7658
s 0.2153 0.2598 0.3803 0.7104 . 1.0051
u 0.2610 0.4640 0.5351 -0.0866 ~-2.3232
2 1.2017 s 0.2610 0.2030 0.0710 -0.6217 -2.2365
u 0.2157 0.2293 -0.0730 -0.8476 0.9255

3 1.6952 _

s 0.2157 - 0.0136 -0.3023 -0.7746 1.7730
u ©0.2190 0.0158 -0.4289 0.4024 . -0.1799
4 2.2035 s 0.2190 -0.2031 -0.4448 0.8313 -0.5823
u 0.0890 -0.1843 0.1114 -0.0340 0.0067

5 3.0233
S 0.0890 -0.2733 0.2957 -0.1454 0.0407
Max. displacement Exact 0.4763 0.9391 1.3905 1.6525 4.8942
Approx. '0.5000 - 1.0000 1.5000 1.5811 4.7434
Exact 0.4763 0.4629 0.4514 1.3321 3.2416

Max. strain

Approx. 0.5000 0.5000 0.5000 1.5811 3.1623

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.5e Modél Values u and s, System 2A

|
Effective mass ratio % 20.00%; Amplification factor = 2.24
|

Resonant ﬁreqUency = 1.00 cycle/sec

| v Mass number
Mode -Frequency Response :
1 o2 3 4 5
i
| u 0.2061 0.4673 0.8813 1.3440 1.9465
] 0.6814 s 0.2061 0.2612 0.4140 0.4627 0.6026
u 0.2440 0.4175 0.4350 0.0828 -1.5876
2 1.2563 |
‘ s 0.2440 0.1735 0.0175 -0.3523 -1.6703
u 0.3015 0.3290 ~0.0798 -0.6362 0.7240
3 | 1.6787 s ' 0.3016 0.0274 -0.4088 -0.5565 1.3602
= u 0.1737 -0.0520 -0.3578 0.2454 ~0.0898
4 . 2.3662 s 0.1737 -0.2257 -0.3058 0.6032 -0.3352
| u 0.0746 -0.1619 0.1212 ~0.0359 0.0069
S - 3.0562 5 0.0746 -0.2365 0.2831 | -0.1572 0.0428
o Exact 0.4501 1 0.8848 1.3164 1.4267 3.534]
Max. displacement i '
Approx. ~ 0.5000 1.0000 1.5000 1.1180 3.354]
Exact 0.4501 0.4347 0.4315 0.8149 2.2729
. s : i :
Max. strain Approx. 0.5000 0.5000 0.5000 1.1180 2.236]

Note: Exact is the sum of the absolute values of the first two modes.

N
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Table 3.6a Modél Values of u and s, System 2B

]

Effective mass ratio = 1.00%; Amplification factor = 10.00
Resonant frequency = 1.00 cycle/sec
; Mass number
Mode ‘ Frequency Response 3
1 2 3 4 5
u 0.2663 0.5458 0.7803 3.1604 7.9207
] 0.9485 s 0.2663 0.2795 0.2345 2.6146 4.7603
u 0.2320 0.4524 0.7145 ~1.8922 -7.1055 -
2 1.0491 s 0.2320 0.2204 0.2621 -2.3445 -5.2133
u 0.0000 0.0000 -0.0000 0.0000 -0.0000
|
3 1.7321 s 0.0000 0.0000 -0.0000 0.0000 -0.0000
u 0.4038 0.1998 -0.5930 -0.3297 0.1970
4 2.0026 s 0.4038 ~0.2040 -0.7928 ~0.5294 0.5267
u 0}0978 ~0.1980 © 0.0982 0.0614 -0.0122
5 3.0079 s 0.0978 -0.2958 0.2962 0.2594 -0.0736
] Exact 0.4984 0.9982 1.4948 5.0526 15.0262
Max. displacement %
Approx. 0..5000 1.0000 1.5000 5.0000 15.0000
, Exact 0.4984 0.4998 0.4966 4.9592 9.9736
Max. strain
Approx. 0.5000 0.5000 0.5000 5.0000 10.0000

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.6b Modal Values u and s, System 2B

Effective mass ratio = 2.00%; Amplification factor = 7.07

Resonant frequency = 1.00 cycle/sec

Mass number
Mode Frequency ~ Response
1 2 3 4 5
u 0.2726 0.5641 0.7915 2.4379 5.7307
1 0.9284
s 0.2726 0.2914 0.2274 1.8738 3.2928
u 0.2242 0.4324 0.6982 =1.1721 -4.,9128
2 1.0687 s 0.2242 0.2082 0.2658 -1.6045 -3.7407
u 0.0000 0.0000 0.0000 -0.0000 0.0000
3 1.7321 s ‘ 0.0000 0.0000 0.0000 . =0.0000 0.0000
u 0.4075 0.1995 -0.5861 ~-0.3261" 0.1940
4 2.0052 s 0.4075 -0.2080 -0.7856 -0.5255 0.5201
u 0.0957 -0.1959 0.0964 ‘0.,0603 -0.0119
> 3.0158 s 0.0957 ~0.2916 0.2924 0.2563 ~0.0722
. Exact 0.4968 0.9965 1.4897 3.6100 10.6435
Max. displacement
Approx. 0.5000 1.0000 1.5000 3.5355 10.6066
. Exact 0.4968 0.4997 0.4932 3.4783 7.0335
Max. strain
Approx. 0.5000 0.5000 0.5000 3.5355 7.0711

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.6c Modal Values u and s, System 2B

Effective mass ratio = 5.00%; Amplification factor = 4.47

Resonant frequency = 1.00 cycle/sec
; Mass number
Mode Frequency Response :
' 1 2 3 4 5

u 0.2842 0.5988 0.8115 1.8063 3.7959
' | 0.8867 s 0.2842 0.3146 0.2127 1.2075 1.9896
| u 0.2080 0.3928 0.6632 -0.5480 -2.9703
2 1060 s 0.2080 0.1848 0.2704 | 1-0.9407 -2.4223
u 0.0000 0.0000 0.0000 -0.0000 0.0000
3 r.7321 5 | 0.0000 -0.0000 0.0000 ~0.0000 0.0000
| u 0.4182 0.1984 -0.5660 | -0.3155 0.1855
4 2.0128 s 0.4182 | -0.2198 -0.7644 ~0.5139 0.5010
u 0.0896 '-0.1899 © 0.0913 0.0572 © =0.0111
> 3.0396 s 0.0896 ~0.2795 | 0.2813 0.2471 -0.0683
_ Exact 0.4922 0.9916 1.4747 2.3542 6.7662
Max. displacement Approx. 0.5000 1.0000 1.5000 2.2361 6.7082
Max. strain Exact - 0.4922 0.4994 0.4831 2.1482 4.4120
Approx. 0.5000 0.5000 0.5000 2.2361 4,4721

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.6d Modal Values u and s, System 2B

Effective mass ratio = 10.00%; Amplification factor = 3.16

Resonant frequency'= 1.00 cycle/sec

Mass number
Mode Frequency Response
‘ ] 2 3 4 5
u 0.2960 0.6354 0.83]1 1.4977 2.8310
1 0.8405 ‘
s 0.2960 0.3394 0.1957 0.8623 1.3333
u 0.1892 0.3490 0.6200 =0.2512 ~-1.9936
2 1.1450 s 0.1892 0.1598 0.2709 -~0.6003 -1.7424
u 0.0000 0.0000 -0.0000 0.0000 -0.0000
3 V.7321 5 ' 0.0000 0.0000 -0.0000 0.0000 -0.0000
u 0.4344 0.1957 ~-0,5344 ~-0.2988 0.1725
4 2.0246 s 0.4344 ~0.2387 -0.7302 -0.4945 0.4713
u 0.0804 -0.1802 0.0834 0.0523 -0.0098
5 3.0796 .
s 0.0804 -0.2605 0.2635 0.2325 -0.0621
Exact 0.4852 0.9844 1.4511 1.7490 4.8246
Max. displacement
Approx. 0.5000 1.0000 1.5000 1.5811 4.7434
Exact 0.4852 0.4992 0.4666 1.4626 3.0757
Max. strain
Approx. 0.5000 0.5000 0.5000 1.5811 '3.1623

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.6e Modal Values u and s, System 2B

Effective mass ratio

= 20.00%;

Amplification factor = 2.24

Resonant frequency = 1.00 cycle/sec

. Mass number

Mode Frequency Response
1 2 3 4 5

u 0.3105 0.6823 0.8545 1.2905 2.1626

777
] 0 4 s 0.3105 0.3718 0.1723 0.6083 0.8720
u 0.1628 0.2910 0.554] -0.0656 -1.3050

2 1.1936
s 0.1628 0.1282 0.2631 -0.3566 -1.2394
u 0.0000 0.0000 -0.0000 0.0000 -0.0000

3 1.7321
s 0.0000 0.0000 ~0.0000 0.0000 -0.0000
| u 0.4619 0.1886 -0.4781 -0.2687 0.1502
4 2.0453 s 0.4619 -0.2733 -0.6667 -0.4573 0.4189
u 0.0649 -0.1618 0.0695 0.0437 -0.0077
5 3.1603 s 0.0649 ~0.2267 0.2313 0.2056 ~0.0515
, ' Exact 0.4732 0.9732 1.4086 1.3562 3.4676

Max. displacement
Approx. 0.5000 1.0000 1.5000 1.1180 3.354]
Exact 0.4732 0.5000 0.4354 0.9649 2.1114
LTl Approx. 0.5000 0.5000 0.5000 1.1180 2.2361

Note: Exact is the sum of the absolute values of the First‘tWo modes..
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Table 3.7a Modal Values u and s, System 2C

Effective mass ratio

= 1.00%;

Amplification factor = 10.00

Resonant frequency = 1.00 cycle/sec

Mass number
Mode Frequency Response
| : 1 2 3 A 5
| u 0.2847 0.5359 0.7838 3.0060 8.1849
] 0.9742
s 0.2847 0.2511 0.2480 2.7212 5.1790
u 0.2177 0.4642 0.7138 -2.0579 -6.8433
2 1.0242 s 0.2177 0.2465 0.2496 ~2.2756 -4.7854
u 0.0101 ~0.0001 -0.0205 0.7037 ~0.7140
3 1.7258 s 0.0101 -0.0103 -0.0204 0.6936 -1.4177
u 0.3866 0.2004 -0.5770 -0.6203 0.3661
4 2.0104 |
5 0.3866 -0.1863 ~0.7774 -1.0069 0.9863
u 0.1008 -0.2003 ' 0.0999 ~0.0315 0.0063
> 3.0020 s 0.1008 -0.3011 0.3002 -0.1323 0.0377
max. displacement Exact 0.5024 1.0001 1.4976 5.0639 15.0282
Approx. 0.5000 1.0000 1.5000 5.0000 15.0000
Exact 0.5024 © 0.4976 0.4975 4.9969 9.9643
Max. strain
Approx. 0.5000 0.5000 0.5000 5.0000 10.0000

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.7b Modal Values u and s, System 2C

Effective mass ratio

= 2.00%;

Amplification factor = 7.07

Resonant frequency = 1.00 cycle/sec

Mass number
Mode Frequency Response 4
1 2 3 4 5

u 0.2997 0.5506 0.7970 2.2869 5.9930
' 0.9631 s 0.2997 0.2509 0.2464 1.9872 3.7061
u 0.2051 0.4496 0.6983 -1.3388 -4.6535
2 1.0337 s 0.205] 0.2444 0.2487 -1.5439 -3.3147
u 0.0185 -0.0005 -0.0378 0.6646 -0.6835
3 t.7201 s 0.0185 -0.0190 ~0.0372 0.6461 -1.3480
u 0.3751 0.2009 -0.5574 -0.5811 0.3376
4 2:0203 s 0.3751 ~0.1741 -0.7583 ~0.956] 0.9187
u 0.1017 ~0.2005 © 0.0999 -0.0316 0.0063
> 3.0040 s 0.1017 -0.3022 0.3004 -0.1333 0.0380
Max. displacement Exact 0.5048 1.0001 1.4953 3.6256 10.6465
Approx. 0.5000 1.0000 1.5000 3.5355 10.6066
, Exact 0.5048 0.4953 0.495] 3.5311 7.0209
Mex. strain Approx. 0.5000 0.5000 0.5000 3.5355 7.0711

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.7c Modal Values u and s, System 2C

Effective mass ratio

5.00%;

Resonant frequency = 1.00 cycle/sec

Amplification factor = 4.47

Mass numbe r
Mode Frequency Response
1 2 3 4 5

‘ u 0.3301 0.5792 0.8214 1.6628 4.0523
! 0.9405 s 0.3301 0.2492 0.2422 1.3327 2.3895
_ u 0.1817 0.4211 0.6669 -0.7144 -2.7189
2 1.0516 s 0.1817 0.2393 0.2458 ~-0.8961 -2.0045
u 0.0364 -0.0024 ~-0.0764 0.5756 -0.6138
3 1.7049 s 0.0364 -0.0387 ~0.0740 0.5392 -1.1894
u 0.3476 0.2033 -0.5115 -0.4918 0.2740
4 2.0475 s 0.3476 -0.1443 -0.7149 -0.8394 0.7657
u 0.1042 -0.2013 0.0996 -0.0322 0.0064
5 3.0101 s 0.1042 ~0.3054 0.3009 -0.1364 0.0386
Exact 0.5118 1.0003 1.4883 2.3772 6.7712

Max. displacement '
Approx. 0.5000 1.0000 1.5000 2.2361 6.7082
. Exact 0.5118 0.4885 0.4880 2.2289 4.3940

Max. strain

: Approx. 0.5000 0.5000 0.5000 2.2361 4.4721

Note: Exact is the sum of the absolute values of the first two modes.
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Table 3.7d Modal Values u and s, System 2C

Effective mass ratio

= 10,00%;

Amplification factor = 3.16

Resonant freqdency = 1.00 cycle/sec

Mass number

Mode Frequency Response ;
1 2 3 4 5
u 0.3651 0.6104 0.8461 1.3633 3.0780
‘ 0.9141 s 0.3651 0.2454 0.2357 0.9983 1.7146
u 0.1579 0.3902 0.6312 -0.4145 -1.7543
2 1.0703
5 0.1579 0.2323 0.2410 -0.5724 -1.3398
u 0.0534 -0.0063 ~0.1167 0.4798 -0.537
3 1.6847
5 0.0534 -0.0596 ~0.1104 0.4264 -1.0176
u 0.3153 0.2080 -0.4597 -0.3954 0.2076
4 2.0874 s - 0.3153 -0.1073 -0.6677 -0.7107 0.6030
u 0.1084 ~0.2023 0.0991 -0.0332 0.0065
> 3.0205 s 0.1084 -0.3106 0.3013 -0.1416 0.0398
' Exact 0.5230 1.0006 1.4773 1.7778 4.8323
Max. displacement
Approx. 0.5000 1.0000 1.5000 1.5811 4.7434
Exact 0.5230 0.4776 0.4767 1.5706 3.0545
Max. strain
Approx. 0.5000 0.5000 0.5000 1.5811 3.1623

Note:

Exact is the sum of the absolute values of the first two modes.
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Table 3.7e Modal Values u and s, System 2C

Effective mass ratio = 20.00%; Amplification factor = 2.24

Resonant frequency = 1.00 cycle/sec

_ Mass number
Mode Frequency Response
' 1 2 3 4 5
u 0.4149 0.6518 0.8757 1.1691 2.3926
‘ 0.8758 s 0.4149 0.2369 0.2239 0.7542 1.2234
u 0.1288 0.3492 0.5812 ~0.2193 -1.0866
2 1.0942
s 0.1288 0.2205 0.2319 -0.3481 -0.8672
u 0.0681 -0.0138 -0.1588 0.3710 -0.4493
3 1.6548 ,
s 0.0681 -0.0819 -0.1449 0.3029 -0.8203
u 0.2713 0.2161° ~0.3956 -0.2856 0.1365
4 2.1538 s 0.2713 -0.0552 ~0.6117 -0.5570 0.422]
u 0.1169 -0.2033 0.0975 -0.0351 0.0068
> 3.0428 s 0.1169 -0.3203 0.3008 -0.1520 0.0419
. Exact 0.5436 1.0011 1.4569 1.3885 3.4791
Max. displacement '
Approx. 0.5000 1.0000 1.5000 1.1180 3.3541
_ Exact ~0.5436 0.4574 0.4558 1.1023 2.0907
Max. strain
Approx. 0.5000 0.5000 0.5000 1.1180 2.2361

Note: Exact is the sum of the absolute values of the first two modes.
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Table 4.1 Exact and Approximate Maximum Amplification Factors,
Systems 1A, 1B and 1C, ¥ = 1%, B = 0, 0.5, 1, 2, 5 and 10%

Effective damping factor, B, (%)
- Type of
System Solutions
0 0.5 1 2 5 10

1A Exact 10.32 9.15 8.33 6.91 4.41 2.60

1B Exact 10.21 8.74 7.60 5.87 3.33 1.91

1c Exact 16.32 7.32° 5.03 '3.55 " 1.96 1.20

1A, 1B, IC |  Approx. 10.00 8.7 7.7 6.25 4.0 2.5
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Table 4.2 Exact and Approximate Maximum Amplification Factors,
Systems 2A, 2B and 2C, B = 0%, vy =1, 2, 5, 10 and 20%

Inner spring % Outer spring
Effective ?
mass ratio, | System Approx. | Exact Approx. Exact
Y (%) |
A Asy AF. A, A Ayo A.F A.F.
2A 5.00 0.9 5.9 || 6.26 | 10.0 1.8 1.8 11.78
I 28 5.00 0 5.3 | 5.22 | 10.0 0.6 | 10.6 10.28
2c 5.00 0.6 5.6 || 5.67 | 10.0 1.2 1.2 10.93
2A 3.54 0.9 4.54 ||  4.45 7.07 1.8 8.87 8.91
2 2B 3.54 0.3 3.84 |  3.79 7.07 0.6 7.67 8.13
2¢ 3.54 | 0.6 414 || 4.32 7.07 1.2 8.27 7.90
24 2.24 0.9 3.14 | 3.2 | 4.47 1.8 6.27 6.14
5 28 2.24 0.3 2.54 | 2.64 4,47 0.5 5.07 5.90
2C 2.24 0.6 2.84 1| 2.92 4.47 1.2 5.67 5.50
2 1.58 0.9 2.48 ||  2.22 3.16 1.8 4.96 4.89
10 2B 1.58 0.3 1.88 | 2.11 3.16 0.6 3.76 4.27
2C 1.58 0.6 2.18 | 2.09 3.16 1.2 4.36 4,15
: |
2A 1.12 0.87 1.99 | 1.74 2.24 1.74 3.98 3.36
20 2B 1.12 0.3 1.42 1.71 2.24 0.6 2.84 3.49
2¢ 1.12 0.6 1.72 1.59 2.24 1.2 3.44 3.47
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Table 4.3 Exact and Approximate M%ximum Amplification Factors,

Systems 2A, 2B and 2C, Inner Spring

Effective damping factor, B, (%)
Effective 0.5 1 2
mass ratio,| Type
System System System
Y, (%) -
2A 2B 2C 2A 2B | 2c 2A 28 2C
| Exact 5.22 4.37 3.70 4.60 3.80 2.59 3.64 2.94 1.77
|
Approx. 5.09 4.60 4.85 4{49 4.06 4.28 3.63 3.29 3.46
) Exact 3.68 3.21 3.11 3439 | 2.9 2.43 2.92 2.42 1.67
' Approx. 3.99 3.46 3.72 3.62 3.15 3.39 3.06 2.68 2.87
5 Exact 2.79 | 2.27 2.41 2.57 2.06 | 2.04 2.21 1.81 1.51
Approx. 2.92 2.37 2.65 2.74 2,23 2.48 2.43 1.99 2.21
- Exact 1.78 1.82 1.74 1.63 1.68 1.54 1.55 1.44 1.24
Approx. 2.38 | 1.82 2.10 2,25 1.71 1.98 2.05 1.57 1.81
|
2 Exact 1.52 | 1.40 1.36 | 1.48 1.28 | 1.25 1.41 1.09 1.08
Approx. 1.94 | 1.38 1.68 1.84 1.33 1.60 1.72 1.24 1.50
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‘Table 4.3 (continued)

 Effective damping factor, B, (%)

- Effective 5 10
‘mass ratio, | Type
o : System System
v, (%) ! !
2A 28 2¢ 2 28 2c
| Exact 2.28 1.68 1.00 1.34 0.98 0.96
‘ Approx.| 2.30 | 2.10 2.20 1.43 1.31 1.37
Exact 2.00 1.53 | - 0.97 1.22 0.94 0.76
2 Approx. 2.08 1.84 1.97 1.37 1.21 1.29
Exact 1.52 1.28 0.92 1.17 0.94 0.76
5 Approx.| 1.8 1.50 1.66 1.28 1.06 1.17
Exact 1.35 1.04 0.85 1.12 0.92 0.75
to Approx.| 1.63 1.26 1.44 1.21 0.95 1.08
Exact 1.24 1.01 0.83 1.03 0.89 0.75
20 Approx.| 1.44 | 1.05 1.25 | 1.13 0.83 | 0.99
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Table 4.4 Exact and Approximate Maximum Amplification Factors,

Systems 2A, 2B and 2C, Outer Spring

Effective damping factor, B, (%)
Effective 0.5 1 2
mass ratio, Type : 7
v, (%) System System System

2A 2B 2C 2A 28 2C 2A 28 2¢
Exact 9.66 8.75 7.42 8.79 7.59 5.37 7.38 5.89 3.81
‘ Approx. | 10.18 | 9.20 9.69 | 8.98 8.12 | 8.55 7.25 | 6.58 6.92
Exact 7.61 6.62 6.05 6.95 5.91 4.97 5.81 4.95 3.63
2 Approx. | 7.97 6.92 7.44 7.24 6.30 6.77 6.11 5.35 5.73
Exact 5.68 5.12 4,55 5.30 4.46 | 3.96 4,65 3.88 3.10
> Approx.| 5.84 4.74 5.29 5.47 4.45 4.96 | 4.85 3.97 4.41
Exact 4.37 3.95 3.49 4.17 3.72 3.07 3.81 3.31 2.58
10 Approx.| 4.76 3.63 4.19 4.49 3.42 | 3.95 4.09 | 3.14 3.6l
Exact 3.18 3.18 3.03 3.04 | 3.05 2.68 2.79 2.80 2.24
20 Approx.| 3.87 | 2.77 3.35 | 3.68 2.65 | 3.20 3.44 | 2.48 2.99
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Table 4.4 (continued)

Effective

Effective damping féctor, B, (%)

5 10
mass ratio, Type

v, (%) System System
2A 2B 2C 2A 2B 2C
Exact 4,46 3.40 2.04 2,72 1.98 1.34
! Approx. | 4.60 4,20 4.40 2.86 2.62 2.74
. Exact 4,13 3.14 2.01 2.63 ].96 1.34
2 Approx. | 4.17 3.68 3.93 2,73 2.42 2.58
, Exact 3.51 2.83 1.91 2.36 1.88 1.33
> Approx. | 3.62 | 2.99 3.3 2.55 2.12 | 2.34
10 Exact 2.94 2.53 1.85 2.00 1.76 1.31
Approx. | 3.25 2.51 2.88 2.42 1.89 2.15
Exact 2.18 2.20 1.79 1.5] 1.55 1.27
20 Approx. 2.87 2.09 2.50 2.25 1.65 1.97
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Table 4.5 Exact and Approximate Maximum Amplification Factors,
System 2A, ¥ = 1%, Inner and Outer Secondary Springs,
B = 2%, B, =0, 0.5, 1,2, 5 and 10%

LL

p
. Effective damping factof, B. (%)
Type of . - Type of
Tuti sprin -
sofution ) SPTINg ] 1.25 1.5 | 2 3.5 6
. Inner 4.85 4.48 4.16 3.64 2.77 2.14
Exact
Outer 9.4 8.79 8.25 7.38 5.57 4.13
Inner 4.49 4.24 4.01 3.63 2.82 2.05
Approx.
Outer 8.98 8.47 8.02 7.25 5.63 4.10
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FI1G. 2.4 FOUR DEGREE OF FREEDOM COMBINED SYSTEMS CONSIDERED
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System 2A | System 2B System 2C

F1G. 2.5 FIVE DEGREE OF FREEDOM COMBINED SYSTEMS CONSIDERED
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APPEND IX A

DESIRED FREQUENCY AND EFFECTIVE MASS RATIO

For linearly elastic, positive definite systems treated in
- this -study; -when the relative values—of “the mass and spring constant had’
been selected, the eigen-value kr may be obtained as the ratios of two

quadratic forms as noted in Eq. (A.1):

o T . v
1 r ] \
Ae = 77— r=1,2,=-=-==,n (A.1)
r

where Ur are corresponding eigen—vectors.

When the mass factors (m, M) éf the secondary and primary systems
had been assigned specific values, the effective mass can be obtained from
Eq. (2.33) or (2.34). The effectivélmass ratio can now be computed by

Eq. (2.38). For example, ifM =m =1 kfp—secz/inch, then Eq. (2.33) gives

Ii

E = 4.5 and Eq. (2.34)‘gives S 3 kip-secz/inch. Conseqﬂent]y,

pl

Eq. (2.38) yields Y11 =2/3.
In order to have a desired effective mass ratio with respéct to
the fundamental frequency of both primary and secondary systems, m must be

substituted by m, which is obtained as follows:

' ; aT.ﬁs.al
Y1) desired = T h (A.2)
. ]. p.'l
From the fact that
RN
= (A.3)
m o, M @
" 's 1
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Eq. (A.2) can be put into the form

T
m a].MS.a}
2 B
11/desired m UT-M U
17 p 71
which yields
- 3
mo= f(yll)desired (A.4)

Once the proper magnitude of the masses has been decided, one of
the frequencies of the system can be adjusted to any desired value by

using the spring constant factor obtained from Eg. (A.5):

k = Fk (A.5)
where
2
(w ) . -
F _ _r'desired m (A.6)
r A m .
r
k, k = spring constant factor

As an example, let the secondary masses be designated as 3m and m, énd
the spring constants as 6k and 1.5k. |If the values of k =1 kip/inch

is employed, relation (A.1) yields K] = 1 radian/sec. Then any value of
of wgy may be obtained by using the spring constant factqr k instead pf k

according to Eq. (A.7):

Lo 2 -

(wsl)desired>m (A7)

Mass and stiffness matrices of systems 2A, 2B and 2C for the
case of wp] =0, = 21 radian/sec and y]] = 1 percent are presented

in Tables A.l and A.2.
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Table A.1 Mass Matrix of Systems 2A, 2B and 2C.

3.000
1.500
1.000
0.045

0.015

Table A.2a Stiffness Matrix of System 2A.

592.175 =-236.87
-236.87  355.305 -118.435
-118.435 121.988  -3.553
-3.553 4.441 -0.888

-0.888 0.888
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Table A.2b Stiffness Matrix of System 2B

592.175 =236.87
-236.87 358.858
-118.435

-3.553

-118.435

118.435

=3.553

4.44]

-0.888

-0.888

0.888

Table A.2c Stiffness Matrix of System 2C

595.728 =236.87
-236.87 355.305
-118.435

-3.553

-118.435

118.435

-3.553

4.441

-0.888

-0.888

0.888
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Presented below are numerical calculations of some stiffness

elements tabulated in Table A.2.

Element K]] of system 2C

K 9K + 6K + 6k

11

Il

(2ﬂ)2(9xl + 6x1 + Gng0.0I)

595.728

ETement K,p of system 2B

K

29 63~+ 3K + 6k

(20)2 (6x1 + 3x] + exgxo.01)

It

358.858
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APPEND IX B

RESPONSE SPECTRUM OF THE CONSTANT ACCELERATION PULSE

The gyrogram may be used to evaluate the response spectrum of
the step function accelerogram of Fig. 2.6a. The procedure employed in

such a construction is described briefly below. Using the spectrum

terminology,

and A =wbD

Gyrogram of the Constant Acceleration Pulse
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Case wt, < 7«

d
D = R
oa . a 2
- {2 2 -2 ~
RZ = { 5 sin wt, } + { " (1 = cos wtd)}
w )
.a . ’
_9_2 . 2 2 }
{wz } { sin wtd + 1 + cos wtd 2 cos wtd
ao ZaO wt
D = R = —Ew/ 2(1 - cos wtd) —— sin —
w 2
2a_ wt g
vV o= —sin — ~ (B.1)
w 2
For small mtd,
ZaO wtd ‘
Vo= =2 = = at, | (8.2)
w 2 °© '
Case wtd > T
2ao : o v
D = R = —5— : ' (B.3)
w .
A = 2a

Equations (B.1), (B.2) and (B.3) éomp]ete]y describe the
‘characteristics of the response spectrum shown in Fig. 2.6b. For very
small wt 4, Eq. (B.2) gives a constant velocity spectrum of equal magnitude
to the constant base velocity. Equation (B.1) governs’the transition Zone,
- and for large wtd, Eq. (B.3) gives a constant acceleration spectrum of

twice the magnitude of the input pulse.






