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1.1 General 

CHAPTER 1 

INTRODUCTION 

Secondary systems such as 1 ight appendages (penthouses, elevator 

hous ings, piping systems, etc.) in nuclear power facil ities or other 

structures are usually designed after the primary system (building, nuclear 

reactor, etc.) design is completed. The secondary system is supported by 

connections to the primary structures. Under earthquake motion the base of 

the primary system tends to move with the ground, and the secondary system 

support motions follow the motion of the primary structure at the points 

of attachment. 

In general, earthquake motion is relatively rapid, thus having 

great potential of causing severe damage to improperly designed structures. 

When the secondary system is considered stiff in comparison to the primary 

structure, it accelerates with the same motion as its support. However, 

for a very flexible secondary system, the differential motions between the 

masses and its base are large. Between these two 1 imiting conditions the 

secondary system must be designed in a balanced fashion in order to survive 

the dynamic motion. Explicitly, the secondary system must be strong enough 

to "resist the force'acting on it as well as ductile enough to deform 

without collapse. The amount of strength and ducti1 ity is controlled by 

proper selection of the stiffness or flexibil ity of the system itself. 

Several factors compl icate the response analysis of the 

dynamical system; for example, the number of degrees of freedom required 

for reasonable model ing may be large, thus giving rise to problems of data 

processing, even in modern computing facil ities. Another major factor is 

the lack of complete knowledge about the earthquake hazard for which these 
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components should be designed. 

The effects on the secondary system depend not only on the 

earthquake motion but also on the properties of the primary structure and 

on the properties of the secondary system itself. The most important 

properties are the energy absorption of each system and its support, its 

natural frequency and strength or resista~ce. 

Due to the unpredictabil ity of future earthquakes, current 

methods of seismic analysis often specify the design earthquake by a smooth 

response spectrum .. This permits an analysis to be made of the primary 

system but provides no information for the design of the secondary systems. 

Since the secondary system is generally alight system in 

comparison to the supporting structure, it is quite reasonable and 

convenient to have simple rules for the approximation of the strain and/or 

maximum motion response of the secondary system as a function of the 

separate par~eters .of the primary and secondary systems. If such rules 

can be developed and are appl icable, they offer at least two advantages 

in the preliminary design stage. 

1. The secondary system can be analyzed for.any type of base 

motions of the primary system. 

2. By cons·idering the primary and secondary systems separately, 

computational difficulties of the combi'ned system, due to different orders 

of mag~itude of the masses and stiffness elements, are avoided. 

1.2 Object and Scope 

In recent years, considerable studies have been carried out 

towards the finding of approximate procedures which can be employed in the 

prel iminary design of secondary systems. The procedures which have been 

suggested in many of the past studies involved decoupl ing of the primary 
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and secondary systems. But in most cases this is not possible and 

interaction effects must be considered if reasonable results are to 

be achieved. 

The main objective of this research involves the study of the 

dynamic response of the secondary system, whereby the interaction effects 

are taken into account. 

In order to permit an extensive parameter variation, relatively 

simple analytical models (mass-spring systems) are used. In this study, 

both pr.imary and secondary systems remain in the elastic range, with the 

primary system being a multiple-degree-of-freedom system subjected to base 

disturbances, while the secondary system ranges from a single-degree-of

freedom system to a multiple-degree-of-freedom system, but is attached at 

only one point to the primary structure. Attention is paid to the response 

of the secondary system, which is influenced to a major extent by the 

nature and type of the response of the primary element on which it is 

supported. The effect of damping upon response is also investigated 

in detail. 

After various parameters of interest have been carefully studied, 

reasonable ranges of these parameters will be developed. The purpose of 

this part of the st~dy is to arrive at approximate procedures which can 

be employed in the prel iminary design of secondary systems and/or to 

estimate the adequacy of such systems, pending more elaborate analysis. 

l.3 Review of Related Work 

Various procedures employing the assumption of neglecting 

interaction effects between primary and secondary systems have been 

suggested to simplify the design of 1 ightsecondary systems mounted on 

a responding structure subjected to earthquake or other dynamic motions. 
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Newmark (1) gave basic design criteria for very 1 ight subsystems. Based 

on the forced response of separate two-degree-of-freedom systems, one for 

each mode of the primary structure, Penzien and Chopra (2) presented an 

approximate method for a single-degree-of-freedom secondary system. 

Another simple design procedure has been suggested by Biggs and Roesset (3). 

Two assumptions were employed in developing this latter method. Firstly, 

the significant input to the equipment consists of a series of damped 

harmonics, each of which corresponds to one of the normal modes of the 

structure. Secondly, the most significant harmonic components of the 

earthquake motion with respect to the equipment are those which are in 
'!II. 

near resonance with the equipment. Sato (4) simulated the building-machine 

structure by an ideal ized two degree-of-freedom system, and characterized 

the response spectrum of .a single-degree-of-freedom secondary system when 

the primary structure was subjected to earthquake motion. 

A considerable amount of work has been carried out to study the 

response characteristics of a secondary system with two-end connections. 

Shibata et al. (5) treated each portion of a piping system as a simp~e beam 

and simulated the whole structure (piping and building) as a two-degree-of-

freedom system. Sato and Suzuki (6) investigated the dynamic response 

characteristics of simple building-machine structures subjected to two 

seismic motions with certain time-lag intervals. Nakagawa et al. (7) 

employed the principle of superposition and developed a method of modal 

analysis of response of a structure subjected to two different earthquake 

input motions at its two supporting points. 

Attempts have been made to characterize the response of a 

secondary system treated as a continuous beam. Included in this list are 

Watari et al. (8) who used a transfer matrix formulation, and Shimizu and 
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Shibata (9) who analyzed a piping system subjected to mu1tirandom input. 

Hart et a1. (10) discussed several modal synthesis procedures 

for the dynamic analysis of large composite structural systems, and also 

gave schematic flow charts of the analysis procedure used in prominent 

methods. 

Berkowitz (11) performed an analysis of a primary piping system 

by treating a reactor vessel and attached piping as a single coupled 

lumped mass model. 

Kassawara (12) investigated earthquake response of multiply 

connected light secondary systems by spectrum techniques. 
.. 

As indicated earl ier, rel iable results can be obtained only when 

the interaction between the primary and secondary systems is taken into 

account properly. The interaction is determined not only by the mass ratio, 

as postulated by many authors, but also by the damping coefficients of 

both primary and secondary systems. A sufficient condition for neglecting 

the interaction has been obtained by Caughey (13) who performed qual itative 

mathematical analysis of various approximate schemes. 

The consideration of a sing1e-degree-of-freedom. primary system 

and a sing1e-degree-of-freedom secondary system as a coupled two-degree-

of-freedom system d,irect1y includes all interaction effects. Newmark et al. 

(14) indicated that the maximum amp1 ification factor, even when the 1 ight 

secondary system was tuned to a frequency of the system on which it was 

supported, could not exceed the square root of the ratio of the effective 
./, 

masseS of the primary and secondary systems. 

In a recent study by Newmark (15), involving a multiple-degree-

of-freedom primary system and a single-degree-of-freedom secondary system, 

the ampl ification factors at resonance are shown to be affected by both 

.. -;" 

The effective mass is defined in Chapter 2. 
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the damping factor and the effective mass ratio, but details of these 

combined influences have not yet been investigated. 

Since the concept of effective mass ratio seems to be quite 

promising, it is used throughout the research conducted here. 

1.4 Notat ion 

Most of the symbols used in this report are defined when they 

first appear. However, a summary of frequently used symbols is also 

presented below for convenience. 

k spring constant factor 

m = mass constant factor 

K = stiffness matrix 

M diagonal mass matrix 

R stiffness matrix of the combined system 

M = diagonal mass matrix of the combined system 

p 

w • 
Sl 

w • 
pi 

T 

c . pi 

c . 
SJ 

0'. 
J 

0'. 
J 

= first natural frequency of the primary system 

= jth circular frequency of the secondary system 

= jth circular frequency of the primary system 

= shortest natural period of the system considered 

= duration of the constant acceleration pulse 

= ith primary participation factor 

= jthsecondary participation factor 

= vector of the jth mode shape of the secondary system 

= vector of the jth mode shape of the secondary system normal ized 

in such a way that the participation factor is equal to unity 

O. = vector of the jth mode shape of the primary system 
I 
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U. = vector of the jth mode shape of the primary system normal ized 
I 

in such a way that the participation factor is equaJ to unity 

a. (k) = kth element of a. 
J J 

u. (k) = kth element of U. 
I I 

u = modal displacement 

s = modal spring distortion 

S = secondary spring distortion 

~ = effective damping factor 

E. = jth effective secondary mass 
SJ 

E. = jth effective primary mass 
pi 

B, Y = effective mass ratio 

A.. = amplification factor of the secondary system response due to the 
J I 

th . th effects of the j mode of the secondary system and the i mode 

of the primary system 
-_ ..•.............•.....••..•.. _ ......••..... _ •...•••..•..•...............•...........•. - ....... _ ..... _ .. __ .. _ ....•. _._. 

A.F. = total ampl ification factor of the secondary system response 

x = vector of the absolute displ acement of the combined system 

y = vector of the absolute ground displacement 

z = vector of the relative d i spl acement of the comb i ned system 

wi th respect to the ground 

D = spectral displacement 

v = pseudo-spectral velocity 

A = pseudo-spectral acce1eration 
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CHAPTER 2 

METHOD OF ANALYSIS 

2.1 Introductory Remarks 

A sketch of a mass-spring secondary system mounted on a mass-

spring primary system is illustrated in Fig. 2.1. Some of the reasons for 

not considering designing a structure with substructures as a single unit 

had already been stated in section 1.1. One additional reason is that 

sometimes this approach may lead to unreliable results because of the 

excessive number" of degrees of ~reedom. Nevertheless, for comparison 

purposes, the solutions by this approach are regarded as exact solutions 

he reo 

The assumption of decoupl ing has been employed by many 

investigators in developing approximate procedures for the design of 

secondary systems mounted on a responding structure sUbjected to earthquake 

or other dynamic motions. Since this assumption (the same as neglecting 

interaction effects) is shown to be invalid in most cases (Ref. 13), a 

new approach which incorporates interaction effects should be investigated. 
I', . 

The concept of effective mass ratio was first util ized by 

Newmark (14, 15). In Ref. 14, a mass-spring secondary system supported by 

a single mass-spring primary system was investigated. The spring 

distortions for the two modes of the combined system were considered to be 

added in numerical values. Hence, this approach gives the upper bound of 

the secondary system response. In Ref. 15, the approximate procedures for 

a single mass-spring secondary system mounted on a multiple-degree-of-

if, 
The effective mass ratio is defined by Eq. (2.38). It is worth noting 

that when both primary and secondary systems are single-degree-of-freedom 
systems, the effective mass ratio is the same as the mass ratio. 
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freedom primary system had been presented. Heuristic relationships had 

also been given for a more complex secondary system with and without 

damping. Since this effective mass ratio approach considered the enti re 

system as a single unit, therefore, interaction effects were included 

automatically. 

In this report, the effective mass ratio concept is employed for 

the approximate analysis of more complex primary and secondary systems 

(multi-degree-of-freedom systems). Information concerning the exact 

analysis is provided in section 2.3.3, while the approximate analysis is 

discussed in section 2.3.4. 

2.2 Details of the Study 

2.2.1 Systems Considered 

Before a real dynamic system can be analyzed it must be represented 

by a physical (or mathematical) model to define its masses, resistance, 

damping, strength and energy absorbing capacity. To obtain a basis for 

extrapolation, and at the same time to permit considering a number of 

important conditions, primary and secondary systems shown in Figs. 2.2 and 

2.3, respectively, are investigated. Both primary and secondary systems are 

composed of lumped masses and linear springs. Combined systems formed by 

attaching the secondary to the primary systems are also illustrated in 

Figs. 2.4 and 2.5. In order to proceed with the description of the study 

presented here, it is first necessary to clarify what the primary, 

secondary and combined systems really represent. 

The primary syitem, representing the building (or nuclear reactor, 

etc.) which provides support for the secondary system, is modeled as a 
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singly supported shear-beam system (Fig. 2.2).* A three-degree-of-freedom 

non~niform primary system is used. This particular system is carefully 

proportioned to enable the natural frequencies to be spread wide enough 

relative to each other. 

Setback portions of a building or equipment located within ,the 

nuclear reactor building or alight appendage (penthouse, elevator housing, 

etc.) can be considered as a mass-spring secondary system supported by the 

primary structure. Figs. 2.3a and 2.3b illustrate a single-degree-of-

freedom and a nonuniform two-degree-of-freedom secondary systems, 

respectively. 

Natural frequencies and mode shapes of the primary and both 

secondary systems are I isted in Tables la, lb and Ie, respectively. The 

mode shapes have al ready been normal ized such that the participation 

factors are unity (the purpose of this normal ization will be clarified 

later on in this chapter). 

By appropriate choice of the relative magnitude of the masses 

and spring constants~ the frequencies of the systems considered c~n 'be 

adjusted to any desired values (See Appendix A). The thr~e frequencies 

of the primary system are kept constant at 1, 2 and 3 hertz, respectively. 

Once the masses and, spring constants of the primary system are chosen, 

the masses of the secondary system are defined by selecting the desired 

effective mass ratio (Appendix A). The fundamental frequency of the' 

secondary system can now be defined through selection of the proper spring 

constants. 

ii, 

This I imitation is not significant. The theoretical approach is the 
same for more complex systems. The I imitation does simpl ify the analysis 
and permits a wider range of parameter variation to be studied. 
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The entire structural system (building and appendage, etc.) can 

be represented by combinations of primary and secondary syitems. In this 

study, the secondary system is 1 imited, by being attached at only one point 

to the main structure. The purpose of this 1 imitation is for simpl icity, 

and to allow an extensive study to be made of the behavior of the secondary 

system. The supports for the secondary systems are individual masses of 

the shear-beam primary system. In order to study the effect of the support 

point upon the response of the secondary system, the location of the 

connection points will be varied. Figures 2.4 and 2.5 show four- arid five

degree-of-freedom combined systems, respectively. The bases of these 

systems will be excited by the ground motion. 

2.2.2 Parameters Studied 

The physical parameters necessary for defining the system are the 

mass values and spring constants for the primary and secondary systems and 

the connectivity of the structure. For a specific primary or secondary 

system, frequency ratios remain constant and the only parameter necessary 

to define the system is the.magnitude of· one of the natural frequencies. 

One of the objectives of this study is to observe the secondary 

spring distortion bounds as the physical parameters are varied. 

One parameter most 1 ikely to affect the secondary spring 

distortion bounds is the effective mass r~tio of the secondary to the 

primary systems. The secondary response chosen 'for observation is the 

maximum distortion in each of the secondary springs. This response is 

chosen because it provides a measure of the maximum strain at various 

portions of the system. The results of the study, then, are plots of 

S/(V/p) = SID = S/(A/p2) vs log(p/P), where S = secondary spring 

distortion, OJ V, and A are spectral displacement; velocity and 

acceleration for the ground motion appl ied to the primary system at 
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frequency p, respectively, and p = fundamental frequency of the secondary 

system, P = fundamental frequency of the pr imary sys tern. 

The other significant parameter affecting the dynamic response 

of a system subjected to transient disturbances is the 1055 of energy 

involved in damping, hysteresis, or other mechanisms. The nature of the 

structure itself is not the only factor used in determining the energy 

absorbing capacity from damping. The type of joints or connections wi thin 

the structure, the mechanism at the interface between the structure and 

its support, the level of stress or deformation, permitted when the structure 

undergoes dynamic motion, etc., al 1 these factors contribute significant 

portions to the total amount of damping. 

Since damping is a very compl icated matter, only limited 

information is available. Valu~s for the design levels of damping for 

different types of structure are suggested in Refs. 15, 16 and 17. 

Discussion of various types of damping common1y employed in dynamk analysis 

of structural systems is available in Ref. 14. 
,I~ 

By choosing damping" proportional to stiffness, the damping 

ratios are proportional to mode frequencies. Certain fra~tions of critical 

damping for the fundamental mode of vibration will be assigned to both 

prri.mary and secondary systems. Using the relations of Eqs. (2.1) and (2.2), 

the required damping constant can be obtained. 

(2. 1 ) 

(2.2) 

,J~ 

n With this type of damping, the relative contributions of higher modes of 
vibration in the response are neg1 igib1e. There is no intention to convey 
the thought that this type of damping is most appropriate for structural 
sys tems. 



where 

k spring constant 

S = a constant 

R = damping constant 

1 3 

~l = fraction of critical damping for the 

fundamental mode of vibration 

wl = fundamental frequency 

In summary, the fol lowing parameters are studied herein. 

a) piP, ratio of the fundamental frequency of the secondary 

system to the primary system. Selection of the fundamental frequency is 

sufficient to define all the frequencies and mode shapes of the system for 

which the relative magnitudes of masses and spring constants have been 

chosen. 

b) y, effective mass ratio. This parameter indicates the 

relative size of the secondary system with respect to the primary structure. 

c) ~,fraction of critical damping. This parameter indicates 

the effect of damping on the response of· the system (see section 4.6.2). 

d) S/(V/p), ampl ification factor. This parameter indicates 

the relative magnitude of the secondary spring distortion to the response 

spectrum value. 

2.2.3 Base Accelerograms Considered 

2.2.3.1 Constant Acceleration Pulse of Specific Time Duration 

A 0.5g acceleration of 0.155 sec. duration is used as the base 

accelerogram in this investigation. This ground motion gives a nearly constant 

velocity spectrum of approximately 30 in/sec from very low frequency up to 

about 2 cps; at that point a transition occurs. Beyond the transition 
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zone (2-3 cps) the response spectrum is a constant acceleration of magnitude 

1.Og (one way of calculating this response spectrum is discussed in Appendix 

B). \ Figures 2.6a and 2.6b show the pulse and the corresponding elastic 

response spectrum, respectively- With this selected base accelerogram, the 

spring distortion ratio will be computed for a combination of constant 

velocity and constant acceleration response spectra. 

2.2.3.2 Earthquake Accelerogram 

In order to substantiate the results obtained by the method 

developed herein·, a dynamic analysis of a system subjected to an earthquake 

accelerogram was performed. The record used is the N21E component of the 

Taft, Cal ifornia record of 7/21/52. This accelero~ram was selected because 

its response spectrum (Fig. 2.7) closely resembles a constant velocity 

spectrum in the intermediate frequency range. The record had been adjusted 

for base 1 ine position and the acceleration is assumed to have a 1 inear 

variation between two consecutive acceleration time points. Zero ground 

acceleration was added at the end of the record to account for the free 

vibration response in the maximum response calculation. The time duration 

of this zero ground acceleration was arbitrarily taken as' one-hal f of the 

longest natural period of the system considered. 

2.3 Method of Analysis 

2.3.1 General 

The problem of the determination of the response of structures to 

prescribed transient forces in theory can be formulated and solved in very 

general terms, even for situations involving plastic deformation. Basic 

analytical methods are available in detail in Chapter 1 through 6 of 

Ref. 18. Due to the increasing effectiveness of high-speed digital 
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computers, lengthy analyses of any system can be performed. However, 

this type of analysis is expensive; therefore, it is not generally 

suitable for prel iminary design purposes. 

In general, when modal analysis is used, the response of various 

modes can be combined by taking their absolute sum to obtain an upper 

bound, or by taking the square root of the sum of the squares of the modal 

responses to obtain the expected value (Ref. 19). For the approximate 

method developed herein, the absolute sum concept is employed. 

A computer program was developed. to perform all the necessary 

analysis. Given the physical parameters of the system (masses, spring 

constants, damping factor, connectivity, etc.), the program performs 

.three main tasks: 

a) Free vibration analysis of secondary, primary and combined 

s ys terns Stiffness and mass matrices are generated and the eigen-value 

problem is solved, giving frequencies and mode shapes. The mode shapes 

are then normal ized such that the participation factors are unity. 

b) Time-history analysis of the combined system -- This is a 

dynamic analysis of an (m+n) degree-of-freedom system subjected to base 

excitation; where m and n denote the number of degree-of-freedom of the 

primary and secondary systems, respectively. The ampl ification factors 

of the secondary spring distortions are then plotted vs. the fundamental 

freq~ency ratios of the secondary to the primary systems. 

c) Approximate analysis of the secondary system -- Secondary 

spring distortion bounds are computed by the approximate method developed 

1 ater. 

Besides the routine analysis mentioned above, this program is 

set to generate the response spectrum of the selected base accelerogram 
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and then to plot the spectrum on tripartite logarithmic scales of maximum 

relative displacement, maximum pseudo-relative velocity and maximum 

pseudo-acceleration, against frequency of the system. 

2.3.2 Equations of Motion (with Zero Damping) 

In the fol lowing discussion, the subscript p will refer to the 

primary system and the subscript s to the secondary system. In Fig. 2.8, 

the absolute displacements of the primary and secondary masses are denoted 

X and X , respectively. The positive direction of displacements are shown.' 
p s 

in the same dire'ction as the ground displacement. 

The equations of motion of the complete structure are 

I t I 

I. 

v] 
M I 0 K I K Z M I 0 I I 

P I --~~-~--~~ P P I 
I + = I (2.3) -----r--- ----.----

0 I M K I K 0 I M I I 
I S sp : ss I s 
I I I 

or 

M Z + R Z M Y (2.4) 

where 

Y = ground displacement 

Z = X - Y = relative displacement of the mass to the ground 
(2.5) 

M = diagonal mass matrix 

K = stiffness mat r i x 

= r~~-l-~-- - I j K : K 

M K = --~~-~--~~ (2.6) 
K : K 

I S sp I SS 
I I - -

The partitioned stiffness matrix in Eq. (2.3) is a so-called 

II reduced ll s t i ffnes 5 • Th i s pa rt i cu 1 ar type of s t i ffnes s re 1 ates the fo rces 

and displacements in the direction in which information is required. 
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In Eq. (2.3), the dimension of the matrices M and K are mxm, those of p pp 

M and K are nxn, that of K is mxn, and that of K is nxm, where s ss ps sp 

m and n are the number of masses (i.e., number of degree-of-freedom) of 

the primary and secondary systems, respectively. 

Equation (2.3) may be rewritten in a number of ways. It may be 

spl it up to reflect the primary and secondary systems as follows: 

M Z + K "7 + K Z = - M Y l.. 

P P pp P ps s p 
(2.7) 

and 

.. 
M Z + K Z + K Z = - M Y s s ss s sp p s (2.8) 

By 1 imiting the secondary system to be attached at only one point 

to the primary structure, Eq. (2.8) may be rewritten as 

.. 
X Xp (j) M X + K = - M s s ss s s (2.9) 

or 
.. 

M X + K Xs = K Xp (j) s s ss ss (2. 10) 

where 

Xp (j) = absolute displacement f h .th o . t e 'j primary mass 

( support point of the secondary system) 

X = X .. X (j) = relative displacement of the secondary mass s s . p 

to the support point 

2.3.3 Exact Analysis 

203.3.1 Free Vibration Analysis 

The equations of motion for free vibration are described by 

MX + KX = 0 (2.11) 
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For free vibration, the vector X is assumed to vary sinusoidally 

wit h time) X = B sin w t , i n wh i chill i s the c i r c u 1 a r f r e que n c y , i n r ad ian s 

per second. From Eq. (2.11) 

KB = A MB (2.12) 

wh ere A = OJ 
2 

i san e i g e n - val u e for f r e e v i bra t ion p rob 1 ems, a nd B i s the 

corresponding eigen-vector or mode shape. The solution to Eq. (2.12) can 

be found in standard texts in vibration theory (Refs. 20,21,22). 

For most free vibration analyses of the combined system, the 

fundamental frequency of the secondary system was arbitrarily tuned to the 

"';,', 
fundamental frequency of the primary system (i.e., illS 1 = Wpl)' As an 

example, mass and stiffness matrices of systems 2A, 2B and 2C for the 

resonant case and 1 percent effective mass ratio are given in Appendix A. 

2.3.3.2 Time-History Analysis 

Analytical solutions to Eq. (2.4) are well known (Refs. 20, 21, 

22). In this investigation, numerical solutions are regarded as exact 

solutions in comparison to the solutions obtained by the approximate 

techniques. Equation (2.4) is integrated at discrete time intervals using 

a step-by-step procedure (Newmark1s Beta-Method, Ref. 23). Beta = 0 is 

employed in this ca,se. Before con;tinuing the discussion, some notations 

should be introduced: 

hl = 0.025T (2. 13) 

-,', 
There is no intention to convey the thought that the tuning of 

fundamental frequenc ies, wh ich is expected to produce the most resonance 
between the systems) will create the worst condition. It will be shown 
in Chapter 4 that the maximum ampl ification of the secondary response 
occurs off resonance, especially for high degrees of damping or large 
effective mass ratios. 
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0.025Td (2.14) 

where 

time interval 

T shortest natural period of 

the system considered 
~,~ 

Td" = duration of the pulse 

... 1_1 .. 

During the pulse,"" the time interval used is either hI or h2' 

whichever is smaller. After the pulse, hl is employed. Regardless of the 

interval size, care is taken to insure that a response is computed at the 

very end of the pulse. 

The integration has been carried long enough to obtain the maximum 

response (30 seconds for no damping, and decreasing in succession for higher 

damping values). Displacement responses are computed for the secondary 

masses and the corresponding maximum amp1 ification factors arB obtained. 

2.3.4 Approximate Analysis 

Although the symbol ism has changed sl ightly, the analysis 

presented in this section follows the same procedure as or.iginally discussed 

by Newmark (15). The analysis will be divided into two parts. The first 

part considers the case when one of the frequencies of the secondary system 

falls between two of the frequencies of the primary system. The second 

part deals with the case of tuning one of the frequencies of the secondary 

system to one of the frequencies of the primary system. 

-;', 
For the 0.5g constant acceleration pulse of Fig. 2.6a, the duration is 

long enough to obtain 30 in/sec constant ground velocity. 

i'~i'~ Refer to the pul se shown in Fig. 2.6a. 
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Before proceeding with the analysis, some useful relations 

should be introduced: 

h A .th d h were . = I mo e s ape. 
I 

2 
w. 

J 
= 

T A .• K. A. 
I I 

T A •• M .A. 
(2.]5) 

I I 

When A. is normal ized so that the participation factor is unity, 
I 

according to Eq. (2.16) 
1 .M. A. 

c. 
I 

I = T A •• M.A. 
(2.16) 

I I 

.th then, the normal ized displacement of the I mode can be defined by Bj' 

where 

B. = C. A. 
I I I 

(2.17) 

Since the participation factor is unity for the modal displacement 

B., one can obtain the following relation 
I 

1 .M. B. T = B .• M • B. 
I I I 

(2. 18) 

By virtue of the orthogonal ity of the modal displacement S. and B. 
I J 

for mode i and mode j, it follows that 

T 
B •• M. B. = 0 

I J 
(2.19) 

Several assumptions employed in the analyses described in the 

following two subsections are summarized below: 

1) Only one frequency of the secondary system is equal to one 

of the frequencies of the primary system. 

2) The significant input to the secondary system consists of a 

series of harmonic components with frequencies equal to the natural 

frequencies of the primary system. 

3) The modal shapes of the secondary system remain the same, 



21 

except the magnitude has been enlarged by the result of the dynamic 

interaction between the primary and secondary systems. 

4) The modal shapes of the combined system are the same as 

those for the primary system, with the addition of the ampl ified modal 

deflections of the added secondary masses. 

2.3.4.1 

Let 

Then, with Eqs. 

Nonresonant Case 

o. . th = I 
I 

- .th 
0:'. J 

J 

(2.16) and 

mode shape of the pr imary system 

mode shape of the secondary system 

(2.17) 

U. 
I 

0:'. 
J 

= C . o. pI I 

CoO:' • 
sJ J 

(2.20 ) 

(2.21) 

h c o h . th. . 0 • f C· h . th d were . 1St e I prImary partl CI pat Ion actor, 0 1St e J secon ary 
pI SJ 

participation factor, U. and 0:'. are the normal ized mode shapes, respectively. 
I J 

For modal solutions of Eq. (2.10), X is taken to be s 

X s 
= (2.22 ) 

where n = number of degree-of-freedom of the secondary system. Eq. (2.22) 

T is substituted into Eq. (2.]0), which is then premultiplied byeYo. The 
J 

relations of Eqs. (2.15) and (2.19) are used to obtain 

q. (t) 
J 

+ 
2 

ill . q. (t) 
SJ J 

2 
(1) • X (k) 

SJ p 
(2.23) 

Let us consider the harmonic components of the base input to the secondary 

system one at a time. By employing the assumptions given previously, 

X (k) is taken to be 
p 
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x (k) = U., (k) sin w • t 
P I pi (2.24 ) 

where U. (k) is the k th component of U .• Thus, Eq. (2.23) becomes 
I I 

q. (t) + 
2 

q. (t) 
2 

U. (k) sin w. = w • w . t 
J sJ J sJ I pi (2.25) 

The particular solution to Eq. (2.25) is a steady-s'tate harmonic 

oscillation at the frequency of the disturbances (w~i in this case); 

therefore, the solution is assumed to be 

= A .. 5 in W 0 t 
J I pi 

where A .. is the ampl itude of oscillation. Substituting of Eq. (2.26) 
J I 

into E q • (2 • 25) Y i e 1 d s 

2 
-w . A .. pi J I 

2 
+ w. A .• 

sJ J I 

2 = w. U. (k) sJ I 

U. (k) 

(2.26 ) 

A.. = 
JI 

I 

2 2 -w ./w . pi sJ 

(2.27) 

In the 1 ight of Eqs. (2.22) and (2.26), A .• can be interpreted 
J I 

as the ampl ification factor of the secondary system response due to the 

ff f h . th d d d h . th. d e ects 0 t e J secon ary mo e an tel primary mo e. 

2.3.4.2 Resonant Case (w . = w .) 
SJ PI 

It should be pointed out that Eq. (2.27) gives a very large 

value for A .. when w . js very close to w.o When w . 
J I SJ pi SJ 

w ., A.. tu rns pi J I 

out to be tnfinity if there is no damping. Obviously, this is not the 

case. There should exist a reasonable upper bound to the ampl jfication 

factor of Eq. (2.~7), and therefore the situation needs further 

investigation when the secondary system is tuned to one of the frequencies 

of the primary system. 
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When one frequency of the secondary system falls on one of 

the frequencies of the primary system, the frequencies of all the modes 

of the combined system are shifted away in the same fashion, but there are 

two frequencies at or near the resonant frequency such that one of them is 

51 ightly above and one 51 ightly below (Ref. 15). Both frequencies will be 

very close to the resonant frequency if the effective mass ratio of the 

secondary to the primary system, is small. 

Due to the fact that the participation factor of the primary 

modal displacement u. and the secondary modal displacement a. are unity, 
I J 

it follows that 

1.M .u. T . u. = U .• M 
P I I P I 

(2.28) 

and 

1 .M T .a. a . . M .a· s J J s J 
(2.29 ) 

Based on the foregoing observations, let us consider the case of 

q r f w . = w ., with A . . a. and -A .. a. representing the displacements 0 the 
SJ pI J I J J I J 

secondary masses of the two modes (mode q and mode r), whose frequencies 

are close to the resonant frequency, and 'A~. and -A~. are ampl ification 
J I J I 

factors of the secondary responses for mode q and mode r of the combined 

system, respectively. 

Let us define also the displacements for mode q and mode r of 

the primary masses as precisely one-half those of the displacements of 

the jth mode of the primary system.* 

By forcing the participation factors of mode q and mode r to be 

equal to unity, the fol lowing results similar to that of Eqa (2.18) 

if: 

The displacements of the primary masses can be defined arbitrarily, but 
by using this definition, very good approximate results of the secondary 
responses are obtained. 
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are obtained: 

1 q 1 T q 2 T 
-2(1.M .U.) + A .. (l.M ea.) = -4(U .• M .U.) + (A .. ) (a .. M ea.) 

p I JI S J I P I JI J S J 
(2.30 ) 

1 r IT r 2 T 
-2 (l.M 0 U.) - A .. (10M .a.) = -4 (U .• M • U.) + (A .. ) (a 0 oM .a.) 

p I JI S J I P I JI J s J 
(2.31) 

Using the relations of Eqs. (2.28) and (2.29), Eq. (2.30) can be 

put into the form 

where 

Similarly, 

(A~.)2 _ A~. 
J I J I 

1 E • 
= _--E.l 

4 E . 
sJ 

E • = ith effective primary mass = U:.M .U. 
pI I P I 

E . = jth effective secondary mass = a:.M .a. 
SJ J S J 

1 E . _ --E.l 

4 E . 
sJ 

From Eqse (2.32) and 2.35, we have immediately 

Defi ne 

q 
A .• 

J I 

r 
- A .• 

J I 

_+ _ j ~i + 1 
2 2 E . 

sJ 

I E 
= ___ j...El.+ 

2 2 E '. 
sJ 

E. . th effect i ve secondary mass y.. = .21. = _J -h----..;------s....--
J IE. i t e f f e c t i ve p rim a ry mas S 

PI 

(2.32) 

(2.33) 

(2.34) 

(2.36) 

(2.37) 

(2.38) 

Since mode q and mode r are very close to each other, they are 

additive directly to yield the following result: 



where A •• 
JI 

2.4 Summary 
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A •. 
J I 

I A~·I J I 
+ 

JY:; 
J I 

ampl ification factor of secondary response due to 

resonance of the jth secondary mode and the jth 

primary mode 

Two important parameters which control the secondary spring 

(2.39) 

distortions are the effective mass ratio, y, as defined by Eq. (2.38), and 

the damping factor,~. Only the approximate: analysis for the secondary 

system response without damping is developed in section 2.3.4. The 

combined effect of the two parameters will be discussed in Chapter 4. 

In order to substantiate the val idity and accuracy of the 

approximate technique, several analytical systems are studied extensively. 

Procedures for pre~aration and analyzing of these systems are summarized 

as follows: 

(1) Select a primary system, arrange the magnitude of the 

masses and spring constants for a desired fundamental frequency. 

(2) Select a secondary, system, assign the relative magnitude 

of the masses and spring constants for desired frequency ratio. 

(3) Solve the eigen-va1ue problems of both primary and secondary 

systems to obtain' the frequencies and mode shapes, then normal ize the mode 

shapes 50 that the participation factors are uhity. 

(4) Specify the value of the effective mass ratio, then the 

secondary masses can now be obtained by the procedure described in 

Appendix A. 

(5) Adjust the secondary spring constants in order to get 

the desired fundamental frequency (Appendix A). 
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(6) Select the damping factor and obtain the damping constants 

by Eqs. (2.1) and (2.2). 

(7) Perform the analysis of the combined system by the 

procedures outl ined in section 2.3.3. 

(8) Repeat steps (6) and (7) for various damping factors. 

(9) Repeat steps (5) through (8) for various fundamental 

(10) Repeat steps (4) through (9) for differ~ht effective 

mass ratios. 

'.:.... 
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CHAPTER 3 

DISCUSSION OF FREE VIBRATION SOLUTIONS 

3.1 I ntroductory Remarks 

In this chapter, attention is directed to the investigation of 

free vibration characteristics of the combined system when the effective 

mass ratio is varied. Several topics which may provide some insight into 

the behavior of the secondary system will be discussed. Section 3.2 

provides the information of singie-degree-of-freedom secondary system 

while section 3.3 is for multiple-degree-of-freedom secondary system. 

Because most of the free vibration analysis is performed on the 

case of tuning the fundamental frequency of the secondary system to the 

fundamental frequency of the primary system; therefore, the discussion 

will be concentrated on this cas~. The attachment points of both one-

and two-degree of-freedom systems will be varied to three positions. 

This is in order to provide some insight into the effects of the support 

points upon the secondary system response. For the single-degree-of-
I 

freedom secondary system, the effective mass ratio considered is 1 percent. 

The most extensive set of analyses is performed on the two-degree-of-

freedom secondary system, where the effective mass ratio ranges from 1 to 

20 percent. 

Since the effective mass ratio plays an important role in this 

investigation, henceforth for convenience and .simpl icity, the notation y 

will be used instead of YII ' which is the ratio of the fundamental 

effective secondary mass to the fundamental effective primary mass. 
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3.2 SDF Secondary System 

3.2.1 Discussion of Results 

All significant information resulting from the analysis of 

systems lA, 18 and IC is 1 isted in Tables 3.1, 3.2 and 3.3, respectively. 

The modal shapes presented have been normal ized to obtain participation 

factors of unity. 

From an analysis of the frequencies of the three combined systems, 

it can be seen that the fundamental frequencies are somewhat lower than the 

resonant frequencies, while the second natural frequencies are sl ightly 

higher. The deviations from the resonant frequencies in each case are 

less than 10 percent. The third and fourth frequencies are nearly the 

same as the second and third natural frequencies of the primary system, 

respectively. Expl icitly, system IA natural frequencies are within 

5 percent of systems 18 and lC, while system 18 is also within 5 percent 

of IC. 

Considering only the modal shapes of the primary masses, there 

are two important points that should be noted. First, although there 

exist some differences in the first and second modal shapes of the combined 

systems, the general shapes are nearly the same. The magnitudes of the 

displacements in each mode are about one-half those of the first mode of 

the primary system. Second, the third arid fourth modal shapes are identical 

to the second and third modal shapes of the primary system, respectively. 

For the secondary mass, the first two modes dominate the entire 

response. The spring distortions of the third and fourth modes are less 

than 5 percent of the first or second modes. This can be explained by the 

fact that the first two modes are generated by tuning of the fundamental 

frequencies of the primary and secondary systems, thus resulting in 
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ampl ifying the corresponding modal responses. For this reason, the 

contributions of the third and fourth modes are usually negl igible. 

3.2.2 Comparison of Results 

Approximate modal shapes of the combined systems are presented 

in Table 3.4. The secondary modal responses are computed by Eqs. (2.27), 

(2.36) and (2.37). 

Examination of the primary responses indicates an accuracy of 

2 percent or less for the third and fourth modes. Although the first 

and second modes' are somewhat off, the sums of the two modes tabu 1 ated at 

the bottom of Tables 3.1,3.2 and 3.3 are quite accurate. These results 

confirm the val idity of the assumption that the presence of the secondary 

mass has very I ittle or no influence upon the primary response. 

Responses of the second~ry masses are v~ry well predicted by 

the approxim~te formulas. Generally, the approximate results are accurated 

to within 5 percent of the actual values. Based on comparison of solutions, 

the variation of support points does not have much influence upon the total 

response. Therefore, besides simp1 icityand good accuracy, one more 

advantage of using Eq. (2.39) is that only one calculation is enough to 

predict the response of various combined systems .. 

3.3 MDF Secondary System 

3.3.1 General 

The following discussion is based on the behavior of three 

combined systems: 2A, 2B and 2C. Necessary information is tabulated in 

Tables 3.5 through 3.7. The object of this section is to discuss phenomena 

concerning the effective ratio. 



30 

3.3.2 Effect of the Effective Mass RatiD upon Frequency Distribution 

Additional information concerning the deviations from the resonant 

frequency of the first two modes is presented in Figs. 3.1 and 3.2. 

Examination of these results reveals the following four aspects. First, 

although the deviation from the resonant frequency varies from 3 percent 

when y = 1% up to 30% for y = 20%, the average of the first two frequencies 

is still very close to the resonant frequency. Second, the first two 

natural frequencies of system 2A deviate f~om the resonant frequency more 

than those of systems 2B and 2C, while those of system 2C have the lowest 

deviation. Third, the first two natural frequencies of all systems vary 

nearly 1 inearly with ~. The increasing of y results in the decreasing 

and increasing of the fundamental and second natural frequencies, 

respectively. Fourth, remaining higher frequencies are very close to 

the corresponding original frequencies of the primary and secondary 

systems, no matter how large the effective mass ratio is. 

Besides resonant cases, studies have also .been made 

general cases. All results lead to the indication that the variation of 

the' effective mass ratio does not change the frequency distribution pattern 

(See section 3.4) of the combined systems. 

3.3.3 Effect of the Effective Mass Ratio upon Response 

To have a better idea of the effect of the effective mass ratio 

upon modal: responses of primary masses, additional plots (Figs. 3.3 - 3.5) 

have been prepared. These plots illustrate the variation of the first two 

modal shapes of the primary masses. Investigation of all existing 

information gives the following results.: 

1) The effect on individual mode increases with y. 

2) The discrepancies of the approximate values from the sum of 
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the fi rst two modes are less than 10 percent, even for very large y. 

3) The variation of the support points has very I ittle effect 

upon the sum of the first two modes. 

4) The differences of displacements of higher modes of vibration 

between systems are increasing with y. 

5) The modal shape of system 2A, whose corresponding frequency 

is closed to the second natural frequency of the secondary system, is 

completely different from that of systems 2B and 2C. Thi~ result is also 

appl jed when comparison is made between 2C and 2B. 

The consideration of only the first two modes indicates very good 

prediction of the secondary responses. Expl icitly, the approximate values 

are accurate' to. within 10 percent, even for 20 percent effective mass 

ratio. However, the advantage of having modal quantities by approximate 

procedures no longer exists. The loss of this advantage is due to: 

a) Only components of each modal displacements are computed by 

the approximate procedures. 

b) Procedures for combining components to give distinct values 

of each mode have not yet been available. 

Another interesting characteristic which should be pointed out 

involves the modal quantities for higher modes of vibration. These quantities 

are not small in comparison to that of the first or second mode. For 

example, using the notation of section 2.3, A3 (5)/Al (5) of system 2A 

when y = 1% is about 1 :6. When y is up to 20%, this ratio is increased 

to I :3. These results clearly give the idea that the effect of higher 

modes should not be negl igible. The consideration of higher modes will 

make a drastic difference in total response, especially when y is large. 
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From the foregoing fact, there remains the problem of combining 

components to give total ampl ification factor. The required procedure 

wi1l be establ ished in Chapter 4. 

3.4 Observed Frequency Distribution Pattern of Combined Systems 

One important property of the combined system which can 

reasonably be predicted is the frequency distribution. The frequencies 

of all the modes of the combined system will be either sl ightly higher or 

lower than the frequencies of the primary and secondary systems (Ref. 24). 

The patterns in which these frequencies fol low depend on the magnitudes 

and distributions of frequencies of both original systems. 

Figures 3.6 and 3.7 have been prepared from the observations of 

frequency distributions of all combined systems considered. From these 
i'( 

two figures the following conclusions can be drawn: 

a) When one of the frequencies of either the secondary or 

then the frequency distribution of the combined system is as shown in 

Fig. 3.Sa. 

b) When resonance occurs, the frequencies of all the modes of 

the combined system are as shown in Fig. 3.Sb. There are two frequencies 

near the resonant frequency such that one is s1 ightly above and the other 

one is s1 ightly below when the effective mass ratio is small. 

i'( 
These same conclusions had already been presented by Newmark (15). 
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CHAPTER 4 

DISCUSSION OF TIME-HISTORY SOLUTIONS 

4.1 Introductory Remarks 

The results of free-vibration analysis encourage the possibil ity 

of estimating the maximum secondary response, When the supporting structure 

is subjected to base disturbances, without going through the time-history 

analysis of the entire system. With the availabil ity of Eqs. (2.27) and 

(2.39), components of total response, resulting from each secondary mode, 

can easily be computed. Formulas for total ampl ification factor will be 

developed for multi-degree-of-freedom subsystems. 

Besides the effective mass ratio, damping also governs the 

response. The maximum ampl ification factor of the secondary system is 
~r~ 

1 imited by the quantity 1/2~, where ~ is the effective damping factor.
A 

Hence, if the effective mass ratio becomes small enough so that damping 

ratio has no effects on the spring distortion bounds. The combined effects 

of the effective mass ratio and damping upon the response of the secondary 

system will be investigated in detail. Then, on the basi~ of observed 

behavior of the subsystems, empirical rules for the secondary system 

response with damping will be developed herein. 

Before proceeding with the investigation, it is worthwhile 

explaining the idea of selecting the constant.~cceleration pulse as base 

input. Generally, the design response spectrum is approximated by three 

boundaries: the constant displacement, velocity and acceleration bounds. 

These bounds govern the low, intermediate and high frequency ranges, 

"i', 
The effective damping factor is defined in section 4.6.2. 
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respectively. In most cases, dropping the consideration of constant 

displacement bound would not affect the overall result. For this reason, 

the use of the base accelerogram of Fig. 2.6a, which gives the response. 

spectrum of Fig. 2.6b, serves the design analysis efficiently. 

In fol lowing sections, time-history analyses of various combined 

systems are generated. To cover the entire primary frequency range, the 

fundamental secondary frequency is varied from 0.1 to 10 hertz. Both 

primary and secondary damping factors are kept equal through most sets of 

analyses except one. The damping factor range from 0.5 to 10 percent .is 

considered. The effective mass ratio is percent for SDF secondary systems 

and ranges from 1 up to 20 percent for MDF secondary systems. 

4.2 Time-History Solutions of SDF Secondary Systems 

Figures 4.1 through 4.3 are prepared from time-history analyses 

of systems lA, IB and Ie. Considering first the undamped case, the general 

characteristics of the secondary spring distortion bounds can be described 

as smoothly increasing to peak values at corresponding resonant conditions. 

The peaks formed at pIP = 1, 2 and 3, correspond to the tuning of the 

secondary frequency to the first, second and third natural frequencies of 

the primary system, respectivel.y. It is clearly seen that the worst 

condition occurs wh~n the fundamental frequencies of the supporting 

structure and subsystem are equal. 
i', 

Outsi·de the resonant zone, the 

secondary spring distortion bounds can be consrdered constant. For very 

flexible secondary systems (small pIP), the magnitudes of these bounds 

i', 
For SDF secondafy systems, the resona~t zone is considered spanning 

between pIP = 0.5 and 3.5. 



35 

are higher than those of very stiff secondary systems (large piP). 

The presence of damping not only results in the reduction of 

the ampl ification levels but also produces significant changes in the 

general characteristics of the bounds. With the type of damping considered 

in this study, the secondary responses are reduced faster at the higher 

frequency levels than at the lower one. Consequently, an increase in the 

damping factor, which gradually diminishes the second and third peaks, 

only flattens out the first peak. 

Table 4.1 contains the maximum ampl ifications of the combined 

systems. For the undamped case, the ampl ifications are approximately equal 

in all systems. However, with damping, the amp1 ifications are not. 

Expl icit1y, the highest ampl ification occurs in system lA, while the lowest 

one belongs to lC. These discrepancies also increase with the damping 

factors. Two reasons that might help explain this phenomenon are: 

a) The support, which does not affect the undamped response, 

produces a greater influence on the overall response when damping is 

increased. 

b) Since the primary and secondary damping constants are 

computed separately, when considering the entire system, the damping is 

no longer proportioned to the stiffness. Thus, it results in complex 

responses, each differing in phase as well as magnitude. Consequently, 

the support motions cannot be characterized by the existence of a fixed 

mode, as would be the case if the systems are undamped or if the damping 

is proportional (Ref. 20). This noted change in phase on the motion of 

the system is bel ieved to be one source of reducing the ampl ification 

from the undamped case more in one system than in the other. 
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Another interesting characteristic is the location of the peak. 

It happens in some cases that the maxima do not occur at the resonant 

conditions. Observation of results indicates that there is no shifting 

of maximum location for system lA, sl ightly.off to the left* for 18 with a 

high damping factor, and further left for IC. 

4.3 MDF Secondary Systems 

4.3.1 Effect ~f the Effective Mass Ratio upon Response 

Figures 4.4 - 4.9 are used to illustrate the characteristics of 

both inner and outer secondary spring distortion bounds of systems 2A, 28 

and 2C. Of particular interest are the following: 

a) The general characteristics are similar in all systems. 

The only differences are in the magnitude of the amplification at 

corresponding resonant conditions. 

b) The ratio of the maximum ampl ifications of the inner spring 

to the outer spring is nearly the same as the ratio of the fundamental 

modal distortions of the two springs of the secondary system. 

c) For very high pIP, or in other words, when ~he secondary 

system is very stiff as compared to the primary structure, the acceleration 

of both secondary m~sses are approximately equal to that of the support. 

However, the support acceleration decreases with increasing y. 

Consequently, the ampl ification has not been much affected by the 

variation of y. 

d) When the secondary system is quite flexible in comparison 

to the primary system (small pIP), the secondary masses do not move very 

much while the support is in motion. Hence, y produces very 1 ittle effect 

i'( 

To the left means smaller pIP. 
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on the spring distortion. 

e) The increase of y results in the reduction of the 

ampl ification level, and at the same time flattening and shifting the 

location of the resonant zone. For a very large y, there exists only 

one visible peak, and the location of the maximum ampl ification has been 

shifted from the resonant condition to a lower piP. The larger the 

effective mass ratio, the further to the left (smaller piP) is the location. 

In order to demonstrate the effect of y upon the maximum 

secondary responses, Figures 4.10 and 4. 11 have been plotted. It can be 

seen that the maximum ampl ification approximately' varies inversely as ~ 

for al I systems. This relationship explains why Eq. (2.39) gives very 

good predicted value. 

4.3.2 Effect of the Effective Damping Factor upon Response 

To emphasize the importance of ~ upon responses, the secondary 

spring distortion bounds have been replotted in Figs. 4.12 - 4.17. On the 

basis of observations made of the time-history solutions, several significant 

characteristics are recognized. First, general characteristics similar to 

those of SDF systems are obtained. The number of degrees~of-freedom do not 

affect the basic behavior. Second, In cases where there is a high degree 

of damping level or energy absorption, the variation of y causes quite a 

change on the maximum amplification of system 2A, moderate change on 28, 

and practically no change at al I for 2e. However, for very low or high 

piP, the variation of y makes no difference in the magnitude of the 

ampl ification at any damping level. Third, the variation of ~ has more 

pronounced effects on a I ighter secondary system than on a heavier one. 

Fourth, with the type of damping considered in this study, the dominance 

of the fundamental mode of the secondary system is still preserved. 
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Exp1 icit1y, the maximum inner spring amp1 ification is about half of the 

outer spring for all damping levels. 

Observations of the maximum amplification variation due to the 

effects of increasing~, (see Figs .. 4.18 and 4.19), indicate the highest 

reduction in system 2C, and the lowest in 2AG Nevertheless, one can still 

conclude that the maximum ampl ification varies inversely with ~ for all 

systems. 

4.4 Approximate Ampl ification Factor of Secondary System with Damping 

In the 1 ight of preceding discussion concerning the relatioriship 

of ~ to the secondary responses, one can indicate the reduction in 

ampl ification due to damping by considering the ampl ificati.on factor as 

where a = 

~ . = 
J 

constant 

A .• 
J I 

= 
1 

a~ . 
J 

effective damping factor corresponding 

.th secondary mode of vibration J 

(4. 1 ) 

to the 

The combined effects of ~ and I' upon the am pI i f ic a t i on of the 

secondary spring distortions are illustrated in Figs. 4.20 - 4.22. From· 

these relationships it can be seen that the var)ation of I' has lesser 

effect on the ampl ification fact9r than the variation of~. However, 

they offer similar characteristics in that the rate of changing 

ampl ification is decreasing when either ~ or y is increasing. 

In any circumstances, the envelopes of the net ampJ ification 

factors can be approximated as straight 1 ines for all systems. The slopes 

of these envelopes are the steepest for 2A and reducing successively for 

2B and 2C. The mathematical expression for this straight I ine envelope is 
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where the subscript 0 referred to the values on the main axes. 

Substitution of Eqs. (2.39) and (4.1) for JY; and ~ into 
o 

(4.2) 

Eq. (4.2), and after some manipulations, the net combined am~l ification 

factor is obtained as 

A.. = 
JI a~. +£ 

J J I 

(4.3) 

Considering the two I imiting cases, itis now obvious that when 

~ is very small, the maximum ampl ification is bounded by l/JY. However, 

when y becomes very small, the amp1 ification is also 1 imited by ]/2~. 

From these two limiting cases and the observations of the time-history 

solutions of systems 2A, 28 and 2C, it is suggested that an appropriate 

value of a is 2 for ~/h either very small or very large; otherwise, a = 3 

is recommended. 
if, 

4.5 Rules Used for Combination of Amp1 ;.fication Factors 

Using the notation of section 2.3, assuming a s'econdary system 

with n masses and trying to be on the conservative side, ampl ification 

factors correspondi-ng to secondary modes can be combined according to 

Eq. (4.4). 

0.02 > ~/Jy a = 2 

0.025~~/h~15 a = 3 

~/h ::: 20 a = 2 

In range 0.02 < ~/h < 0.025, or 15 < ~/JY < 20 , interpolate Itall 

1 inearly. 
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n 
I 

j =1 
A .. 

J I 

A.F. = total amp1 ification factor 

For undamped vibration, A .. is computed either from Eq. (2.27) 
J I 

or Eq. (2.39). In cases where there is damping, Eq. (4.3) is employed 

when w. w.; when w . is close to ill ., a modified ampl ification is 
SJ pi sJ PI . 

required. By analogy with the undamped case, the fol lowing rule is 

estab 1 i shed. 

where 

b = 

and 

b 
A.. = 

J I a~. + ~ 
J J I 

u. (k) 
J 
2 2 

1 - w ./w . 
pi SJ 

I / < 
~ J I 

(4.5) 

(4.6) 

(4.7) 

To demonstrate the appl icabil ity of the approximate procedure, 

the following example is given. 

System 2A Y = 1%, ~ = 0.5% 

Eq. (4.3) gives 
3 x 0.005 + yCOT 

= 8.7 

Second mode 

Since the second natural frequency of the secondary system falls 

between the first and second natural frequencies of the primary system, 
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the consideration of ws2 and wp2 will give the appropriate contribution 

to "the total ampl ification factor. Eq. (2.38) gives 

/22 1 · 67% 

From Eq. (4.6) 

b = 

From E q • ( 4. 7) 

~2 = 

Then Eq. (4.5) gives 

Therefore, 

I. -0.6 

1 - 4/3 
1 / 1 

Jr-O -.0-1-6-7 

o . 5 xl. 732 x 2rr 
2rr 

0.232 

3 x 0.00866 + J.0167 

A . F . = 8 . 7 + 1. 48 

For outer secondary spring, 

For inner secondary spring, 

A.F. = 10.18 x 0.5 

= 0.232 

= 0'.866% 

= 1.48 

= 10.18 

= 5.09 

Maximum ampl ification factors from the time-history analyses and 

approximate procedures are 1 isted in Tables 4.1 through 4.5. Comparison 

of results will be made in the fol lowing section. 

4.6 Comparison of Results 

4.6.1 SDF Secondary System 

When there is no damping, Eq. (2.39) predicts the total 

ampl ification factors very accurately for all three systems (lA, 18 and Ie). 

The approximate value is only 3 percent off on the underconservative side 
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(see Table 4.1). This underconservatism comes from the fact that the 

app~oximate procedure considers only the first two modes of vibration. 

However, the discrepancy is so small that it is not worth compl icating 

the procedure by taking account of the effect of higher modes of vibration. 

In cases where there' is damping or energy absorption,. the total 

amp1 ification factor' is affected by the variation in the support of the 

secondary system. From the time-history analyses, it can be seen that 

system lC is more sensitive to damping than the other two. Unfortunately, 

the consideration of the degree of sensitivity to damping will merely. 

comp1 icate the approximate analysis without giving any theoretical 

justification. For this reason, the approximate analysis described in 

sections 4.4 and 4.5 is considered appl icable to all systems. 

On this basis of comparison,it can be concluded that Eq. (4.3) 

is too conservative for system IC, sl ight1y underconservative for lA, and 

very accurate for 1B with low damping factor. Expl icitly, the discrepancies 

between the approximate and exact ampl ification factors of system lA are 

less than 10 percent for all damping levels considered. For damping less 

than 1 percent, the approximate ampl ification factors of system lB are 

accurate to within 2 percent of the actual values. 

4.6.2 MDF Secondary System 

Both undamped exact and approximate ampl ification factors of 

systems 2A, 2B and 2C are provided in Table 4.2. The approximate 

ampl ification factors are of great accuracy even though the effective 

mass of the subsystem is as large as 10 to 20 percent of that of the 

main system. For example, considering inner and outer spring distortions 

when I = 20%, the approximate procedure overestimates the amp1 ification 

factors of systems 2A and 2C by less than ·10 percent, while slightly 
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underestimates 2B. The reasons for achieving these excellent results are: 

a) All' computed by Eq. (2.39), does take account of the 

re 1 at i ve mass of the subsystem--

b) A22 , computed by Eq. (2.27), although it does not consider 

the relative values of the effective primary and secondary masses, does 

take account of the relative motion of the support. 

c) By adding A22 to All' the contributions to the total 

responses due to higher modes of vibration are included. 

With the exception of system 2C, the procedure of section 4.4 

estimates the ampl ification factors very accurately. From observations of 

results tabulated in Tables 4.3 and 4.4, it is apparent that the approximate 

values are in good agreement with the exact values for all damping levels 

and effective mass ratios considered (especial ly system 2A). Although the 

responses of system 2C are not as well predicted as those of the other 

systems, for the case of small damping and large " the approximate results 

are not too far off. For example, when, = 20% and ~ = 0.5%, the approxi-

mate ampl ification factor is only 10 percent larger than the exact one. 

All of the previous discussions are for the situation of equal 

damping in both primary and secondary systems. When the secondary damping 

fa c tor i s no t eq u a I, tot h e prj mary dam pin g fa c to r, the e f f e c t i ve d am pin g 

factor is considered to be the average of the two values (Ref. 15). In 

order to substantiate this bel ief, the time-history analyses of system 2A 

with, = 1%, ~ = 2% and ~ varying from 0 up to 10% were performed. p s 

The spring distortion bounds are plotted in Fig. 4.23 - 4.24, while the 

maximum ampl ification factors are recorded in Table 4.5. Although the 

approximate results are not conservative for any damping level, the 

differences between the exact and approximate values are less than 10 
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percent for the inner spring and less than 5 percent for the outer spring. 

One additional set of time-history analyses was performed on 

system 2A with y = 1%. For this, the system was subjected to the 

earthquake record of Taft N2IE. The effective damping factor considered 

in this case is 2 percent. Although the general characteristics of the 

secondary spring distortion bounds are not as smooth as the 6ne subjected 

to the constant acceleration pulse (see Fi~. 4.25), ·the maximum 

ampl ification factors are pretty wel 1 bounded by the predicted values. 

In fact, the approximate values are about 12 percent larger than the 

actual values for both inner and outer springs. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary and Conclusions 

To accompl ish the evaluation of the basic dynamic behavior 

of subsystems, free vibration and base excitation analyses were performed 

on several combined systems. Free vibration solutions were obtained by 

the usual analytical methods, while the time-history solutions were 

acquired by numerical integration. 

Attempts have been made to develop simple rules for predicting 

the maximum ampl ification factor of the dynamic response of secondary 

systems when both primary and secondary systems do not have any damping. 

Also conducted in this investigation was the study of the effect of 

damping upon the secondary system responses. Then, on the basis of 

observed exact solutions and also by analogy to the undamped case, 

additional empirical rules were developed. 

The approach used in obtaining the approximate procedure was 

discussed in Chapter 2. The informatioh required by this method was the 

response spectrum for ground motion', the independent nor~al ized mode 

shapes, and frequencies of the ~rimary and secondary systems. Maximum 

ampl ification factors of secondary system responses were obtained for 

several combined systems using this approximate approach and corresponding 

time-history solutions, considering the constant base acceleration pulse. 

Results of these analyses indicate that, generally, a reasonable estimate 

of the time-history maximum secondary spring distortions can be obtained 

by this method. 



46 

On the basis of 1 imited amount of information obtained in this 

inv~stigation, the following specific conclusions can be drawn: 

1) With the definition of Eq. (2.34), the effective mass of the 

subsystem can even be as large as 10 to 20 percent of that of the main 

system before the approximation becomes inaccurate, since the relationship 

takes account of the interaction between the systems. 

2) For alight secondary system (ioe., I'~ 1%) without damping, 

whenever tuning occurs between primary and secondary systems, an increase 

in response usually results. The greatest increase occurs when domtnant 

primary and secondary frequencies are tuned. 

3) Without damping, the supports have very little influence on 

the secondary system responses. With damping, the supports provide a 

tremendous difference in the maximum ampl ification factor. However, this 

difference does decrease when I is large. 

4) The increasing of ~ reduces the ampl ification more effectively 

than the increasing of y, but the increasing of r shifts the location of 

the maximum ampl ification to a lower piP condition than ~. 

Although the maximum ampl ification factors of the secondary 

responses do not necessarily occur at resonant condition, the approximate 

procedure still giv~s a very good estimate of the maximum ampl ification. 

5.2 Recommendation for Further Study 

Only secondary systems with one point of attachment to the 

supporting'structure were investigated in this study. Modification of 

the approximate approach is needed if the secondary system considered is 

supported at more than one point. Since it is felt that the approach 

described herein provides a promising method that leads to a better 
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understanding and a reasonable approximation to the behavior of a 

complex system, it therefore merits further investigation. 

Further research should be carried out on the following 

categories: 

a) Investigation of secondary systems with two points of 

attachment to the primary structure. 

b) I~vestigation of secondary systems with more than two points 

of attachment to the primary structure. 

c) Investigation of multi-degree-of-freedom secondary systems 

which have more than one frequency tuned to the frequencies of a multi

degree-of-freedom primary system. 
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Table 1.1 Modal Values u and s of Primary and Secondary Systems. 
(a) 

Primary system 

Mode 1 , Mode 2, Mode 3' , 
, Mass Freq. = 1 cps Freq. = 2 cps Freq. = 3 cps 
number 

u s u s u s. 

1 0.5 0.5 0.4 0.4 o. 1 0.1 

2 1.0 0.5 0.2 -0.2 -0.2 -0.3 

3 1.5 0.5 -0.6 -0.8 o. 1 0.3 

(b) 

SDFsecondary system 

Fundamental mode, Freq. = 1 cps 
Mass 

number 
u s 

1 1 .0 1 .0 

(c) 

MDF secondary system 

Mode r F req. = 1 cps Mode 2, Freq. = 1.732 cps 
Mass , 

number 
u 5 u S . 

1 0.5 0.5 0.5 0.5 

2 I .5 1.0 -0.5 -1.0 



Tab1e 3.1 Modal Va1ues u and s, System lA, Effective Mass Ratio 1% 

Effective mass ratio = 1.00%; Amp1 ification factqr = 10.00 

Resonant frequency = 1.00 cycle/sec 

Mass number 
Mode Frequency Response 

2 3 4 

u 

I 
0.2318 0.4799 0.7703 5.4367 

0.9265 
0.2318 0.2482 0.2904 4.6664 

(Jl 
s N 

U 

I 
0.2744 0.5272 0.7276 -4.6221 

2 1 .0758 0.2744 0.2528 0.2005 -5.3497 s 

u 

I 
0.3943 o. 1924 -0.5985 o. 1979 

3 2.0060 0.3943 -0.2019 -0.7908 0.7964 s 

u 

I 
0.0996 -0. 1995 0.1005 -0.0126 

4 3.0008 
0.0996 -0.2991 0.3000 -0. 1 130 s 

Max. displacement Exact 0.5061 J .0071 1 .4980 10.0588 

Approx. 0.5000 1 .0000 1 .5000 10.0000 

Exact 0.5061 0.5010 0.4909 10.0161 
Max. strai n 

Approx. 0.5000 0.5000 0.5000 10.0000 

Note: Exact is the sum of the absolute values of the first two modes. 

'I 



Table 3.2 Modal Values u and s, System 1B, Effective Mass Ratio = 1% 

Effective mass ratio = 1 :00%; Amp1 ification factor 10.00 

Resonant frequency = 1.00 cycle/sec 

Mass number 
Mode Frequency Response 

2 3 4 

u 

I 
0.2606 0.5338 0.7640 5.5398 

0.9506 0.2606 0.2732 0.2301 5.0060 s U1 
w 

u 

I 
0.2388 0.4652 0.7358 -4.4980 

2 1 .0504 0.2388 0.2264 0.2706 -4.9631 s 

u 

I 
0.4015 0.2002 -0.5990 -0.0667 

3 2.0007 0.4015 -0.2013 -0.7992 -0.2669 s 

u 

I 
0.0991 -0. 1992 0.0993 0.0248 

4 3.0034 
0.0991 -0.2983 0.2985 0.2241 s 

Max. displacement 
Exact 0.4994 0.9990 1 .4998 10.0378 

Approx. 0.5000 1 .0000 1 .5000 10.0000 

Exact 0.4994 0.4996 0.5007 9.9691 
Max. strain 

Approx. 0.5000 0.5000 0.5000 10.0000 

Note: Exact is the sum of the absolute values of the first two modes. 



Table 3.3 Modal Values u and s~ System Ie, Effective Mass Ratio 1% 

Mode 

1 

2 

3 

4 

Effect i ve mass rat i 0 = 1. 00~6; Amp 1 if i cat i on factor 1 0.00 

Resonant frequency = 1.00 cycle/sec. 

Frequency Response 

u 
0.9745 

s 

u 
1 .0245 

s 

u 
2.0027 

s 

u 
3.0008 

s 

Exact 

1--' 

0.2810 

0.2810 

0.2202 

0.2202 

0.3985 

0.3985 

0.1004 

0.1004 

Mass number 

2 

0.5292 

0.2482 

0.4699 

0.2497 

0.2011 

-0.1974 

-0.2001 

-0.3005 

3 

0.7743 

0.2451 

0.7227 

0.2528 

-0.5970 

-0.7981 

0.]000 

0.3001 

Max. displacement 
Approx. 

0.5011 

0.5000 

0.9990 

1 .0000 

1 .,4970 

1 .. 5000 

Max. stra i n 
Exac't 

Approx. 

0.5011 

0.5000 

0.4979 

0.5000 

0.4980 

0 .. 5000 

Note: Exact is the su~ of the absolute values of the first two modes. 

~ 

i 

5,,',5899 
i 

5 ",3089 
\ 

-4,,4450 
I 

-4"r651 

-0,,11324 
I 

-0 "i5309 
i 

-0,,0125 
I 

-0"11129 
! 

I 
10"e348 

10,,;0000 

I 
9'19741 

10,10000 
I 
! 

c..n 
-J::. 



Mode 

1 

2 

3 

4 

Table 3.4 Approximate Modal Values u and s, Systems lA, 1B and Ie, 
Effective Mass Ratio = 1% 

Effective mass ratio = 1%; Ampl ification factor = 10 

Resonant frequency = 1.0 cps 

Pr ima ry mass Secondary mass 

1 2 3 System 1A System 1B System 1C 

u 0.25 0.5 0.75 5.52 5.52 5.52 

s 0.25 0.25 0.25 4.77 5.02 5.27 

u 0.25 0.5 0.75 -4.52 -4.52 -4.52 

s 0.25 0.25 0.25 -5.27 -5.02 -4.77 

u 0.4 0.2 -0.6 0.2 --0.0667 -0. 133 
--

s 0.4 -0.2 -0.8 0.8 -0.2667 -0.533 

u o. 1 -0.2 o. 1 -0.0125 0.025 ..,.0.0125 

s O. 1 -0.3 0.3 -0.1125 -0.225 -0. 1125 

I 
! 
I 

(J1 
(J1 



Table 3.5a Modal Values u and s, System 2A 

Effective mass ratio = 1.00%; Amp1 ification factor = 10.00 

Re sonant frequency = 1.00 cycle/sec 

Mass number 
Mode Frequency Response 

1 2 3 

u 0.2379 0.4931 0.7931 
0.9240 

s 0.2379 0.2552 0.3000 

u 0.2602 0.5009 0.6940 
2 1.0727 

s 0.2602 0.2406 o. 1 931 

u 0.0399 0.0403 -0.0189 
3 1 . 7261 

s 0.0399 0.0004 -0.0592 

u 0.3629 o. 1644 -0.5693 
4 2.0234 

s 0.3629 -0. 1986 -0.7336 

u 0.0990 -0.1987 o. 1011 
5 3.0020 

s 0.0990 -0.2977 0.2998 

Exact 0.4981 0.9940 1 .4871 
Max. displacement 

Approx. 0.5000 1 .0000 1 .5000 

Exact 004981 0.4959 0.4931 
Max. strain Appr'ox. 0.5000 0.5000 0.5000 

-
Note: Exact is the sum of the ab solute values of the first two modes. 

4 

3.2677 

2.4747 

-1.7410 

-2.4350 

-1.3675 

-1 .3486' 

0.8724 

1 .4416' 

-.0.0315 

... 0.1327 

5.0088! 

5.0000 
: 

4.9097, 

5.0000 

5 

7.5860 

4.3183 

-7.4746 

-5.7335 

1 .3867 

2.7542 

-0.5044 

-1 .3768 

0.0063 

0.0378 

15.0606 

15.0000 

10.0518 

10.0000 
I 

U1 
m 



Mode Frequency 

0.8926 

2 1.1008 

3 1.7209 

4 2.0458 

5 3.0041 

Max. displacement 

Max. strain 

Table 3.5b Modal Values u and s, System 2A 

Effective mass ratio = 2.00%; Amp1 ification factor = 7.07 

Resonant frequency = 1.00 cycle/sec 

Mass number 
Response 

2 3 

u 0.2329 0.4895 0.8077 

s 0.2329 0.2566 0.3182 

u 0.2631 0.4983 0.6668 

s 0.2631 0.2352 0.1685 

u 0.0721 0.0735 -0.0326 

s 0.0721 0.0014 -0.1060 

u 0.3338 O. 1360 -0.5443 

s 0.3338 -0. 1979 -0.6802 

u 0.0981 -0. 1973 0.1023 

s 0.0981 -0.2954 0.2996 

Exact 0.4960 0.9879 1.4746 

Approx. 0.5000 1 .0000 1 .5000 

Exact 0.4960 0.4918 0.4867 

Approx. 0.5000 0.5000 0.5000 

Note: Exact is the sum of the absolute values of the first two modes. 

4 5 

2.5362 5.4091 

1.7285 2.8729 

-1 .0143 -5.2805 

-1 .6811 -4.2662 
U1 
-..;J 

-1.2642 1.2974 

-1.2317 2.5617 

0.7741 -0.4324 

1 .31811- ~1.2066 

..:0.0318 0.0063 

-0. 1 341 0.0382 

3.5506 10.6896 

3.5355 10.6066 

3.4096 7.1390 

3.5355 7.0711 
, 



Table 3.Sc Modal Values u and s, System 2A 

Effective mass ratio = 5.00%; Ampl ification factor = 4.47 

Resonant frequency = 1.00 cycle/sec 

Mass number 

Mode I Frequency Response 
2 3 4 5 

u 0.2239 0.4824 0.8326 1 .8888 3~5027 

0.8313 0.2239 0.2585 0.3502 1 .0562 1.6139 s 

u 0.2652 0.4870 0.6073 -0.3823 -3.3257 
2 1 .1522 0.2652 0.2218 o. 1203 -0.9896 -2.9434 s 

Ul 

0.1421 -1.0517 1 . 11 07 
00 

u o. 1477 -0.0567 
3 1 . 7089 o. 1421 0.0057 -0.2044 -0.9950 2. 1623 s 

u 0.2739 0.0758 -0.4889 0.5779 -0.2942 
4 2.1087 

0.2739 -0. 1981 -0.S647 1.0668 -0.8720 s 

u 0.0949 -0. 1929 O.li 057 -0.0327 0.0065 
5 3.0107 

0.0949 -0.2878 0.2986 -0.1384 0.0392 s 

Max. displacement 
Exact 0.4891 0.9694 1 .4399 2.2711 6.8284 

Approx. 0.5000 1 .0000 1 . !3()00 2.2361 6.7082 

Max. stra in 
Exact 0.4891 0.4803 0.4705 2.0458 4.5573 

Approx. 0.5000 0.5000 O.SOOO 2.2361 4.4721 

Note: Exact is the sum of the absolute values of the first two modes. 



Table 3.5d Modal Values u and s, System 2A 

-. Effective mass ratio = 10.00%; Amp1 ification factor = 3.16 

Resonant frequency = 1.00 cycle/sec 

Mass number 
Mode Frequency Response 

2 3 4 5 

u 0.2153 0.4751 0.8555 1 .5659 2.5710 
0.7658 0.2153 0.2598 0.3803 0.7104 1 .0051 s 

u 0.2610 0.4640 0.5351 -0.0866 -2.3232 
2 1 .2017 0.2610 0.2030 0.0710 -0.6217 -2.2365 s 

U1 

0.2157 0.2293 -0.0730 -0.8476 0.9255 to 
u 

3 1 .6952 0.2157 0.0136 -0.3023 -0.7746 1 . 7730 s 

u 0.2190 0.0158 -0.4289 0.4024 -0.1799 
4 2.2035 

0.2190 -0.2031 -0.4448 0.8313 -0.5823 s 

u 0.0890 -0.1843 0.1114 ... 0.0340 0.0067 
5 3.0233 0.0890 -0.2733 0.2957 -0. 1454 0.0407 s 

Max. displacement 
Exact 0.4763 0.9391 1 .3905 1 .6525 4.8942 

Approx. 0.5000 1 .0000 1 .5000 1 .5811 4.7434 

Exact 0.4763 0.4629 0.4514 1 .3321 3.2416 
.Max. strai n 

Approx. 0.5000 0.5000 0.5000 1 .5811 3.1623 

Note: Exact is the sum of the absolute values of the first two modes. 



Mode Frequency 

0.6814 

2 1 .2563 

3 1 .6787 

4 2.3662 

5 3.0562 

Max. displacement 

Max. strai n 

Tab1 e 3. 5e Moda'l Val ues u and s, System 2A 

i 

I 
Effective mass ratio 9 20.00%; 

i . 

Resonant ~requency 

Response 

u 

s 

u 

s 

u 

s 

u 

s 

u 

s 

Exact 

Approx. 

Exact 

App·rox. 

0~206'1 

0~206'1 

OL2440 

Ol2440 

Ol3016 

Oi.3016 
I 

o. 1737 

o. 1737 

o 0746 

o 0746 

Oi.4501 
i 

0
1
.5000 

01.4501 

0.5000 
I 

Amp1 ification factor 2.24 

= 1.00 cycle/sec 

2 

0.4673 

0.2612 

0.4175 

O. 1735 

0.3290 

0.0274 

-0.0520 

-0.2257 

-0. 1619 

-0.2365 

0 .. 8848 

1 .0000 

0.4347 

0.5000 

Mass number 

3 

0.8813 

0.4140 

0.4350 

0.0175· 

-0.0798 

-0.4088 

-0.3578 

-0.3058 

0.1212 

0.2831 

1 .31 64 

1 .5000 

0.4315 

0.5000 

Note: Exact is the sum of the absolute values of the first two modes. 

4 

1 .3440 

0.4627 

0.0828 

-0.3523 

-0.6362 

-0.5565 

0.2454 

0.6032 

-.0.0359 

-0.1572 

1 .4267 

1 • 1180 

0.8149 

1 • 1180 

5 

1 .9465 

0.6026 

-1.5876 

-1.6703 

0.7240 

1 .3602 

-0.0898 

-0.3352 

0.0069 

0.042'8 

3.5341 

3.3541 

2.2729 

2.2361 

m 
o 



Mode Frequency 

0.9495 

2 1 .0491 

3 1 • 7321 

4 2.0026 

5 3.0079 

Max. displacement 

Max. strain 

Table 3.6a Modal Values of u and s, System 2B 

Effective mass ratio =T= 1.00%; Ampl ification factor = 10.00 
! 

Resonant treq~ency = 1.00 cycle/sec 

Response 

u 

s 

u 

s 

u 

5 

u 

s 

u 

5 

Exact 

Approx. 

Exact 

Approx. 

o 2663 

o 2663 

o 2320 

o 2320 

o 0000 

o 0000 

o 4038 

o 4038 

o 0978 

o 0978 

0:.4984 
i 

Oi.500n 
i 

0:.4984 

0:.5000 

2 

0.5458 

0.2795 

0.4524 

0.2204 

0.0000 

0.0000 

0.1998 

-0.2040 

-0.1980 

-0.2958 

0.9982 

1 .0000 

0.4998 

0.5000 

Mass number 

3 

0.7803 

0.2345 

0.7145 

0.2621 

... 0.0000 

-0.0000 

-0.5930 

-0.7928 

0.0982 

0.2962 

1 .4948 

1.5000 

0.4966 

0.5000 

Note: Exact is the sum of the absolute valGes of the first two modes. 

4 

3. 1604 

2.6146 

-1.8922 

-2.3445 

0.0000 

0.0000 

-0.3297 

-0.5294 

0.0614 

0.2594 

5.0526 

5.0000 

4.9592 

5.0000 

5 

7.9207 

4.7603 

-7.1055· 

-5.2133 

-0.0000 

-0.0000 

0.1970 

0.5267 

-0.0122 

-0.0736 

15.0262 

15.0000 

9.9736 

10.0000 

(j) 



Table 3.6b Modal Values u and s, System 28 

Effective mass ratio = 2.00%; Amp1 ification factor 7.07 

Resonant frequency = 1.00 cycle/sec 

Mass number 
Mode Frequency I. Response 

2 3 4 5 

u 0.2726 0.5641 0.7915 2.4379 5.7307 
0.9284 I 0.2726 0.2914 0.2274 1 .8738 3.2928 s 

u 0.2242 0.4324 0.6982 -1 .1721 -4.9128 
2 1 .0687 0.2242 0.2082 0.2658 -1.6045 -3.7407 s Q) 

N 

U 0.0000 0.0000 0.0000 -0.0000 0.0000 
3 1 .7321 0.0000 0.0000 0.0000 -0.0000 0.0000 s 

u 0.4075 0.1995 -0.5861 -0.3261 o. 1940 
4 2.0052 0.4075 -0.2080 -0.7856 -0.5255 0.5201 s 

u 0.0957 -0.1959 0.0964 ·0.0603 -0.0119 
5 3.0158 0.0957 -0.2916 0.2924 0.2563 -0.0722 s 

Max. displacement 
Exact 0.4968 0.9965 1 .. 4897 3.6100 10.6435 

Approx. 0.5000 1 .0000 1 .5000 3.5355 10.6066 

Max. strai n 
Exact 0.4968 0.4997 0.4932 3.4783 7.0335 

App"rox. 0.5000 0.5000 0.5000 3.5355 7.0711 

Note: Exact is the sum of the absolute values of the first two modes. 

(' ! 



Mode Frequency 

0.8867 

2 1 .1060 

3 1 • 7321 

4 2.0128 

5 3.0396 

Max. displacement 

Max. stra i n 

Table 3.6e Modal Values u and s, System 2B 

Effective mass ratio = 5.00%; Ampl ification factor = 4.47 

Resonant freq~ency = 1.00 cycle/sec 

Response 

u 

s 

u 

s 

u 

s 

u 

s 

u 

s 

Exact 

Approx. 

Exact 

Approx. 

0 .. 2842 

0.2842 

0.2080 

0.2080 

0.0000 

0 .. 0000 

0.4182 

0.4182 

0.0896 

00.0896 

0.4922 

0.-5000 

0.4922 

0.5000 

2 

0.5988 

0.3146 

0.3928 

0.1848 

0.0000 

-0.0000 

O. 1984 

-0.2198 

-0. 1899 

-0.2795 

0.9916 

1 .0000 

0.4994 

0.5000 

Mass number 

3 

0.8115 

0.2127 

0.6632 

0.2704 

0.0000 

0.0000 

-0.5660 

-0.7644 

0.0913 

0.2813 

1 .4747 

1 u 5000 

0.4831 

0.5000 

Note: Exact is the sum of the absolute values of the first two modes. 

4 

1 .8063 

1 .2075 

-0.5480 

-0.9407 

-0.0000 

-0.0000 

-0.3155 

-0.5139 

0.0572 

0.2471 

2.3542 

2.2361 

2·.·i.482 

2.2361 

5 

3.7959 

1 .9896 

-2.9703 

-2.4223 

0.0000 

0.0000 

0.1855 

0.50l0 

, -0.0111 

-0.0683 

6.7662 

6.7082 

4.4120 

4.4721 

(J) 
w 



Table 3.6d Modal Values u and s, System 28 

Effective mass ratio = 10.00%; Ampl ification factor = 3.16 

Resonant frequency = 1.00 cycle/sec 

Ma~s number 

Mode Frequency Response 
2 3 4 5 

u 0.2960 0.6354 0.8311 1 .4977 2.8310 
0.8405 

0.2960 0.3394 o. 1957 0.8623 1.3333 s 

u o. 1892 0.3490 0.6200 -0.2512 -1.9936 
2 1 • 1450 

O. 1892 o. 1598 0.2709 -0.6003 -1.7424 s m 
~ 

u 0.0000 0.0000 -0.0000 0.0000 -0.0000 
3 1 • 7321 

0.0000 0.0000 -0.0000 0.0000 -0.0000 s 

u 0.4344 o. 1957 -0.5344 -0.2988 o. 1725 
4 2.0246 

0.4344 -0.2387 -0.7302 -0.4945 0.4713 s 

u 0.0804 -0.1802 0.0834 '0.0523 -0.0098 
5 3.0796 

0.0804 -0.2605 0.2635 0.2325 -0.0621 s 

Exact 0.4852 0.9844 1 .4511 1 Q 7490 4.8246 
Max. displacement 

Approxa 0.5000 1 .0000 1 .5000 1 .581 1 4.7434 

Exact 0.4852 0.4992 0.4666 1 .4626 3.0757 
Max. stra in 

Approx. 0.5000 0.5000 0.5000 1 .5811 J.1623 

Note: Exact is the sum of the absolute values of the first two modes. 



Table 3.6e Modal Values u and s, System 2B 

Effective mass ratio = 20.00%; Ampl ification factor = 2.24 

Resonant frequency = 1.00 cycle/sec 

Mass number 
Mode Frequency Response 

1 2 3 

u 0.3105 0.6823 0.8545 
1 0.7777 

0.3105 0.3718 0.1723 s 

u o. 1628 0.2910 0.5541 
2 1 • 1936 

s o a 1628 o. 1282 0.2631 

u 0.0000 0.0000 -0.0000 
3 1.7321. 

s 0.0000 0.0000 -0.0000 

u 0.4619 0.1886 -0.4781 
4 2.0453 s 0.4619 -0.2733 -0.6667 

u 0.0649 -0.1618 0.0695 
5 3. 1603 s 0.0649 -0.2267 0.2313 

Max. displacement Exact 0.4732 0.9732 1 .4086 

Approx. 0.5000 1 .0000 1 .5000 
.-

Exact 0.4732 0.5000 0.4354 
Max. strai n 

Approx. 0.5000 0.5000 0.5000 

Note: Exact is the sum of the absolute values of the first two modes. 

4 

1 .2905 

0.6083 

-0.0656 

~0.3566 

0.0000 

0.0000 

-0.2687 

-0.4573 

'0.0437 

0.2056 

1 .3562 

1.1180 

0.9649 

1 . 11 80 

5 

2. 1626 

0.8720 

-1 .3050 

-1.2394 

-0.0000 

-0.0000 

0.1502 

0.4189 

-0.0077 

-0.0515 

3.4676 

3.3541 

2.1114 

2.2361 

! 

: 

-

(J) 
U1 



Table 3.7a Modal Values u and s, System 2C 

Effective mass ratio = 1.00%; Ampl ification factor = 10.00 

Resonant frequency = 1.00 cycle/sec 

Mass number 
Mode Frequency Response 

2 3 4 5 

u 0.2847 0.5359 0.7838 3.0060 8. 1849 
0.9742 0.2847 0.2511 0.2480 2.7212 5.1790 s 

u 0.2177 0.4642 0.7138 -2.0579 -6.8433 
2 1 .0242 0.2177 0.2465 0.2496 -2.2756 -4.7854 s 

Q) 

0.0101 -0.0001 -0.0205 0.7037 -0.7140 
Q) 

u 
3 1 .7258 0.0101 -0.0103 -0.0204 0.6936 -1.4177 s 

u 0.3866 0.2004 -0.5770 -0.6203 0.3661 
4 2.0104 0.3866 -0.1863 -0.7774 -1.0069 0.9863 s 

u 0.1008 -0.2003 0.0999 -0.0315 0.0063 
5 3.0020 0.1008 -0.3011 0.3002 -0.1323 0.0377 s 

Max. displacement 
Exact 0.5024 1 .0001 1 .4976 5.0639 15.0282 

Approx. 0.5000 1.0000 1 .5000 5.0000 15.0000 

Exact 0.5024 0.4976 0.4975 4.9969 9.9643 
Max. strain 

Approx. 0.5000 0.5000 0.5000 5.0000 10.0000 

Note: Exact is the sum of the absolute values of the first two modes. 



Table 3.7b Modal Values u and s, System 2C 

Effective mass ratio = 2.00%; Amp1 ification factor = 7.07 

Resonant frequency = 1.00 cycle/sec 

Mass numbe r 

Mode I Frequency I . Response 
2 3 4 5 

u 0.2997 0.5506 0.7970 2.2869 5.9930 
0.9631 

0.2997 0.2509 0.2464 1.9872 3.7061 s 

u 0.2051 0.4496 0.6983 -1.3388 -4.6535 
2 1 .0337 

0.2051 0.2444 0.2487 -1.5439 s -3.3147 
(J) 

0.0185 -0.0005 -0.0378 0.6646 -0.6835 "'-J u 
3 1 .7201 

0.0185 s -0.0190 -0.0372 0.6461 -1.3480 

u o . 3751 0.2009 -0.5574 -0.5811 0.3376 
4 2.0203 

0.3751 s -0.1741 -0.7583 -0.9561 0.9187 

u 0.1017 -0.2005 0.0999 ...,0.0316 0.0063 
5 I . 3.0040 

0.1017 -0.3022 0.3004 s -0.1333 0.0380 

Exact 0.5048 1 .0001 1 .4953 I 3.6256 I 10.6465 
Max. displacement 

Approx. 0.5000 1 .0000 1 .5000 3.5355 10.6066 

Exact 0.5048 0.4953 0.4951 3.5311 7.0209 
Max. stra in 

Approx. 085000 085000 0.5000 3.5355 7.0711 

Note: Exact is the sum of the absolute values of the first .two modes. 



Table 3.7c Modal Values u and s, System 2C 

Effective mass ratio = 5.00%; Amplification factor = 4.47 

Resonant frequency = 1.00 cycle/sec 

Mass number 

Mode I Frequency Response 
2 3 4 5 

u 0.3301 0.5792 0.8214 1 .6628 4.0523 
0.9405 0.3301 0.2492 0.2422 1 .3327 2.3895 s 

u 0.1817 0.4211 0 .• 6669 -0.7144 -2.7189 
2 1 .0516 0.1817 0.2393 0.2458 -0.8961 -2.0045 s 

0"'1 

0.0364 -0.0024 -0.0764 0.5756 -0.6138 00 
u 

3 1 .7049 0.0364 -0.0387 -0.0740 0.5392 -1.1894 s 

u 0.3476 0.2033 -0.5115 -0.4918 0.2740 
4 2.0475 

0.3476 -0. 1443 -0.7149 -0.8394 0.7657 s 

u 0.1042 -0.2013 0.0996 ~0.0322 0.0064 
5 3.0101 0.1042 -0.3054 0.3009 -0.1364 0.0386 s 

Exact 0.5118 1 .0003 1 .4883 2.3772 6.7712 
Max. displacement 

Approx. 0.5000 1 .0000 1 .5000 2.2361 6.7082 

Exact 0.5118 0.4885 0.4880 2.2289 4.3940 
Max. strain 

Approx. 0.5000 0.5000 0.5000 2.2361 4.4721 

Note: Exact is the sum of the absolute values of the fi·rsttwo modes. 



Table 3.7d Modal Values u and s, System 2C 

Effective mass ratio = 10.00%; Amp1 ification factor = 3.16 

Resonant frequency = 1.00 cycle/sec 

Ma.ss number 

Mode Frequency I . Response 
2 3 4 5 

u 0.3651 0.6104 0.8461 1 .3633 3.0780 
0.9141 0 .. 3651 0.2454 0.2357 0.9983 1 . 7146 s 

u 0 .. 1579 0.3902 0.6312 -0.4145 -1.7543 
2 1 ~ 0703 0,,1579 0.2323 0.2410 -0.5724 -1.3398 s en 

0.0534 -0.0063 -0.1167 0.4798 -0.5378 
lD 

u 
3 1 .6847 0.0534 -0.0596 -0. 11 04 0.4264 -1.0176 s 

u 0.3153 0.2080 -0.4597 -0.3954 0.2076 
4 2.0874 0.3153 -0.1073 -0.6677 -.0.7107 0.6030 s 

u 0.1084 -0.2023 0.0991 -0.0332 0.0065 
5 3.0205 

0.1084 -0.3106 0.3013 -0. 1416 0.0398 s 

Exact 0.5230 1 . 0006 1.4773 1 .7778 4.8323 
Max. displacement 

Approx. 0.5000 1 .0000 1 .5000 1 .5811 4.7434 

Exact 0.5230 0.4776 0.4767 1 .5706 3.0545 
Max. s trai n 

Approx. 0.5000 0.5000 0.5000 1 .5811 3. 1623 

Note: Exact is the sum of the absolute values of the first two modes. 



Table 3.7e Modal Values u and s, System 2C 

Effective mass ratio = 20.00%; Ampl ification factor = 2.24 

Resonant frequency = 1.00 cycle/sec 

Mass number 
Mode Frequency Response 

2 3 4 5 

u 0.4149 0.6518 0.8757 1 . 1691 2.3926 
0.8758 0.4149 0.2369 0.2239 0.7542 1.2234 s 

u 0.1288 0.3492 0.5812 -0.2193 -1.0866 
2 1 .0942 

0.1288 0.2205 0.2319 -0.3481 -0.8672 s 
........ 

u 0.0681 -0.0138 -0.1588 0.3710 -0.4493 0 

3 1 .6548 0.0681 -0.0819 -0. 1449 0.3029 -0.8203 s 

u 0.2713 0.2161" -0.3956 -0.2856 0.1365 
4 2.1538 

0.2713 -0.0552 -0.6117 -0.5570 0.4221 s 

u O. 1169 -0.2033 0.0975 -0.0351 0.0068 
5 3.0428 

0.1169 -0.3203 0.3008 -0.1520 s 0.0419 

II 



" " 

System 

1A 

18 

1 C 

'" 

lA, 18, lC 

Table 4.1 Exact and Approximate Maximum Amp1 ification Factors, 
Systems lA, 1B and lC, Y = 1%, ~ = 0,0.5, 1,2, 5 and 10% 

Effective damping factor, ~, (%) 

Type of 
Solutions 

0 0.5 1 2 

Exact 10.32 9. 15 8.33 6.91 

Exact 10.21 8.74 7.60 5.87 

Exact 10.32 7.32 5.03 3.55 

Approx. 10.00 8.7 7.7 6.25 

5 10 

4.41 2.60 
I 

I ...... 
I 

i 

3.33 1 .91 
I 

1 .96 1 .20 

4.0 2.5 



Effective 

mass ratio, 

y (%) 

1 . 

2 

5 

10 

20 

Table 4.2 Exact and Approximate Maximum Ampl ification Factors, 
Systems 2A, 28 and 2e, ~ = 0%, y = 1, 2., 5, 10 and 20% 

I 

Inner spring Outer spring 
. 

System Approx. Exact Approx. 
I 
: 

All A22 A.F. A.F. All A22 A.F. 

2A 5.00 0.9 5.9 l 6.26 10.0 1 .8 11 .8 

28 5.00 0.3 5.3 5.22 10.0 0.6 10.6 
j 

2C 5.00 0.6 5.6 5.67 10.0 1.2 11 .2 

2A 3.54 0.9 4.54 4.45 7.07 1 .8 8.87 

2B 3.54 0.3 3.84 3.79 7.07 0.6 7.67 

2C 3.54 0.6 4. 14 4.32 7.07 1 .2 8.27 

i 

2A 2.24 0.9 3. 14 3. 12 4.47 1 .8 6.27 

2B 2.24 0.3 2.54 2.64 4.47 o.s 5.07 

2C 2.24 0.6 2.84 I 2.92 4.47 1 .2 5.67 
! 
I 

2A 1 .58 0.9 2.48 2.22 3. 16 1 .8 4.96 

2B 1 .58 0.3 1 .88 2. 11 3. 16 0.6 3.76 

2C 1 .58 0.6 2. 18 i 2.09 3. 16 1 .2 4.36 
I 

2A 1 .12 0.87 1.99 1 .74 2.24 1 .74 3.98 

2B 1 .12 0.3 1 .42 1 . 71 2.24 0.6 2.84 

2C 1 .12 0.6 1.72 1 .59 2.24 1 .2 3.44 
------.-~-

Exact 

A.F. 

11 .78 

10.28 

10.93 

8.91 

8.13 

7.90 

6. 14 

5.90 

5.50 

4.89 

4.27 

4.15 

3.36 

3.49 

3.47 

-....J 
N 



Effective 

mass ratio, 

y, (%) 

1 

2 

5 

10 

20 

i 
Table 4.3 Exact and Approximate M!aximum Ampl ification Factors, 

Systems 2A, 2B and 2Ci, Inner Spring 

Effecti~e damping facto'r, ~, (%) 

0 !5 1 

Type 
Sys t em System 

! 

2A :2 B 2C 21A 2B 2C 2A 
I 

Exact 5.22 4 37 3.70 4.!60 3.80 2.59 3.64 
i 

Approx. 5.09 4 60 4.85 4. 149 4.06 4.28 3.63 
I 

Exact 3.68 3 21 3. 11 3.j39 2.91 2.43 2.92 
I 

Approx. 3.99 3 46 3.72 3.\62 3. 15 3.39 3.06 

Exact 2.79 2 27 2.41 2.157 2.06 2.04 2.21 

Approx. 2.92 2 37 2.65 2.174 2.23 2.48 2.43 
! 

Exact 1.78 1 82 1.74 1 .,63 1.68 1 .54 1 .55 

Approx. 2'.38 . 1 82 2.10 2.25 1 .71 
i 

1 .98 2.05 
I 

Exact 1 .52 1 40 1 .36 1.i48 1 .28 1 .25 1.41 
I 

Approx. 1 .94 1 38 1.68 1 J84 1 .33 1 .60 1 • 72 
- - ------_._- --

2 

System 

2B 

2.94 

3.29 

2.42 

2.68 

1 .81 

1 .99 

1 .44 

1 .57 

1.09 

1.24 

2C 

1 .77 

3.46 

1.67 

2.87 

1 .51 

2.21 

1.24 

1 a 81 

1 008 

1 .50 

I 

I 

....... 
w 



Table 4.3 (continued) 

. Effect i ve 

mass ratio, Type 

y, (%) 

2A 

Exact 2.28 
1 Approx. 2.30 

Exact 2.00 
2 

Approx. 2.08 

Exact 1 .52 
5 Approx. 1 .81 

Exact 1 .35 
10 

Approx. 1 .63 

Exact 1 .24 
20 

Approx. 1.44 
'----~~~--

Effective damping factor, ~, (%) 

5 10 

System System 

2B 2C 2A 2B 

1 .68 1 .00 1 .34 0.98 

2.10 2.20 1 .43 1 .31 

1 .53 0.97 1 .22 0.94 

1 .84 1 .97 1 .37 1 .21 

1 .28 0.92 1 • 1 7 0&94 

1 .50 1066 1 .28 1 .06 

1 .04 0.85 1 .12 0.92 

1 .26 1 .44 1 .21 0.95 

1 .01 0.83 1 .03 0.89 

1 .05 1 .25 1 .13 0.83 
~ -- ------------

2C 

0.96 

1 .37 

0.76 

1 .29 

0.76 

1 .17 

0.75 
... 

1 .08 

0.75 

0.99 

I 

I 
I 

I 
I 

I 
! 
I 
I 
I 
I 
I 

I 
I 

-...J 
~ 



Effective 

mass ratio, 

y, (%) 

1 

2 

5 

10 

20 

c. ~ ----

Table 4.4 Exact and Approximate Maximum Amp1 ification Factors, 
Systems 2A, 28 and 2C, Outer Spring 

Effective damping factor, ~, (%) 

0.5 1 
Type 

System System 

2A 28 2C 2A 28 2C 2A 

Exact 9.66 8.75 7.42 8.79 7.59 5.37 7.38 

Approx. 10. 18 9.20 9.69 8.98 8. 12 8.55 7.25 

Exact 7.61 6.62 6.05 6.95 5.91 4.97 5.81 

Approx. 7.97 6.92 7.44 7;24 6.30 6.77 6. 11 

Exact 5.68 5. 12 4.55 5.30 4.46 3.96 4.65 

Approx e 5.84 4.74 5.29 5.47 4.45 4.96 4.85 

Exact 4.37 3 .• 95 3.49 4. 17 3.72 3.07 3.81 

Approx. 4.76 3.63 4.19 4.49 3.42 3.95 4.09 

Exact 3.18 3.18 3.03 3.04 3.05 2.68 2.79 

Approx. 3.87 2.77 3.35 3.68 2.65 3.20 3.44 
-.------- .. -~.- . . - -- ,--- ----

2 

Sys tern 

28 

5.89 

6.58 

4.95 

5.35 

3.88 

3.97 

3.31 

3.14 

2.80 

2.48 

2C 

3.81 

6.92 

3.63 

5.73 

3.10 

4.41 

2.58 

3.61 

2.24 

2.99 

I 

" (Jl 



Table 4.4 (continued) 

Effective 

mass ratio, !ype 

y, (%) 

2A 

Exact 4.46 
1 Approx. 4.60 

Exact 4. 13 
2 Approx. 4.17 

Exact 3.51 
5 Approx. 3.62 

10 
Exact 2.94 

Approx. 3.25 

Exact 2. 18 
20 Approx. 2.87 

Effective damping factor, ~, (%) 

5 10 

System System 

2B 2C 2A 2B 

3.40 2.04 2.72 1 .98 

4.20 4.40 2.86 2.62 

3.14 2.01 2.63 1.96 

3.68 3.93 2.73 2.42 

2.83 1 .91 2.36 1.88 

2.99 3.31 2.55 2.12 

2.53 1 .85 2.00 1.76 

2.51" 2.88 2.42 1 .89 

2.20 1.79 1 .51 1 .55 

2.09 2.50 2.25 1 .65 

2C 

1 .34 

2.74 

1.34 

2.58 

1 .33 

2.34 

1 031 . 
2.15 

1 .27 

1.97 
I 

-..J 
(j) 



Type of . 

solution 

Exact 

., 

Approx. 

Table 4.5 Exact and Approximate Maximum Ampl ification Factors, 
System 2A, y = 1%, Inner and Outer Secondary Springs, 

~ = 2%, ~ :::: 0, O. 5, 1, 2, 5 and 1 0% 
p s . 

Effect i ve damp i ng factor, ~. (%) 
Type of 

1--. 

spring 
1 1 .25 1 .5 2 

; Inner 4.85 4.48 4.16 3.64 

Outer 9.4 8.79 8.25 7.38 

Inner 4u49 4.24 4.01 3.63 

-

Outer 8.98 8.47 8.02 7.25 

3.5 

2.77 

5.57 

2.82 

5.63 

L--... ____ .~ 

. 

i 

-; 

6 

. 

2.14 

-.....J 
-.....J 

4. 13 

2.05 

4.10 
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Secondary 
1 

Primary 

FlG. 2.1 PAIMARY RND SEC~NDARY SYSTEM 

FlG. " ." e:::ae::: PR1MARY SYSTEM CDNSJOERED 

F1G. 2.3 SECDNORRY SYSTEMS C~NS10ERED 
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, .. r ,." , 

System 1 A 
/ I' I' I' 

System 18 
7 

System 1C 

F1G. 2.4 F~UR DEGREE ~F FREED~M C~M81NED SYSTEMS C~NSIDERED 

'/ J: / / I 
System 2A System 28 System 2C 

F1Ga 2.5 F1VE DEGREE ~F FAEED~M C~M81NED SYSTEMS C~NSIDERED 
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APPEND IX A 

DESIRED FREQUENCY AND EFFECTIVE MASS RATIO 

For 1 inearly elastic, positive definite systems treated in 

th·j s s-tudy,when therelatj·ve values··of the mass ana springc()ristc'3ht liad 

been selected, the eigen-value A may be obtained as the ratios of two 
r 

quadratic forms as noted in Eq. (A. I): 

T U • K. U 
r r 
T 

U .M. U r r 

r = 1,2,----,n (A. J ) 

where Ur are corresponding eigen-vectors. 

When the mass factors (m, M) of the secondary and primary systems 

had been assigned specific values, the effective mass can be obtained from 

Eq· (2.33) or (2.34). The effective_mass ratio can now be computed by 

E q • (2 . 38) . For ex am pIe, i f M = m = kip-sec2/inch, then Eq. (2.33) gives 

Epl = 4.5 and Eq. (2.34) gives Esl = 3 kip-sec
2
/inch. Consequently, 

Eq. (2.38) yields Yll = '2/3. 

In order to have a desired effective mass ratio with respect to 

the fundamental frequency of both primary and secondary systems, m must be 

substituted by m, which is obtained as fol lows: 

(A.2) 

From the fact that 

-m 
(A.3) 

m 
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Eq. (Ao2) can be put into the form 

= 
m 

which yields 

-m = 
3 
Z(y 11 ) des ired (A.4) 

Once the proper magnitude of the masses has been decided, one of 

the frequencies of the system can be adjusted to any desired value by 

us i ng the sp ring cons tant factor obta i ned from Eq. (A. 5) : 

= 

where 

F r 

k, k 

F k 
r 

2 
(Wr)desired 

Ar 

-m 
m 

spring constant factor 

As an example, let the secondary masses be designated"as 3m and m, and 

the spring constants as 6k and 1.Sk. If the values of k = 1 kip/inch 

(A. s) 

(A.6) 

is employed, relation (A.l) yields Xl = 1 radian/sec. Then any value of 

of ws1 may be obtained by using the spring constant factor k instead of k 

according to Eq. (A.7): 

k' = (w2 ) m s1 desired 

Mass and stiffness matrices of systems 2A, 28 and 2C for the 

case of wpl = wsl = 2~ radian/sec and Yl1 = 1 percent are presented 

in Tables A.l and A.2. 

(A.7) 
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Table A.l Mass Matrix of Systems 2A, 28 and2C. 

3.000 

1 .500 

1 .000 

0.045 

0.015 

Table A.2a Stiffness Matrix of System 2A. 

592.175 -236.87 

-236.87 355.305 -118.435 

-118.435 121.988 

-3.553 

-3.553 

4.441 

- 0.888 

-0.888 

0.888 
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Table A.2b Stiffness Matrix of System 28 

592.175 -236.87 

-236.87 358.858 -118.435 ~3.553 

-118.435 118.435 

-3.553 4.441 

-0.888 

Table A.2c Stiffness Matrix of System 2C 

595.728 -236.87 -3.553 

-236.87 355.305 -118.435 

-118.435 118.435 

-3.553 4.441 -0.888 

-0.888 0.888 
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Presented below are numerical calculations of some stiffness 

elements tabulated in Table A.2. 

EI ement Kl1 of system 2C 

K11 = 9K + 6K + 6;( 

(2rc)2(9xl + 6xl 
3 = + 6x2"xO.0l) 

= 595.728 

Element K22 of system 28 

K22 6K + 3K + 6;( 

= (2rc) 2 (6x 1 + 3xl + 6x~XO. 01) 

= 358.858 
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APPENDIX B 

RESPONSE SPECTRUM OF THE CONSTANT ACCELERArrON PULSE 

The gyrogram may be used to evaluate the response spectrum of 

the step function accelerogram of Fig. 2.6a. The procedure employed in 

such a construction is described briefly below. Using the spectrum 

term j nolo gy , 

and 

. 
y 

--
OJ 

y 

Gyrogram of the Constant Acceleration Pulse 



Case wtd < rc 

D 

R2 

D 
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= R 

{ a~ wtd }2 + 
a 

_ coswtd)}2 = sin 
{ .J~ ( 1 

w w 

{. a02 }2 f 2 2 } = L sin wtd + 1 + cos wtd - 2 cos wtd 
w 

R 

v 

a 
= ~ J 2(1 - cos wtd) 

w 

2a wtd 
o sin 

w 2 

Za wtd o . 
= -Z-sln 

w 2 

For small wt
d

, 

v 

D = R 

w 2 

Za 
o 

-2-
w 

A = Za o 

Equations (B.l), (B.2) and (B.3) completely describe the 

·characteristics of the response spectrum shown in Fig. 2.6b. For very 

(B.l) 

(B.Z) 

(B.3) 

small wtd , Eq. (B.2) gives a constant velocit~ spectrum of equal magnitude 

to the constant base velocity. Equation (B.1) governs the transition ione, 

and for large wtd , Eq. (B.3) gives a constant acceleration spectrum of 

twice the magnitude of the input pulse. 




