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Chapter 1 

INTRODUCTION 

1 . 1 Genera 1 

In Illinois, the, most commonly,built highway bridges are slab and 

girder bridges. The girders are either steel girders or prestressed concrete 

girders. The slabs are cast-in-place reinforced concrete slabs. Composite 

action between the slabs and girders is assured by the shear connectors on 

the top of the girders. 

During the last two decades, new techniques and methods have been 

proposed and developed to study the load distribution characteristics in 

these bridges. With the aid of the electronic computer, more realistic 

approximations for the analysis of slab and girder bridges are now practi-

cal. Although many studies on the load distribution of slab and girder 

bridges have been published, at the present time, the 1969 AASHO specifi­

cations (1) for bridge design still do not reflect the state of the art of 

the increasingly advanced structural analysis. Especially, the guidelines 

for the installation of diaphragms in bridges as recommended in the AASHO 

specifications are quite arbitrary and the problem of where and what kind of 

diaphragm that should be installed in a bridge is mostly up to the dfscretion 

of the engineers. Furthermore, the effects of the diaphragms are not accounted 

for in the proportioning of the girders. Thus, the question ~hether, in all 

senses of practi cal i ty, di aphragms are needed in bri dges' needs further i n­

depth study. 

1.2 Previous Studies 

Various analytical methods have been used to analyze load 
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distributions in highway bridges. Assumptions have been made to simplify 

the problem in order to get a more manageable solution. The slab and girder 

bridges can be looked upon as a plate structure stiffened by the girders. 

Along this line of thought, orthotropic plate theory is used to solve this 

class of problem. The work was initiated by Guyon (2) and subsequently 

improved and modified by Massonnet (3) to include all ranges of torsional 

stiffness of the girders. Both Guyon and Massonnet assumed that the Poisson1s 

ratio for the equivalent plate material to be zero. Rowe (4) further improved 

the analytical technique to allow for any value of Poisson1s ratio. The 

idealization of a slab and girder bridge as an orthotropic plate can only be 

justified if the girders are placed close together. For most of the highway 

bridges, the girder spacings are not close enough for the bridge to be satis­

factorily considered as an orthotropic plate. In order to find a closed. form 

solution for the slab-girder-diaphragm system, Dean (5) proposed an exact 

macro-discrete field approach to solve this class of problem, but his method 

is too complicated to use. 

In the area of numerical approximations, Newmark's moment distribu-

tion' procedure (6) is readily adaptable to slab and girder bridges. The 

who 1 e slab 'of the bri dge is cons i dered. to be an i sotropi c p 1 a te and is i nde-

pendent of the supporting beams, and the beams are treated as interior. sup~ 

ports. Knowing the boundary conditions of the plate and the loading condi­

tion, the resultant stresses.in.-the plate are solved for by the Levy solution. 

Then a slab strip is considered. to. be a continuous beam over' flexible supports 

and a moment distribution.is.carried out for each harmonic to determine the 

moments in the beams. Thetotal:of.moments in the slab and girders is the 

sum of the moments due to each. harmonic. In this method, the in-plane forces 

in the slabs and the contribution of the slab to the stiffness of the T-beam 

t. ~ 
r 
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girders are neglected, but torsional stiffness of the girders can be taken 

into account in this method. In the early forties, Newmark and Siess (7) 

analyzed slab and girder bridges using this method and the results of their 

analyses were one of the bases of the AASHO specifications on load distri­

bution in highway bridges. 

The finite element method (8) is a powerful tool for the analysis 

of slab and girder bridges. Analyses of slab and girder bridges with the 

finite element method have been carried out by Gustafson (9), using plate 

elements which include both flexural and in-plane forces. The only disad­

vantage of this method is that a large number of simultaneous equations 

have to be solved in order to get an accurate answer. For a long bridge, 

this method may become uneconomical. 

Lazarides (10) idealized the slab and girder bridge as an equiva­

lent grid system and solved the grid work problem by determining the deflec­

tion compatibility equations at each beam intersection. This method also 

leads to a large system of simultaneous equations and furthermore, the 

effects of the twisting moments in the slab cannot be incorporated in an 

equivalent grid system. 

By combining the Goldberg and Leve folded plate theory and the 

two-dimensional theory of elasticity, Van Horn and Oaryoush (11) included 

the effects of in-plane forces and T-beam action in the analysis of slab 

and girder bridges. Sithichaikasem (12) went one step further by including 

the torsional and warping stiffness of the girders in the analysis. The 

model of Van Horn, Oaryoush, and Sithichaikasem is much more realistic 

but they needed a large, fast electronic computer to make their solution 

process feasible. 
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The effects of diaphragms on load distribution of slab and girder 

bridges were studied by B.C.F. Wei (13), Siess and Ve1etsos (14), and 

Sithichaikasem (12). The studies of Wei, Siess and Ve1etsos neglected the 

effects of torsional stiffness of the girders and they all used Newmark's 

moment distribution procedure. The investigation by Sithichaikasem in-

c1uded the effects of the torsional sitffness and warping stiffness of the 

girders and the effects of in-plane forces in the slab. 

The analyses as mentioned above were all performed on simply sup­

ported bridges. Much. of the present design criteria on load distribution are 

based on the results of the analyses of simply supported bridges and pro-

vision for the design of the negative moment regions is inferred from the 

behavior of the positive moments. Since most highway bridges are continuous 

bridges, analysis on the effects of diaphragms on continuous bridges will· 

undoubtedly provide new data and supplement the data on the design of slab 

and girder bridges. 

1.3 Object and Scope of Investigation 

The object of this investigation is to study the effects of dia-

phragms on load distribution characteristics on continuous slab and girder 

highway bridges. The variation of maximum positive and negative moments 

as a function of diaphragm stiffness and location will be studied. The 

effects of continuity will be investigated. The range of bridge parameters 

under inves.tigation will be such that they will adequately cover the range 

of the highway bridges built. The results of the analyses will be com­

pared to that of the recommended design procedure as stated in 1969 AASHO 

specifications, Finally, recommendations on the use of diaphragms will be 
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made, based on the results of this investigation. The scope of the studies 

can be stated as follows: 

1 0 To study the effect of number of harmonics used as to the 

accur~cy of the solution. 

2. To find the best locations of diaphragms that will improve 

load distribution for a point load. 

3. To study the effects of diaphragm stiffness on load distri­

bution-of point load.-

4. For various bridge parameters (i.e., H, bfa, b) and diaphragm 

stiffness, k, the effects of diaphragm stiffness on load 

distribution of 4 wheel loads at various positions along the 

bridges will be studied. 

5. To study the vari a ti on of the i nfl uence 1 i nes due to 4 wheel 

load as a function of the diaphragm stiffness. 

6, To compare the load distribution character.istics of simply 

supported bridges and continuous bridges. 

7. To compare the present AASHO recommended design moment coef­

ficients with the moment coefficients as calculated in this 

investigation. 

8. To study the effects of diaphragms on moments from truck 

loadings in continuous slab and girder bridges. 

9. Recommendations on the use of diaphragms on highway bridges 

will be made based on the results of the analyses. 
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It was recommended in Ref. 12 and will be recommended in this 

report that interior diaphragms be eliminated from most prestressed I-beam 

bridges unless they are required for erection purposes. One of the 

practical arguments that has been raised whenever this change has been 

proposed in the past is the feeling that diaphragms help limit damage 

to an overpass structure which is struck transversely from below by 

an oversized load. 

There appears to be conflicting evidence as to whether the 

diaphragms are damage limiting or damage spreading members, and the 

only comment the authors would make at this time is that the diaphragms 

currently being used in bridges are probably the wrong shape and size, 

and are usually in the wrong locations, if one of their valid functions 

is the reduction of damage to the structure due to horizontal impact 

on the side of the bridge. The analyses reported here are not relevant 

to this particular question. 

1 . 4 No ta t ion 

The following notation is used throughout this study: 

a 

b 

I 

d 

h 

length of one span of the bridge 

beam spacing 

aspect ratio 

di stance between mi d-depths of top and bottom fl anges 
(see Fig. 2.2) 

thickness of the slab 
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v 

G 

n H = aD 

7 

ratio of the stiffness of the diaphragm to that of 
the girder 

constants for calculating J 

thickness of the bottom flange, top flange and web 
of the idealized cross section of the girder, respectively 

Poisson1s ratio 

warping constant of the girder 

moment coefficient = Mowent 
a 

stiffness of an element of the slab 

elastic modulus of the material of the diaphragm 

elastic modulus of the material of the girder 

elastic modulus of the material of the slab 

relative flexibility and absolute flexibility.matrices 
for the b·ri dges 

flexibility matrices for the plate, beam, diaphragm 
and an element X 

shear modulus of the material of the girder 

ratio of the stiffness of the girder to that of the slab 

moment of inertia of the girder with a composite slab 

moment of inertia per unit width of the cross section 
of the slab 



J 

p 

R 

s. u 

lJ 

s. 
ln 

8 

moments, of inertia of top and bottom flanges, respec­
tlvely 

torsional constant of the modified cross section of 
girder, analogous to the polar moment of inertia of a 
circular cross section 

single wheel load or a single concentrated load 

ratio of warping stiffness to torsional stiffness of 

the girder 

vector of internal forces at the junction of one dia­
phragm and girder, or the interior supports reactions 

vector of internal forces at· section i of the primary 
structure due to loads at locations j 

vector of internal forces at section i of the primary 

structure due to unit loads at sections n 

ratio of torsional stiffness of the girder to the 

flexural stiffness of the girder 

vector of relative displacements at the diaphragm 
locations of absolute displacements at the location 

of interior supports 

C - C 
mk=0.05 mk=O.O x 100, percentage change in moment 

Cmk=O.O 
coefficients due to addition of diaphragms with k = 0.05 
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Chapter 2 

STUDY OF PARAMETERS AND IDEALIZATION OF THE BRIDGE 

2.1 Idealization of the Bridge and Its Components 

In the analysis, the bridge is idealized as shown in Fig. 2.1. 

The prestressed girders are idealized as being made up of rectangular sec­

tions, as shown in Fig. 2.2. The dimensions, which are the same as the real 

girder, are: the width of the top flange, the thickness of the slab, the 

depth of the girder, the moment inertia of the girder, and the centroid of 

the section. The sections used are based on the set of standard prestressed 

concrete girders developed by the Bureau of Public Roads. The properties 

of these girders are described in a Portland Cement Association Bulletin, 

"Concrete I nforma ti on II (15). 

202 Study of Parameters 

The parameters that may affect the load distribution of a bridge 

can be divided into five main categories: 

1. Material properties of the slabs and girders; 

2. Relative dimensions of the girders and slabs; 

3. Geometry of the bridge; 

4. Type of loading on the bridge; 

5. Location and stiffness of diaphragms and the location of 

supports. 

2.20' Material Properties 

In the design of highway bridges, the elastic modulus of the slab 
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concrete is usually taken as somewhat less than that of the girder concrete, 

since the slab concrete design strength is usually less than that of the 

precast girders. The test bridge at Tuscola, Illinois (16), had shown 

that the elastic modulus of the deck concrete was approximately the same as 

that of the girder concrete. Because of the uncertainty in concrete prop­

erties, the elastic modulus of both the slab and girders is taken as 

4,000,000 lb/in. 2 in the analysis. Poisson's ratio is also assumed to be 

0.15 for both the slab and girders. 

2.2.2 Geometry of the Bridge 

In this analysis, only straight, right, continuous bridges are 

considered. The symbols are defined when they are first used and in Sec-

tion 1.4. The parameter b/a is defined as the girder spacing, b, divided­

by the length of one span, a, as .shown in Fig. 2.1. Unless explicitly 

specified otherwise, the bridge is a five beam, two span continuous bridge 

with equal spans, The range of b/a varies from 0.05 to 0.2, and this will 

adequately cover the range of highway bridges that are usually built. A 

small b/a ratio means a relatively long bridge and a large bja ratio means 

a relatively short one. The range of beam spacing, b, varies from 5 to 

9 ft. This also is within the practical range of highway bridge design. 

The range of the parameters is shown in Table 2.1. 

2.2.3 Properties of the Girders and Slabs 

The parameters that are under investigation are H, T, and Q. They 

are defined as follows: 
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length of one span of the bridge 

di stance betweer. mi d-depths of top and bottom fl anges 

(see Fig. 2.2) 

thickness of the slab 

constants for calculating J 

thickness of the bottom flange, top flange and web 
of the idealized cross section of the girder, res­

pectively 

Poisson's ratio 

warping constant of the girder 

stiffness of an element of the slab 

elastic modulus of the material of the girder 

elastic modulus of the material of the slab 

Shear modulus of the material of the girder 

ratio of the stiffness of the girder to that of the 
slab 

moments of inertia of top and bottom flanges, re­

spectively 

moment of inertia of the girder with a composite slab 
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moment of inertia per unit width of the cross section 

of the slab 

torsional constant of the modified cross section of 

girder, analogous to the polar moment of inertia of a 

circular cross section 

ratio of warping stiffness to torsional stiffness of 

the girder 

ratio of torsional stiffness of the girder to the 
flexural stiffness of the girder 

The effects of T and Q on load distribution of a simply supported 

bridge was studied by Sithichaikasem (12) and Van Horn (11), and the results 

of the studies showed that the parameter Q has no influence on the load dis­

tribution characteristics. of a bridge. The study also showed that for 

typical values of T for prestressed concrete I-section girders, the.effect. 

is small unless the value of T approaches that of a box girder section. 

Thus, in this investigation, Q is taken to be zero and T is the value cal-

culated for the idealized section of the girder. The idealized section is 

shown on Fig" 2.2 

H is a measure of relative stiffness of the slab and girder; the 

larger the value of H, the greater is the girder stiffness relative to that 

of the slab. The range ofH is varied from 5 to 20. The details of the 

range of parameters are shown in Table 2.1. 

2.2.4 Types of Loading on the Bridge 

A wheel loading on the bridge is idealized as a point load. In 

the analysis, the point loading is represented by a series, and because of 
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the behavior of the Fourier series, the "point load" will not be exactly 

a point load, but rather is a concentrated load slightly spread out about. 

the point of application. This will in a way compensate for the ideali­

zation of a wheel load as a point load. The effect of multiple loading 

can be analyzed by the principle of superposition since only the.e1astic 

behavior of the. structure is considered. The analysis is conducted by 

first analyzing to find the effects of a point load, and then the effects 

of four wheel loads aligned across the bridge in the transverse direction, 

with the spacing as shown in Fig. 2.3a, are investigated. The effects of 

two trucks running in. the same direction~ representing AASHO HS loadings, 

are also studied. The details of the loading and the wheel spacing of the 

loads are shown in Fig. 2.3bn 

2.2.5 Location and Stiffness of Diaphragms and Location of Supports 

The location, stiffness, and number of diaphragms that may im­

prove the load distribution within a bridge will be studied. Although it 

has been shown that a relatively flexible diaphragm at midspan of a simply 

supported bridge may improve the load distribution to some extent (12), 

the effects of diaphragms in continuous bridges have not previously been 

studied. In this report, the effects of diaphragms at the 5/10 point, 

4/10 point, and two diaphragms at the 1/3 point of the spans, are con­

sidered. The relative stiffnesses of the diaphragm to girder considered 

will be zero, 0.05, 0.10, 0.20, 0040, and 1000.0. From the study of the 

effects of the location of the diaphragms, an optimum location is selected. 

The effects of this optimally located diaphragm on load distribution for 

various bridges are studied in greater detail. 
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In.order. to verify-that the results obtained by analyzing a two 

span bridge can also be applied to a mu1tispan bridge, a three span con~ 

tinuous bridge with H= 20, b/a = O~l, and b = 7 ft will be.analyzed. 

A comparison of the results of the analyses of both simply supported and 

continuous bridges will be made. 
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Chapter 3 

METHOD OF ANALYSIS OF BRIDGE 

3. 1 I ntroducti on 

A slab-girder bridge can be idealized as an assemblage of plate 

and girder elements interconnected at longitudinal joints. Various methods 

.have been developed to analyze this kind of system, as mentioned in Chapter 1. 

Of all the methods of analysis, Fourier harmonic analysis is the best for 

this kind of structure in terms of precision and computational effort. By 

representing the loading and the internal forces in the structure by series 

in one direction, it has the advantage of transforming a two-dimensional 

problem into a one-dimensional one~ which greatly reduces the size.of the 

problem. The only limitation of. this method is that the structure must be 

straight and the ends must be simply supported. Fortunately, the above 

conditions are satisfied by most highway bridges. 

3.2 Basic Assumptions 

The basic assumptions of the analysis are those of the ordinary 

theory of plate flexure and two-dimensional theory of elasticity and the 

following: 

1. Diaphragms are installed at all supports. The support dia­

phragms are perfectly rigid in their own planes but are free 

to rotate in the direction normal to its plane. 

2. Adequate shear connectors are provided to insure full com-

posite action of the girder and slab. 
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3. Spacing of the girders are the same for all girders in a 

bri dge. ' 

4, Shear deformations of the diaphragms and girders are neg-

1 ected. ' 

5. Internal supports are nonyie1ding. 

3.3 Method of Analysis 

The method of analysis is essentially a force method of analysis 

based on the Goldberg and Leve (17) prismatic folded plate theory and har-

monic analysis. The external load, displacements and internal forces are 

all expressed in Fourier series components and the structure is solved 

for the internal forces due to the applied external load. Once the ana1~ 

ysis of a loading has been developed for a particular harmonic, the total 

effects of the load can be obtained by summing up all the harmonics con-

sidered. The number of harmonics needed to obtain an acceptable solution 

will be discussed later~ 

The problem of load distribution of a multispan bridge subjected 

to mu1tiwheel loadings can be solved in four steps. 

3.3.1 Analysis of the Primary Structure 

The flexibility matrix of the plate and the beam elements are 

derived from the theory of elasticity and classical plate flexure theory. 

The detailed equations for the plate and beam flexibility matrix were 

reported in Refs. 11 and l2~ By considering the compatibility at each 

joint, we can solve for the internal forces acting at each joint as follows: 

is the flexibility of plate element 
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FG is the flexibility of the beam element 

Lxt ' Lxr are the displacement vectors at the left and right 

edges, respectively, of element x due to applied 

,external load on that element 

are the vectors. of internal forces at the left and 

right edges of element x 

The flexibility matrix can be partitioned such that for an element x 

F = x 

F F xtt xtr 
F F xrt xrr 

At joint N, the right edge of the plate element is connected to the left 

edge of the beam element, the displacement of the right edge (i.e., r edge) 

of plate element j is 

and the displacement of the left edge of beam element i is 

For compatibility of joint N, the displacement at the 'right edge of element 

i must equal the displacement at the left edge of element j. Observing 

we can write 

and that 
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where PN is the internal force vector at joint N. 

By applying the above condition for all the joints we have 

* * * F p = L 

where 

* F is the assembled flexibility matrix of the structure 

* p is the force vector at all joints 

* L is the applied load flexibility vector 

Solving the above matrix equations, the internal forces at the joints are 

found. Internal forces in the slabs and girders can be obtained by sub­

stituting the joint forces into the. equilibrium equations of the individual 

element. In this analysis~ there is no way to calculate the effective 

width of the I-section girder~ In order to get the composite moment of the 

girder, the condition that there is no axial force in a composite beam 

under pure bending is used (i.e., J adA = 0). The moment in the girder 

which satisfies the above condition is taken as the composite moment of 

the girder. 

3.3e2 Analysis of the Effects of Diaphragms and Interior Supports 

The effects of diaphragms and interior supports are such that 

vertical reactive force and twisting moment are developed at the junctions 

of the girders and diaphragms. The diaphragms are idealized as being 

cross beams simply supported by the exterior girders. The flexibility of 
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the diaphragm is obtained by the conjugate beam method. Unit loads are 

placed at B, C, 0; unit couples are applied at A, B, C, 0, and E (see 

Fig. 3.1); and the flexibility coefficients are the displacements at points 

A, B, C, D, and E due to the unit loads. Two equations of equilibrium 

are also needed, i.e., 

}F = 0 
~ z 

IM = 0 x 

to account for the missing unit load at A and E. The flexibility matrix 

of the primary structure at the location of the diaphragms or the interior 

supports is obtained from solutions of unit loads applied on the primary 

structure. To calculate the relative flexibility of the structure at the 

location of the diaphragms and the absolute flexibility at the interior 

support, unit loads and couples are placed at A, B, C, 0, and E consecu~ 

tively at each diaphragm and interior support location. The relative dis-

placements due to unit loads and couples are calculated with respect to 

the line joining ~he deflected points of A and E (see Fig. 3.2). When the 

section considered is an interior support, the absolute displacements of 

the structure at the interior support section are used to generate the 

flexibility coefficients. 

The compatibility equations for the diaphragms and supports are 

as follows: 

At the sections where the diaphragms join the girders: 
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At the interior supports: 

where 

* FB R + 6. = 0 

FO is the flexibility matrix of the diaphragm 

FB is the relative flexibility of the structure at the dia­

phragm locations 

* Fg is the absolute flexibility of the structure at the interior 

support locations 

6. is the relative displacement vector at the sections of dia­

phragms or the absolute displacement vector at the interior 

support section due to applied external loads 

R is the reactive force vector at the junction of one diaphragm 

or interior support and the girders 

The solution to the above equations will give the reactive forces at the 

diaphragm and support locations. 

If S". is the i nter'na 1 force vector at secti on i of the primary 
lJ 

structure due to loads at location j, and S. is the internal force vector ln 
of section i of the primary structure dut to unit loads at sections n, then 

the internal forces at section i of the continuous bridge with diaphragms 

* wi 11 be S .. , where 
lJ 

* S .. 
lJ 

K 
= S.O + I s. R 

1 J n=l 1 n n 

and 

K = sum of the number of sections with diaphragms and interior 

supports 
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For a two span continuous bridge with five girders, fifteen unit 

load loadings and fifteen unit couple loadings are needed to generate the 

flexibility matrix of the structure if there is one diaphragm in each 

span. If symmetry is considered, only six unit load loadings and six unit 

couple loadings are needed. 

3.3.3 Determination of the Influence Lines for Four Wheel Loadings 

Concentrated loads are placed at various locations on the beams 

of the bridges as shown in Fig, 3.3, and an influence surface could be 

generated. Instead of using the influence surfaces to find the critical 

moments in the beams due to a system of applied loads, influence lines 

for the moments in the beams due to a four wheel loading moving along the 

bridge are used. The choice of the four wheel loading is to simulate the 

loading of single axles of two trucks going in the same direction along 

the bridge. A previous study (12) has shown that two lane loadings always 

produce maximum moments in girders, if the reduction factors for multilane 

loadings given in the AASHO specifications are used. The axles are aligned 

in the transverse direction, The spacing of the wheels is in accord with 

the AASHO recommendatinns (see Fig. 2.3)0 

Then the problem is to locate the position of the wheels in the 

transverse direction which will give a maximum moment for a beam at a 

section. The maximum moment in each beam at section i due to a four wheel 

loading (4W loading) at section j can be found by searching for the maxi­

mum moment induced in a beam as the 4W loading moves from one edge to the 

other edge of the bridge. Moments at section in each beam due to unit 

loads applied at A, B, C, D, and E at section j are first calculated and 
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a curve is fitted through the five data points, giving the influence lines 

for the moment in a beam at section i due to a unit load moving trans-

versely at section jo The effect of a 4W loading is the sum of the co­

ordinates of the influence line at the positions of the loads multiplied 

by a scalar constant (i.e., the magnitude of the load). 

After some trial and error, it was found that the best fit curve 

for the influence line for beam A is either a fifth degree polynomial or 

three piecewise smooth parabolas connecting A, B, C; B, C, D; and C, D, E. 

The three piecewise smooth parabolas were used with the average value ·of 

the two curves being used between B, C, and C, D. For beam B, the best 

fit curve is three piecewise smooth parabolas as in beam A. For beam C, 

a seventh degree polynomial is used. The results of the curve fitting are 

shown on Fig. 3.4. The points .at the beams, A through E, are the given 

data points, and the intermediate points are those calculated in the curve 

fitting process, The curves show good agreement with the value when the 

load is applied on the slaboNote that there is a kink in the curve for 

beam C between A Band D E when k = 0.0. This kink may give a small error 

for the total moment due to a 4W loading, but the error is small because 

of the large influence coefficient at C and the wheels will be in the 

regions between Band D at maximum moment because of symmetry 0 

30304 Determination of Effects of Truck Loadings 

To get the absolute maximum moment in the beams, theoretically, 

the trucks have to wiggle along the bridge. However, it has been assumed 

that the trucks will move along straight lines parallel to the girders in 

the bridge. The result of preliminary analyses showed that the absolute 
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maximum moment in a beam.due-to a.4W loading will be when the 4Wloading 

is at or near,the.4/l0point.of-onespan.from the simply supported.end •. 

For the purpose.of.finding,the.effect of truck loadings,.the transverse­

position of the:wheel .ts .. assumed .. to be:that which will induce .amaximum. 

positive moment at.the~4!10~point~-With the distance of the wheel from 

the edge beam .. thus-.fixed, we can proceed to find the maximum.moment~i·n 

the beams due to-the~two.truGk-loading. Again, having the influence co­

ordinates for.a.beam.at a.particular section, a curve is fitted to pass 

through all the points .. The.Lagrangian interpolation function (18) is 

used to fit the data.points.and.the moment due to a two truck loading is 

the sum of the influence coordinates at the position of the wheel multi-­

plied by the respective fractions of-weight in each line of wheel. For 

example, for a HS2Q-loading.the-front axles will h~ve a scalar factor of 

0.25 and the real axles will have a scalar factor of 1.0. 

3.4 Computer Program Information 

3.4. 1 General Programming Considerations 

Four computer.prQg~ams.were.developed to analyze the ,bridgeo --The· 

first program,which ,handles the analysis,of the primary structure was-a 

modification of the-program.developed.by.Sithichaikasem (12). Extensive 

use of secondary. storage. l.S needed. to store the data generated during the 

analysis of the prima~y .structure.. The second program is used to add in 

the effect of supports and-diaphragms ,and-to do the back substitution. The 

third program takes.care of the curve fitting process and finds the loca­

tions of the wheels to .give the·maximum moments for 4W loadings and two· 

truck loadings. The input of the third program is the output of the second 
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program and no rearrangement of data is needed for the input of the third 

program. The fourth program plots the influence lines for sections 2 

through 9 (designated in Figo 303) and punches the influence coefficients 

on da ta ca r'ds. 

304.2 Convergence Behavior of the Method of Computation 

In order to find the effect of the number of harmonics on the 

accuracy of the solutions, a simply supported bridge with H = 20, bla = 

0.05, and b = 8 ft which was subjected to three loading cases was studied. 

The loadings were 

10 A 10 kip concentrated load at midspan of beam A 

2. A 10 kip concentrated load at midspan of beam B 

30 A 10 kip concentrated load at midspan of beam C 

The results of the analysis are shown in Figs, 3.5 to 3.7. The total com-

posite moment of all beams is compared with the total static moment as 

calculated from the elementary beam theory. It 1S noted that by using just 

one harmonic the total moment at midspan is already 82 percent of the 

static moment, and by using 5 harmonics 93 percent of the total static 

moment is obtained. The rate of convergence is much smaller after using 

5 harmonics, and at 35 harmonics 97 percent of the total static moment 

is distributed among all the beams 0 The figures show that regardless of 

the loading condition, the unloaded beams always converge to a constant 

moment after a few harmonics but the moments in the loaded beam continue 

to increaseo Of the 3 percent of the total static moment that is unac­

counted for at 35 harmonics, 1 to 2 percent of the total moment may be 

the slab moment (7) and the other 1 percent may p~obably belong to the 

moment of the loaded beamo 
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Chapter 4 

PRESENTATION AND DISCUSSION OF RESULTS 

4.1 General Discussion 

The main objective of this investigation is to study the effects 

of diaphragms on the load distribution characteristics of continuous slab-

girder bridges. The effects of diaphragms on" load distribution of simply 

supported bridges were investigated by Veletsos and Siess (14), Wei (13), 

and Sithichaikasem (12), and others (19). It is difficult to make a 

direct comparison between the results of an analysis of a continuous 

bridge and a simply supported one because of the change of the "effective" 

span length due to the negative moment at the interior support. The 

studies of Veletsos and Siess, Wei, and Sithichaikasem paved the way and 

brought out the significant parameters that influence the load distribu­

tion characteristics of the bridgeso Most of the attention will be fo-

cused on the moments in the beams since the magnitudes of the beam 

moments are the governing parameter which control the design of the , 

girders. In addition to the effects of the diaphragms, the influences of 

the bridge parameters, H, b/a and b on moment distributions were also 

studied. The results are presented as follows: 

1. Effects of diaphragms stiffness on distribution of a point 

load in continuous bridges, 

2. Effects of location of diaphragms on load distribution, 

3. Effects of diaphragms stiffness on load distribution of 

a 4W (4-wheel) loading, 
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40 Effects of bridge parameters on moment distribution, 

5. Comparison of the effects of diaphragms for a simply supported 

bridge and a two span continuous bridge, 

6. Effects of diaphragms on moments from truck loadings, and 

7. Effects of diaphragms on three-span bridges. 

Based on the results of the previous investigation of simply 

supported bridges, Ref. 12, the effects of warping were found to be neg­

ligible and the effects of torsional stiffness of the beam are important 

only when the torsional stiffness of the beam approaches that of a box 

section. In this analysis the warping coefficient is taken to be zero 

and the torsional stiffness is calculated based on the transformed sec-

tions of the prestressed girders. 

4.2 Effects of Diaphragm Stiffness and Location on Distribution 
of a Point Load in Continuous Bridges 

Moment envelopes of beams A, B, C are shown in Fig. 4.1 to 4.3, 

respectively for single loads moving along the beams. The influence lines 

of moment at the interior supports of beams A, B, C are shown on Fig. 4.4 

to Fig. 4.6. The figures show that the diaphragms reduce the moment at 

the vicinity of the locations of diaphragm and that a diaphragm is more 

effective in moment reduction for the interior beams than for the edge 

beam. In all cases, the absolute maximum positive moment is reduced and 

the location of the maximum moment is displaced. Considering the relative 

diaphragm stiffness of k = 0.4, it seems that for a point loading, the 

greatest moment reduction occurs when the diaphragm is at 4/10 point of 

the span from the simply supported end. The diaphragms cause less 
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drastic changes in the negative moments at the interior supports. Fig. 

4.4 to 406 show that the reduction in negative moment is approximately 

the same for all beams, and it seems that there is no single optimum 

location of diaphragm, when the maximum negative moment at the 

support is concerned. 

The effects of location of diaphragms on load distributions in 

simply supported bridges were studies by Sithichaikasem (12). The results 

of his study showed that the diaphragms have the greatest effect on the 

load distribution at the immediate vicinity of the diaphragms and the 

best location of the diaphragm is 'where the maximum moment would occur. 

For a simply supported bridge, the optimum location is at the midspan 

The effects of adding more than one diaphragm at other locations for a 

simply supported bridge were also studied. The results of the analyses 

showed that the effects of having one diaphragm at mid-span or two dia­

phragms at 5/12 point or two diaphragms at 1/4 points and one at mid-

span are practically the same. 

For a continuous bridge, the maximum positive moment will no 

longer occur at the midspan but rather the maximum will be somewhere 

away from the midspan towards the simply supported end. Three locations 

of diaphragms were studied: a) one diaphragm at midspan of each span, 

b) one diaphragm at the 4/10 point of each span, and c) one diaphragm 

at each 1/3 point of each span. 

The positive moment envelopes and the influence lines for nega­

tive moments at the interior supports are shown in Fig. 401 to Fig. 4.6. 

The moment coefficients, em' due to 4W loadings are shown in Fig. 4.7. 

For the maximum positive moment in the beams, the effects of 
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one diaphragm at midspan of each span or two diaphragms at the 1/3 points 

of each span are practically the same~ 

The bridge with one diaphragm at 4/10 point is slightly differ-

ent than the other two in three ways: 

1. At k = 0.05, the moments in beams A and B are approximately 

the same, whereas for the other two cases, the beam B 

moment is greater than the beam A moment, 

2. The maximum moment in the exterior girder increases much 

more rapidly and becomes the controlling girder once the 

relative diaphragm stiffness is greater than 0.05, and 

3. At k = 0.4 the difference in moment among the girders are 

the greatest and the magnitude of the positive moment in 

the exterior girder is the greatest. 

The variation of maximum negative moment at the interior support 

bears no resemblance to that of the positive moments in the girders. The 

best load distribution occurs when the diaphragm in at the 4/10 point 

with the k value ranging from 0.1 to 0.4, although no combination of dia-

phragms results in a reduction in negative moment in excess of 7.5 percent. 

For the bridge with diaphragms at midspans, the optimum k value is approx­

imately 0.10 With 1/3 point diaphragms, the optim~m k is slightly smaller. 

It can be concluded that the optimum diaphragm is one at the 4/10 

point, with a k value between 0.05 to 0.075~ Such a flexible diaphragm is 

rarely practical or realistic because it would have to be either way 

shallow or very thin. Host of the diaphragms cast in prestressed concrete 

girder highway bridges in Illinois are 8-in. thick and about 0.8 the depth 

of the girders, and have k values of approximately 0.3 to 0.4. In view 
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of this fact, the best choice in lieu of a flexible diaphragm at 4/10 

point is a midspan diaphragm, since stiff diaphragm at this point has 

the least detrimental influence on load distribution characteristics of 

the bridge. 

For this particular bridge, no arrangement of diaphragms is 

capable of causing a significant reduction in maximum moments, and from 

a cost-effectiveness point of view, no diaphragm is undoubedly the opti­

mum since a flexible diaphragm will cost about the same as a stiff one. 

4.3 Effects of Diaphragm Stiffness on Load Distribution 
of 4W Loading 

Figo 4.8 to Fig. 4.16 show the effects of diaphragm stiffness 

for a 4W loading, where the four wheels are spaced as shown in Fig. 2.3. 

As discussed in Ref. 14, the influence of diaphragm on load distribution 

will be smaller for a multiple load loading than for a point load. Thus, 

the change {n moment coefficients of a 4W loading with various diaphragm 

stiffness will be small. 

For bridges with H = 5, bla = 0.05 and 0.10, beam A is always 

the controlling girder regardless of beam spacing, for both positive 

and negative moments. For a small beam spacing of 5,ft, the C values 
m 

(em = p~) for the maximum positive moments of beam Band C are fairly 

clbse together, but this is not the case for the negative moment at the 

support. When b = 5 ft and bla = 0.1, the Cm values at the supports 

for beams A and B are the same (Fig4 4.9), in contrast to the distinct 

differences in negative moments of beams A, Band C when b/a = 0.05 

(Fig. 4.8). With the larger bla ratio of 0.20, the load distribution 
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characteristics are markedly different from that of the previous cases, 

as shown in Fig. 4.10. When b = 5 ft, the center b~am, beam C, is th~" 

controlling girder while the moment in beam A and B are fai~ly close io-

gethero With the larger beam spacings of 7 ft and 9 ft, the controlling 

beam is beam B, but the moment in girder C is only slightly less than 

girder B, 

When k ~ 000, beam A has the smallest C , but as k incre~i~s, 
m 

the moments in beam A quickly catch up with the moments in beam C and 'are 

greater than in beam C at k = 0.40 In any case, for H = 5, bla = 0.2, 

and b = 5, 7 or 9 ft, the controlling girder is never the edge girder 

and the increase in diaphragm stiffness helps to bring the moments in 

the beams closer to the same values~ For the bridges with H = 5, b/a.= 

0.05 and 0.10, and b = 5, 7 or 9 ft the controlling girder is always 

,the edge girder, beam A, and the increase in diaphragm stiffness only 

does more harm than good. 

Tables 401 and 4.2 show the moment coefficients as k 

changes from zero to 0.4. It is obvious that C for beam C 
m 

always decreases (Ref. 14) and has the largest percentage change. 

It seems that for a same H value and bla ratio, the largest changes 

in C ,for positive moment, with various k values, occur in bridges with m 
b = 7.ft. For the case of negative moment c~efficients, the larger the 

beam spacing, the greater the change in C as k varies. 
m 

As the relative stiffness of the glrders increases to H = 10 

and 20, the behavior of the bridges with bla = 0,05 is approximately the 

same as that for H = 5 (Fig. 4.11 and Fig. 4.14). ,For the bridges with 

H =, 10.and 20 and b/a·~ 0.10, the controlling girders, when there are 
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no diaphragm, are still the same as in the case of H = 5 - beam B or 

beam C. But as t~e diaphragm stiffness increases, the moments in beam 

A quickly become the controlling moments. The higher the relative 

girder stiffness, H, the greater is the value of k needed for beam A to 

attain the largest C. The optimum diaphragm stiffness for H = 10 is 
m 

from 0.03 to 0.05, and for H = 20 is from 0.05 to 0.08. The behavior 

of the negative moment at the support is approximately the same as that 

of the maximum positive moment. As k varies from 0.00 to 0.4, the change 

of C is greater than that for H = 10 and 20 than for H = 5, but the m 
trend is the same with beam C having the greatest change in Cm" 

When b/a = 0.2, the bridges with H = 5, 10, and 20 are similar 

in that the interior beams are the controlling beams. As H increases, 

the difference in moments between the interior and edge girders increases, 

as can be seen in the moment values given in Tables 4.1 and 4.2. Even 

when k reaches a value of 0.4, girder A still has the smallest value of 

C and this is also true for the negative moments at the support. The m 
optimum diaphragm stiffness for these bridges is k = 0.4 or higher. 

So far we are concerned with the maximum moment in the loaded 

span or at the support. To complete the picture of the effects of dia­

phragm stiffness on a 4W loading, the effects of the load distribution 

characteristics in the unloaded span are shown in Fig. 4.17. Comparing 

Fig. 4.17 and Fig. 4.8 for the bridge with H = 5, b/a = 0.05 and b = 7 

ft, we see that the effects of diaphragms on this bridge, which already 

has a good load distribution, are practically nonexistant. However, it 

is noted that the maximum negative moment at the mid-span of the unloaded 

span is only 42 to 45 percent of the maximum moment at the support instead 
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of the 50 percent value found for a beam. 

Compa~ing Fig. 4.12 and Figo 4.16 to Fig. 4.18, there are big 

differences between the behavior of the negative moment at the midspan 

of the unloaded span and the maximum moment at the support. For the 

bridge with H = 10, b/a = 001, and b = 7 ft, the moment distribution at 

midspan of the unloaded span is unique in itself. It resembles neither the 

behavior of the maximum positive moment nor the maximum negative moment. 

The midspan moments in beams A, Band C of the unloaded span are 54.5, 

42.0, adn 34.0 percent of the respective maximum negative moments at 

the support when k = 0.0 and the moments stay nearly constant as k 

increases. 

For the bridge with H = 20, b/a = 0.2 and b = 7 ft, the moments 

in the beams of the unloaded span do not show the large difference in 

moments in the beams as exhibited in the beam moments at the support, 

The maximum negative moment at midspan of the unloaded span of beams 

A, Band Care 56.6, 45.0, and 46.0 percent of the respective maximum 

negative moments at the support. As k increases, the percentage of moments 

increases for beam A and decreases for beams Band C. 

It can be concluded that the moments in the unloaded span of 

the two span continuous bridge are more evenly distributed than either 

the support negative moments or the positive moments in the loaded span. 

The influence lines at various sections of a number of repre­

sentative bridges due to a 4W loading are shown on Fig. 4.18. 

The positive moment envelope and the influence lines at various section 

of a two span continuous beam is shown on Fig. 4.19, for purposes of 

comparison. For a beam, the influence lines are always concave upwards 
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while the influence lines for beam A of the bridges exhibit a concave­

convex-convex-concave sequence, indicating that at some points the slabs 

are helping to support the beams. The influence lines for the interior 

beams are always concave upwards and they can be interpreted as the beams 

always support the slabs. 

The addition of the diaphragms may not drastically change the 

maximum moments in the beams but the location of the maximum moment is 

changed. The higher the diaphragm stiffness, the greater is the shift 

of the location of the maximum positive moment. As the diaphragmis 

stiffness increases, the location of the maximum positive moment of beam 

A shifts from 0.42 of the span from the simply supported end towards mid­

span, but the location of the maximum positive moment of beam Band C 

shift from 0.42 from the simply supported end towards the 0.3 point. 

It seems that the amount of shift is not significantly affected by the 

ratio of the girder's stiffness to slab stiffness, H. It seems that 

the shift is more dependent of the beam spacing, b, and the b/a ratio. 

In general, with the exception of beam C, the smaller the beam spacing, 

the lesser is the shift and the larger the b/a ration, the larger is 

the shift. There is no apparent relationship between the shifting of 

the maximum moment location mbeam C and either b or bfa. The maximum 

shifting of maximum moment location is in beam C and the higher the dia­

phragm's stiffness, the greater is the shift. The following are typical 

values of shifting when the value of k varies from 0.0 to 0.4. 

The point of maximum location is expressed as the fraction of 

a span length from the simply supported end; with the following values 

being typical: 
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For beam A the change is approximately from 0.44 to 0.5 

For beam B the change is approximately from 0.42 to 0.38 

For beam C the change is approximately from 0.42 to 0.36 

The most severely affected bridge is the one with H = 20, b/a = 

0.05 and b = 7 ft. The changes are: 

Beam A from 0.44 to 0.5 

Beam B from 0.42 to 0038 

Beam C from 0.42 to 0.3 

The change in maximum moment location for a 4W loading will also 

change the location of the maximum moment from the truck loading. In order 

to accomodate this shifting, the profile of the prestressing steel in the 

prestressed concrete girder may have to be modified. 

4.4 Effects of Bridge Parameters on Moment Distribution 

Fig. 4~20 to Fig. 4.25 shows the effects of bridge parameters on 

the moment distributions in the beams. The moment coefficients shown are 

the maximum moment coefficients due to a 4W (four wheels) loading on a 

two span continuous bridge without intermed'iate diaphragms. In these 

figures, the maximum positive moment coefficients are compared to those 

of a simply supported bridges. The solid lines are for continuous bridges 

and the dotted lines are for simply supported bridges. The data points 

for the simply supported bridges are taken from Ref. 12, Fig. 5.27. 

For a beam spacing of 5 ft (Fig. 4.20), it can be seen that the 

moment coefficients of a continuous bridge for beam A and beam B are not 

much affected by the relative girder stiffness, H. For beam A, they vary 

from 0.19 to 0.20 and for beam B, they vary from 0.185 to 0,192. The same 
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trend occurs in the simple supported bridge for beam A. The moment 

coefficients of the center beam, beam C, increase as H increases and the 

magnitude of the moment coefficient is a function of both the relative 

girder stiffness, H, and b/a ratioo It seems that the larger the b/a 

ratio 1 the larger the increase in C values as H increases. The simply m 
supported bridges also exhibit this monotonic increase in C with Hand m 
the curves for the simply supported bridge are approximately parallel 

to those forthe continuous ones~ If we make a comparison of the moment 

coefficients between a simply supported bridge and a continuous bridge, 

we will find that a much larger decrease in moment occurs in beam A than 

in the interior beams. Table 4.3 shows the percentage decrease in moment 

coefficients in beams for a continuous bridge relative to a simply 

supported bridge. The effects of continuity decreases the moment in 

beam A about 17 percent or more, while for the interior beams the 

decrease in moment coefficient usually varies from 9 to 15 percent. 

F~g. 4.21 shows the effects of H on C values for beams A, B, 
m 

and C when the beam spacing is 7 ft. For a continuous bridge, except 

when b/a = 0.05, the moment coefficients for beam A decreases as H in-

creases. The moment coefficients increase as H increases for b/a = 0.05. 

For beams Band C, the moment coefficients always increase as H increases 

and as b/a decreases. The change in Cm for beam A with H is much smaller 

as compared to beams Band C. Only in the case when b/a = 0.05 is beam 

A the controlling beam. When bja equals to 0.10 and 0.20, the controlling 

girder is beam B. If we compare the Cm of beam A for continuous bridges 

and simply supported bridges, we will find that for b/a = 0.05, the Cm 
of the simply supported bridge stays at a level of 0.3 and is unaffected 
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by H, whereas for a continuous bridge, C increases as H increases. When 
m 

b/a = 0.10, Cm first decreases and then increases with the increase of H. 

For beam B, the curves for the simply supported bridges are fairly similar 

to those of the continuous bridge. Table 4.3 shows the percentage decrease 

in Cm of beam A, varying from 16.6 to 25 percent and for beam B, varying 

from 10 to 13.6 percent, comparing positive moments in continuous and 

simply supported spans. 

Fig. 4.22 shows the effects of H on the C for beams A, B, and m 
C when b equals to 9 ft. For a continuous bridge, when b/a = 0.05, C 

m 
for beam A increases with H and for b/a = 0.1 and 0.2, Cm decreases with 

H. For a simply supported bridge, C for beam A increases with H for m 
both b/a = 0.05 and 0.10. For the interior beams, regardless of the' type 

of bridges, C always increases as H increase. It seems that the increase 
m 

in Cm with H of a simpJy supported bridge is larger than for the continuous 

bri dge for beam C, otherwfs·2:;. the trend is qu i te simi 1 a r to the case when 

b equals to 7 ft. 

It can be concluded that the edge girder A is the controlling 

girder only for the cases when b/a = 0.05 for various beam spacing and 

H value. For other b/a ratios, the interior beams will be the controlling 

griders. 

The decrease in' positive moment coefficients because of con-

tinuity can be separated into two categories; one for exterior girders 

and one for the interior girders. The edge girders always experience a 

larger decrease in positive moment coefficient ranging from 15 to 25 

percent with an average of 18.6 percent. For the interior beams the 

decrease in C is smaller, ranging from 9 to 16 percent with an average 
m 
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of 12.7 percent. 

The variations of maximum negative moment coefficients at the 

supports with respect to b, b/a and H are similar to those of the maximum 

positive moment coefficients. In general, the Cm values for the interior 

beams, beam Band C, increase with Hand b/a ratio (Fig. 4.23 to Fig. 4.2S) 

but the rate of increase is smaller than for the maximum positive moment 

coefficients. For the edge girder, girder A, the maximum negative moment 

coefficients are fairly insensitive of the variation of H. The maximum 

negative moment coefficient occurs when b/a = O.OS, and Cm decreases as 

b/a increases. When b/a = 0.05, C increases as H increases and when b/a . m 

= 0.10 and 0.20, Cm either stays constant or decreases slightly. 

Recalling that for a two span continuous prismatic beam sub­

jected to a moving point load, the ratio of the maximum positive moment 

to the maximum negative moment is about 2.17; it can be seen from Table 

4.4 that the relationships between the maximum positive and maximum 

negative moments in a two span bridge are about the same as for the two 

span prismatic beam in spite of the fact that the loading is different. 

4.5 Comparison of the Effects of Diaphragms on Simply 
Supported and Continuous Bridges 

Table 4.S shows the changes with increasing diaphragm stiffness, 

in the moment coefficients of the girders due to a 4 wheel loading moving 

on simply supported and two span continuous bridges with H = 20, b/a = 

0.10, and b = 7 ft. The data of the simply supported bridge are taken 

from Ref. 12, Fig. 4.3S. The changes in moment coefficients in the girders 

are expressed as percentage change relative to the maximum moments in the 
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girders when k = 0.00 (i.e., no diaphragms). 

Regardless of the type of bridge, the change in moment coefficients, 

whether it is an increase or decrease of positive or negative moment at 

k = 0.05 is about 40 to 60 percent of that when k = 0.4. That is to say 

that the change in maximum moments in the beams are not very sensitive to 

the diaphragm's stiffness once the diaphragms are installed. Depending on 

the beam spacing of the bridge, the effects of diaphragms are more'~pro­

nounced in a simply supported bridge than in a continuous bridge, As k 

increases from zero to 0.4, the percentage change in e of the edge beam 
m 

for both the simply supported and continuous bridges are approximately the 

same. For the interior girders, as k increases the change in em of the 

simply supported bridge is greater than in the continuous bridge. When k 

reaches the value of 0.4, the percentage change in e of the simply supported 
m 

bridge are approximately twice that of the continuous bridge, especially 

for the bridges with large beam spacing. The largest change in moment 

coefficients for both types of bridges occur in the interior beams. At 

a k value of 0.4, the change in e ranges from 20 to 30 percent or more. m 
for girder C of a simply supported bridge, and it may be considerably less 

for girder B apd in continuous bridges. 

It was shown in Ref. 12 that the effects of the diaphragms 

decreases at the sections far -away from the location of the diaphragm. 

But it is not necessarily so for the negative moments at the supports. 

Table 4.5 shows the percentage change in maximum negative moment at the 

supports. Table 4.5 shows the percentage change in maximum negative moment 

coefficients as a function of the diaphragm's stiffness. When k = 0.05, 

the percentage changes in maximum negative moment coefficients are approx-
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imately the same as for the maximum positive moment, and are slightly greater 

than the changes in maximum positive moment when k = 0.4. 

4.6 Effects of Diaphragms on Moments from Truck Loadings 

Having the influence lines for 4W loadings, the effects of two 

trucks with AASHO HS load distributions, running in the same direction 

along the bridge, can be analysed by the method of superposition. The 

spacings of the axles and the distributions of loads are shown in Fig. 2.3b. 

When considering the moments due to truck loading, the direction in which 

the trucks are going will affect the maximum moments in the beams. The 

absolute maximum moments in the beams due to two trucks running in either 

direction are designated as the maximum moments. As discussed in Ref. 14, 

the influence of the diaphragms will decrease as the number of load in­

creases; so only the bridges which are significantly affected by the dia­

phragms will be discussed. Fig. 4.26 shows the maximum moment coefficients 

in beams A, B, and C due to two HS truck loadings on the bridges with H = 

20, bja = 0.2, and b = 5, 7, and 9 ft. 

For the bridge with b = 5 ft, the length of one span is only 

25 ft long and the full length of the truck cannot be parked in one span. 

Therefore, when considering the maximum positive moment for this case 

when b = 5 ft, only the two heavy axles of the trucks were considered. 

The maximum positive moments due to two axiles are slightly greater than 

those from one axle placed at the point of maximum moment in the moment 

envelope. There a~e virtually no changes at all in em for girders A and 

B and only a slight decrease in moment for beam C as k varies from 0.0 

to 0.4. The diaphragms just cannot redistribute the loads in beam C to 
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beams A and B. 

The maximum positive moment induced in the beams due to 2 trucks 

running along the bridge are affected by the direction in which the trucks 

are going. Two solutions, one for the trucks running towards the interior 

support and one for the truck running away from the interior support were 

obtained and the maximum positive moments that would be induced in the beams 

are taken as the maximum moments. When the length of one span is small, 

the maximum positive moment may be due to the loading of the two rear heavy 

axl es of the trucks alone and the 1 i ghter axl es are some'where beyond the 

pier. 

For the bridge with b = 7 ft, the edge beam moment never has 

the controlling moment when k varies from 0.0 to 0.1. At higher diaphragm 

stiffnesses, loading due to two heavy axles induce a slightly larger moments 

in the beams. They are shown as dotted lines in Fig. 4.26. For the bridge 

with b = 9 ft, the span length is long enough that loading due to the two 

heavy axles along can no longer develop the maximum positive moment. Two 

trucks running away from the interior support will induce the absolute 

maximum positive moments in the beams. In all cases, the diaphragms tend 

to reduce the moments in the interior beams and increase the moments in the 

exterior girders. A relative diaphragm stiffness of 0.4 for b = 7 ft and 

0.3 for b = 9 ft will help to improve the load distribution of the positive 

moment of the bridge, reducing the maximum positive live load moments by 10 

to 15 percent. 

The maximum negative moment at the supports are found by assuming 

that the two heavy rear axles of the trucks are right on the point of max-

imum moment in the influence line for moment at the interior supports. By 
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doing so, we have the freedom of varying the spacing of the rear axles as 

long as they are kept within th~'limit of 14 to 30 ft. If the spacing of 

the axles thus found, is more than 30 ft, it is assumed that the two rear 

axles will have a spacing of 30 ft and they are placed symmetrically with 

respect to the interior support. 

The 30 ft axle spacing limit controlled for the case of girder A 

when b = 7 ft and for all girders when b = 9 ft. 

The graph of moment coefficients of the negative moment at the 

interior support against k are plotted on Fig. 4.26. For b = 5 ft, the 

maximum negative moments occur at beam C and for b = 7 and 9 ft, the max­

imum moments occur at the interior beams. Diaphragms help to redistribute 

the loads, but there is a limit to their usefulness and their effects on 

load distribution for negative moment are never as prominent as for positive 

moment. 

4.7 Effects of Diaphragms on Three Span Bridge 

In order to get an insight on the effects of diaphragm on multi­

span bridges, a three span continuous bridge was analysed. By comparing 

the results of the analyses of the three span continuous bridge and the two 

span continuous bridge, a more general conclusion on the effects of dia­

phragms could be made. A three span continuous bridge with H = 20, b/a = 

0.10 and b = 7 ft was analyzed and the maximum positive moment coefficients 

in each span and the maximum negative moment coefficients at the interior 

supports due to a 4W loading moving along the bridge were tabulated in 

Table 4.6. 

The maximum positive moment coefficients for all beams of the end 
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span of the three span bridge are slightly lower than in the two span 

bridge, and the reverse is true for the negative moment at the support. 

The results suggest that the three. span bridge is a little bit stiffer than 

the two span bridge. The variation of the maximum positive C values of 
m 

the end span of three span bridge with k is the same as for the two span 

bridge, and there are slightly higher variations in C for the maximum 
m 

negative moment coefficients at interior supports and the maximum positive 

moment coefficient at interior span. 

The trend of the maximum positive moment coefficients for the 

interior span is a little different from the end span. Fig. 4.27 shows 

the relation of Cm against k for the maximum positive moments and maximum 

negative moments. It can be seen that the change in C of the center span m 
when k varies from zero to 0.40 are slightly greater than that in the end 

span. Physically, the results indicate that the end span of the three span 

continuous bridge is less sensitive to the effects of the diaphragms than 

is the interior span. This may be due to the increase in the effective 

b/a ratio and the concurrent increase in the H value because of the effects 

of the negative moments at the interior supports. 

The influence lines for the moment at the supports and at the 

center of each span are shown in Fig. 4.28 and Fig. 4.29 and their trends 

are comparable to the two span continuous bridge. Thus it can be concluded 

that most probably, the effects of diaphragms on a multi span bridge are 

not much different than that of the two span continuous bridge. 
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Chapter 5 

COMPARISON OF AASHO DESIGN MOMENT COEFFICIENTS WITH 
THEORETICAL DESIGN MOMENT COEFFICIENTS 

Comparison of the beam design moment coefficients for slab'and 

girder bridges from the 1969 AASHO specifications, Section 1.3.1, and the 

coefficients as obtained from this investigation are shown in Figures 5.1 

to 5.4. The loading applied on the bridge is the 4 wheel loading rather 

than a two-truck loading. For the edge beams, the data points for b/a 

= 0.05 give the upper bound for the maximum positive moment coefficients 

for all beam spacings studied; and b/a = 0.2 gives the lower bound for 

the maximum positive moment coefficients. The AASHO is conservative for 

the beam spacing of 5 ft, but is unconser~ative for beam spacing of 7 and 

9 ft. The calculated Cm values are approximately 9.6 percent and 5.1 

percent higher than AASHO predicted C values for b = 7 and 9 ft respect-m 
ively. 

values. 

The percentage values are based on the AASHO recommended C m 

The interior beams positive moment coefficients show a much 

larger scattering than the edge beam moments, when plotted verses the 

beam spacing, b. For b = 5 ft, the data points for beam C have a much 

larger scattering than beam B while for b = 7 and 9 ft, the scattering 

for beam C is only slightly greater than for beam B. The large scatter­

ing of data points indi~ates that the Cm values cannot be solely pre-

dicted by one parameter, the beam spacing, aloneo The C values as m 
calculated from AASHO are quite unconservative for some bridges. As 

beam spacing decreases, the differences between the maximum positive 

moment coefficients and the AASHO Cm values increase. At b = 5 ft, the 
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maximum difference is about 31.9 percent greater than the AASHO value and 

at b = 7 and 9 ft the maximum differences are approximately 13.6 percent 

and 9.5 percent higher, respectively. It can be seen that most of the 

points that fall above the AASHO line are those with b/a = 0.1 and 0.2. 

The behavior of the maximum negative moment coefficients are 

approximately the same as the maximum positive moment coefficients ex-

cept that less scattering is observed in the interior beams moment values. 

The AASHO recommended C values for the edge beams are conservative for 
m 

the beam spacing of 5 ft only and they are generally unconservative for 

beam spacing of 7 and 9 ft. The upper bound for the Cm values are those 

of b/a = 0.05 and the lower bound are those for b/a = 0.2. The maximum 

differences of the calculated C values to AASHO C values are approxi-m m 
mately 14.2 and 11.7 percent higher for beam spacing of 7 and 9 ft. For 

the interior beams the AASHO recommended Cm values are unconservative for 

many bridges. The trend is similar to that of the positive moment co­

efficients with the maximum deviation from the AASHO line of 36.7, 16.5 

and 13 percent for beam spacing of 5, 7 and 9 ft. 

, The comparison cited above is only confined to a 4 wheel load­

ing and the results may not necessarily reflect the load distribution of 

truck loadings. 

While it appears that some changes should be made in the AASHO 

load distribution values, this study has not been comprehensive enough 

to develop design recommendations. 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

From the analyses of continuous bridges with various diaphragm 

stiffness and various bridge properties, the conclusions can be summarized 

as follows: 

The effects of continuity: 

1. The variation in the maximum positive moments of simply 

supported bridges due to the effects of the diaphragms is 

larger than in continuous bridges. The load distribution 

(of a 4-wheel loading) in continuous bridges without diaphragm 

is similar to that in simply supported bridges without dia­

phragms. The effects of continuity tend to cause a greater 

reduction in maximum positive moment in the edge girder, 

beam A; with an average reduction of 19 percent, than in the 

interior girders, with an average reduction of 13 percent, 

as compared to simply supported bridges of the same span, 

beam spacing, and H values. 

2. The effects of continuity greatly stiffen the bridges. 

3. The average ratio of the maximum positive moment, due to 4-

wheel loads, to maximum negative moment at the support is 

approximately 2.17 (range: 2.00 to 2.38). This ratio is 

about the same as in a continuous beam. 

The effects of diaphragms on moments due to 4W loadings: 

1. Diaphragms are always helpful in reducing the maximum moments 

in the loaded girders if the load is a single point load. 
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2. For bridges with b/a = 0.20, the maximum moment always occurs 

in beam C, regardless of the beam spacing and loading condi-

tion. Stiff midspan diaphragms, with a relative diaphragm 

stiffness of 0.40 or above, are always helpful in improving 

the load distribution of the bridge especially with large, 

beam spacings. The reductions of maximum moment range 

from 5 to 24 percent, with an average of 12 percent. 

3. For bridges with b/a = 0.10, a flexible midspan diaphragm 

in each span may be helpful in improving the load distribu­

tion. For H = 10 the optimum relative diaphragm stiffness 

is approximately from 0.03 to 0.05, giving an average reduc-

tion of maximum moment of 2 percent, and for H = 20, the 

optimum diaphragm stiffness is from 0.05 to 0.08, with an 

average reduction of maximum moment of 6 percent. 

As the diaphragm st'iffness increases beyond the optimum 

stiffness, the maximum moment in the exterior beams will 

increase to values greater than the absolute maximum moments 

in the beams of the bridge without diaphfagms. 

4. Bridges with b/a equal to or less than 0.05 do not need 

any diaphragm. Diaphragms will do more harm than good in 

these bridges. 

5. By adding a diaphragm at midspan of each span of a two 

span continuous bridge, the location of the maximum positive 

moment will be displaced. For the edge girders, the locations 

of maximum positive moments will tend to go towards midspan 

and for the interior girders, the points of maximum moments 
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will tend to go away from the midspan towards the 0.3 point, 

from the simply supported end. 

6. Midspan moments in the unloaded span of two span continuous 

bridges are much more evenly distributed than in the loaded 

span. For b/a smaller than 0.1, the moments in the girders 

are nearly independent of diaphragm stiffness. The midspan 

moments in the interior beams are always less than 50 percent 

of the maximum negative moments at the interior supports, 

while the midspan moments in the edge girders may be less 

than or equal to 50 percent of the interior support moments, 

depending on the diaphragm stiffness. For the bridge with 

fairly bad load distribution characteristics (i.e., H = 20, 

b/a = 0.2), the moment distribution at the midspan of the 

unloaded span is much more uniform than that at the support. 

The increase in diaphragm stiffness tends to decrease the 

moments in the interior girders and raise the moments in 

the edge girders. The moments in the interior girders of 

these bridges are always less than half of the moment at 

the interior support and the moments in the edge girders are 

always greater than half of the moment at the interior 

support. 

The results of the analysis of a three-span continuous bridge show 

that the three span bridge is a stiffer structure than the two span continuous 

bridge. The maximum positive moments in the end span of the three span 

bridge are slightly less than that of the two span bridge. The maximum 

negative moments at the interior supports are slightly higher for the three 
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span bridge than the two span bridge. The effects of diaphragms on the three 

span bridge are primarily the same as those in the two span bridge, although 

the change in the maximum positive moments in the center span as a function 

of the diaphragm's stiffness is slightly higher than that of the end span. 

The optimum relative diaphragm stiffness of the 'three span continuous 

bridge with H = 20, b/a = 0.10, and b = 7 ft is approximately 0.07, which 

is slightly higher than for a similar two span bridge. In general, the 

behavior of the three span bridge is similar to the two span continuous 

bridge. 

The comparison of the AASHO recommended C values for 4 wheel m 

loading with the calculated C values for the positive and negative moments 
m 

are only conservative for the edge beams with 5 ft beam spacing. 

C values are generally unconservative for other cases. m 

The AASHO 

The large scattering of data points for C values indicates that m 
the distribution coefficient cannot be based on the beam spacing alone. 

Besides b, the beam spacing, both Hand bja are important parameters but 

it seems that a distribution factor as a function of band b/a will give 

a more realistic value. 

According to AASHO recommendation, diaphragms should be installed 

in bridges with spans more than 40 ft. Although flexible diaphragms, with 

relative stiffness of 0.05, may slightly improve the load distribution 

characteristics in some of the bridges with small b/a ratio, such diaphragms 

are seldom pr'actical in terms of cost effectiveness, and it would be more 

economical to build these bridges without diaphragm. The results of this 

investigation show that only bridges with large b/a ratio could benefit 

from the addition' of diaphragms. For these bridges, it generally would be 
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more economical to increase the number of prestressing strands in the pre­

stressed concrete girders to resist the load than to use diaphragms to dis­

tribute the loads to other beams. Therefore, unless necessary for temporary 

erection purpose, it is recommended that diaphragms should not be installed 

in straight highway bridges, whether they are simply supported or continuous. 
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Chapter 7 

SUMMARY 

The effects of diaphragms and continuity on load distribution 

of five beam, two and three span continuous bridges were studied. The 

method of analysis was based on Fourier harmonic analysis. For the com­

plete analysis, four computer programs running on IBM 360-75 were used. 

Given the geometric and member properties of the slabs and girders, the 

first two computer programs will calculate all the internal forces in the 

girders of the bridge under point loads. The third program combines the 

point loads by superposition to simulate the desired loading condition and 

finds the maximum moments in the girders due to the specified loading. 

The fourth program then plots out the influence lines. 

The diaphragms are assumed to provide torsional and shearing 

restraint at the junction of the girders and the diaphragms, and the 

girder supports are assumed to be nonyielding. The major concern in this 

investigation is the effects of diaphragms on load distribution in the 

slab and girder highway bridges. Based on the investigation of the effects 

of diaphragms on simply supported bridges, the selected parameters for 

this study are H, the relative stiffness of the girders to the slabs; bfa, 

the aspect ratio; b, the beam spacing; and k, the relative stiffness of 

the diaphragms. The range of these parameters are: H from 5 to 20, b/a 

from 0.05 to 0.2, b from 5 ft to 9 ft, and k from 0.0 to 1000.0. The 

criterion of comparison is, in general, the maximum moments in the girders, 

both positive and negative, as produced by the 4-wheel concentrated loading, 

and the truck loading. The effects of the location and stiffness of dia-
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phragms on the load distribution of a point load was studied. The 

results of this preliminary investigation indicated that the best location 

of the diaphragm would be a midspan diaphragm in each span and for the 

sake of studying the effects of diaphragm, the variation of k from 0.0 to 

0.4 was adequate. 

With each bridge geometry, diaphragm stiffness, and girder 

property, the effects of diaphragms under a loading consisting of four 

point loads spaced according to the AASHO recommended wheel spacing were 

studied. The variation of the maximum moments, both positive and negative 

in the girders with various diaphragms stiffnesses were studied. A com-

parison of the simply supported bridges as reported in Ref. 12 with the 

two span continuous bridges was also made. The analyses also gave the 

influence lines for moments at various sections due to the 4-wheel load-

ing. With this information, the effects of diaphragms on the maximum 

moments in the girders due to truck loadings were also investigated. 

Reference was made to the AASHO recommended design C values for both 
m 

positive and negative moment for girders due to a 4-wheel loading, and 

the AASHO recommended Cm values was compared to the calculated Cm values 

as obtained from this investigation. 

A three span continuous bridge was analyzed to give an insight 

to the load distribution in the multi-span bridge. In the discussion, 

only the moments in the girders are considered, but the internal forces 

in the girders are also available from the computer output. It is con-

eluded that except for temporary erection purposes, diaphragms are not 

required in straight highway bridges. 
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Table 2.1 

COMBINATIONS OF PARAMETERS FOR THE STUDIES OF EFFECTS OF 
DIAPHRAGMS IN TWO SPAN CONTINUOUS BRIDGES 

Slab 
b/a b . a Thickness 

(ft) (ft) (iri.r 

0.05 5 100 7025 
7 140 6000 
9 180 7.75 

0.10 5 50 7.00-
7 70 7.25 
9 90 8.00 

0.20 5 25 9.50 
7 35 9.50 
9 ·45 7.50 

0.05 5 100 6.00 
7 140 6.25 
9 180 6.50 

0.10 5 50 7.25 
7 70 6.00 
9 90 7~75 

0.20 5 25 7.00 
7 35 7.25 
9 45 8.00 

0.05 5 100 6050 
7 140 7075 
9 180 6.25 

0.10 5 50 6.00 
7 70 6.25 
9 90 6.50 

0.20 5 25 7.25 
7 35 6.00 
9 45 7.75 
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Table 4.1 r 
r--

~1AXH~ut~ POSITIVE MOMENT COEFFICIENTS 
I 
I 

DUE TO 4W LOADING L. 

[~ 
b Beam A Beam B Beam C r-: b/a 

.. 
H (ft) k = 0.0 k = 004 k = 0.0 k = 0.4 k = 0.0 k = 0.4 

5 0.05 5 0.198 0.201 0.183 o. 182 0.178 0.177 
r-
l.;._ 

7 0.241 0.248 0.223 0.221 O. 194 0.189 
9 0.277 0.282 0.247 0.246 0.210 0.204 

0.10 5 0.196 0.202 0.186 0.186 0. 192 0. 187 r~ 

U 7 0.243 0.257 0.243 0.236 0.225 0.207 .. -

9 0.285 00297 0.276 0.268 0.259 00234 
0.20 5 0.190 0.193 0.185 0.190 0.214 0.204 I .. :. 7 00228 0.243 0.270 0.253 0.265 0.241 

9 0.269 0.286 0.316 00292 0.315 0.281 

10 0.05 5 0.200 0.206 O. 186 0.184 0.183 0. 181 [ 
7 0.248 0.261 0~233 0.229 0.206 0.195 
9 0.287 0.297 0.261 0.257 0.227 0.216 

0.10 5 0.196 0.207 0.189 0.190 0.203 0.194 [ 7 0.241 0.264 0.257 0.243 0.248 0.215 
9 0.285 0.305 0.293 0.278 0.288 00246 

0.20 5 o ~ 191 0.194 0.189 0.193 0.233 0.215 I' 7 0.225 0.268 0.287 0.250 0.283 0.221 
9 0.265 0.292 00347 0.306 0.346 0.298 

20 0.05 5 0.200 0.210 0.188 o. 186 0. 189 O. 184 [ 
7 0.252 0.272 0.242 0.235 0.219 0.201 
9 0.289 0.306 00272 00265 0.248 0.226 

0.10 5 0.193 00208 O. 191 0.192 0.214 0.200 r" '" 
7 0.236 0.269 0.272 0.248 0.270 00221 
9 0.281 0.311 0.315 0.287 00320 00257 

0.20 5 0.192 0.195 0.193 00195 0.251 00222 . 
7 0.220 0.246 0.302 0.270 0.298 0.259 1 

t.._ 
9 0.259 0.294 0.371 0.313 00368 0.307 

I~ .' 
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b 
H b/a (ft) 

5 0005 5 
7 
9 

0.10 5 
7 
9 

0.20 5 
7 
9 

10 0.05 5 
7 
9 

0.10 5 
7 
9 

0.20 5 
7 
9 

20 0.05 5 
. 7 

9 
0.10 5 

7 
9 

0.20 5 
7 
9 
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MAXIMUM NEGATIVE r~ONENT COEFFICIENTS 
DUE TO 4W LOADING 

Beam A . Beam B 
k.= 0.0 .k = 0.4 k = 0,0 k = 004 

-00093 -0.095 -00087 -0.087 
-00119 -0. 121 -0.102 -00101 
-0. 138 -0.138 -00110 -0. 110 
-00088 -0.092 -00089 -00088 
-0. 113 -0. 120 -0.112 -00109 
-0.135 ~0.139 -0.126 -0.122 
-0.085 -0.085 -0.085 -00089 
-0.102 -0.108 -0.127 -00119 
-0. 121 -0. 129 -0.150 -0. 136 

-0.093 -0.096 -00089 -00087 
-00120 -0.124 -00107 -0.105 
-0. 141 -0. 142 -00115 -0.114 
-0.088 -00093 -0.090 -0.089 
-00110 -00121 -0.119 -0.112 
-0.133 -00 141 -00136 -0. 126 
-0.086 -00086 -00087 -00090 
-0.101 -00119 -00134 -00116 
-0. 118 -00'30 -0.164 -00142 

-00092 -0.097 -00090 -00088 
-0.120 -0. 127 -00111 -00107 
-0. 140 -0. 144 -0~121 -0.118 
-00087 -0.094 -0.088 -00089 
-0.107 -00122 -00126 -00114 
-0.129 -00142 -00148 -0 ~ 130 
-0.087 -0.086 -0.088 -00090 
-00099 -00109 -00140 -00125 
-0.116 -00130 -00173 -00145 

Beam C 
k = 0.0 k = 004 

-0.076 . -00075 
-00087 -0.084 
-00092 -0.089 
-0.082 -00080 
-0.107 -0.096 
-0.123 -0.107 
-00097 -00092 
-00125 -00115 
-0. 149 -0. 134 

-0.077 -0~076 
-00095 -00087 
-0.104 . -00095 
-0.088 -0.084 
-0.118 -00099 
-00137 -0.112 
-0.107 -OoO~7 
-0.132 -0.100 
-O~ 161 -0. 140 

-00080 -00077 
-0.103 -00089 
-0.116 -00100 
-00095 -0.088 
-0.127 -0.101 
-00150 -00116 
-0.117 -0.100 
-0.137 -00122 
-0.169 -0. 143 
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Table 403 

EFFECTS OF CONTINUITY ON THE REDUCTION OF MAXIMUM POSITIVE 
MOMENT COEFFICIENTS IN PERCENT IN BEAMS RELATIVE TO 

MOMENTS IN SIMPLY SUPPORTED BRIDGES 

b/a = 0005 b/a=0.10 b/a = 0.20 Maximum Moment 
Occurs in Beam 

* * 16.6, 14.0 17.0, 17.5 8.7 
* * 16.6, 14.8 17.0, 13. 1 8.7 A and C 

* 23.5 14.7 12.6 

* * 16.6, 10.7 25.3, 13.3 13.8 
* * 1606, 10.0 19.3, 11 .6 13.6 A and B 

* 19.8 11 .2 13.4 

* * 16.6, 12.0 21 .6, 12.5 13.7 
* * 14.6, 1204 19.6, 12.2 10.9 A and B 

16. 1 18.6 12.5 

Reduction in controlling moment in Beam A. 
All other values are reductions in controlling interior beam moments. 
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Table 404 

RATIO OF MAXIMUM POSITIVE MOMENT COEFFICIENTS TO 
MAXIMUM NEGATIVE MOMENT COEFFICIENTS, 4W LOADING 

b/a b Beam A Beam B Beam C 
(ft) 

0.05 5 2013 2.10 2.34 
7 2003 2019 2022 
9 2.00 2.24 2.28 

0.10 5 2.22 2.09 2.34 
7 2. 15 2.17 2.10 
9 2.11 2.19 2. 11 

0.20 5 2.23 2.17 2.20 
7 2.24 2013 2.12 
9 2.22 2, 11 2. 11 

0.05 5 2.15 2.08 2038 
7 2006 2018 2.17 
9 2.04 2.27 2.18 

0010 5 2.23 2010 2030 
7 2019 2016 2.10 
9 2.14 2. 15 2 0 10 

0.20 5 2~22 2017 2.18 
7 2.23 2.14 2014 
9 2.25 2.12 2.15 

0.05 5 2.17 2009 2.36 
7 2.·10 2018 2013 
9 2.06 2.24 2014 

0010 5 2.22 2.17 2.25 
7 2020 2.16 2.13 
9 2. 18 2012 2.13 

0.20 5 2020 2.19 2.15 
7 2.20 2016 2011 
9 2~23 2014 2.18 
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Table 4.5 f-:: 

f 
COMPARISON OF THE EFFECTS OF DIAPHRAGMS ON SIMPLY SUPPORTED 

BRIDGE AND CONTINUOUS BRIDGES SUBJECTED TO 4W LOADING r--

\ 

L. ... 

Beam b Cmk=O ok = 0.05 ok = 004 [ (ft) 

A 5 0.232 + 3.4 + 8.6 r B 5 0.257 - 9.7 - 21.0 
C 5 0.257 - '9.7 - 21.0 

-0 (/) 
r---
t 

OJ +-> \ +-> ... s:::: A 7 0.290 + 5.9 + 13.8 
~o OJ 

t. _ 

ON E B 7 0.300 - 5.7 - 12.6 0.. 0 
0..11 :;s C 7 0.319 - 12.2 - 29.5 

U :::l r--
V') :::c • OJ ... 

0> 
>, OJ or- A 9 0.345 + 5.5 + 12.5 

.-- 0') II +-> 
0..-0 or- B 9 00359 - 9.2 - 16.2 Eo"" ro (/) r or- ~ -..... 0 C 9 0.361 - 14.4 - 36.2 V') c:c ..0 0.. 

'. 

A 5 0.193 + 2. 1 + 7.7 
B 5 O. 191 + 0.5 + 0.5 [ (/) 

:::l C 5 0.214 - 3.8 - 6.5 0.--
:::l • CI) 

s:::: 0 +-> 
or- s:::: A 7 0.236 + 5.5 + 14. 1 [ +-> II OJ 

s:::: E B 7 0.272 - 4.4 - 8.8 OnjO 
u-.....:::::E C 7 0.270 - 7.8 - 18. 1 ..0 
s:::: OJ 
nj ... > 

I:, 0..0°c- A 9 0.281 + 5.0 + 10.7 V') N +-> 0,... B 9 0.315 5.4 - 8.9 o I! (/) 

3: 0 C 9 0.320 - 9. 1 - 19.7 I- :::c 0-

A 5 0.087 + 1 . 1 + 8.0 r 
i.:;: 

(/) B 5 0.088 + 2.3 + 1 . 1 
:::l +-> C 5 0.095 - 3.2 - 7.4 ,.- , 
0.-- ro 
:::l . 
s:::: 0 +-> 

or- s:::: A 7 00 '107 + 4.7 + 14.0 +-> II OJ 
s:::: E B 7 o. 126 - 400 - 9.5 oroo 

u -.....:;s C 7 O. 127 - 7 . 1 - 20.5 i ..0 
s:::: OJ L . nj ... > +-> 
0..0 or- ~ A 9 O. 129 + 3.9 + 10.0 V')N4->O 

roo.. B 9 o. 148 - 6.8 - 12.2 r-: o II 0') 0.. 
3: OJ:::l C 9 0.150 - 8.0 - 22.7 I-:::CZV') 

Cmk=0.05 Cmk=O.O 
r' 

°k=0.05 = x 100 
Cmk=O.O 

°k=0.40 
Cmk=0.4 Cmk=o'.O x 100 ~ = 

Cmk=O.O 
L_ 

f: .. 
~ .': 
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THREE SPAN CONTINUOUS BRIDGE H = 20, b/a = OG1, b = 7 FT 
MAXIMUM MOMENTS COEFFICIENTS DUE TO 4W LOADING 

Beam 

c A 0,,230 + 502 + 1305 QJ0r- C 
E> ct:S 
~ or- ~ 0. B 00265 - 4.5 - 7.9 E~C(/) 

or- or- QJ 
XtnE-o C 0.263 - 6.5 - 1705 
ct:Soo~ 
~o..~1.J.J 

C A OG193 + 6.7 + 16.6 QJor- s-
E> 0 
~ or- ~ or- B 0.229 - 6.9 - 1104 
E~cS-

0r-"r- QJ OJ 
XtnE~ C 0.228 - 8.8 - 21 .5 
ct:Soo~ 
:Eo..~1o---j 

~ A 00112 + 6G3 1502 QJct:S 
E> -I-' 
~ or- ~ s- B 0.130 - 4.6 902 E~~O 

or- ct:S QJ 0. 
xmEo. C 00 131 - 7.6 21 u 4 ct:SQJO~ 

:E z: :E (/) 

C - C 
°k=0.05 = mk=0005 mk~OoO 

>< 100 
Cmk=OoO 

C - C 
°k=0.40 = mk=0040 mk=OoO x 100 C mk=OoO 
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FIG. 2.2 IDEALIZATION OF THE GIRDER CROSS SECTION 
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FIG. 2.3 POSITION OF LOADS REPRESENTING TRUCKS 



64 

A B C D 
b b b I b 

, r " u l 
- - -

.. " 
z 

a. Vertical Forces Acting on Diaphragm 

A B C D 

b. Couples Acting on Diaphragm 
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a. Cross Section of Bridge with Diaphragm 

b b b 

A B C D E 

b. Forces and Couples Replacing Diaphragm or Support 

A B C 

O~C ; i 
JO 

~Ol 

c. Displacement of Cross Section of Bridge 

FIG. 3.2 FORCES AND DISPLACEMENTS AT CROSS SECTION 
CONTAINING DIAPHRAGM 
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