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Abstract
The k-D tree is a well-studied acceleration data structure for ray
tracing. It is used to organize primitives in a scene to allow efficient
execution of intersection operations between rays and the primi-
tives. The highest quality k-D tree can be obtained using greedy
cost optimization based on a surface area heuristc (SAH). While
the high quality enables very fast ray tracing times, a key drawback
is that the k-D tree construction time remains prohibitively expen-
sive. This cost is unreasonable for rendering dynamic scenes for
future visual computing applications on emerging multicore sys-
tems. Much work has therefore been focused on faster parallel k-D
tree construction performance at the expense of approximating or
ignoring SAH computation, which produces k-D trees that degrade
rendering time. In this paper, we present new, faster multicore al-
gorithms for building precise SAH-optimized kd-trees. Our best al-
gorithm makes a tradeoff between worse cache performance and
higher parallelism to provide up to 7X speedup on 16 cores, using
two different kinds of parallelism models, without degrading tree
quality and rendering time.

1. Introduction
Visual computing is becoming one of the killer application classes
for emerging multicore client systems. This surge in computational
power enables the improved photorealism and simplified software
development of ray tracing to replace the approximations and time-
consuming special-case programming of rasterization-based ren-
dering (until recently the only choice for real-time image synthesis)
[4, 10, 13, 18, 23]. At the heart of an efficient real-time ray tracing
algorithm is a spatial data structure to accelerate geometric queries,
such as the popular k-D tree, shown by some to be optimal [11]. It
organizes space as a hierarchy of axis-aligned splitting planes, with
each plane dividing a node’s region of space in two. These splitting
planes hence refine geometry into smaller and smaller axis-aligned
bounding boxes. When used for ray tracing, rays missing a split-
ting plane need not intersect any scene geometry on its other side,
and rays intersecting a splitting plane can check scene geometry on
its front side first and avoid other-side intersection if a front-side
intersection is found.

For static scenes where the k-D tree can be constructed off-line,
there has been enormous progress in parallelizing ray tracing to ap-
proach real-time speeds. As computer games and virtual environ-
ments become more dynamic and social, with unpredictable user-
generated content that may include self-scanned avatars, construc-
tion of the k-D tree must occur on-line and could pose a critical
bottleneck to real-time rendering. Sequential k-D tree construction
algorithms are too slow and current parallel approaches for con-
struction sacrifice k-D tree quality, which degrades ray tracing per-
formance.

The position of splitting planes is the key to the quality and
rendering acceleration of the k-D tree. For ray tracing, the surface
area heuristic (SAH) is widely agreed to be the best heuristic for
choosing the splitting plane [9, 14]. SAH selects splitting planes
that bound the largest number of scene triangles with a region of
least surface area. This accelerates ray tracing since rays that miss
a node’s region need not intersect its geometry, and rays are more
likely to miss a region with less surface area.

Construction of an SAH k-D tree therefore starts with determin-
ing which axis and the position along that axis of the splitting plane
that minimizes the SAH metric for the space represented by the root
node (the geometries from the entire scene) and splits the geome-
tries along this plane to make two children nodes. The algorithm
recursively follows this procedure for the children, building a tree
in depth-first order. A node becomes a leaf when the SAH indicates
it is no longer profitable to split it; leaf nodes each contain a small
list of the triangles in the region of space they represent.

An obvious source of parallelism in this algorithm is in the work
for independent nodes of the tree (node-level parallelism). Once
enough nodes are created, their sub-trees can all be efficiently built
in parallel. The challenge arises when working in the upper lev-
els of the tree where there is insufficient node-level parallelism.
The main parallelism here is in the processing of the geometries
to determine the SAH optimal plane (geometry-level parallelism).
Unfortunately, this has been hard to scale as demonstrated by pre-
vious work in Section 3 and explained in Section 4. State-of-the-
art parallel algorithms therefore either ignore or approximate SAH
evaluation for upper levels of the tree at the expense of tree quality
and potential rendering performance degradation (Section 3). As
the number of cores in a multicore system is expected to increase
with every generation of Moore’s law, we expect an increase in the
number of tree levels that must be processed using such approxi-
mations before sufficient node-level parallelism becomes available.
This results in increasing, and as we show, unacceptable rendering
time degradation.

In this work, we propose two new algorithms for k-D tree
construction that exploit both geometry and node-level parallelism
in different ways. The first, called nested, began as an incremental
and relatively straightforward task parallelization of the sequential
algorithm. It evolved into a nested-parallel version that parallelizes
the SAH computation within a node to nest the geometry-level
parallelism within the node-level parallelism.

The second algorithm, called in-place, was developed in re-
sponse to an early analysis of nested, that showed a bottleneck
in the movement of the geometries into different containers when
splitting a node into its children. The in-place version eliminates
the movement of the geometries by a more fundamental change to
the sequential algorithm. The key idea is to process all the geome-
try in a given tree level in-place in a unified manner in one phase,
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using all the cores available for that phase. There is no geometry
movement from level to level; rather, the location of the geometry
in the tree is recorded along with the geometry itself.

The in-place algorithm has worse cache and sequential behav-
ior than the best current sequential algorithm, and the nested ver-
sion still requires a lot of geometry data movement. However as the
number of nodes increases up to as many as sixteen, both quickly
outperform both the sequential approach and previous parallel ap-
proaches. Both algorithms employ geometry parallelism to com-
pute SAH more accurately and faster than existing parallel ap-
proaches. The nested algorithm combines node and geometry par-
allelism whereas the in-place algorithm also performs both but
separately. The nested algorithm builds a tree in depth-first order
whereas the in-place approach builds breadth-first.

Our results focus on the performance of our algorithms for the
upper levels of the tree. These upper levels are critical for parallel
performance and scalability as they need to divide the problem into
enough subtrees that each core can process independently. We used
16 cores, and computed to depths of 4, 6 and 8, generating up
to 256 subtree jobs that can then be independently processed by
16 or more cores efficiently with load balancing. For these depths
we achieved speedups of up to 7.1X for the nested algorithm and
4.8X for the in-place algorithm, on 16 cores, relative to the best
sequential code.

To our knowledge, these results represent the first parallel
speedups on the upper levels of k-D tree construction using pre-
cise SAH. In contrast, the best previously reported speedups for
a 16 core system is about 2.5X on a GPU using a spatial median
instead of SAH for the upper-tree nodes, which generates lower
quality k-D trees [24]. Further discussions and results are provided
in Section 9.

Both algorithms were implemented solely for MIMD multicore
processing. While the in-place algorithm required significant pro-
gramming complexity and scaled well but short of the nested ap-
proach, it does provide valuable insight into the non-intuitive trade-
offs between cache performance and parallelism. Interestingly, the
self-relative speedup of the in-place algorithm is high and so the
relative tradeoff between the in-place and nested algorithms re-
mains an open question, making both algorithms valuable at this
point. In the conclusion we look forward to further work on these
algorithms that include SIMD parallelism available through ever
widening vector instructions and graphics co-processors.

2. Background
Ray tracing is a photorealistic rendering method that traces paths
of light backwards from the eye bouncing off one or more objects
in the scene to a light source. Recursive Whitted-style ray tracing
casts a ray through each pixel in the scene, and at its intersection
point casts a ray toward the light source to detect shadows, a ray
in a carom bounce direction for mirror reflection, and through
the surface in a Snell-ratio direction for refraction [22]. Since
reflected and refracted rays can themselves reflect and refract, this
process generates a tree of rays for each pixel. Multiple perturbed
rays are often cast from each point for antialiasing, motion blur,
soft shadows and glossy reflection [17]. Non-local effects such as
color bleeding, caustics and sub-surface scattering can also be ray
traced, by additional ray trees from the light source. Hence ray
tracing renderers typically need to intersect 106 ∼ 109 rays with
104 ∼ 107 triangles, in some cases many more.

Spatial data structures avoid testing all-pairs of ray-triangle
intersections. The three most common choices are grids, bounding
volumes hierarchies and k-D trees. Uniform 3-D grids create a
rectilinear array of cells each containing a list of the geometry
that intersects the cell. The cells a ray intersect can be simply
enumerated, and only the geometry intersecting these cells need be

intersected against the ray. Grids work best when scene triangles
are similarly sized, and a k-D tree was shown to accelerate a GPU
ray tracer 8× faster than a 3-D grid [6].

A bounding volume is a simple shape surrounding a large num-
ber of triangles, such that a ray missing the bounding volume
quickly indicates it misses all of the triangles. Clusters of bound-
ing volumes can themselves be contained in a bounding volume
forming a hierarchy. The bounding volume hierarchy often fol-
lows a modeler’s natural scene hierarchy, which makes them bet-
ter suited for animator-designed scenes than for scanned objects or
user-designed ad hoc objects.

The k-D tree accelerates ray intersections with varying sized
and unorganized geometry. The construction of a k-D tree is often
top-down, finding a median or other optimum planar division of
space. For ray-triangle intersection, this optimum is guided by the
surface area heuristic [9, 14]

SAH(P ) = CT + CI
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where P is a splitting plane candidate, CT , CI are the relative costs
of node traversal and plane intersection, A, AL, AR are the surface
areas of the current node’s region and its portion to the left and right
of P, and NL, NR are the number of the node’s triangles to the left
and right of P.

The splitting plane P might itself intersect triangles, in general
as many as

√
N where N is the number of triangles in a node’s

region. Such triangles would be included in both the left and the
right children of the node, so NL + NR ≥ N.

3. Related Work
Wald and Havran [21] describe an optimal O(n log n) SAH k-D
tree construction algorithm that initially sorts the geometry bound-
ing box extents in the three coordinate axes, peforms linear-time
sorted-order coordinate sweeps to compute the SAH to find the best
partitioning plane, and maintains this sorted order as the bounding
boxes and their constituent geometries are moved and subdivided.
We describe this algorithm in more detail in Section 5 and use it as
our baseline state-of-the-art sequential algorithm. Our contribution
is to develop a parallel approach that produces the same k-D tree as
this sequential algorithm but at a much higher performance.

Some have accelerated SAH computation by approximation,
replacing the initial O(n log n) sort with an O(n) binned radix
sort along each axis, and interpolating the SAH measured only
between triangle bins [12, 16, 19] for both sequential and parallel
acceleration. Even with a binned approximate sort, the k-D tree
construction cost nevertheless remains O(n log n) since (almost)
all n of the triangles are processed for each of the log n levels.

There have been many attempts to parallelize SAH k-D tree
construction. Several versions use a single thread to create the top
levels of the tree until each subtree can be assigned to each core in
a 2- or 4-core system [1, 12, 16], limiting 4-core speedup to only
2.5.

Shevtsov et al. [19] also implemented a 4-core parallel SAH
k-D tree builder, but used a parallel triangle-count median instead
of SAH to find splitting planes at the top levels of the tree, which
degraded k-D tree quality by as much as 30%. They did not report
a construction time speedup, but they did report a 4-core speedup
of 3.5 for a construction combined with rendering, which includes
millions of k-D tree traversals.

Kun Zhou et al. [24] built k-D trees on the GPU, using a data-
parallel spatial median algorithm for the upper levels of the tree,
to a level where each node’s subtree could be generated by each
of the GPU’s streaming processors. Their 128-core GPU version
achieved speedups of 6 ∼ 15× over a single-core CPU, and of
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3 ∼ 6× over 16-cores of the GPU1, for scenes ranging from
11K to 252K triangles. Their speedups improved for larger models,
but their SAH and median approximations degraded the k-D trees
and corresponding rendering times of these larger models, by as
much as 10% for scenes over 100K triangles. Our 16-core CPU
precise-SAH algorithms outperform the speedups of 1.8 ∼ 2.65×
they achieved for their 16-core GPU versions, when compared to a
single core CPU.

Both of these very recent approaches sacrificed SAH evalua-
tion in favor of medians in the upper levels until a level where
subtrees can be processed independently by each core. The next
section shows that this approach will degrade k-D tree rendering
performance in the near future, prompting the development of new
parallel algorithms for precise-SAH k-D trees, such as the ones de-
scribed in the remainder of this paper.

4. Parallel Patterns for k-D Trees
Software patterns emerge from recurring program designs [7], and
have evolved to include parallel programming [15]. Fig. 1 illus-
trates patterns for parallel k-D tree construction that emerge from
the analysis of previous work.
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Figure 1. Parallel k-D Tree Patterns. Each level of the upper
(green) portion of the tree has fewer nodes than cores, so multi-
ple cores must cooperate on node creation leading to a breadth-first
stream process that organizes all of the triangles into the current
level’s nodes. When the number of nodes at a level meets or exceeds
the number of cores, then each node’s subtree can be processed per
core independently. The dashed dividing line (orange) where the
number of nodes equals the number of processors descends one
level every 1.5 to 2 years, indicating that the upper (green) pattern
will eventually dominate k-D tree construction.

The initial phases of a breadth-first top-down hierarchy con-
struction consist of cases where large amounts of geometry need to
be analyzed and divided among a few nodes. These cases suggest
an approach where scene geometry is streamed across any num-
ber of processors whose goal is to analyze the geometry to de-
termine the best partition, and categorize the geometry based on
that partition. Previous serial and parallel versions of this stream-
ing approach to SAH computation [12, 16, 19, 21] all share this
same pattern at the top of their hierarchies (as do breadth-first GPU
constructions based on median finding [8, 24]), which can be effi-
ciently accelerated, even for precise SAH, by a geometry-parallel
approach.

Once the hierarchy has descended to a level whose number
of nodes exceeds the number of cores or threads, then a node-

1 . . . measured via a driver that disabled processors but not peak memory
bandwidth.

parallel construction with depth-first traversal per node becomes
appropriate. Here each subtree is assigned to a separate thread
and is computed independently. Even on the GPU this parallelism
is independent in that it needs no interprocessor communication,
though the processes would run in SIMD lock step. If the subtrees
vary in size, then load balancing via task over-decomposition/work
stealing or other methods can be employed.
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Figure 2. Rendering times v. the k-D tree transition level where
SAH is used instead of triangle count median. (Spatial median
similarly degrades rendering time [24].) The depth of the k-D tree
is 30. The horizontal transition axis corresponds to the depth of
the dashed (orange) line in Fig. 1 for the best existing parallel k-D
tree construction algorithms [19, 24]. The percentage of rendering
performance degradation is indicated above levels 4-7.

The most recent parallel SAH k-D tree construction algorithms
ignore SAH in the top half of the tree, instead using the triangle
count median [19] or the spatial median [24]. Fig. 2 shows the
rendering time (on a single core) of an implementation of the
algorithm in [19] (Section 8 gives details on the experimental
methodology including the input models and system used). We see
that using median splitting planes for upper levels in a k-D tree
does not adversely affect tree quality until about level 6; beyond the
sixth level, it starts to degrade the rendering time drastically. As the
number of cores continue to double every 18 to 24 months, we will
soon reach the point where existing parallel k-D tree construction
algorithms produce increasingly worse k-D trees for ray tracing. In
contrast, all the algorithms described in the rest of this paper paper
compute precise SAH at all levels of the tree for high tree quality
and rendering performance.

5. State-of-the-Art Sequential Algorithm
We begin by summarizing the best known sequential algorithm for
precise SAH k-D tree construction [21]. As shown in Algorithm 1,
it finds the best SAH splitting plane for each node by an axis-
aligned sweep across each of the three axes. It takes as input a list
of triangles, a presorted list of events (each representing an axis-
aligned bounding edge of a triangle, described later), and an axis-
aligned bounding box representing the space covered by the node.
For the root node, this bounding box is the minima and maxima
of each of the coordinates of the triangle vertices. For a deeper k-
D tree node, this bounding box is refined by intersection with its
ancestry of splitting planes.

This single-thread sequential version builds a k-D tree in
depth-first order, as revealed by the tail recursion. It achieves its
O(n log n) efficiency due to its three axial sweeps through E[axis]
that compute SAH for each of the O(n) events for each of the
O(log n) levels of the k-D tree.

The SAH need only be evaluated at each event where the sweep
encounters a new triangle or passes the end of a triangle [11, p.
57]. Each event contains three members: the 1-D position of the
event along the axis, the type (START or END) of the event, and a
reference to the triangle generating the event.
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The three event lists E[x], E[y], E[z] are each provided in po-
sition sorted order, and when two events share the same positions,
in type order, where START < END. These three sorts are a pre-
process and also require O(n log n) time.

Algorithm 1: Sequential O(N log N) KD-Tree Construction
BuildTree(T , Ex,y,z , �) returns Node
/* T - Triangles, E[axis] - sorted events for

each axis, � - Node extent */
C ←∞
foreach axis′ ∈ {x, y, z} do

FindBestPlane(E[axis′], �)→ (pos′, C′, i′)
if C′ < C then
(C, pos, axis, i)← (C′, pos′, axis′, i′)

if C > CI × |T | then return Node(T ) // leaf

/* Split triangles, events and bounding box */

ClassifyTriangles(T , E[axis], i)
FilterGeom(T, E, pos, axis)→ (TL, EL, TR, ER)
Subdivide � into �L, �R at pos along axis.

NodeL ← BuildTree(TL, EL, �L)
NodeR ← BuildTree(TR, ER, �R)
return Node(pos, axis, NodeL, NodeR)

FindBestPlane(E[axis], �) returns (pos′, C′, i′)
C′ ←∞, S ← surface area of �
foreach ei ∈ E[axis] do

if ei.type is END then decr nR

let SL, SR be surface areas of � split at ei.pos
C ← CT + CI(nL

SL
S

+ nR
SR
S

) ; // compute SAH

if C < C′ then (pos′, C′, i′)← (ei.pos, C, i)
if ei.type is START then incr nL

return (pos’, C’, i’)

ClassifyTriangles(T, E[axis], isplit) modifies T
/* Assumes Lbit, Rbit cleared for every 4 by a

previous sweep, and ei ≡ E[axis][i] */

for i← 0 . . . isplit do
if ei.type is START then set ei.4 .Lbit

for i← isplit . . . |E[axis]| − 1 do
if ei.type is END then set ei.4.Rbit

FilterGeom(T, E) returns (TL, EL, TR, ER)
foreach4 ∈ T do

if4.Lbit then TL.append(4)
if4.Rbit then TR.append(4)

foreach axis ∈ {x, y, z} do
foreach e ∈ E[axis] do

if e.4.Lbit then EL[axis].append(e)
if e.4.Rbit then ER[axis].append(e)

return (TL, EL, TR, ER) // EL, ER sorted

The algorithm consists of three phases. The first phase, FIND-
BESTPLANE, determines the axis, position, and corresponding
event index of the splitting plane yielding the lowest SAH cost
over the events in E.2 The SAH evaluation at each event occurs

2 In Algorithm 1, FINDBESTPLANE evaluates SAH at each event position.
When triangles are coplanar with the splitting plane or multiple events
share the same position, Wald and Havran describe special case rules to
find the least SAH evaluation without computing SAH for all events that
share this single position [21]. We implemented these optimizations, but
found that they did not provide much benefit; therefore, for simplicity, we

in constant time, demanding the instant availability of the number
of triangles nL, nR to the left and right of the current splitting
plane. Hence nL and nR are maintained and updated as the sweep
passes each event in each axis’s sorted list. Triangles that intersect
the splitting plane are considered on both sides. When the (left-to-
right) splitting plane sweep passes an END event, one less triangle
is on its right side, and when it passes a START event, one more
triangle is on its left side.

The next two phases divide the triangle and event lists into
left and right lists of triangles and events. CLASSIFYTRIANGLES
sweeps over the triangles, marking them as left or right (or both if
they intersect the splitting plane). FILTERGEOMETRY divides the
triangle and event lists into two portions, duplicating the splitting-
plane straddling triangles and their events, and maintaining the
sorted order of the events for each axis.

6. Nested Parallel Algorithm
As Figure 1 illustrates, an obvious source of parallelism comes
from independent nodes in the tree. Given two children of a node,
the sub-trees under each child can be built indepedently (per-node
parallelism). The problem with solely pursuing this approach is the
lack of parallelism at the top levels of the tree. Unfortunately, at
the top levels of the tree, each node has a larger number of events
than at the bottom; the lack of node-level parallelism at these levels
becomes a severe bottleneck. To alleviate this problem, we exploit
a second source of parallelism: we parallelize the work on the large
number of events (triangles) within a given node, referred to as
geometry-level parallelism. Thus, our parallel algorithm nests two
levels of parallelism.

Expressing node-level parallelism is relatively straightforward
in lightweight task programming environments such as Cilk [3]
or Intel’s Thread Building Blocks (TBB) [5] that allow recursive
creation of light-weight tasks that are load balanced through a work
stealing algorithm. (We use TBB for our code.)

Within the computation of each node, we again use lightweight
tasks to parallelize each of the major functions in the sequen-
tial computation (Algorithm 1) – FindBestPlane, ClassifyTriangles,
and FilterGeom – as follows.
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6.1 FINDBESTPLANE

Figure 3 depicts how FindBestPlane works. Given an array of
events (the top row of boxes, S=START E=END), the serial “1

do not include them here. (As discussed in Section 8, our sequential version
outperforms the state-of-the-art manta builder that incorporates the above
optimizations.)
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thread” shows how FindBestPlane in Algorithm 1 proceeds. The
left-to-right sorted axis sweep maintains a running count of NL

and NR, immediately incrementing NL for each START event, and
decrementing the next NR for each END event. Recall that some
triangles straddle the splitting plane and are counted in both NL and
NR, and this post-decrement processing of END events accounts
for such triangles. The remaining values needed for SAH evaluation
are constants and O(1) surface area computations. Hence as each
event is processed, the current NL, NR counts generate the current
SAH, which is compared against the previous minimal SAH to
determine the minimal SAH splitting plane at the end of the sweep.

We parallelize FindBestPlane with a parallel prefix style op-
eration, in three phases: PreScan, Push, and SAHScan as illus-
trated in the lower (parallel) box of Fig. 3. We first decompose the
event list into n contiguous chunks, allocating one chunk per task.
For the PreScan phase, each of n − 1 tasks counts the number of
START and END edges in its corresponding chunk. (The last chunk
need not be PreScanned.) Next a single thread executes the Push
phase, adding the total NL, NR of previous chunks to the current
chunk totals, yielding correct NL, NR values at the beginning of
each chunk. (In a typical parallel prefix, this is also done in paral-
lel, but we did not find that necessary for the relatively few cores in
our system.) For the final ScanSAH phase, each of the n tasks pro-
cesses its corresponding chunk, propagating its starting NL, NR

values through the chunk and computing the minimum SAH value
for its chunk. A final (sequential) reduction yields the minimum
SAH across all n chunks.

6.2 CLASSIFYTRIANGLES

The CLASSIFYTRIANGLES phase classifies whether a triangle will
fall into the left and/or right child of the current node, depending
on its position with respect to the splitting plane. We can parallelize
this phase by sweeping through the event array corresponding to
the splitting plane axis, finding the corresponding triangle index
for the event, and updating the right or left membership bit of
the triangle. This is conceptually a parallel computation across the
events; however, as we find in our experiments, it incurs significant
false sharing which makes it not profitable to parallelize.

6.3 FILTERGEOM

The FILTERGEOM phase divides (for each of x, y, and z axes) one
big array of events into two smaller arrays, duplicating some en-
tries corresponding to plane straddling triangles, while preserving
the sorted ordering from the original. On the face of it, this splitting
with potential duplication of geometries into two sorted arrays of
unknown length may appear to have limited parallelism (the length
of the new arrays is currently unknown because some triangles may
need to be duplicated). However, we can use the same observations
as for parallelizing the FINDBESTPLANE phase. Thus, we map the
above to a parallel prefix style computation again, performing a
parallel PRESCAN, a short sequential PUSH, and a parallel FIL-
TERSCAN. The parallel PreScan determines how many triangles
in its chunk need to go to the left and right arrays. The PUSH ac-
cumulates all of the per-chunk information so that each chunk now
knows how many triangles to its left will enter each of the two new
arrays. This gives each chunk the starting location in the new ar-
rays where it needs to insert its set of events. All chunks can thus
proceed in parallel to update their own independent portions of the
two new arrays, creating a fully sorted pair of arrays in parallel.
(Note that the information about whether an event goes to the left
or right new array is obtained from the Lbit and Rbit flags of the
triangle corresponding to the event, as set by the ClassifyTriangles
function.)

7. In-Place Parallel Algorithm
One major drawback to the state-of-the-art sequential Algorithm 1
in Section 5 is that the division and distribution of triangle and event
lists from a node to its two children requires a lot of data movement
(and slight data growth for triangles intersecting the splitting plane,
proportional to the square root of the number of triangles in the
node). Since the parallel version in Section 6 essentially follows
the structure of the sequential algorithm, it does not address this
shortcoming either.

To avoid the cost of this data movement, we developed a new
“in-place” algorithm. This algorithm is based on the insight that
although each node can contain many triangles, each triangle be-
longs to a small number of nodes. Our experiments revealed that
triangles usually belong to a single node (most don’t intersect split-
ting planes) and in the worst case belong to no more than five nodes
for typical tree depths of eight, for the scenes used in this paper.

Our “in-place” algorithm thus overcomes the expense of data
movement by allowing the triangles to keep track of which of a
level’s nodes they belong to, instead of the previous approach that
required a level’s nodes to keep track of which triangles they con-
tained. When FILTERGEOM processes each level, it moves triangle
and event data from a parent node into its two child nodes. In “in-
place”, we instead update for each triangle the node(s) it belongs
to.

This new approach has the following implications:

1. The triangle data structure and the axial event elements are not
moved in memory. Instead, the triangle’s “nodes” membership
field is updated.

2. A post-process at the end of k-D tree construction is necessary
to produce the output in a desired format, which involves scan-
ning the entire array of triangles and collecting them in appro-
priate node containers.

3. Since event elements remain fixed in memory, no re-sorting of
any form is necessary at any stage.

4. Triangles can be more easily organized in a struct-of-arrays
instead of an array-of-structs for more cache-friendly memory
access pattern. This particular optimization is not as easily
applicable in the previous nested parallel algorithm due to the
FILTERGEOM phase that has to modify the array structure.
In order to preserve the ordering, one must move elements in
separate arrays in groups.

5. The in-place algorithm operates one level of the tree at a time,
with sweeps on the entire array (instead of chopping the array
into increasingly smaller pieces). This type of access pattern
incurs worse cache behavior but is arguably more amenable
to SIMD instructions and GPUs – this tradeoff remains to be
studied since we did not focus on SIMD or GPUs in this paper.

Event events[6]
Node nodes[]

...
events on X axis

...
events on Y axis

...
events on Z axis

...
trianglesTriangle *tri

Figure 4. Data Structures used in in-place algorithm

7.1 Algorithm
The algorithm operates on the data structure shown in Fig. 4. The
three axial event arrays hold the events in position sorted order, and
each event includes a pointer to the triangle that generated it. Each
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element of the triangle array contains pointers to the six events it
generates, and a list of the current level’s nodes to which it belongs.

One of the major differences between the nested-parallel ap-
proach in Sec. 6 and the in-place approach is that the latter is con-
structed breadth first, which makes available more geometry par-
allelism per task. The in-place approach processes the entire trian-
gle stream and updates all the nodes of the current level whereas
the node-parallel version switches between triangle processing and
node update phases. Hence it is a good choice for the geometry-
parallel upper levels of k-D tree construction, and should terminate
when the number of nodes at the current level meets or exceeds the
number of processing cores, at which point subtrees can be con-
structed independently by each processor.

Algorithm 2 outlines this approach. It describes a breadth-first
process, calling the current level’s nodes “live,” and consider each
for an SAH-guided split. It consists of four main phases:

FindBestPlane Expanded from the SAH phase in Sec. 6, this
phase considers all live nodes in parallel instead of just the
current node. This phase outputs a splitting plane for each live
node that doesn’t become a leaf.

Newgen This phase extends the tree by one level, creating two
child nodes for each split live node.

ClassifyTriangles This phase updates each triangle’s node list to
reflect membership in the child nodes generated by NEWGEN.

Fill This phase occurs at the very end, outside the main loop, to
construct for each leaf node the triangles that belong in its
region.

7.2 Parallelization
We verified that FINDBESTPLANEand CLASSIFYTRIANGLES
phases together account for most of the build time and so we focus
on parallelizing these two phases.

As did the nested parallel approach, we too use the parallel scan
operators to compute FINDBESTPLANE, but instead of a single
pair of nL, nR lists, we maintain multiple pairs of lists, one for
each live node. Each of these lists is updated by the parallel scan
only when the event’s triangle includes that list’s node. Hence each
node’s nL, nR list contains a count of the node’s triangles left and
right of a splitting plane placed at each event.

At the CLASSIFYTRIANGLES SPLIT stage all of the informa-
tion needed to update the nodes membership of each triangle object
can be found locally, yielding a completely parallel process where
each thread operates independently on a subsection of the triangle
array.

8. Implementation and Methodology
For our experiments, we use four widely used test models (Fig. 5)
of varying geometric complexity, with triangle count ranging from
70K to 1M, in order to verify performance across a spectrum of
problem sizes.

For our experiments, we constructed k-D trees to a transition
depth of 4, 6, and 8, to evaluate each algorithm’s effectiveness at
enabling SAH-based parallel construction of the top levels of a
tree. We assume that the remainder of the precise-SAH k-D tree
will be generated by assining each node’s remaining subtree to its
own processing core for independent construction using existing
sequential precise-SAH k-D tree construction algorithms.

All parallel tree construction time speed-ups are reported rela-
tive to measurements obtained using our optimized sequential im-
plementation of Alg.1. Tree construction times for our implemen-
tation were compared to those generated by Manta (Table 1) for

Algorithm 2: Outline of the in-place algorithm
Data: List of triangles (tris) in the scene
Result: Pointer to the root of the constructed kd-tree
live← {root← new kdTreeNode() };
foreach4 ∈ T do
4.nodes← {root};

while nodes at current level < cores do
// FindBestPlane phase (84.84% of time)

foreach e ∈ E[x] ∪ E[y] ∪ E[z] do
foreach node ∈ e.4.nodes do

SAH← CalculateSAH(e);
if SAH is better than node.bestSAH then

node.bestEdge← e ;
node.bestSAH← SAH ;

// Newgen phase (0.04% of time)

nextLive← {};
foreach node ∈ live do

if node.bestEdge found then
nextLive += (node.left← new kdTreeNode()) ;
nextLive += (node.right← new kdTreeNode()) ;

// ClassifyTriangles phase (14.60% of time)

foreach4 ∈ T do
oldNodes←4.nodes ;
clear4.nodes ;
foreach node ∈ oldNodes do

if no node.bestEdge found then
// leaf node
insert4 in node.triangles ;

else
if4 left of node.bestEdge then

insert node.left in4.nodes ;
if4 right of node.bestEdge then

insert node.right in4.nodes ;

live← nextLive;
// Fill phase (0.52% of time)

foreach4 ∈ T do
foreach node in4.nodes do

insert4 in node.triangles ;

return root

the Happy input to verify that our implementation is comparable to
the state-of-the-art at maximum tree depths of 4, 6, and 8.

Max Tree Depth 4 6 8 15

Bunny Our builder 0.13 0.19 0.24 0.59
Manta’s builder 0.43 0.61 0.79 1.46

Angel Our builder 0.89 1.25 1.65 3.33
Manta’s builder 3.59 5.21 6.65 11.05

Dragon Our builder 1.56 2.23 2.90 6.03
Manta’s builder 5.06 7.19 9.09 14.94

Happy Our builder 2.00 2.81 3.67 7.53
Manta’s builder 6.62 9.41 11.85 19.40

Table 1. Comparing sequential construction times (in seconds) of
our builder to Manta’s builder

All rendering time measurements were obtained using the state-
of-the-art Manta shared-memory multicore ray-tracer [2, 20]. The
k-D trees produced by our construction algorithms were written
to a file and then read into Manta using its built-in read-from-file
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function. The times for writing and reading the k-D tree to/from
disk were not included in any of the measurements. Table 2 both
demonstrates the scalability of the Manta ray-tracers as well as
verifies the quality of the tree produced using our construction
algorithms.

Number of Threads 1 2 4 8 16
Rendering Time 3.61 s 2.00 s 1.15 s 0.58 s 0.30

Table 2. Time to render (excluding build time) fig.5(d) at the orig-
inal size of 1024×1024, with varying number of threads. Rendered
using a tree constructed up to a maximum tree depth of 15 by our
sequential builder

All phases in the nested parallel algorithm were parallelized,
except for the CLASSIFYTRIANGLES phase. Specifically, we ob-
served that the time taken by the CLASSIFYTRIANGLES phase was
small and there was enough false sharing to not gain any benefit
from parallelism. All phases in the in-place algorithm were paral-
lel except FILL and NEWGEN because they occupied a very small
portion of the overall computational time.

All experiments were run on a 24-way (four six-core CPUs -
Intel c© Xeon c© E7450 @ 2.4 GHz) machine with 48 GB of RAM.
The operating system is RedHat Enterprise Linux 4.1.2-44. All
code was compiled using GCC 4.1.2 with -O3 flag. All parallel
code was written using the Intel Threaded Building Blocks library.

(a) Bunny (69,451) (b) Angel (474,048)

(c) Dragon (871,306) (d) Happy (1,087,474)

Figure 5. Test models with triangle counts included in parenthe-
sis. The images shown here are down-sized versions of the actual
images (1024×1024) produced for measuring rendering time. The
Bunny, Dragon, and Happy models are courtesy of the Stanford 3D
Scanning Repository. Angel is courtesy of the Georgia Tech Large
Geometric Model Archive).

9. Experimental Results
9.1 Overall Results
Figure 6 shows our overall results. Each graph plots the speedup
of the nested parallel (dotted curves) and in-place parallel (solid
curves) algorithms for increasing number of cores for our four
inputs, for a specific depth of the tree. As mentioned in Section 8,

we focus on performance for the upper levels of the tree and show
results for depth = 4, 6, and 8 in parts (a), (b), and (c) respectively.
In particular, depth=8 potentially provides 256-way parallelism
for the subsequent phase exploiting node-level parallelism. All
speedups are reported relative to the best sequential version for the
corresponding depth as discussed in Section 8.
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Figure 6. Speedup of the nested and in-place parallel algorithms
relative to the best sequential algorithms for four inputs and tree
depths = 4, 6, and 8 in parts (a), (b), and (c) respectively.

The figure shows that the in-place algorithm achieves speedup
up to 4.8X and the nested algorithm achieves speedup up to 7.1X
on 16 cores. These represent the first parallel speedup results for the
upper levels of the kd-Tree construction using the high quality pre-
cise SAH-heuristic. Recall that the previously best known results
for 16 cores show 1.8 to 2.65X speedup on a GPU, using median
based heuristics, and for a full depth tree that includes node-level
parallelism in the lower levels [24].

Surprisingly, the nested algorithm performs much better than
the in-place algorithm (up to a factor of 2, for angel). We next
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analyze these results further to gain insight into the sources of
speedup and limits to parallelism in both these versions.

9.2 Analysis
To further understand the performance of our algorithms, Fig-
ures 7 (a) and (b) plot the components of execution time for differ-
ent core counts for the nested and in-place algorithms respectively.
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Figure 7. Contribution of different components of the (a) nested
and (b) in-place parallel algorithms.

For the nested algorithm, the figure shows the breakdown of
execution time for the computation for the root node (i.e., the first
level of the tree) for a representative input, angel. Since this version
exploits nested node- and geometry-level parallelism, the compu-
tation for nodes in the subsequent levels proceeds asynchronously
and it is difficult to isolate the time devoted to a particular function.
Recall that the nested algorithm with one core also represents the
breakdown for our best sequential algorithm.

For the in-place algorithm, the figure shows the breakdown of
execution time for the equivalent operation, i.e. computation for the
root node of the tree for the same input. Our detailed results show
that this behavior is representative of other levels as well.

Focusing on the nested version, we find that both the FindBest-
Plane and FilterGeom phases scale well. In FindBestPlane, the se-
quential version does not need to do the PreScan and so there is no
speedup in that part from 1 to 2 cores, thereby limiting the overall
speedup (however, the phase speeds up well after 2 cores).

For ClassifyTriangles, we found that parallelizing it produced
worse results than the sequential version. This is because each

task is sweeping through its chunk of contiguous events (along
the splitting plane axis) and then updating the membership of the
corresponding triangles (the left or right bits). Since the triangles
are not in the same order as the events (the ordering would be
different for different axes), this results in many random updates
and significant false sharing, removing any performance benefit
from parallelism. While this does not hinder speedup for small
numbers of cores, we find that this phase could start to matter
for larger number of cores (an element not seen in the in-place
algorithm).

Focusing on the in-place algorithm, we find some intersting
behavior. The main reason for the in-place algorithm to do worse
is that it does a lot more work in the FindBestPlane phase for a
single core. By design, it does much less for ClassifyTriangles,
but this advantage is not enough to overcome the added work
in the former phase for small numbers of cores. In particular, in
the FindBestPlane phase, the in-place algorithm suffers from two
problems: (1) it makes full sweeps over the entire geometry at every
level versus the nested algorithm which splits the geometry at each
level potentially resulting in better cache behavior per task. (2) The
membership structures that it accesses contain node indexes rather
than more compact bits of the nested version creating further cache
misses.

However, for larger number of cores, we find that the Clas-
sifyTriangles phase of the nested version is starting to dominate
whereas the in-place version still scales. (The fill part of the in-
place occurs once at the end and can be amortized with deeper
levels and parallelized.) It remains to be seen if this self-relative
scalability of the in-place algorithm might translate into better over-
all speedup with larger number of cores. Further, the interaction of
SIMD instructions and the streaming nature of our algorithms also
remains to be explored.

Finally, we note that all our algorithms (including the best
sequential) assume a sorted array of events as input – parallel
creation of this input is outside the scope of this paper, but also
needs to be explored.

10. Conclusion
We have shown that existing parallel algorithms for k-D tree con-
struction do not scale in quality, and soon will generate k-D trees
that will degrade rendering performance when run on 16 or more
cores. We presented two new algorithms for generating k-D trees
that scale better, and are specifically focused on the geometry par-
allelism needed to generate enough sub-trees to allow each core
to process the remaining tree components independently. To our
knowledge, these algorithms provide the best known speedups for
precise SAH based high quality kd-tree construction, relative to a
sequential case that is better than the best publicly available code.

Our in-place data structure avoids the data movement that has
plagued other parallel ray tracing acceleration structures. This algo-
rithm invoked an interesting tradeoff. It yielded worse cache hierar-
chy performance for higher parallelism. The result is an algorithm
that does much worse than the previous sequential best, but scales
well enough to compensate for this initial handicap. Whether it will
outperform the nested algorithm for larger number of cores remains
an open question.

We demonstrated both algorithms on a variety of models rang-
ing from tens to hundreds of thousands of polygons, showing that
fast and real-time k-D tree construction is feasible for such large
models, and in the future for self-scanned avatars and other user-
created dynamic content.

We implemented our approaches using a task-parallel shared
memory multicore processing enabled by Intel’s Threaded Build-
ing Blocks. Several of the operations, especially the prefix-sum
scan operations, map well to data parallel processing and the wide

8 2009/9/22



vectors available on upcoming CPU and GPU architectures should
provide even further improvements in acceleration and scalability.
The streaming memory operations available on a GPU could over-
come cache problems we encountered during our geometry-parallel
streaming of triangle and event data over the breadth of a k-D tree
level. For maximum GPU efficiency these algorithms would need
to avoid conditional program flow that especially occurs during the
in-place processing of each triangle’s nodes membership list which
varies in length.

In conclusion, we believe our work opens up new possibilities
for precise SAH based full kd-tree construction where previous
literature had virtually abandoned the use of precise SAH for the
increasingly dominant “upper” tree levels.
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