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Io INTRODUCTION 

10 Object and Scope 

The pri~~ipal objective of this study was to develop a method for 

the analysis of the dynamic response of' simple-span, right, multigirder highway 

bridges under the action of moving vehicles 0 In all previous analytical 

treatments of this problem, the bridge was represented by a beamo In the 

present study, it is analyzed as a plate continuous over flexible beams., 

In the analysis of the beam problem, two different types of approxi-

mations have been usedo The first refers to the deflection configuration of 

the beam during vibration, and the second to the mass distribution of the 

beam 0 

* 
Ingli s (6) , wO 'WaS mainly concerned with the study of the efiects 

of pulsating fo~ces, assumed that the beam responded in its fundamental mode 

of vibration, and expressed the dynamic deflection configuration as a half­

sine wave. The same assumption was also made by Looney' 7) and by Biggs, 

Suer J and. LoU\ol ( 1) in connection 'With ita simplified method it of a.na1.ysis., The 

nature of the sicplification made by Biggs et al is discussed briefly in 

Chapter III, Art. 4.3. 

In ar. investigation reported by Hillerborg(3), the deflection 

configuration of tlle beam at any time was assumed to be proportional to the 

static deflectior: (:or..figuration due to the roving 10M 0 The same assumption 

was also made by Tu.'1g et al (13) J and a modification of this aSSUIlI.Ption was 

(14 \ 
used by Wen ) in :onsidering the effects of two-axle loads 0 All these 

assumptions aco~~t to considering the bridge as a system having a single 

degree of freedom. As far as it is known, there has been no systematic 

study made to evaluate the sensitivity of the response to the assumptions 

referred to above. 

* Unless otherwise noted, numbers in parentheses refer to the items in the 
list of'Referenceso 
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In the studies made by Huang and Veletsos(5) and by Fleming(2), the 

beam was analyzed as a multi-degree-of-freedom systemo The flexibility of 

the beam was considered to be distributed as in the actual beam.)l but the dis­

tributed mass was replaced by a series of concentrated point masseso The 

degree of freedom of the mathematical model thus obtained is equal to the 

number of' mass concentrations used 0 

In the present analysis of the bridge as a plate continuous over 

beams, both the bending and torsional stiffnesses of the beams are taken 

into accounto The analysiS involves two major steps~ 

(a) The determination of' the instantaneous values of the dynamic 

forces acting on the bridge; these include the interacting forces between 

the vehicle and the bridge, and the inertia forces of the bridge itselfo 

(b) The evaluation of the deflections and moments produced in 

the bridge by these forceso 

The second stepJ Which is strictly a problem of statics, is solved 

by an application of the Rayleigh-Ritz energy procedure. The deflection of 

the structure is expressed as a series of functions that is capable of 

approximating any deflection configuration in both the longitudinal and 

transverse directionso 

Although the problem of statics constitutes an indispensable part 

of the more general dynamic problem, it is discussed separately in this 

report as it is of' interest in itselfo In this connection, two computer 

programs have been developed for the ILLIAC~ the digital computer of the 

University of Illinoiso One of these may be used to determine influence 

surfaces for benfdng moment wid deflection for a specified point of the 

beams of' mul tigirder bridges J and the other to compute directly the moments 

and deflections produced in the beams by a three-axle truck loading 0 A 

complete description of the method of analysis j and brief descriptions of 
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the comput.er programs are presented in Chapter IIo Also included in this 

chapter are comparisons between numerical results obtained 'With the present 

method and t.hose obtained by Newmark and. Siess (10) using an exact method of 

analysis 0 

The method used to evaluate the dynamic forces is essentially an 

extension of that used for the static problem 0 In contrast to the expression 

used to represent the static deflection, however, the dynamic deflection of 

the bridge is assumed to be a half-sine wave in the direction of the span. 

This assumption is the same as that used by IngliS( 6) for beams 0 The vehicle 

is represented by a single-axle loading consisting of a ~ mass and two 

equal unsprung masses, or wheels <> The so-called rOlling effect of the vehicle 

is thus taken into account 0 The springs are assumed to be linearly elastic 0 

No damping is considered for either the vehicle or the bridgeo 

The complete dynamic problem, including the determination of the 

dynamic forces and the computation of the effects produced by these forces 

in the bridge, has been programmed for the ILLIACo This program and the 

method of solution of the dynamic problem are described in Chapter III, in 

which are also included a brief discussion of the accuracy of the assumptions 

involved in the analysis and comparisons between theoretical and experimental 

data 0 The details of derivation of the equations of motion are given in the 

Appendix 0 

A limited number of numerical solutions were obtained to study the 

influence of those parameters that cannot be considered when the bridge is 

analyzed as a beamo The results of this effort are presented and discussed 

in Chapter IVo 

A brief summary of the significant results of this investigation 

is given in Chapter Vo 
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20 Notation 

The symbols used in this report ar'e defined in the text when they 

first appear 0 For convenience of reference, the important ones are summarized 

here in alphabetical order=o Some of the symbols 'Were assigned more than one 

meaning; but this was done only when no confusion could arise 0 

a = span length of bridge J center to center of supports 

{A ) = a column matrix of the unkno"Wll coefficients ex J defined in 
m mn 

b = overall 'Width of slab 

b1 = one-half the distance between the wheels of the vehicle model 

considered in the dynamic analysiso 

{B ) = a column matrix of the knO'Wll load terms f3 :; defined in 
m mn 

Eq. (2-16) 

c = b/ a< ratio of sides of bridge 

G
d

} C = influence coefficients for deflection and moment, defined m 

by Eqs. (2-46) and '(2-47) 

c~ C' ::: dinensionless coefficients for deflection and moment pro~ d' I:l 

duced by truck loading; See Eqs 0 (2~53) and (2-54) 

(c_) .;(c ) ~ ~ dl=ensionless coefficients for static values of deflection 
d. J 1::.; 

a~i ~~~~ produced by the interacting force at the jth 

D ::: flexura.l !"igidi ty of slab 

D. ::: de~le:tion produced in the ith beam by the static value of 
~, J 

~h~ interacting force at the jth wheel 

D~ = deflection produced in the ith beam by the 5
th component of 

l, s 

the inertia forces as defined in Chapter IIIy Art 0 503 

e. = dimensionless amplitude of roadway unevenness, defined by 
J 
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(~~) i = flexural rigidity of the i th beam 

(~~) io = flexural rigidity of' the reference beam used to define W 0 in 

Eq .. (3-1) 

(~~)o = flexural rigidity of an interior beam 

~~ = flexural rigidity of a beam, when all beams are identical 

fb = fundamental natural frequency of the bridge evaluated on the 

assumption that it acts as a beam 

f = natural frequency of the vehicle for vertical motion on its 
v 

springs 

f = generalized coordinates for the bridge, defined by Eqe (3-1) 
n 

[F 1 = symmetric square matrix defined in Eqo (2-16) 
m 

(GbJb)i = torsional rigidity of the ith beam 

J = polar moment of inertia of the sprung mass about an axis 

through its center of gravity and normal to the transverse 

verti cal plane 

k = spring constantf'or one spring; also value of k. for a 
l 

bridge 'With identical beams 

( ~ J b) i di . nl to· al . . dit f' t f th • Db ' menslo ess rSlon rlgl y ac or or e 

i th beam 

ko' kl = dlwensionless torsional rigidity factors for an interior 

~ an exterior beam, respectively 

K :I: (rjfb)2 

m = one unsprung mass 

(~) i = tr'ASS per unit length of the i th beam 

mo = number of terms used in the longitudinal direction in the 

computation of the static effects 
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~ = a positive integer defined in Eqo (3-35) 

IrL = moment corresponding to D. . 
-~, j l, J 

'# = moment corresponding to D~ 
l,S l,S 

M , M n = component moments, defined in Chapter II, Art 0 302 
m ill 

no'~' n2 = numbers of Y
n 

functions used for various purposes as defined 

in Chapter III, Art 0 503 

N = total number of integration steps for time required for the 

vehicle to cross the span; D.-r = l/N 

= number of integration steps between print-outs 

= number of beam spacings 

= the m th term in the Fourier series expansion of the loadj 

defined by Eqo (2-2) 

= a function of ~, defined by Eqo (2-2) 

= inertia force due to the mass of the slab 

Pi = inertia force due to the mass of the ith beam 

~ = generalized coordinate for bridge or vehicle 

~, ~ = quanti ties defined by Eqs 0 (2-45) and (2-52), respectively 

Q- = quanti~ies defined by Eqo (3-75) 
~,j 

t = time, measured from the instant the vehicle enters the bridge 

T = kinetic energy; also shortest natural period of vibration of 

the system 

Tb = l/f
b 

= fundamental natural period of the bridge evaluated on 

the assumption that it acts as a beam 

T ~ l/f = natural period of the vehicle for vertical motion on v v 

its springs 

u = dynamic rotation of the sprung mass in the transverse vertical 

plane (See Figo 3) 
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U = potential energy of the gravity forces 

y = speed of the vehicle 

v = strain energy 

w = static or dynamic deflection function for the bridge; dynamic 

deflection is measured from the static position of equilibrium 

of the bridge tmder the action of its ovm 'Weight 

w = a quantity defined in EqG (3-1) 
o 

'WI = roadway surfaqe tmevenness function, defined in EqG (3-l2) 

w
2 

= deflection of bridge under the action of its own weight 

w = deflection component associated with load component p 
m m 

w = a function of ~j defined in Eqo (2-3) 
m 

W = total weight of the dynamic vehicle model 

WI = total weight of the rear axle of a three-axle truck 

x, y = cartesian coordinatesj defined in Fig. 1 

Y = dimensionless functions of ~ 
n 

z = dynamic vertical displacement of the center of gravity of 

z o 

z 
s 

the sprung mass; measured from the static position of 

equilibrium (See Figo 3) 

= initial dynamic compression of spring 

= static compression of spring 
vT 

= 2a b 7 dimensionless speed parameter 

a = unknown coefficients defined in Eq. (2-4) 
mn 

f3mn 

7. 
l 

= elements of the load matrix {B } 
m 

= dimensionless weight parameter for the ith beam, defined 

by Eq. (3-36) 

)' oj 11 = value of Ii for an interior and an exterior beam, respecti vely 

1 = value of r i for a bridge with identical beams 
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= z/W J 
0 

= Z /w s 0 

= Y/b 

e = u/blWo' dimensionless generalized coordinate for the vehicle 

Ai = (~~) i/Db, dimensionless flexural rigidity factor for the 

.th 
l beam 

A. = value of A. for the reference beam used to define w in 
lO l 0 

A ) A = values of A. for an interior and an exterior beam, respecti vely 
oIl 

A = value of A. for a bridge with identical beams 
l 

IJ. = mass of slab per unit of area 

v = dimensionless weight parameter defined by Eqo (3-36) 

~ = 'x/a 

p = dimensionless parameter defined by Eqo (3-43) 

~ = vt, dimensionless time parameter 
a 

~n = dimensionless generalized coordinate for bridge 

w = dimensionless weight parameter defined by Eqo (3-36) 
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II 0 ANALYSIS OF S'IATIC PROBLEM 

10 Characteristics of' structure and Assumptions 

The structure considered is shown in Figo 10 It consists of' a 

reinforced concrete slab continuous over a number of parallel steel or 

reinforced concrete beams spanning in the direction of traffic and siill~ly 

supported at the ends 0 The beam. spacing may be arbitrary 0 The dimensions 

of the beams may vary from one beam to the next)) but all beams are assumed 

to be prismatic 0 The slab is considered to be isotropic, of constant 

thickness, and simply supported at the abutments. 

The assumptions made in the analysis are those embodied in the 

ordinary theory of medium-thick, elastic plates and in the ordinary theory 

of flexure of beams 0 In addition, it is assumed that~ 

( 1) A beam and the slab over it deflect and rotate alike 0 

(2) There is no transfer of horizontal shear bet-ween the beams 

and the slab; thus the resultant of the normal stresses acting on a cross 

section of the slab or a beam is a pure coupleo The effect of composite 

action may be taken into account approximately by modifying the flexural 

and the torsional stiffnesses of the supporting beams as suggested by 

Newmark and Siess(lOa) 0 

In considering the effect of the torsional resistance of the 

beams; it is assumed that the Saint-Venant theory of' torsion is applicableo 

Poissonis ratio for the material of the slab is taken equal to zero, except 

when evaluating the rigidity of the slab ~ 

The span length of the bridge, center to center of supports, is 

denoted by ~ and the overall width of the slab by bo The position of' a 

point on the bridge is specified in terms of dimensionless cartesian 

coordinates s and~, defined by the equations 

s = x/a 

~ = y/b 

where x and y are as sho'WIl in Fig 0 lo 

(2-l) 
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20 Method of Analysis 

201 General. The approach used is a combination of the Rayleighco 

Ri tz energy method, and the Levy method of analysis for rectangular plates 

simply supported along two opposi te edges 0 The details of the method. parallel 

those of' the procedure used. by Yamada and. Veletsos for the cOIIl]?utation of the 

natural :frequencies and. modes of vibration of' higb:way bridges(15) 0 

Let the vertical load on the structure, p(;', 11), be represented by a 

single trigonometric series of the form 

(2-2) 

in which P is a f'tmction of 11 only 0 

m 
The deflection of the structure, 

m=l m=l 

., 
'W sin m2l:s 

m 

where w = 'W sin m~s is the deflection component corresponding to the load m m 

component Pm9 and wm is af'unction of 11 onlyo The problem is then to determine 

the relationship between 'W and1' 0 

m m 

In the procedure used, the deflection functions w are expressed 
m 

in the form 

w = \ a Y (2-4) 
mL mn n 

n 

where Y are known functions of the T}~coord.inateJ and a are coefficients 
n mn 

which will be evaluated by minimizing the total energy of the system 0 Let 

the functions Y be d~ensionless; then the coefficients a have the dimen-n mn 

sion of lengtho 

In the following development, the functions Y are considered to 
n 

be arbitrary 0 The specific functions used in this study are presented later 0 



202 Energy of the Systemo The energy expressions presented in this 

section correspond to the deflection component w = w sin m~~ and the associated m m 

load component p = P sin m~so m m 

Strain Energy 0 The strain energy of the system, V , may be Ylri tten in the form m 

V = (V) + (V )b m ms m 
(2-5) 

where (V
m

) s is the strain energy of the slab, and (Vm)b is the strain energy 

of the beams 0 The subscripts m are used as a reminder that these energies 

th -correspond to the m component of the deflection, 'W 0 For a value of' Poisson Ii s m 

ratio equal to zero, (V) is given by the equation 
m s 

Dab Jl Jl [(02; )2 2 ( 02; )2 1 ( 02-W )2J 
(V m) s = -:--4 ----f- + 2: ~ + 1+ ----f- dsdll , 

2a 0 0 0 s c c o1} 

'Where c = bfa, and D is the flexural rigidity per unit width of the slabo On 

replacing w by w sin mlts = - I m m 
a Y sin m3tg, Eqo (2-6) becomes 
mn n .. 

n 

=m4f>~[\'\ a a J~Y Y dT)+,[22 2\LamnamsJ~Y~.:Y~dll 
a If ~ ~ mn ms 0 n s (mc) ~ s 0 

+ 1 ) I a a J~ Y" y" dljJ 
~4( ) 4 , , ron ms n s ,mc '--J 0 .' n s 

Where a prime denotes one differentiation ~th respect to ~o 

The strain energy of the beams, (Vm)b' is given by the equation 

where (~~) i and (~Jb) i denote the flexural rigidity and the torsional 

rigidity of the ith beam, respectively, and the subscript i associated with 

(2~7) 

(2-8) 



the integrands means ~Bevaluated at the location of the ith beamn 
c By sub~ 

stituting w = ~ a Y sin m1t:S into Eqo (2~8)J multiplying an.d dividing the 
m n mn n 

right~hand side of the resulting equa.tion by Dby one obtains the equat.ion 

a a (y) 0 (y ) 0 

rnn IDS n 1. S 1. 

in which (Y ). is the ordinate of the function Y at the location of the 
n 1. n 

i th beamy and 1Q and ko are dimensionl,Bss rigidity factors defined by the 
1. 1. 

equations 

The strain energy of the systemJ V j can be rewritten in the 
ill 

condensed :form, 

4 4 
m n: D at T;' Ii rv '\ V = r. ~I:t;a ~ 1 . m 4 1+ = m" mn ms J 

a 

where F (ex 0:) is a q1..ladratic form of the unkno'W7.l coefficients ex 
m" m.n IDS' mn. 

Potential Energy of External Forces 0 The potent,ial energy J U J of' the load 
m 

component ~\n -sh"C':'-ugt·. th~ aS50ciat(~d deflection component wID. is given ~by tbe 

equa;tion 

rl {'l _ - (l fl. 
U = ~ab / I V"P dsdl) = ~ab (w sin m:q:s) (p sin Il11bs) d;dl1 

m .. I rJ ill"" m v U • mill' '~ o () 0 0 

By substituting Eqo (2~4) into Eqo (2~l3)y one obtains 

I n 

(1 
ex J p Y df! 

mn 0 m n 

(2=10) 

(2-13) 

( 2-14) 



Total Energy of System 0 

Eqso (2-12) and (2-14), 

-15-

The total energy of the system, I , is the sum 01' 
m 

44 L / I = m :J( D ab F (ex ex ) _ ab ex p Y d-n 
m 4- 4 m mn InS 2 mn in n "5 

a n 0 

( 2-15) 

Equations for Computation of a 0 

mn 
The condition that I be a 

m 

minimum yields a system of linear a~ebraic equations of the- :form 

{F } (A ) = (B ) 
m m m 

in which LA ) is a column matrix of' the unknown coefficients a , (B ) is 
m mn m 

a column matrix of known load terms j and [F ] is a symmetric matrix, the 
m 

order of which is eq~ to the number of Y
n 

functions used in Eqo (2-4) 0 

As before, the subscript m indicates that these matrices are functions o:f 

the integer m. The element f in the nth row and sth column of the 
m,ns 

[F ] matrix is given by the equation 
m 

1 1 

f [J Yn Ys d1j 
2 J Y' y' d1j + = + 

~(mc)2 m,ns o n s 0 

p 

+ \' [A. (Y ). (Y ). + ~ l nl. Sl. 
1=0 

The element t3::::: if. the nth row of the (B ) matrix is 
m 

1 
:n;4(mc) 4 

For a concentrat.-ec. !'o:-ce P applied at point S = Slj 1) :; T)l' 

1 

J 2P 
b I> Y dll = ~ sin m~ Sl Y ('Ill) m nan o 

and, therefore; Eqo (2~18) becomes 

2 pa3 sin m~sl 
f3 = 4 4 Yn( T)l" ) 

mn Z( Db m 

1 

J Y~ Y; d1J] 
0 

(2-16) 

(2-17) 

(2-18) 

(2-19) 
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The solution of the system of equations (2-16) gives the values of 

a >' which are then used to determine the deflection component w = w sin m~; 0 

~m m 

In genera1J Eqso (2-16) are solved for as many values of m as may be necessary 

in a particular a:pJ?lication 0 The total deflection, 'ii, of the structure is 

then dete~ned from Eqo (2-3) by superposing the component deflectionso The 

latter equation may be re-wri tten in one of the following forms 

(2-21) 

where Y (11) is a column matrix of the values of the Y functions evaluated 
n n 

at the point under consideration, and a dot denotes a scalar producto 

It is assumed that the set of Y functions are capable of repre~ 
n 

senting any deflection configuration in the interval 0 ::: 11 ~ 10 The functions 

y ~lJ Y1J Y
3
, 000 are considered to be symmetric about il = 1/2, whereas Yo' Y

2
, 

Y4) ar"e considered to be anti symmetri c 0 

If Y and Y represent a pair of symmetric and antisymmetric n s 

fUnctions, then 
111 

J Y Y d'T'l = J yg Y~ d'T'l = J yn yil d'T'l = 0 n s"a n s '& n s .~ 
o 0 0 

(g-22) . 

If, in addition, the structure is syrmnetric about the longitudinal centerline, 

11. = 1 - '11._ • 
l -P-l 

1... = A, 
l p-i (2-23) 

k. ::; k 
J. p-i 

for all values of i, then 

f' A..(Y ) .(Y ). = ~ k.(Y·) .(y'). = 0 
~ l n l s l ~ l n l S l 

i=o i=o 
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From Eqo (2-17) it follows that, for such a pair of functions, :f ' = 0 and, m,ns 

therefore, the elements o:f [F ] form a checkerboard pattern, with every other 
( m 

element in each row and each column equal to zero. The non-zero elements of 

[F ] correspond either to symmetric or to antisymmetric pairs o:f functions. 
m 

The matrix [F ] can, therefore, be split into two submatrices, one formed by 
m 

the symmetric functiens and the other by the antisymmetric functions 0 The 

unknown column matrix (A ) in Eqo (2-16) can then be determined more conven­
m 

iently by solving the two sets of equations separatelyc 

2.4 Reciprocal Relations 0 From Maxwell's theorem of reciprocal 

deflections it follows that the de:flection of the structure at point 1 (~l'~l) 

due to a load P applied at point 2 (~2'~) is equal to the deflection at 

point 2 due to the same load P applied at point 10 Moreover, :for a plate 

having t101O opposite edges simply-supported, it has been ShO'WD.(~n that the 

o2w 1 (j2w 
curvature in the direction of the simply supported span, 2 = 2 2' at 

ox a (j~ 
point 1 due to a load P applied at point 2 is equal to the corresponding 

quantity at point 2 due to the same load applied at point 10 

It is the purpose of this section to show that, even for the 

approximate ::nethod of analysis used in this study, these relations hold 

true regardless of the nature of the Y functions considered or the number 
n 

of fUnctions used. 

The coefficients a corresponding to a load P at point 1 are 
ron 

obtained as solutions of the equations 

which, by making use of Eqo (2-20), can be rewritten as 

(2-26) 



The matrix (Am) 1 may now be expressed as 

2P 3 sin m~;l { 
(Am}l = g4;b m4 [Gm] Yn(Tl1 )} (2=27) 

where [Gm] is the inverse of [Fm] 0 The resulting deflection at point g, w2, l' 

is obtained by substituting Eqc (2-27) into Eqo (2-21), 

(2-28) 

The deflection of the structure at point 1 due to a load p' at 

point 2 may be expressed in similar manner a~ 

(2-29) 

If' A is a symmetric. matrix; and X and Y are column matrices, it can 

readily be shown that 

Since [F ] in Eqo (2-25) is symmetric, its inverse, [G ]J is also 
m m 

symmetric 0 From Eqo (2-30) it follows then that" 

Therefore) Eqs. (2-28) and (2-29) are identical, iGeo 

The general expression for the curvature in the s-direction, 
2 

(0 ;).9 is obtained from Eqo (2-21) by diff'erentiationo Noting that 
ox 
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and making use of' Eqo (2-27), one f'inds that 

and 

(~2w. \ = 
\ax2

)l,2 

'Where the subscripts (2,1) and (1,2) have--the same meaning as in Eqs. (2-28) 

and (2-29) 0 By virtue of' Eqo (2-31), it follows now that 
,;' 

205 Deflection Functions Used 0 In the present study, the Y 
n 

functions were taken as f'ollows ~ 

/ 
1 for n = -1 

Y 005 - 11 for n = 0 = r 
n 

~ sin n'liT} for n > 1 

(2-34) 

(2-36) 

(2-37) 

Note that, Y -1' Y1, Y
3
, ... 0 are symmetric and Yo' Y2, Y4, .... 0 are antisynnnetric 

with respect to the longitudinal centerline of the structure, ~ = 0050 

The elements of [F ] corresponding to these functions are obtained 
m 

by substituting Eqo (2-37) into Eqo (2-17). The results for a symmetric 

structure are summari zed in the . follo'Wing table.. (See p. 20~) 

The elements for the first four symmetric and the first four anti-

symmetric functions are also tabulated in Tables 1 and 2, given a.t the end 

of the text 0 In the dezoi vation of these equations it has implicitly been 

assumed that ~. and k. are finite quantitieso 
l l 



Values of 
n and s 

(a) 

n = s = -1 
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ELEMENTS f OF'MATRIX [F ] 
mJns m 

Expression for f 
mJns 

Elements Corresponding to Symmetric Functions Y 
n 

p 

1 + ~ f... . ~ 
l= 

n= -1; s :/: -1 

: n = s :/: -1 
2 . n~. 2 '. J . (l) ~ (l) s~n n" - + cos n:J( -

p (mc)2 . p 

n :/: 5 f -1 
. . ns k. . . J 

sin (n:n:~) sin (511:~) + l cos (n:n:~) cos (Sl!~) 
(mc)2 

(b) 

n = 5 = 0 

n = OJ S -I 0 

2 . n~l' 2 . J . ( l) ( l) s~n n:n: - + cos nl! p 
p (mc)2 

. . nsk. . . J 
sin (nl!~) sin (511:~) + ~ 2 cos (n1C -p~) cos (s~ _pl) 

P P (mc) 
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30 Problems Considered for Solution on ILLIAC 

301 General 0 The method described in the preceding sections has 

been programmed for the ILLIAC to analyze bridges having from three to seven 

uniformly spaced prismatic beams 0 The beams are assumed. to be arranged 

syrrnnetrically with respect to the longitudinal centerline of the structure 0 

All interior beams are considered to be identicalo The exterior beams on 

either side of the bridge are assumed to be located along the edge 'of the 

slab and, while identi cal to one another, they may be different from the 

interior beams 0 The characteristics of these bridges are defined in terms 

of the following dimensionless parameters~ 

~ = number of beam spacings 

c = b/a = ratio of sides of bridge 

= fleAural rigidity factor for an interior beam 

'l.= 
(~\)l 

Db = flexural rigidity factor for an exterior beam 

k 
(GbJb)o 

torsional rigidity factor for an interior beam = = 
0 Db 

k~ 
(GbJb)l 

torsional rigidity factor for an exterior beam = = 
~ Db 

T\.lo separate programs have been developedo The first may be used 

to determiLe i~fluence surfaces for deflection and bending moment in the beams 

due to a ULit concentrated force applied at various points on the bridge. 

The second prograrr: computes the deflections and bending moments in the beams 

produced by a three-axle truck loading u The capabilities of these programs 

and s®me computational details are described in the follOwing sectionso 
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302 Program for Influence Surfaces 0 This program calculates 

orn;nates of influence sl~faces for deflection and bending moment in a beam 

due to a unit concentrated load located at points directly over the beams 

and midway between beams along any desired number of equally spaced trans-

verse sections" 

These ordinates are determined by application of the reciprocal 

relations discussed in Art 0 2040 Let point 1 ~th coordinates (Sl'~l) be 

located on beam i, and let it be desired to determine the influence ordinate 

for deflection and bending moment at this point due to a concentrated load 

applied at some other point 2" These quanti ties 'Will be denoted by. 'W1J 2 and 

Ml;2i respectively 0 

By virtue of Eqo (2-32), wl ,2 may be determined by considering a 

concentrated unit force at point 1 and evaluating the deflection w2jl pro­

duced at point 20 The influence surface for deflection at point 1 may then 

be constructed by evaluating the deflection w
2
,1 at as many different points 

2 as may be needed in a particular application" 

In a similar manner, by virtue of Eqo (2-36), the moment ~j2 may 

be expressed as 

where (~~) i is the flexural rigidity of the beam on which point 1 is located 0 

It should be noted that in the above equation, the moment is defined at 

point 1, whereas the curvature is defined at point 20 It follows that the 
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in£luence ordinates for moment at point 1, just like those for deflection, 

can be determined in terms of the effects produced by a concentrated unit 

force applied at that pointe 

The parameters which must be specified in using this program 

include the dimensionless parameters summarized in Arto 3Gl, the coordinates 

(~l'~l) o~ the point for which the influence surface is desired, the number 

of equally spaced transverse sections at which the influence ordinates are 

to be evaluated, the number of Y functions used,and the number of terms 
13. . 

considered in the Fourier series expansion of the loado The last two para-

meters have been treated as problem parameters so that they can be variedo 

The ranges of parameters that may be considered are such as to include most 

practical structureso 

In general, the moments in the beams, M, are computed from the 

equation 

co 

M = ) M (2-39) 
~m 

by considering a finite number of terms m = m 0 In this equation M repre-
o m 

sents the moment produced by the component load p 0 It has been observed 
m 

that for the beam immediately beneath a concentrated load this series does 

not converge rapidly and, unless a large number of terms are conSidered, 

the result may not be accurate. The convergence of this series may be 

accelerated, however} by the foll-owing procedure. 

Let M' be the value of the moment computed on the assumption that 

the concentrated force is carried entire~y by the loaded beam without any 
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transverse distribution 0 For a force P applied at S = SlJ the· moment at S 

may be expressed either in a·closed form) as 

when S ~ Sl 

or in the ~orm of a Fourier series as 

M' =I M:V 
m 

(2-4l) 

m=l 

where 

(2-42) 

By subtracting the two sides qf Eqo (2-4l) from the corresponding sides 

o~ Eqo (2-39), one obtains the expression 

M = M' -~. eM' - M ) L m m 
m=l 

'Where MU is assumed to be determined from Ego (2~40) 0 Although the series 

E M~ and r. M individually converge rather slowly'? it turns out that their 
ill m 

. difference converges rapidly 0 Accordingly, the value of M computed from 

Eqo (2~43) by considering a finite number of terms m = m is closer to the 
o 

exact value than is the one obtained from Ego (2-39),~ using the same number 

of terms 0 The computer program has been prepared so as to compute and print 

out the values obtained both from Eqo (2~39) and from Eqo (2-43)0 



-25-

The fact that, for the higher values of m, the moments M and M' 
m m 

are close to one another may be appreciated physically by noting that as 

m increases the effective span length of the structure, a/m, decreases, and 

the load component p tends to be carried by a narrow strip of the structure 
m 

immediately beneath the load without substantial transverse distribution. 

A general flow diagram. for the program is shown in Figo 40 The 

operations indicated in the first column of this diagram are performed once 

for each problem, those on the second column are performed once for each 

value of m, and those on the third column are performed twice for each value 

of mo ·The numbers in parentheses above the boxes designate the routines 

usedo Those operations not identified by any numbers are performed by the 

control routine (1002) 0 In general, the flow diagram is self-explanatory 0 

Some additional details are discussed in the follo-wing paragraphs 0 For a 

more detailed description of the program the reader is referred to the 

complete write-up deposited in the ILLIAC Library of the Civil Engineering 

* Department 0 

The quantities f3 evaluated by Routine (1003) are defined by the 
n 

equation 

(2-44) 

These q,uanti ties are proportional to the elements f3 of the load matrix 
mIl 

(B ) in Eq,o (2-16). For a concentrated force, the elements f3 are given 
m mn 

by Eq. (2-20), where P = 1" It should be noted that the quantities f3 are 
n 

independent of m and are evaluated only once for a given problemo 

*"ILLIAC Program 1592 - MOments and Deflections of Mllltigirder I-Beam 
Highway Bridges f1, by Cenap OraD., Uni versi ty of Illinois, Civil Engineering 
Department, July 1960 0 It should be noted that the symbols f.., , '-1' k , 
and kl used in this write-up have different meanings from tho~e used ~n 
this report" 



The elements of [F ] are evaluated by three different routines 0 

m 

Routine (1005) is used to compute the first row of the submatrix corre-

sponding to symmetrical functions Y J routine (1007) computes the first row 
n 

of the submatrix corresponding to antisymmetric functionsJand routine 

(1008), entered twice for each value of m, computes the remaining rowso 

For asymmetric load,. only the submatrix corresponding to symmetric functions 

is evaluated 0 

The quanti ties Q computed with routine (1010) are defined by 
m . 

the equation 

They are evaluated for values of 

i 
11 = -, where i = 0, lJ 2; 000 ?p 2p 

The coefficients Oi in Eqo (2-45) are ~ropOrtional to the coefficient 0 
mn mn· 

defined by Eqo (2-4) 0 In essence, they represent the solution of Eqo (2~16) 

with the elements ~ of the load matrix {B } replaced by ~ 0 

mn m n 

The influence ordinates for deflection, iN, and moment, M; are, 

expressed in the form 

W= 

M = C Fa 
m 

(2-46) 

where Cd and Gm are dimensionless coefficients and (~~) 0 is the flexural 

rigidi ty of' the interior beamo The coefficients Cd and em are related to 

the quantities ~ as ~ollows 
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1:... Q sin mll:; 
2 m m 

where ~. is the flexural rigidity factor of the beam on which point 1 is 
l 

located. 

(2-48) . 

(2-49) 

It is to be noted that the moment computed ~om Eq. (2-49) corre­

sponds to that obtained by use of Eq. (2-39). The improved values of moment 

for the loaded beams are determined by use oi"Eq" (2-43) 0 

This program utilizes the entire Williams (fast) memory of .the 

IT,T,TAC which has a capacity of' l024 words. The maxim.um ""vralu8 of m that 

can be considered is less than lo4/(2p+l), this restriction being due to 

the number of storage locations available in the Williams memory 0 For a 

five-girder bridge, this limit corresponds to mo = llo 

The ca.chine time required to obtain a solution depends on such 

factors as the ~u::ilier of Y functions and m-terms used, as well as the 
n . 

number of se:tio::.s along which the influence ordinates are evaluated" The 

computatio~ of one cocplete 'set of influence surfaces for moment and deflec-

tion takes fro:.: 0.5 to 1.5 minutes 0 

3.3 Prog:a=. for Truck Loading 0 This program calculates the 

deflections and bending moments produced in the beams of the structure, 

along a prescribed transverse section, by a three-axle truck loading" The 

deflections and moments may be evaluated for any prescribed number of 

longi tudinal positions of the vehicle. 

The force exerted by each axle is represented by two equal con-

centrated forces. It is assumed that the longitudinal centerline of the 
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truck is parallel to the beams and that the spacing between consecutive 

axles is the same 0 For an H-S truck loading, the latter spacing represents 

the most'severe condition for a simply supported bridgeo 

Let WI' W2} and W3 be the total weights" and ~17 S2J and S.3 be 

the ~-coordinates for the rear} middle and front axles; respectively 0 For 

convenience we let 

For this loading, the element ~ of the load matrix (B ) in Eqo (2~16) is 
, TIm m 

obtained from Eqo (g-2t) ey superimposing the contributions of the six wheel 

'Where 111 and ~ are the 11-coordinates of the wheels on either side of the 

truck. For an axle to be located on the structure; the value of the 

s-coordinate for that axle should range between 0 and lo 

The organization of this program is very similar to that described 

in the preceding article. A general flow diagram is given in Figo 5 and 

should be self-explanatory 0 The quanti.ties ~ri and ~ referred to in tills 

program are defined by the following equations 

(2-51) 



,f 
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Q..' = 12 sin m:!!s L 
m m n 

ctt Y (1'}.) 
ron n J. 

(2-52) 

where ~ and 1'}. are the coordinates of the points "Where the effects are to 
J. 

be evaluated, and the coefficients ~ represent'the solution of E~o (2-16) 
mn 

'Wi th the elements" of the load. matrix (B ) replaced by f3' 0 The subscript mn m n 

i on ~ denotes that the effects are evaluated only for the beamso 

The deflections, w, and moments,M, are expressed in the form 

W a3 
1 ' 

Cd (~~)o w= 

M= C' W a m 1 

'Where Cd and C~ are dimensionless coefficients, and are related to the 

~uantities ~ as fol~ows 

m 
o 

~1 = 1- ') .J:. G.' r sin mltf, 
'" d ~ l....J 2 -m L -1 

m=lm 

m 
o 

C~ = > I Q.~ [sin m!t~l + w2 sin m!t(e1+a) + w3 sin m:!!(Sl+2a) J 
o m=l 

(2-53) 

(2-54) 

. (2-55) 

(2-56) 

Note that, in order for the last t~ equations to be true, the s-coordinates 

for all three axles must range between 0 and 1; this condition is checked by 

the program, and those axles that may be located outside the bridge are 

disregarded in Eqs. (2-55) and (2-59). 
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The program has been written so that after the deflections and 

moments for the initial position of the truck have been computed and printed 

out, the truck is advanced in the longitudinal direction by a distance 

~ = a 65; and the deflections and moments are computed and printed out for 

this new position of the truck 0 This operation is continued until the 

specified number of truck positions have been consideredo 

The parameters that must be specified for a solution include the 

six parameters characterizing the structure and summarized in Art. 3,1, the 

parameters 51) cr, ~l' ~) w2 and w3 that define the characteristics and the 

ini tial position of the truck, the s-coordinate of the transverse section 

where the effects are to be evaluated, the total number of truck positions 

and the increment 6~ to be conSidered, the number of Y functions used, 
n 

and the number of load components used in the longitudinal direction. 

This program) like the one described in the preceding article, 

utilizes the entire William g s memory of the ILLIAC 0 The maximum value of 

m that can be considered is less than 108/(p + 1) 0 For a five-girder 

bridge; this co:-:-esponds to m = 210 It is important to note; however, 
o 

that in this prograc r~ provision has been made to accelerate the rate 

of convergence o~ the nomentso 

T'ne =:.a."'~:'ne tice required to obtain a solution depends on the 

problem para=eters. For the practical ranges of the parameters, the solu-

tion of a proble= fo~ several positions of the truck takes from 005 to 105 

minutes 0 This t:'l:le is affected prim.a:t"ily by the value of m and the number 
o 

of Y functions used. 
n 
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4. Convergence and Accuracy of . Method 

As an illustration of the accuracy of the method and the rate of 

convergence of the solutions, there are presented in this section influence 

coefficients for deflections and bending moments for three different bridges, 

" 

each having five uniformly spaced, identical beams, as shown in Fig 0 20 

These solutions, obtained by considering an increasing number of terms in 

the series expression for the deflection of the structure, are compared 'With 

those reported previously by Ne~k and Siess(lO) c The latter results were 

obtained by an exact method. 

The characteristics of the bridges investigated are defined by 

* the following parameters: 

Bridge 1: 

Bridge 2: c = 004 

Bridge 3: c = 0.8 

A. = 12 .. 5 

A. = 50 

A. = 1205 

The torsional rigidity of the beams was taken equal to zero in all cases. 

In tables 3 through 6 are given influence coefficients for deflec-

tions and cooents for Bridges 1 and 30 These quanti ties were determined 

USing a cor.stant number of load. terms (m = 11) J and a variable number of o -

Y functions. The symbol n in these tables represents the number of Y 
n 0 - n 

functions in excess of Y -1 and Yo 0 The numbers in parentheses were reproduced 

from Ref. (10). 

It can be seen from these tables that the results obtained by the 

present method, in general, converge quite rapidly with increasing values of 

n. Thi s rapid rate of convergence and the excellent agreement between the 
o 

* The values of the corresponding parameters used in Ref. (10) in the notation 
of that reference, are: 

Bridge 1: b/a = 001 
Bridge 2~ b/a = 001 
Bridge 3: b/a = 002 

H = 5 
H = 20 
H = 10 
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present results and those reported in Refo (10), inspires much confidence in 

* the accuracy of the method employedo 

It is of interest to note that the influence coefficients for 

Bridge 3 converge less rapidly than those of Bridge 10 This can be explained 

in terms of the physical characteristics of the two structures. Bridge lJ 

being a relatively narrow structure 'With h;i.gh transverse stiffness, has a 

fairly smooth and uniform distribution of deflection in the transverse direc-

tion" This may be represented by a small number of Y functions 0 Bzoidge 3, 
n 

on the other hand, being fairly flexible, requires a much larger number of 

Y terms to specify its transverse configuration~ 
n 

Influence coefficients for the same two structures were also com- . 

puted using a constant number of Y functions (n= 8) J but a variable number n 0 

of terms in the trigonometric series expression of the load (mo = 1 to 11)0 

The results, su:mmarized in Tables 7 to 10, converge fairly rapidly 'With increas-

i!1..g vR1 ue of mo It is important t.o note j however, that, of the moments 

presented in Tables 3 through 10, those for the loaded beams were computed' 

by application of Eqo (2~43)o The rate of convergence of these moments is 

much slower when evaluated in a straightforward manner by use of Eqo (2""39)" 

This is illustrated in Table 110 

As a further measure of the accuracy of the method usedJ in Tables 

12 through 14 are presented additional influence coefficients for deflections 

and moments J and the results compared 'With corresponding values reported in 

Refo (10) 0 It is seen that the agreement between the two sets o~ values is 

for all practical purposes perfecto 

* See also comparison between experimental and theoretical data reported in 
Refo ell)" 
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III 0 ANALYSIS OF DYNAMIC PROBLEM 

10 Characteristics of structure and Vehicle 

The structure analyzed is the same as that considered in the static 

analysis presented in the preceding chapter 0 In addition to the assumptions 

made :previously, it is assumed that the mass of the slab is 'Wliformly dis-

tributed, and that the mass per unit of length of the beams, although it may 

va:ry from one beam to the next, is constant for anyone beam. 

The vehicle is represented by a single-axle, two-wheel loading 

consisting of a sprung mass and two equal unsprung masses, as shown in Fig. 30 

The center of gravity of the sprung mass is assumed to be located halfway 

between the supporting springs. The springs are considered to be linearly 

elastic and to ha.ve identical stiffnesses. Damping for both the vehicle and 

the bridge has been neglected. 

2. General Description of Method of Analysis 

The analysis of the problem involves~ 

(a) The determination of the instantaneous values of the inter-

acting forces between the vehicle and the structure, and of the inertia forces 

due to the mass of the structure, and 

(b) The computation of the deflections and bending moments produced 

in the structure by these forces 0 The latter step is a problem of statics} 

and has been discussed in detail in Chapter. IIo The problem of dynamics, 

therefore, consists essentially in determining the instantaneous dynamic 

forces 0 

The method used to analyze the d:ynamj c problem is an extension of 

that used in the preceding chapter to study the static problem, and utilizes 

the approximation employed by IngliS(6) in analyzing the dynamic effects 

produced by moving loads in simply s~ported beams 0 



a.s 

The dynamic deflection configuration of the structure is expressed 

W=W 
o 

sin 1C~ \' f (t) Y (T}) L n n 
n 

(3-1) 

where w = the deflection of any pqint of the bridge at any time, due 

to the static and dynamic effects of the vehicleo 

\IT = a quantity with the dimension of deflection, chosen arbitrarily 
o 

w = total static weight of the vehicle 

( K l) - flexural rigidity of a reference beam. 
DD iO-

f (t) = dimensionless coefficients that are functions of time; these 
n 

are the generalized coordinates for the bridgeo 

v ('1'\\ = dimensionless functions of nJ as previously discussedo .l.n \ "Al u_ 

It should be noted that the instantaneous deflection configuration of the 

structure in the longitudinal direction (s~direction) is assumed to be a 

half~sine "Wave 0 This is the same assumption as that used by Inglis for the 

beam problem and amounts to considering only the term m = 1 in Eqo (2~21)o 

On comparing Eqso (3-1) and (2-21), one observes the following~ 

10 The assumption made regarding the dynamic deflection config-

uration in the transverse direction is the same as that used for the static 

problem. 

20 . Th~ time-dependent coefficients f (t) in Eqo (3-1)j correspond 
n 

to the coefficients ~n in Eqo (2-21)0 

In the special case where a single Y function representing a 
n 

uniform deflection is used, the problem considered here is identical to the 
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one studied by IngliS( 6) <> The governing differential equations, obtained and 

presented later in this chapter, when simplified by using a single Y function, 
n 

yield, in fact, the equations obtained by Inglis; this relationship is dis-

cussed in detail in Art. 4D3 of this chapter 0 

The coordinates used to specify the coni'iguration of the sprung mass 

are the vertical displacement of the center of gravity of the mass, z, and 

the rotation of the mass about an axis normal to the transverse vertical plane, 

u; (see Fig. 3). The verti cal positions of the unsprung masses are determined 

by the configuration of the bridge. Thus the total number of generalized 

coordinates of the bridge-vehicle system is equal to the number of f (t) 
n 

functions used in Eq. (3-1) plus the two coordinates z and u used for the 

vehicle. 

The vehicle is considered to be attached to a Galilean reference 

frame that moves along the bridge with a constant velocity, v, in such a way 

that the unsprung masses and the center of gravity of the sprung mass can 

move only vertically with respect to the reference frame, and the sprung mass 

can rotate only about an axis that is parallel to the bridge and passes through 

the center of gravity of the sprung mass 0 The restrictions on the motion of 

the elements of the vehicle represent time-dependent constraintso The system 

under consideration possesses a time-dependent potential energy function, 

or a pseudo-potential energy as it is sometimes called, and it is possible 

to formulate the equations of motion by applica~ion of Lagrangets equation 

(3-2) 
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in which V = the strain energy of the system 

u = the potential energy of the gravity forces 

T = the kinetic energy of the system 

th 
~ = the n generalized. coordinate of the system 

30 Energy Expressions 

The datum of zero energy level for the system is defined by the 

following condi tions ~ the structure is in an unstressed position, and the 

springs of the vehicle are undeformedo 

Let w2 represent the deflection configuration of the bridge when 

loaded with its own weight; this deflection is measured from the unstressed 

configuration of' the bridge 0 Then the total deflection of the bridge, mea-

sured from its unstressed pOSition, is (w + w
2

)o The dead load deflection 

configuration; w2J can be represented in a form analogous to Eqo (2-21) as 

where 6 are constant dimensionless coefficients 0 In the following develop­
mn 

ment, only the term ill = 1 'Will be retained. The resulting expression 

\' 

W = w sin ~; L 6 Y (11) (3-4) 
2 0 n n'" 

n 

is then analogous to Eq. (3-1) . The higher terms are irrelevant in thi s 

case, as they 'Will only increase the energy of the system by a constanto 
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3 ~l strain Energy. The total strain energy $f the system) V,. is 

written in the·form 

V=V +Vb+V s sp (3-5) 

where V ) Vb' and V are the strain energies of the slab) of' the beams, and 
,s sp 

of the springs, repsectively. 

For zero Poissonis ratio) V is given by the equation . s 

Substituting Eqso (3-1) and (3-4) into Eqo (3-6)) gives 

Dab 2 [ 4 I I / . 2 ! V = --r. w :It. (f +5 )(f +5 ) s~n ~6 dS Y Y d~ 
s2 _l..!- 0 n n s s . n s a n s 0 0 

2~ IL (f +0 )(f +5) ! cos
2 l!~ d~ / Y' Y' +~ n n s s n s c n s 0 0 

II 
1 1 

1 (f +0 )(f +5 ) J sin
2 

:n:s d~J y" y" +"4 n n s s n s c n s 0 0 

dT} 

dTlJ 

where, as before) a prime superscript on Y denotes one differentiation with 
n 

respect to ~o Letting 

111 

( 3--6) 

(3-7) 

A =[J'y Y dlJ+ i2Jy'y' dll+~JyftYUd~J ns n s '"' n s ...,. Lj- Lj- n s (3-8) 
o d~C 0 4~C 0 

and evaluating the integrals involving the s-coordinate, one obtains 



Note that A = A ns sn 

The strain energy of the beams is given by the equation 

(3-10) 

By substituting Eqo (3-l) and (3-4) into Eqo (3~lO)J one obtains 

P 

Vb = 3t'4
4n ~.b w2 

\ ["'. ~. ' \ (f +6 ) (f +0 ) (y ). (y ). 
Lt- oL ~ L n n s s n~ S~ 

a i=o s 

+ :i 2 ~ I c. f +0 )(f +l) ) (yo). (y'). J (3-11) 
~ .. n n s s n~ s~ 
~ cs , 

where (Y ). is the ordinate \·,of the function Y at the location of the i th 
n ~ ·n 

beam and 1... and k. are dimensionless parameters defined previously by Eqs" 
l l 

The strain energy of the springs is given by the equation 

in Which the bracketed quantity is the total compression in the jth spring} 

and 

k = the spring constant for one spring 

z the initial static compression of a spring 
s 

z = the dynamic vertical displacement of the center of gravity 

of the sprung mass) measured from the static position of 

u = the dynamic rotation of the sprung mass in the transverse 

vertical pla..'Tle, measured with respect to the static equili-

brium position (See Figo 3) 
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W = a de~lection ~unction representing the deviation of the deck 
1 

o~ the bridge} "When loaded with its own weight, from the 

horizontal plane passing through the supports" It is positive 

wen downvre.rdo This quantity is equal to the sum of the dead 

load deflection configuration and the configuration represent-

ing any possible unevenness of the unstressed bridge. 

b = one'half the distance between the weels 
1 

(w+w
l

) j = (w+'Wl ) evaluated at··:wheel j" 

Assuming arbitrarily that t = 0 when the vehicle enters the bridge} 

one can write 

in 'Which .. ~. = ~-coordinate of either wheel 
. J 

v = speed of the vehicle along the bridge 

Substituting Eqs. (3-1) and (3-13) into Eqo (3-J2·)} gives 

2 2 

V = 21 k)' [z+z - ('W
l
). + (-1) j ubI - w sin ~ \' f (Y ) .J 

sp ........ s J 0 , . a L n n J 
~l n 

(3-13) 

(3-14) 

3 .2 Pote:1tial. Energy of the Gravity Forces" The potential energy 

of the gravity fv:-~es is written in the form 

'Where U , 
s 

u=u +Ub+U +U 
S sJ? U 

U J e..r~ U are the potential energies of the slab, of the 
5;:: U 

beams} of the sp...""""U:'..g mass, and of the unspnmg masses, respecti velyo 

The potential energy of the weight of the slab i s given by the 

equation 

(3-15) 

(3-16) 
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in which ~ is the mass of' the sla.b per unit of' area 0 By substituting Eqs 0 

(3-1) and (3-4) into Eqo (3-16), one obtains 

1 

U = - g ~a.b W \ (f +0 ) J Y d-q 
s 3t 0 Ln n n n . 0 

The potential energy of the weight of the beams is given by the 

equation 

(3-18) 

in Wlch (~) i is the mass per unit length of the i th beamo By substi tut­

ing Eqo (3-1) and (3-4) into Eqo (3-18), one obtains 

P 

Ub = - ; ag Vo I [(~)i I (fn+On)(yn)J 
bo n ' 

The potential energy of the sprung mass is 

u ;;. - Mg(~+z ) sp s 

'Where M = the sprung mass 

The potent.ial energy of the unsprung masses is 

2 

Uu = - rng I (w+w1)· . 1 J 
J= 

where ill = one unsprung mass 0 By substituting Eqs 0 (3-1) and (:3-13) into 

Eqo (3-2l), one obtains 

(3-19) 

(3-20) 

(3=21) 

(3-22) 
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3.3 Kinetic Energy. The total kinetic. energy-of the system is 

expressed in the form 

T=T +~ +T +T so sp u- (3-23) 

'Where T, T
b

, T , and T are the kinetic energies of the slab, of the beams, 
s sp u 

of the sprung mass, and of the uns:prung masses 0 

The kinetic energy of the slab is 

lJl 2 
Ts = ~ lJ2.b [ 0 (~) d~d1J 

Noting from Eq. (3-1) that 

and substituting this equation into Eqo (3-24), one· obtains 

df 
where f~ = dt

n 

(3-24) 

(3-25) 

(3-26) 

The kinetic energy of the beams is obtained in a similar manner: 

ff ft 
n s 

(y).(y). 
n l s l 

(3-27) 

Note that the kinetic energy of the beams due to their torsional motion is 

neglected. 

The kinetic energy of the sprung mass is given by the equation 

1 (dZ)2 1 (dU) 2 
Tsp = 2' M dt + '2 J dt (3-28) 
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in Which J is the polar moment of inertia of the sprung mass about an axis 

through its center of gravity and normal to the transverse vertic~ p~ane'Q 

The kinetic energy of the unsprung masses is 

(3-29) 

it is to be noted that 

(3-30) 

ds. 
and that --Jl == v 

dt a 
By substituting these expressions into Eqo (3-29) and 

using Eqo (3-1); one obtains 

40 Governing Differential Equations 

The differential equations governing the motion of the bridge-

vehicle system nre obtained from Eqo (3-2) by substituting the energy 

expressions der: ved ir. the preceding article. The number of equations 

thus obt.ained ~ s e~ to the number of generalized coordinates used to 

define the co:l!ig-urat:o!1 of the system. The detailed derivation of these 

equations is presented in the Appendix. The :final equations are summarized 

in the fol1oVing paragraphs. 

4.1 D:'oensional Form of Equations. The equation corresponding 

to the nth generalized coordinate for the bridge j 
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1 P 2 

'W .\ fit [~2bJ YnY
s 

dT} +-2a \(m.).(y ).(Y). +m sin2nvt \ (Y ).(Y ).] o~ soL bl nl Sl a ~ nJ SJ 
j=o j=l 

2 

+ Wo \ f t [2m( 1T.V
a

) \ (Y ) .(Y ) .] sin ltVt cos ~vt L S L nJ S J a a 
S j=l 

The s~tions on s should extend. from S = -1, to S = ~, ·the maximum value 

of n used in Eq. (3-1). 

The differential eq,uations for f l' 1', 0 o. f are obtained from 
- 0 nl 

the above equation by replacing n by -1, 0, 0.0 n10 There ~wi11 be a total of· 

~ + 2 such equations. 

The equation corresponding to the z coordinate of the vehicle is 

Mz" . 1Cvt - (w ) . - W Sln-
1 J 0 a ~ f (Y ) .] = 0 

S S S J 

and the one corresponding to the u coordinate is 

- W o 
Sin~>f (Y ).] = 

a "'-I S sJ 
S 

(3-33) 

a (3-34) 
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It can be seen that in these'. equations the roadway surface 

unev~nness function., 'W
l

, appears only as (-'{oi"l) j' ioeo, 'With its ordinates 
,/" 

evaluated at the transverse location of the wheels 0 That this should be 

so is physically apparent.o 

In what follows, the variation of the functions (W
l

) j in the 

~-direction is assumed to be sinusoidal) ioee 

where e. (j = 1 or 2) are. dimensionless quantities and'W e. denotes the 
J 0 J 

a:m.pli tude of the unevenness 0 The quanti ties el and e
2 

mayor may not be 

(3-35) 

equal; they may also be positive or negative. The quantity ~ is a .positive 

integer 0 

4'.2 Dimensionless Form of Equations 0 Let 

v = __ 2m __ +_M ___ = Total weight of vehicle 

w = 

1.= 
l 

a= 

K =. 

.1> Total weight of bridge 
a.[ilb + i~0(~)i] 

2m 
2m + M 

= Unsprung weight of vehicle 
Total ~ight of vehicle 

( ~) i Weight of i th beam ------= 
'~'!P Total weight of bridge 

~b + i~O\~~i 

vlb 
2a 

\ . 
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in which 

fb = the fundamental natural frequency of the bridge evaluated 

on the assumption that it acts as a beam 

f = the-natural frequency of the vehicle for vertical motion v . 

on its sl?rings 

These freque?cies are given by the equations 

2 Db + ;~ .. (~·~)i 
2 1 1t l=O 

f --- -:-4 l? b - ~2-
4a I-Lb + .z (~)i l=O 

(3-37) 

2 1 1 2k 
f =-=--
v T 2 4~ M 

v 

In add.i tion" let 

vt ,. =-
a 

~ (-r) = f (t) s s 

~~( T)) = z~ t) (3-38) 
o 

e( -r) = 

By differentiating these equations) one obtains the relations 

2 
fn = (v) cptf 

s a s 

z!! 2 
-= ( :!:) s" (3-39) 
w a 

z j 

(~)~ g -= 
w a 

0 0 

u"b
l 

2 
--= (y) en 

'W a 

ufb' 1·· (y.) e t --c: 
VI a 

; 
0 0 
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in 'Which a prime superscript on f , z, and u denotes one differentiation with - s 

respect to t, and a prime superscript on ~ J S and e denotes one differentia­
s 

tion with respect to ~o 

Now by multiplying Eqo (3-32) by 

~2 l 
2w -----p--- J 

o \lab + a i~O<'~)i 

making use of Eqo (3-35), and introducing the dimensionless quantities -defined 

by Eqso (3-36) through (3--,39) and Eqso (2-l0) and (2-ll), one may reduce 

Ego (3-32) to the form 

'Where 

I ~" (B + C .2) +I ~v D sin lt1' cos 1(1" S1.n lt1" 
s ns ns s ns 

S s 

+L CPs (Ens +F 
. 2 

3(1") +H sin lt1' S1.n 
ns n s 

+ L ( SJ e, 1") +R sin 3(T sin ~tt'r. = 0 
n n 

2 

C ns 
= cf'WJ \ (y ) .(Y ) . L n J s J 

j=l 

D DS 

2 

= 2d- ff.~ \" (Y ) . (y ) . L n J S J 
j=l 

p P 

E =-~--[A +\t-..(y).(y).+ 212\k.(Y~).(Y~).J 
DS P ns L 1. n 1. s 1. 1t L 1. n 1. s 1. 

l +.Z t-.. i=o c i=o 
l=O 1. 

(3-40) 
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ns 
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2 

clw] \' (y ) . (y ) . L n J s J 
j=l 

2 

Ln = - hv(l- w)sin It .. IcYn)j [~+ <-l)j8] 
j=l 

2 

Rn = ;:'v [K(l - w) - Cfwm/ ] I e}Yn) j 
j=1 

The quantity~. in the expression for H represents the flexural rigidity 
lO n 

factor of the reference beam used in defining the quantity w in Eqo (3-1). 
o 

In a similar manner, Eqs. (3-33) and (3-34) may be reduced to the 

following forms: 

2 2 

2ci~" + h [2~ sin ~lt"j~ e j - sin 1(T ~ (\~ (Ys)J = 0 (3-41) 

and 

2 2 

2Cfp8" + h [28 - sin ~;!!T I (-l) je j - sin 1(T ~ CPs I (-l) j(ys) J = 0 (3-42) 
j=l j=l 

where 

p = -L (3-43) 
Mb2 

1 

Eqso (3-41) is obtained from Eq" (3-33) by multiplying it by rl-/(Mw) and 
·b 0 , 

Eq. (3-42) is obtained from Eqo (3-34) by multiplying it by ~/(blMwo)o 

Equations (3-40) through (3-42) form a system of second order, 

linear differential equations ~th variable coefficients; the IDlmber of 

equations being equal to (~ + 4), the number of generalized coordinates usedo 



-48<» 

4" 3 Reduction of Governing Equations to Equations for Beams. Since 

a beam has no transverse dimension, in Eqo (3-1) it is onlY necessary to con"" 

sider the function Y""l = 1 and the corresponding generalized. coordinate f =1.; 

therefore, the summation sign on s may be deleted in this equation and in all 

other equations derived therefromo Note also that Y~l = Y:
1 

= 00 For con­

venience in 'Wi ting, the dimensionless generalized coordinate cp -1 corresponding 

to f -1 'Will be denoted by cP" Since the vehicle also has no. width, 

Consider the special ·cas~ in which the surface of the beam is 

initially 1eve1,i oeo 

Then the quantities B through R in Eqo (3-40) reduce to ns n 

B = 
ns 

C = ns 

D = ns 

E = ns 

F = ns 

H = 
n 

L = n 

ci 

.2r:1vw 

4cfn:vw 

~ 

2~v [K(l-W) - ~w] 

2 A.. 
lO 

- 'I(2 p 
1 + .~ A.. 

l=O 'l 

2~v (l-W) ~ sin g~ 

R = 0 
n 
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It is to be recalled '~,hat, in defining the quantity 'Wo"in Eqo (3-1) 
. . . . 

the flexural stiffness of the reference beam, (~~)iO' was used; if instead, 
:P 

the total flexural stif'fnessof' the structure" EI, =Db +'i~O (~~) i (i.e. that 

of the idealized beam) is used, then the quantity H becomes 
Il. 

and. Eq. (3-40) reduces to 

H = 2 
n - 1(2 

cp" [J< + 2Iiw sin'2 2t'l"J + ~I 

, [ 2 2 
+ cP It, + 2lt V 

, 2 
- 21( Kv (l-w)S sin ltT = 0 

[4c12tw sin :J('I" CDS :J('I" J 

sin'2 2t'l" J -~ sin 2t'l" 

In a similar manner it can be shown that Eq.. (3-41) reduces to 

cls t1 + 1C~ (s - cP sin ltT) = 0 

In the following} these equations will be cOIIl]?ared to 'those 

derived by IngliS( 6), and by Biggs, Suer, and Louw(l) . 

* Inglis r equations for the same case , expressed in his own 

notation, are 

(3-44) 

* Inglis' equations include also the effects of a moving alternating force 
and of da.n:rping 0 These factors are -omitted here. It should be' noted, how­
ever, ,that the effects of the gravity forces are not. taken into account in 
Ingli s' equations e' 
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d2f " <if -. '. 
2 (lb + M - M cos 4~t) + 21'C dt (2n Mu sin 42tnt) 

. dt . '., u u 

+ 4~f (n2 
MG - n~ + n~ cos 4ltnt) o u u 

2 
= _ 2M d Z sin 2l'Cnt 

s dt2 

and 

The relationship between the notation used by Inglis and that 

used in this report is shown in the following table. (See page 51). 

Equation (3-44) can be transformed into Eq. (3-46) by taking 

H = 0 (this means that the gravity forces are not taken into account) J 
n 

- - - - - - - . '? 
making use of Eq. (3-45), ~tip1ying Eq. (3-44) by 4fb ~, and changing 

notation 0 The identity of Eqs. (3-45) and (3-47) can be shown simply by 

multiplying Eq. (3-45) by 4f~ and changing notationo 

By assuming arbitrarily that 

D = 0 ns 

F = 2~VK (1 - w) ns 

Equations (3-44) and (3-45) can be transformed into the equations derived 

by Biggs, Suer, and Louw(.l.). This assumption amourits to, neglecting the 

(3-46) 

(3-47) 

(3-48) 

effect of the translational motion of the unsp~ung mass on its vertical 

acceleration; in Ref. (1), this was assumed implicitly. It is to be noted 

that Eqs. (3~48) are exact if the unsprung mass :fs equal to zero .. 
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1\ = IJB.b + aL 

k = v 
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2m 
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v 
2a 

f2 
b 

f2 
v 

2k 

a 

". ~, c 

i=o 

( v) 2 _" - " ...... ·a c 

v(: - w) 

z = w S o 
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(~)i 

.. Inglis' Notation 

M 
s 

M 
u 

I. 

n 

2 l(2 Ell 

no = 41.4 MG 

2 1 ks 
n ---s-4 2M 

~ s 

k 
s 

n 
n 

o 

n 2 
(~) 

n 
o 

2nt 

f 

df 
dt 

d2
f' 

dt
2 

M 
s 

MG 

M 
u 

. MG 

z 
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50 Computation of Response 

The procedure used to evaluate the dynamic response of the br"idge-

vehicle system may be summarized briefly as follo'WS~ First, the governing 

differential equations of motion are solved to determine the values' of the 

generalized coordinates and of their first two derivatives. Next, the inter-

acting forces between the vehicle and the bridge, and the inertia forces of 

the bridge are evaluated'. Finally, the dynamic deflections and bending 

moments induced in the bridge ere determined from the dynami c forces acting 

on the bridge, instead. of directly from the generalized coordinates computed 

in the first step. 

501 S<?lution of Governing Differential Equations 0 The system of 

Eqs. (3-40) through (3-42) are solved by means of a step-by-step method of 

numerical integration.. The time required for :the vehicle to cross the span, 

o < l' < 1, is divided into a number of small intervals, and the governing 

equations are "satisfied tf only at the ends of these intervals. 

Let ~ represent a dimensionless generalized coordinate, - it may 

refer to the bridge or the vehicle -', and ~ and ~ represent its first and 

second deri vati yes 'With respect to T" The va:lues of these quanti ties at 

1" = "r will be identified with the subscript r separated from the subscript 
r 

n by a commao Let it be assumed that the values of a ,a and a are , "'D.,r "'D.,r "'D.,r 

knO'WIl for each generalized. coordinate of the system, and that it is desired. 
1 ., 

to find the corresponding values at T = 1' ..... " = 1'_ + 67: in which D.7: is a 
J.'~ .L. ' 

short interval c The follOwing procedure may be used 0 Suppose that an 

assumption is made regarding the manner in ~ch the second derivatives vary 

within the interval :from 7:r to 1'r+lo Then the quantities '1.r-+l and \.+1 may 

be expressed in terms of the known q ,a and ci , and the still unknown 
-:0., r "'ll, r ""llJ r 

a These quantities may then be substituted into the differential 
~)r+l 0 
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equations of motion to obtain a sy~tem of linear algebraic equations involving 

the quantities a I' as, the only unknowns 0' The number of unknowns will be -rl,r+ 

equal to the number of generalized coordinates usedo The s'olutionof these 

00 

equations' 'Will yield the values of ~,r+l" HO'Wever, the ,resulting equations 

are in general fairly involved, and. in this study an iterative procedure was 

used to integrate the equations 'Wi thin each, time interval 0 

The variation of ,~ within the time ~nterval AT was considered to 

be linear; with this assumption, the expressions for q 1 and' q 1 become 
"n, r+ -.n., r+ 

(3-49) 

(3-50) 

The iterative procedure may now be summarized as follows~ 

1. Assume that the second, derivatives of the generalized coor-

dinates at the end of the time interval are the same as those at the ,begin-

ning of the interval, i.e. take qO 1 = a ,and by application of 
-n, r+-.n., r 

Eqs .. (3-49) and (3-50) evaluate ~,r+l and ~,r+lo 

2. Substi tute the values of q 1 and. q 1 thus obtained -n,r+ "'Il,r+ 

into the governing differential equations, and by solving the resulting 

system of algebraic equations, obtain improved values for q 
-n,r+l o 

3· From Eqso (3-49) and (3-50) calculate the values of ~,r+l 

and a l corresponding to the values of c/ l just determined. "'Il,r+ "'Il,r+ 

4. Repeat Step 2 by using the latest available v~lues of ~Jr+l 

5. For each generalized coordinate compare the newly d~rived 

value of a 1 with the previously available value 0 If the difference ll,r+ , 

between the two values for each coordinate exceeds a prescribed tolerance, 
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repeat Steps:; through 5, until. all di£rerences are less than the prescr~bed 

tolerance 0 The algebraic equations are then considered. to be solved,. and 

the integration for the time interval from l' to '4 - 1 completed.. If desired, r r+ 

the values of the dynamic forces acting on the bridge, and the effects pro-

duced in the bridge by these forces may be calculated at this stage. before 

proceeding to the next time interval. 

1m tial Conditions 0 The ini tial values of ~ and. ~ must be know. for each 

generalized coordinate so that the integration procedure may be started. 

The initial values of the second derivatives ~ are determined from the 

governing differential equations by substituting the specified values of 

<L and <L .f"or ,. = 0 and solving for ~ 0 
II II _ 

Choice of Time Interval. The time interval~,. used in the numerical proce-

dure should be small enough so that successive cycles of iteration converge 

and the solution be stable 0 For the particular procedure Used, it has been 

sho'Wll (8) that both the convergence and the stability criteria are satisfied 

if 

(3-51) 

where T is the shortest natural period of vibration of the system; the system, 

here, is the bridge-vehicle combination, idealized in the manner described 

in the preceding sections 0 Numerical values for the natural periods of 

vibration of multigirder bridges have been reported in Ref 0 (15). 

5.2 Computation of Dynamic Forces Acting on Bridge. The static 

value of the interacting force for each wheel is obviously one-half the 

total weight of the t1vehicle u or W/2o The dynamic increment of the inter­

acting force for the j th wheel may conveniently be stated in the form ~ j ¥ 
'Where ~. is a dimensionless factor 0 Now let 

J 
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~j = (~1) j + (~2)j 

(.6.
1

) j = the cOInJ?Onent of t::. j due to the dynamic increment of the 

compression in the spring 0 

(1:::.
2

) j = the component of I:::.
j 

due to the vertical acceleration of 

the unsprung mass j 0 

These quantities may be determined as follows~ 

Th ch f ..p • th .th . . e ange 0 ~orce In e J sprlng lS 

(3-52) 

(3-53) 

By substituting into this equation the dimensionless quantities defined by 

Eqs. (3-36) through (3-39)) and noting that 

one obtains 

P 

p 

4 1 +.l: l=O 
kw = It KV( 1 - w) 

o ~. lO 

~i W 
2 

h 1 +.r. ~. [. \' J 
= It 'Kv( 1-W) f..~=o l ~ + (-1) Je - e

J
. sin IIJ.1CT - sin :rc-r L cP (Y ). (3-54) 

lO s s s J 

The inertia force of the unsprung mass j is given by the equation 

2 J W d2 2 0 w1 
(/:::. ) . - = - m [(~) + (:!) (-) 

2 J 2 dt2 . a oc2 . J . ~ J 

in which ~he bracketed quantity represents the vertical acceleration of the 

j th unsprung I:lB.SS; this quantity is positive when downward. By substituting 

into Eq. (3-55) the dimensionless quantities defined by Eqs. (3-36) through 

(3-39)) and noting that 

one finds that 

mw o 
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l' 

~ 2 1 + i~O "'i ['I 2 = ccr\-W (Y ) (cp" sin It't' + 2~ CP' cos It't' - It cP sin It't") 
- "'. sj s s s 

~o s 

2 2. "..] - e jIrJ. ~ s~n ~1t' I> (3-56) 

The intensi ty of the inertia force P,"" due to the mass of· the slab is given 

by the equation 

( 2) I - 0 W > fl'" 
l' = - JJ. - = - ~:w sin lt~ f ; .. Y ~ > 

JJ. ot2 0 s S s > 

(3-57) 

The inertia force due to the mass of a beam is a line load .. 

intensity of this force for the ith beam is given by the equation 

The 

(3-58) 

In terms of the dimensionless quantities given in Eqso (3-36) 

through (3-39) J Eqs 0 (3-57) and. (3-58) may be expressed as follows: 

P l' 
r I\'\ 2 ~ 1 + ;~() "'; \'1 
Lil L '" Ja-n - ~ - / cpU> Y J (W) sin :J(~ 

PIJ. = - \ -:Zi A,iO ~> s s ab 
i=o 

(3-59) 

and p 

[ 
~ ~ 1 +.l: f... I ] T.T 

1. we ~=o ~ cpn(y ). . (.!!.) sin lts 
l " S S ~ a 

~o s 
(3-60) 

503 Computation of Dynamic Increments of Deflections and Moments 

in Bridge 0 As previously noted, the instantaneous va.l.ues of the dyna.mi c 

forces acting on the bridge are treated as static forces, and the effects 

of these forces are evaluated in the manner described in Chapter IIo 

Let D. . = the defl;ction produced at a specified point of t4e i th 
~J J 

bea.mby a concentrated. force W/2 applied at the posi'tion 

of the . j th 'Wheel, and. 

, 
M. . = the bending moment corresponding to D/i" . 
~~J ,J 
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Then the deflection and bending moment produced at the same point by the 

dynamic increment of the interacting forces are given by 

respectively 0 

2 

\ D .. bo. L ~}J J 
j=l 

2 

and L 
j=l 

In order to evaluate the corresponding effects of the inertia 

forces of the bridge} it is first nec~ssary to determine the load matrix 

{B } in Eq. (2-16). Since the distribution of these forces in the longi­
m 

tudinal direction is sinusoidal} only the term m = 1 need be considered 0 

th The n element of (Bl ) is obtained from Eqo (2-18) by substitut-

ing Eqs. (3-59) and (3-60) 0 Thus 

or 

where 

Note that f3 
0 

= . ns 
o 

f3sn~ 

f3
0 cptf 
ns s 

( 3-61) 

(3-63) 
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o· Now let D.' = the deflection produced at a given point of beam i by 
l., S 

a static load which is distributed as a sine wave in 

the longitudinal direction, and for which the nth 

element of the load matrix {Ell is given by Eq. (3~63)o 

M~ = the bending moment corresponding to '~Di9 
l.,S ,s 

The dynamic increment of deflection for beam i, (~)., can now be 
l 

expressed in the form 

and the corresponding 

2 

(fill) 0 =L D. 0 Ao + I 1. 1., J J 
j=l .~ 

increment for moment as 

2 

(~). = \ Mo . 6. + \' 
l L 1., J J L 

j=l s 

DO 
i,s 

cp'tt 
s 

(3-64) 

(3-65) 

o 
It is important to note that the quantities, D. 0 and M. 0' Do 

l.,J l,J 1.,S 

and M~ are independent of the solution of the governing differential 
l,S 

equations of motion. Furthermore, in evaluating these quanti ties, the number 

of Y functions used need not be the same as that considered in the differential 
n 

equations of cotion. It is for this reason that the maximum Value of n used in 

the computation of the static effects has been denoted by n , whereas the value 
o 

used in the equations of motion has been denoted by ~lo In fact, one of the 

important features of the method used is that the value of n may be much 
o 

larger than ~. The maximum value of s to be considered in Eqs. (3-64)' and (3-65) 

may differ both from no and nl , and it will be designated by n
2 

0 '. Obviously, n
2 

cannot be larger than ~ 0 It should finally be noted that, 'Whereas the 

deflection configuration" of the bridge in the longitudinal direction, was 
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assumed to be sinusoidal in the formulation of the equations of motion, ~his 

assumption was not retained in evaluating the deflections and moments produced 

in the bridge by the interacting forces. 

60 Correlation Between Dynamic Increments for Deflection and MOment 

The dynamic increments of the effects produced in the bridge consist 

of a component due to the inertia forces of the structure, and a component due 

to the dynamic increments of the interacting forces. 

Let AD be the dynamic increment of deflection at a prescribed point 

of beam i, for any time t, and~M be the corresponding quantity for moment. 

These quantities may be -written as: 

.6M = (.6.M) 1 + (~) 2 
(3-66) 

Where the subscripts 1 and 2 refer to the first and second components of the 

effects. 

Since the inertia forces of the structure and, con$equently, the 

resulting effects vary as a half sine wave in the longitudinal direction, the 

quanti ties (AD) l' and (~) 1 are related by the equation 

(3-67) 

whence 

(.6M) 1 (~D) 1 
= -------
wa3/~(~~)i Wa (3-68) 

The effects due to the dynamic increments of the interacting forces 

can be expressed as 
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, th 
where (AD) 2 and (.6.M) 2 are the deflection and moment produced. by the m -

,m ,m 

. term in a Fourier series expansion of the instantaneous values of the inter-

acting forces 0 By considering only the first term in this series, one obtains 

(Lill) 2 ~ (.6.1») 2, 1 

(~)2 ~ (AM)2,1 

and, by analogy to Eqo (3-68), one concludes that 

From Eqs~ (3-66), (3-68) and (3-70), it now follows that 

~M Lill 

We. ::: We? I~(~~\ 

Numerical solutions presented later in this report show that 

Eqo (3-71) is generally quite accurate., 

70 Problem Considered for Solution on ILLIAC 

701 General 0 The computer program has been developed for the 

(3-70) 

(3-71) 

class of bridges considered in Art 0 3 of Chapter II e The road:way surface 

unevenness is represented by a trigonometric ~unction in the lor~i~udinal 

direction, as discussed in Art" 4010 The load unit may consist of one or 

two wheelso 
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The program provides results for the complete hi story of the response 

of the system, by printing out the crawl or static values of the deflections 

and moments in the beams at midspan, the corresponding dynamic increments) and 

the dynamic increments of the wheel reactions. 

7.2 Sunnnary of Problem Parameters. The following dimensionless 

parameters are used to define a problemo 

Bridge Parameters 

1. The ratio of sides, co This is the ratio of the overall 'Width 

of the structure, b, to the span length" a. 

2 . The number of beams, p + 1. 

3 0 The flexural rigidity factors) ""0 and ""l} for the interior and 

exterior beams) respectively 0 

4 . The torsional rigidity factors} k 0 and k
l

, for the interior and 

exterior beams) respectively. 

5· The dimensionless mass parameters} 70 and Y
l

, for the interior 

and exterior beams, respectively. 

6. The roadway surface unevenness parameters) ~) e
l

) and e
2

} 

defined by Eq. (3-35). 

Vehicle Parameters 

7· The transverse position of the vehicle on the bridge} as specified 

by the ~-coordinates of the wheels} ~l and ~2° 

80 The parameter p for the moment of inertia of the sprung mass) 

defined by Eqo (3-43). 

90 The weight parameter w, defined by Eq. (3-36). 
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Bridge-Vehicle Parameters 

10 0 The speed parameter a, defined by Eq 0 (3-36). 

ll. The weight ratio v, defined by Eqo (3-36). 

12. The frequency parameter K, defined by Eq. (3-36). 

Parameters Related to Method. of Solution 

13- The parameter m which specifies the maximum number of ha.lf­
o 

sine waves considered in the longitudinal direction in the computation of the 

static effects. 

14. The parameters no' ~ and n2 ; these specify the numbers of 

Y functions used for various pu.rJ?oses: (See Art. 5.3) 0 

n 

15. The number of integration steps, N, and the number of steps 

bet~en print-outs, N
l

. 

Initial Conditions 

160 The initial :values of cp, S, and 8, and of cpt, S t, and e v • 
s s 

For a bridge cambered so that, under the action of its O'WD. weight, 

its surface is horizontal, the quanti ties e
l 

= e
2 

= 00 If the bridge is not 

cambered, the effect of the dead load deflection of the structure may be 

considered approximately as follows. The deflection in the longi tudiha.l 

direction may be represented by the first term in a Fourier series expansion, 

and the configuration in the transverse direction may be considered as 

uniform. Then 

~ = 1 

P 

1 4a4 g[J..lb +.~ (m.).] 
1=0 0 1 
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In terms of the dimensionless quantities defined in Eqso (3-36) to (3-39), 

the latter equation becomes 

h. f... 
e = e = _._ 0 

1 2 '1t5
V 

'p 

1 + i~O f...i 

(3-72) 

The initial dynamic displacement of the sprung mass of the vehicle 

in the vertical direction, z , is usually expressed as a fraction of the 
o 

static value of the deflection of the mass, z" The initial value of the s 

dimensionless coordinate S may then be determined from the equation 

(3-73) 

where 

Zf 
gM 1 

1-

Ss 
s 0 

= -= 
2kwo = KV'1t4 w p 

0 
1 + '.~ }..-. 

1=0 1 

(3-74) 

The initial value of the dimensionless coordinate e can be 

determined in a similar manner 0 

703 Description of Computer Programo A general flow diagram for 

the complete program is shown in Figo 60 The operations listed in the first 

column of this diagram are performed once for each problem, ,those listeC!-

in the second column are performed once every time the response of the bridge 

is to be printed out, and the operations in the third column are performed 

once in each step of integration. The sequence of the major operations .-

involved and the routines used are describ~d'briefly in the following para-

graphs -with the aid of additional flow diagramso The complete write-up of 

the program will be placed in the ILLIAC Library of the Department of Civil 

Engineering. 
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As indicated in Fig. 6, the first major task of the program is to 

evaluate the quanti ties Q- • which are used to evaluate the deflections and --m,J 
bending moments in the beams at midspano These are defined by the equation 

n 
o 

1 . m" ,L.--, · Q = - SJ.n - at Yn(l1oj ) 
In, j 2 2 mn, j ... 

m n=-l 

(3-75) 

in 'Which the subscript j refers to the j th wheel and can take on the values 

of 1 and 20 The coefficients a V • represent solutions of Eqo (2-16) 'With 
mn, J 

the elements f3 of the load. matrix fB J replaced by f3 ., where 
mn m n, J 

, th 
As before, the subscript j refers to the j 'Wheel. Equations (3-75) and 

(3-J-t)) are entirely analogous to Eqs. (2-45) and (2-44) for the static 

problem 0 

The operations involved in the computation of ~ . are indicated ' 
, ,J 

in Fig. 7. This flow diagram is similar to that presented in Fig. 4 for the 

static problem. In the present case, however, only the odd values of m are 

considered, since the even terms do not contribute to the deflections and 

moments at midspan. The quantities Q, • are stored on the magnetic drum, --m,J 
and they' are recalled to the Williams memory whenever needed 0 

The deflections, D. ., and moments, M. ., are related to the 
J., J l, J 

quantities Q . as follows. 
In,J 

D .. 
1., J 

M. . = (c ) . Wa 
l,J m J 

(3-77) 

17 ,.,.0\ 
~)- {OJ 
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Then 

sin m1t'!;" (3-79) 

(c ). 
m J 

(3-80) 

These equations may be obtained from Eqs 0 (2~48) and (2~49) by replacing 

~ by ~; j and. S by 'r 0 
The quantity ~. represents the value of ~ for the 

l 

beam 'Where Cis evaluated 0 

m 

It is to be recalled that D. . and M. . represent the static effects 
l, J l, J 

due to the jth wheel only 0 

The operations involved in the computation of the quantities D~ 
l, S 

o and M. for the inertia forces of the bridge are indicated in the flow 
l, s 

diagram presented in Fig. 80 These operations are similar to those used to 

calculate D. . and M. j' with the important exception that they are performed 
l, J olJ 

for m = 1 only) since the distribution of the inertia forces in the longi~ 

tudinal direction is sinusoidal 0 

The quantities D~ and M~ J together "With the quantities Q. .J 
l, S l; S m, J 

are stored on the drum, and are played back to the Williams memory only when 

the deflections and moments are to be computed 0 

The constant coefficients referred to in the first column of the 

flow diagram in Fig, 6 are the coefficients on the left-hand sides of Eqso 

(3-40) that are independent of ~ and of the generalized coordinateso It 

should be noted that the number of these depends on the number of generalized 

coordinates used for the bridgeo Since the routines that are needed to 

evaluate these constants cannot all be retained in the Williams memory; they 

are stored on the magnetiC drum, and they are recalled in successive groups 0 
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Before starting the integration of the differential equations, the 

second derivatives of the generalized coordinates ~ (ieee, cp;, S",and en), 

the interacting forces, and the deflections and moments in the bridge are 

evaluated for ,. = 0 0 A detailed flow diagram of the operations involved is 

gi ven in Fig P 90 The significance of the 86 parameter referred to in this 

figure is explained in the detailed program :write-up referred to previously 

A flow diagram for the integration procedure is given in Fig. 10j 

this is believed to be self-explanatory. 

In Fig. 10 it should be noted that the interacting forces and the 

effects in the bridge are not evaluated at each step of integration, but only 

when they are to be printed. out 0 The interval between print-outs is specified 

by means of the problem parameter N
l

. 

This program utilizes the entire Williams memory of the ILLIAC, and 

approximately 3200 locations of its magnetic drum memory 0 Certain parts of 

the program, including the main control routine (M:!), blocks of constant 

quantities, t~e library routine (T5) for sines and cosines, the library 

routine (Yl) ... ~.icb. is used to transfer blocks of' instructions between the 

Williams rneoory and the drum, and the problem parameters which are read in 

from the data. tape at the beginning of each problem, are retained in the 

Williams meoory. ~e re:na.i.ning parts of the program are recorded on the drum, 

and are transferred. to the Williams memory "Whenever needed. 

In the fol':"oving are listed some of the limitations of' the computer 

program~ 

2 < n < 8; n < n.. < 2 
- 0- 2-.1-
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where moJ n oj n
l

, n
2 

are integers defined in Arts 0 7" 3 and 5" 3 <> For a fi ve­

girder bridge; the limitation on m becomes m < 310 It should be remembered 
o 0 -

that the r~nge of the n-quR.n.ti ties is ~lJ 0" 1"., 0 0 

A single-wheel loading is treated as a two-wheel loading for which 

111 = ~ 0 The program. is so arranged that. it does not have to consider Eqo 

(3~42) in this case 0 

The program ·may be used also to determine the response of a beam 

by considering only the function Y-l in the differential equations of motiono 

This amounts to assuming that the bridge does not deflect in the transverse 

direction 0 The interacting forces and the inertia, forces in the bridge will 

then be identical to those for the beam 0 The deflection and bending moments 

for each of the supporting beams of the bridge will not be the same, however; 

because of the limitation on the minimum value of n that may be considered 
o 

in the static problem. The moment in the sirigle beam may be evaluated by 

taking the sum of the moments in the beams and in the slab of the bridge 0 

Wi't...'1 the maximum possible values of nl } n2J no and mo' and with 

N = 100 a..'1d N 1 = 2, the machine time required to calculate and print out 

the hist.ory of the response for a five-girder bridge is about nine minutes. 

80 Discussio~ of Assumptions 

8.1 Gene-al 0 In the formulation of the equations of motion of 

the system, the instantaneous distribution of the dynamic deflection of the 

bridge in t-~e longitudinal direction was assumed to va:ry as a half-sine, 

-wave, and. the distribution in the transverse direction -was expressed as a 

linear combination of Y functiOns, each multiplied by a time-dependent 
n 

coef'ficient· 0 
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The adequacy of the first assumption ~ investigated indirectly 

by obtaining numerical solutions for the special case of a beamj and com-

paring the results with those obtained by application of other methods 0 It 

has already been noted that) as applied to a beam, the present method reduces 

to Ingli s! method. . The sensi ti vi ty of the response to the number of Y 
n 

functions considered in the equation of motion was studied by obtaining 

solutions for several five-girder bridges for an increasing number of Y 
n 

functions 0 

8 .. 2 Comparison of Beam Solutionso In Figso 11 through 14 are 

given solutions for the response of a beam for a fairly wide range of values 

of the parameters involved 0 The curves in Figs 0 11 and 12 are for a smoothly 

moving load, 'Whereas those in Figs 0 13 a.D.a. 14 are for an initially oscillat-

ments of moment at midspan 0 The solutions shown in solid lines and identified 

as '~ocedure 1" were obtained with the aid of' the computer program developed 

in the present investigation 0 Only the Y _ 1 :t\mction was used. in the dynamic 
-...I.. 

equations 0 As noted in Arto 4 .. 3 of this chapter, this amounts to solving 

Eqso (3~44) and (3-45)0 The moments were computed as the sum of the moments 

in the beams of a fi ve-beam bridge with c = 008 and. f... = 250 A solution was 

also obtained by using c = 0.4 and "- = 12 0 5 0 As would be expected, the 

interacting forces computed for these two sets of parameters were identicalo 

The sum of moments in the beams differed by about 10 5cfo, the difference being 

due to the change of moment in the slab 0 The solutions referred to as 

"Procedure 2 It and "Procedure 3 ii were obtained by use of the computer programs 

reported in Refs 0 (14) and (5) respecti vely 0 Wen's method) which is a 

modification of Hillerborgu s method and which, in turn is a modification of 



Inglis g method, involves the assumption that the instantaneous configuration 

of the dynamic deflection of the beam is proportional to the static deflec­

tion con~iguration produced by the combined effect of the moving load and 

the weight of the beam itself' c> In the Huang-Veletsos method, the beam is 

analyzed as a multi-degree-of-freedom system, ~th the mass of the beam con­

centrated at a finite number of points. The solutions included here were 

obtained by considering only three concentrated masseso 

It can be seen from Figs 0 II through 14 that the results obtained 

by the three methods are generally in very good agreement 0 Thi s favorable 

comparison inspires much confidence in the adequacy of the assumption that 

the instantaneous distribution of the dynamic deflection along the beam is 

a half -> sine wave 0 In addition, these solutions have served to provide an 

independent check on the correctness of the computer program that has been 

developed. 

8.3 Effect of Number of Dynamic Degrees of Freedom for Bridgeo 

This problem was studied by means of numerical solutions for three five-

girder bridges having t.he follOwing dimensions: 

c = 004 t..= 1205 

c = 004 "-= 50 

c = 008 t..= 25 

The torsional rigidity of the beams was taken equal to zero in all cases~ 

The first two bridges are the same as those considered for the static solu­

tions presented in Chapter 110 The vehicle was idealized as a single-wheel 

load without any unsprung mass, and it was considered to move along the edge 

beam 0 In each case, three solutions were obtained by treating the bridge as 

a system ~th two, three, and four degrees of freedom, respectively 0 
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In Figs 0 15 through 2l are presented the time histories of the 

interacting forces and of the dynamic increments of deflections of ,the beams 

at midspano ;The values of the various parameters are indicated on the figureso 

It can be seen that the solutions for c = 004 and ~ = 1205 - a structure with 

a relatively high transverse rigidity - differ only slightly from one another 0 

Those for c = OoB and ~ = 25 - a fairly flexible structure in the transverse 

direction - are very much differento The results for the intermediate struc-

ture (c = 0 04; ~ = 50) are in fairly good agreement} especially the solutions 

obtained by analyzing the bridge as a system with three and four 'degress of 

freedom. 

On the basis of these data, and. from a study of'the natural modes 

of vibration of the three structures that were investigated(15), it appears 

that in the formulation of' the equations of motion} one mus~ consider a suffi-

ciently large number of'y functions 'so that the first two symmetric and 
n 

the first two antisymmetric natural modes of vibration of the structure are 

approximated fairly accurately. The relative importance of the higher modes 

cannot be evaluated, since these cannot be considered in the computer programo 

The indications are, however, that their contribution to the total response 

may be importa...'1t o:-tiy for very flexible structures for which the natural 

frequencies of the first four modes are close to each othero It is also 

anticipated that t...~e contribution of these modes will be less significant 

for a two-wheel loading than for a single-w.neel loadingo 

B.h E!'!e~t of Time Interval of Integration. The natural periods 

of vibration, T, of 8. multigirder br~dge .may be stated. as 

ib 
T=-

.[K 
(3-Bl) 

o 
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Where K is a dimensionless coefficient dependent on the geometric and pbysical 
o 

characteristics of the bridge and on the order of the period under considera-

tion. Numerical values of K for various structures have been reported in o 

* Ref 0 (15) c 

The criterion for convergence and stability of the integration pro-

cedure (see Eq. 3-51), can now be written as 

~ 
or) noting that a = 2a ' as 

a 1 
v N 

N > 1.285 (3-82) 

The value o~ K in this equation should correspond to the lowest period of 
o 

the mathematical model used in the analysis. The bridge as analyzed here, 

has four natural modes of vibration, two of. which are symmetric and the other 

two anti symmetric about the longi tudinal center line 0 The relevant period 

is the one corresponding to the second antisymmetric modeo 

For a five-girder bridge with c = 0,,4, A. = 25·, k = OJ and ')' = 0005, 

** the value· of K corresponding to the second antisymmetrical mode is K ~ 12 01; 
o 0 

for a value of a = 0.15, Eg. (3-82) gives 

N > 30 

* The meanings of the symbols ~ and ')' used in Ref. (15) and the present 
.report are different. 

** This is the value obtained by considering more than four degrees of 
freedom 0 Strictly speaking, one should use the value computed for the 
four-degree-of-freedom system. 
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The response of this bridge under a smoothly moving load. was evaluated on the 

basis of four different values of No The maximum values of the response are 

summarized in Table 15 together.with the values of the problem parameterso 

It/can be seen from this table that the differences between the results corre-

sponding to different val\les of N are generally very small 0 For the numerical 

results presented in this report a constant value N = 100 was used 0 

90 Comparison of Theoretical and Ex;perim~tal Results 

The theoretical predictions have also been compared with experimental 

data obtained from dynamic tests conducted on an all-aluminum~ five-girder 

'I-beam bridge model; the characteristics of this model and the conditions of 

the tests have been described in Refo (12)0 The results for the two test runs 

that were considered are presented in Figs. 21 through 24 o~e experimental 

results included were reproduced fram Refo (4). 

The theoretical solutions were obtained for the follOwing values of 

the parameters~ c = 004, {I.. =;... = 1405, k= k = 5, "1 = r = 0012, o 1· 0 1 0 1 

e
j 

:: 000076.9 W = 0.09, v = 0034, f.jfb = 0055" a = 00160 Both the bridge and 

the vehicle were assumed to be initially in their static positions of 

equilibrium. 

In Fig. 2l are given history curves for total deflections (i 0 e . 

sum of static value and dynamic increment) at midspan of beams A, BJ and CJ 

produced by a single 'Wheel load moving over beam CoIn Figo 22 are sho'WIl 

the same results~ expressed in the form of history curves for dynamic 

increments. The corresponding curves for dynamic increments of ·strains at 

midspan are given in Fig 0 23. Included in Figs. 22 and 23 are the experi-

mental curves for beams D and Eo It is seen that, although the structure 

and the loading are presumably symmetric -with respect to the longitudinal 
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center line, the ,exPerimental results for the responses of the symmetric beams 

are not identical. These differences, which are generally small, may be con­

sidered as measures of the uncertainties about the ~ro~erties of the system 

and the reliability of the experimental data. The agreement between the theo­

retical and experimental curves ~resented in Figs. 21 through 23 is generally 

satisfactory 0 

In Figc 24 are given history curves for the dynamic increments of 

strains ~roduced at mids~an of the beams by the same load running over beam A <> 

The agreement between theoretical and experimental data, although not as good 

as in the previous case, is still satisfactory. 
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IV 0 NUMERICAL STUDIES 

10 General 

The aim of the numerical results presented herein is to provide 

"-

inf'ormation which may lead to a better understanding of the dynamic behavior 

of simple-span multi girder bridges 0 The parameters that were varied in this 

study are those that cannot be considered when the bridge is analyzed as a 

beam. Most solutions were obtained for a single-wheel loading. The solutions 

presented are of a limi ted number, and the conclusions dra'WIl therefrom are 

generally of quail tati ve nature. A more complete study of the effects of 

the various parameters involved 'WOuld require a much greater number of 

solutions 0 

The structures analyzed are·of the same type as those considered 

in the s,tatic solutions presented in Chapter II (see Fig. 2) 0 As before, 

the torsional stiffness of the beams is taken equal to zero 0 The vehicle 

is represented either asa single-wheel load or a two-wheel load without 

any unsprung mass. In all the solutions, the parameters C; v, and. f/f:
b 

are 

kept constant, so that the solution obtained by considering the bridge as 

a beam is the same in all ca~es 0 The mass and the flexural rigidity of the 

equivalent beam are assumed to be the same as those for the total structureo 

This approach has been used by previous investigators, and amounts to con-

sidering a uniform transverse distribution of deflections. The major para~ 

meters varied are the flexural rigidity of the beams relative to that of 

the slab, the ratio of sidesJ and the transverse location of the loads. 

The dimensionless weight parameter for the beams is taken as 

i = 00050 In all the solutiOns, the bridge deck is assumed to be initially 

smooth and horizontal, and the sprung mass is assumed to be at its position 

of static equilibrium When it enters the spano 
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Unless otherwise stated, it is to be understood that all solutions 

were obtained by using four Y functions in Eqo 3:-1, i 0 eo by analyzing the 
n 

bridge as a system with four degrees of dynamic freedom (nl = 2). In evaluat­

ing theef~ects of the instantaneous inertia forces and of the interacting 

forces, the transverse deflection configuration of the bridge was represented 

by means of' eight Y functions (i" e. n = 6) 0 In computing the effects of n 0 

the interacting forces, fifteen load components were considered in the longi-

tudinal direction (i. eo m = 15) 0 o 

The dynamic response of the bridge-vehicle system is depicted in 

terms of history curves for interacting forces and for dynamic increments 

of moment and/or deflection for the individual beams. In addition, curves 

for the sum of the dynamic increments of moments in the beams are presentedo 

The latter curves and those for the interacting forces are compared with the 

corresponding curves determined by use of the beam theory. The concept of 

the sum of dynamic increments of moments has been introduced in an attempt 

to relate the results obtained by the present method of analysis to those 

predicted by the beam theory. 

20 Solutions for Symmetric Loading 

201 Typical ReSponse Curves and Effects of Transverse Flexibilityo 

The solutions presented in this section ~e obtained by considering a single-

wheel load moving over beam C. 

In Figs. 25 to 27 are presented history curves for the interacting 

force and for the sum of dynamic increments of moments in the beams for 

eight structures characterized by different sets of values of f... and co It 

may be recalled that the greater the values of f... and, c the greater is the 
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flexibili ty of the structure in the transverse direction. In Figs 0 25 and 

26 the ratio of sides is kep~ constant and ~ is varied, whereas in Fig. 27 

the quantity H = ~c is kept cOnstant and the effect of varying c is investi­

gated. Included in each of these figures are also the results of the beam 

theory obtained by using only the Y-l function in the dynamic equations. 

It can be seen from these figures that the response curves for 

the bridge have essentially the same shape as those obtained by the beam 

theory. It is important to note, howrever, that the peak values of the 

response- for the bridge are consistently larger than those predicted by the 

beam theorYj the difference generally increasing with increasing flexibility 

of the structure in the transverse direction, or increasing values of A. and 

co For the most flexi ble structures considered, the absolute maximum value 

of the sum of dynamic increments of moment in the beams is about tw.Lce as 

large as that predi cted by the beam theory 0 

An attenJ.]?t was made to relate the peak values of the sum of the 

dynamic increments of moments in the beams to the value of the maximum 

static deflection produced in the loaded beam by the load at midspan. The 

results of this study are summarized in Table 16, and they are also plotted 

in Figo 28 in a normalized forma It is noteworthy that the results plot 

almost on a straight lineo 

In Figs. 25 to 27 it is interesting to note that at the instant 

that the sum of the dynamic increments of moments attain their peak values, 

the value of the interacting force is relatively smalla This indicates 

that the response of the bridge is primarily due to the inertia forces of 

the structure, and that the contribution of the interacting force is rela­

ti vely minor. 
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In Figs 0 29 and 30 are given the time histories of dynamic incre­

ments of moment for the individual beams of some of the structures considered 

previously in Figs 0 25 and 260 For clari tYJ only the solutions corresponding 

to the extreme values of A. are presented. As would be expected from the data 

presented in Figs. 25 and 26, the maximum response of the loaded beam increases 

with increasing transverse flexibility of the structure (ioe. in:creasing vaiues 

of A. and c) 0 

202 Relationship Between Dynamic Increments for Deflection and 

Moment. As a check on the, accuracy of Eqo (3-71)) in Figo 31 the dynamic 

increments for moment in the beams of a particular structure are compared with 

the corresponding increments for moment. The characteristics of the system 

analyzed are defined on the figure.. The ordinates for moment are expressed 

in terms of Wa, and those for deflection in terms of wa3/~~. 

It can be seen that, except for some minor differences in the curves 

for the loaded bean, the two sets of curves are almost identical. For beams A 

and B only the solid line is shown as the dotted curve could not be differ­

entiated 'When plotted on the same scale 0 This agreement, typical of a large 

number of si~ lar cor=parisons that have been made, SUbstantiates the accuracy 

of Eq. (3-71). Another comparison for a load applied over beam A is given 

in Fig. 42. S~r.ce tlle dynamic increments for moment and deflection are for 

all practical purposes proportional, in the remaining part of this report, 

solutions ~ll be ~esented either for moment only, or for deflection onlyo 

2.3 '!TEl:lsverse Distribution of Dynamic Effects 0 The instantaneous 

transverse distr: b'Jtio:l of the dynamic increments of moments in the beams are 

presented in Fig. 32 for three stl~uc~ures hav~ng a corr~n ratio of sides, 

c = 0.8, but different values of Ao 
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It can be seen from this figure that,the distribution of dynamic 

effects is not constant, but varies with time 0 -'It follows that the bridge 

does not respond as a system having a single degree of freedom in the trans­

verse directiono In particular, the transverse distribution of eff'ects is 

neither uniform nor porportional to that of the static effectso A compari­

son of the distributions of static effects and dynamic increments is given 

in Taple 17 0 The peak values of the dynamic increments of moment in the 

beams for all the structures investigated are listed in this table as percent 

of the maximum. value of their sumo Similarly the maximum static moments in 

the beams are listed as percent of the corresponding sum 0 

It is convenient to think of the response of the bridge as <,being 

made up of two components, one arising from the variation of the interacting 

force, and a component arising from the inertia forces of the bridge itselfo 

The first component,which is proportional to the static effects, is not 

very significant, at ieast for the cases conSidered, since the variation of 

the interacting force is relatively smallo The second component is essen­

tially the sum of the contributions of the natural modes of vibration of the 

mathematical bridge model analyzedo It may be recalled that the bridge is 

analyzed as a system with four degrees of d.ynamic freedom; and tha.t for 

motions that are symmetric a.bout the longitudinal center line it has only 

tvo degrees of freedom 0 Both modes contribute to the response of the systems 

considered 0 

The degree of participation of the v~ious modes in the total 

response depends, among other factors, on the relative ordinates of the 

various. modes at the ~ansverse' position 'of the load. or loadso For example, 

if' the path of travel of the load is a node line for a particular mode, that 

mode cannot be excited~ 
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In an effort to explore this possibility, solutions were obtained 

for a structure with c = 0.8 and 'A = 25, and a two-'Wb.eel loading 0 

The results are presented in Figs 0 33 through 37. in the form of 

time histories of interacting forces, dynamic increments for moment in the 

individual beams, sum of dynamic increments" and instantaneous distributions 

of dynamic increments. The results presented in Figs. 33 and 34 were obtained 

with the Wheels over beams B and D, and those presented in Figs. 35 and 36 

were obtained w.i th the wheels over beams ·A and Eo 

From Fig. 33 it can be seen that, when the wheels move over beams 

B and D, the time histories of the dynamic increments for all the beams are 

in phase, and that the effects in the edge beams are a small fraction of 

those in the center beam. In this case the bridge responds primarily in 

the first syrmnetric, or fundamental mode of vibrationo This may be seen 

clearly from the second column. of Figo 37 which shows that the transver,se 

distribution of' dynamic increments does not va:ry appreciably with timej 

also this distribution corresponds to the fundamental mode, as reported in 

In Fig. 34 it is of interest to·note that the sum of dynamic 

increments of moments in the beams is very similar to the beam solution 

except for a phase shift which may be explained by the fact that the natural 

frequency of the bridge is actually less than tha.t of the beam (15)" The 

relatively insignificant contribution of the second symmetric mode is due 

to the fact that the node lines of this mode are close to beams B and Do 

When the wheels are over beams A and E, the fundamental mode is not 

excited appreCiably, since the. relative ordinates of' this mode at beams A and 

E are small 0 As may be seen from Figso 35, 36 and 37(c), in this case, the 

major contribution to the response arises from the second symmetric mode. 
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30 Solutions "for Eccentric Loading 

The solutions presented in this section parallel those presented in 

the previous section for symmetric loading. 

:3 01 Typical Response Curves and Effects of Transverse Flexi bill ty . 

. In Figs 0 38. and. 39 are given history curves for the interacting forces and 

for the sum of dynamic increments of moments in the beams of the structures 

considered previously, produced by a single-wheel load moving over beam A 0 

The results of the beam theory are also included for comparison" 

It is 'noted f'rom these figures that the actual interacting force 

curves have no resemblance to the curve determined from the beam theory .. 

However, they all are characterized" by high frequency oscillations super­

imposed on a low frequency main curve which is practically the same for all 

cases 0 The predominant period of the high-frequency oscillations ranges 

approximately between the periods of the first and second anti symmetrical 

modes of the corresponding structure. 

On coq>a.ring Figs. 38 and 39 to Figs. 25 and 26, it is seen that 

for a given structure the magnitude of the interacting force is larger when 

the load moves &long beam A than when it moves along beam Co There appear 

to be two factors that contribute to this result~ (1) Since the static or 

crawl deflection of the point of application of the load is greater when 

the load move 5 OYe1" 6.0 edge beam than when it moves over' the center beam, the 

resulting exci tation of the vehicle is greater in the former case. This 

factor seems to be responsible for the large ordinates of the main curve 0 

(2) Since the high-frequency 'Waves are numerousJ the chances are great that 

one of these will combine 'With a large ordinate of the main low frequency 

curve to yield a higher maximum than could otherwise be obtained. 
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It is also seen from these figures that} in contrast to the obser-

vation made for the case of a load applied over beam CJ the shapes of the 

curves for the sum of the dynamic increments of moments are different from 

the one obtained by the beam theory; furthermore" the pe~ value of the sum 

does not increase with increasing flexibility of the structure 0 In particu-

lar J the linear relationship presented in Fig 0 28 is not appli,caole in this 

case 0 

In Figs. 40 and 41 history curves are presented for, the dynamic 

increments of moments in the individual beams of the same structures as were 

considered previously in Figs 0 29 and 300 It is seen from these figures that 

the shapes of the curves are different for the different beams. This result 

indicates that several modes of vibration contribute to the response to a 

comparable extent 0 The contribution of the antisymmetric modes is most 
I 

clearly seen on the curves for beam E, where the predominant period of 

oscillations ranges between the periods of the first and second antisymmetric 

modes of the structure 0 Note that the predOminant period increases with 

increasing transverse flexibility, as would be expected 0 

302 Transverse Distribution of Dynamic Effects 0 The instantaneous 

transverse distribution of the dynamic increments of moments in the beams is 

presented in Fig. 430 The structures considered here are the same as those 

in Figo 32 where the distribution of t~e effects due to a load on beam C 

was presentedo 

It is seen that, in this case,~ the antisymmetric modes of vibration 

are excited to a rather pronounced ext,ent 0 It should be noted, however J that 

the structures considered in this figure are fairly flexible in the transverse 

direction 0 For stiffer structures) the participation of the higher modes are 

not likely to be as important 0 T.his may be ~ap:preciated by referring to 
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Figs. 15 through 20 and noting that, for the stiffer structures, the response 

of the system is not-sensitive to the number of Y functions used in the 
n 

dynamic equations. 
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v. SUMMARY 

A method and a computer program have been developed for the computa-

tion of' the dynamic response of' simple-span" multigirder high"\.;ay bridges under 

a moving vehicle. The bridge was analyzed as a plate continuous in one direc-

tion over flexible beams. The vehicle was idealized as a Single-axle, sprung 
I 

load having one or two wheels 0 The torsional stiffness of the beams was taken -1 

1 

into--account, but the effects of damping in the bridge and the vehicle were 

not considered. 

An exploratory set of numerical solutions were obtained for a group 

of five-girder bridges in order to study the response characteristics of these 

bridges and to compare the predictions of the present analysis ~th -those deter-

mined by treating the bridge as a beam" a simplification used in all previous 

investigations of this problemo In these solutions, a total of four generalized 

coordinates were used to express the dynamic configuration of the bridge in the 

transverse direction. The majority of the solutions were for a single-wheel 

load. 

The results were presented in the form of history .curves for inter-

acting forces" for dynamic increments of deflection and moment in the individual 

beams, and for the sum of dynamic increments for moment in the beams. The 

latter quantity was used as a means-of relating the results of the present 

st~~y to those predicted on the basis of the beam theoryo 

The prinCipal findi~~s may be summarized as follows~ 

(1) For a load moving along the center beam, the time histories for 

the sum of the dynamic increments for moment in the beams are similar to those 

determined by the beam theory, but the magnitudes of these effects are generally 

larger. For some of the more flexible structures considered, the absolute maxi~ 

mum value of this sum was about twice as large as that predicted by the beam 

theory. 
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(2) For a load mOving over the edge beam, no correlation could be 

found between the sum of dynamic increments for moment in the beams and the 

prediction o:f the beam theory 0 In general,? the first torsional or antisymmetri-

cal mode o~ vibration was found to contribute significantly to the total responseo 

Since the contributions of the anti symmetrical modes are not reflected in the 

sum of the dynamic increments, this lack. of correlation should not be surprising 0 

It is possible, however j that a better correlation between the two approaches 

may be obtained upon comparing the sum of the strain energies of the beams of 

the actual structure to the energy of the substitute beam. 

(3) The transverse distribution of dynamic increments is neither uni-

form nor proportional to the static effects; it is essentially a combination 

of the various natural modes 0 It is to be noted that, even for the fundamental 

mode of vibrationj the transverse distribution of effects may be quite non-uniforIDo 

(4) The degree of participation of the various modes depends both on 

the properties of the bridge and on the positions of the wheel paths relative 

to the node lines of the various natural modes of vibration. Broadly speaking, 

the greater the transverse stiffness of the bridge) the smaller is the contri-

bution of the higher modes .. 

It is important to note that these conclusions may not be valid beyond 

the range of parameters considered in this study. For example, it is likely 

that the differences between the response of the actual bridge and of the sub-

stitute beam may not be as significant for multiple-wheel loads as it is for 

the single-wheel loads considered in the majority of the solutions that have 

been presented. 

As a part of this investigation, the analysis of bridges for static 

loads w,as conSidered, and two computer programs ~re developed for the computa-

tion of influence surfaces for deflection and moment, and for the effects 

produced by a three-axle truck loadingo 
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TABLE 3. INFLUENCE COEFFICIENTS FOn DEFLEC~rION OF BEAMS AT MIDSPAN--EFFECT OF n 
0 

Five-Girder BrIdge; c = 0.4; A = 12.5; k = OJ m = 11; Y = Functions Used: o n n = -1 through n 
0 

To obtain deflections, the tabulated coefficients are to be multiplied by the quanti ty pa3 /~Ib 

Longit. Values of Dc~lection Coefficient, Cd 
Beam Position n I Transverse Location of Load 

of Load 0, 
AB B Be C CD D DE E A 

2 0.00887 0.00665 0.00463 0.00293 0.00163 0.00067 -0.00002 -0.00054 -0.00098 
Quarter 4 0.00881 0.00665 0.00462 0.00294 0.001G3 0.00067 -0.00002 -0.00054 -0.00098 

6 0.OC)887 0.0066~ 0.00462 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00098, 
8, o.oc~87 * 0.00665 0.00462 0.00294 10.00163 0.00061 -o.ooo~~ -0.00054 -0.00098 

(0.oc)887) (0.00614) (0.00462) (0.00294) (0.00163) (0.00067) (-0.00002) (-0.0006) (-0.00098) 
A 

2 0.01,301 0.00961 0.00661 0.00412 0.00225 0.00094 0.00000 -u.00074 -0.00139 

Center 
4 0.01308 0.00964 0.00659 0.00413 0.00229 0.00095 -0.00003 -0.00016 -0.00138 I 

6 0.01j08 0.00965 0.00658 o. 00!~13 0.00229 0.00094 -0.00002 -0.00076 -0.00138 $ 
B 0.0130,8 0.00966 0.00658 o. 001~14 0.00229 0.00095 -0.00002 -0.00076 -0.00138 I 

(0.0130,8) (0.009C;6) (0.00658) (0.00414) (0.00'229) (0.00095) (-0.00003) (-0.00076) (-0.00138) 

QUarter 8 0.00462 0.00472 0.00459 0.00409 0.00332 0.00245 0.00157 0.00076 -0.00002 
(0.oo46;~) (0.001~72) (0.00459) (0.00409) (0.00332) (0.00245) (0.00151) (0.00076) (-0.00002) 

B 
Center 8, 0.o065a 0.00700 0.00694 0.00608 0.00477 0.00345 0.00221 0.00106 -0.00002 

(0.006513) (0.00700) (0.00695) (0.00608) (0.00417) (0.00345) (0.00221) (0.00107) (-0.00003) 

2 O.OOlC-::> 0.00251 0.00337 0.00390 0.00409 0.00390 0.00337 0.00257 0.001(3 

'::.tuarter 
4 o. 0Ol~:) 0.00251 0.00333 0.100393 0.00416 0.00393 0.00333 0.00251 0.00163 
6 O. 0016~5 0.002)2 0.00333 o. 00~~93 0.00417 0.00393 0.00332 0.00252 0.00163 
8 0.00165 0.00252 0.00335 ().00393· ().O0417 0.00393 0.00332 0.00252 0.00163 

(0.0016) (0.00252) (0.00332) (O.uG_,-7: (0.00417) (0.00393) (0.00332 ) ( O. 00'2 52 ) (0.0016"3 ) 
C 

2 0.00225 0.00371 0.00494 0.00517 O.O(){j~ 0.00571 0.00494 0.00371 0.00225 
4 0.00229 0.00351 0.00479 0.00587 0.00631 0.00587 0.00479 0.00351 0.00229 

Center 6 0.00229 0.00355 0.00477 0.00586 0.00633 0.00586 0.00477 0.00355 0.00229 
8 0.00229 0.00355 0.00477 0.00585 0.00634 0.00585 0. 00411 0.00355 0.00229 

(0.00229) (0.00355) (0.00471) (0.()()585) (0.00634) (0.00585) ( 0.O~77) (0.00355) (0.00229 ) 

* Numbers 1n parenthes,8s were reproduced trom Ret. (10). 

__ , •. 1...- _ 



TABLE 4. INFLUENCE COEFFICIENTS FOR MQ.{ENT IN BEAMS AT MIDSPAN--EFFECT OF no 

m ~ 11; Y Functions Used: o n n = -1 through n 
0 

Five-Girder Bridge; c c 0.4; ~ = 12.5; k = 0 
To obt~n moments, the tabulated coefficients are to be multiplied by the quantity Fa 

Long1t. Values of Deflection Coefficient, em 
Beam Position n Transverse Location of Load 

of Load 0 A AB B Be C CD D DE E 

2 0·0725 0.0581 0.0437 0.0298 0.0173 0.0069 -0.0001 -0.0059 -0.0095 

QUarter 4 0.0723 0.0587 0.0442 0.0295 0.0165 0.0066 -0.0002 -0.0052 -0.0097 
6 0.0723 0.0585 0.0442 0.0295 0.0165 0.0068 -0.0002 -0.0053 -0.0091 
8 0.0723 0.0585 0.0442 0.0295 0.0165 0.0068 -0.0002 -0.0053 -0.0097 

(0.012 )* (0.059) (0.044) (0.030) (0.017) (0.001) (0.000) (-0.005) (-0.010) 
A 

2 0.1711 0.1.121 0.0690 0.0381 0.0192 0.0088 0.0017 -0.0057 -0.014:! 

Center 4 0.1717 0.1095 0.0672 0.0394 0.0220 0.0095 -0.0002 -0.0017 -0.0136 I 

6 0.1717 O.llOO 0.0610 0.0395 0.0221 0·0092 -0.0003 -0.0075 -0.0136 '8 
8 0.1111 0.1100 0.0670 0.0395 0.0221 0.0092 -0.0003 -0.0015 -0.0136 I 

(0.112 ) (O.lll) (0.061) (0.040) (0.022 ) (0.009) (0.000) (-0.008) (-0.014 ) 

QUarter 8 0.0442 0.0373 0.0325 0.0319 0.0305 0.0244 0.0159 0.0016 -O.OOQ~ 

(0.044) (0.031) (0.033) (0.032 ) (0.031) (0.024 ) (0.016) (0.008) (0.000) 
B 

Center 8 0.0610 0.0898 0.1073 0.0786 0.0504 0.0329 0.0213 .0.0104 .. 0.0003 
(0.061) (0.091) ( 0.101) (0.080) (0.050) (0.033) (0.021) (0.010) ( 0.000) 

2 0.0113 0.0231 0.0280 0.0313 0.0323 0.0313 '0.0280 0.0231 0.01r-() 

QUarter 4 0.0165 0.0259 0.0304 0.0301 0.0290 0.0301 0.0304 0.0259 0.0165 
6 0.0165 0.0'251 0.0305 0.0304 0.0289 0.0304 0.0305 0.0251 0.o16~ 
8 0.0165 0.0251 0.0305 0.0304 0.0'289 0.0304 0.0305 0.0251 0.0165 

(0.017) (0.0'25 ) (0.031 ) (0.030) (0.029 ) (0.030) (0.031) (0.025) (0.017) 
C 

2 0.0192 0.0416 0.0605 0.0131 0.0860 0.0731 0.0605 0.0416 0.0192 

Center 4 0.0220 0.0299 0.0510 0.0784 0·0998 0.0184 0.0510 0.0299 0.0220 
6 0.0221 0.0339 0.0504 0.0768 0.1006 0.0768 0.0504 0.0339 0.0221 
8 0.0221 0.0337 0.0504 0.0764 0.1006 0.07(;4 0.0504 0.0337 0.0221 

(0.022 ) (0.034 ) (0.050) (0.011) ( 0.101) (0.011) (0.050) (0.034) (0.022 ) 

* Numbers in parenthese8 were reproduced from Ret. (10). 



TABLE 5. INFLUENCE COEFFICI8NTS FOR DEFL~1r:rON OF BEAMS AT MIDSPAN--EFFECT OF n 
0 

m = 11; Y Functions Used:: o n n = -1 through n 
0 

Five-Girder Bridge; c = 0.8; ~ = 12.5, k = 0 

To obtain deflections, the tabulated coefficients are to be multiplied by the quantity pa3/Eb~ 

Longit. Values of De(lection Coefficient} Cd 
Beam Position no Transverse Location of Load -of Load A AD B Be C CD D DE E 

2 0.01200 0.00696 0.00291 0.00043 .·0.00052 -0.00049 -0.00015 0.00002 -0.00005 

"-~rter 
4 0.01204 0.OoG78 0.00276 0.00051 .·0.00031 -0.00040 -0.00030 -0.00016 -0.00001 
6 0.01205 0.00683 0.00273 0.00052 .·0.00028 -0.00044 -0.00030 -0.00016 -0.00002 
8 0.0]205 0.00684 0.00273 0.00053 ··0.00028 -0.00043 -0.00030 -0.00015 -0.00001 

(0.0]204)* (0.00684)( 0.00273) .. (0.00054)( .• 0.00028) (-0.00043) (-0.00030) (-0.00015) (-0.00001) 
A. 

2 0.01752 0.01010 0.00416 0.00055 ··0.00080 -0.00069 -0.00018 0.00005 -0.00009 

Center 4 0.01759 0.00979 0.00391 0.00070 · .. 0.00044 -0.00056 -0.00042 -0.00024 -0.00002 
6 0.01760 c.00988 0.00388 0.00071 .·0.00040 -0.00062 -0.00043 -0.00022 -0.00002 I 

'-0 

8 C.01760 0.00989 0.00387 0.00073 .. 0.00040 -0.00060 -0.00043 -0.00022 -0. oooo~! 
t-' 
I 

(0.01160) (0.00990)(0.00387) (0.00014) ( .• 0.00040) (-0.00060) (-0.00043) (-0.00022) ( -0.00002) 

Quarter 8 0.OCY273 0.00632 0.00794 0.00635 0.00344 0.00135 O~00021~ -0.00020 -0.00030 
(0.OCY273) (0.00631)(0.00795) (0.00634) (0.00344) (0.00135) (0.00024)(-0.00020) (-0.00030) 

B 
Center 8 0.00387 0.00929 0.01178 0.00929 0.00488 0.00187 0.00033 -0.00028 -0.00043 

(0.00387) (O.009'26)(O.0~78) (0.00927) (0.00487) (0.00188) (0.00033)(-0.00027) ( -0.00043) 

2 -C.00052 0.00211 0 .. 00435 0.00584 0.00637 0.00584 0.00435 O.O02ll -0.00052 

Quarter 
4 -C.OO031 0.00112 0.00354 0,00631 0.00156 0.00631 0.00354 0.00112 -0.00031 
6 -0.00028 C.00130 0.00344 0.00624 0.00770 0.00624 0.00344 0.00130 -0.00028 
8 -0.00028 0.00129 0.00344 0.00623 0")0771 0.00623 0.00344 0.00129 -0.00028 

( -u. 0(028) (0.00130) (0. 00~544) ( 0.00622) (0. 00771 ) (0.00622) (0.00344) (0.00130) ( -0.00(28) 
c 

2 -0.00080 0.00307 0.00634 0.00853 o. 00~129 0.00853 0.00634 0.00301 -0.00080 

Center 
4 -(.00044 0.00145 0.00503 0.00928 0.01123 0.00928 0.00503 0.00145 -0.00044 
6 -0.00040 0.00180 ·OwJ0488 0.00914 0.01144 0.00914 0.00488 0.00180 -0.00040 
8 -0.00040 0.00179 0.00488 0·00912 0.01144 0.00912 0.00488 0.00179 -0.00040 

(-0.00040) (0.00179)(0.00487) (0.00910) (0.01145) (0.00910) (0.00487) (0.00119) (-0.00040) 

~~ Numbers in parentheses, were reproduced from Ret. (IO). 



TABLE 6. INFLUENCE COEFFICIENTS FOR Ma.mNT III BEAMS AT MIDBPAB--EFFEm' or no 

m = "Il;Y Functions Used: o n n • -1 through n 
0 

Five-Girder Bridge; c • 0.8; A • 12.5, k • 0 
To obtain moments, the tabulated coefficients are t~ be multiplied by the quantity Pa 

LOngit. Values of ~nt Coefflc1ent l Cm 
Beam Position n Transverse Location or Load 

of Load 
0 

A AB B Be C CD D DE E 

2 0.1021 0.0613 0.0274 0.0058 -0.0036 -0.0041 -0.0025 -0.0001 -0.0002 
Quarter 4 0.1021 0.0609 0.0270 0.0059 -0.0030 -0.0043 -0.0029 -0.0014 -0.0001 

6 0.1028 0.0610 0.0268 0.0060 -0.0027 -0.0044 -0.0030 -0.0015 -0.0002 
8 0.1028 0.0610 0.0268 0.0061 -0.0028 -0.0043 -0.0030 -0.0015 -0.0001 

(0.103) * (0.061) ( 0.(27) (0.006) (-0.003 ) (-0.004) (-0.003) (-0.002 ) ( 0.000) 
A 

2 0.2161 0.1160 0.0431 0.0018 -0.01l3 -0·0070 0.0007 " 0.0026 -0.0016 
Center 4 0.2115 0.1089 0.0390 0.0051 ... 0.0044 -0.0057 -0.0041 -0.0019 -0.0002 I 

6 0.2176 0.1090 0.0386 0.0059 .0.0040 -0.0058 -0.0042 -0.0021 -0.0002 )S 
8 0.2176 0.1089 0.03,86 0.0058 -0.0041 .0.0059 -0.0042 -0.0022 -0.0002 I 

(0.218 ) ( 0.1(9) (0.039 ) (0.006) (-0.004) (-0.006) (-0.004) (-0.002 ) ( 0.000) 

Quarter 8 0.0268 0.0522 0.0629 0.0539 0.0336 0.0144 0.0024 -0.0022 -0.0030 
(0.027) (0.052 ) (0.063) (0.054) (0.034) (0.014) (0.002) (-0.002 ) (-0.003) 

B 8 0.0386 0.1108 0.15191 0.1087 0.0487 0.0168 0.0032 -0.0024 -0.0042 Center (0.039) (0.1l0) (0.1;19 ) (O.loB) (0.049) (0.017) (0.003 ) (-0.002 ) (-0.004) 

2 -0".0036 0.0187 0.0·576 0.0502 0.0545 0.0502 0.0~7t$ 0.0187 -0.0036 
Quarter 4 -0.0030 0.0141 0.0345 0.0522 '" 0.0594 0.0522 0.0345 " 0.0147 -0.0030 

6 -0.0027 0.0141 0.0~136 0.0525 0.0606 0.0525 0.0336 0.0141 -0.0027 
8 -0.0<Y28 0.0141 0.0~136 0.0525 0.0606 0.0525 0.03:~6 0.0141 -0.0028 

(.0.003 ) (0.014) (0.034 ) (0.052 ) (0.061) (0.052 ) (0.034) (0.014) (-0.003) 
c 

2 .O.Oll3 0.0351 0.01r45 0.1001 o.ll84 0.1007 0.0745 0.0351 -0.Oll3 
Center 4 -0.0044 0.0058 0.O~i33 0.11.41 0.1533 0.1141 0.0533 0.0058 -0.0044 

6 -0.0040 0.0166 0.0487 0.1097 " 0.1557 0.1097 0.0487 0.0166 -0.0040 
8 -0.0041 0.0151 0.0487 0.1073 0.1551 0.1073 0.0487 0.0157 -0.0041 

(-0.004) (0.016) (0.049) ( 0.1(6) (0.156) (0.106) (0.049) ( 0.016) (-0.004) 

* Jlumbere in parenthe... wre reproduced :trail Ret. (10). 



TABLE 7. INFLUENCE COEFFICIENTS FOR D~TION OF BEAMS AT MIDSPAN--~T OF m 
0 

Five-Girder Bridge; c = 0.4; X :: 12.5; k :: 0; n :: 8; m = 1 through m o 0 

To obtain deflections, the tabulated coeffic:ients are to be mul tlp1ied by the quantity Pa3 /Fo~ 

Longit. Vl:uues of Deflec:tion Coefficient, Cd 
Beam Position m Transverse Locations of Load 

of Load 
0 A AB B ~ C CD D DE E 

1 0.00905 0.00674 o .OO461~ 0.00293 0.00163 0.00061 -0.00002 -0.00054 -0.00098 
3 0.00888 0.00666 o .oo46~~ 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00098 

Quarter 5 0.00886 0.00665 o .oo46~~ 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00098 
7 0.00887 0.00665 o .OO46~2 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00098 
9 0.00887 0.00665 0.oo46~~ 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00098 

II 0.00887 0.00665 o.oo46~~ 0.00294 o.oo~63 0.00067 -0.00002 -0.00054 -0.00098 
A 

1 0.01280 0.00953 0.00656 0.0041.5 0.00230 0.00095 -0.00002 -0.ooO'{6 -0.001)6 

3 0.01303 0.00964 0.006:)(3 0.00414 0.00229 0.00095 -0.00003 -0.00076 -0.001:;8 

Center 5 0.01307 0.00965 0.(06)8 0.00414 0.00229 0.00095 -0.00002 -0.00076 -0.001j8 

7 0.01307 0.00965 0.00658 0.0041.4 0.00229 0.00095 -0.00002 -0.00076 -0.00158 I 
'-0 

9 0.01308 0.00965 0.00658 0.0041.4 0.00229 0.00095 -0.00002 -0.00076 -0.00138 \.H 
I 

II 0.01308 0.00966 o .oo65t~ 0.00414 0.00229 0.00095 -0.00002 -0.00076 -0.00138 

1 0.00163 0.00251 0.OO3Y) 0.00403 o . ()()1+32 0.00403 0.00335 0.00251 0.00163 
3 0.00163 0.00251 o .OO33~~ 0.00394 0.00419 0.00394 0.00332 0.00251 0.00163 

QUarter 5 0.00163 0.00252 o .0033~2 0.00392 0.00416 0.00392 0.00332 0.00252 0.00163 
7 0.00163 0.00252 0.0035:2 0.00395 0.00417 0.00393 0.00332 0.00252 0.00163 
9 0.00163 0.00252 0.0033:2 0.00393 0.00417 0.00393 0.00332 0.00252 0.00163 

11 0.00163 0.002)2 0.003:>:2 . 0.00393 0.00417 0.00393 0.00332 0.00252 0.00163 
C 

1 0.00230 0.00355 0.00475 0.00570 0.00611 o .O'J570 0.00473 0.00355 0.00230 
3 0.00229 0.00355 0.0041'7 0.OO5b3 0.00629 0.00583 0.00477 0.00355 0.00229 

Center 5 0.00229 0.00355 0.0047'7 0.00584 0.00632 0.00584 0.00477 0.00355 0.00229 
7 0.00229 0.00355 0.00477 0.00585 0.00633 0.00585 0.00477 0.00355 0.00229 
9 0.00229 0.00355 0.0047'7 0.00585 0.00633 0.00585 0.00477 0.00355 0.00229 

11 0.00229 0.00355 0.0041'7 0.OO5d5 0.00633 0.00585 0.00477 0.00355 0.00229 



TABLE 8. INFLUENCE COEFFICIENTS FOR M)MENT IN BEAMS AT MIDSPAN--EFFEX!T OF m 
. 0 

n = 8; m = 1 through m o 0 

Five-Girder Bridge; c = o.4j A = 12.5, k = 0 

To obtain moments, the tabulated coefficients are to be multiplied by the quantity Pa 

Longit. Values of MOment Coefficient~ Cm 
Beam Position m Transverse Position of Lo8.d 

of Load 
0 

A AB B OC C CD D DE E 

1 0.0710 0.0665 0.0458 0.0289 0.0160 0.0066 -0.0002 -0.0053 -0.0097 
3 0.0722 0.0595 0.0443 0.0294 0.0164 0.0068 -0.0002 -0.0053 -0.0097 

Quarter 5 0.0724 0.0572 0.0442 0.0297 0.0165 0.0067 -0.0002 -0.0053 -0.0097 
7 0.0723 0.0582 0.0442 0.0296 0.0165 0.0068 -0.0002 -0.005' -0.0097 
9 0.0723 0.0588 0.0442 0.0295 0.0165 0.0068 -0.0002 -0.0053 -0.0097 

11 0.0723 0.0585 0.0442 0.0295 0.0165 0.0068 -0.0002 -0.0053 -0.0097 
A I 

1 0.1737 0.0940 0.0647 0.0409 0.0221 0.0094 -0.0002 -0.0075 -0.0136 \0 
..f:" 

3 .' 0.1720 0.1039 0.0668 0.0403 0.0221 0.0092 -0.0003 ··0.0075 -0.0136 I 

Center 5 0.1118 0.1072 0.0670 0.0399 0.0221 0.0092 -0.0003 -0.0015 -0.0136 
1 0.1117 0 .. \087 0.0670 0.0397 0.0221 0.0092 -0.0003 -0.0015 -0.0136 
9 0.1711 0.1096 0.0670 0.0396 0.0221 0.0092 -0.0003 -0.0075 -0.0136 

II 0.1717 O.llOQ 0.0670 0.0395 0.0221 0.0092 -0.0003 -0.0075 -0.0136 

1 0.0160 0.0248 0.0330 0.0398 0.0243 0.0398 o .03:~0 0.0248 0.0160 
3 0.0164 0.0249 0.0307 0.0311 0.0285 0.0317 0.0307 0.0249 0.0164 

Quarter 5 0.0165 0.0254 0.0304 0.0285 0.0290 0.0285 0.0304 0.0254 0.0165 
7 0.0165 0.0252 0.0305 0.0301 0.0289 0.0301 0.0305 0.0252 0.0165 
9 0.0165 0.0251 0.0305 0.0310 0.0288 0.0310 0.0305 0.0251 0.0165 

11 0.0165 0.0251 0.0305 0.0304 0.0289 0.0304 0.0305 0.0251 0.0165 
C 

1 0.0227 0.0351 0.0461 0.0562 0.1076 0.0562 0.0467 0.0351 0.0227 
3 0.0221 0.0349 0.0500 0.0677 0.1011 0.0617 0.0500 0.0349 O.O22l 

Center 5 0.0221 0.0342 0.0504 0.0721 0.1009 0.0721. 0.0504 0.0342 0.0221 
7 0.0221 0.0339 0.0504 0.0743 0.1008 0.0743 0.0504 0.0339 0.022l 
9 0.0221 0.0338 0.0504 0.0756 0.1007 0.0756 0.0504 0.0338 0.0221 

11 0.0221 0.0331 0.0504 0.0164 0.1006 0.0764 0.0504 0.0337 0.0221 





~I~ABLE 10. IlfFL~E COEFFICIENTS FUR K>MENT IN BEAMS AT MIDSPAN--~T OF m 
0 

n :z: 8; m = 1 through m o 0 

Five-Girder Bridge; c = 0.8; ~ = 12.5; k : 0 

To ()btain moments, the tabulated coefficients are to be mul tip1ied by the quantity Pa 

Longit. Values ofbtlment Coefficient, Cm 
Beam Position m Transverse Position of Load 

of Load 0 
A AB B 1£ C CD D DE E 

1 0.1025 0.0682 0.0210 0.0052 -0.0028 -0.0042 -0.00;0 -0.0015 -0.0001 
3 0.1028 0.0620 0.0268 0.0059 -0.0028 -0.0043 -0.0030 -0.0015 -0.0001 

Quarter 5 0.1029 0.0603 0.0268 0.0061 -0.0028 -0.0043 -0.0030 -0.0015 -0.0001 
7 0.1028 0.0609 0.0268 0.0061 -0.0028 -0 .OOJ~3 -0.0030 -0.0015 -0.0001 
9 0.1028 0.0611 0.0268 0.0060 -0.0028 -0.0044 -0.0030 -0.0015 -0.0001 

11 0.1026 0.0610 0.0268 0.0061 -0.0028 -0.0043 -0.0030 -0.0015 -0.0001 
A • 

1 0.2182 0.0965 0.0382 0.0073 -0.0040 -0.0060 -0.0042 -0.0021 -0.0002 'f 
3 0.2117 0.1053 0.0385 0.0062 -0.0041 -0.0058 -0.0042 -0.0022 -0.<X>02 

Center 5 0.2116 0.1017 0.0386 0.0060 -0.0041 -0.0058 ... 0.0042 -0.0022 -0.0002 
7 0.2116 0.1086 0.0386 0.0059 -0.0041 -0.0058 -0.0042 -0.0022 -0.0002 
9 0.2116 0.1089 0.0386 0.0058 -0.0041 -0.0059 -0.0042 -0.0022 -0.0002 

11 0.2176 0.1089 0.0386 0.0058 -0.0041 -0.0059 -0.0042 -0.0022 -0.0002 

1 -0.0028 0.0126 0.0340 0.0625 -.0.0596 0.0625 0.0340 ·.0.01at> -0.0028 
3 -0.0028 0.0139 0.0337 0.0538 0.0606 0.0538 0.0337 0.0139 -0.0028 

Quarter 5 -o.OO~ 0.0142 0.0'36 0.0511 0.0601 0.0511 0.0336 0.0142 .0.0028 
7 -0.0028 0.0141 0.0336 0.0522 0.0601 0.0522 0.0336 0.0141 .0.0028 
9 -O.OOaB 0.0141 0.0336 0.0528 0.0606 0.0528 0.0336 0.0141 -0.0028 

II -0.0028 0.0141 0.0336 0.0525 0.0606 0.0525 o.0},6 0.0141 -0.0028 
C 

1 -0.0040 0.0178 o .OJK31 0.0884 0.1575 0.0884 0.0481 0.0178 -0.0040 
3 -0.0041 0.0160 0.0487 0.1007 0.1561 0.1007 0.0487 0.0160 -0.0041 

Center 5 -0.0041 0.0157 0.0487 0.1045 0.1559 0.1045 0.0487 0.0157 -0.0041 
7 -0.0041 0.0156 0.01£1 0.1062 0.1558 0.1062 0.0481 0.0156 -0.0041 
9 -0.0041 0.0156 0.01£7 0.1069 0.1557 0.1069 0.0487 0.0156 -0.0041 

II -0.0641 0.0157 0.0481 0.1073 0.1551 0.1073 o .oJK31 0.0151 -0.0041 



I.onsi t. 
l:'() 5i t ~ on 
O~· Load 
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From ~;ll' 

(c'-39) 

c.u4cC 
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TABLE 12. INFLUENCE COEFFICIENTS FOR DEFLECTION OF BEAMS AT ~ARTER-POINT OF SPAN 

m = 11; n = 8 o 0 

Five-Girder Bridge,; C ::z 0.4; f... :: 12.5; k = 0 

To obta.in deflections, the tabulated coefficients are to 'be multiplied by the quantity pa3/~~ 

Longit. Values of Deflection Coefficient, Cd 
Beam Position Transverse Position of Load 

of Loe.d A AB B Be C CD D DE E 

1/4 O.OO7t), • 0.00)4) 0.00555 0.00211 0.00112 0.00044 -0.00004 -0.00039 -0.00069 
(0.00761.) (0.00545) (0.00555) (0.00212) (0.00112) (0.00044) (-0.00004) (-0.00039) (-0.00069) 

0.00881 0.00665 0.00462 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00098 
(0. 00f.38'7) (0.00674) (0.00462) (0.00294) (0.00163) (0.00067) (-0.00002) (-0.00063) (-0.00098) A Center 

I 

O.0054l~ 0.00421 0.00305 0.00202 0.00117 0.00051 0.00001 -0.00037 -0.00069 ~ 
3/4 (0.005~~) (0.00421) (0.00305) (0.00202) (0.00117) (0.00051) (0.00001) (-0.00037) (-0.00069) 

1/4 0.OO35~; 0.00408 0.00421 0.00362 0.00269 0.00184 0.00113 0.00052 -0.00004 
( 0.0035,) (0.00408) (0.00421) (0.00362) (0.00269) (0.00184) (0.00113 ) (0.00052) (-0.00004) 

B Center 
0.0046:2 0.00472 0.00459 0.00409 0.00332 0.00245 C.OOl-57 . 0.00076 -0.00002 

(0.0046:2) (0.00472) (0.00459) (0.00409) (0.00332) (0.00245) (0.00157) (0.00076) (-0.00002) 

3/4 0.00305 0.00292 0.00274 0.00246 0.00208 0.00161 0~00108 0.00055 0.00001 
(0.00305) (0.00292) (0.00214) (0.00246) (0.00208) (0.00161) (0.00108) (0.00055) (0.00001) 

1/4 0.00ll2 0.00189 0.00269 0.00349 0.00388 0.00349 0.00269 0.00189 0.00112 
(0.00112) (0.00189) (0.00269) (0.00349) (0.00389) (0.00349 ) (0.00269 ) (0.00189) (0.00112 ) 

G Center 
0.00163 0.00252 0.00332 0.00393 0.00417' 0.00393 O.00})2 0.00252 0.00163 

(0.00163) (0.00252) (0.00332) (0.00393) (0.00411) (0.00393 ) (0.00332 ) (0.00252 ) (0.00163 ) 

3/4 
0.00117 0.00166 0.00'208 0.00236 0.00245 0.00236 0.00208 0.00166 0.00117 

(0.00111) (0.00166) (0.00208) (0.00236) (0.00245) (0.00236) (0.00208) (0.00166) (0.OO117) 

* NumbeJra in perenthe.~8 were reproducedtrom Ret. (10). 



TABLE 13. INFLUENCE COEFFICIENTS FOR MOMENT IN BEA14S AT -tUARTER-POINT OF SPAN 

m = 11' n 
o ' 0 

= 8 

Five-Girder Bridge; c = 0.4; ~ = ~.5j k = 0 

To obtain momenta, the ta.bulated coeffi ~ ients a.re to be mul tipl1,:d ty the quantity Pa. 

-~~ 

Longit. Values of Moment Coeffici~ntz em 
Beam Position Transverse Position of Load 

of Load A AB B Be C CD D DE E 

1/4 0.1403 0.0820 0.0432 0.0213 0.0100 0.00)2 -0.0012 -0.0043 -0.0069 
(0.140)* (0.083) (0.043 ) (0. ()cl) (0.010 ) (0.003 ) (-0.001) (-0.004 ) (-0.007 ) 

A Center 0·0723 0.0585 0.0442 0.0295 0.0165 0.0068 -O.OO<Yd -0.0053 -,-J.0097 
(0.072 ) (0.059) (0.044) (0.030) (0.017) (0.007 ) (0.000) (-0.005) ( -~. 010) 

0.0314 0.0281 0.0'239 0.0183 0.0120 0.0061 0.0009 -0.0032 -0.0068 
I 

3/4 ~ (0.Oj1) (c.028) ( :).024) (0.018) (0.012 ) (O.OOf) (C.OOl) (-0.003 ) (-0.007 ) I 

1/4 
0.0432 0.0719 0·0935 0.0658 0.0374 0.0206 0.0114 0.0046 -0.0012 

(o.Oh) (0.Cyl3) (0.094) (0.067) ( 0.037) ( 0.021) (0.011 ) (0.005) (-0.001) 

B Center 0.0442 0.0373 0.0325 0.0319 0.0305 0.0244 0.0159 0.0076 -0.0002 
(0.044 ) (0.037 ) (0.033 )' (0.032 ) (0.031 ) (0.024 ) (0.016) (0.008) ( 0.000 ) 

3/4 0.0'239 0.0179 0.0139 0.0128 0.0130 0.0122 0·0098 0.0058 0.0009 
(0.0'24 ) (0.018) (0.014 ) (0.013 ) (0.013 ) (0.012 ) (0.010) (0.006 ) ( 0.001 ) 

1/4 
0.0100 0.0208 0.0374 0.0643 0.0893 0.0643 0.0374 0.0208 C.OI00 

(0.010) (0.021) (C. 037) (0.065) (0.089) (0.065) (0.037 ) (0.021 ) (0.010) 

c Center 0.0165 0.0'251 0.0305 0.0304 0.0289 0.0304 0.0305 0.0251 0.0165 
(0.017) (0.025) (C .031) (0.030 ) (0.0'29 ) (0.030) (0.031 ) (0.025) (0.017) 

3/4 
0.0120 0.0130 0.0130 0.0120 0.0114 0.0120 . 0.0130 0.0130 0.0120 

(0.012) (0.013) (0.013 ) (0.012 ) (C.Oll) (0.012 ) (0.015) (0.013 ) (0.012 ) 

* Numbers in parentheses were reproduced trc.m Ret. (10). 



TABLE 14. INFLUENCE COEFFICIENTS FOR DEFLECTION AND MOMENT OF BEAMS AT MIDSPAN 

Five-Girder Bridge; c ::I 0.4; A :c 50; k I: 0, mo = 11; no = 8 
To obtain deflections and momenta, the tabulated coefficients are to be multiplied 

by the ~uantitie8 Pa3/EbIb and Pa, respectively. 

LOlngit. Values of Influen(~e Coefficients 
Beam POlsi tioJl 

of' Load A AB B 
Transverse Loc~lt1on of Load 
Be C CD D DE E 

A 

B 

C 

A 

B 

C 

Qus.rter 

Center 

Q;uarter 

Center 

Q\Jarter 

Ce!nter 

~~e~ .:.."; , • ...:1_. 

Ce:nter 

(a) _Deflections, Cd 
0.00391 0.00164 0.00029 ... 0.00036 "'0.00056--

n

-"'0.00053 -0.00041 
(0.00391) (0.00163) (0.00028) (~0.OOO36) (-0.00055) (-0.00054) (-0.00042) 
0.00555 0.00228 0.00040 ~0.OOO50 -0.00078 -0.00075 -0.00059 
0.00555) (0.00227) (0.00040') (-0.OOO51~ ( -0.QQQ:@}~( .. 0.oooTrLi-0.OOO59) 

0.00391 0.00536 0.00599 0.00528 0.00381 O.002J}-n,.-:O:OOlIO----~6_=_OOOlcr__ -0.00056 
(0.00391) (0.00536) (0.00600) (0.00528) (0.OO380) (0.0(233) (0.00110) (0.00018) (-0.00055) 
0.00555 0.00196 0.00900 0.00778 0.00542 0.00325 0.00155 0.00021 -0.00078 

(0.00555) (0. Q(794) .( 0.00991 ) .. ( 0.00778) (0. Q0242.~L __ (Q·QQ32~_(Q .9(155) ( Q. OOogq) L-Q_ • .99~~) 
o.~nU.·OO206 __ n '0.00351- O-~OO53T"--U~OO6Ob--- (T.OO537 ----·O~W3BI---u.00206-0.00009 

(0.00028) (0.00206) (0.00380) (0.00536) (0.00607) (0.00536) (0.00380) (0.00206) (0.00028) 
0.00040 0.00286 0.00542 0.00791 0.00909 0.00791 0.00542 0.00286 0.00040 

( 0.00040) (0. 002t18) .. (Q. 00542) (0_.00790) (0.00910 ,L {g.()()790) __ 19_.00542) ( 0.00288) ( 0.00040) 

0·0930 
0.2037 

(0.204 ) 

O. 00Ii2
u 

0.0382 
0.1170 0.0555 

(0.118) (0.055) 

( b) Manents, Cm. 
0.0172 0.0030 
0.0205 0.0037 

(0.021) (O.0Q4) 

-0.0037 -0.0055 -0.0052- --o.-(j(j41 
-0.0047 -0.0071 -0.0075 -0.0058 

(-0.005) (-0.008) (-0.008) (-0.006) 
Q\j~er O.03~-- O~0421 -U~U4~- O.04}1 ~<J.0367 "~O~1l2~U_~;-O~'Ol11 :-0-:0016 -0. 0055 

Ce!nter 

Quarter 

Ce~nter 

0.0555 0.1016 0.1313 0.0964 0.0548 
( a • 055) ( 0 .lD? ) __ ( 0.131 ) _( 0 • 091 ) ( 0.055 ) 
0.00,-0 O~0220 0.0361 0.0437 0.0449 
0.0037 0.0250 0.0548 0.0982 0.1318 

( 9~004) ( o. 02 5) ( 0.055 ) ( 0 .099 ) ( 0.132 ) 

0.0294 0.0149 0.0031 -0.0077 
{O.030) __ {O.015) (0.903) (-0.008) O.04,r- 0.0367 0.0220 0.0030 

0.0982 0.0548 0.0250 0.0031 
(9.(99) ___ (0~055) (0.925) (0.004) 

... lluaberl. in parentbe .. a wre reproduced trail Ret. (10). 

• ....,. 
8 
I 
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TABLE 15. COMPARISON OF RESULTS OBTAINED BY USING 

DIFFERENT NUMBERS OF INTEGRATION STEPS 

Five~irder Bridge; Load over Beam A 

c = 0.4; A = 25; k = OJ I = 0.05; y = 0.2; W = OJ a = 0.15; fv/fb = 0·7 

Ma..."'<:. Dyn. 
N = Number of Integration Steps* 

Increment Beam 
50 100 150 200 . 

for 

Interacting 0.177 0.178 0.178 0.178 Force 

Deflection at 0 0.00251 0.00254 0.00254 0.00254 
Midspan in 1 0.00140 0.00150 0.00150 0.00150 
Terms of 2 0.00071 0.00069 0.00069 0.00069 

wa5/~~ 3 0.00096 0·00091 0.00089 0.00088 
4 0.00135 0.00136 0.OOl36 0.00136 

Moment at 0 0.0267 0.0262 0.0262 0.0262 
Midspan in 1 0.0139 0.0148 0.0148 0.0148 
Terms of Wa 2 0.0070 0.0068 0.0068 0.0068 

3 0·0095 0.0090 0.0088 0.0087 
4 0.0133 0.0134 0.0134 0.0134 

*Minimum number of integration steps required by stability and convergence 
criteri~n is N = 30. 
No solution could be obtained for N = 25. 
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TABLE ~6. RELATIONSHIP BETWEEN PEAK VALUES OF 
RESPONSE FOB AC'IUAL STllJCruRE AND E~IVALEIfi' BEAM-

Fi ve -Girder Bridge; Load over Beam C 

k = OJ '1 = 0.05; v 1Z 0.2, w = 0; a = 0.15; t:jfb = 0.7 
All deflections are expressed in terms of va.3 /~Ib' 

and moments in terms- of Wa 

Max. Static Max. Sum of 
Deflection in Dyn. Incr. for 
Loaded Beam Moment in Beams 

12.5 0.00634- 0.0471 
25 0.00161 0.0533 
50 0.00909 0.0599 

16.67 0.00977 0.0617 

6.25 0.00955 0.0608 
12 .5 0.01144 0.0695 
25 0.01341 0.0744 

10 0.01288 0.0720 

Beam Sol uti on 0.00416 0.0388 
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TABLE 17. COMPARISON OF STATIC AND DYNAlUC DISTRIBUTIONS 
OF MCMENT IN BSAMS ACROSS MIDSPAN 

Five-Girder Bridge; Load over Beam C 
k = 0; '/ = o. 05; v = 0.2 j W = 0', a = o. 1) j f j f b = o. 7 

All moments arc ~xpre8sed 1n terms of \18. 

It1B..:c. Value of Sum of Moment in Beam 1n Percent of Corresponding 

H= 
Moments in Beams loiaxi.mum Value of Sum 

AC 
Statl~ Dynamic Increment 

:." 

Static Dyn. Incr. 
A B C A B C 

5 o.~4 0.047 9 21 40 17 21 24 
10 O.21t- 0.055 5 2~ 46 17 22 ~5 

20 0.24 O.atO 1 23 52 14 23 27 

10 o .2l~ o. Or)~ 0 22 56 15 22 26 

5 0 . .:=!4 0.061 1 21 56 15 22 26 

10 c.~4 0.070 -,....,: 20 64 16 22 25 

20 0.24 0.074 -3 18 70 16 22 26 

10 0 • .24 C.072 -2 17 10 16 22 25 

I 
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b 

~ Simply Supported 

.----' y I 

____ ~J---I~~~I~--~I-----~I----~I--~I 

1 '-= Si111.P4 Supported 

x 

t I I I I I t 
0 1 ....... 1 p-1 P 

I. p arb! trary beam 8p8C!ng~---1 

FIG. 1 CHARACTERISTICS OF STRIDl'URE IBVESTlGAmD 
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I I 
1 

I r I 
A B C D E 

~ 4 equal beam spacings ~ 

FIG. 2 CROSS-SlI:TION OF FlVE-GnIDm BRIDGE CONSIDERED IN 
NUMERICAL SOLl1.rIONS 

v .. Static equilibrium poSition"l/r-
of C.G. of sprung mass I 

! 
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(W+W1) j=L m ~~-L(_w+'Wl) j=2 

~I ---r----. I 
_Y_l =_b_~_....-I". b

1 + b1:l 

Y2=b~ 

(a) (b) 

FIG.:5 VEHICLE IDDEL 



~lOOO) 
Input Problem 

Parameters 

Calcul.ate 
Basic Constants 

( 100;) 

Calculate Elements 
t3n 

of Load Matrix 

I cQ+ ,..,....1 1 

( 1015) 

C and Print m 

Yes 
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(1005) 
Evaluate First Row 

of Symmetric 
Matrix [F ] • 

. (1007) 

Evaluate First Row 
of Anti symmetric 

Matrix [F 1 
m 

01008) 
Compute Remaining 

Rows of 
Matrix [F ] m 

Plant Address for 
First Element of 

Load Ma:tr1x 

(Ml4) 

Solve Simultaneous 
Equations to 

Obtain at 
mn 

( 1010) 

CalcuJ.ate ~ 

(See Eq. 2-45) 
. 

Note: 
The numbers in parentheses 
above the boas refer to 
the routines used. Opera­
tions which are not ide­
tified by numbers are 
performed by the control 
routine (1.e2). 

FIG. 4 FLOW DIAGRAM OF COMPLETE PROGRAM FOR INFLUENCE SURFACES 



(1000) 

Input Problem 
Parameters 

Calculate 
Basic Constants 

(100;) 

aleulate Il"'Dts 
~. of Load Matrix 

n 

(1015) 
Calculate Cd and 

c· and Print 
m 

1000) 
Last No 

Problem? 
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( 1005) 
Evaluate First Roy 

of Symmetric 
Matrix [F ] 

m 

Yes 
m>m o 

Yes 

( 1008) 
Compute Remaining 

Rows of 
Matrix [F 1 

m 

Plant Address for 
First Element 
of Load Matrix 

(Kl4) 

Solve S1mul taneous 
EquatiOns to 
Obtain a" 

mn 

(1010) 

Calculate ~ 

(See Eq. 2-52) 

Note: 
The numbers in parentheses 
above the boxes refer to 
the routines used. Opera­
tions which are not iden­
tified by n,mIDers are 
performed by the control 
routine (1002). 

FIG. 5 FLOW DIAGRAM OF COMPLETE PROGRAM FOR '!BOOK UlADIBG 



T (2000) 

Input Problem 
Parameters 

See Fig. 7 
Calculate 

Quanti ties ~, j 

Defined by Eq. (;-75) 

See Fig. 8 

Calculate 
DO and tf. 
i,s 1,& 

See Chap. III 
Art. 5.3 

Calculate Constant 
Coefficients 

in Eq. (.~-~) 

See Fig. 9 
Evaluate - and 

~ 
Response at '(WI v 

0/ 

Last Yes 
Problem! ~~----

P~back First 
Part of Program 
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(2054) 

Compute and Print 
Interacting Forces 

( 2055) 
Compute and Print 
Static Effects and 
Dynami c Increments 

Increase 't by 6T 

? 
'f > 1 

(2049) 

Compute 
Trigonometric 
Expressions 

(2042) 

Compute Time 
dependent Coeffi­

e1en1is in 
Eq. {3-40) 

See Fig. 10 

Integrate over 
Interval6T 

Note: fhe numbers in parentheses 
above the boxes refer to 
the routines used. 

FIG. 6 GENmAL FLOW DIAGRAM OF COMPLETE PROGRAM FOR DYNAMIC PROBLEM 
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Calculate Elements 

t3n, j 
of Load Matricee 

Playback Routines 
(2003), (2004), 

and (2005) 

Store ~,j on the 

Drum 
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Evaluate First Row 
of Symmetric 
Matrix [F ] 

m 

Yes 

I 

(2004) 

Evaluate First Row 
of Ant18ymmetr1c 
Matrix [F 1 m 

Increase m by two 

m>m o 

( 2(05) 

compute Remaining 
Rows of 

Matrix [F 1 
m 

Plant Addresses for 
First Terms of Load 

Matrices 

(Ml4) 

Sol Te SiJInIl. taneous 
Equations to 
Obtain a' '" 

mo., " 

(2006) 

Note: Operations which are not identified by numbers are 
performed by the control routine {2001}. 

FIG. 7 FLOW DIAGRAM FOR COMPUTATION OF QUAlfrITIES ~,j 



I ElffER J 

Plqba.ck Routines 
(20l.O) - (2013) 
aDd Auxillaries 

Calculate 
Basic Constants 

(2011) 

C~cul.ate El.ements 
13 of Symmetric ns 

Inertia Load 
Matrices 

( 2012) 

CalgulA te ElelZ20ts 
t3 of Antiaym-ns 

metric Inertia 
Load Matrices 

! Set m=1 J 

( 2003) 

Evaluate First Roy 
of Symmetri c 
Matrix [F

1
] 

I 

I 
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(2004) 
Evaluate First Row 
of Antisymmetr1c. 

Matrix [F 1] 

Yc2005) 
Complete Remaining 

Rows of' 
Matrix [F

1
] 

Plant Addresses for 
First Terms of Load 

Matrices 

(Ml4) 

Solve Simultaneous 
(r.c) Equations to 

Obtain a' ns 

( 201;) 

I Calculate 

store Df s and 
o ' I Mil s on the Drum 

I 
EXIT rP. and Itf i,s i,s 

First Time? 

Note: Operations which are not identified 
by numbers are performed by the 
control routine (2010). 

- . 

I 

FIG. 8 FlDW DIAGRAM FOR COMPmATION OF D~, s AND M~, s 



I Elr.I!BB I 
(~) 

Pl.ayba.ck Becessary 
Routines 

(IC) 

lblify 86 
Parameter in (F3) 

l Set -r. 0/ 

( 2OlI9) 

compute 
1Tigonometrtc 

Kxpre 8a ions 

(2042) 
Cc:mrpate T1JDe­

dependent Coefficients 
in Eq. ;-lK> 

(2050) 

Compate Coefficients 
of Algebraic 

Equations in cp" s 
(See Eq. 3-40) 

-lll-

( }(l.Jt.) 

Solve Algebraic 
Eqw&tioDB for ~n s 

(2051) 

l Compute t" 1· 
(2052) 

[ Compute en 1 
( 2QlI.8) 

Pl.qback Routines 
(2054), (2055), (Pl6) 

(2054) 

compute and Print 
Interacting Forces 

(2055) 
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APPENDIX 

DERIVATIOI OF GOVERNING DIFFERENTIAL E~ATIONS 

Al. Lagrange t s Equation for, f n 

It can be verified that 

I' 
;;1'4 = ."..,.~ .,b .uI/?[ ).iZ (Y.;J..(~)J ~ +,fs) r ?r'~~ Z (Yo:'),. (~1-({'~.rs) ] (A-2) () f". Q 2 iW. S S 

Z . 

o~e = kZ[ZtZs -(14/;). + {-,)Jub,_ MfC1 ~'" 7(vt Zis (~))[-~ (Y.,) . .sin ?rvtJ (A-3) 
r;Jf." j-' 'J (J s /1 'j q 

By substituting 

k z = 2! s 2 

into Eq. (A-3), one obtains 

It can also be verified that 

(A-5) 

(A-6) 

(A-B) 

r-' 
I 

L ' 
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(A-9) 

(A-10) 

(A-ll) 

(A-12 ) 

(A-13) 

(A-14) 

By sub st1 tuting Eqs. (A-l) through (A-14) into Eq. (3 -2 ), dividing 

the resulting equation by w 0' and rearranging the terms, one obtains the 

following equation for the generalized coordinate f n : 
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+ -w;, Z£'[ 2m ('It v)l /y-). (}{).1 silt 1CVt UJS 7(vt 
s s (- Q j:1 { j"U .:s J] P a 

f -w. ?~{ ~ 0; [Ans f £).JY..)'.(YsJ + t 1f~~1. (Yw)i (>;2-] 

. f k sinZ 'Xvt t (Y,.J..(~)' -71'/P:v)~/n" 1Cvt l(y.).(YsJ} 
Q j-:r./ Ij 'J t1 j=1 'j 1 

+ w. ;, ~{ 7fJ of [A"s f t ~ (~.(YsX + t !fez (r,;~. (r:2-] I 

- 5i" .r;t t rY.;;J·[ ~M + Ie (z -(w;~. +- (-f~j,)] 

=0 (A-15) 

Eq. (2-16), written in detail for the deflection of the bridge 

under its cr..m weight" becl"ffl".es for m ~ 1: 

~(~ ~)[A"s +f.).J'f..)Jr;).. f t. 7r~' (Y.:i(>:2] 

= ~4 '2L [~f'jt:lbi~d'" + ~ Q'f i(m"J,.(Y..J..] 
'Jr.J) (;Iv 1C ('1( t=tI ' 

. " 

(A-16) 

! . " 
l . . 

,... 
i 
! I 

; ; 
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w;, 2 Js{ 1C

4 ~ '1 [An. + i Ai (y,:}./t:)'.r i ?r~~z (v.;~. ('I;2-J J 
s a (r/1 • 

('Sill . 

I 

2 f 2. f' -7if'a6J ~a'1 -1r(/j?(~~·('l = 0 
() ,:0 

By sUbstituting Eq. (A-17) into Eq. (A-15) one obtains tbeequation 

(3-32) which was presented in the text. 

A2. Lagrange IS Equation for z 

It can be shown that 

~ (? 1St' '= Mz" de -az'/ 

(A-18) 

(A-20) 

. and that all otber terms entering the Lagrange's equation for z are equal. 

to zero. By .ub.tltuting Eqs. (A-18) through (A-20) into Eq. (3-2), one 

obtains 

(A-21) 

Eq. (3-33) 18 obtained fran Eq. (A-21) by noting that 



A3. Lagrange's Equation tor u 

It can be shown that 

.L (d7Se)= Jail 
dt ou,7 

(A-22 ) 

(A-23) 

and that ~. other terms entering the Lagrange' 8 equation for u are equal 

to zero. By aubst1 tut1ng Eqs. (A-22 ) ." and: (A-23) into Eq. (3 -2 ), one 

obtains 

(A-2~) 

Eq. (3-34) is obtained fran E.q .. (A-24) by noting that 

2. .. 

Z, (Z.J: Z$) (-I)J =0 

j'=1 

\~ 

i i 

(--, 


