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I. INTRODUCTION

1. Object and Scope

The principal objective of this study was to develop a method for
the analysis of the dynamic response of simple-span, right, multigirder highway
bridges under the action of moving vehicles. In all previous analytical
treatments of this problem; the bridge was represented by a beam. In the
present study, it is analyzed as a plate continuous over flexible beams.

In the analysis of the beam problem; two different types of approxi-
mations have been used. The first refers to the deflection configuration‘of
the beam during vibration, and the second to the mass distribution of the
beam.

NOM : |

Inglis 5 wWho was mainly concerned with the study of the effects
of pulsating forces, assumed that the beam responded in its fundamental mode
of vibration, and expressed the dynamic deflection configuration as a half-

(7

sine wave. The same assumption was also made by Looney and by Biggs,
Suer;, and Louv(l) in connection with "a simplified method" of analysis. The
nature of the simplification made by Biggs et al is discussed briefly in
Chapter III, Art. 4.3.

In an investigation reported by Hillerborg(j), the deflection
configuration of the beam at any time was assumed to be proportional to the
static deflection configuration due to the moving load. The same assumption
was also made by Tung et al(lB)y and a modification of this assumption was

used by Wen(lh)

in considering the effects of two-axle loads. All these
assumptions amount to considering the bridge as a system having a single
degree of freedom. As far as it is known, there has been no systematic

study made to evaluate the sensitivity of the response to the assumptions

referred tc above.

* Unless otherwise noted, numbers in parentheses refer to the items in the
list of References.
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In the studies made by Huang and Veletsos(5) and by Fleming(z), the
beam was analyzed as a multi-degree-of-freedom system. The flexibility of
the beam was considered to be distributed as in the actual beam, but the dis-
tributed mass was replaced by & series of concentrated point masses. The
degree of freedom of the mathematical model thus obtained is equal to the
number of mass concentrations used.

In the present analysis of the bridge as a plate continuous over
beams, both the bending and torsional stiffnesses of the beams are taken
into account. The analysis involves two major steps:

’(a) The determination of the instantaneous values of the dynamic
forces acting on the bridge; these include the interacting forces between
the vehicle and the bridge, and the inertia forces of the bridge itself.

(b) The evaluation of the deflections and moments produced in
the bridge by these forces.

The second step, which is strictly a problem of statics, is solved
by an application of the Rayleigh-Ritz energy procedure. The deflection of
the structure is expressed as a series of functiocns that is capable of
approximating any deflection configuration in both the longitudinal and
transverse directions.

Although the problem of statics constitutes an indispensable part
of the more general dynamic problem, it is discussed separately in this
report as 1t is of interest in itself. 1In this connection, two computer
programs have been developed for the ILLIAC;, the digital computer of the
University of Illincis. One of these may be used to determine influence
surf‘e‘s for bending moment and deflection for a specified pecint of the
beams of multigirder bridges; and the other to compute directly the moments
and deflections produced in the beams by a three-axle truck loading. A

complete description of the method of analysis; and brief descriptions of
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the computer programs are presented in Chapter II. Also included in this
chapter are compearisons between numerical results obtained with the present
method and those obtained by Newmark and Siess(lo) using an exact method of
analysis.

The method used to evaluate the dynamic forces is essentially an
extension of that used for the static problem. In contrast to the expression
used to represent the static deflection, however, the dynamic deflection of
the bridge is assumed to be a half-sine wave in the direction of the span.
This assumption is the same as that used by Inglis(6> for beams. The vehicle
is represented by a single-axle loading consisting of a sprung mass and two
equal unsprung masses, or wheels. The so-called rolling effect of the vehicle
is thus teken into account. The springs are assumed to be linearly elastic.
No demping is considered for either the vehicle or the bridge.

The complete dynamic problem, including the determination of the
dynamic forces and the computation of the effects produced by these forces
in the bridge, has been programmed for the ILLIAC. This program and the
method of solution of the dynamic problem are described in Chapter III, in
which are also includéd a brief discussion of the accuracy of the assumptions
involved in the analysis and comparisons between theoretical and experimental
data. The detalls of derivation of the equations of motion are given in the
Appendix.

A limited number of mumerical solutions were obtained to study the
influence of those parameters that cannot be considered when the bridge is
analyzed as a beam. The resulis of this effort are presented and discussed
in Chapter IV.

A brief summary of the_significant results of this investigation

is given in Chapter V.



2. Notation

wlf

The symbols used in this report are defined in the text when they

first appear. For convenience of reference, the important ones are summarized

here in alphabetical order. Some of the symbols were assigned more than one

meaning; but this was done only when no confusion could arise.

a

{al
m

[Bm)

span length of bridge; center to center of supports

& column matrix of the unknown coefficients oﬁn’ defined in
Eq. {2-16)

overall width of slab

one-half the distance between the wheels of the vehicle model
considered in the dynamic analysis.

& column matrix of the known lcad terms ang defined in

Eq. (2-16)

b/a. ratio of sides of bridge

influence coefficients for deflection and moment; defined
by Egs. (2-46) and {2-47)

dimensionlesss coefficients for deflecticn and moment pro=-
duced by truck loading; See Egs. (2-53) and (2-54)
dizensionless coefficients for static values of deflection
and momant produced by the interacting force at the jth
wheel; See Egs. (3-79) and {3-80)

flexural rigidity of slab

deflection produced in the ith beam by the static value of
~he interacting forece at the jth wheel |
deflection produced in the i)c’h beam by the sth component of
the inertia forces as defined in Chapter III, Art. 5.3

dimensionless amplitude of roadway unevenness, defined by

Eq. (3=-35)
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< s .th
flexural rigidity of the i~ beam
flexural rigidity of the reference beam used to define LA in
Eq. (3-1)
flexural rigidity of an interior beam
flexural rigidity of a beam, when all beams are identical

fundementeal natural frequency of the bridge evaluated on the

- assumption that it acts as a beam

natural frequency of the vehicle for vertical motion on its
springs

generalized coordinates for the bridge, defined by Eq. (3-1)
symmetric square matrix defined in Eq. (2-16)

torsional rigidity of the ith beam

polar moment of inertia of the sprung mass about an axis
through its center of gravity and normal to the transverse
vertical plane

spring constant for one spring; also value of ki for a
bridge with identical beams |

(G.J.).
-f%§§L35 dimensionless torsional rigidity factor for the

ith bean

dimensionless torsional rigidity factors for an interior
and an exterior beam, respectively

(r/2.)°

one unsprung mass

mass per unit length of the i peam

number of terms used in the longitudinal direction in the

computation of the static effects

e f e e =



o
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i,s
M, M
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e positive integer defined in Eq. (3-35)
moment corresponding to Di

5d

moment corresponding to Dg,s

component moments, defined in Chapter II, Art. 3.2

numbers of Yn functions used for various purposes as defined
in Chapter III, Art. 5.3

total number of integration steps for time required for the

vehicle to cross the span; AT = 1/N

number of integration steps between print-outs

mumber of beam spacings

the mﬁh term in the Fourier series expansion of the load,

defined by Eq. (2-2)

a function of 1, defined by Eq. (2-2)

inertia force due to the mass of the slab

inertia force dvue to the mass of the ith beam

generalized coordinate for bridge or vehicle

quantities defined by Egs. (2-145) and (2-52), respectively
quantities defined by Eq. (3-75)

time, measured from the instant the vehicle enters the bridge
kinetic energy; also shortest natural period of vibration of
the system

l/fb = fundamental natural period of the bridge evaluated on
the assumption that it acts as a beam

l/fv = natural period of the vehicle for vertical motion on
its springs

dynamic rotation of the sprung mess in the transverse vertical

plane (See Fig. 3)
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potential energy of the gravity forces
speed of the vehicle
strain energy
static or dynamic deflection function for the bridge; dynamic
deflection is measured from the static position of equilibrium
of the bridge under the action of its own weight
a quantity defined in Eq. (3-1)
roadway surface unevenness function, defined in Eq. (3-12)
deflection of bridge under the action of its own weight

deflection component associated with load component Eﬁ

~a function of 1, defined in Eq. (2-3)

total weight of the dyrnamic vehicle model

total weight of the rear axle of a three-axle truck
cartesian coordinates, defined in Fig. 1

dimensionless functions of 7

dynamic vertical displacement of the center of gravity of
the sprung mass, measured from the static position of
equilibrium (See Fig. 3)

initial dynamic compression of spring

static compression of spring

vI
EEE ; dimensionless speed parsmeter

unknown coefficients defined in Eq. (2-k)
elements of the loed matrix {B ]}
m

dimensionless weight parameter for the ith beam, defined

by Eq. (3-36)
value of 7i for an interior and an exterior beam, respectively

value of 7i for a bridge with identical beams
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5 = dimensionless coefficients defined in Eq. (3=-4)

¢ = z/wb, dimensionless generalized coordinate for the vehicle

§s = zs/wb

1 =y/b

6 = u/blwb, dimensionless generalized coordinate for the vehicle

li = (EbIb)i/Db, dimensionless flexural rigidity factor for the
ith beam

lio = value 6f ki for the reference beam used to define LA in
Eq. (3-1)

ko, ll = values of li for an interior and an exterior beam, respectively

A = value of li for a bridge with identical beams

[} = mass of slab per unit of area

v = dimensionless weight parameter defined by Eq. (3-36)

3 ="x/a

p = dimensionless parameter defined by Eq. (3-U43)

T = %}, dimensionless time parameter

@n = dimensionless generalized coordinate for bridge

w = dimensionless weight parameter defined by Eq. (3-36)
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II. ANAIYSIS OF STATIC PROBLEM

1. Characteristics of Structure and Assumptions

The structure considered i1s shown in Fig. 1. It consists of a
reinforced concrete slab cqntinuous over a number of parallel steel or
reinforced concrete beams spanning in the direction of traffic and simply
supported at the ends. The beam spacing may be arbitrary. The dimensions
of the beams mey vary from one beam to the next;, but all beams are assumed
to be prismatic. The slab is considered to be isotropic;,; of constant
thickness, and simply supported at the abutments.

The assumptions made in the analysis are those embodied in the
ordinary theory of medium-thick, elastic plates and in the ordinary theory
of flexure of beams. In addition, it is assumed that:

(1) A beam and the slab over it deflect and rotate alike.

(2) There is no transfer of horizontal shear between the beams
and the slab; thus the resultant of the normal stresses acting on a cross
section of the slab or a beam is a pure couple. ‘The effect of composite
action may be taken into account approximately by modifying the flexural
and the torsional stiffnesses of the supporting beams as suggested by
Nevmark and Siess\1%®)

In considering the effect of the torsicnal resistance of the
beams, it is assumed that the Saint-Venant theory of torsicn is applicable.
Poisson's ratio for the material of the slab is taken equal to zero, except
when evaluating the rigidity of the slab.

The span length of the bridge; center to center of supports, is
denoted by a, and the overall width of the slab by b. The position of a
point on the bridge is specified in terms of dimensionless cartesian
coordinates £ and 1, defined by the equations

t = x/a

y/o

(2-1)

!

where X and y are as shown in Fig. 1.
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2. Method of Analysis

2.1 General. The approach used is & combination of the Rayleigh-
Ritz energy method, and the Levy method of analysis for rectangular plates
simply supported along two opposite edges. The details of the method paraliel

those of the procedure used by Yamade and Veletsos for the computation of the
(15)

natural frequencies and modes of vibration of highway bridges
Let the vertical load on the structure, p( g, 1), be represented by a

single trigonometric series of the form

P( E,n) = Z Em = Z pﬁl sin m#§ (2-2)
m=l' J

mEl
in which Py is a function of 1 only. The deflection of the structure,
&

w( &,m), can then be expressed as
2 =
W &,m) =Z v = Z w_sin mag (2-3)
m=1 m=1

where ;;m =W sin m%E is the deflection component corresponding to the load
component Em, and wmis gfunction of 7 only. The problem is then to determine
the relafionship between L. and D,

In the proceduz;e used, the deflection functions 'wm are expressed

in the form

w =_Z a Y (2-k4) |

where Yn are known functions of the n«-cqordinate,_ and amn are coefficients
which will be evaluated by minimizing the total energy of the system. Let
the functions Yn be dimensionless; then the coefficients amn have the dimen-
sion of length.

In the following development, the functions Yn are considered to

be arbitrary. The specific functions used in this study are presented later.
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2.2 Energy of the System. The energy expressions presented in this

section correspond to the deflection component -v?m =V, sin m%xE and the associated

load component im = p_ sin maE.

Strain Energy. The strain energy of the systemy Vm’ may be written in the form

= (V) + (V) (2-5)
where (Vm)s is the strain energy of the slab, and (Vm)b is the strain energy
of the beams. The subscripts m are used as a reminder that these energies
correspond to the m-th component of the deflection, ;m° For a value of Poisson's

ratio equal to zero, (Vm)s is given by the equation

A= R P

where ¢ = b/a., and D is the flexural rigidity per unit width of the slab. On

_— T
replacing W by w sin mag = Z a Y sinmnxg, Eq (2-6) becomes

n

(V) = mﬂDab[ZZ leandn‘l-?_(i?gzamams[lYﬁYédn
" (,mc) z Z [ l ¥ d‘J (2-7)

vhere a prime denotes one differentiation with respect to 3.

The strain energy of the beams, (Vm)b, is given by the equation

(EL), [1 BQEm 2 (6.3,.) 1 azgmg
(Vm)b =jZ [———3—— \é/‘ (’-—'2—)1 ag + -—b—é-—- [ (m)l dg] (2-8)

2a \ O¢ 28b
vhere (Eblb)i and (Gbe)i denote the flexural rigidity and the torsional

rigidity of the ith beam, respectively, and the subscript i1 associated with
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+
the integrands means “evaluated at the location of the i b bean™. By sub-
stituting ;;m = % o Yn gin mng into Eq. (2-8), multiplying and dividing the

right-hand side of the resulting equation by Db, one cbtains the equation

L i
wan-tee 5, Z T, o 50 (51,
ZZ i %ns ()4 ;.(,Y;}i] (2-9)

in which (Yn)i is the ordinate of the function Yn at the location of the
.th
i

£ (mc)

beam, and }\’i and ki are dimensionlsss rigidity factors defined by the
equations

(55

= 201 -10)
A 5 {2-10)

(G 7)
k= %%‘E"i (2-11)

The strain energy of the system, Vmﬁ can be rewritten in the

condensed form;

m:urzLD ab
= Al I 3 7
Vm ah' 4 Emk amn ams“ (2-12)
where F | a ) is a guadratic form of the unknown coefficients Q .

m* mn ms mn

Potential Ensrgy of External Forces. The potential energy, Umg of the load

component P, Througt the associabted deflection component w is given by the

equation

rLorLr /-1 1
U, = ~ab % J wp, 4&dn = -ab J[ (wm sin mn’g)(pm sin mng) dedn (2-13)

Y
[9) [e o

By substituting Eg. {2-L4) into Eg. {2-13)}, one cbiains

ab \
U, =-% o J pm Y dn (2-14)
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Total Energy of System. The total energy of the system, Im, is the sum of

Egs. (2-12) and (2-1%), i.e.,

1 _ma BF (a o )n.%l'iZcx fl Y a (2-15)
m—aﬂ: I “m' “mm ms Enmnopmn'Q

2.3 Equations for Computetion of amn° The condition that Im be &

minimum yields a system of linear algebraic equations of the. form
(Fm} [Am} = {Bm} (2-16)

in which {Am} is a column matrix of the unknown coefficients @ , {Bm} is
a column matrix of known load terms; and [Fm] is a symmetric matrix, the
order of which is equal to the mmber of Y functions used in Eq. (2-1),
As before, the subscript m indicates that these matrices are functions of
the integer m. The element £ in the nth row and sth column of the

m, NS

[Fm] matrix is given by the equation

1 1 1
£ =[fYYdn+——£—f2-fY'Y9dﬂ+—rl——EfY"Y“dQJ
m, ns , Bs afe(mc) 5 Bs % (me 5 B s
'-.‘p'* k 1
*L [li(Yn)i(Ys)i * _5'&_2' (Q)1<Y;)i_} (2-17)
i=0 % (me)
The element B__ in the 2 row of the [Bm} matrix is
1
a5
Pon = T By T 4 (2-18)
m % Db ®
For a concentrated force P applied at point ¢ = gl, N = My
1
_2p _.
b [ p Y dn = = sin mRE, Yn(ql) (2-19)

and, therefore, Eq. (2-18) becomes

o ) 5 PaB sin mzzgl . (n. )
mn xll- Db m# n* L

{2-20)
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The solution of the system of equations (2-16) gives‘the‘values of
aﬁn’ which are then used to determine the deflection component‘ﬁh = v sin m%g,
In general, Egs. (2-16) are solved for as many values of m as may be necessary
in a particulsr application. The totzl deflection, W, of the structure is
then determined from Eq. (2-3) by superposing the component deflections. The

latter equation may be rewritten in one of the following forms

W= Z (Znamn Yn) sin m%E = Z{Am}-{‘fn(q)} sin m=®¢ (2-21)

where Yn(q) 1s a column mabtrix of the values of the Yn functions evaluated
at the point under consideration, and a dot denotes a scalar product.

It is assumed that the set of Yn functions are capable of repre-
senting any deflection configuration in the interval O < 7 < 1l. The functions

le; Yl? Y ... are considered to be symmetric about 7 = 1/2, whereas Yo’ Yg,

57
Y, ... are considered to be antisymmetric.
If Yn and YS represent a pair of symmetric and antisymmetric

functions, then
1 1 1
= g I = 11 i = D
_O/Ynys dn lYnYS an JYan an =0 (g 22)

If, in addition, the structure is symmetric about the longitudinal centerline,

l.€.

M= L=y

AT N - (2-23)
K, = kpwi
for all values of i, then .
P
z M)y =§ E(T)(¥)y =0 (2-24)

i=0 i=0o
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From Eq. (2;17) it follows that, for such a pair of functions, fm,hs = O and,
therefore, the elements,of [Fm] form a checkerboard pattern, with every other
element in each row and each column equal to zero. The non-zero elements of
[Fm] correspond either to symmetric or to antisymmetric p&.irsro.{’,functions‘u
The matrix.[Fm] can, therefore, be split into two submatricés, one formed by
the symmetric functiens and the other by the antisymmetric functions. The

unknown column matrix (Am} in Eq. (2-16) can then be determined more conven-

iently by solving the two sets of equations separately.

2.4 Reciprocal Relations. From Maxwell's theorem of reciprocal
deflections if follows that the deflection of the structure at point 1 (gl,nl)
due to a load P applied at point 2 (52, “2) is equal to the deflection at
point 2 due to the same load P aﬁpiied at point 1. Moreover; for a plate
having two opposite edges simply-supported; it has been shown(Q) that the

2 2
curvature in the direction of the simply supported span, _B_E = -}-2- -a—g, at

" a°
point 1 due to a load P applied at point 2 is equal to the corresponding
quantity at point 2 due to the same load applied at point 1.

It is the purpose of this section to show that, even for the
approximate method of analysis used in this study, these relations hold
true regardiess of the nature of the Yn functions considered or the number
of functions used.

The coefficients Oﬁn corresponding to a load P at point 1 are

obtained as solutions of the equations
[F lla 3, = (B ) (2-25)
which, by making use of Eg. (2-20), can be rewritten as

3 sin mx¢
Fla ), = 22 2 2-26
[ m". m}l gth m& {Yn(nl)} (2-26)
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The matrix [Am}l may now be expressed as
_ 2Pa3 sin m%§

1
)y = T ——= (g, {ra(n)} | (2-27)

where {Gm] is the inverse of [Fm]o The resulting deflection at point 2‘; LYY
>

is obtained by substituting Eq. (2-27) into Eq. (2-21),

3 . »
2Py 1 . . o b ;
W2,l = ;[";[)_b 4 ;’I sin mngl sin mztga [Gm] {Yn(nl)i} {Yn(fna)} (2-28)

The deflection of the structure at point 1 due to a load P at

point 2 may be expressed in similar manner é,s

222N L e etmmmg, [o] fv () fr (o) (2-29)
Wl.,e‘xEDbm;ESlnmyglsmmgz m {n‘b ntM ~29

If A is a symmetric matrix, and X and Y are column matrices, it can
readily be shown that
AX-Y = AY°X : (2-30)
Since [Fm] in Eq. (2-25) is symmetric, its inverse, [Gm], is also

symmetric. From Eq. (2-30) it follows then that,
CRIEACHIR AL [Gml{Yn(nz)} el nl)} (2-31)
Therefore, Egqs. (2-28) and (2-29) are identical, i.e.
W, 4 =W (2-32)

The general expression for the curvature in the &-direction,

2
(8 g)ﬁ is obtained from Eq. (2-21) by differentiation. Noting that
Ox
2 2
d 13 © \ 20 Y. .
2R Z Zm (o} fra(m} sin mee (2-33)
X a 8 m
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and meking use of Eq. (2-27), one finds that

3 2 P 1. . Nz

= I e T R N B CALH SCER
and

> 2P 1. ,

gx—;_’- " = - ;%—f) Z;é- sin mﬂil sin mnéz [Gm]{Yn(ne)} .{Yn(nl)} (2-35)

where the subseripts (2,1) and (1,2) havé the same meaning as in Egs. (2-28)

and (2-29) . By virtue of Eqg. (2-31), it follows now that

2 2
= -3 (-39
ox ox
2,1 1,2

2.5 Deflection Functions Used. In the present study, the Yn

functions were taken as follows:

1 for n = -1
Y =—=05-1 forn=0 (2-37)
| \ sin nap for n > 1
Note that, Y_l, Yl’ Y5’ are symmetric and Yo, Ye, YLL’ ... are antisymmetric
with respect to the longitudinal centerline of the structure, 1§ = 0.5.

The elements of [Fm] corresponding to these functions are obtained
by substituting Eq. (2-37) into Eq. (2-17). The results for a symmetric
structure are smnma.rized in the following table. (See p.éO;)

The elements for the first four symuetric and the first four anti-
symmetric functions are also tabulated in Tables 1 and 2, given at the end
of the text. 1In the derivation of these equations it has implicitly been

assumed that }\i and. ki are finite quantities.

[ RO

I e R D PR
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ELEMENTS f OF MATRIX [F ]
m, ns m

3
il

Values of o
n and s . : Expression for fm, ns
(a) Elements Corresponding to Symmetric Functions Yn
D
n=295= -1 1+ Z N,
=t
n=-1; s # -1 2 A, sin (sm )
? ns . i P o
i=o -
P
1 n? 2 i nzki 2, i
n=s# -1 o 5| + A, sin (nx =) + —=5 cos” (n% )
(me)2 P (me) R
| i i, oSk i i
n# s # -1 A, sin (nx =) sin (s® =) + = cos (n® =) cos (sx 3)
&b P P me) 2 P P

(*) Elements Corresponding to Antisymmetric Functions X

P
° [12 zfg( ] Z [ 1(P 21)2 + 3(22-10)2]
0; s 40 -5%5 +i20 [xi(l,;%i) sin (s _;.) - ;:2)2 cos (sx %)J
0 [l + 'nz 2]2+§ [ki sina(mx %) + il-ik-lfé cos” (nn % ]

(mc) i=0 (mc

<

2

P
i i, sk i 1
0 A. sin (n% =) sin (s®% =) + cos (nx =) cos (sm =)
K 1 P p (mc)2 P b

i=o
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3. Problems Considered for Solution on ITLIAC

3.1 CGeneral. The method described in the preceding sections has
been programmed for the ILLIAC to analyze bridges having from three to seven
uniformly spaced prismatic beams. vThe beams are assumed to be arranged
symmetrically with respect to the longitudinal centerline of th.e}s‘ﬁructure°
A1l interior beams are considered to be idehtical° The exterior beams on
either side of the bridge are assumed to be located along the edge of the
slab and, while identical to one another, they may be different from the
interior beams. The characteristics of these bridges are defined in terms

of the following dimensionless parameters:

P = number of beam spacings

¢ = b/a = ratio of sides of bridge

(BT o s

N TS flexural rigidity factor for an interior beam
peie) ~-

= flexural rigidity factor for an exterior beam

&L,
Db

(Gbe)o

ko = - torsional rigidity factor for an interior beam
(Gbe)l

k., = 5 - torsional rigidity factor for an exterior beam

Two separate programs have been developed. The first may be used
to determire influence surfaces for deflection and bending moment in the beams
due to a urnit concentrated force applied at variocus points on the bridge.

The second program computes the deflectlions and bending moments in the beams
produced by & three-axle truck lcading. The capabilities of these programs

and seme computational details are described in the following sections.
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.2 Program for Influence Surfaces. This program calculates

N

due to a unit concentrated load located at points directly over the beams
and midway between beams}along»any desired number of equally spaced trans-
verse sections.

These ordinates are determined by application of the reciprocal

relations discussed in Art. 2.4. Let point 1 with coordinates (& ) be

h

located on beam i, and let it be desired to determine the influence ordinate
for deflection and bending moment at this point due to a concentrated load

applied at some other point 2. These qpantities will be denoted by and

V1,2

M1,2’ respectively.

By virtue of Eq. (2-32), may be determined by considering a

¥1,2
concentrated unit force at point 1 and evaluating the deflection ngl pro-
duced at point 2. The influence surface for deflection at point 1 may then
be constructed by evaluating the deflection w?,l at as many different points
2 as may be needed in a particular applicatipn°

In a similar manner, by virtue of Eq. (2-36), the moment M, may
D

be expressed as

W

2
Moo=~ (Eblb)i<:_2> | (2-38)
2,1

X

where (Eblb)i is the flexural rigidity of the beam on which point 1 is located.
It should be noted that in the above equation; the moment is defined at

point 1, whereas the curvature 1s defined &t point 2. It follows that the
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influence ordinates for moment at point 1, just like those for deflection,
can be determined in terms of the effects produced by a concentrated unit
force applied at that point.

The parameters which must be specified in using this program
include the dimensionless parameters summarized in Art. 3.1, the coordinates
(gl,ql) of the point for which the influence surface is desired, the number
of equally spaced transverse sections at which the influence ordinates are
to be evaluated, ﬁhe number of Yn fgnctions used, -and the number of terms
considered in the Fourier series expansion of the load. The last two para-
meters have been treated as problem parameters so that they can be varied.
The ranges of parameters that may be considered are such as to include most
practical structures.

In general, the moments in the beams, M, are computed from the

M= Z’ﬁm (2-39)

by considering a finite number of terms m = mb° In this equation ﬁ; repre-

equation

sents the moment produced by the component load Eﬁo It has been observed
that for the beam immediately beneath a concentrated load this series dpes
not converge rapidly and, unless a large number of terms are considered,
the result may not be accurate. The convergence of this series may be
accelerated;, however, by the following procedure.

Let M' be the value of the moment computed on the assumption that

the concentrated force is carried entirely by the loaded beam without any

- mwas

«dm N e e
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transverse distribution. For a force P spplied at € = §l, the moment at £

may be expressed either in a closed form, as

! = oo
M' =Pa §,(1~-8) whent <E
(2-40)
= Pa E(1 - §l) when & < &
or in the form of a Fourier seriles as
[o°]
- M f o
wo=) K (2-41)
m=1
where
- 2 Pa . .
¥ - -
M! = =55 sin maf, sin mat (2-42)
m
By subtracting the two sides of Eq. (2-U41) from the corresponding sides
of Eg. (2-39), one obtains the expression
o0
— wmt oo M oM S
M=M Z (M - M) (2-43)

m=1

where M' is assumed to be determined from Eg. (2-%0). Although the series
z ﬁ; and & ﬁ; individually converge rather slowly, it turns out that their
"difference converges rapidly. Accordingly, the value of M computed from
Eq. {(2-43) by considering a finite number of terms m = m is closer to the
exact value than is the one obtained from Eq. {2-39), using the same number
of terms. The computer program has been prepared so as to compute and print

out the values cbtained both from Eq. (2-39) and from Eq. (2-43).
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The fact that, for the higher values of m, the moments b—dm and ﬁn'l
are close to one another may be appreciated physically by noting that as
m increases the effective span length of the structure, a./m, decreases, and
the load component -ﬁm tends to be carried by a narrow strip of the structure
immediately beneath the load without substa.ﬁtia.l transverse distribution.

A general flow diagram for the program is shown in Fig. 4. The
operations indicated in the first column of this diagram are performed once
for each problem, those on the second coliumn are performed once for each
value of m, and those on the third columm are performed twice for each value
of m. The numbers in parentheses above the boxes designate the routines
used. Thése operations not identified by any numbers are performed by the
control routine (1002). In general, the flow diagram is self-explanatory.
Some additional details are discussed in the following paragrasphs. For a
more detailed description of the program the reader is referred to the
complete write-up deposited in the ILLIAC ILibrary of the Civil Engineering
Department,*

The quantities ﬁn evaluated by Routine (1003) are defined by the

equation
2N
o)
= 2 T() (2-4)
These quantities are proportional to the elements ﬁmn of the lozad matrix
{Bm) in Eg. (2-16). For a concentrated force, the elements an are given

by Eq. (2-20), where P = 1. It should be noted that the quantities Bn are

independent of m and are evaluated only once for a given problem.

¥ "ILLIAC Program 1592 - Moments and Deflections of Multigirder I-Beam
Highway Bridges", by Cenap Oran, University of Illinois, Civil Engineering
Department, July 1960. It should be noted that the symbols A , N, k ,
and k, used in this write-up have different meanings from thoSe u%ed $n
this report.
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The elements of [Fm] are evaluated by three different routines.
Routine {1005) is used to compute the first row of the submatrix corre-
sponding to symmetrical funections Yny routine (1007) computes the first row
of the submatrix corresponding to antisymmetric functions, and routine
(1008), entered twice for each value of m, computes the remaining rows.
For a~symmetric load, only the submatrix corresponding to symmetric functions
is evaluated.

The quantities Q computed with routine (1010) are defined.by

the equation

sin mxgl ; o
Q = —= > @ Yn(g) | (2-45)

They are evaluated for values of

N = é; » Where 1 =0, 1, 2, ... 2p

The coefficients Ogn in Eq. (2-45) are proportional to the coefficient an
defined by Eq. (2-4). 1In essence, they represent the solution of Eq. {(2-16)
with the elements p_ of the load matrix {Bm} replaced by B -

The influence ordinates for deflection, w, and moment, M, are.

expressed in the form

W= pe’ (2-16)
a (BL), | x
M=C Pa v v (gmhy)

m

where C, and C_ are dimensionless coefficients and (EbIb) is the flexural
d m o]

rigidity of the interior beama The coefficients C_, and Cm are related to

a
the quantities Q_as follows
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m
®

cd = —J-é- Z ie Q,m sin mnE (2-48).
k1Y m

m=1

m
(]

N,

C f— Z Q sin mn ‘ (2-49)

° =1 ' ‘

where xi is the flexural rigidity factor of the beam on which point 1 is
located.

It is to be noted that the moment computed from Eq. (2-49) corre-
sponds fo that obtained by use of Eq. (2-39). The improved values of moment

for the loaded beams are determined by use of Eq. (2-43).

This program utilizes the entire Williams (fast) memory of .the i
ILLIAC which has & capacity of 1024 words. The maximum value of m that

can be considered is less than 104/(2p+l), this restriction being due to
the number of storage locations available in the Williams memory. For a
five-girder bridge, this limit corresponds to m = 11.

The machine time required to obtain a solution depends on such
factors as the number of Yn functiqns and m-terms used, as well as the
number of sectiozns along which the influence ordinétes are evaluated. The
computation cof one complete set of influence surfaces for moment and deflec-
tion teakes froxz 0.5 to 1.5 minutes.

3.2 Prograz for Truck Loeding. This program calculates the

deflections and bending moments produced in the beams of the structure,
along a prescribed transverse section, by a three-axle truck loading. The
deflections and moments may be eveluated for any prescribed number of
longitudinal positions of the vehicle.

The force exerted by each axle is represented by two equal con-

centrated forces. It is assumed that the longitudinal centerline of the
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truck is parallel to the beams and that the spacing between consecutive
axles is the same. For an H-S truck loading, the lestter spacing represents
the most severe condition for a simply supported bridge.
Let Wl’ WQ’ and W3 be the total weights,‘and gl, §2; and 53 be
the E-coordinates for the rear, middle and fronﬁ'axles, respectively. For

convenience we let

§2 + g 35 = §l +,2g

For this loading, the element B of the load matrix (B } in Eq. (2-16) is
obtained from Eq. (2-28) By superimpesing the contributions of the six wheel
loads. The resulting expression is

WiaB

B —ﬂf— _E [sin mﬂgl + w, sin mn(§l+c)

+ Wy sin mn(§l+20)] [Yn(nl) + Yn(nz)] (2-50)

wheré T and n2 are the 7-coordinates of the wheels on either side of the
truck. For an axlé to be located on the structure, the value of the
g ~coordinate for that akle should range between O and 1.

The organization of this program is very similar to that described
in the preceding erticle. A general flow diagram.is given in Fig. 5 and
should be self-explanatory. The quantities B and Qm referred to in this

program are defined by the following equations

k
B = th (z n ) +Y (7 °2>J' “ - (2-51)
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Qé = :% sin mnE }: at R (ﬂ ) : : . (2-52)

where § and n, are the coo:@inates of the points where the effects are to
be evaluated, and the coefficients an represent the solution of Eg. (2-16)
with the elements an of the load matrix {Bm} replaced by Bﬂo The subscript
i on 7 denotes that the effects are evaluated only for the beams.

Thé deflections, w, and moments, M, are expressed in the form

Wi a3
W= Cg ' (2-53)
1L,
S )
M= cm W, a (2-54)
where Cé and Cé are dimensionless coefficients, and are related to the
quantities Q' as follows
m
o
cr = L Sﬁ = Q' (sin maE_ + o sin ma( & +0) + w, sin mx(E +20)] (2-55)
“d 33:2 La 2 "mL 1 2 1 3 1 4
m=1 m .
m
o}
2wl }
! = —=— ¢ 1 b8 i i -
c y ) Q! |sin mag, + ©, sin mn(§l+c) +ug sin mn(§l+20) (2-56)
m=

Note that, in order for the last twc equations to be true, the §-coordinates
for all three axles must range between O and 1; this condition is checked by
the program, and those axles that may be located outside the bridge are

disregarded in Egs. (2-55) and (2-56).
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The program has been written so that after the deflections and
moments for the initial position of the truck have been computed and printed
out, the truck is advanced in the longitudinal direction by a distance
Ax = a AE;, and the deflections and moments are computed and printed out for
this new position of the truck. This operation is continued until the
specified number of truck positions have been considered.

The parameters that must be specified for a solution include the
six parameters characterizing the structure and suwmmarized in Art. 3,1, the
paremeters él, o, nl, ne, w2 and w5 that define the characteristics and the.
initial position of the truck, the E-coordinate of the transverse section
where the effects are to be evaluated, the total number of truck positions
and the increment &8 to be considered, the number of Yn functions used,
and the number of load components used in the longitudinal direction.

This progream, like the one described in the preceding article,
utilizes the entire William's memory of the ILLIAC. The maximum value of
m that can be considered is less than 108/(p + 1). For a five-girder
bridge, this corresponds to m = 21. It is imporftant to note; however,
that in this program ro provision has been made to accelerate the rate
of convergence of the moments.

The machine time required to obtain a solution depends on the
problem parameters. For the practical ranges of the parsmeters, the solu-
tion of & problez for several positions of the truck tekes from 0.5 to 1.5
minutes. This time is affected primarily by the value of o, and the number

of Yn functions used.
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4. Convergence and Accuracy of Method

As an illustration of the accuracy of the method and the rate of
convergence of the solutions;,; there are presented in this section influence
coefficients for deflections and bending moments for three different bridges,
each having five uniformly spéced, identical beams, as shown in Fig. 2.
These solutions, obtained by considering an increasing number of terms in
the series expression for the deflection of the structure, are compared with
those reported previously by Newmark and Siess(lo), The latter results were
obtained by an exact method.

The characteristics of the bridges investigated are defined by

*
the following parameters:

Bridge 1: c = 0.4 A= 12.5
Bridge 2: c = 0.4 N = 50
Bridge 3: c = 008 K = l2a5

The torsional rigidity of the beams was taken equal to zero in all cases.

In tables 3 through 6 are given influence coefficients for deflec-
tions and moments for Bridges 1 and 3. These quantities were determined
using & constant number of load terms (mO = 11), and a variable number of
Yn functions. The symbol o, in these tables represents the number of Yn ,
functions in excess of Y-l and Yoa The numbers in parentheses were reprqduced
from Ref. (10). |

It can be seen from these tables that the results obtained by the
present method, in general, converge quite rapidly with increasing values of

n- This repid rate of convergence and the excél;ent agreement between the

¥ The values of the corresponding parameters used in Ref. (10) in the notation
of that reference, are:

Bridge 1: b/a = 0.1 EH=5
Bridge 2: b/a = 0.1 H= 20
Bridge 3: b/a = 0.2 H=10

et e —— I AN aTEN W AN e om A TTEA
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present results and those reported in Ref. (10), inspires much confidence in
the accuracy of the method employedg*

It is of interest to note that the influence coefficients for
Bridge 3 converge less rapidly than those of Bridge 1. This can be explained
in terms of the physical characteristics of the two structures. Bridge 1,
being a relatively narrow structure with high transverse stiffness, has a
fairly smooth and uniform distribution of deflection in the transverse direc-
tion. This may be represented by a small number of Yn functions. Bridge 3,
on the other hand, being fairly flexible, requires a much larger number of
Yn terms to specify its transverse configuration.

Influence coefficients for the same two structures were also com- -
puted using a constant number of Y functions (n_= 8), but a variable mumber

n G

£ terms in the trigonometric series expression of the load (mb = 1 to 11).

ing value of m. It is important

The results, summarized in TablesT to 10; converge fairly repidly with increas-
to note;, however, that, of the moments

presented in Tables 5 through 10, those for the loaded beams were computed’
by application of Eq. {2-43). The rate of convergence of these moments is
much slower when evaluated in & straightforward manner by use of Eq. (2-39).
This is illustrated in Teble 11.

As a further measure of the accuracy of the method used, in Tables
;2 through 1L are presented additioﬁal influence coefficients for deflections
and moments, and the results compared with corresponding wvalues reported in

Ref. (10). It is seen that the agreement between the two sets of values is

for all practical purposes perfect.

% See also comparison between expérimental and theoretical data reported in
Ref. (11).
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III. ANAIYSIS OF DXNAMIC PROBLEM

1. Characteristics of Structure and Vehicle ' 3

The structure analyzed is the same as that considered in the static
analysis presented in the preceding chapter. In addition to the assumptions

made previously, it is assumed that the mass of the slab is uniformly dis-

tributed, and that the mass per unit of length of the beams, although it méy
vary from one beam to the next, is constant for any one beam.

The vehicle is represented by a single-axle, two-wheel loading
consisting of a sprung mass and two equal unsprung masses, as shown in Fig. 3.
The center of gravity of the sprung mass is assumed to be located halfway
between the supporting springs. The spfings are considered to be linearly
elastic and to have identical stiffnesses. Damping for both the vehicle and

the bridge has been neglected.

2. General Description of Method of Analysis

The analysis of the problem involves:

(a) The determination of the instantaneous values of the inter-
acting forces between the vehicle and the structure, and of the inertia forces
due to the mass of the structure, énd

(b) The computation of the deflections and bending moments produced
in the structure by these forces. The latter step is a problem of statics, I
and has been discussed in detail in Chapter II. The problem of dynamics,
therefore, consists essentially in determining the instantaneous dynamic
forces.

The method used to analyze thevdynamic problem is an extension of
that used in the preceding chapter to study the static problem, and utilizes
the approximation employed by Inglis(6) in analyzing the dynamic effects

produced by moving loads in simply supported beams.
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The dynamic deflection configuratidn of the structure is expressed

as

LA sip xg}i fh(t) Yn(n) ” '(5-1)

vhere W = the deflection of any point of the bridge at any time, due
to the static and dynamic effects of the vehicle.
vw_ = a quantity with the dimension of deflection, chosen arbitrarily

as WaB/(EbIb)io

W = total static weight of the vehicie

CESI

flexural rigidity of a reference beam

fn(t) = dimensionless coefficients that are functions of time; these
are the generalized coordinates for the bridge.
Yn(n) = dimensionless functions of 1, as previously discussed.

It should be noted that the instantaneous deflection configuration of the
structure in the longitudinal direction (&-direction) is assumed to be a
half-sine wave. This is tﬁe same assumption as that used by Inglis for the
beam problem and amounts to considering only the termm = 1 in Eq. (2-21).

On compering Egs. {3-1) and {2-21), one observes the following:

1. The assumption made regarding the dynamic deflection config~
uration in the transverse direction is the same as that used for the static
problem.

2. ' The time-dependent coefficients fn(t) in Eg. (3-1), correspond
to the coefficients &  in Eq. (2-21).

3. In the special case where a single Yn function representing a

uniform deflection is used, the problem considered here is identical to the
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one studied by Inglis(6)° The governing differential equations, obtained and ;
presented later in this chapter, when simplified by using a single Yn function, :
yield, in fact, the equations obtained by Inglis; this relationship is dis-
cussed in detail in Art. 4.3 of this chapter. |

The coordinates used to specify the configuration of the sprung mess ;
are the vertical displacement of the center of gravity of the mass, z, and
the rotation of the mass about an axis normal to the transverse vertical plane,
u, (see Fig. 3). The vertical positions of the unsprung masses are determined
by the configuration of the bridge. Thus the total number of generalized
coordinates of the bridge-vehicle system is equal to the number of fn(t)
functions used in Eq. (3-1) plus the two coordinates z and u used for the
vehicle.

The wvehicle is considered to be attached to a Galilean reference
frame that moves along the bridge with a constant wvelocity, v, in such a way
that the unsprung masses and the center of gravity of the sprung mass can
move only vertically with respect to the reference frame, and the sprung mass
can rotate only about an axis that is parallel to the bridge and passes through
the center of gravity of the sprung mass. The restrictions on the motion of
the elements of the vehicle represent time~dependent constraints. The system ;
under consideration possesses a time~&ependent potential energy function,
or a pseudo-potentiel energy as it is sometimes called, and it is possible

to formulate the equations of motion by application of Lagrange's equation

a ,oT oT (U+V)
e °)-3%+gq; -0 (3-2)

dat
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in which V = the strain energy of the system
U = the potential enérgy' of the gravity forces
T = the kinetic enrergy of the system

q = the nth generalized coordinate of the system

.99
T

3. Energy Expressioﬁs

The datum of zero energy level for the system is defined by the
following conditions: +the structure is in an unstressed position, and the
springs of the vehicle are undeformed.

Let Wy represent the deflection configuration of thé bridge when
loaded with its own weight; this deflection is measured from the unstressed
configuration of the bridge. Then the total deflection of the bridge, mea-
sured from its unstressed position, is {w + WE) . The dead load deflection

configuration, Wy, Can be represented in a form analogous to Eq. (2-21) as

T/
Wy =V Z&Z 6mn Yn) sin mag | {3-3)

m
where 6mn are constant dimensionless coefficients. In the following develop-

ment, only the term m = 1 will be retained. The resulting expression

LA sin =t Z 5n Yn( ) (3~4)

is then analogous to Eq. (3-1). The higher terms are irrelevant in this

case, as they will only increase the energy of the system by a constant.
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3.1 Strain Energy. The total strain energy of the system, V, is

written in the form

=V, H T+ (3-5)

where VS, VB, and Vsp are the strain energies of the slab, of the beams, and

of the springs, repsectively.

For zero Poisson's ratio; VS is given by the equation

befw+w ) 82(W+w ) 2 82(w+w ) 2
Dab 2 2 1 2
ff ( ) * ?( S > i e >]d§dﬂ (3-6)

Substituting Egs. (3-1) and (3-%) into Eq. (3-6), gives

_ Dab _2 1+§z }: ‘ d/; - U/;
vs B QaE wb [ﬂ = 5 (fn+5n)(fs+6s) % sin- =g dt . Yn Ys an
=) [ ot ma] n
e L. (£,+0)(£+5) J cos" ot ¥ Tlan

n
1 1
L) aeipe) [l aa [ el oo
[¢] n s (o] C .

where, as before, a prime superscript on Yn denotes one differentiation with

respect to 1. Letting

1 1

2 1t 1
A= [kgp Y Y dn+ - 2‘/P Y Y dn + —EfE\/P Y dﬂ] {3-8)

and evaluating the integrals involving the §-coordinate, one obtains

L . OO
. XDab _2 ) ) ‘ -
Vs ;ﬂ_ T Y é; éf Ans (fn*an)(*s+5s) (5-9)
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Note that A = A
ns sn

The strain energy of the beams is given by the equation

2

. 32 cJ). /e
v, =i [EQE—bi)—l— [ —(—T—) de +( bbi f/ ("‘:’fwa)\ dé] (3-10)
= AN A ear? %\ ®an ) |
By substituting Eq. (3-1) and (3-I4) into Eg. (3-10); one obtains
P 3
Vb = _T!-Q %; Z [ Z Z(fn+6n)(fs+6s><Yn)l(YS)l
S“J (3-11)

where (Yn)i is the ordinate -of the function Yn at the location of the ith

beam and xi and ki are dimensionless parameters defined previously by Egs.
(2-10) and (2-11).
The streain energy of the springs is given by the equation

2 -2

Vgp == zg l:z+zS - (w+wi)j + (—l)j ule {(3-12)

=1

|-

in which the bracketed quantity is the total compression in the jth spring,
and | |
k = the spring constent for one spring
z = the initial static compression of a spring
z = the dynamic vertical displacement of the center of gravity
of the sprung mass; measured from the static position of
equilibrium (See Fig. 3)
u = the dynamic rotation of the sprung mass in the transverse
vertical plane, measured with respect to the static equili-

brium position (See Fig. 3)
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v, =8 deflection function representing the deviation of the deck
of the bridge, when loaded with its own weight, from the
horizontal plane passing through the supports. It is positive
when downward. This quantity is equal to the sum of the dead
load deflection configuration and the configuration represent-
ing any possible unevenness of the unstressed bridge.
b, = one-half the distance between the wheels

1

(w—wl)'j = (w+wi) evaluated at wheel j.

Assuming arbitrarily that t = O when the vehicle enters the bridge,

one can write

: vt :
in x-:it:tic:h\“g‘j = t-coordinate of either wheel
v = speed of the vehicle along the bridge

Substituting Egs. (3-1) and (3-13) into Eq. (3-12), gives

(e

<
1
N+
H‘

n* n’j

. 2
sp [z-rzs - (Wl)j + (-l)J u'bl - ‘WO ;in EI—SJ—ZI‘ (Y )] (3-1.1#)

1

€
I}

3.2 Potential Energy of the Gravity Forces. The potential energy

of the gravity forces is written in the form

U= Us + UB + Usp + Uu (3-15)

where US, Ub’ Us“’ and Uu are the potential energies of the slab, of the
r
beams, of the sprung mass, and of the unsprung masses, respectively.
The potential energy of the weight of the slab is given by the

1
Us = -pgabd[.‘f(w-WE) dkdn (5‘16)
o O

equation
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in which p is the mass of the slab per unit of area. By substituting Egs.
(3-1) and (3-4) into Eq. (3-16), one obtains

1

- .2 \ j -
U= - = ugeb 'WOZ (ffgfanJ J Y _dn (3-17)

S

The potential energy of the weight of the beams is given by the

P
Uy = = ag[l [Z(mb)i (“’+"2)ij dgj_ (3-18)

=0

equation

in which (mb) 5 is the mass per unit length of the it’h beam. By substitut-
ing Bq. (3-1) and {3-4%) into Eq. (3-18), one obtains

P

Up = %ag o Z [(mb)iz (fn+6n)CYn)iJ , (3-19)

i=0
The potential energy of the sprung mass is

Ugp = — Mg( Z+Z_) (3-20)

where M = the sprung mass

The potential energy of the unsprung masses is
2
U, = -mg Z (w+w1)j (3-21)
F1

where m = one unsprung mass. By substituting Egs. (3-1) and (3-13) into

Eq. (3-21), one obtains

2
S mgz [(wl)j * V¥, sin %Z fbz:x(Yn)"jJ J (3-22)
J=1 n
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3.3 Kinetic Energy. The total kinetic energy of the system is

expressed in the form

T=T +T +T +T : - (3-23)

vhere TS, Tb, Tsp’ and Tu are the kinetic energies of the slab, of the beams,
of the sprung mass, and of the unsprung masses.

The kinetic energy of the slab is
11
1 f f aw\? )
Ts = -2— ]_La:b ) E‘E dgd’] (5"2 )

Noting from Eq. (3-1) that

ow _ . ar
3 = wo sin =g T Yn (5'25)
ol
and substituting this equation into Eq. (3-2&), one obtains
‘ 1
T =luabwazz £ f'fY Y dn (3-26)
s L o) n s n s
s o]
dfn
! o =
where fn = 3T

The kinetic energy of the beams is obtained in a similar maenner:

P P
T, =3 Z./l(mb)i (gﬁf at = f av- Z(m'b)iz z £r£l (v).(Y), (3-27)
i=o0 © 1 i=o T S

Note that the kinetic energy of the beams due to their torsional motion is

neglected.

The kinetic energy of the sprung mass is given by the equation

2 2
1 dz 1l _fdu
rp =2 (%) + 293 (3-29)

ee

A A axe

et e we om A

A e W
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in which J is the polar moment of inertia of the sprﬁng massvabout an axis
through its center of gravity and normal to the transverse vertical plane.
The kinetic energy of the unsprung masses is

2 2 o
R N N R o

it is to be noted that

ow
g M fow | aw ag 1 gg]
gt (vt = [(?E RT3 dt) T e dwd (3-30)
4ag . v ‘
and that EEA =g By substituting these expressions inteo Eq. (3-29) and

using Eq. (3-1), one obtains

2
2
ow » ]
1 v 1 Vogip IE W ’ ki 1 (3-
.=z ™ Z [E (ﬁ—)J +WOZ (fn e )<Yn)3 (5-31)
=1 . ,

4. Governing Differential Equations

The differential equations governing the motion of the‘b:idge-
vehicle system are obtained from Eg. (3-2) by substituting the energy
expreséions derived ir the preceding article. The number of equations
thus obtained (s egual to the number of generalized ccordinates used %o
define the configuration of the system. The detailed derivation of these
equations is presented in the Appendix. The final equations are sﬁmmarized

in the following paragraphs.

4.1 Dimensional Form of Equations. The equation corresponding'

the n~ generalized coordinate for the bridge, £, is

n
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Ll a L
)

SOIENL —EA Zumw Z )

2 avt Z 2 2 _’?__V"G__Z |
+ k sin” — (Yn)j(Ys)j m( a) sin” — (Y,n)j(Ys),j
=1 J=1

2
' gM [ - (1) 9 }
- sin — (Yn)j S +k |z (wl)j + (-1) ubl
J=1
2
I r' - D Bt P /a W
. VT Vy & . IT PR
- mg sin — L (Yn)j + m(g) sin —— A ( kg-—-} (35-32)
#1 st ¢
The summations on s should extend from s = -1, to s = 5 the maximum value

of n used in Eq. (3-1).

The differential equations for f fo, se. £ are obtained from

-1’ ny
the above equation by repiacing ndby -1, 0, ... o, . There -will be a total of.
n__L + 2 such egquations.

The equation corresponding to the z coordinate of the vehicle is

Mz" + k [z - (w ;7% s:.n--— Z S(Ys)j__] = 0 (3-33)

J:

and the one corresponding to the u coordinate is

2

sl

Ju" + kblZ( 1)J ‘:( l)‘]ub - (w 5" w sinb%:t—zfs('fs)j:] = 0 (3-34)

o
Jj=1
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It can be seen that in these:.equations the roadway surface
unevenness function, wi, appears only as (Vi)j’ i.e., with its ordingtes
evaluated at the transverse location of the.wheéisa That this ShOuld be
so is physically apparent.
In what follows, the variation of the functions (w)); in the

E-direction is assumed to be sinusoidal, i.e.
(Wi)j = Woe; sin m, &, , (3-35)

where e, (J =1 or 2) are dimensionless quantities and A denotes the
amplitude of the unevenness. The quantities ey and €5 may>or may not be
equal; they may also be positive or negative. The gquantity o is a positive

integer.

hﬁz Dimensionless Form of Equations. Let

V= em + M _ Total weight of vehicle
P . Total weight of bridge
alpb + iée(mb)i] : .

w = 2m _ Unsprung weight of vehicle

2m + M " Total weight of vehicle
y - (m)y _ Weight of i beam (3-36)
i P .~ Total weight of bridge ,

Wb+ 1zo€mb}i

v Tb‘
o = ————
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£ = the fundamental natural frequency of the bridge evaluated

on the assumption that it acts as a beanm

f = the natural frequency of the vehicle for vertical motion

on its springs

These frequencies are given by the equations

In addition, let

2 1 20 éo (BT
h=—"%" " D
oo KD + iéo (mb)i
2 1 1 2k
NTTEcTTIEW
v TSk
T - ¥t
a
?(7) = £ (%)
t
- Eé—(;l
u(t)bl
9("5) = Wo

By differentiating these equations, one obtains the relations

v — (Dot
ré B (a)Qs
z' (v
T = (a)C’

(@]

u'bs

1 .

—= = (%)es

. fﬂ
? s

. z
’ W
o)

2

w
]

(%Ew
a S

(E>2§"
a

e
a

(3-37)

(3-38)

(3-39)
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in which a prime superscript on -fs’ z, and u denotes one differentiation with
respect to %, and & prime superscript on Cps, { and 6 denotes one differentia-
tion with respect to T.

Now by multiplying Eq. (3-32) by

Tb2 1

2w
@]

J

P
e+ o ()

meking use of Eq. (3-35), and introducing the dimensionless quantities defined
by Egs. (3-36) through (3-39) and Egs. (2-10) and (2-11), one may reduce

Eg. (3-32) to the form
y " (B +C s,in2 nT) +Z @' D sin #T cos #T
..S_a 5 ns ns 5 S 1ns

. 2 : -
+Z P, (EnS +F  sin nT) + H sin a7

+ L (5, 8 1) + R sin A7 sin m %% = O (3-%0)
where P 1 P
an = a? [( -Z 71) f Yn Ys an +Z :7i(Yn)i(Ys)i:t
i=o °© i=o '
2
Coe = azwz(y ) (Ys)j
=1
2
D, = 2w ) (1) (¥ ;
=1
2 P P
—————————— l ? 7
Ens - D [:Ans +Z>\1(Yn)i(¥s)i T3 EZki(Yn)i(Ys)i:l
1+ Z0 N i=0 T¢ =0
i=o 1
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2
s ey [K(l - w) - a?'wJZ(Yn)j(YS)j
_ P

!
i

1 Kio Z
Hn =- 31 ‘ (Yn),j

A

2
- 'ﬂaKv(l - w)sin m’Z(YD)j [Q + (-1) JB_-]
=1

Ln =
2,
R, = Py [K(l - w) - agwmlz}z ej(Yn),j
. J=1

The quantity %'io‘ in the expression for Hn represents the flexural rigidity
factor of the reference beam used in defining the quantity v, in Eq. (3-1).
In a similar manner, Egs. (3-33) and (3-34) may be reduced to the

following forms:

2 2
2&’2§" + K I:2§ - sin mln'rz e‘j - sin JTTZ e, (Ys)j] = 0 (3‘1*1)
=1 =1
and
2 2
2a2p9" + ﬂEK [28 - sin mls:TZ(—l)‘jej - sin ﬁTZ cpsZ(-l) ‘j(Ys)j:] =0 (3-k2)
=1 1
where
P = -% (3'43)
Mbl

Egs. (3-41) is obtained from Eg. (3-33) by multiplying it by 'I.i/ (ch)’ and

Eq. (3-42) is obtained from Eq. (3-34) by multiplying it by Ti/(bleo) .
Equations (3-40) through (3-42) form a system of second order,

linear differential equaticns with veriable coefficients; the number of

equations being equal to (n, + %), the number of generalized coordinates used.
qua n
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4.3 Reduction of Governing Equations to Equations for Beams. Since
a beam has no transverse dimension, in Eq. (3-1) it is only necess"a.rfy to con-

sider the function Y . = 1 and the corresponding generalized coordinate f

1 1°
therefore, the summation sign on s may be deleted in this equation end in all
other equations derived therefrom. Note also that Yil, = Y“l = 0. For con-
venience in writing, the dimensionless generslized coordinate CP_l corresponding

to £ 1 will be denoted by @. Since the vehicle also has no width,

@=6'=6"=0
Consider the special case in which the surface of the beam is

initially level;, i.e.

Then the quantities B _ through R in Eq. (3-40) reduce to

oF

B =
ns
¢ = 2dfw
ns
D = beP
ns
E =
ns .
F_ = oy [K(1-w) - oFwl
H = - 2 Mo
n 2
o8 P
1+ .2 A,
1=0 -1
L =- 277Ky (1-w) § sin =T
R =0
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It is to be recgl;ed'that, in defining the quantity wbcin Eq. (3-1)
the flexural stiffness of the reference beam, ('Ebl:b)io, was used; if instead,
the total flexural stiffness of the structure,_EIf:‘Db +”i§o (EbIb)i (i.e. that

of the idealized beam) is used, then the gquantity Hn becomes

n--2
n

and Eq. (3-40) reduces to
" [a? + aa?vw‘sin2 nr]ﬂ+ #’ [ho?ﬂu» sin T cos KT]
ro [:ra + 217y (K(l—w) - dgm) sin° nécJ'-‘ —:-2- sin T

- 2ff Kv (1-0)f sin %7 = 0 | - T (3-h)

In a similar manner it caﬁ be shown'that Eq. (3—41) reduces to
Ftm s K (L -9sinar) = 0 - (3-45)

In the following, these equations will be compared to those

derived by Inglis<6), and by Biggs, Suer, and Louw(l),

*
Inglis' equations for the same case , expressed in his own

notation, are

¥ Inglis' equations include also the effects of a moving alternating force
and of demping. These factors are omitted here. It should be noted, how-
ever, that the effects of the gravity forces are not taken into account in
Inglis’ equations. : I
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""'(Mﬁ f‘Mu - M cos hxnt) f an % (2n Mu s1n»hnpt) |

' d.'t2

+ batp (n2 M. - 1°M_ + n°M_ cos Yztnt)
o G u u

42
= - 2Ms‘——§ sin 20t (3-46)
at
and
a° 2 2
&z . 4Pr® 7 = 4xn° £ sin 2%t (3-47)
ate s _ s o o

The relationship between the notation used by nglis and that
used in this report is shown in the following table. (See page 51).

Equation (3-44) can be transformed into Eq. (3-#6) by taking
Hn = 0 (this means that the gravity forces are not taken into account),
making use of Eq. (3-45), multiplying Eq. (3-4k4) by hfi th‘and changing
notation. The identity of Egs. (3-45) and (3-47) can be shown simply by
multiplying Eq. (3-45) by hf% and changing notation.

By assuming arbitrarily that

D =20
ns

(5-48)

F 212V (1 - w)

ns

Equations (3-44) and (3-45) can be transformed into the equations derived

by Biggs, Suer, eand Louw(l). This assumption amounfs to neglecting the

effect of the translational motion of the unsprung mass on its vertical
acceleration; in Ref. (1), this was assumed implicitly. It is to be noted

that Egs. (3-48) are exact if the unsprung mass

0
(1)
°]
]
l._l
t
o)
3
3
o]

.
X
ke
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Present Notation . Inglis' Notation

P
i=o0 .
M M
S
2m M
u
a J 4
-
2a o
f2 n2 - 1(2 EI1f
b ot Wy
(2 L_ 15
v s kne Mé
k =2k k
v s
Qa n
n
o)
£ 2 n 2
v S
K = (£ (=2
fb no
T 2nt
\’OCP f
(v, az
8 o at
(X)Q\' " 513‘?.
a e dt2
v(l - ) gg
Mﬁ
%Y Mu
. MG-
z= w.( z

PP
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5. Computation of Response

The procedure used to evaluate the dynamic response‘of thg bridge-~
vehicle system may be summarized briefly as follows: First, the governing
differential equations of motion are solved to determine the values of the
éenera.lized coordinates and of their fi:st two derivatives. Next, the inter-
acting forces between the vehicle and the bridge, and the inertia forces of
the bridge are evaluated. Finally, the dynamic deflections and bending
moments induced in the bridge are determined from the dynamic farces acting
on the bridge, instead of directly from the generalized coordinates computed
in the first step.

5.1 Solution of Governing Differential Equations. The system of

Egs. (3-4%0) through (3-L42) are solved by means of a step-by-step method of
numerical integration. The time required for the vehicle to cross the span,
0< 1<1, is divided into a number of small intervals; and the governing
equations are "satisfied" only at the ends of these intervals.

Let a, represent a dimensionless generalized coordinateA4bit mey
refer to the bridge or the vehicle - , and én andvan represent its first and
second derivatives with respect to 7. The values of these quantities at
T = Tf will be identified with the subscript r separated from the subscript
n by a coma. Let it be assumed that the values of Y, én,r and'ﬁn’r are
known for each generalized coordinate of the system, and that it is desired
to find- the corresponding values at 7T = Teg1 = W t AT in which AT is a
short interval. The following procedure may be used. Suppose that an
assumption is made regsrding the manner in which the second derivatives vary

within the interval from ‘rr to 'rr Then the quantities Qg and q.,, may

+1°
be expressed in terms of the known qn,r’ qn,r and qn,r’ and the still unknown

an il These quantities may then be substituted into the differential
2
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equations of motion to obta.in a system of linear algebraic:equations involving
the quantities Zin’ il 85 the only unknowns. The number -of unknowns will be
equal to the number of generalized coordinates used. 'The solution of these
equations’ will yield the values of aﬁ,r+l" However, the resulting equations
are in general fairly involved, and in this study an iterative procedure was
used to integrate the equations within each time interval.

| The variation of.an within the time ;ntervaJ.AT was considered to

be linear; with this assumption, the expressions for én el and'qn il become
. ) . 2 7

1= Sr Y3 <M><qn St ) o (3-b9)

. an+<A>6n +%;<_m>2 g +g(A")25iﬂ o (3-50)

The iterative procedure may now be summarized as follows:

1. Assume that the second derivatives of the,geﬁefalizéd coor-
dinates at the end of the time interval are the same as those at the begin-
ning of the interval, i.e. take an,r+l = ﬁh}r, and by application of
Egs. (3-49) and (3-50) evaluate én,r-i—l and U pel”

2. Substitute the values of dn,r+l”and'qn,r+l thus obtained
into the governing differential equations, and by solving the resulting
system of algebraic equations, obtain improved values for §£’r+la

3. From Egs. (3-49) and (3-50) calculate the values of én,r+l
and U, pel corresponding to the values of é;§r+l'just determined.

k. Repeat Step 2 oy using the latest availeble values of & re
and qn,r+l'

5. For each generalized coordinate compare the newly derived
value of an,r+l with the previocusly availgble value. If the difference

between the two values for each coordinate exceeds a prescribed tolerance;
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repeat Steps 3 through 5, until. all differences are less than the prescribed -
tolerance. The algebraic equations. are then considered to be solved,: and

the integration for the time interval from Tr to 'tr completed. If desired,

+1
the values of the dynamic forces acting on the bridge, and the effects pro-
duced in the bridge by these forces may be calculated at this stage before

proceeding to the next time interwval.

Initial Conditions. The initial values of qn a.nd.qn must be known for each

generalized coordinate so that the integration procedure may be started.
The initial values of the second derivatives qn are determined from the
governing differential equations by substituting the specified values of

q and § for T= O and solving for .

Choice of Time Interval. The time interval AT used in the mumerical proce- -

dure should be small enough so that successive cycles of iteration converge
and the solution be stable. For the particular procedure used, it has been

(8)

shown that both the convergence and the stability criteria are sa‘b;'.s’fied
if

At = %A't <0.389 T | (3-51)
where T is the shortest natural period of vibration of the system; the s;}stem,
here, is the bridge-vehicle combination, idealized :Ln the ma.nner described’
in the preceding sections. Numerical values for the natural periods of
vibration of multigirder bridges have been reported in Ref. (15).

5.2 Computation of Dynamic Forces Acting on Bridge. The static

value of the interacting force for each wheel is obviously one-half the
total weight of the "vehicle" or W/2. The dynamic increment of the inter-
acting force for the jth wheel may conveniently be stated in the form AJ. g
where Aj is a dimensionless factor. Now let



=55«

By=(2) + (8 | ‘» (3-52)
where (Al)j = the component ofAj due to the dynamic incrément of the
compression in the spring.
(Aé)j = the component oflﬁj due to the v§rtical acceleration of

the unsprung mass j.
These quantities may be determined as follows:

The change of force in the jth spring is

o=

(8)); 3 = klz + (-1)7 woy - (w+w) ]  (353)

By substituting into this equation the dimensionless quantities defined by

Egs. (3-36) through (3-39), and noting that

N l+Z .

= =0 i W
kv = #KV(1 - w) . 3
io
one obtains
L 1+ Eo?\. Y‘
Qsl)j = % Kv(1-w) ‘“—Xi:——~— €+ ( l)JQ - e sin mlnT - sin ﬂTZLJ P, (Y (3-54)
io

The irertia force of the unsprung mass j is given by the equation

2 P
(6,) §=-m [(-@—g) + (3 <Be l) } (3-55)
J

in which the bracketed quantity represents the vertical acceleration of the
jth unsprung mass; this quantity is positive when downward. By substituting
into Eq. (3-55) the dimensionless quantities defined by Egs. (3-36) through

(3-39), and noting that

_ PP --——-—

one finds that
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P
1+ .2 A,

- - 1=0 1 . il .« ' - 2 .
(AE).j = - PPw —_——-%'io [Z(YS) j(fps sin ®T + 2% @) cos AT - X Q_ sin nT)

- ejm§“2 sin mlm] (3-56)

The intensity of the inertia force -I-’IJ- due to the mass of the slab is given

by the equation

at 3

_ 82 . Z
P, = ( ): - ww_ sin Fie3 'fs Ys . (3-5T)

The inertia force due to the mass of a beam is & line load. The

intensity of this force for the ith beam is given by the equation .

2
p, = ~(m),; (—:—;—) = ~(m), ¥ sin ﬁﬁz Y (3-58)

In terms of the dimensionless quantities given in Egs. (3-36)
through (3-39), Egs. (3-57) and (3-58) may be expressed as follows:

P b , :
— . S l+l§o>~lz 1w R
D = 1 7 —_— cp" Y ( ) sin ﬁE (3-59)
K L\ léé } hio S "I
and P :
1+ .8 N,
Py =~ [71a2“2 — Z A s)l]' (3) sin = (5-60)
io S .

5.3 Computation of Dynamic Increments of Deflections end Moments

in Bridge. As previously noted, the instantaneous values of the dynamic
forces acting on the bridge are treated as static forces, and the effects

of these forces are evaluated in the manner described in Chapter II.

Let Di,j = the déflgction produced at & specified point of the ith
beam by & concentrated force W/2 bapplied at the position
of the :jth wheel, Aa.nd

M.. . = the bending moment E:orresponding to D.

1,J i, J
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Then the deflection and bending moment produced at the same point by the

dynamic increment of the interacting forces are given by

respectively.

In order to evaluate the corresponding effects of the inertis

forces of the bridge, it is first necessary to determine the load matrix

{Bm] in Eg. (2-16). Since the distribution of these forces in the longi-

tudinal direction is sinusoidal, only the term m = 1 need be considered.

The n'" element of {Bl} is obtained from Eq. (2-18) by substitut-

ing Eqs. (3-59) and (3-60). Thus

1% Y

) ‘ul*iéo}\iaéxz[z

a
g =B, _ =
mn 1n :!EDb K’iO

i=0

+(l

or
—-— O %
Bln - Z Bns q)s
s
where
3y P
a2 [ N [M qma—
o . .
an -T2 (l +Z4 >\'i) J Z; 7i(Ys)i(Yn)i + é’
n i=0 i=0

yi(Yn) i z cp;(ys) i
s

)

i=0

(3-61)

1
n W
ADENERAE

(3-62)

1)\/ Yn Ys dq:i wo (5-65)
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Now let Dg;s = the deflection produced at a given point of beam i by
a8 static load which is distributed as a sine wave in
the longitudinal direction;, and for which the nth
element of the load metrix {Bl] is given by Eq. (3-63).

Mz, s = the bending moment corresponding to 'f-Dg’ s

The dynamic increment of deflection for beam i, (AD)i, can now be

expressed in the form

2

_ ). 0 on i
(AD)i _Z Di,,jAj * Z Di,s CPs (3-64)

j:l e

and the corresponding increment for moment as

2
_ O n _E
(AM)i —Z Mi,j A,j + Z Mi,s CPS (3 65)
=1 5
It is important to note that the quantities, D, , and M, ., DO
i,d 1,4 1,5

and Mg’s are independent of the solution of the governing differential
equations of motion. Furthermore, in evaluating these quantities, the number

of Yn functions used need not be the same as that considered in the differential
equations of motion. It is for this reason that the maximum value of n used in
the computation of the static effects has been denoted by 0 whereas the value
used in the egquations of motion has been denoted by glo In ﬁact, one of the
important features of the metpod used is that the value of n, may be much

lerger than n . The maximm value of s to be considered in Egs. (3-64) and (3-65)
1> and it will be designated by nQ,E.Obviously, B,
cannot be larger than n, - It should finally be noted that; whereas the

may differ both from nO and n

deflection configuration of the bridge in the longitudinsal direction, was
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assumed to be sinusoidal in the formuletion of the equations of motion, this
assumption was not retained in evaluating the deflections and moments produced

in the bridge by the interacting forces.

6. Correlation Between Dynamic Increments for Deflection and Moment

The dynamic increments of the effects produced in the bridge consist
of a component due to the inertia forces of the structure, and a component due
to the dynamic increments of the interacting forces.

Let AD be the dynamic increment of deflection at a prescribed point
of beam i, for any time t, and OM be the corresponding quantity for moment.

These gquantities may be written as:

(3-66)
OM = (AM)l + (AM)2

where the subscripts 1 and 2 refer to the first and second components of the
effects.

Since the inertia forces of the structure and, consequently, the
resultipg effects vary as a half sine wave in the longitudinal direction, the

quantities (AD)l, and (A&Dl are related by the equation

-

&), = = (B L) (8D), (3-67)
whence
(am) (4D)
—= = - (3-68)

e/ EET),

The effects due to the dynamic increments of the interacting forces

can be expressed as
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(&D),, = Z (AD)Q,m

(o), = Z M), o

vhere (D) and (AM) are the deflection and moment ﬁroduced by the n'e
2,m 2,m

"term in a Fourier series expansion of the instantaneous values of the inter-

acting forces. By considering only the first term in this series, one obtains

(8D), = (AD),

and, by asnalogy to Bq. (3-68), one concludes that

(a4),, (D),
o ¥ WaB/aZ(Eblb) . (5-70)

From Egs. (3-66), (3-68) and (3-70), it now follows that
M (3-71)

~ OD
e/ "Q(Eblb) i

Numericel solutions presented later in this report show that

Bg. (3-71) is generally quite accurate.

7. Problem Considered for Solution on ILLIAC

T-1 General. The computer program has been developed for the
class of bridges considered in Art. 3 of Chapter II. The roadway surface
unevenness 1s represented by a trigonometric fumction in the longitudinal

direction, as discussed in Art. 4.1. The load unit may consist of one or

two wheels.
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The program provides results for the complete history of the response
of the system, by printing out the crawl or static values of the deflections
and moments in the beams at midspan, the corresponding dynamic increments; and
the dynamic increments of the wheel reactions.

7.2 Summary of Problem Parameters. The following dimensionless

parameters are used to define s problem.

Bridge Parameters

1. The ratio of sides, c¢. This is the ratio of the overall width
of the structure, b, to the span length, a.

2. The number of beams, p + 1.

5. The flexural rigidity factors; ho and hl’ for the interior and
exterior beams, respectively.

k. The torsional rigidity factors, ko and kl, for the interior and
exterior beams; respectively.

5. The dimensionless mass parameters, 70 and 71, for the interior
and exterior beams, respectively.

6. The roadway surface unevenness parameters, o5 el, and e2,
defined by Eq. (3-35).

Vehicle Parameters

7. The transverse position of the wvehicle on the bridge, as specified
by the n-coordinates of the wheels, nl and Mo

8. The parameter p for the moment of inertia of the sprung mass,
defined by Eq. {3-43).

9. The weight parameter w, defined by Eq. (3-36).
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Bridge-Vehicle Parameters

10. The speed parameter @, defined by Eq. (3-36).
11. The weight ratio v, defined by Eq. (3-36).

12. The frequency parameter K, defined by Eq. (3-36).

Parameters Related to Method of Solution

13. The parameter m which specifies the maximum number of half-
sine waves considered in the longitudinal direction in the computation of the
static effects.

14. The parameters nb, n1 and n,.; these specify the numbers of
Y functions used for various purposes: (See Art. 5.3).

15. The number of integration steps, N, and the number of steps

between print-outs, Nl.

Initial Conditions

16. The initial wvalues of Py €, and 6, and of Pl £*, and 6°.

For a bridge cambered so that, under the action of its own weight,
its surface is horizontal, the quantities el = e2 = 0. If the bridge is not
cambered, the effect of the dead load deflection of the structure may be
considered approximately as follows. The deflection in the longitudihal
direction may be represented by the first term in a Fourier series expansion,

and the configuration in the transverse direction may be considered as

uniform. Then

m = 1

P
1 gt el + 2 (m). ]
e = e = —
1 2 W

© uS Db + igo (Eblb)i




-63-
In terms of the dimensionless quantities defined in Egs. (3-36) to (3-39),

the latter equation becomes

N N
&) = ey = =% Ca (3-72)
Vo1os Z AL
i=o i

I

The initial dynamic displacement of the sprung mass of the wvehicle
in the vertical direction, Z is usually expressed as a fraction of the
static value of the deflection of the mass, zZ - The initial value of the

dimensionless coordinate { may then be determined from the equation

Z
o)
= (2 ¢, (3-73)
s
where
2 A
. .s_ &M 1 o -7h
cs_"wo—21{1»10"1{]/,3!- P (3-74)
1+ & N
i=o "1

The initial value of the dimensionless coordinate 6 can be

determined in a2 similar manner.

7.3 Description of Computer Program. A general flow diagram for

the complete program is shown in Fig. 6. The operations listed in the first
column of this diagram are performed once for each problem, those listed

in the second column are performed once every time the response of the ﬁridge
is to be printed out, and the operations in the third column are performed
once in each step of integration. The sequence of the major operations -
involved and the routines used are described briefly in the following para-
graphs with the aid of additional flow diagrams. The complete write-up of

the program will be placed in the ILLIAC Library of the Department of Civil

" Engineering.
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As indicated in Fig. 6, the first major task of the program is to
evaluate the quantities Qm,j vwhich are used to evaluate the deflections and
bending moments in the beams at midspan. These are defined by the equation

Q=g ) e L r(n) (3-75)
- |

n=-1
in which the subscript j refers to the jth wheel and can take on the values
of 1 and 2. The coefficients Q' _ represent solutions of Eg. (2-16) with

mn, J

the elements B of the load matrix IB } replaced by B Py where

»
P,y = 3 L)) (3-76)

n,J

As before, the subscript j refers to the'jth wheel. EBquations (3-75) and
(E—zé) are entirely analogous to Egs. (2-45) and (2-44) for the static
problem.

The operations involved in the computation‘of ngj are indicated
in Fig. 7. This flow diagram is similar to that presented in Fig. 4 for the
static‘prdblem. In the present case, however, only the odd values of m are
considered, since the even terms do not contribute to the deflections and
moments at midspan. The quentities thj are stored on the magnétic drum,
and they are recaelled to the Williams memory whenever needed.

The deflections, Di Y and moments, Mi Y are related to the

) J

quantities Qm i as follows.
)

Wa
Di,j = (C, )J (§;1;7; (3-77)

- Y - [e}
M = kbm)J Ve (3-78)
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Then
- m
el
L 1 :
! = e —_— a4 -
(Cqgd5="3 z 5 Q, j Sin @t (3-79)
T om=1,3., B :
m
5\ O
(cm)j = —7\-‘5 z Q, ; sin mn? (3-80)
O m=1,3%.. iy

These equations may be obtained from Egs. (2-48) and (2-49) by replacing

Qm by Qm 3 and. € by T. The quantity xi represents the value of A for the
7

beam where Cm is evaluated.

It is to be recalled that Di . and Mi 3 represent the static effects
5 $

5 d
due to the jth wheel only.

The operations involved in the computation of the quantities Dz

b

and Mg for the inertia forces of the bridge are indicated in the flow

s
diagram presented in Fig. 8. These oﬁératioﬁs are similar to those used to
caicu;g.te Di,,j and Mi, 3° with the important exception that they are performed
for m = 1 only, since the distribution of the inertia forces in the longi-
tudinal direction is sinusoidal.

The quantities Di}s and ngs, together with the quanmtities Q.
are stored on the drum, and are played back to the Williams memory only when
the deflections and moments are to be computed.

The constant coefficients referred to in the first column of the
flow diagram in Fig. 6 are the coefficients on the left-hand sides of Egs.
(3-40) that are independent of 7 and of the generalized coordinates. It
should be noted that the number of these depends on the number of generalized
coordinates used for the bridge. Since the routines that are needed to

evaluate these constants cannot all be retained in the Williams memory, they

are stored on the magpetic drum, and they are recalled in successive groups.
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Before starting the integration of the differential equations, the
second derivatives of the generalized coordinates qﬂ (i.e., @é’, {", and 6"),
the interacting forces, and the deflections and moments in the bridge are
evaluated for 7= 0. A detailed flow diagram of the operations involved is
given in Fig. 9. The significance of the S6 parameter referred to in this
figure is explained in the detailed program write-up referred to previously
in Art. T7.3.

A flow diagram for the integration procedure is given in Fig. 10;
this is believed to be self-explanatory.

In Fig. 10 it should be noted that the interacting forces and the
effects in the bridge are not evaluated at each step of integration, but only
when they are to be printed out. The interval between print-outs is specified
by means of the problem parameter Nl.

This program utilizes the entire Williams memory of the ILLIAC, and
approximately 3200 locations of its magnetic drum memory. Certein parts of
the program, including the main control routine (MC), blocks of constant
quantities, the library routine’(T5) for sines and cosines, the library
routine (Yl) wvhich is used to transfer blocks of instructions between the
Williams memcry and the drum, and the problem parameters which are read in
from the data tape at the beginning of each problem; are retained in the
Williams memory. The remaining parts of the program are recorded on the drum,
and are transferred to the Williams memory whenever needed.

In the following are listed some of the limitations of the computer
programs

< . -
m, +1<160/(ptl); 2<n <8 n, <n <2
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where ms Oy Dqs n2 are integers defined in Arts. 7.3 and 5.3. For a five-

girder bridge, the limitation on mb becomes mb 5 31. It should be remembered

A single-wheel loading is treated as a two-wheel loading for which
nl,= Tye The program is so arranged that it does not have to consider Eg.
(3-42) in this case.

The program may be used also to determine the response of a beam
by considering only the function Y-l in the differential equations of motion.
This amounts to assuming that ﬁhe bridge does not deflect in the transverse
direction. The interacting forces and the inertia forces in the bridge will
then be identical to those for the beam. The defléction and bending moments
for each of the supporting beams of the bridge will not be the same, however,
because of the limitation on the minimum wvalue of n, that may be considered
in the static problem. The moment in the single beam may be evaluated by
taking the sum of the moments in the beeams and in the slab of the bridge.

With the maximum possible values of n 3 n0 and mb, and with

10 P2

N = 100 and K, = 2, the machine time required tc calculate and print out

1

the history of the response for a five-girder bridge is about nine minutes.

8. Discussion of Assumptions

8.1 General. In the formulation of the equations of motion of
the system, the instantanecus distribution of the dynamic deflection of the
bridge in the longitudinal direction was assumed to vary as a half-sine:
wave, and the distribution in the transverse direction was expressed as a
linear combination of Yn functions, each multiplied by a time-dependent

coefficient.
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The adequacy of the first assumption was investigated indirectly
_by obtaining numerical solutions for the sjgecial case of a beam, and com-
paring the results with those obtained by application of other methods. It
has already been noted that, as applied to a beam, the present method reduces
to Inglis® method. The sensitivity of the response to the number of Yn
functions considered in the equation of motion was studied by obtaining
solutions for several five-girder bridges for an incressing number of Yn
functions.

8.2 Comparison of Beam Solutions. In Figs. 11 through 14 are

given solutions for the response of a beam for a fairly wide range of values
of the parameters involved. The curves in Figs. 11 and 12 are for a smoothly

moving load, whereas those in Figs. 13 and 14 are for an initially oscillat-

ments of moment at midspa.n,‘ The solutions shown in solid lines and identified
as "Procedure 1" were obtained with the aid of the computer program developed
in the present investigation. Only the Yal function was used in the dynamic
equations. As noted in Art. 4.3 of this chapter, this amounts to solving
Egs. (3-44) and (3-45). The moments were computed as the sum of the moments
in the beams of a five-beam bridge with ¢ = 0.8 and A = 25. A solution was
also obtained by using ¢ = O.% and A = 12.5. As would be expected, the
interacting forces computed for these two sets of parameters were identical.
The sum of moments in the beams differed by about 1.5%, the difference being
due to the change of moment in the slab. The solutions referred to as
"Procedure 2" and "Procedure 3" were obtained by use of the computer programs
reported in Refs. (14) and (5) respectively. Wen's method, which is a

modification of Hillerborg's method and which; in bturn is a modification of
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Inglis® method, involves the assumption that the instantaneous configuration
of the dynamic deflection of the beam is proportional to the static deflec-
tion configuration produced by the combined effect of the moving load and
the weight of the beam itself. In the Huang-Veletsos method, the beam is
analyzed as a multi-degree-of-freedom system, with the mass of the beam con-
centrated at a finite nmuber of points. The solutions included here were
obtained by considering only three concentrated masses.

It can be seen from Figs. 11 through 1t that the results obtained
by the three methods are generslly in very good agreement. This favorable
comparison inspires much confidence in the adequacy of the assumption that
the instantaneous distribution of the dynamic deflection along the beam is
a half-sine wave. In addition, these solutions have served to provide an
independent check on the correctness of the computer program that has been
developed.

8.3 Effect of Number of Dynamic Degrees of Freedom for Bridge.

This problem was studied by means of numerical solutions for three five-

girder bridges having the following dimensions:

Cc = th- }\ = 1205
¢ = 0.4 A= 50
c = 0.8 =25

The torsional rigidity of the beams was taken equal to zero in all cases.
The first ftwo bridges are the same as those considered for the static solu-~
tions presented in Chapter II. The vehicle was idealized as a single-wheel
load without any unsprung mass, and it was considered to move along the edge
beam. In each case, three solutions were obtained by treating the bridge as

a system with two, three, and four degrees of freedom, respectively.
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In Figs. 15 through 21 are presented the time histories of the
interacting forces and of the dynamic increments of deflectioné of the beams
at midspan. :The values of the variocus parameters are indicated on the figures.
It can be seen that the solutions for c = O.4 and A = 12.5 - a structure with
a relatively high transverse rigidity - differ only slightly from one another.
Those for c = 0.8 and N = 25 - a fairly flexible structwre in the transverse
direction - are very much different. The results for the intermediate struc-
ture (¢ = 0.4, A = 50) are in fairly good agreement, especially the solutions
obtained by analyzing the bridge as a system with three and four‘dégress of
freedom.

On the basis of these data, and from a study of the natural modes

(15)

of vibration of the three structures that were investigated , 1t appears
that in the formulation of the equations of motion, one must consider a suffi-
ciently large number of'Yn functions 'so that the first two éymmetric and

the first two antisymmetric natural modes of vibration of the structure are
approximated fairly accurately. The relative importance of fhe higher mddes
cannot be evaluated, since these cannot be considered in the computer program.
The indications are, however, that their contribution to the total response
mgy be important only for very flexible structures for which the nafural
frequencies of the first four modes are close to each other. It is also
anticipated that the contribution of these modes will be less significant

for a two-wheel loading than for a single-wheel loading.

8.4 Effect of Time Interval of Integration. The natural periods

of vibration, T, of a multigirder bridge may be stated as

po 2 (3-81)

VK

O.
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where Ko is a dimensionless coefficient dependent on the geometric and physical
characteristics of the bridge and on the order of the period under considera~
tion. Numerical values of Kb for various structures have been reported in
Ref. (15)*,

The criterion for convergence and stability of the integration pro-

cedure (see Eg. 3-51), can now be written as

Tb

a 1
= = < 0.389 —
v N N
K5
or, noting that Q= 5o 7 o8
JK
N > 1.285 -a—° (3-82)

The value of KO in this equation should correspond to the lowest period of
the mathematical model used in the analysis. The bridge as analyzed here,
has four natural modes of vibration, two of which are symmetric and the other
two antisymmetric about the longitudinal center line. The relevant period
is the one corresponding to the second antisymmetric mode.

For a five-girder bridge with ¢ = 0.4, A = 25, k = 0, and 7 = 0.05,
the value** of Ko corresponding to the second antisymmetrical mode is Kb ; 12.1;
for a value of @ = 0.15, Eq. (3-82) gives

N > 30

* The meanings of the symbols N and 7 used in Ref. (15) and the present
report are different.

*¥* This is the value obtained by considering more than four degrees of -
freedom. Strictly speaking, one should use the value computed for the
four-degree-of-freedom system.



..,>72..
The response of this bridge under a smoothly moving load was evaluated on the
basis of four different values of N. The meximum values of the response are
sumarized in Table 15 together with the values of the problem parameters.
It-can be seen from this table that the differences between the »_results corre-
sponding to different wvalues of N are generally very small. For the numericsl

results presented in this report a constant value N = 100 was used.

9. Comparison of Theoretical and Experimental Results

The theoretical predictions have also been compared with experimental
data obtained from dynamic tests conducted on an all-aluminum; five-girder
I-beam bridge model; the characteristics of this model and the conditions of
the tests have been described in Ref. (12). The results for the two test rums
that were considered are presented in Figs. 21 through 2. The experimental
results included were reproduced from Ref. (k).

The fheoretical solutions were obtained for the following values of
the parameterss ¢ = O.hy, A =X =1k5, k =k =5, 7 = 7'1 = 0.12,

e:'j = 0.0076, w = 0.09, v = 0,34, fv/fb = 0.55, @ = 0.16. Both the bridge and
the vehicle were assumed to be initially in their sta.tic positions of
equilibrium.

In Fig. 21 are given history curves for total deflections (iee.)
sum of static value and dynamic increment) at midspan of beams A, B, and C,
produced by a single wheel load moving over beam C. In Fig. 22 are shown
the same results, expressed in the form of history curves for dynamic
increments. The corresponding curves for dynamic increments of strains at
midspan are given in Fig. 23. Included in Figs. 22 and 235 are the experi-
ment_a.l curves for beams D and E. It is seen that, although the structure

and the loading are presumably symmetric with respect to the longitudinal
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center line, the experimental results for the responses of the symmetric beams
are not identical. These’differences, which are generally small, may be con-
sidered as measures of the uncertainties about the properties of the system
end the religbility of the experimental data. The agreement between the theo-
retical and experimental curves presented in Figs. 21 through 23 is generally
satisfactory.

In Fig. 24 are given history curves for the dynamic increments of
strains produced at midspan of the beams by the same load running over beam A.
The sgreement between theoretical and experimental data, although not as good

as in the previous case, is still satisfactory.
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IV. NUMERICAL STUDIES
1, General

The aim of the numerical results presented herein is to provide
informat{on which may lead to a better understanding of the dynamic behavior
of simple-span miltigirder bridges. The parameters that were varied in this
study are those that cannot be considered when the bridge is analyzed as a
beam. Most solutions were obtained for a single-wheel loading. The solutions
presented are of a limited number, and the conclusions drawn therefrom are
generally of qualitative nature. A more complete study of the effects of
the various parameters involved would require a much greater number of
solutions.

The structures analyzed are of the same type as those considered
in the static solutions presented in Chapter II (see Fig. 2). As before,
the torsional stiffness of the beams is taken equal to zero. The wvehicle
is represented either as a single-wheel load or a two-wheel load without
any unsprung mass. In all the solutions; the parameters &, v, and fv/fb are
kept constant, so that the solution obtained by considering the bridge as
8 beam is the same in all cases. The mass and the flexural rigidity of the
equivalent beam are assumed to be the same as thosé for the total structureo
This approach has been used by previous investigators, and amounts to con-
sidering a uniform transverse distribution of deflections. The major para-
meters varied are the flexural rigidity of the beams relative to that_of
‘ the slab, the ratio of sides; and the transverse location of the loads.

The dimensionless weight parameter for the beams is taken as
¥ = 0,05, In all the solutions, the bridge deck is assumed to be initially
smooth and horizontal, and the sprung mass is assumed to be at its position

of static equilibrium when it énters the span.
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Unless otherwise stated, it is to be understood that all solutions
were obtained by using four Yn functions in Eq. 3-1, i.e. by analyzing the
bridge as & system with four degrees of dynamic freedom (nl = é). In evaluat-
ing the effects of the instantaneous inertia forces and of the interacting
forces, the transverse deflection configuration of the bridge was represented
by means of eight Yn functions (i.e. n = 6). In computing the effects of
the interacting forces, fifteen load components were considered in the longi-
tudinal direction (i.e. m, = 15).

The dynamic response of the bridge-vehicle system is depicted in
terms of history curves for interacting forces and for dynamic increments
of moment and/or deflection for the individual beams. In addition, curves
for the sum of the dynamic increments of moments in the beams are presented.
The latter curves and those for the interacting forces are compered with the
corresponding curves determined by use of the beam theory. The concept of
the sum of dynamic increments of moments has been introduced in an attempt
to relate the results obtained by the present method of analysis to those

predicted by the beam theory.

2. Solutions for Symmetric Loading

2.1 Typical Response Curves and Effects of Transverse Flexibility.

The solutions presented in this section were obtained by considering a single-
wheel load moving over beam C.

In Figs. 25 to 27 are presented history curves for the interacting
force and for the sum of dynamic increments of moments in the ﬁeams for
eight structures characterized by different sets of values of N and c. It

may be recalled that the greater the values of N and ¢ the greater is the
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flexibility of the structure in the transverse direction. In Figs. 25 and
26 the ratio of sides is kept constant and A is varied, whereas in Fig. 27
the quentity H = ¢ is kept constant and the effect ofuvarying ¢ is investi-~
gated. Included in each of these figures sre also the results of the beam
theory obtained by using only the Y-l function in the dynamic equations.

It can be seen from these figures that the response curves for
the bridge have essentially the same shape as those obtained by the beam
theory. It is important to note, however, that the pesk values of the
response for the bridge are consistently larger than those predicted by the
beam theory, the difference generally increasing with increasing flexibility
of the structure in the transverse direction, or increasing values of A and
c. For the most flexible structures considered, the absolute maximum value
of the sum of dynamic increments of moment in the beams is about twice as
large as that predicted by the beam theory.

An attempt was made to relate the peak values of the sum of the
dynamic increments of moments in the beams to the value of the maximum
static deflection produced in the loaded beam by the load at midspan. The
results of this study are summarized in Table 16, and they are also plotted
in Fig. 28 in a normalized form. It is noteworthy that the results ploct
almost on a straight line.

In Figs. 25 to 27 it is interesting to note that at the instant
that the sum of the dynamic increments of moments attain their pesk values,
the value of the interacting force is relatively smell. This indicates
that the response of the bridge is primarily due to the inertia forces of
the structure, and that the contribution of the interacting force is rela-

tively minor.
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In Figs. 29 and 30 are given the time histories of dynamic incre-
ments of moment for the individual beams of some of the structures considered
previously in Figs. 25 and 26. For clarity, only the solutions corresponding
to the extreme wvalues of N are presented. As would be expected from the data
presented in Figs. 25 and 26, the maximum response of the loaded beam increases
with increasing transverse flexibility of the structure (i.e.‘inpreasing values
of A and ¢).

2.2 Relationship Between Dynamic Increments for Deflection and

Moment. As & check on the saccuracy of Eq. (3-71), in Fig. 31 the dynamic
increments for moment in the beams of a particular structure are compered with
the corresponding increments for moment. The characteristics of the system
analyzed are defined on‘the figure. The ordinates for moment are expressed
in terms of Wa, and those for deflection in terms of,WaB/anbIb.

It can be seen that, except for some minor differences in the curves
for the loaded beam, the two sets of curves are almost identical. For beams A
and B only the solid line is shown as the dotted curve could not be differ-
entiated when plotted on the same scgle. This agreement, typical of a large
mmber of similar comparisons that have been made, substantiates the accuracy
of Eq. (3-71). Another comparison for a load applied over beam A is given
in Fig. 42. Since the dynamic increments for moment and deflection are for
all practical purposes proportional, in the remaining part of this report,
solutions will be presented either for moment only, or for deflection only.

2.3 Transverse Distribution of Dynamic Effects. The instantaneous

transverse distribution of the dynamic increments of moments in the beams are
presented in Fig. 32 for three structures having a common ratio of sides,

c = 0.8, but different values of A.
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It can be seen from this figure that the distribution of dynamic
effects is not constant, but varies with time. It follows that the bridge
does not respond as a system having a single degree of freedom in the trans-
verse direction. In particular, the transverse distribution of effects is
neither uniform nor porportional to that of the static effects. A compari-
son of the distributions of static effects and dynamic increments is given
in Teble 17. The peak values of the dynamic increments of moment in the
beams for all the structures investigated are listed in this table as percent
of the maximum value of their sum. Similarly the maximum static moments in
the beams are listed as percent of the corresponding sum.

It is convenient to think of the response of the bridge as,ﬁeing
made up of two components, one arising from the variation of the interacting
force;, and a componént arising from the inertia forces of the bridge itself.
The first component, which is proportional to the static effécts, is not
very significant, at least for the cases considered, since the variation of
the interacting force is relatively small. The second component is essen-
tially the sum of the contributions of the natural modes of vibration of the
mathematical bridge model analyzed. It may be recalled that the bridge is
analyzed as a system with four degrees of dynamic freedom; and that for
motions that are symmetric about the longitudinsl center line it has only
two degrees of freedom. Both modes contribute to the response of the systems
considered.

The degree of participation of the various modes in the total
response depends, among other factors, on the relative ordinates of the
various. modes at the transverse position of the load or loads. For example,
if the path of travel of the load is & node line for a particular mode, that

mode cannot be excited.
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In an effort to explore this possibility, solutions were obtained
for a structure with ¢ = 0.8 and A = 25, and a tﬁo;wheel loading.

The results are presented in Figs. 33 through 37 in the form of
time histories of interacting forces, dynamic increments for moment in the
individual beams, sum of dynemic increments, and instantaneous distributions
of dynamic increments. The results presented in Figs. 33 and 34 were obtained
with the wheels over beams B and D, and those presentea in Figs. 35 and 36
were obtained with the wheels over beams A and E.

From Fig. 55 it can be seen that, when the wheels move over beams
B and D, the time histories of the dynamic increments for all the beams are
in phase, and that the effects in the edge beams are a small fraction of
those in the center beam. In this case the bridge responds primerily in
the first symmetric, or fundamental mode of vibration. This may be seen
clearly from the second column of Fig. 37 which shows that the transverse
distribution of dynamic increments does not very appreciably wifh time;
also this distribution corresponds to the fundamental mode, as reported in
Ref. (15).

In Fig. 34 it is of interest to note that the sum of dynamic
increments of moments in the beams is very similar to the beam solution
except for a phase shift which may be explained by the fact that the natural
frequency of the bridge is actually less than that of the beam(l5>a The
relatively insignificant contribution of the second symmetric mode is due
to the fact that the node lines of this mode are close to beams B and D.

When the wheels are over beams A and E, the fundamental mode is not
excited appreciably, since the relative ordinates of this mode at beams A and
E are small. As may be seen from Figs. 35, 36 and 37(c), in this case, the

major contribution to the response arises from the second symmetric mode.
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3. Solutions for Eccentric Loading

The solutions presented in this section parallel those presented in
the previous section for symmetric loading.

3.1 Typical Response Curves and Effects of Transverse Flexibility.

.In Figs. 38 and 39 are given history curves for the interacting forces and
for the‘sum of dynamic increments of moments in the beams of the structures
considered previously, produced by a single-wheel load moving over beam A.
The resuits of the beam theory are also included for compsarison.

It is noted from these figures that the actual interacting force
curves have no resemblance to the curve determined from the beam theory. .
However, they all are characterized by high frequency oscillations super-
imposed on a low frequency main curve which is practically the same for all
cases. The predominant period of the high-frequency oscillations ranges
approximately between the periods of the first and second antisymmetrical
m&des of the corresponding structure.

On coxparing Figs. 38 and 39 to Pigs. 25 and 26, it is seen that
for a given structure the magnitude of the interacting force is larger when
the load moves along beam A than when it moves along beam C. There appear
to be two factors that contribute to this result: (1) Since the static or
crawl deflection of the point of gpplication of the load is greater when
the load moves over an edge beam than when it moves ovér'the center beénb the
resulting excitation of the vehicle is greater in the former case. This
factor seems to be responsible fﬁr the large ordinates of the main curve.
(2) Since the high-frequency waves are numerous, the chances are great that
one of these will combine with & large ordinate of the main low frequency

curve to yield a higher maximum than could otherwise be obtained.
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It is also seen from these figures that, in contrast to the obser-
vation made for fhe case of a load applied over beam C;, the shapes of the
curves for the sum of the dynamic increments of moments are different from
the one obtained by the beam theory; furthermore, the peak value of the sum
does not increase with increasing flexibility of the structure. In particu-
lar, the linear relationship presented in Fig. 28 is not applicable in this
case.

In Figs. 40 and 41 history curves are presented for. the dynamic
increments of moments in the individmnal beams of the same structures as were
considered previously in Figs. 29 and 30. It is seen from these figures that
the shapes of the curves are different for the different beams. This result
indicates that several modes of vibration contribute to the response to a
comparable Fxtentu The contribution of the antisymmetric modes is most
clearly seen on the curves for beam E, where the predominant period of
oscillations ranges between the periods of the first and second antisymmetric
modes of the structure. Note that the predominant period increases with
increasing ‘transverse flexibility, as would be expected.

3.2 Transverse Distribution of Dynamic Effects. The instantaneous

transverse distribution of the dynamic incrementé of moments ir the beams is
presented in Fig. 43. The structures considered here are the same as those
in Fig. 32 where the distribution of the effects due to a load on beam C
was presented.

It is seen that; in this case, the antisymmetric modes of vibration
are excited tc a rathep pronounced extent. It should be noted, however, that
the structures considered in this figure are fairly flexible in the transverse
direction. For stiffer structures, the participation of the higher modes are

not likely to be as important. This may be appreciated by referring to
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Figs. 15 through 20 and noting that, for the stiffer structures, the response

of the system is not sensitive to the number of Yn functions used in the

dynamic equations.
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V. SUMMARY

A method and a computer program have been developed for the computa-
tion of the dynamic response of simple-span, multigirder highway bridges under
a moving wvehicle. The bridge was analyzed as a plate continuous in one direc-
tion over flexible beams. The vehicle was idealized as a single-axle, sprung
load having one or twc wheels. The torsional stiffness of the beams was taken
into--éccounty but the effects of demping in the bridge and the vehicle were
not considered. .

An exploratory set of numerical solutions were obtained for a group
of five-girder bridges in order to study the response characteristics of these
bridges and to compare the predictions of the present analysis with those deter-
mined by treating the bridge as a beam, a simplification used in all previous
investigations of this problem. In these solutions; a total of four generalized
coordinates were used to express the dynamic configuration of the bridge in the
transverse direction. The majority of the solutions were for a single-wheel
load.

The results were presented in the form of history curves for inter-
acting forces, for dynamic increments of deflection and moment in the individual
beams, and for the sum of dynamic increments for moment in the beams. The
latter quantity was used as a means-of relating the results of the present
study to those predicted on the basis of the beam theory.

The principal findings may be summarized as follows:

(1) For a load moving along the center beam, the time histories for
the sum of the dynamic increments for moment in the beams are similar to those
determined by the beam theory, but the magnitudes of these effects are generally
larger. For some of the more flexible structures considered, the absolute maxi-

mum velue of this sum was about twice as large as that predicted by the beam

theory.
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(2) For a load moving over the edge beam, no correlation could be
found between the sum of dynamic increments for moment in the beams and the
prediction of the beam theory. In general;, the first torsional or antisymmetri-
cal mode of vibration was found to contribute significantly to the total responsé°
Since the contributions of the antisymmetrical modes are not reflected in the
sum of the dynsmic increments, this lack of correlation should not be surprising.
It is possible, however, that a better correlation between the two approaches
may be obtained upon comparing the sum of the strain energies of the beams of
the actual structure toéthe energy of the substitute beam.

(3) The transverse distribution of dynamic increments is neither uni-
form nor proportionsl to the statie effects; it is essentially a combination
of the various natural modes. It is to be noted that, even for the fundamental
mode of vibration, the transverse distribution of effects may be quite non-uniform.

{4) The degree of participation of the various modes depends both on
the properties of the bridge and on the positions of the wheel paths relative
to the node lines of the various natural modes of vibration. Broadly speaking,
the greater the transverse stiffness of the bridge; the smaller is the contri-
bution of the higher modes.

It is important to note that these conclusions mey not be valid beyond
the range of parameters considered in this study. For example, it is likely
that the differences between the response of the actuasl bridge and of the sub-
stitute beam may not be as significant for multiple-wheel loads as it is for
the single~wheel loads considered in the majority of the solutions that have
been presented.

As a part of this investigation, the analysis of bridges for static
loads was considered, and two computer programs were developed for the computa-
tion of influence surfaces for deflection and moment, and for the effects

produced by a three-axle truck loading.



10.

11.

13.

,85_

REFERENCES

Biggs, J. M., Suer, H. S.,and Louw, J. M., "Vibration of Simple-Span
Highway Bridges, " Transactions, ASCE, Paper No. 2979, 1959, pp.291-318.

Fleming, J. F., "The Effect of Load Characteristics and the Bridge
Geometry upon Highway Bridge Impact,” Pa.D Thesis, Carnegie Institute of
Technology, 1960. _

Hillerborg, A., "Dynamic Influences of Smoothly Running Loads on Simply
Supported Girders," Institution of Structural Engineering and Bridge
Building of the Royal Institute of Technology, Stockholm, Sweden, 1951.

Huang, C. L., and Walker, W. H., “Analysis of Data Obtained from Tests on

a Highway Bridge Model, " Part D, Tenth Progress Report, Highway Bridge
Impact Investigation, University of Illinois, 1960.

Huang, T., and Veletsos, A. S., "Dynamic Response of Three-Span Continuous

Highway Bridges, " Civil Engineering Studies; Structural Research Series
No. 190, University of Illinois, 1960.

Inglis, C. E., "A Mathematical Treatise on Vibration in Railway Bridges, "

Cambridge University Press, 193k4.

Looney, C. T. G., "High-Speed Computer Applied to Bridge Impact,”
Proceedings, ASCE, Paper 1759, September 1958.

Newmark, N. M., "A Method of Computation of Structural Dynamics,” Journal
" of Engineering Mechanics Division, Proceedings, ASCE, July 1959, pp. 67-94.

Newmark, N. M., "A Distribution Procedure for the Analysis of Slabs
Continuous Over Flexible Beams, " University of Illinois Engineering
Experiment Station, Bulletin 304, 1938.

Newmark, N. M., and Siess, C. P., "Moments in I-Beam Bridges, "
University of Illinois Engineering Experiment Station, Bulletin 336,
1942, (&) p. 28.

Oran, C., "Comparison Between Measured and Computed Static Effects in
an I-Beam Bridge Model; " Part C, Ninth Progress Report, Highway Bridge
Impact Investigation, University of Illinois, 195G.

Prince-Alfaro, J., and Veletsos, A. S., ‘Dynamic Behavior of an I-Beam
Bridge Model Under a Smoothly Rolling Load, " Civil Engineering Studies,
Structural Research Series No. 167, University of Illincis, 1958.

Tung, T. P., Goodman, L. E., Chen;, T. Y., and Newmark, N. M., "Highway
Bridge Impact Problems,” Highway Research Board, Bulletin 12k, 1956,
p. 111.



-86-

14. Wen, R. K. L., "Dynamic Behavior of Simple-Span Highway Bridges
Traversed by Two-Axle Vehicles, " Civil Engineering Studies,
Structural Research Series No. 142, University of Illinecis, 1957.

15. Yamada, Y., and Veletsos; A. S., "Free Vibration of Simple Span I-Beam
Bridges, " Part B, Eighth Progress Report, Highway Bridge Impact
Investigation, University of Illinois, 1958.



TABLES






-TABLE 1.

MATRIX [F m] CORRESPONDING TO SYMMETRIC FUNCTIONS Yn

/fZ)\L. ~727-+Z>‘L5”7(7("/%')

}27{ +Z )‘i 5//7(37(/_2_)

—%“ 1“2)\‘. 5/'/7(57(%)

2 [usn(x) sinfs)

+ flpcos( fJeos o)

Z [7\5 sin (ﬂ—’f;—)j/h(fn_/_g_)

+ (‘; sz cos(vz/—p‘; )cas(fz;‘;—)]

Z[)\é 57”(376%)5}/7 57;/%)

+ ;;’é’)‘z cos (37[ /7’(1) cos /57(—;’— ]

S
“,
<
“o
L
[=) o((
<.
RCN
’DO/

Symbol 5 denotes 5

(=0

2
7l (jf;)z] +
e [)x . sin? (57(7;'—)

2
;:;C)z cos (575 L)]

[ TR N -

e LT U o e MY R g 1 g e .




TABLE 2.

MATRIX [Fm] CORRESPONDING TO ANTISYMMETRIC FUNCTIONS ‘In

7

AR 7
Z[Aé (./,02,026 YL’/r"'(mc)”_

2k,

o+ Z ) smer)

- ﬂ[m‘c)z cos /27! ’%)]

7+ 2D (53)5)

4 C
= ) 605(471 /o)]

e 2 (BF)smlrz)

k¢ (
, _ﬁ?mdz cosfgrc;)]

2
é[/+(74c)—2] +

2. Dsint(2nt)

Z. [)\ ; sin (zn/—f ) sin(4m ,%)

Z/[}\ sin(27 ‘) 5//7/67{ )

s coi(ont)] | * fo e flesinf)] o)l
‘5-,% £+ ]+ 5[ sinant)sinfert)
e Z[)\L-s/nz(47c'é) -
T R
?Q%O/ Fl+ (,f,i) ]2

S )/mbO/ Z denotes Zo

o

Z [P\L sin (67(-)
cos*(en ‘)]

( mc)

-%-



TABLE 3.

=

n

INFLUENCE COEFFICIZNTS FOR DEFLECTION OF BEAMS AT MIDSPAN--EFFECT OF ng

Five-Girder Bridge; c = O.4; A = 12.5; k = O; m, = 11; Yn = Functions Used: -1 through n,

To obtain deflections, the tabulated coefficients are to be multiplied by the quantity Paﬁ/EbIb

Longit. Values of Deflection Coefficient, Cd
Beam Position n . Trangverse Location of Load )
of Load A AB B BC c cD D DE E
2  0.00887 0.00h65 0.0046%  0.00293  0.00163  0.00067 -0.00002  -0.00054  -0.00098
te 4L 0.00887 0.00665 0.00462  0.00204  0.0016%  0.00067 ~0.00002  -0.0005k  -0.00098
Quarter ¢ 4,00887 0.00665 0.00462 0.0029%  0.00163 0.00067 -0.00002  -0.00054  -0.00098
8- 0.00887 , 0.00665 0.00462  0.0029%  0.00163 0.00067 -0.00002  -C.0005k  -0.00098
(0.00887) (0.00674) (0.00462) (0.00294) (0.00163) (0.00067) (-0.00002) (-0.00063) (-0.00098)
A B
2  0.01307 0.00967 0.00661 0.00412  0.00225  0.00094 0.00000  -0.0007h  -0.00139
Conte L 0.01308 0.0096F  0.00659 0.00413 0.00229 0.00095 =0.00003 -0.00076  -0.0013%8
CALEr 6o 5,01308  ©.00965  0.00658 © 0.0041%  0.00229  0.00094k  -0.00002  -0.000756  -0.00L%8
8 C.01L308  0.00966  0.00658  0.0041k  0.00229  0.00095 -0.00002  -0.00076  -0.00138
(C.01308) (0.00966) (C.00558) (0.00k14) (0.00229) (0.00095) (-0.0000%) (-0.00076) (-0.00138)
Quarter 8 0.004G2  0.00472  0.00459  0.00409  0.003%32  0.00245 0.00157 0.00076  -0.00002
(0.00462) (0.00472) (0.00459) (0.00409) (0.00332) (0.00245) (0.00157) (0.00076) (-0.00002)
B
Center 8 0.00653 0.00700 0.00694 0.00608 0.004T7  ©.00345 0.00221 0.00106  -0.00002
(0.00658) (0.00700) (0.00695) (0.00608) (0.00477) (0.00345) (0.00221) (0.00107) (-0.0000%)
2 0.00LE3  0.00257 0.00%337  0.00%390  0.00409  0.00390 0.00%37 0.00257 0.001:3
N— L ¢.00LE%  0.00251 0.00333  0.00393  0.00416  0.003%93% 0.00333 0.00251 0.00163
arter o 00165  0.00052  0.00%33  0.00%0%  0.00417  0.0039%  0.00332  0.00252  0.00163
8 0.001635 0.00252 0.00%33%  0.00397  ©.00417 0.00%93 0.00%3%2 0.00252 0.00163
(0.0016%) (0.00252) (0.00332) (G.uvG.. 7Y (0,00417) (0.00393) (0.00332) (0.00252) (0.00163)
c
2  0.00025 0.00371 0.00494  0.00577 0.00Lx  G.0057T 0.00494 0.00371 0.00225
4L 0.00229 0.00351 0.00479 0.00587 0.00631 0.00587 0.00479 0.00351 0.00229
Center 6 0.00229 0.00355 0.00k77 0.00586 0.0063%  0.00586 0.00477 0.00355 0.00229
8 0.00229 0.00355 Q.00477 0.00585 0.00634% 0.00585 C.004T7 0.00355 0.00229
(0.00229) (0.00355) (0.00477) (0.00585) (0.00634) (0.00585) ( 0.00477) (0.00355) (0.00229)

# Numbers in parentheses were reproduced from Ref. (10).



TABLE L.

INFLUENCE COEFFICIENTS FOR MOMENT IN BEAMS AT MIDSPAN--EFFECT OF n,

m, = 11; Yn Functions Used:
Five-Girder Bridge; ¢ = O.4; X = 12.5; k = O

n = -1 through ng

To obtain moments, the tabulated coefficients are to be multiplied by the quantity Pa

Longit. Values of Deflection Coefficient, Cp
Beam Position n0 Transverse Location of Load
of Load A AB B BC C CD D DE E
2 0.0725 0.0581  0.0437 0.0298 0.0173 0.0069 -0.0007 -0.0059 -0.0095
or L 0.0723% 0.0587 0.0442 0.0295 0.0165 0.0066 -0.0002 -0.0052 -0.0097
Quart 6 0.0723 0.0585  0.04k2 0.0295 0.0165 0.0068 -0.0002 ~0.0053 ~0.0097
8 0.0723 0.0585  0.0kh2 0.0295 0.0165 0.0068 -0.0002 -0.0053 -0.0097
(0.072)® (0.059) (0.0hk) (0.030) (0.017) (0.007) (0.000) (-0.005) (-0.010)
A
2 0.1711 0.1121  0.0690 0.0%81 0.0192 0.0088 0.0017 -0.0057 -0.01k2
Cent h 0.1717 0.1095 0.0672 0.0%94 0.0220 0.0095 -0.0002 -0.0077 -0.0136
enter ¢ 0.1717  0.1100 0.0670 0.0395  0.0221  0.0092 -0.000%  -0.0075  -0.0136
8 0.1717 0.1100 0.0670 0.0395 0.0221 0.0092 -0.0003 -0.0075 -0.0136
(0.172) (0.111) (0.067) (0.0%0)  (0.022) (0.009) (0.000) (-0.008) (-0.01k)
Quarter B8 0.04k42 0.0373 0.0325 0.0319 0.0305 0.02kk 0.0159 0.0076 ~0.0002
(o.044)  (0.0%37) (0.033) (0.032)  (0.031) (0.024) (0.016) (0.008) (0.000)
B
Center 8 0.0670 0.0898 0.1073 0.0786 0.0504 0.0%29 0.0213 0.0104 ~0.0003
(0.067) (0.091) (0.107) (0.080) (0.050) (0.033) (0.021) (0.000) ( 0.000)
2 0.0173 0.0231  0.0280 0.0313 0.0%23% 0.0313 0.0280 0.0231 0.01753
ter L 0.0165 0.0259  0.03%04 0.0301 0.0290 0.0301 C.0%04 0.0259 0.0165
Quar 6 0.0165 0.0251  0.03%05 0.0304 0.0289 0.0304 0.0305 0.0251 0.0155
8 0.0165 0.0251  0.0305 0.0304 0.0289 0.0%04 0.0305 0.0251 0.0165
(0.017) (0.025) (0.0%31) (0.0%30) (0.029) (0.030) (0.031) (0.025) (0.017)
c
2 0.0192 0.0416  0.0605 0.0731 0.0860 0.0731 0.0605 0.0416 0.0192
Center b 0.0220 0.0299  0.0510 0.0784 0.0998 0.0784 0.0510 0.0299 0.0220
6 0.0221 0.03%9  0.050k4 0.0768 0.1006 0.0768 0.0504 0.0%39 C.0221
8 0.0221 0.0%337  0.050k4 0.0764 0.1006 0.07th4 0.0504 0.0337 0.0221
(0.002) (0.034) (0.050) (0.077) (0.101) (0.077) (0.050) (0.034) (0.022)

# Numbers in parentheses were reproduced from Ref. (10).



TABLLE ©.

m_ = 11; Y Functions Used:
o] n

n =

Five-Girder Bridge; ¢ = 0.8; » = 12.5, k = 0

INFLUENCE COEFFICIENTS FOR DEFLECTION OF BEAMS AT MIDSPAN--EFFECT OF ng
-1 through nO

To obtain deflections, the tabulated ccefficients are to be multiplied by the quantity Pa5/EbIb

Longit. Values of Deflection Coefficient, C4
Beam Position n Transverse Location of Load
of Load A AB B BC C CD D DE E
2 0.01200 0.00696 0.00291 0.00043 -0.00052  -0.00049  -0.00015  ©.00002 -0.00005
ovart 4L 0.01204  0.00678 0.00276 0.00051 =-0.00031  -0.00040  -0.00030 -0.00016 -0.00001
Warter ¢ 501205 0.00683 0.00273  0.00052 -0.00028 -0.00044  -0.00030 -0.00016  -0.00002
8 0.01205  0.00684% 0.00273 0.00053 ~-0.00028 -0.00043  -0.00030 -0.00015 -0.00001
(0.01204)*(0.0068k)(0.00273) - (0.0005k4)(~0.00028) (-0.00043) (-0.00030)(-0.00015) (-0.00001)
A
2  0.01752 0.0101L0 0.00416 0.00055 -0.00080 -0.00069 -0.00018  0.00005 ~-0.00009
Cent 4 0.01759 €.00979 0.00391 0.00070 -0.0004lL  -0.,00056  -C.000k2 -0.00024 ~C.00002
enter g 0.01760 C.00988 0.00388  0.0007L -0.00040  -0.00062 -0.00043 -0.00022  -0.00002
8 C€.0L760 0.00989 0.00387 0.00073 -0.00040 -0.00060 -0.00043 -0.00022 -0.00002
(0.01760) (0.00990)(0.00387) (0.00074)(-0.00040) (-0.00060) (-0.0004%3)(-0.00022) (-0.00002)
Quarter 8  0.00273  0.00632 0.0079% 0.00635  0.00344  0.00135 0.00024 -0.00020 -0.00030
(0.00273) (0.00631)(0.00795) (0.00634) (0.0034k4) (0.00135) (0.00024)(-0.00020) (-0.00030)
B
Center 8 0.00387 0.00929 0.01178  0.00929 0.00488 0.00187 0.00033 -0.00028 -0.00043
(¢.00387) (0.00926)(C.01178) (0.00927) (0.00487) (0.00188)  (0.000%3)(-0.00027) (-0.00043)
2 -C.00052  0.00211 0.00435 0.00584  0.00637 0.0058k4 0.00435  0.00211 -0.00052
¢ b -C.00031 C.00Ll2 0.0035h4 0,00631 0.00756 0.00631 0.00354  0.00112 -0.00031
arter o 00028 C.00130 0.003kh  0.0062k  0.00770  0.0062k 0.00344k  0.00130  -0.00028
8 -0.00028 C.00129 ©.00344 0.00623  0.00771.  0.00623 0.00344  0.00129 -0.00028
(~0.00028) (0.00130)(0.00344) (0.00622) (0.00771) (0.00622)  (0.00344) (0.00130) (-C.00028)
c
2 -0.00080 0.00307 0.00634 0.00853  0.00%29  0.00853% 0.00634  0.00307 =0.00080
Cent L ~{.0004k  0.00145 0.00503 0.00928 0.01123  0.00928 0.00503  0.00145 -0.00044
enter 6 .6.00040  0.00180 -C.O0K88  0.0091k  0.0llkk  0.009L4 0.00488 0.00180  -0.00040
8 -0.00040 0.00179 0.00483 0.00912  0.01144  0.00912 0.00488  0.00179 -0.00040
(-0.00040) (0.00179)(0.00487) (0.00910) (0.01145) (0.00910) (0.00487) (0.00L79) (-0.00040)

# Numbers in parentheses were reproduced from Ref. (10).
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TABLE 6. INFLUENCE COEFFICIENTS FOR MOMENT IN BEAMS AT MIDSPAN--EFFECT OF n,
m, = 11; Yn Functions Used: n = -1 through n,
Five-Girder Bridge; c = 0.8; A = 12.5, k = 0
To obtain moments, the tabulated coefficients are th be multiplied by the quantity Pa

Longit. Values of Moment Coefficienmt, Cp
Beam Pogition n Transverse Location of Eg_ad .
of Load A AB B BC C CD D DE E
2 0.1027 0.0613 0.0274 0.0058 -0.0036 -0.0047 -0.0025 =-0.0007 -0.0002
L 0.1027 0.0609 0.0270 0.0059 -0.0030 -0.0043 -0,0029 -0.001% ~0.0001
Quarter ¢ 0.1028 0.0610 0.0268 0.0060 =-0.0027 =0.004k -0.0030 -0.0015 -0.0002
8 0.1028  0.0610 0.0268  0.0061 -0.0028 -0.0043  -0.0030 -0.0015 ~0.0001
(0.103)™ (0.061) (0.027) (0.006) (~0.003) (-0.004) (-0.003) (-0.002) ( 0.000)
A
2 0.2161 0.1160 0.0437 0.0018 -0.0113 =-0.0070 0.0007 0.0026 -0.0016
Cent L 0.2175 0.1089 0.0%390 0.0057 -0.004% ~0.0057 -0.0041 -0.0019 -0.0002
enter 6 0.2176 0.1090 0.0386 0.0059 =-0.0040 -0.0058 -0.0042 -0.0021 -0.0002
8 0.2176 0.1089 0.0386 0.0058 -0.0041 -0.0059 -0.0042 -0.0022 -0.0002
(0.218) (0.109) (0.039) (0.006) (-0.004) (-0.006) (-0.004) (-0.002) ( 0.000)
or 8 0.0268 0.0522 0.0629  0.0539 0.0336 0.01L44 0.0024k  -0.0022 -0.0030
. Quart (0.027) (0.052) (0.063) (0.054) (0.0%34) (o0.00k) (0.002) (-0.002) (-0.00%)
B Cente 8 0.0386 0.1108 0.1591 0.1087 0.0487 0.0168 0.00%2  -0.0024 -0.0042
nter (0.039) (0.110) (0.159) (0.108) (o0.049) (0.0L7) (0.003) (-0.002) (-0.004)
2 -0.0036 0.0187 0.0376 0.0502 0.0545 0.0502 0.0376 0.0187 -0.00%6
L -0.0030 0.0l47 0.0345 0.0522 0.0594 0.0522 0.0345  0.0147 -0.0030
Quarter ¢ _5.0027 0.0kl 0.0336 0.0525  0.0606  0.0525  0.0336  0.0l41 -0.0027
8 -0.0028 0.01k1 0.0%336 0.0525 0.0606 .0.0525 0.0336 0.0141  -0.0028
(-0.003) (0.014) (0.034) (0.052) (0.061) (0.052) (0.034) (0.01%) (-0.003)
c
2 -0.0113 0.0351 0.0745  0.1007 0.1184 0.1007 0.0745 0.0351  -0.0113
Cent I -0.00k4  0.0058 0.0533 0.1141 0.1533 0.1141 0.0533% 0.0058  -0.004k4
enter 6  -0.0040 0.0166 0.0487 0.1097 - 0.1557 0.1097 0.0487  0.0166 ~0.0040
8 -0.00k1  0.0157 0.0487 0.1073 0.1557 0.1073 0.0487 0.0157 ~0.0041
(-0.004) (o 0.016) (-0.004)

.016) (0.049) (0.106) (0.156) (0.106) (0.049) (

# Numbers in parentheses were reproduced from Ref. (10).



TABLE 7. INFLUENCE COEFFICIENTS FOR DEFLECTION OF BEAMS AT MIDSPAN--EFFECT OF mo
Five-Girder Bridge; ¢ = 0.4; X = 12.5; k = 0; n, = 8; m = 1 through m

To obtain deflections, the tabulated coefficients are to be multiplied by the quantity Paﬁ/EbIb

-€6-

Longit. ’ Values of Deflection Coefficient, Cq
Beam Position m Transverse Locations of Load
of Load ° A AB B BC C CD D DE E
1 0.00905 0.006T4 0.00464 0.00293 0.00163 0.00067 -0.00002 -0.00054 -0.00098
3 0.00888 0.00666 0.00462 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00098
Quart 5 0.00886 0.00665 0.00462 0.00294 0.00163 0.00067 -~0.00002 -0.00054 -0.00098
arter 7 0.00887 0.00665 0.00462 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00098
9 0.00887 0.00665 0.00462 0.0029% 0.00163 0.00067 -0.00002 -0.00054% -0.00098
11 0.00887 0.00665 0.00462 0.00294 0.00163 0.00067 -0.00002 -0.00054 -0.00093
A
1 0.01280 0.00953 0.00656 0.00415 0.00230 0.00095 -0.00002 -0.00076 -0.00138
3 0.01305% 0.00964 0.00658 0.004l4 0.00229 0.00095 -0.00003 -0.00076 -0.00138
Center 5 0.01307 0.00965 0.00658 0.00414 0.00229 0.00095 -0.00002 -0.00076 -0.00153
T 0.01307 0.00965 0.00658 0.00414 0.00229 0.00095 -0.00002 -0.00076 -0.001%8
9 0.01308 0.00965 0.00658 0.00414% 0.00229 0.00095 -0.00002 -0.00076 -0.00138
1 0.01308 0.00966 0.00658 0.0041k 0.00229 0.00095 -0.00002 -0.00076 -0.00138
1 0.00163 0.00251 0.003%5 0.00403 0.00432 0.00403 0.00335 0.00251 0.00163
3 0.00163 0.00251 0.0033%2 0.00394 0.00419 0.00%394 0.00332 0.00251 0.0016%
Quarter 5 0.00163 0.00252 0.00332 0.00392 0.00416 0.00392 0.0033%2 0.00252 0.00163
T 0.00163 0.00252 0.00332 0.00395 0.004LL7 0.00393 0.00332 0.00252 0.00163%
9 0.00163 0.00252 0.0033%32 0.00393 0.00417 0.00%393 0.003%2 0.00252 0.00163
11 0.00163 0.002%2 0.003%2 0.0039% 0.00417 0.0039% 0.00332 0.00252 0.00163
c
1 0.00230 0.00355 0.004735 0.00570 0.00611 0.00570 0.00473 0.00355 0.00230
3 0.00229 0.00355 0.004T7T 0.00563 0.00629 0.00583 0.00477 0.00355 0.00229
Cente 5 0.00229 0.00355 0.00477 0.00584 0.006%2 0.00584 0.00477 0.00355 0.00229
r 7 0.00229 0.00355 0.00477 0.00585 0.0063%% 0.00585 0.00477 0.00355 0.00229
9 0.00229 0.00355 0.00477 0.00585 0.00633 0.00585 0.00477T 0.00355 0.00229
11 0.00229 0.00355 0.00477 0.00585 0.0063%3 0.00585 0.0047T 0.00355 0.00229




TABLE 8.

Five-Girder Bridge; ¢ = 0.4; A = 12.5, k = 0
To obtain moments, the tabulated coefficients are to be multiplied by the quantity Pa

INFLUENCE COEFFICIENTS FOR MOMENT IN BEAMS AT MDSPAN—-EFFEXIT oF m,
o = 8; m = 1 through m

Longit. Values of Moment Coefficient, Cp
Beam Position Traensverse Position of Load
of Load A AB B BC C CD D DE E
1 0.0710 0.0665 0.0458 0.0289 0.0160 0.0066 -0.0002 -0.0053 .0097
3 0.0722 0.0595 0.044% 0.0294 0.0164 0.0068 -0.0002 -0.0053 .0097
te 5 0.0724  0.0572 0.0442 0.0297 0©0.0165 0.0067 -0.0002 -0.0053% .0097
Quarter 7 0.0723 0.0582 0.0442 0.0296 0.0165 0.0068 -0.0002 -0.0053 .0097
9 0.0723 0.0588 0.0442 0.0295 0.0165 0.0068 -0.0002 -0.0055% .0097
11 0.0723 0.0585 0.0442 0.0295 0.0165 0.0068 -0.0002 -0.0053 .0097
A
1 0.17357 0.0940 0.0647 0.0409 0.0227 0.0094% -0.0002 -0.0075 .0136
3. . 0.1720 0.1039 0.0668 0.0403 0.0221 0.0092 -0.0003 -0.0075 .0L3%6
Center 5 0.1718 0.1072 0.0670 0.0399 0.0221 0.0092 -0.0003 -0.0075 .0136
7 0.1717 0.087 0.0670 0.0397 0.0221 0.0092 -0.0003 -0.0075 .0136
9 0.17L7 0.1096 0.0670 0.0396 0.0221. 0.0092 -0.0003 -0.0075 .0136
11 0.L717 - 0.1100 0.0670 0.0395 0.0221 0.0092 -0.0003 -0.0075 .0136
1 0.0160 0.0248 0.0330 0.0398 0.0243 0.0398 0.03%30 0.0248  0.0160
3 0.0164 0.0249 0.0307 0.0317 0.0285 0.0317 0.0307 0.0249  0.0164
. 5 0.0165 0.0254 0.0304 0.0285 0.0290 0.0285 0.0304 0.0254  0.0165
Quarter 7  0.0165 0.0252 0.0%05 0.0301 0.0289 0.0%01  0.0305 0.0252  0.0165
9 0.0165 0.0251. 0.0305 0.0310 0.0288 0.0310 0.0305 0.0251 0.0165
11 0.0165 0.0251 0.0305 0.0304 0.0289 0.0304 0.0305 0.0251 0.0165
c
1 0.0227 0.0%51 0.0467 0.0562 0.1076 0.0562 0.046T 0.0351L  0.0227
3 0.0221  0.0349 0.0500 0.0677 0.1017 0.067T7 0.0500 0.0349  0.0220L
Cente 5 0.0221 0.0342 0.050% 0.072L 0.1009 0.072L 0.0504 0.0342 0.0221
enter T  0.0221 0.0339 0.050% 0.0T43 0.1008 0.07Th3  0.050k 0.0339 0.0221
9 0.0221 0.0338 0.0504% 0.0756 0.1007 0.0756 0.0504 0.0338 0.0221
1L 0.0221 0.0337 0.050% 0.0764 0.1006 0.0764 0.050L4 0.0337 0.0221
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TABLE 9. INFLUENCE COrFFICIENTS FOR DEFLECTION ‘OF BEAMS AT MIDSPAN--EFFECT OF mo
o, = 8; m = 1 through m
Five-Girder Bridge; ¢ = 0.8; » =12.5; k =0
To obtain deflections, the tabulated coefficients ere to be multiplied by the quantity Paj/EbIb

Longit. Values of Defleciion Coefficient, Cy
Position m Transverse Position of Losad
of Load A AB B BC C CD . D DE E
1 0.01224 0.00691 0.00274 0.00052 -0.00028 -0.00043 -0.00030 -0.00015 -0.00001
3 0.01206 0.00684 0.00275 0.0005% -0.00026 -0.0004% -0.000%0 -0.00015 -0.00001
Quarter 5 0.01204 0.00684 0.0027% 0.00055 -G.00028 -0.00043 -0.00030 -0.000L5 -0.00001
7 0.0120k 0.0068% 0.00273 0.0005% -0.0002¢ -0.0004% -0.00030 -0.00015 -0.00001
9 0.01.205 0.00684 0.00275 ©.00055 -0.00028 -0.0004% -0.000%0 -0.00015 -0.0000CL
11 0.01205 0.00684 0.00275 0.0005% -0.00020 -0.00043 -0.00C%0 -0.00015 -0.00001
. ]
1 0.01731L C.00978 ©.00387 0.000T% -0.00040 -0.0006)1 -0.0004% -0.00022 -0.00002 iﬁ
3 0.01796 ©.00938 0.00387 0.00073 -0.00040 -0.00060 -0.0004% -0.00022 -0.00002
Center 5 0.01759 ©.00989 ©.00387 0.00075 -0.00040 -0.00060 -0.00043 -0.00022 -0.00002
7 0.01760 0.00969 9.00337 0.00075 “-0.00040 -0.00060 -G.00043 -0.00022 -0.00002
9 0.01760 0.00989 0.00%87 0.0007% -0.00040 -0.00060 -0.00045 -0.00022 -0.00002
11 0.01760 0.00989 ©.00387 0.00073 -0.000Lk0 -0.00060 -0.00045 -0.00022 -0.00002
1 -0.00026 0.00128 0.003hk5 0.006%3 0.00789 0.00633 0.00345 0.00128 -0.00028
3 -0.00028 0.00129 0.00344 0.00624 0.00772 0.00624 0.00344  0.00129 -0.00028
Quarter 5 -0.00028 0.00129 0.00344k 0.00622 0.00770 0.00622 0.00%44  0.00129 -0.00028
7 -0.000206 (.00129 0.0034h 0.00625 C.0CTTO C.00623 0.0C344  0.00129 -C.00028
9 -0.00028 ©0.00129 0.00344 0.00623 0.00771 0.00623 0.0C3544  C.0C129 -0.00028
11 -0.00028 0.0Cl29 ©.003%344 ©.00623 O.0CTTL 0.00625 (.00%44  0.00129 -0.00028
1 -0.00040 C€.00181 0.00488 0.00896 ©.01116 ©.00896 0©.004B8  0.00181 -0.000LO
4 20.00040 C.OCLT9 0.0CH83 0.00910 0.01140 ©.00910 ¢.00LB8  0.0C179 -0.000k0
Center 5 -0.000k0 €.0CL79 0.00488 ©€.00911  0.011k43 0.0C91L 0.00488 0.00179 -0.00CkO
7  -0.0004O0 (C.0CL79 0.00438 ©.00911 0.011l44 0.00911. 0.00488  0.00179 -0.00040
9  -0.00CkO 0.00179 0.00488 0.00912 0.01144 0.00912 0.00488 0.00179 -0.000L0
11 -0.00040 C©.0C1l79 0.00488 0.00912 0.01144 0.00912 0.0C488  0.00179 -0.000L40




PTABLE 10. INFLUENCE COEFFICIENTS FOR MOMENT IN BEAMS AT MIDSPAN--EFFECT OF m,
n =8; m=1 through m
Five-Girder Bridge; ¢ = 0.8; )\ = 12.5; k =0
To obtain moments, the tabulated coefficients are to be multiplied by the quantity Pa

Longit. Values of Moment Coefficient, Cp
Beam Position m _ Trensverse Position of Load _
of Load © A AB B BC C D ) DE E
1 0.1025 0.0682 0.0270 0.0052 -0.0028 -0.0042 -0.0030 -0.0015 -0.0001
3 0.1028 0.0620 0.0268 0.0059 -0.0028 -0.0043% -0.0030 -0.0015 =-0.0001
" 5 0.1029 0.0603 0.0268 0.0061 -0.0028 -0.0043 -0.0030 -0.0015 -0.0001
Quarter 7 0.1028 0.0609 0.0268 0.0061 =0.0028 -0.0043 -0.0030 -0.0015 =~0.0001
9 0.1028 0.0611 0.0268 0.0060 -0.0028 -0.0044 -0.0030 -0.0015 -0.0001
11 0.1028 0.0610 0.0268 0.0061L -0.0028 -0.0043 -0.0030 -0.0015 ~0.0001
A
1 0.2182 0.0965 0.0382 0.0073 -0.0040 -0.0060 -0.0042 -0.0021 -0.0002
3 0.2177 0.1055 0.0385 0.0062 -0.0041 -0.0058 -0.0042 -0.0022 -0.0002
Cente 5 0.2176 0.1077 0.0386 0.0060 -0.0041 -0.0058 -0.0042 -0.0022 -0.0002
nter 7  0.2176 0.1086 0.0386 0.0059 -0.0041 -0.0058 -0.0042 -0.0022 -0.0002
9 0.2176 0.1089 0.0386 0.0058 -0.0041 -0.0059 -0.0042 -0.0022 -0.0002
11 0.2176 0.1089 0.0386 0.0058 -0.004L -0.0059 -0.0042 -0.0022 -0.0002
1 -0.0028 0.0126 0.034%0 0.0625 0.0596 0.0625 0.0340 ..0.0126 -0.0028
3 -0.0028 0.0139 0.0337 0.0538 0.0606 0.0538 0.0337 0.0139 -0.0028
Quarte 5 -0.0028 0.0L42 0.0336 0.0511 0.0607 0.0511L 0.033%6 0.0142  -0.0028
o 7 -0.0028 0.014 0.0336 0.0522 0.060T 0.0522 0.033%6 0.0141  -0.0028
9 -0.0028 0.0141 0.0336 0.0528 0.0606 0.0528 0.033%6 0.0141  -0.0028
11  -0.0028 0.0141 0.0336 0.0525 0.0606 0.0525 0.033%6 0.0141  -0.0028
C
1 -0.0040 0.0178 0.0481 0.0884 0.1575 0.088% 0.0481 0.0178 -0.0040
3  -0.0041 0.0160 0.0487 0.1007 0.1561 0.1007 0.0487 0.0160 -0.0041
Cente 5 -0.0041 0.0157 0.0487 0.1045 0.1559 0.1045 0.0487 0.0157 -0.0041
r 7 -0.004L 0.0156 0.0487 0.1062 0.1558 0.1062 0.0487 0.0156 -0.004L
9 -0.0041 0.0156 0.0487 0.1069 0.1557 0.1069 0.0487 0.0156 -0.0041
11 -0.0041 0.0157 ©O.08T 0.1073 0.155T 0.1073 0.0487 0.0157 -0.0041




TABLL 11. COMPARISON OF INFLUsHC:E COIFFICIENTS FOR MOMENT IN LUADED BEAL
AT MIDSPAN COMPUTED BY TWO DIFFLURENT PROCHDURES
Five-Girder Brilge; ng = &; m = 1 through mg

To obtain moments, thz tabulated coeffi:zients arc to be multiplied by the quantity Pa

Longit . 2= by =l k=0 c=C.U; A =109 k=0
Position g Values of Moment Coefficient, Cp, for Beanm
o Load
A o A C
From .. From i. From iq. From . From bkq. From Lg. From :g. From 3.
(¢=2%) (o-42) (¢-39) (u-b2) (=-39) (o =bs3 (»-29) (c-43)
1 C.0893% C.2710 L0l C.0243 0.1208 Q.1025 .07 0.0596
3 0074 Colpe? . 0300 0.0285 C.10%2 C.10:8 L.0E29 0. 0GOE
‘ . 5 e CLOT2h 0. ,*;7 C.02G0 ¢.0%95 G.1029 C.7573 €. 0607
uarte: 7 (.5719 C.o7% Lot C.oe39 0.100k G.1020 C.0L02 0.0607
> Co o Coolos G0 .28 O Ch C.1028 C.0520 0.06008
1 GG CLO75 CooaGs G.dy L. 1050 C.L020 0.0608 0.0606
1 0.1ed? 0.1737 0.0060% 0.1076 ¢.1708 0.2102 G.1101 0.1575
4 C.ly72 0.L720 0.0758 0.10L7 0.1929 G.oLT77 0.131% 0.1561
conter 5 o 1551 C.1718 0.0342 0.1009 0.2009 0.217% 0.1391 0.15%9
vEnEE 7 1561 C.L7L7 0.088¢z 0.1008 0.2050 G.2176 C.1k3z 0.1558
9 o lplo 0.1717 0.0906 0.1007 0.2075 0.2176 0.1457 0.1557
11 L1033 C.1717 0.0922 0.1006 0.2092 0.2176 0.1473 0.1557
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TABLE 12. INFLUENCE COEFFICIENTS FOR DEFLECTION OF BEAMS AT QUARTER-POINT OF SPAN
m,=1l; n = 8
Five~Girder Bridge; ¢ = 0.4; X = 12.5; k = 0

To obtain deflections, the tabulated coefficients are to be multiplied by the quantity Pa5/EbIb

Longit. Values of Deflection Coefficient, Cg
Beam Position Transverse Poslition of Load
of Load A AB B BC C CD D DE B
l/h 0.007th 4 0.00545 0.00353 0.00211 0.00112 0.00044 -0.0000k4 -0.00039 -0.00069

(0.00764) (0.00545) (0.00353) (0.00212) (0.00112) (0.0004k4) (-0.00004) (-0.00039) (-0.00069)

0.00887 0.00665 0.00462  0.0029% 0.00163 0.0006T7 -0.00002 -0.00054  -0.00098

A Center (4.00887) (0.00674) (0.00462) (0.00294) (0.00163) (0.00067) (-0.00002) (-0.00063) (-0.00098)

/i 0.00544%  0.00%2L  0.00305 0.00202 0.00117 0.00051 0.00001L  -0.00037  -0.00069
3 (0.00544) (0.00421) (0.00305) (0.00202) (0.00117) (0.00051) (0.0000L) (-0.00037) (-0.00069)

1/k 0.00353 0.00408 0.00421  0.00362  0.00269 0.00184 0.00113 0.00052  -0.0000k4
(0.00353) (0.00408) (0.00421) (0.00362) (0.00269) (0.001L84) (0,00115) (0.00052) (-0.00004)

0.00462  0.00k72  0.00459  0.00409  0.00332 0.00245 C.00157  0.00076  -0.00002
(0.00462) (0.00472) (0.00459) (0.00409) (0.00332) (0.00245) (0.00157) (0.00076) (-0.00002)

/i 0.00305 0.00292 0.00274+ 0.0024k6  0.00208 0.00161 0.00108 0.00055 0.00001
3 (0.00%305) (0.00292) (0.00274) (0.00246) (0.00208) (0.00L6L) (0.00L08) (0.00055) (0.0000L)

B Center

1/h 0.00112 0.00189 0.00269 0.00349  0.00388 0.00349 0.00269 0.00189 0.00112
(0.00112) (0.00189) (0.00269) (0.00349) (0.00389) (0.00349) (0.00269) (0.00189) (0.00112)

0.0016% 0.00252 0.00332 0.0039%  0.00417 0.00393 0.003%2 0.00252 0.00163

¢ Genter (0.00163) (0.00252) (0.00332) (0.00393) (0.0017) (0.00393) (0.00332) (0.00252) (0.00163)

/i 0.,00117 0.00166 0.00208 0.00236  0.00245 0.002%6 0.00208 0.00166 0.00117
3 (0.00117) (0.00166) (0.00208) (0.00236) (0.00245) (0.00236) (0.00208) (0.0016€) (0.00117)

# Numbers in perenthefes were reproduced from Ref. (10).
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TABLE 13.

To obtain moments, the tabulated coeffi:ients are to be multiplicd bty the quantity Pa.

INFLUENCE COLFFICIENTS FOR MOMENT IN BEAMS AT JUARTER-POINT OF SPAN
m =1l; n =8
o o)

Five-Girder Bridge; ¢ = 0.4; X = 12.5; k = O

Longit. Values of Moment Coefficient, Cp
Beam Position Transversc Position of Load
of Load A AB B BC C CD D DE E
1/4 0.1403 0.0820 0.0k32 0.0213 0.0100 0.003%2 -0.0012 -0.0043 -0.0049
(0.140)* (0.08%) (0.042z) (0.02L) (0.010) (0.005) (-0.001) (-0.004)  (-0.007)
A Cent 0.072% 0.0585  0.04k42 0.0295 0.0165 ©.0068 -0.0002 -0.005% -2.0097
enter (0.072) (0.059) (0.044)  (0.030) (0.007)  (0.007) (0.000)  (-0.005) (-i.010)
u C.031k 0.0281 0.0239 0.0183 0.0120 0.0061 0.0009 -0.0032 -C.0068
3 (0.051) (c.028) (5.02k)  (0.018) (0.012)  (0.00¢) (.001)  (-0.003)  (-0.007)
/4 0.0432 0.0719 0;0955 0.0658 0.037h4 0.0206 0.0114 0.0046 -0.0012
(0.043)  (0.073) (0.094) (0.057) (0.037) (0.021) (0.011) (0.005) (-0.001)
B Cent 0.0kk2 0.0373 0.0325 0.0319 0.0305 0.024k 0.0159 0.0076 ~0.0002
eOLer  (o.ouk)  (0.037)  (0.033) (0.0%2) (0.031)  (0.024) (0.006)  (0.008)  ( 0.000 )
m 0.0239 0.0179 0.0139 0.0128 0.0130 0,0122 0.0098 0.0058 C.0009
v (¢.024)  (0.018) (0.01%) (0.013) (0.013) (0.012) (0.010) (0.006) ( 0.001 )
1/ 0.0100 0.0208 0.0574 0.0643 0.0893 0.0643 0.03Th 0.0208 C.CL00
(0.010) (0.021) (¢.037) (0.065) (0.08g) (0.065)  (0.037) (0.021) (0.010)
e Center 0.0165 0.0251 0.0305 C.0%04 0.0289 0.0304 0.0305 0.0251 0.0165
(c.o17) (0.025) (¢.03L) (0.030) (0.029) (0.030) (0.031) (0.025) (0.017)
/i 0.0120 0.01%0 0.013C 0.0120 0.011k 0.0120 ° 0.0130 0.0130 0.0120
> (0.012) (2.013) (0.013) (0.012) (c.011) (0.012) (0.013) (0.012) (0.012)

#* Numbers in parentheses were reproduced from Ref. (10).



TABLE 14. INFLUENCE COEFFICIENTS FOR DEFLECTION AND MOMENT OF BEAMS AT MIDSPAN

Five-Girder Bridge; ¢ = O.4; A = 50; k = 0, m_ = 11; n, = 8
To obtain deflections and moments, the tabulated coefficients are to be multiplied
by the quantities Pa3/EbIb and Pa, respectively.

Longit. ) Values of Influence Coefficients
Beam Position Transverse Location of Load }
of Load A AB B BC C CD D DE E

(a) Deflections, Cgq
arter 0.01105 _ 0.00720  0.00391  0.0016F ~ 0.00029 -0.000%36  -0.00056 -0.00055  -0.000LI
A (0.01106)*(0.00719) (0.00391) (0.00163) (0.00028) (~0.000%6) (-0.00055) (-0.00054) (-0.00042)
‘ 0.01619 0.01L042  0.00555 0.00228  0.00040 ;0.00050 -0.00078 -0.00075 -0.00059

Center  ( 01620) (0.0L041) (0.00555) (0.00227) (0.00040) (-0.00051 (- o 00078) (-0.00077) (-0.00059)
arter ,0-00591 ~ 0.00538 ~ 0.00599 ~ 0.00528 ~ 0.003B1 — 0.00233 ~ ~0.00110 — ©.00018 ~ ~0.00056
B (0.00391) (0.00536) (0.00600) (0.00528) (0.00380) (0.00233) (o 00110) (0.00018) (=~-0.00055)
Center ,0-00355  0.00796  0.00900  O. 00778 0.0054k2  0.00325  0.00155  0.00027 -0.00078
_____ ‘ . .00794) (0. . (o. 0.00326) (0.00155) (0.00026) (-0.00078
. e . . . ]
¢ Quarter (- oooea) (0. 00206) (0. 00380) (0. 00556) (o. 00607) (0.00536) (0.00380) (0.00206) (0.00028) 'é‘
Center 0.00040 0.00286 0.00542 0.00791  0.00909 0.00791 0.005k42 0.00286 0.00040 i

(0.00040) (0.00288) (0.00542) (0.00790) (0.00910) (0.00790) (0.00542) (0.00288) (0.00040)

(b) Moments, Cn _ .
Quarter  0.0950  0.06k2 0.0382 0.0172 0.0030 -0.0037 -0.0055 -0.0052 -0.0041
A Ce . 0.2037 0.1170 0.0555 0.0205 0.0037 -0.0047 -0.0077 -0.0075 -0.0058
ater  (o.2o4) (0.118) (0.055) (0.021) (0.0Q4) (-0.005) (-0.008) (-0.008) (-o 006)

Quarter 0.0382 0.0%21 0.0439 0.0%31 0.0367 0. 08l 0. 0.
B Center 0.0555 0.1016 0.1313 0.0964 0.0548 0.0294 0.0149 0.0031 -o 0077
‘ (0.055) (0.102) (0.131) (0.097) (0.055) (0.030) (0.015) (0.003) = (-0.008)
Quarter 0.0030 0.0220 0.0367 0.0437 0.04L49 0.0L3T 0.0367 0.0220 0.0030
C Center 0.0037 0.0250 0.0548 0.0982 0.1318 0.0982 0.0548 = 0.0250 0.0037
' (0.004) (0.025) (0.055) (0.099) (0.132) _ (0.099) ~ (0.055)  (0.025)  (0.004)

# Numbers in parentheses were reproduced from Ref. (10).
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TABLE 15. COMPARISON OF RESULTS OBTAINED BY USING
DIFFERENT NUMBERS OF INTEGRATION STEPS

Flve-Girder Bridge; Load over Beam A
o = 0.1{_5 AN o= 25; k = O; y = 0,05; v = 0.23 w = O; a = O.ls; fv/fb = 0.7

N = Number of Integration Steps*

Max. Dyn.
Increment Beam , U
for 50 100 150 200
Interacting .
Force 0.177 0.178 0.178 0.178
Deflection at 0 0.00251 0.00254 0.00254 0.00254
Midspan in 1 0.001k0 0.00150 0.00150 0.00150
Terms of 2 0.00071 0.00069 0.00069 0.00069
Waj/ 3 0.00096 0.00091 0.00089 . 0.00088
B L 0.00135 0.00136 0.00136 0.00136
Moment at 0] 0.0267 0.0262 0.0262 0.0262
Midspan in 1 0.0139 0.0148 0.0148 0.0148
Terms of Wa 2 0.0070 0.0068 0.0068 0.0068
‘ 3 0.0095 0.0090 0.0088 0.0087
" 0.0133 0.0134 0.0134 0.0134

*Minimum number of integration steps required by stability and convergence
criterion is N = 30.
No solution could be obtained for N = 25.
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TABLE 16. RELATIONSHIP BETWEEN PEAK VALUES OF ,
RESPONSE FOR ACTUAL STRUCTURE AND EQUIVALENT BEAM
Five-Girder Bridge; Load over Beam C
k=0; y=0.05 v =02, w=0; a=0.15; fv/fb = 0.7
All deflections are expressed in terms of Wad/E I,

and moments in terms- of Wa

Max. Static Max. Sum of

c A Deflection in Dyn. Incr. for
Loaded Beam Moment in Beams
0.4 12.5 0.00634 0.04T1
25 0.00761 0.0533
50 0.00909 : 0.0599
0.6 16.67 - 0.00977 0.0617
0.8 6.25 0.00955 0.0608
12.5 0.011k4k4 0.0695
25 0.01341 0.0744
1.0 10 0.01288 0.0720

Beam Solution 0.00416 0.0388




TABLE 17. COMPARISON OF STATIC AND DYNAMIC DISTRIBUTIONS
OF MOMENT IN BEAMS ACROSS MIDSPAN

Five-Girder Bridge; Load over Beam C
k=0; y=C.05 v=0.2; w=0, a=0.15; fv/fb = 0.7

All momente are expressed in teras of Via

Max., Value of Sum of Moment in Beam in Percent of Corresponding
. Moments in Beams Maximum Value of Sum
c A al
he _,dSta.tic Dynamic Increment
Static Dyn. Incr. A B ' c A B c
3
A\
O 12.5 5 0.24 0.047 9 21 40 17 21 2y !
25 10 ool 0.05% 5 22 Lo 17 22 °5
50 20 C.2h 0.0€0 1 23 52 14 23 27
0.6 16.57 10 0.2k C.oolh 0 22 © 56 15 22 26
0.6 6.25 5 0.24 0.061 1 21 56 15 22 2€
1.0 10 C.2h 0.070 - 20 64 16 22 25
25 20 0.24 0.074 -3 16 70 16 22 26
1.0 10 10 0.34 Cc.072 =2 17 70 16 22 25

UL Lt KA M N S N G T by ot PR e e MANAR Y KA GBI OO P T A, A
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FIG. 11 COMPARISON OF RESULTS OBTAINED BY IDEALIZING THE BRIDGE AS A BEAM
Single Axle; Smoothly Rolling; o = 0.18, v = 0.5, fv/fb = 0.5
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FIG. 12 COMPARISON OF RESULTS OBTAINED BY IDEALIZING THE BRIDGE AS A BEAM
Single Axle; Smoothly Rolling; o = 0.18, v = 0.5, fv/fb = 1.0
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FIG. 13 COMPARISON OF RESULTS OBTAINED BY IDEALIZING THE BRIDGE AS A BEAM
Single Axle; P, ... .. =1.5W; a= 0.075; v = 0.2; fv_/fb = 0.3
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FIG. 14 COMPARISON OF RESULTS OBTAINED BY IDEALIZING THE BRIDGE AS A BEAM
Single Axle; P, ..., = 0.5 W; a = 0.10; v = 0.2; fv/fb = 1.0
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Dyn. Incr. of Deflection of Beams in Terms of Wao /Eblb
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APPENDIX

DERIVATION OF GOVERNING DIFFERENTIAL EQUATIONS

Al. Lagrange's Equation for.fn

It can be verified that

Vs - x4 D db ZAns ([;J)

24, ad

2; _xp 4t 2—[; Z OG0, (#55) # e 2 000), (5 )45

/(Z[z,«z, [«f) + {I) ub -y 5in WVZZ][()/)][ (Yn}.ﬂ'ﬂ lﬂ@.]

97{" J=

By substituting
- M
k zB >
' 4into Eq. (A-3), one obtains

22 - - sin wvtz(}/){ +/<[ (uf) W, sin le‘zf [y) ,‘.(_dubj&

It can also be verified that

!
2 o2 ugatus [ iy

P
U 2 ). :
-é-z’é:——i— 5’”“’»&2:/ ) (V4,),

_g_gﬂ’:a
24

i

__—mjw sin ”W"Z(}/J/

=

’%

(a-1)
(a-2)

(A-3)

(A-L)

(A-5)
(A-6)
(A-7)

(a-8)
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- o | (4-9)

2t > %ty S

P2 s 22 } (A-10)
4 DB L pabag ZL |y,
dE(p )T 5 ) Y= Yo 2y (a-11)

. , |

. -,;)"’—Zj—)=3’—au; = (WK (5), (%), (a-12)
ad [ %p)_
= -572{..0 (A-13)

| %_(27;)= mw[lf_af vl Z(Y){ oW .+%Z[fs}rb-%"—z+ -%V—Iéwsla'i{]():)j}

# sin<o= th Z(”g{( )(’afa) "Uw;[?[ smgdl—z

J:(

£2ZY /‘“’ 1wl‘ ['nv) sin ﬂrvl‘]()/)}} (4-14)

By substituting Eqs. (A-l) through (A-1%) into Eq. (3-2), dividing
the resulting equation by Vs and rearranging the terms, one obtains the

following equation for the generalized coordinate fn:
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oo ZE{ 2 2 [ I0t) )0 £ S (K0

‘ - 2 VZ 2 1:\/2':. L‘ 2
+ Kk sin -7‘7—2[);2//‘.)/ —m(_a_.).s‘m %—Z("J(%_)/}

js/ J=’

o 28] 28 ¢ [ NI, # £ H 0401
- sinf-alézz[y)/[ L k( - () e, ub)]

- 2 poby v by 2 ag 2 Ol tic), -y v ZE 2 (. )

J:l

+m(")5in-ﬂ’52()/) (?s‘* =0 (A-ls)‘v>

Eq. (2-16), written in detail for the deflection of the bridge

(A-16)

or
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w; {"4” L[ ,er ENENG)+ 5 K (u (%)

(To

_;z.ﬂaéy[){,a’o7 "f“’f_.zp("")"/):)‘- =0 (4-17)

By substituting Eq. (A-17) into Eq. (A-15) ome obtains the equation

(3-32) which was presented in the text.

A2. Lagrange's Equation for z

It can be shown that

2% 5

.5..2'22’. k/é [z +Z (w'+w') +/ ) (/5] (A-18)
2lp = Mg (a-19)
7 /2 p

7 (T_‘;’—’ =Mz (A-20)

‘and that all other terms entering the Lagrange's equation for z are equal

to zero. By substituting Eqs. (A-18) through (A-20) into Eq. (3-2), one
obtains

/(Z{z rZ, (unur) +//) } Mijz”:a (A-21)

J=7

Eq. (3-33) ie obtained fram Eq. (A-21) by noting that

1,25:_4_2/9_ and Zi:(—/)i/é =0
J=



A3. Lagrange's Equation for u
It can be shown that

2. kb /Z;(;f)’[z+z, - (wss)# (-9 atr]

a _%)= ’
dt \ 2u’ Ja'

(a-22)

(A-23)

and that all other terms entering the Lagrange's equation for u are equal .

to zero. By substituting Eqs. (A-22) '"and @ (A-23) into Eq. (3-2), one

obtains

2 J ]
k6 > () (242, - e )+ £)%ub) 4 Ju" = o (4-24)
J':I » : ‘
Eq. (3-3k) is obtained from Eq. (A-24) by noting that



