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Abstract

We study the link between second-best production efficiency and the constraints on income

distribution imposed by private ownership of firms in economies with Ramsey taxation.

We review the result of Dasgupta and Stiglitz [1972], Mirrlees [1972], Hahn [1973], and

Sadka [1977] about firm-specific profit taxation leading to second-best production effi-

ciency. Problems in the proofs of this result in these papers have been identified by

Reinhorn [2005]. We provide an alternative, and with some hope a more intuitive, proof

of this result. The mechanism employed in our proof is also used to show second-best

production efficiency under some configuarations of private ownership without any (or at

best, uniform) profit taxation. The results obtained raise questions about the genericity of

the phenomenon of second-best production inefficiency and about recovering social shadow

prices in such economies.

Journal of Economic Literature Classification Number:H21

Keywords: Ramsey taxation, production inefficiency, general equilibrium, private owner-

ship.
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Constraints on Income Distribution and Production Efficiency

In Economies with Ramsey Taxation

1. Introduction.

Diamond and Mirrlees (DM) [1971] revisited the problem first posed by Ramsey [1927]

about alternative policy instruments that can be employed when there are informational

constraints on the implementation of the second-welfare theorem. They showed that, when

personalized lump-sum transfers are not available to the government as redistributive de-

vices, commodity taxation can be employed as an alternative, albeit second-best, means

of redistribution. In an economy with commodity taxation and constant returns to scale

in production they characterized the second-best optimal commodity taxes and demon-

strated, under certain weak conditions, that all the second-best optimal allocations are

production efficient. The latter result was striking for two reasons. Firstly, it provided

a counter example to the nihilistic claims of Lipsey and Lancaster [1956] and secondly it

justified the use of producer prices as perfect proxies for the generally unobservable shadow

prices of commodities in such economies. As demonstrated in Little and Mirrlees [1974 ]

and Dreze and Stern [1987], in such economies, the producer prices can be used to evaluate

and choose among marginal public sector projects.

The income distribution scheme underlying the DM model is very simple. Consumers

derive incomes from their endowments.1 When this model is extended to allow for de-

creasing returns-to-scale in production, and hence the existence of positive profits, it is

known that, as long as the government can tax away pure profits at one-hundred percent

and redistribute the proceeds in the form of a demogrant, the production efficiency result

of DM continues to hold (for models with this assumption, see Guesnerie [1995]).

If constraints on redistribution are imposed this production efficiency result is jeop-

ardized. This is discussed in a series of papers starting with Dasgupta and Stiglitz [1972],

Mirrlees [1972], and Hahn [1973], which examine the DM model when, as in a Arrow-

Debreu economy, consumers can hold ownership shares in the pure profits of firms and

hence derive profit incomes in addition to the demogrant and their endowment incomes.

However, these papers demonstrate that, as long as the government can implement firm-

specific profit taxation, production efficiency continues to be desirable at all second-best

allocations.

The assumption that government can implement hundred percent profit taxation is

standard in the general equilibrium literature on Ramsey taxation (see Guesnerie [1995]).

It is however hard to believe that the governments of mixed economies have strong enough

1 The DM results hold also if the model is extended to allow for a demogrant (also known as a poll
tax/transfer or a uniform lump-sum tax/transfer) financed out of the receipts from commodity taxation.

1
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taxation powers to implement hundred percent profit taxation or firm specific profit taxes.2

Presumably these assumptions continue to be made in most theoretical works in this area

because of the tractability that they lend to general equilibrium analyses of Ramsey taxes

or because they preserve the production efficiency results of DM, which are so convenient

for cost-benefit tests.

The aim of this paper is to explore the link between income-distribution schemes

involving private-ownership of firms that are available in economies with Ramsey taxes

and production efficiency at the second-best allocations of such economies. First, we note

that the precise mechanism ensuring production efficiency when profit taxation is available

is not clear in the earlier works and that the errors in the proofs of Hahn and Mirrlees

pointed out by Reinhorn [2005] and Sadka [1977] seem robust. Hence we provide an

alternative proof that is simpler, more intuitive, and makes explicit the precise mechanism

underlying the results of Dasgupta and Stiglitz, Mirrlees, and Hahn. At the same time, it

also reveals why this particular mechanism fails to generate the DM production efficiency

result in most private ownership economies where the government does not have recourse

to one-hundred percent profit taxation or firm-specific profit taxation. In addition, we

identify certain structures of private ownership where production efficiency holds at all

second-best equilibria when there is no (or at best uniform) profit taxation. The one-

hundred percent profit taxation with a demogrant case (which, incidentally, is equivalent

to a private ownership economy, where all consumers have the same shares in each firm)

turns out to be a special case of such economies.

These results have important implications for cost-benefit analysis, as they imply that

in more realistic cases, where there are more complicated income distribution rules than

those studied by DM (for instance, income distributions involving private ownership of

firms) and constraints on government’s taxation powers, the production efficiency result of

DM fails. Producer prices can no longer be used as proxies for shadow prices. This leads

to further interesting and important questions: (i) how likely is it to encounter economies

where production efficiency fails, (ii) if production efficiency does not hold globally at all

second-best allocations of a given economy, then what is the size of the subset of second-

best points where it does hold–is this subset negligible, (iii) if production efficiency fails

to hold at the second-best, then what is the relation between shadow prices and the prices

that can be observed in the real world, and (iv) how can we recover shadow prices from

the data if we are in a world where production efficiency is not true? These, however, are

questions to be addressed in future projects and this paper is a necessary step towards

their resolution.

2 Hahn however, argues that the information to do so is available.

2
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Section 2 lays down the model and the definition of second-best production efficiency

that we employ in this paper. Section 3 discusses the earlier results on production efficiency,

some shortcomings in the proofs of these results, and the alternative strategy that is

proposed in this paper. Section 4 states some preliminary lemmas. Section 5 takes up

the issue of production efficiency with firm-specific taxation. Section 6, employing the

strategy of Section 5, explores the structures of private ownership that yield second-best

efficiency without one hundred percent profit taxation. Section 7, provides an example of

production inefficiency, and Section 8 concludes.

2. A Working Definition of Second-Best Production Efficiency and the Model

In a second-best welfare maximization problem of the government, the shadow prices

(the social value) of goods in the economy are indicated by the values of the Lagrange

multipliers of the resource constraints at the optimum. If consumers’ preferences satisfy

local nonsatiation and there is public sector production where the government is free to

choose any point in the public sector technology then, at a second-best Pareto optimum,

the public sector production vector lies on the frontier of the public sector technology and

the shadow prices of the resources are proportional to the shadow prices in the public

sector.

Under standard regularity assumptions, for every (frontier) public-sector production

vector, there is a price vector that rationalizes that choice as a profit maximizing one for

the public sector. So a behaviorally unconstrained choice of a production vector by the

public sector is equivalent to it responding competitively to a price vector that may be

different from the private sector producer price vector.

Thus, as in all the previous papers, the working definition of second-best production

efficiency that we adopt in this paper is the proportionality of producer prices in the private

and public sectors at a second-best Pareto optimum. This is equivalent to the aggregate

production vector lying on the frontier of the aggregate technology of the economy at the

second-best, where the aggregate technology of the economy is defined as the vector sum

of the technologies of the private firms and the public sector.

There are N commodities indexed by k, H consumers indexed by h, I + 1 firms

indexed by i. The firm indexed by 0 is the government firm, while the rest of the firms

are private sector firms.

For every firm i, the technology is denoted by Y i. The aggregate technology is

Y =
∑

i Y
i. We also define the aggregate technology of the private sector as Y c :=∑

i 6=0 Y
i. For every firm i, the technology is denoted by Y i. For all i, let Bi := {ρ ∈

3
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RN
+ \ {0N}| ρ · y is bounded from above for all y ∈ Y i}. For all i 6= 0 we define the profit

function πi : Bi → R with image

πi(ρ) = sup
y
{ρ · y|y ∈ Y i}. (2.1)

The supply vector is the the solution mapping of (2.1) yi : Bi → RN with image yi(ρ).

Private firms face a common producer price vector denoted by p ∈ ∩i6=0B
i. The price

vector faced by the public sector is denoted by p0 ∈ B0.

For all h, the net consumption set of consumer h is Xh ⊂ RN and the preferences over

Xh are represented by continuous, quasi-concave, and locally nonsatiated utility functions

uh : Xh → R with images uh(xh).3

Consumers face consumer prices q ∈ RN
+ . For all h, the net (of endowment) income

is denoted by mh. Let the mapping xh : RN
+ × R → RN with image xh(q,mh) denote

the Marshallian demand vector of consumer h. Every consumer h receives a demogrant,

which is be denoted by m ∈ R.

If the profits of the private firms are distributed to consumers, then there is an

exogeneous H × I-dimensional matrix of shares Θ with typical element θhi ≥ 0 which

denotes the share of consumer h in the profit of the private firm i. Thus, we require∑
h θ

h
i = 1 for all i 6= 0. Let O denote the set of matrices Θ with these properties.

A private ownership economy corresponding to a matrix of ownership shares Θ ∈ O is

characterized by E(Θ) = 〈(Xh, uh), (Y i),Θ〉.

3. A Heuristic Discussion of Earlier Strategies and Our Strategy.

Before launching into our analysis, it is first worth running over the central ideas

in the proofs of Dasgupta and Stiglitz, Mirrlees, Hahn, Sadka, and Reinhorn. Dasgupta

and Stiglitz assume that technologies of firms satisfy the Inada conditions. They employ

differential techniques to prove that production efficiency is desirable at all second-best

tax equilibria of private ownership economies with firm-specific profit taxation. With an

aim at understanding the precise mechanism and the intuition behind this result, Mirrlees

and Hahn present alternative proofs using non-differential techniques and for more general

technologies.

The central idea behind these proofs is an application of an argument in the DM

paper based on the assumption that there is always one commodity that every consumer

likes and hence net demand is positive (or dislikes and hence net demand is negative).4

3 For all h, Xh is net of the consumer h’s endowment.
4 For a more general condition that backs this argument, see Weymark [1978].

4
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This assumption implies a more general assumption of local Pareto nonsatiation as defined

by Hahn.5

To understand the intuition of the DM strategy, we consider the set of tax equilibria

as defined by Model A below, where mh = m for all h. The DM model is a special case of

Model A, where Y i is a cone for all i. Guesnerie’s model is also a special case of Model A

where, for all i, Y i exhibits decreasing returns to scale and there is one-hundred percent

profit taxation of private firms.

Model A (DM/Guesnerie): ∑
h

xh(q,m) ≤
∑
i6=0

yi(p) + y0(p0) (3.1)

Walras Law implies that at a tax equilibrium of Model A, the government’s budget is

balanced:

Hm ≤ [q − p]
∑
i6=0

yi(p) + qy0(p0) + p
∑
i6=0

yi(p), (3.2)

that is, the indirect and profit tax revenues of the government are used to finance the

demogrant expenditure of the government.

DM show that under local Pareto nonsatiation, the set of second-best Pareto optimal

allocations of Model A is also the set of Pareto optimal allocations of a less constrained

economy and the second-best Pareto optimal allocations of the less constrained economy

are all production efficient. The equilibria of this less constrained economy are defined by

Model B below, where the government is free to choose any production vector in Y and

the consumers maximize utility.

Model B: ∑
h

xh(q,m) ≤ y +
∑
h

eh, y ∈
∑
i 6=0

Y i + Y 0. (3.3)

Walras law implies that the government budget is balanced:

Hm ≤ qy, (3.4)

that is the government distributes the receipts from sale of y as demogrant incomes to

consumers.

It is clear that the tax equilibrium allocations of Model A are a subset of the tax

equilibrium allocations of Model B. If an equilibrium allocation of Model B is production

inefficient, that is, lies in the interior of Y , then by DM version of local Pareto nonsatiation

and continuity of net demands of consumers in consumer prices, a Pareto improving change

in consumer prices that also leads to a technologically feasible change in aggregate demand

5 Local Pareto nonsatiation is also satisfied if the government is permitted to use a demogrant provided
consumers’ preferences are strictly monotonic.

5
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always exists: a well-calibrated decrease (increase) in the consumer price of the good

everyone likes (dislikes) ensures that the new aggregate demand lies in a small enough

neighborhood of the original aggregate demand that is contained in Y . The new allocation

is hence an equilibrium of Model B. This suggests that no production inefficient equilibrium

of Model B can be a second-best of Model B as there always exists another equilibrium of

Model B that Pareto dominates it. This implies that, at a second-best of Model B, there

always exists a producer price vector that can be used to decentralize it as a (second-best)

tax equilibrium of Model A.

In Model C below, the profits of the private firms are distributed to consumers accord-

ing to an exogeneous matrix of shares Θ ∈ O and every private firm i is subject to a firm-

specific profit tax rate τ i. The net income of consumer h is mh = m+
∑

i 6=0 θ
h
i (1−τ i)πi(p).

Model C (Private Ownership with Firm-Specific Profit taxation):∑
h

xh(q,
∑
i 6=0

θhi (1− τ i)pyi(p) +m) ≤
∑
i 6=0

yi(p) + y0(p0). (3.5)

Walras Law implies that the government’s budget is balanced at a tax equilibrium of Model

C.6

Hm ≤ [q − p]
∑
i6=0

yi(p) + qy0(p0) + p
∑
i6=0

τ iyi(p), (3.6)

that is the government distributes its revenue from indirect and profit taxation as de-

mogrant incomes to consumers.

With a view to understanding the intuition behind the Dasgupta and Stiglitz result,

that is to check whether the second-best of Model C are production efficient, Mirrlees

considers a more general model, Model C ′, where the private firms face firm-specific prices.

Model C ′ (Mirrlees):∑
h

xh(q,
∑
i 6=0

θhi p
iyi(pi) +R) ≤

∑
i6=0

yi(pi) + y0(p0). (3.7)

Mirrlees aims to find a less constrained model such that the Pareto optimal allocations

of the less constrained model are all production efficient and correspond to the second-best

allocations of Model C ′. He considers Model D below that involves firm specific numbers

ri for all i 6= 0 and where the government can choose any production vector in Y .

Model D ∑
h

xh(q,
∑
i 6=0

θhi ri +R) ≤ y, y ∈
∑
6=0

Y i + Y 0. (3.8)

6 This is proved in Section 5.

6
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Walras law implies that the government’s budget is balanced:

HR +
∑
i6=0

ri ≤ qy. (3.9)

It is clear that any tax equilibrium allocation of Model C ′ can be obtained as an equilibrium

allocation of Model D, where ri = piyi(pi) for all i 6= 0. Exactly as argued in the case

of Model B, under the DM version of local Pareto nonsatiation, it can be shown that the

Pareto optimal allocations of Model D are production efficient. The question is whether

each Pareto optimal allocation of Model D can be decentralized as a tax equilibrium of

Model C ′? Production efficiency at the optimum of Model D implies that there exists a

vector of producer prices (say p) that can decentralize the underlying production vectors

as profit maximizing choices of the private firms. If the profits of all firms at this price

vector are all non-zero, then Mirrlees shows that, for every i 6= 0, the profit of firm i can be

suitably scaled (say by a factor λi) so that the scaled profit equals the value of the number

ri at the optimum (that is, λiπi(p) = ri). Note that, given the homogeneity properties

of the profit and the supply functions, this is equivalent to firm i facing the firm specific

price pi = λip and maximizing profits (the supply vector of the firm remains unchanged,

yi(p) = yi(pi), so that λiπi(p) = πi(λip) = ri). Thus, the given Pareto optimum of Model

D is a tax equilibrium of Model C ′. Moreover, it is also a tax equilibrium of Model C as

these firm-specific scaling factors can be used to define the firm-specific profit tax rates by

setting (1− τ i) equal to λi for all i 6= 0.7

However, this argument may fail if at a Pareto optimum of Model D there exists

i 6= 0 such that ri is not equal to zero but the profit of firm i, πi(p) is equal to 0. In that

case there exists no scaling factor λi such that λiπi(p) = ri. Thus, for economies with

more general technologies than in Dasgupta and Stiglitz, Mirrlees could not conclusively

demonstrate production efficiency at a second-best of Model C.

Instead of searching for a less constrained problem whose Pareto optimal allocations

are all production efficient and correspond to the second-best of Model C, Hahn applies

the DM strategy based on the assumption of local Pareto nonsatiation directly to Model

C.

7 To be more accurate, second-best allocations of Model D, where and πi(p) 6= 0 for all i 6= 0 can be
decentralized as equilibria of Model C ′ only when ri 6= 0 for all i 6= 0, for if ri = 0 for some i 6= 0, then
λi = 0 and the profit of firm i is not well-defined at the price pi = λip = 0. On the other hand such
a the second-best allocation of Model D can always be decentralized as an equilibrium of Model C, for
λi = 0 would imply that firm i faces price vector p but is subject to one-hundred percent profit taxation
(τ i = 1). This seems to be a common source of confusion in the earlier literature, which seems to suggest
that an equilibrium allocation of Model C is always decentralizable as an equilibrium allocation of Model
C ′. This is not true when an equilibrium allocation of Model C involves a private firm that is subject to
one hundred-percent profit taxation.

7
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Note that in the DM proof of production efficiency at a second-best of Model A (which,

as seen above, employs Model B), the move from a production inefficient equilibrium

allocation to a Pareto superior equilibrium allocation of Model B is achieved without

changing the incomes of the consumers (only consumer prices change to achieve the Pareto

improvement). This means that the government’s revenue (which is the receipts from

sales to consumers and is equal to the aggregate net consumer expenditure) is unchanged

in the move to the Pareto superior equilibrium. Thus, it can continue distributing the

same demogrant, which is the sole component of the consumers’ net incomes. Thus, the

aggregate and individual net incomes/expenditures of consumers can be held constant in

this Pareto improving move.

However, this strategy of proof does not work, in general, if we wish to exploit the

assumption of local Pareto nonsatiation directly in Model C. Suppose a is a production

inefficient tax equilibrium of Model C. If the net incomes of consumers can be held at the

levels in a, then under the DM version of local Pareto nonsatiation and the continuity of

net demands of consumers in consumer prices, there exists a sequence of Pareto dominating

changes in consumer demands that converge to the demands at a such that, eventually,

the aggregate demands become technologically feasible. At every point in this sequence,

aggregate net expenditures and aggregate net incomes are the same as at a. To ensure

that eventually all points in this sequence can be obtained as equilibria of Model C (that

are Pareto superior to a) requires ensuring that the individual incomes along this sequence

can indeed be maintained at the levels at a as hypothesized. However, the technologically

feasible points of the sequence involve production levels that are different from a. Therefore

the profits of individual firms, and hence profit incomes of consumers, may not be the same

along this sequence as in a. Note that (3.7) implies that

HR ≤q[
∑
i6=0

yi(p) + y0(p0)]−
∑
i6=0

(1− τ i)pyi(p)

=q[
∑
i6=0

yi(p) + y0(p0)]−
∑
i6=0

∑
h

θhi (1− τ i)pyi(p),
(3.10)

that is the amount distributed as demogrant is the aggregate income (total value of ag-

gregate output at consumer prices) minus the aggregate net-of-tax profit incomes in the

economy. Since aggregate net income is the same along this sequence, (3.10) implies that

the level of the demogrant may also vary along this sequence. Thus, in general, the distri-

bution of individual net incomes may differ from a along this sequence.

Nevertheless, Hahn attempts to show that, if technologies are smooth, then the profits

associated with the technologically feasible points in the sequence converge to the profits

at a. Hence there is a small neighborhood around a where the profits of individual firms

associated with the sequence have the same sign as the profits at a (in particular, they

8
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are non-zero if profits at a are non-zero). By appropriately changing firm specific profit

tax rates (scaling profits of individual firms), the profits of private firms, and hence the

net profit incomes of consumers, can be held at the levels at a. Employing (3.10) and

recalling that the aggregate net income is constant, this means the demogrant also takes

the same value as at a. Hence, by implementing firm-specific profit taxation, eventually,

the distribution of net incomes along the sequence can also be fixed at the levels at a. All

such points are equilibria of Model C that are Pareto superior to a.

As pointed out by Reinhorn, the problem with Hahn’s analysis is that, although

the points on the sequence are eventually technologically feasible, it does not mean that

the production vectors of individual firms along this sequence lie on the frontiers of their

individual technologies. There may exist no changes in producer prices that induce profit

maximizing firms to change their supplies to meet exactly the Pareto-improving change in

the aggregate demand: this may happen when the Pareto-improving change in aggregate

demand requires all firms to produce in the interiors of their individual technologies (as

opposed to the frontiers of their technologies), which is never profit-maximizing.

Let the tax equilibrium configuration at a production inefficient tax equilibrium a of

Model C be denoted by bars. Then
∑

h x
h(q̄, R̄+

∑
i 6=0 θ

h
i (1−τ̄ i)πi(p̄)) = x̄ =

∑
i6=0 y

i(p̄)+

y0(p̄0). Since all firms maximize profits, it is clear that for all i, ȳi lies on the frontier

of Y i. In his proof, Reinhorn, focuses on a subset (he denotes it as K(ε1, . . . , εI)) of

the aggregate technology) obtained as
∑

i[Nεi(ȳ
i) ∩ Y i].8 If the frontiers of individual

technologies are smooth enough, then for all i 6= 0, there exist εi > 0 such that the

signs of profits of firm i at points that lie on the frontier of Y i intersected with Nεi(ȳ
i) ∩

Y i are the same as at ȳi. Thus, as in Hahn and Mirrlees, such points can, through

appropriate firm-specific profit taxation, yield the same net-of-tax profits to individual

firms (and hence, the same profit incomes to consumers) as in the x̄ situation. x̄ clearly

is in K(ε1, . . . , εI). However, since x̄ is not production efficient (p̄ is not proportional to

p̄0), it lies in the interior of the set K(ε1, . . . , εI)−RN
+ , which is a subset of the aggregate

technology (assuming free disposability of aggregate technology), so that the DM argument

can be applied to isolate Pareto-improving changes in consumer prices. The problem with

Reinhorn’s argument (as in the case of Hahn) continues to be the fact that, while such

changes can be calibrated to ensure that they lead to a change in aggregate demand that

lies in the set K(ε1, . . . , εI)−RN
+ , and hence is technologically feasible, they may not lead

to points in the set K(ε1, . . . , εI) which involve individual firms producing on the frontiers

of their respective technologies, that is points that can be achieved by changing producer

prices given profit maximizing behavior of producers.9

8 For y ∈ Rn, Nε(y) is the ε neighborhood of y in Rn.
9 K(ε1, . . . , εI)−RN

+ includes points where individual firms may be producing in the interiors of their
technologies.

9
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We adopt a different proof strategy (see Theorem 1). Instead of first constructing

Pareto-improving directions of change at a production inefficient status-quo (as the above

papers did), we show first that at any production inefficient tax equilibria, there exist

small-enough changes in the producer prices that (i) lead to an increase in the aggregate

supply, and hence the aggregate income, in the economy (see Lemma 2 and its proof

below) and (ii) maintain (with firm-specific taxation) the profits of firms, and hence profit

incomes of consumers, for any given vector of profit shares, at the levels of the initial

equilibrium. This implies that the increase in the aggregate income in the economy due

to the change in producer prices shows up only as an increase in the tax revenue of the

government, which (under the assumption of local Pareto nonsatiation) the government

can use to change consumer prices (commodity taxes) or redistribute as uniform lump-sum

transfers to increase welfare of all consumers in a non-tight equilibrium preserving way.

The same strategy is then used to demonstrate second-best production efficiency

in some structures of private-ownership under strong institutional constraints on profit

taxation, that is, when there can be no profit taxation (or there is, at best, uniform profit

taxation).

4. Some Preliminary Lemmas.

Assumptions 1, 2 and 3 stated below are further regularity assumptions on the tech-

nologies of firms.

Assumption 1. For all i, Y i is closed, not a cone, and satisfies free-disposability (Y i +

RN
− ⊂ Y i).

Assumption 2. For all i, the set Bi is non-empty and there exists ρ ∈ RN
++ ∩Bi.

Define the frontier of Y as

Ŷ = {y ∈ Y |ȳ � y implies that ȳ /∈ Y }. (4.1)

Similarly, we can define Ŷ i for all i, Ŷ c, and Ŷ 0.10 Note that Assumption 1 guarantees

that the frontier of Y and the boundary of Y (denoted by ∂Y ) coincide. Further note

that Assumptions 1 and 2 imply that for any i, if ȳ lies in Y i, then there exist production

points in Ŷ i that are no smaller than ȳ. In particular, if ȳ lies in the interior of Y i, then

there are production points in in Ŷ i that are strictly larger than ȳ.

10 Vector notation: for x and y in Rn,

x ≥ y ⇔ xi ≥ yi, ∀i = 1, . . . , n,

x > y ⇔ x 6= y and xi ≥ yi, ∀i = 1, . . . , n,

x� y ⇔ xi > yi, ∀i = 1, . . . , n,

(4.2)

.

10
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Assumption 1 also excludes firms that exhibit constant returns-to-scale. This exclu-

sion seems without loss of generality as, firstly, it is meaningless to assume that consumers

can have shares in the profits of such firms and, secondly, the presence of such firms offers

no constraints on distribution of profits in the economy (the issue of focus in this paper).

Note that under Assumptions 1 and 2, for all i, πi is continuous, linearly homogeneous,

convex on the set Bi. We denote the aggregate supply of the private competitive sector

by yc(ρ) =
∑

i6=0 y
i(ρ).11

Assumption 3. There exist smooth and strictly quasi-convex functions f c : RN → R

and f0 : RN → R with images f c(y) and f0(y) such that Y c = {y ∈ RN |f c(y) ≤ 0} and

Y 0 = {y ∈ RN |f0(y) ≤ 0}.12

If both Assumptions 1 and 3 hold, then Ŷ c = {y ∈ RN |f c(yc) = 0} and Ŷ 0 = {y ∈
RN |f0(y0) = 0}.

Lemmas 1, 2, and the Corollary to Lemma 2 demonstrate that a vector of aggregate

supply is production efficient iff the price vectors faced by the private sector firms and

government sector firm are proportional, and if the firms face different (non-proportional)

producer prices, then there exist changes in producer prices of the private and government

firms that can strictly increase the aggregate supply. Intuitively, the proof of Lemma 2

exploits the differences in the marginal rates of substitution in production that exist when

the price vectors of all firms are not proportional to construct such changes in prices.

Lemma 1: Let Assumptions 1 and 2 hold and let p ∈ Bc and p0 ∈ B0. Then yc(p) +

y0(p0) /∈ Ŷ implies that p is not proportional to p0.

Lemma 2: Suppose Assumptions 1, 2, and 3 hold. Let p̄ ∈ Bc and p̄0 ∈ B0 such that p̄

and p̄0 are not proportional. Let ȳ := yc(p̄) + y0(p̄0). Then there exist sequences {pv} → p̄

and {p0v} → p̄0 such that yc(pv) + y0(p0v)� {ȳ} for all large enough v.

Corollary to Lemma 2: Suppose Assumptions 1 to 3 hold. Let p̄ ∈ Bc and p̄0 ∈ B0

such that ȳ = yc(p̄) + y0(p̄0). Then ȳ /∈ Ŷ if p̄ and p̄0 are not proportional.

11 The domain of yc is ∩i 6=0B
i = Bc.

12 The restriction to strictly-quasi convex functions f c and f0 implies that the supply mappings of the
private and the government sector firms are functions. This is purely for convenience. Theorem 1 can be
generalized to the case where these functions are quasi-convex.

11
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5. Firm-Specific Profit Taxation and Production Efficiency.

In this section we show that all the second-best allocations in such an economy are

production efficient. For every i 6= 0, the profit tax rate is τ i, where τ i ≤ 1.

Definition. For any Θ ∈ O, a tax equilibrium of a private ownership economy E(Θ)

with firm-specific profit taxes for private firms is a configuration 〈q, p0, p, τ1, . . . , τ I ,m〉 ∈
RN

++ ×B0 ×Bc ×RI ×R such that (3.7) holds.

For every Θ ∈ O, let Eτ (Θ) be the set of tax-equilibrium configurations of q, p, p0,

τ1, . . . , τ I , and m in the economy E(Θ) with firm-specific profit taxation. The system of

equations (3.7) is homogeneous of degree zero in p0. It is also homogeneous of degree zero

in p, q, and m. Hence, it admits two normalizations. We adopt the normalization rules

p0
1 = 1 and and p1 = 1.

Under the maintained assumptions on consumers’ preferences, the budget constraints

hold as equalities under utility maximization, that is, for all h, we have

q · xh(q,
∑
i6=0

θhi (1− τ i)πi(p) +m) =
∑
i6=0

(1− τ i)θhi πi(p) +m. (5.1)

To show that if e ∈ Eτ (Θ) then the government budget is balanced, we multiply both sides

of (3.7) by q and employ (5.1) to obtain

qT
∑
h

xh(q,mh) ≤ qT
∑
i6=0

yi(p) + qT y0(p0)

⇒
∑
h

[
∑
i 6=0

θhi (1− τ i)πi(p) +m] ≤
∑
i 6=0

pT yi(p) +
∑
i6=0

[qT − pT ]yi(pi) + qT y0(p0)

⇒ Hm ≤ qT y0(p0) +
∑
i6=0

[qT − pT ]yi(p) +
∑
i6=0

τ ipyi(p)

⇒ m ≤
qT y0(p0) +

∑
i6=0[qT − pT ]yi(p) +

∑
i6=0 τ

ipyi(p)

H
.

(5.2)

Condition (5.2) says that the demogrant is financed from the government’s revenue from

indirect taxation (
∑

i6=0[qT − pT ]yi(p)), profit taxation (
∑

i6=0 τ
ipyi(p)), and receipts from

sale of publically produced private commodities (qT y0(p0)).

The following theorem establishes that every second-best allocation of a private own-

ership economy with firm-specific profit taxation is production efficient.

12
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The second-best problem is to find the mapping Vτ : ∆H−1 ×O → R with image13

Vτ (s1, . . . , sH ,Θ) :=

max
q∈RN

++, (τ i)i6=0∈RI , m∈R, p∈RN
+ , p

0∈RN
+

∑
h

shu
h(xh(q,

∑
i6=0

θhi (1− τ i)πi(p) +m))

subject to

〈q, p, p0, (τ i)i 6=0,m〉 ∈ Eτ (Θ).

(∗)

Theorem 1: Suppose Assumptions 1, 2, and 3 hold. Suppose either14

(a) there exists h such that uh is strictly monotonic or

(b) there exists a commodity k such that either of the following holds:

(i)
∑

h x
h
k(q,mh) > 0, xhk(q,mh)

∑
h x

h
k(q,mh) ≥ 0, ∀h, q ∈ RN

++, and mh ∈ R or

(ii)
∑

h x
h
k(q,mh) < 0, xhk(q,mh)

∑
h x

h
k(q,mh) ≥ 0, ∀h, q ∈ RN

++, and mh ∈ R

If ē := 〈q̄, p̄, p̄0, (τ̄ i)i6=0, m̄〉 ∈ R3N+I+1 is a solution to (∗) then yc(p̄) + y0(p̄0) ∈ Ŷ .

Proof: Suppose ȳ := yc(p̄) + y0(p̄0) /∈ Ŷ . From Lemma 1, Lemma 3, and corollary to

Lemma 2 this implies that ȳ ∈ Interior Y and p̄0 6= κp̄ for any κ ≥ 0.

Step 1. We show that there exist changes in the producer prices which leads to aggregate

supplies that are greater than ȳ. This is true because Lemma 2 demonstrates that there

exist sequences {pv} → p̄ and {p0v} → p̄0 such that yc(pv) + y0(p0v) � ȳ for all v > v̂,

where v̂ is defined as in the proof of Lemma 2.

This implies that the aggregate income or the value of aggregate output measured

using consumer prices q̄ increases when producer prices p̄ and p̄0 change to pv and p0v for

all v > v̂, that is,

Mv = q̄T [yc(pv) + y0(p0v)] > q̄T ȳ =: M̄, ∀v > v̂. (5.3)

Step 2. We show that there exists a ∗v > v̂ and firm specific profit taxes ∗τ i for all i 6= 0

such that

(1− ∗τ i)πi(p
∗v) = (1− τ̄ i)πi(p̄), ∀i 6= 0. (5.4)

The continuity of the profit functions πi implies that πi(pv) → πi(p̄). Let I = {i 6=
0| (1− τ̄ i)πi(p̄) > 0}. If I = ∅, then choose any ε > 0. If I 6= ∅, then choose ε such that

0 < ε < mini∈I{(1 − τ̄ i)πi(p̄)}. For every i 6= 0 there exists vi such that for all v > vi

we have |πi(pv) − (1 − τ̄ i)πi(p̄)| < ε. Our choice of ε implies that, for every i 6= 0 and

v > vi, the sign of πi(pv) is the same as the sign of (1− τ̄ i)πi(p̄): if (1− τ̄ i)πi(p̄) = 0 then

πi(pv) ≥ 0 and if (1− τ̄ i)πi(p̄) > 0 then πi(pv) > 0.

13 ∆H−1 is the H − 1-dimensional unit simplex in RH .
14 Note that since the government can employ a demogrant, (a) below ensures that local Pareto nonsa-

tiation and (b) below is the DM version of local Pareto nonsatiation.

13
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Pick ∗v to be any v > max{v1, . . . , vI , v̂}. Define p
∗v =: ∗p, p0

∗v
:= ∗p0, and ∗yc := yc(∗p).

For i 6= 0, choose firm specific scaling factors λi such that

λiπi(∗p) = (1− τ̄ i)πi(p̄). (5.5)

This is possible, for if I = ∅, then λi = 0 needs to be chosen for all i 6= 0. If I 6= ∅, then

for all i 6= 0 and and not in I, choose λi = 0 and for i ∈ I, λi is given by

λi =
(1− τ̄ i)πi(p̄)

πi(∗p)
, (5.6)

which is well defined as πi(∗p) 6= 0 for i ∈ I. Note, for all i 6= 0, λi ≥ 0.

Define ∗τ i = 1− λi for all i 6= 0. Then 1− ∗τ i ≥ 0, which implies, ∗τ i ≤ 1. Then (5.6)

implies (5.4) and ∑
i6=0

θhi (1− τ̄ i)πi(p̄) =
∑
i6=0

θhi (1− ∗τ i)πi(∗pi), ∀h. (5.7)

Summing up over all h, this implies that∑
i 6=0

(1− ∗τ i)πi(∗p) =
∑
i 6=0

(1− τ̄ i)πi(p̄). (5.8)

For all i 6= 0, ∗τ i can be interpreted as the firm-specific profit tax rate. Thus, the individual

and the aggregate net-of-tax profits of firms and consumers’ profit incomes does not change

when p̄ changes to ∗p and when the profit tax rates ∗τ i apply for all i 6= 0.

Step 3. Since the move to ∗p, ∗p0, and ∗τ i for all i 6= 0 results in no change in the net-of-tax

profit incomes of consumers, it must imply that the increase in aggregate income from M̄

to M
∗v must show up as an increase in the government’s tax revenue and its public sector

activities. This is what we show now.

M
∗v =:

∗
M = q̄T [

∑
i6=0

yi(∗p) + y0(∗p0)]

= [q̄T − ∗p]
∑
i6=0

yi(∗p) + ∗p
∑
i6=0

yi(∗p) + q̄T y0(∗p0)

= [q̄T − ∗p]
∑
i6=0

yi(∗p) +
∑
i 6=0

∗τ i∗pyi(∗p) +
∑
i 6=0

(1− ∗τ i)yi(∗p) + q̄T y0(∗p0)

= [q̄T − ∗p]
∑
i6=0

yi(∗p) +
∑
i6=0

∗τ iπi(∗p) +
∑
i 6=0

(1− ∗τ i)πi(∗p) + q̄T y0(∗p0).

(5.9)

Similarly,

M̄ = [q̄T − p̄]
∑
i 6=0

yi(p̄) +
∑
i 6=0

τ̄ iπi(p̄) +
∑
i6=0

(1− τ̄ i)πi(p̄) + q̄T y0(p̄0). (5.10)

14
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Since
∗
M − M̄ > 0, it follows from (5.8) that the government’s revenue from commodity

and profit taxes and its public sector activities is higher when we move to ∗p, ∗p0, and ∗τ i

for all i 6= 0, keeping consumer prices unchanged, that is,

∗
G :=[q̄T − ∗p]

∑
i 6=0

yi(∗p) +
∑
i6=0

∗τ iπi(∗p) + q̄T y0(∗p0)

> [q̄T − p̄]
∑
i6=0

yi(p̄) +
∑
i6=0

τ̄ iπi(p̄) + q̄T y0(p̄0) =: Ḡ.
(5.11)

Step 4. Next we show that this increase in the government’s revenue can be used to

construct another tax equilibrium where utility of at least one consumer is higher, with

no loss in utility for the others: this is obtained by either increasing the demogrant by

an appropriate amount (this is possible if (a) holds) or by decreasing (increasing) the

consumer price of, and hence the tax on, the kth commodity by an appropriate amount

(this is possible if b(i) (b(ii)) holds).

For all h define xh(q̄,
∑

i6=0 θ
h
i (1− τ̄ i)πi(p̄) + m̄) =: x̄h and

∑
h x̄

h =: x̄. (5.7) implies

that for all h, x̄h = xh(q̄,
∑

i 6=0 θ
h
i (1− ∗τ i)πi(∗p) + m̄)). Since x̄ ≤ ȳ � yc(∗p) + y0(∗p0) =: ∗y,

we have x̄ ∈ Interior {∗y}+ RN
−−.

Since xh is a continuous function of qk for all h, clearly, if condition b(i) or b(ii) hold,

we can apply the DM argument to find ∗q k and ∗ε such that (1)
∑

h x
h(q̄−k,

∗q k,
∑

i6=0 θ
h
i (1−

∗τ i)πi(∗p) + m̄)) =:
∑

h
∗xh ∈ N∗ε (x̄) ⊂ {∗y} + RN

−− and (2) uh(∗xh) ≥ uh(x̄h) for all h and

uh(∗xh) > uh(x̄h) for some h.

This implies that ∗e := 〈(q̄−k, ∗q k), ∗p, (∗τ i)i6=0,
∗p0〉 is another tax equilibrium configura-

tion of E(Θ) that Pareto dominates ē.15 To make the new tax equilibrium configuration

conform to the normalization rules adopted, we exploit the homogeneity of the tax system

to construct another tax equilibrium that is equivalent to ∗e and that satisfies the normal-

ization rule, namely, 〈(q̄−k, ∗q k), 1
∗p1

∗p, (∗τ i)i 6=0,
1
∗p0

1

∗p0〉. This contradicts the fact that ē is a

solution to (∗).
If condition (a) holds, then we can exploit the continuity of xh in m for all h to find

m̂ > m̄ and ε̂ such that (1)
∑

h x
h(q̄,

∑
i6=0 θ

h
i (1 − ∗τ i)πi(∗p) + m̂)) =:

∑
h x̂

h ∈ N∗ε (x̄) ⊂
{∗y}+RN

−− and (2) uh(x̂h) ≥ uh(x̄h) for all h and uh(∗xh) > uh(x̄h) for some h.16 This again

leads to a tax equilibrium (that can be appropriately normalized) that Pareto dominates

ē, which contradicts the hypothesis of the theorem.

15 Note, this is made possible by the fact that
∗
G > Ḡ in (5.11), so that it is possible to use all or a part

of this increased government budget-surplus to reduce taxes on some commodities. Also, note that ∗e is a
non-tight tax equilibrium.
16 Note, this is made possible by the fact that

∗
G > Ḡ in (5.11), so that it is possible to distribute all or

a part of this increased government budget-surplus as a higher demogrant.

15
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6. Some Cases of Second-Best Production Efficiency With Constraints on

Profit Taxation.

In this section, we use a mechanism similar to the one in Theorem 1 to identify

certain cases of private ownership where production efficiency holds at any second-best

with restrictions on the government’s ability to implement profit taxation. Specifically, we

assume that the government can implement only uniform profit taxation.17 These cases

involve a rank conditions either on the matrix of ownership shares or on the matrix of

supplies by the private producers, or more generally, on the product of these two matrices.

This rank condition is made precise in Lemma 5 below. One class of economies that

satisfies it occurs when θhi = θh for all h. The case where θhi = 1
H is a special case of this

class and is equivalent to the case where government can tax away all profits of private

firms at 100-percent and redistribute the tax revenue to consumers as a demogrant.

In this section, we make stronger assumptions on the technologies of the private firms:

we require the technologies to satisfy the Inada conditions.

Assumption 4. For all i 6= 0, there exist smooth and strictly quasi-convex functions

f i : RN → R with images f i(y), such that Y i := {y ∈ RN |f i(y) ≤ 0} includes zero and

Y i ∩ (−Y i) = ∅. For all i 6= 0, Bi = RN
++.

Remark 1. Assumptions 1 and 4 imply that for all i 6= 0, πi is differentiable on RN
++,

πi(p) > 0 for all p ∈ RN
++, and yi(p) 6= 0N for p� 0N .18

The gross profit incomes of all consumers corresponding to producer price vector p

can be expressed in the following matrix notations:
∑

i 6=0 θ
1
i π

i(p)

...∑
i6=0 θ

H
i π

i(p)

 =

 θ
1
1 . . . θ1

I
...

...
...

θH1 . . . θHI


 y

1
1(p) . . . y1

N (p)
...

...
...

yI1(p) . . . yIN (p)


 p1

...
pN



=


∑

i 6=0 θ
1
i y
i
1(p) . . .

∑
i6=0 θ

1
i y
i
N (p)

...
...

...∑
i 6=0 θ

H
i y

i
1(p) . . .

∑
i6=0 θ

H
i y

i
N (p)


 p1

...
pN



=


∑

i 6=0 θ
1
i y
iT (p)

...∑
i 6=0 θ

H
i y

iT (p)


 p1

...
pN


=: Θ∆(p)p.

(6.1)

17 Zero and hundred-percent profit taxation are special cases.
18 This is because Assumptions 1 and 4 imply that, for all i 6= 0, yi → 0N implies there exists k such

that ∇yi
k
f i(yi)→ 0.
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Lemma 3 says that if the rows of the matrix Θ∆(p) span a one dimensional vector

space for all p � 0N , then under our assumptions on the technologies, each row is a

constant (independent of p) linear multiple of the other.

Lemma 3: Suppose Assumptions 1 and 4 hold, Θ ∈ Ω is such that θhi > 0 for all i 6= 0

and for all h, and the rank of the matrix Θ∆(p) is one. Pick any h′ ∈ {1, . . . , H}. Then

there exist non-negative scalars µh for all h such that for all p ∈ RN
++, we have∑

i6=0

θhi y
iT (p) = µh

∑
i6=0

θh
′
i y

iT (p). (6.2)

Remark 2. If θhi = θh for all h and i 6= 0 then rank of the matrix Θ∆(p) is one. If θhi = 1
H

then rank of the matrix Θ∆(p) is one.

Remark 3. The rank of Θ∆(p) is one if the rank of Θ is one or rank of ∆(p) is one. The

rank of Θ is one if and only if θhi = θh for all h and i 6= 0.

Definition. For any Θ ∈ O, a tax equilibrium of a private ownership economy E(Θ) with

uniform profit taxation is a configuration 〈q, p0, p,m, τ〉 ∈ RN
++×B0×RN

++×R×(−∞, 1]

such that ∑
h

xh(q,
∑
i 6=0

θhi (1− τ)πi(p) +m) ≤
∑
i 6=0

yi(p) + y0(p0). (6.3)

For every Θ ∈ O, let E(Θ) be the set of tax-equilibrium configurations of q, p, p0,

and m in the economy E(Θ). The system of equations (6.3) is homogeneous of degree

zero in p0. It is also homogeneous of degree zero in p, q, τ, and m. Hence, it admits two

normalizations. We adopt the normalization rules p0
1 = 1 and and p1 = 1.

The second-best problem is to find the mapping V : ∆H−1 ×O → R with image

V(s1, . . . , sH ,Θ) :=

max
q∈RN

++, m∈R, p∈RN
++, p

0∈RN
+ ,τ∈(−∞,1]

∑
h

shu
h(xh(q,

∑
i6=0

θhi (1− τ)πi(p) +m))

subject to

〈q, p, p0,m, τ〉 ∈ E(Θ).

(∗∗)

Theorem 2: Suppose Assumptions 1 to 4 hold, Θ ∈ Ω is such that θhi > 0 for all i 6= 0

and for all h, and the rank of the matrix Θ∆(p) is one. Suppose either

(a) there exists h such that uh is strictly monotonic or

(b) there exists a commodity k such that either of the following holds:

(i)
∑

h x
h
k(q,mh) > 0, xhk(q,mh)

∑
h x

h
k(q,mh) ≥ 0, ∀h, q ∈ RN

++, and mh ∈ R or

(ii)
∑

h x
h
k(q,mh) < 0, xhk(q,mh)

∑
h x

h
k(q,mh) ≥ 0, ∀h, q ∈ RN

++, and mh ∈ R.

If ē := 〈q̄, p̄, p̄0, m̄, τ̄〉 ∈ R3N+I+1 is a solution to (∗∗) then yc(p̄) + y0(p̄0) ∈ Ŷ .

17
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Proof: Suppose ȳ := yc(p̄) + y0(p̄0) /∈ Ŷ . From Lemma 1, Lemma 3, and Corollary to

Lemma 2 this implies that ȳ ∈ Interior Y and p̄0 6= κp̄ for any κ ≥ 0.

Step 1. As in the proof of Theorem 1.

Step 2. We show that there exists a ∗v > v̂ and a common scaling factor
∗
λ > 0 such that∑

i 6=0

θhi
∗
λπi(p

∗v) = µh
∑
i 6=0

θh
′
i (1− τ̄)πi(p̄), ∀h. (6.4)

The continuity of the profit functions πi implies that πi(pv) → πi(p̄). Remark 1

implies that, for all i 6= 0, πi(pv) > 0 for all v and πi(p̄) > 0.

Pick ∗v to be any v > v̂. Define p
∗v =: ∗p, p0

∗v
:= ∗p0, and ∗yc := yc(∗p). It is clear that

πi(∗p) > 0 for all i 6= 0. Pick any h′ as in Lemma 3, and choose
∗
λ such that∑

i 6=0

θh
′
i π

i(
∗
λ∗p) =

∑
i6=0

θh
′
i (1− τ̄)πi(p̄). (6.5)

Exploiting the linear homogeneity of the profit function,
∗
λ is given by

∗
λ =

∑
i6=0 θ

h′
i π

i(p̄)∑
i 6=0 θ

h′
i (1− τ̄)πi(∗p)

. (6.6)

∗
λ is well defined, as the denominator in (6.6) is not zero. From Lemma 3, we know that

there exist non-negative scalars µh for all h such that for all p ∈ RN
++, we have∑

i6=0

θhi y
iT (p) = µh

∑
i6=0

θh
′
i y

iT (p). (6.7)

From (6.5) and (6.7) it follows that for all h, we have∑
i 6=0

θhi π
i(
∗
λ∗p) = µh

∑
i 6=0

θh
′
i π

i(
∗
λ∗p) = µh

∑
i 6=0

θh
′
i (1− τ̄)πi(p̄). (6.8)

Step 3. Since the move to
∗
λ∗p and ∗p0 results in no change in the net-of-tax profit incomes

of consumers, it must imply that the increase in aggregate income from M̄ to M
∗v must

show up as an increase in the government’s tax revenue and its public sector activities.

As in Steps 3 and 4 of the proof of Theorem 1, it can be shown that this increase in the

government’s revenue can be used to construct a tax equilibrium (with the adopted price

normalizations) that Pareto dominates ē.
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7. An Example of Production Inefficiency.

Consider the case when N is even, there are N
2 inputs, an equal number of outputs,

and an equal number of competitive firms, that is, I = N
2 . Each firm uses one input to

produce one output, and the input and output are distinct for each firm. Suppose H ≤ N
2

and Assumption 4 holds. This implies that ∆(p), given by
y1

1(p) 0 . . . 0 y1
N
2 +1

(p) 0 . . . 0

0 y2
2(p) . . . 0 0 y2

N
2 +2

(p) . . . 0

...
...

...
0 0 . . . yIN

2

(p) 0 0 . . . yIN (p)

 , (7.1)

is full row-ranked. Suppose Θ is a full row-ranked matrix (an example is one where

H = I = N
2 and Θ is an identity matrix). Then Θ∆(p) is full-row ranked. Suppose the

government can implement uniform profit taxation. Using the indirect utility functions of

consumers (V h(q,
∑

i6=0 θ
h
i (1 − τ)πi(p) + m) = uh(xh(q,

∑
i6=0 θ

h
i (1 − τ)πi(p) + m))), the

second-best problem (∗∗) becomes

V(s1, . . . , sH ,Θ) :=

max
q∈RN

++, m∈R, p∈RN
+ , p

0∈RN
+ ,τ∈(−∞,1]

∑
h

shV
h(q,

∑
i6=0

θhi (1− τ)πi(p) +m)

subject to

〈q, p, p0,m, τ〉 ∈ E(Θ).

(∗ ∗ ∗)

The Lagrangian of the problem is

L =∑
h

shV
h(q,

∑
i6=0

θhi (1− τ)πi(p) +m)− νT [
∑
h

xh(q,m+
∑
i6=0

θhi (1− τ)πi(p))−
∑
i6=0

yi(p)− y0(p0)].

(7.2)

Assuming interior solutions and differentiability assumptions and exploiting the Roy’s

theorem, the first-order conditions are

−
∑
h

sh∇mhV hxhT − vT
∑
h

∇qxh = 0, (7.3)

∑
h

sh∇mhV h
∑
i6=0

θhi (1−τ)∇Tp πi−vT [
∑
h

∇mhxh
∑
i6=0

θhi (1−τ)∇Tp πi+∇p
∑
i6=0

yi] = 0, (7.4)

−
∑
h

sh∇mh
V h
∑
i 6=0

θhi π
i(p) + vT∇mh

xh
∑
i 6=0

θhi π
i(p) = 0 (7.5)
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∑
h

sh∇mhV h − vT
∑
h

∇mhxh = 0, (7.6)

and

vT∇p0y0(p0) = 0. (7.7)

Recalling the differentiability and homogeneity property of y0(p0) and the symmetry of

the Jacobian of y0(p0), (7.7) implies that vT = δp0T , for some δ > 0. We can simplify

(7.4) as ∑
h

[sh∇mh
V h − δp0T∇mhxh]

∑
i6=0

θhi (1− τ)∇Tp πi + δp0T∇p
∑
i 6=0

yi = 0 (7.8)

(7.8) can be rewritten as

αT (1− τ)Θ∆(p) + δp0T∇p
∑
i 6=0

yi = 0, (7.9)

where

αT =
[
s1∇m1V

1 − δp0T∇m1x1 . . . sH∇mHV
H − p0T∇mHxH

]
. (7.10)

(7.9) implies that production efficiency at the second-best is true if and only if αT (1 −
τ)Θ∆(p) is zero. But, since Θ∆(p) is full row-ranked, this is true if and only if αT = 0NT ,

that is,

∇mh
V hsh = p0T∇mhxh, ∀h (7.11)

or

τ = 1. (7.12)

(7.12) corresponds to the case of one-hundred percent profit taxation. (7.11), on the other

hand corresponds to the case where the second-best is also the first-best. This is because,

substituting from (7.11) into (7.3), we obtain

δp0T
∑
h

[∇qxh −∇mhxhxhT ] = 0. (7.13)

Which from the symmetry and homogeneity properties of the Slutsky matrix implies that

p0T is also proportional to q.

So, in this economy, we have production inefficiency at all second-best allocations

either when the government can implement one-hundred percent profit taxation or when

the second-best allocation is also a first-best.
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8. Conclusion.

We highlighted some of the errors in the previous proofs about production efficiency in

economies with firm-specific profit taxation. We then went on to suggest an alternative

proof of this result. Production inefficiency implies that the private sector producer price

vector and the shadow prices in the public sector (the latter reflect the true shadow prices

in the economy) are not proportional. Lemma 2 proves the intuitive result that, in an

institutional structure where private producers are price takers and maximize profits, the

differences in the marginal rates of substitution in the private and public sectors can be

exploited to construct small changes in the two price vectors that induce an increase in

the aggregate output and aggregate income of the economy. The continuity and linear

homogeneity of the profit function can be exploited (as in Step 2 of Theorems 1 and 2) to

show that, if firm-specific profit taxation was allowed or if the matrices of private sector

supplies and the ownership shares satisfies a certain rank condition, then there exist small

changes in the producer prices that, in addition to increasing the aggregate output and

income, also maintain the profit incomes of consumers and the aggregate profits in the

economy at the levels of the status-quo. This means that the increase in aggregate income

shows up as an increase in the tax and public sector incomes of the government, which

can be used to change commodity taxes or to increase demogrant incomes of people in a

Pareto improving way.

The mechanism suggests why this strategy does not work, generally, in most private

ownership economies when there are restrictions on profit taxation. This is because, while

a production inefficient status-quo suggests that there are changes in producer prices that

can increase the aggregate output in the economy, all of the increased output may not,

in general, become available to the government for designing Pareto improving changes in

taxes and demogrant. Private ownership diverts some of the increased resources from the

government coffers and puts it into the hands of consumers as profit incomes. But the

private ownership structure could be such that it may lead to an inequitable distribution

of profit incomes and a decrease in welfare of some consumers, which no government policy

may be able to correct with the remaining resources, that is, there may exist no directions

of change in the government policy instruments that are Pareto-improving, equilibrium

preserving, and compatible with the existing private ownership structure.

The next set of questions are, in the class of private ownership economies, how generic

is this phenomenon of production inefficiency, within a given economy what is the size and

structure of second-best allocations that are production efficient, and if these sets are

sizeable, then how do we recover shadow prices in these situations for cost-benefit tests,

since producer prices no longer reflect the true shadow prices of the resources. These are

further questions to be taken up in future research projects.
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APPENDIX

Lemma 1: Let Assumptions 1 and 2 hold and let p ∈ Bc and p0 ∈ B0. Then yc(p) +

y0(p0) /∈ Ŷ implies that p is not proportional to p0.

Proof: Suppose there exist µ > 0 such that p0 = µp. The homogeneity property of

supplies implies that y0(p0) = y0(p). Then the famous result by Koopmans on inter-

changeability of set summation and optimization implies that

max
y
{p · y|y ∈ Y c + Y 0 = Y } = max

yc
{p · yc|yc ∈ Y c}+ max

y0
{p · y0|y0 ∈ Y 0} (A.1)

and the solution to the left side of (A.1) y(p) is exactly equal to yc(p)+y0(p). But y(p) ∈ Ŷ .

Therefore, yc(p) + y0(p) ∈ Ŷ , which is a contradiction.

Lemma 2: Suppose Assumptions 1, 2, and 3 hold. Let p̄ ∈ Bc and p̄0 ∈ B0 such that p̄

and p̄0 are not proportional. Let ȳ := yc(p̄) + y0(p̄0). Then there exist sequences {pv} → p̄

and {p0v} → p̄0 such that yc(pv) + y0(p0v)� {ȳ} for all big enough v.

Proof: Smoothness of Ŷ c and Ŷ 0 implies that H(p̄, p̄ · yc(p̄)) and H(p̄0, p̄0 · y0(p̄0)) are

unique supporting hyperplanes for Y c and Y 0 at yc(p̄) and y0(p̄0), respectively.19 Since p̄

and p̄0 are not collinear, H(p̄, 0) is not a supporting hyperplane for H≥(p̄0, 0) and H(p̄0, 0)

is not a supporting hyperplane for H≥(p̄, 0) at 0N .

Step 1. We show that there exist ∆yc ∈ RN and ∆y0 ∈ RN such that the following is

true: (the intuition becomes clear when one sees Figure 1 on the next page.)

∆yc ∈ H<(p̄, 0) ∩H≥(p̄0, 0),

∆y0 ∈ H<(p̄0, 0) ∩H≥(p̄, 0), and

∆yc + ∆y0 > 0N .

(A.2)

Define ρ = λp̄ + (1 − λ)p̄0, where λ ∈ (0, 1). We will show that there exist ∆yc and ∆y0

as described in first two lines of (A.2) such that ∆yc + ∆y0 = ρ > 0.

Since p̄ and ρ are not colinear, H(p, 0) is not a supporting hyperplane of H(ρ, 0), that

is, H(ρ, 0) 6⊂ H≥(p̄, 0). Hence, there exists a ∈ H(ρ, 0) such that a · p̄ < 0 and a.ρ = 0.

Consider αa+ (1− α)ρ, where α ∈ (0, 1). Then

[αa+ (1− α)ρ] · ρ = (1− α)ρ · ρ > 0, (A.3)

19 We denote a hyperplane with normal p and constant a by H(p, a) and its lower and strictly lower
half-spaces by H≤(p, a) and H<(p, a), respectively. Similarly we can define the upper and strictly upper
half-spaces of H(p, a).
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for all α ∈ (0, 1). On the other hand, [αa + (1− α)ρ] · p̄ = αp̄ · a + (1− α)p̄ · ρ. The first

term is negative while the last term is non-negative. We can choose ᾱ big enough so that

[ᾱa+ (1− ᾱ)ρ] · p̄ < 0. (A.4)

a ·ρ = 0 implies that a · [λp̄+ (1−λ)p̄0] = 0 This implies that, since a · p̄ < 0, we have

a · p̄0 > 0. So that −a · p̄0 < 0. At the same time −a · ρ = 0. Consider β(−a) + (1− β)ρ,

where β ∈ (0, 1). Then

[β(−a) + (1− β)ρ] · ρ = (1− β)ρ · ρ > 0, (A.5)

for all β ∈ (0, 1). On the other hand, [β(−a) + (1− β)ρ] · p̄0 = βp̄0 · (−a) + (1− β)p̄0 · ρ.

The first term is negative while the last term is non-negative. We can choose β̄ big enough

so that

[β̄(−a) + (1− β̄)ρ] · p̄0 < 0. (A.6)

Define ∗α = max{ᾱ, β̄}. Define ∆yc = ∗αa + (1 − ∗α)ρ and ∆y0 = ∗α(−a) + (1 − ∗α)ρ.

Then ∆yc + ∆y0 = 2(1− ∗α)ρ > 0.

Note that (A.4) and (A.6) imply that

∆yc · p̄ < 0 (A.7)

and

∆y0 · p̄0 < 0. (A.8)

(A.3) implies that ∆yc · ρ = ∆yc[λp̄ + (1 − λ)p̄0] = λ∆yc · p̄ + (1 − λ)∆yc · p̄0 > 0.

Since the first term of the last inequality is negative from (A.7), the last term must be

positive, that is, ∆yc · p̄0 > 0. Hence, ∆yc ∈ H<(p̄, 0) ∩H≥(p̄0, 0). Similarly, using (A.5)

and (A.8) we can prove that ∆y0 ∈ H<(p̄0, 0) ∩H≥(p̄, 0). Thus, ∆yc and ∆y0 satisfy all

conditions of (A.2).

This implies that yc(p̄) + y0(p̄0) + ∆yc + ∆y0 > ȳ. Denote yc(p̄) by ȳc and y0(p̄0)

by ȳ0. Since ȳc and ȳ0 belong to Ŷ c and Ŷ 0, Assumption 3 implies that f c(ȳc) = 0

and f0(ȳ0) = 0. Recall that ∇f c(ȳc) is defined as the linear mapping such that for all

{hv} → 0N , we have

lim
hv→0

f c(ȳc + hv)− [f c(ȳc) +∇f c(ȳc)hv]
|hv|

≡ lim
hv→0N

e(hv, ȳc)

|hv|
= 0, (A.9)

where e(hv, ȳc) = f c(ȳc + hv)− [f c(ȳc) +∇f c(ȳc)hv].
Step 2. We show that there exists γc > 0 such that ∇f c(ȳc) = γcp̄. Take any point y ∈ Y c

such that y 6= ȳc. Then, from the convexity of Y c, f c(ȳc + t(y − ȳc)) ≤ 0 for all t ∈ (0, 1).

Using (A.9) and the fact that f c(ȳc) = 0, we have

∇f c(ȳc)(y − ȳc)
| y − ȳc |

= lim
t→0

f c(ȳc + t(y − ȳc))− f c(ȳc)
| y − ȳc | t

= lim
t→0

f c(ȳc + t(y − ȳc))
| y − ȳc | t

≤ 0. (A.10)
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Since this is true for all y ∈ Y c, ∇f c(ȳc) is a normal to a supporting hyperplane of Y c

at ȳc. Since, Ŷ c is smooth and H(p̄, p̄ · ȳc) is also a supporting hyperplane of Y c at ȳc,

there must exist γc > 0 such that ∇f c(ȳc) = γcp̄. Similarly, we can prove that there exists

γ0 > 0 such that ∇f c(ȳ0) = γ0p̄0.

(A.10) implies that ∆yc ·∇f c(p̄) ≤ 0 and ∆y0 ·∇f0(p̄0) ≤ 0. Choose a sequence {tv}
such that tv∆yc → 0, and tv > 0 for all v.

Step 3. We now show that there exists v′ such that for all v > v′, we have ycv :=

ȳc + tv∆yc ∈ Y c. (A.9) implies that for any scalar t, we have

f c(ȳc + t∆yc)− f c(ȳc)
|∆yc | t

=
∇f c(ȳc)t∆yc

t |∆yc |
+
e(t∆yc, ȳc)

t |∆yc |
. (A.11)

Then

lim
tv→0

f c(ȳc + tv∆yc)− f c(ȳc)
|∆yc | tv

=
∇f c(ȳc)∆yc

|∆yc |
+ lim
tv→0

e(tv∆yc, ȳc)

tv |∆yc |
. (A.12)

Since ∇f
c(ȳc)∆yc

|∆yc | < 0 and limtv→0
e(tv∆yc,ȳc)
tv|∆yc | = 0 (this follows from (A.9)), we find that

for large enough v, e(tv∆yc,ȳc)
tv|∆yc | are dominated by ∇f

c(ȳc)∆yc

|∆yc | . Noting that f c(ȳc) = 0, this

implies that there exists v′ such that for all v > v′ we have

f c(ȳc + tv∆yc)

|∆yc | tv
=
∇f c(ȳc)∆yc

|∆yc |
+
e(tv∆yc, ȳc)

tv |∆yc |
< 0. (A.13)

Hence, for all v > v′, we have f c(ȳc + tv∆yc) < 0, and hence ycv := ȳc + tv∆yc ∈ Y c for

all v > v′. Similarly, we can prove that there exists v′′ such that for all v > v′′, we have

y0v := ȳ0 + tv∆y0 ∈ Y 0.

Step 4. We now show that there exist sequences {pv} and {p0v}, and a positive integer v̂

such that for all v > v̂, we have yc(pv) + y0(p0v) > ȳc + ȳ0.

Define v̂ = max{v′, v′′}. For every v > v̂, ycv ∈ Y c. It can there be shown that

there are continuous maps κc(ycv) := maxκ {κ ≥ 0
∣∣[ycv + κ1N ] ∈ Y c} and κ0(y0v) :=

maxκ {κ ≥ 0
∣∣[y0v + κ1N ] ∈ Y 0}.20 For all v > v̂, it is clear that (i) ycv + y0v � ȳc + ȳ0

and so (ycv + κc(ycv)1N ) + (y0v + κ0(y0v)1N ) � ȳc + ȳ0, (ii) (ycv + κc(ycv)1N ) and

(y0v+κ0(y0v)1N ) belong to Ŷ c and Ŷ 0, respectively, and (iii) {ycv+κc(ycv)1N} → ȳc and

{y0v + κ0(y0v)1N} → ȳ0. Define pv = 1
γc∇f

c(ycv + κc(ycv)1N ) and p0v = 1
γ0∇f0(y0v +

κ0(y0v)1N ). The smoothness of functions f c and f0 imply that {pv} → p̄ and {p0v} → p̄0.

Clearly, yc(pv) = ycv + κc(ycv)1N and y0(p0v) = y0v + κ0(y0v)1N , so that for all v > v̂,

we have yc(pv) + y0(p0v)� ȳc + ȳ0.

Hence, for all v > v̂, the conclusions of the Lemma follow for sequences {pv} and

{p0v}.

20 See Appendix of a working paper version of this paper.
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Lemma 3: Suppose Assumptions 1 and 4 hold, Θ ∈ Ω is such that θhi > 0 for all i 6= 0

and for all h, and the rank of the matrix Θ∆(p) is one. Pick any h′ ∈ {1, . . . , H}. Then

there exist non-negative scalars µh for all h such that for all p ∈ RN
++, we have∑

i6=0

θhi y
iT (p) = µh

∑
i6=0

θh
′
i y

iT (p). (A.14)

Proof: First note that for all h and for any p� 0N , none of the rows of the matrix Θ∆(p)

can be zeros: This follows from Remark 1 and the fact that θhi > 0 for all i 6= 0 and for

all h, as then
∑

i 6=0 θ
h
i y

iT (p)p =
∑

i6=0 θ
h
i π

i(p) > 0. Under the rank assumption, it follows

that any row of Θ∆(p) provides a continuous (with respect to p) basis vector for the space

spanned by the rows of Θ∆(p). Choose row h′ as the basis. This implies that for all h,

there exist continuous functions µh : RN
++ → R+ such that for all h, we have∑

i6=0

θhi y
iT (p) = µh(p)

∑
i6=0

θh
′
i y

iT (p). (A.15)

Since supply vectors are homogeneous of degree zero in p, (A.15) implies that µh(p) is

also homogeneous of degree zero in p. Exploiting the Hotelling’s Lemma, we can rewrite

(A.15) as ∑
i6=0

θhi∇Tp πi(p) = µh(p)
∑
i 6=0

θh
′
i ∇Tp πi(p), ∀ h. (A.16)

Post multiplying both sides of (A.15) with p we obtain∑
i6=0

θhi π
i(p) = µh(p)

∑
i6=0

θh
′
i π

i(p). (A.17)

Differentiating (A.17) we obtain∑
h

θhi 6=0∇Tp πi(p) = µh(p)[
∑
i6=0

θh
′
i ∇Tp πi(p)] +∇Tp µh(p)[

∑
h

θh
′

i6=0π
i(p)], ∀h. (A.18)

A comparison of (A.16) and (A.18) imply that for all h

∇Tp µh(p)[
∑
h

θh
′

i 6=0π
i(p)] = 0NT . (A.19)

Under the maintained assumptions,
∑

h θ
h′

i6=0π
i(p) 6= 0. Therefore (A.19) is true if and

only if ∇pµh(p) = 0N for all h, that is, if and only if µh(p) is a constant function for all h.

Hence, (A.15) becomes (A.14).
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