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ABSTRACT

This report is concerned with a study of the response of arches sub-
jected to the influence of transient forces.

A numerical procedure is presented for the computation of the dynamic
response of-arches for both the elastic and the inelastic ranges of deforma-
‘tion. The procedure is applicable to arches having any shape and any distri-
bution of mass and stiffness. The distribution of the pressure along the
arch and its timewise variation may be arbitrary.

The analysis is simplified by replacing the actual arch which has an
infinite number of degrees of freedom by a discrete framework consisting
of a series of rigid bars, flexible joints, and concentrated point masses.
For the computation of the response in the inelastic range, the cross-
sectional area of the arch is considered to consist of two concentrated flange
areas connected by a thin rigid web. The equations of motion of the replace-
ment system are solved by use 6f a step-by-step method of numerical inte-
gration.

Computer programs are described for the analysis of two general
classes of problems: {(a) circular elastic arches subjected to a uniform nor-
mal pressure of arbitrary timewise variation; and (b) arches of arbitrary
shape subjected to a triangular moving pressure pulse. For the latter case
it is possible to evaluate the response in the inelastic range of behavior.

Numerical solutions are presented for a wide range of the parameters
involvied, and the effects of the various parameters are discussed,
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'RESPONSE OF ARCHES UNDER DYNAMIC LOADS
I. INTRODUCTION

1.1 Object and Scope
The objectives of this study were: {a) to develop a method for the

ecomputation. of the response of arches deflectirg in their own plane under the
influence of transient forces, and (b) with the aid of this method, to obtain
numerical solutions for a range of the parameters involved in order to gain |
ingight into the dynamic behavior of this siructural type. The wltimate purpose
of this investigation is the development of a rational method of design for
arches subjected to dynamic loads of the type arising from bomb blasts.

Although of an exploratory nature, the numerical data presented in
this report provide information on the effects of the major variables that
enter into the problem. Furthermore, they may be used to evaluate the adequacy

‘ C1x
of existing methods of design for arches under dynamic loads‘.[h]{m

The method is applicable to arches having any shape and any distri-
bution of mass and stiffness. The distribution of the forces along the arch
and their timewise variation may be arbitrary. The response of the structure

for both the elastic and the inelastic ranges of deformation may be investigated.

The problem is analyzed approximately by replacing the continuous
arch, which has an infinite number of degrees of freedom, by a discrete frame-
work consisting of a series of rigid bars and flexible joints. The actual
distributed mass of the structure is lumped into a series of point masses at
the Jjoints. For the computation of the response in the inelastic range, the
cross-sectional area of the arch is approximated by two flanges connected by
a thin rigid web. The resistance of each flange is represented by & bilinear
stress-strain diagram. The equations of motion for the analogous framework

are solved by use of a step-by-step method of numerical integration.

Mathematically, the replacement of the original continuous system by
a discrete system is analogous to the solution of the governing differential

equation by means of difference equations. The major advantage of a physical

¥ Tnless otherwise identified, numbers in brackets refer to the corresponding
items in the list of References given at the end of the text.



analogue is that it attaches physical significance to the various assumptions
and approximations introduced in the analysis. This is particularly true for
the inelastic range of deformation for which the problem becomes considerably
more involved. In several respects, the present analysis is similar to one

reported previcusly by J. A. Brooks L o

The method has been programmed for the ILLIAC, the high-speed elec-
tronic digital computer of the University of Illinois. Programs have been
prepared for two general classes of problems: (a) circular elastic arches
subjected to a uniform all-around pressure having any timewise variation, and
(b) arches of arbitrary shape subjected to a ftriangular moving pressure pulse.
The latter program can be used to evaluate the response in both the elastic
and post-elastic ranges of behavior. There are no restrictions as to the
distribution of mass or stiffﬁess along the arch, and the arch supports may
be either hinged or fixed. For a moving pressure, it is also possible to
consider the effects of partial fixity at the supports; In addition, a special-
ized program has been prepared which accounts for the effect of an initial out-
of -roundness. This program is restricted to uniform circular arches subjected

to a uniform pressure.

The computér programs have been used 4o obtain numerical solutions
for the response of two-hinged circular arches. Results were obtained (a) for
& uniform éll-around pressure with a timewise variation represented by a triangle
with an initial peak, and (b) for a triangular moving pressure pulse. While
most of the results are for the elastic range of behavior, a few solutions have
alsc been cbitained to investigate the response into the post-elastic range of
deformation. Tn these solutionsthe'cross-secticnal ares and the mass.
per wnit of length of the arch were considered to be constant. Although limited
in number, the numerical solutions cover a wide range of load and arch para-
meters. The load parameters include the duration of the pressure pulse, the
magnitude of the peak pressure as compared to the critical buckling pressure,
and, for the mcving pressure solutions,; the velocity of propagation of the
pressure front. The arch parameters include the geometric and physical pro-
perties of the arch. The effect of an initial out-of-roundness was investigated

by considering a pressure pulse uniformly distributed around the arch.
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The characteristics of the analogous framework used in the analysis
are described in Chapter II. Also included in this chapter are the derivations
of the equations necessary for dynamic response calculations and an outline of
the procedure for thelr solution for both the elastic and inelastic ranges of

behavicr. The capabilities and the general organization of the computer pro-

grams are described in Chapter III. In Chapters IV and v, the numerical results
are presented and the effects of the various variables are discussed briefly.

Chapter IV is devoted to the uniform all-around pressure solutions, and Chapter
V to the triangular moving pressure solutions. A summary of the more important

results is given in Chapter VI.

1.2 DNotation
The letter symbols used in this report are defined where they are

first introduced in the text. The most important of these are summarized below

in alphabetical order.

AJ = area of the cross-section at joint j
Agy Ag = areas of the top and bottom flanges at joint j
b = instaneous set
03, c? = distance from the centroidal axis of the cross-section at ‘
joint j to the centers of the top and bottom flanges, respectively.
dj = distance between the centers of flanges at joint j |
Ej = modulus of elasticity of material at joint J
£ = rise of arch
Fj = concentrated external force acting at joint J
Ij = moment of inertia of the cross-section of the arch at jJjoint J
Lo = span length of arch
Lj = length of bar J
mj = mass at joint J
Mj = moment at center of joint j
)

Mj’ M = moments immediately to the left and right of joint J



axial force in bar
axial forces in the top and bottom flanges to the left and

right of joint J
intensity of external pressure

peak value of external pressure

5
[i%— - ]E%-= critical buckling pressure for a hinged arch subjected
? R

o] ,

tco a uniform static pressure. The corresponding deflec-
tion configuration is antisymmetrical.

components of Fj immediately to the left and right of Jjoint j and
normal to the respective bars

transverse shearing force in bar J

radius of gyration of cross-section

radius of circular arch

duration of pressure pulse

time of transit of pressure front across the arch

fundamental period of vibration of complete ring, the breathing period
tangential component of displacement of joint j

x-component of internal forces at Jjoint J

radial component of displacement at joint J

amplitude of initial out-of-roundness

y-component of internmal forces at joint j

x-coordinate of joint J in undeformed position

x-component of external forces at Jjoint j

y-coordinate of Jjoint in undeformed position

y-component of external forces at joint j



It Tt

number of bars in arch model

angle between the y-axis and the line of action of Fj when first
spplied, positive when clockwise

direction angle of bar J with positive x-axis

total change in distance between joints j-1 and J

portions of the total deformation of Jjoint j to the left and right

of the Joint

deformations of the top and bottom flanges to the left and right
of joint Jj, respectively

component of displacement of joint j in y-direction

angle between the line of action of Fj when first applied to the
arch and its line of action after deformation

mass per unit of length of the arch

component of displacement of Joint j in x-direction

stress at joint J

stresses in the top and bottom flanges to the left and right of
joint J, respectively
total angle of opening of circular arch

angle change at joint j

angle changes to the left and right of joint J

rotation of bar J

1.3 Acknowledgment
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IT. METHOD OF ANALYSIS

2.1 Characteristics of Replacement Structure

A schematic drawing of the substitute framework is shown in Fig. 2.1.
It consists of a number of flexible Jjoints connected by rigid bars, which, for
convenience, are assumed to be straight. Inasmuch as the flexibility of the
structure is assumed to be concentrated at the joints, all axial and angular
deformations take place at the Jjoints. The individual bars are considered to
be massless, and the actual distributed mass of the structure is lumped into
a series of point masses at the joints. The characteristics at a joint of the
substitute framework are determined from the characteristics of the section of
the true arch included between the midpoints of the adjoining segments. For
a non-uniform arch the flexibilities of the joints and the megnitudes of the

concentrated masses will vary from one joint to the next.

This system is in some respects similar to a physical system used

by Clough [2] in an experimental investigation of buckling of arches.

In considering the behavior of the structure in the inelast%c range,
it is further assumed that the cross-sectional area of the arch is made up of

two flanges connected by a thin web which is rigid in shear. It is assumed

that the-wéb resists no direct forces. A cross=section of this type is an

idealization of a steel IJbéamior wide-flange beam. It also approximates a
section of a cylindrical shell consisting of an I-beam with a concrete cover.
The resistance of each of the flanges is given by a bilinear stress-deformation
diagram. The areas of the top and bottom flanges may be different at any one
Joint, and the total areas of the sections may vary from one joint to the next.
The physical properties of the top and bottom flanges may differ, but a varia-
tion in these properties from Jjoint to joint is not comsidered in the equations

presented here,

2.2 Designation of Joints and Bars

The joints of the analogous framework are numbered consecutively
starting with zero at the left end and terminating with z at the right end.
The bars are numbered in the same order from 1 to z. Bar J is the bar connect-

ing joints j-1 and j.



As shown in Fig. 2.1, the configuration of the undeformed arch is
specified by the rectangular coordinates, xj and yj, of the Jjoints. The con-
figuration of the deformed structure is defined by the displacements of the
joints, measured from the undeformed position of the structure. The components
of displacement of joint j in the positive x and y difections are designated

by §J and nj, respectively.

2.3 Equations of Motion in Terms of Forces

2.3.1 General. The forces acting at the ends of & representative
bar and joint are shown in Fig. 2.2. They include the axial thrust, N, the
transverse shearing force, Q, and the bending moment, M. An axial thrust is
positive when it produces tension. A shearing force is positive when it tends
to rotate an element of the arch in a clockwise direction. A bending moment
is positive when it produces compression in the exterior fiber of the arch.
The concentrated external force at joint j 1s denocted by F_, and the angle
between its line of action and the y axis, measured in a ciockwise direction,
is denoted by d.e The x and y components of the external force are considered
to be positive when they act in the positive x and y directions. 1In Fig. 2.2

all forces are shown in theilr positive directions.

Referring to Fig. 2.2a and considering the equilibrium of bar J,
one finds that both Nj and Q are constant along the length of the bar and
J
that QJ is related to the moments acting at the ends by the equation,

Q. = 4—d=1 (2.1)

where Lj is the length of bar j. The superscripts £ and r designate, respec-
tively, values of the moment to the left and to the right of theé joint. :The
total change in the distance between Jjoints j-1 and J is denoted by &.. Also,
£ r J
&, and 9,
J J-1

Jjoints j and j-1, respectively. Thus,

designate the components of the total deformation occurring at

T £
8. =05, o + 8. . 2.2
J -1 J (2.2)

The gquantities 63, 62, and 6? are measured along a reference axis which passes

through the centroid of the cross-sectional area of the analogous framework.
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If the cross-section consists of more than one material, the centroid is

determined from the transformed cross-section.

Congideration is next given to the equilibrium of moments at the
Joint about an axis normal to the plane of the framework. Referring to Fig.
2.2b and defining Mj to be the moment at the center of joint j, one finds

that Mg and ME are given by the equations,

M= M, - Q8"
I B N
r r
=M, + Q. .0,
M 95+1°;

The last term in each of these equations represents the moment produced by
the shears as a result of the deformations at the Jjoint. These terms are
likely to be important only for large axial deformations. Substituting these

expressions into Eq. 2.1 and making use of Eq. 2.2, one obtains,

M, - M,

Q. =
L.+ 2,
J Jd J

= S (2.3)

From the preceding discussion it follows that the axial thrusts and shearing
forces are essentially defined at the centers of the bars, whereas the bending

moments are defined at the centers of the joints.

The equations of motion for mass m(j in the x and y directions are

LY

m, k. =V, + X,
J J

33 (2.4)

M. =W, + Y,
SE RS I (2.5)

where Vj represents the component of all internal forces acting at joint J in
the positive x direction, and X represents the corresponding component of

the external forces. Similarlyf Wj designates the component of all internal
forces acting at joint J in the positive y direction, and Yj designates the
corresponding component of the external forces. A dot superscript denotes
differentiation with respect to time. Thus, Es and ﬁj denote the accelerations

in the x and y directions of the jth mass.
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2.3.2 Components of Resisting Forces. In the following derivationms,

the effects of the deformation of the structure are taken into account. Refer-
ring to Fig. 2.2t and summing the components of all internal forces in the x

direction, one obtains the following expression for Vj:

Vj = _Njcos(aj - ’q,{j) + Nj+1COS(Bj+l = wj.‘.l)

-GzJ.sin(sj - wj) + ez‘].,ﬁklsin(ajﬂ&_.L - wM) (2.6)

where ¥, with the appropriate subscript, denotes the rotation of a bar and
is positive in the clockwise direction. The direction angle of bar j with the

pesitive x-axis for the undeformed arch is denoted by 55.

In 8 similar manner, summation of the components of all internal

forces in the y-direction leads to the following equation for Wj:

W, = =N sin(B, - ¥.) + N, .sin(B. -V,
3= Wsin(By - v.) + N osin(By ) - Vy0)
+Q .cos(B., - ¥.,) - Q. ,cos(B. = ¥, 2.
Qjeos(B, - ¥.) - cos(B, ) - ¥y,) (2.7)
It may be recalled that the shearing forces Qj and Qj+l in the above equations
are related to the bending moments Mj-l’ Mj, and Mj+l by Eq. 2.3,

2.3.3 Components of External Forces. In order to express Xj and

Y. in terms of the total force F_, it is necessary to know or assume the line
of action of F, as the structure deforms. For example, if in the process of

J
deformation, Fj remains parallel to its original direction, then,

X. = F.,sin Q, (2.8)
J J J

Y.= F.cos O o 2.

5= F; : (2.9)

To obtain general expressions, let Gj represent the angle between the line
of action of Fj when first applied to the structure and its line of action

after deformation, as shown in Fig. 2.2b. Then,

P
i

F sin(a, + 6.) (2.10)
3 { 5 J) { )

[
1

F.cos(a, + 6, (2,11
- T (J J) (2.11)
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An important practical case is one in which the structure is sub-
Jjected to a pressure which remains normal to the surface. In this case, it
is convenient to express the concentrated force F, in terms of & component
Pg which is normel to the bar j immediately to thg left of joint j, and a
component Pg which is normal to the bar j+l1 immediately to the right of the
Joint. These components, considered to be positive in the outward direction,
can readily be evaluated in terms of the normal pressure. Then,

X sin(B -\lr)-P

J

—P sin(Bj+l - ‘Vj+1) (2.12)

Y. cos(B - \]! ) + P, ) (2.13)

J

P

T
J
r
J

Coe ™ Cue b=

cos Bj-r" - WJ+l

2.4 Displacement-Deformation Relationships

In Fig. 2.3, ab and a'b' represent, respectively, the positions of
bar j and Jjoints j-1 and J before and after deformation of the arch. Let tﬁe
projection a'c' of the deformed system on the undeformed system be designated
by Lj + Sj ; then gj can be expressed in terms of the displacements of Jjoint
j-1 and J as follows:

- - . - i R 2.
85 (sj éj_l)cos By + (nj nj_l)sm Bj (2.1ka)

Similarly, let the projection c'd' of the deformed system in a direction normal

to the undefomed system be denoted by Lj.'flfj ; then,

— l . )
Vvy= o L(ey - gy g)sin By + (0, -y y)cos B] (2.152)

J
In terms of 63 the length a'b' can be expressed as,

£

2 = 2
L.+ 9%, =1L, .+ (1 + 5./L,
J\/WJ ( J/J)

whence

2 = 2| & = 1. =
5.=1.]| -1+ T+ (1+5./L) S5, +=L.%." . (2.1kD)
-1, J‘% G5/ |28 L0 ¥

The rotation of the bar, \[rj, can likewise be expressed in terms of

B'J. and ﬁj as follows:

v, -
ﬂ,‘=t-l___;1__ zy;(0-5,/1)) . (2.15p)
J +6/L



It is noted that the gquantities 6 and W represent the first order approxima-

tions tc the change in distance 6 and to the rotation WJ

Referring. to Fig: 2.3 one alsc.finds that.

X, - X,

cOSs B°=_-J.=-—-._._=J=:.1‘_
J L,
J
(2.16)
y. - 7¥.
SinB_:—-&.——&:}"_
J L.
J
and that
(., + £ o= {x, L+ e )
- - —d J-1 J-1
cos(B; - ¥,) = L e
2,
(v, +1) - (v, , +1,.,) (2.17)
sin(p, - ¥,) = —l gl 4= J=
RN J L.+ 9,
d d
The angle change at joint j, denoted by Xj, is given by the expres-
sion,

X, = -
5= Vi T Y (2.18)

2.5 Deformation-Force Relationships

The equilibrium equations and the geometrical relationships developed
in the preceding sections are valid irrespective of the properties of the
material composing the structure. However, in the formulation of the deforma-
tion-force relationships, a distinction must be made between the expressions

applicable to the elastic and inelastic ranges of behavior.

2.5.1 Elastic Range of Behavior., The deformations to the left and

to the right of joint J are given by the following equations:

L I '
5. =% e (2.192)
Jd
r_ Zal g
— e
aj- S 5 A (2.19)
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The symbols Ej and Aj represent the modulus of elasticity of the material and
the cross-sectional area at joint j. If the cross-section consists of more
than one material, the values of these quantities are those of the transformed
cross-section. Combining Egs. 2.19 by use of Bq. 2.2 and solving for Nj’ one

obtains the expression,

. 2EA, 5
= é o Eﬂ . {(2.20)
1403 7
E. A,
J=1 j-1

For a uriform arch the coeffiéieﬁt 2 cancels with the terms in the denominator.
The bending moment, Mjg may be evaluated from the equation,

2E.T,
d

M, = = b
J Lj + Lj+l 3 (2.21)

where Ij represents the moment of inertia of the cross-secticn at joint j.
The bending moment produced by a uniform extension of the arch axis is not

taken intc account in Egq. 2.21.

2.5.2 Inelastic Range of Behavior. As already discussed in Section

2.1, the analysis for the inelastic range of behavior is restricted to cross-
sections which can be approximated by a <hin rigid. web and twor flalges.cs.

The relationship between the stress and the deformation for each flange is
considered to be represented by the bilinear disgram shown in Fig. 2.4. The
curve is shown in dimensionless form such that the slope of the elastic
resistance line is unity ahd yielding cccurs for S/By equal to one. The slope
of the second line which represents the inelastic resistance is ﬁyE, the ratio
of the stiffness of the material in the post-elastic range to that in the
elastic range. For an elastoaplastié stress-deformation relationship, E is
equal to zero. Unloading is considered +o take place along a line parallel

+to the initial elastic line, such as line AB in Fig. 2.L. The intercept of
this line on the S/Sy—axis is the instantaneous set, b/ay’ expressed in dimen-
sionless form. Unloading will continue along this line until a new "elastic”
limit is reached at B. The total change in deformation between points A and
B is 26yo Further unloading will occur along a line having a slope equal to
E'/E° In the figure, a possible path for a loading and unloading cycle is
represented by OABCD.
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Whereas for elastic response the axial force, Nj’ and the moment,
Mj’ can be determined directly from SJ andij, the same procedure cannot be
used if inelastic behavior is to be considered. In this case it is first
necessary to compute the deformations of the flanges. The forces in the flanges
at each of the joints can then be determined from the stress-deformation re-

lationships. Once these have been evaluated, Nj and Mj can readily be determined.

For the analpgous system considered, an "exact" determination of the
flange deformations can be made; however, the procedure is extremely time-
consuming even in terms of the time required on a high-speed computer. (The
details of this analysis are included in Appendix A.) It is therefore desirable
to introduce a further approximation. Fig. 2.5 shows schematically a deformed
Jjoint. As before, 62 and Sg denote the deformations to the left and right of
~Joint j. The superscripts t and b have been added to these symbols to identify
the deformations in the top and bottom flanges, respectively. For example,

Bgt denotes the deformation in the top flange on the right side of Joint J.

If it is assumed that the angle change at a joint is distributed to
each side of the joint according to the lengths of the bars adjacent to the
joint (i.e., according to the relative stiffnesses of the adjacent bars) and
the . tokal chahge:in length between adjacent Jjoinds ig:proportioneduto’
the two Jjoints inversely according to the areas of their cross-sections, then

the deformations are given by the following equations:

5£b ———fﬁ:é—— 5 - - éb X
J A+ A, Jg L,+ L, J
J J-1 J Jrl
A L
6£t =z A} S5. + ET—:—%——- ct %,
J 3 5-1 J 3 41 Jd J
(2.22)
S%b = K——fjii—— 5. - ————E%——— é?:x.
J 3 + 41 J+l Lj.+ 541 J o J
A, ' L,
61:1; = -A——_!—_j-ii— 6+l + i—_-I-AI]-—_ C‘t.l X,
R 1 S T S

The symbols c§ and ég denote the distances from the centroidal axis to the top
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and bottom flanges, respectively. These equations yield exact results when |

all flange deformations remain within the elastic range.

At the supports, these equations must be specialized to account for
the appropriate boundary conditions. For example, for joint O the expressions
are: » ;

For a hinged boundary,

A
rb rt 1
8 =8 = ———3 (2.23)
o) o Ao + Al 1
For a fixed boundary,
A
rb 1 b .
=i % R (2.24a)
(o] 1
A
rt _ 1 t
8, = B Al 8 + ¢ V¥, (2.24Dp)

If the ends of the arch are elastically restrained by moment-resisting

springs, the expressions for the flange deformations at the supports can be
generalized further. For a spring of stiffness k %25 the resisting moment is
given by the expression, © f

(2.25)

=

]

'
oFlE

where

[0}
]

the rotation at the support

the modulus of elasticity of the arch material for a reference

section

I = the moment of inertia of the cross-section at the reference
section

k

For an elastically restrained boundary at joint O, the expressions for the flange

stiffness coefficient for the spring.

deformations are:

A L
rb 1 1 b
o TEFE %17 °% (2.262)
° 1 2 2L +1L
kI "o 1

d
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A L

rt -1 1 t
50 = I ¥ A 81 + y ‘Jfl (2.26b)
° 1 2 2L +1L
kI "o 1l

where IO is the moment of inertia of the cross-section at joint O. For hinged
ends, k is equal to zero, and for fixed ends, k is equal to infinity. Substi-

tution of these values into Egs. 2.26 leads to Egs. 2.23 and 2.2&, respectively.

When the deformations of the individual flanges are determined from
Egs. 2.22 and the appropriate expressions for the boundary conditions, the
moments on each side of the joints and the axial forces at each end of the
bars will not be egual as regquired for egquilibrium. This difficulty is over-

come by evaluating these quantities by the following averaging procedure,

1 rb rt Nib £t
N.==(N.". + N, . + N. + N 2.2
j 2 ( J-1 J-1 J J ) (2.27)
. +
M, = i-(N%bc? -y pER N%tC?) (2.28)
J 23 7J J 3 J 73 J J

2.6 Method of Numerical Integration

The problem of determining the dynamic response of the structure cbn-
sidered herein is essentially one of satisfying the two equations of motion,
Egs. 2.4 and 2.5, for joints 1 through z-1. With the aid of the relationships
established in the preceding sections, it is possible to express these equations
in terms of displacements and to solve the resulting equations numerically using
a step-by-step method of integration. In passing, it may be of interest to
note that the resulting equations comstitute a system of 2{z-1) simultaneous,

nonlinear differential equations of the second order.

In this method of sclution, the time during which the response of
the system i1s to be determined is divided into a number of small time intervals,
t, and for each interval the equations are solved by means of an iterative
scheme. The procedure is described by assuming that at some time tn the values
of the displacements, velocities, and accelerations of all joints are known,
and that it is desired to determine the corresponding gquantities for a time

t ., which differs from t Dy the interval At.
n+l n
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1. The solution is started by assuming the values of the accelera-
tions in the x- and y-directions for each joint at the end of the time interval
considered. These values can be taken equal to those for the beginning of the

interval, or they can be estimated on some other basis.

2. An assumption is then made regarding the manner in which the
accelerations vary during the small time interval, and the values of the veloc-
ities and displacements at the ends ¢of the interval are evaluated in terms of
the assumed accelerations and the known accelerations, velocities, and. dis-
placements at the beginning of the interval. The following equationé due to

N. M. Newmark [5] were used:

5‘n+1 = %n + %— (at) in + %— (at) §n+l .(2.292a)
X 9= % + (at) % + (%— - B)(At)2 55’ + B(At) n+l (2.29b)

In these expressions x may be interpreted as the component of displacement of
Jjoint j either in the x-direction,gj, or in the y-direction, nj° As before,
a dot superscript denotes differentiation with respect to time. The subscripts

n and n+l refer to times tn and t© respectively. The dimensionless para-

o+l’
meter B depends on the assumption made regarding the variation of the accelera-

tion within the interval At. TFor a linear variation, B = 1/6.

3. From the values of the displacements at the end of the interval,
the changes of length and rotations of the bars and the angle changes of the
joints are evaluated using Egs. 2.1k, 2.15, and 2.18.

k.. For each joint the forces Xj and Yj are then evaluated by use
of Bgs. 2.12 and 2.13 (It is assumed that the load on the arch arises from a
normel pressure). Next the axial forces, bending moments, shears, and the
forces Vj and Wj are determined. For an elastic arch this is accomplished by
use of Egs. 2.20, 2.21, 2.3, 2.6 and 2.7, respectively. When inelastic behavior
is to be considered, it is first necessary to determine the deformations of
the flange elements at each Jjolnt. This is accomplished approximately by use

of Egqs. 2.22 and 2.26. Having evaluated the deformations at time t ., one

n+l”
computes the forces in the flanges by use of the appropriate stress-deformation
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curves. Finally, N and MJ are calculated from Eqs. 2.27 and 2.28. The shears
and the forces V and WJ are found from Eqs. 2.3, 2.6, and 2.7 as before.

5. The resulting values of Wj’ Vj’ Xj’ and Yj are then substituted
into Egs. 2.4 and 2.5, and a new set of accelerations is determined. The
accelerations in the x-direction are obtained from Eq. 2.4, and those in the

y-direction are obtained from Eg. 2.5.

6. The derived accelerations are finally compared with the assumed
values. If the agreement 1s not satisfactory, the process is repeated with
the derived accelerations taken as the new assumed accelerations. When s
satisfactory degree of agreement 1s reached between assumed and derived values,

one proceeds to the next time interval and repeats the procedure.
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III. COMPUTER PROGRAMS

‘3.1 General
Computer programs have been prepared for two classes of problems:

() circular elastic arches subjected tc a uniform all-around pressure, and

(b) arches of arbitrary shape subjected to a moving pressure pulse.

For the circular arches considered under (a), the equations used
in the analysis were formulated in terms of polar ccordinates. A schematic
drawing of a circular arch model is shown in Fig. 3.1. In this case the
arch is divided into bars of equal length; each bar subtends a central angle
@- The displacement of joint J is expressed in terms of its radial component,
Wj’ and its tangential component, vj. The component w, acts along a radius
through Jjoint j and is positive when outward. The component v, acts along
an axis perpendicular to the radius through joint J and is positive in s
clockwise direction. The equations pertsining to this analysis have been
presented in Reference [510 For convenience, a summary of these equations
for a normal pressure is given in Appendix B. These equations parallel those

presented in Chapter II.

For tkhis class of problems it is also possible‘to consider the effect
of an initial out-of-roundness. The out-of-roundness is defined in terms of

the deviations of the unstressed arch from a perfectly circular shape.

For the second class of problems, the loading is an initlally peaked
triangular pressure pulse moving across the arch at a constant velocity as
illustrated in Fig. 3.2. The pressure is considered té act normal to the arch
at all times. There is no restriction as to the shape of the arch that may
be considered, and the response of the system may be investigated for both

the elasgtic and inelastic ranges of deformation.

3.2 Arch Subjected to & Uniform All-Around Pressure

3.2.,1 Description of Programs. Rather than developing a single

general program for the analysis cf arches under a uniform pressure, it was
found desirable to prepare a separate program for the solution of problems

in which an initial out-of-roundness is to be specified. The pressure-time
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relationship may be arbitrary, but it must be approximated by a series cf
straight-line segments. Both programs have been coded to solve either hinged
or fixed-ended arches. The program which was prepared specifically to handie
an initial out-of-roundness is restricted to wniform wchés 5 bhowever, the other
program is completely gerersal in this respect, and it is possible to obtain
solutions for arches with varying cross-sections. '

The quantities evaluated inclnde Nj’ Mj’ Wj s and vjo In addition,

for a uniform arch the extreme fiber stresses in the cross-section may be cal-
culated. These results are printed in dimensionless form at specified intervals
of time together with the maximum values of these quantities and the times st
which they occur. For cross-sections which are symmetrical aboubt the arch axis,
the maximum stress in the section at each joint may be evaluated for two values
of c/rg where ¢ is the distance from the cenbter of gravity of the cx'essésection
to the extreme fiber and r is the radius of gyration of the cross-section. The
quantity c/r depends on the shape of the cross-section; for a rectangular section
it is equal to 'J_B, and for a section consisting of two concentrated flanges, it
is equal to 1l.- For sections which are not s;ymetrical about the arch axis, the
program evaluates the stresses in both the top and bottom fibers of the cross-

section.

In their present forms, the programs utilize the entire Williams
(fast) memory of the ILLIAC but only a pardt of the magnetic drum (slow) memory.
The computer time reguired to obtain a solubion depends obviocusly on the number
of segments into which the arch is divided, the length of the time interval
used in the integration procedure, the number of time intervals for which the
problem is to run, and to a certain extent on the arch dimensions. For a
perfectly circular arch the average compubter time required for each of the
twelve-bar solubtions presented herein was about twenty minubtes. The time re-
quired when an initial cut-of-roundness is specified is spproximately twice
that amount. |

The problem parameters which must be specified in using these progranms
incliude the geometrié and physical characteristics of the arch. These are
specified in terms of the angle of cpening, @, and the quantity LO/r; which
represents the ratio of the span length of the arch to the radius of gyration

of a reference cross-section. Throughout the remaining parts of this report,
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the quantity Lo/r will be referred to as the "slenderness ratio”. Parameters
which describe the wvariation in cross-section and mass from joint to joint
must also be given. An initial out-of-roundness is defined in bterms of the
radial and tangential components of the deviation of each joint from a per-
fectly circular configuration. The timewise variation of pressure is specified
in terms of the coordinates of the end points of each straight-line segment.
The magnitude of the pressure at any time is defined in terms of the dimension-
less parameter, pR5/EI, where p is the intensity of pressure and R is the
radius of the arch. Other parameters which must be designated are the number
of bars, z, the time interval of integration, At, the total number of time
intervals the problem is to run, and the number of time intervals between
print-out of results. If stresses are to be calculated, the values of c/r must

be specified.

In the use of these programs, limitations must be placed on the values
of these parameters. The maximum number of segments into which the arch can be
divided is twelve when it is desired to solve a problem in which an initial out-
of -roundness is to be introduced. For a perfectly circular aréh, it is possible
to consider up to twenty bars in the analogous framework. The largest value
that can be input for the pressure parameter, pRB/EI, is 100. The maximum value
of Lo/r which can be considered is 1000, that bf ? is 180°, Limitations also
exist with regard to the minimum values of these quantities; however, the lower
limits are not so well defined because they are a result of the scaling of the
intermediate quantities. Enough solutions have not been obtained to defineiacgu-
rately these limits. It is believed that the range of these parameters is

sufficiently large to include all practical cases.

3.2.2 Outline of Programs. In this section a general description

is given of the computer programs for the uniform all-arocund pressure. A more
detailed description of these programs and of those described in Section 3.3,
- including copies of the codes, have been placed in the Library of the Struc-
tural Research Group of the Civil Engineering Department at the University

of Illinois.

The complete program is divided into several subroutines each of

which performs a specific function. A flow chart of the program indicating
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the sequence of orders executed is presented in Fig. 3.3. The roles cof the

" individual subroutines are alsc indicated in +the flow chart.

The program is started by transferring control toc the first instruc-
tion of the main input routine (M1) which reads in the problem parameters from
the data tape, sets the quantities necessary to begin a solution, and prints

g heading which identifies the specific problem to be solved.

The integration procedure is started after control is transferred
to routine (21). Except for the initial cycle corresponding to t = O when a
special technique is required, trial values are first assumed for the radial
and tangential components of the accelerations of the joints for the end of
the time interval considered. These values are taken equal to those at the
teginning of the interval. Next the wvelocities and displacements are evaluated
by use of Egs. 2.29 with B taken equal to 1/6.

. The quantities required to determine improved values for the accel-
erations are calculated by routines (12), (10), and (11). Since the velocities
and displacements are known initially, the accelerations for t = O are cal-
culated by entering these routines directly after leaving (ML). Routine (12)
evaluates the uniform pressure coefficient, pRB/EI° This is determined for
the end of the time interval under consideration. Routine (10) calculates
the quantities BJ/L, wj, sin(g/2 t_wj), cos(@/Q + wj), and 1/(1 + BJ/L), In
the calculation of 5j/L and *3’ the second ordef.appro§?mations given in
Egs. 2.14b and 2.15b are used. The quantities Bj and wj are determined by
use of Egs. B.2.14 and B.2.15 in Appendix B. The sine and cosine terms are
evaluated by use of the trigonometric identities for the sum and difference
of two angles, with the terms sin Wj and cos *3 determined from the second

order approximations

sin v, = V.(1 -5./L)
J dJ Jd

i
[._J
'
PO}
<]
N

cos V.
WJ

Coe
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Similarly, the following second order expression is used in the calculation

of the remaining quantity:

1 ?j, g. o)
1+ 5.5 =vl‘L+(I‘1) .

dJ

Routine (11) calculates the angle changes Xj,‘by use of Eg. 2.18, and the axial
forces, Nj, and moments, Mj’ by use of Egs. 2.20 and 2.21, respectively. Routine
(01) serves as the control for routimes (10), (11), and (12).

The improved accelerations are computed by routine (20) which evaluates

Egs. B.2.4 and B.2.5. The terms on the right-hand side of these equations

are evaluated from Egs. B.2.6, B.2.7, B.2.12, and B.2.13, wherein the shearing
forces have been expressed in terms of the bending moments by use of Eq. 2.3.
These accelerations are compared with the assumed accelerations, and the pro-
cedure is repeated if the difference tetween the derived and assumed accelera-
tions exceeds a specified tolerance. It has been fcund convenient to make this
comparison after calculating the velocities and displacements from the derived

accelerations.

When convergence 1s accomplished, control is transferred to the out-
put routine (M2) which first calculates the deformations corresponding to the
final displacements. Following this, a test 1s made to determine whether or
not the extreme fiber stresses are to be calculated. If the stresses are desired,
they are determined from the following equation which is applicable to uniform

*
arches :

N. + N. M.
SO s RN 1 A S P
c. =
J A 2 r

) °

Rio

AY

.t

The maximum values of the various guantities are then evaluated by comparing

the results at the end of each time interval against the previously stored

¥
For non-uniform arches the corresponding expression is

1 N, + N, 1+ M, c,
o‘.=-—— _JJ__-E—-,—B-—J-_-& °
J A, 2 -r, T,

5oL 373

This expressions has not been included in the programs.
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maxima. Finally, the routine prints the values of the various quantities in

tabular form at specified intervals of time.

Subroutine (MP) is used to print the absolute maximum values of the
response. It is entered at the end of each problem and also at the instant

the pressure pulse terminates if the termination of the pulse occurs in the

interval of time for which the response is evaluated. A test is provided in
routine (12) which detects the end of the pulse and transfers control to routine
(MP). After these maxima have been printed, the memory locations in which they
are stored are set equal to zero. Consequently, in this case, the maximum

values printed at the end of the problem are for the era of free vibration.

The basic features of the program which allows consideration of an
initial out-of-roundness are the same as for the program applicable to a per-
feetly circular arch. However, in the latter case account is taken of symmetry,
and only one-half of the arch is considered, while the former requires con-
sideration of the entire arch. Another difference concerns the manner in which
the deformations are computed. For a perfectly circular arch, the deformations
are calculated directly from the displacements measured with reference to the
undeformed configuration of the structure. However, for an arch with an initial
out-of -roundness, the deformations are calculated in two steps: First, a
fictitious set of deformations is determined in terms of displacements measured
not from the undeformed configuration of the arch but from the perfectly cir-
cular configuration. Second, the actual deformations are determined by
subtracting from these fictitious deformations the "deformations" corresponding
to the initial out-of-roundness. The first step is accomplished by use of
routine (10). Subroutine (13), not shown in the flow chart, has been added

immediately after routine (10) tc perform the subtractions of the second step.

2} ) 13
The “"deformations

corresponding to the initial ocut-of-roundness are calculated
and permanently stored with the aid of subroutine (10), which is entered from

routine (Ml) during the initial stages of the solution.

3.3 Arch Subjected to a Triangular Moving Pressure

3.3.,1 Description of Programs. Two separate programs have been pre-

pared for the solution of an arch subjected to a triangular-shaped moving
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pressure. Because the computation of the response of arches in the post-elastic
range of behavior is very time-consuming, 1t was found desirable to prepare a

specialized program for the solution of elastic arches.

The quantities evaluated by both programs include the forces Nj and

Mj and the displacements gj and nj. In addition, the "inelastic program”

determines the average strains at each joint in the top and bottom flanges.
All of these results are printed'in dimensionless form at specified intervals

of time.

Non-uniform arches having either hinged or fixed boundaries can be
considered by both programs. In addition, the "inelastic” program". canbe

used to study the effects of partial fixity at the supports.

The programs make use of the complete Williams memory and part of
the magnetic drum memory of the ILLIAC. The time required for a solution
depends on the same factors which have been enumerated in Section 3%.2.1. For
each of the elastic solutions presented herein, the computer time averaged
about forty-five minutes. For the inelastic solutions, the average time was

roughly twice that for a corresponding elastic solution.

The problem parameters which must be specified in using the programs
can be classified into four groups. The first group determines the shape of
the arch and includes the rectangular coordinates of the joints of the arch.
For circular and parabolic arches, subroutines have been prepared for calculat-
ing these coordinates within the machine so that it is not necessary to input
the coordinates of the individual Jjoints directly. The second group of parameters
describes the physical properties of the arch and includes the slenderness ratio,
Lo/r, the variations in cross-section and mass from joint to joint, the charac-
teristics of the bilinear stress-deformation relationships for the top and
bottom flanges, and the boundary conditions of the arch. The third group of
parameters defines the characteristics of the moving pressure pulse and includes
the peak wvalue of the pressure and parameters related to the duration and speed
of the pressure wave. Finally, the time interval, At, the number of bars, z,
the total number of time intervals the problem is to run, and the number of

time intervals between print-out of results must also be specified.
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The maximum number of bars that can be considered in the analogous
arch is eighteen for an elastic solution, and fourteen when use is made of the
"inelastic program®. The largest value of the peak pressure which can be
considered corresponds to & value of pOLS/EI equal to 1000. Other limitations
exist with regard to some of the other parameters; however, there is sufficient

latitude to permit consideration of most problems of practical interest.

3.3.2 OQutline of Programs. A general description of the computer

programs is included in this section. A flow chart of the program indicating
the functions of the various subroutines, is shown in Figure 3.4. The principal
features of these programs are the same as those of the programs described in
Section 3.2.2. The significant differences lie in the determination of the
external forces at the joints and in the additiomnal subroutines necessary to
determine the axial forces and moments for the "inelastic’ program"since these
cannot be calculated directly from the total deformations and rotations of the

bars.

The program begins when control is transferred to the input routine
(ML) which, in conjunction with subroutines (MLl.2) and Ml.3), reads in the
problem paiameters from the data tape, sets the quantities necessary to begin

a solution, and prints a heading used to identify each problem. The specific

function of subroutine (MLl.2) is to set the rectangular coordinates of the
joints into their proper locations in the memory. Several versions cf routine
(M1.2) bave been developed. One of these is applicable to arches of arbitrary
shape; in this case, the coordinates x, and yj are specified on the input tape.
The subroutine, then, merely reads these values and places them in their
éorrect locations in the machine. Another version spplies to circular sarches
for the case in which the geometry is specified by the rise-span ratio, f/Lc>°
Using this parameter, the subroutine evaluates the coordinates of the joints

- and then stores them, A similar routine has also been developed for parabolic
arches; other shapes can be evaluated in a similar manner by simply replacing

tkis subroutine with a proper substitute.

The integration procedure is accomplished by routine (-21). As in
the case of the programs for a uniform all-around pressure, the initial trial

values of the accelerations at the end of each time interval are taken equal
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to those at the beginning of the interval except for the special case when t = O.

The velocities and displacements then are determined by use of Egs. 2.29 with
B =1/6.

Improved values of accelerations are determined using quantities
evaluated in routines (11), (12), (13) and (-4k4), and (14). Using the dis-
placements derived from the assumed accelerations, routine (11) calculates the
quantities & /L e W i cos(B - w ), s1n(B - W ) end _—:7?;7ﬁ:— The quantities
SJ/LJ and wJ are determlned by use of the second order aprox§matlons given in
Egs. 2.14b and 2.15b, where 5 and W are given by Egs. 2.14a and 2.15a. The
sine and cosine terms are evaluated by use of Egs. 2.17, where l/(L + 5 ) is

determined by use of the second order approximation,

) 5
1 _1 _d R
s s - ()]
J J J J J

In the "inelastic program”, the deformations of the flanges, B{t, etc., are
determined by routine (12) using Egs. 2.22 and 2.26. 1In routiges (13) and
(-44) the corresponding stresses are found by use of the bilinear stress-
deformation relationship described in Section 2.5.2. The axial forces, Nj’

and moments, Mj’ are then calculated in routine {(14%) by use of Egs. 2.27 and
2.28. For an elastic arch, routines (12) and (13) are omitted, and a different
routine {14) is used which calculates Nj and Mj directly by use of Egs. 2.20
and 2.21. Routine (01) serves as the control for routines (11), (12), (13),
and (14).

The external forces at each joint, Pé and Pg, are determined in
subroutine (21) which is controlled from routine (22). These quantities are
calculated by determining the instantaneous static reactions at the ends of
the bars; the bars are assumed to be simply supported. It may be noted that
these reactions are different for each time interval, since the pressure
distribution changes as the load moves across the arch. Routine (22) calcu-
lates the improved accelerations by evaluating the equations of motion, Egs.

2.4 and 2.5. The terms on the right-hand side of these equations are calcu-
lated by use of Egs. 2.6, 2.7, 2.12, and 2.13. In Egs. 2.6 and 2.7 the shearing

forces have been expressed in terms of the moments by use of Eq. 2.3. These
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accelerations are compared with the assumed accelerations, and, if satisfactory

agreement is not attained, the integration procedure is repeated.

At the end of each time interval, control is transferred to routine
(M2) which evaluates the final deformations and stresses by use of subroutines
(11), (12), and (13). At the times when the results are to be printed, the
final values of the moments and axial forces are calculated by use of subroutine

(14). Then the results are printed in tsbular form.
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IV. NUMERICAL SOLUTIONS FOR ARCH SUBJECTED TO A UNIFORM PRESSURE PULSE

4,1 Problem Parsmeters

In fhis chapter numerical solutions are presented forvthe elastic
response of two-hinged éircular arches subjected to a uniform all-around ?ressure
pulse. The cross-section and mass per unit of length of the arch are considered
to be constant. Thé‘pressure-timé relationship is represented by a triangle

with an initial peak as shown in Fig. L4.1.

For the benefit of the reader who may have bypassed Chapter III, the
parameters used to define the problem are summarized below. The dimensions of
the structure are expressed in terms of the rise-span ratio, f/LO, and the slen-
derness ratio, Lo/r, (Note that tan(@o/h) = 2f/LO, where @ is the central angie
of opening of the arch.) The characteristics of the pressure pulse are expressed
in terms of the ratios po/pcrl and t d/To. The quantity p is the pesk value of
the pressure; P, represents the critical buckling pressure corresponding to an

antisymnetrical mode of deformation and is given by the eduation,

o - bt L | B
= |2 5L
er 2 RB
o] -

where R is the radius of the arch. The symbols E and I represent the modulus
of elasticity of the material and the moment of inertia of the cross-section
of the arch, respectively. The quantity td denotes the duration of loading, and
To’ the fundamental period of vibration of a complete ring. The latter quantity

is given by the equation,

' KR - R
= ﬁ S———— = e
To= 2% ER =T
where C is the speed of sound in the material of the arch, A is the cross-

sectional area, and u is the mass per unit of length of the arch.

The initial out-of-roundness considered in some of the solutions to
be presented is taken in the form of a complete sine wave with nodes at the
supports and at the crown. The magnitude of the out-of-roundness is expressed

in terms of ﬁh/Log where Wﬁ is the amplitude of the deviation.



4.2 Presentation of Results

4,2.1 General. The majority of the solutions presented are for a
perfectly circular two-hinged arch of uniform cross-section having the following

dimensions,

W

/L 0.20 (corresponds to Q= 87.210)

O

Lo/r = 100 (corresponds to R/r = T72.5)

Except where otherwise indicated, these solutions were obtained by considering

twelve bars of equal length in the analogous framework. The natural frequencies

(3]

For convenience, the natural periods are summarized in Teble 4.1, and the first

and modes of vibration for this structure have been reported in Reference

three antisymmetrical and symmetrical modes of vibration are given in Fig. 4.2.

4.2.2 Typical Response Characteristics. In Figs. k4.3a through 4.3d

are plots of the response of the arch analogue referred to above when subjected

to a loading defined by the parameters td/To = 2 and po/pcr = 1. Included are
the deflection configurations at a few selected times and time histories of the
radial displacement, axial force, and bending moment. The radial displacements
and bending moments are plotted for the crown and quarter point, and the axial
force, for the crown. No tangential displacements are presented because they
are generélly smell compared to the radial displacements. The displacement

configurations are shown to an exaggerated scale.

The axisl forces are eXpresséd in terms of pOR, and the displacements,
in terms of pORQ/AE. These quantities represent, respectively, the axial force
and the radial displacement caused by a uniform pressure P, acting statically
on a complete ring. The bending moments are expressed in terms of poRr. For a
section consisting of two concentrated flange areas, c/r is equal to one and,
‘consequently, the stress at the extreme fiber of a section is proportional to
the sum bf the ordinates of the axial force curve and the corresponding moment

_curve.

The response curves presented in Figs. 4.3 are generally smooth and

”regular. The period of the oscillations in the curve for the axial force is
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approximately equal tc that of the second symmetrical mode of vibration of the
arch. The period of this mode, which is predominantly extensional, is close
to T, the "breathing” pericd of a complete ring. The periods of the oscilla-
tions in the curves for bending moment are not directly identifiable with any
of the natural pericds of the arch, and, in fact, those for moment at the
crown and gquarter point are between the periocds of the second and third modes.
The principal oscilliations in the response curves for radial displsacement at
the quarter point have a period equal to that of the second symmetrical mode;
however, oscillations of a period equal to that of the first and third natural
modes are alsc noticeable in the response curves for displacement at the crown.
The contributions of these three modes can also be seen by comparing the dis-

placement configurations in Fig. 4.3%a with the natural modes given in Fig. L.2b.

The participation of the wvariocus modes can be determined more readily
by a modal method of analysis. Such a solution was obtained primarily for the
purpose of checking the results of the computer calculations. The basic equa-
tions used for this analysis are given in Appendix C. The results of this
modal solution are presented in Table 4.2 where the contributions cof each mode
to the wvalues of displacement, axial force, and moment are listed. The function
fr(t) représenxs the dynamic amplification factor for the rth.mode and depends
on the shape of the pressure pulse. The structure considered in this solution
is the same twelve-bar framework, and the load is a step-pulse of infinite
duration. The solution applies only tc values of Po which are small in com-
parison to the critical buckling load. From an examination of the results
presented in this table, it can be seen that the major part of the response
arises from the participation of the first three symmetrical modes of vibration.
This is consistent with the observations made above on the basis of the response

curves.

The results show that at any time the distribution of the axial force,
N, is essentially uniform throughout the arch. Consequently, the curve in
Fig. h.Bc.may’be interpreted as representing the time variation of N for any
point on the arch. This result also holds for ithe solutions presented in the
following sections of this chapter. The distribution of bending moment across
the arch can best be seen from Figs. 4.4 which show the variation of the moment

at each Jjoint. It can be seen that the bendirg moment reaches a maximum first
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near the supports and that the absolute maximum moment occurs at the crown.
In Fig. 4.3 it is of interest to note that the maximum displacement at the
quarter point is larger than that at the crown. It may also be noted that
the absglute maximum value corresponds to the first maximum for both the dis-

placements and axial forces.

In Teble 4,3 are listed the maximum values of the radial displacement,
axial force, and bending moment and the times at which these maxima occur.
Displaceménts and moments are given for each joint of the analogous framework
and axial forces are given for each bar. Also included in this teble are values
of the maximum stresses at each joint for cross-sections with ¢/r = 1 and
e/r = 2. The corresponding static values are given in Table 4.k, For conven-
ience; the maximum dynamic effects for the quarter point and crown are compared

with the corresponding static values in the following table.

W

- e N i M

p R /AE PR : P _Rr
l/ﬁ point  crown 1/k point* crown 1/4 point crown
Static =1.110 -1.578 -0.994 -0.994 0.063 0.086
Max. Dynamic -2.385 -1.875  -1.684 -1.679 0.934 ~1.137

The displacement at the crown increases only 19 percent over the static value,
whereas that at the quarter point increases 115 percent. The increase in the
axial force due to the dynamic load is 69 percent. Because of the small static
bending moments in the arch, the dynamic amplification of moment is quite
large. It should be noticed that the maximum bending stresses are of the same

order of magnitude as those due to the axial forces.

4.2.3 Effect of Length of Time Interval of Integration and Number

of Bars. For the sclution presented in the preceding section the arch was

replaced by a framework of twelve bars and the time interval of integration
was taken as 4t = 0.01 To' The purpose of this section is to discuss how the
solution is influenced by the choice of the time interval and the number of

segments used in the replacement system.

% The axial forces are defined for the bars to the immediate left of the points
indicated.
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The interval of integration should be small enough such that suc-
cessive cycles of iteration conﬁerge and :the resulting . solutions:are
stable and accurate. In general, the smaller the time interval of integration,
the more accurate will be the solution; however, the time required to obtain
the solution will be correspondingly longer. In the integration procedure used
in this analysis, the acceleration was assumed to vary linearly during each

[5]

time interval. For a linear problem, 1t has been shown that the procedure

is convergent and leads to a stable solution when

At = 0.389 T,

where T is the smallest natural period of the structure. While not strictly
applicable to the present non-linear problem, this relation may be used as a
guide in the selection of the time interval of integration, with the quantity
T interpreted as the smallest natural period of the unloaded arch. For the

particulear twelve-bar system considered, this corresponds to

Vire

0.026 T
o}

and for a sixteen-bar system, to

Fard

0.019 T_.

Comparisons were made of the results obtained for (a) a twelve-bar
system using time intervals of 0.005 T , 0.0L T , and 0.02 T_ and (b) a
sixteen-bar system using time intervals of 0.005 To and C.01 To' The maximum
values for these solutions are presented in Tables 4.3 and 4.5. It can be
seen that, for all practical purposes, the results for the same number of bars
are identical. In other words, the accuracy of the solution does not appear
to be sensitive to the choice of time interval, provided the convergence and

stability requirements are satisfied.

| As an indication of how the time required for solution is influenced
by the choice of time interval, the number of iterations required in the solu-
tion of the problems mentioned in the preceding paragraph are listed in the
following table. In this table are given the number of iterations required
in the computation of the response for an interval of time eqgual to Td and

the average number of iterations for each step of integration, At.



Number of v Tterations per Tterations per
Bars T T ays
o] o]

12 0,005 583 2.91
0.01 ho2 k.02

0,02 755 15.11

16 0.005 600 3.00
0.01 571 5.T1

It is noted that the larger the time interval, the larger is the number of itera-
tions required for convergence per time interval. However, the number of iterations
per To and, eomnsequently, the time required to obtain a solution decreases with
increasing £¢/TO until values close to the convergence limit are reached. The
results of these solutions suggest that the optimum time interval, which leads

to the minimum time for a solution, is of the order of one-third to one-half

the convergence limit. It is found that for this time interval convergence is
accomplished in approximately four or five iterations. These conclusions have

also been verified by a few additional solutions which are not included here.

The effect of increasing the number of bars in the analogous frame-
work was investigated to determine the adequacy of the twelve-bar solution in
depicting the response of the continuous structure. Resulis were obtained for
arches with 10, 12, 16 and 20 bars. Time histories of the radial displacements
at the 1/k4 point and crown are compared in Figs. 4.5a and 4.5b, and the axial
forces and bending moments are shown in Figs. 4.5c and 4.5d. It is assumed that
the significant characteristics of the response of the ccntinuous arch are

present in the 20-bar sclution.

The results for the axial force and the radial displacement at the
quarter point are in good agreement, except for a slight phase shift. The agree-
went is not as good for bending moment or digplacement at the crown. For wvaliues
of t/TO larger than 2.0, which correspond to the free vibration era, there are
differences in the detailed characteristics of the curves shown in Fig. 4.5d4 in
addition to the phase shift. The phase differences are attributed to the fact
that the natural frequencies of the modes which contribute to the response are

not the same for the different systems compared. The differences in the
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response characteristics of the curves in Fig. 4.5d4 for the larger times can
be explained on the basis that the structures with the higher number of bars
can account better for the participation of the higher modes. However, it

is important to note that there are no major differences in the values of the

maximum effects or in the over-all characteristics of the various solutions.

The times required for solution of the 12-bar and 20-bar problems
were approximately 20 snd 4O minutes, respectively. For the purpose of the
present exploratory study, it was felt that the twelve-bar system would pro-
vide results of sufficient accuracy, and it was used to obtain the remainder

of the solutioms. .

In order to determine the relisbility of the solutions obtained from
the digital computer, an independent check of the arch problem was provided by
obtaining comparative solutions by a medal method of analysis for an arch sub-
Jjected to a step-pulse loading of infinite duration. This solution was obtained
on & desk calculator. The system considered was the twelve-bar analogous
framework described in Section 4.2, Since the modal method is applicable only
to structures which deflect in a linearly elastic manner, it yields results
only for "small" values of po/pcr- The computer solution used in the compari-

son was obtained for & value of po/pcr = 0.01.

The results of these solutions are compared in Table 4.6. Radial
displacements, axial forces, and bending moments are tabulated at correspond-
ing times for both methods of solution. The agreement between the two sets of

solistions is quite satisfactory.

L2,k Effect of Duration of Loading. In Figs. 4.6a through 4.11d

are presented response curves for an arch subjected to a triangular pressure

pulse for durations represented by values of 't,d/TO up to 4. The arch is the
same as that considered in Section 4.2.1, and po/Pcr = 1 for all solutions.
The absclute maximum values for the various effects are summarized in Table

.7,

The general features of these curves are similar to those presented
in Fig. 4.3. As before, the period of the predominant oscillations in the
curves for displacement and axial force is the period of the second symmetrical

mode of vibration (close to the period To of the "breathing” mode for a complete
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ring). The period of the oscillations in the curves foribending~moment are not
identifiable with any of the natural periods of the arch. The axial force is
found to be relatively uniform throughout the arch, whereas the distribution of
bending moment is non-uniform, with the maximum effect occurring at the crown.
The value of the maximum displacement at the quarter point is found to be con-

sistently larger than that at the crown.

In Figs. 4.12a through 4.12d are presented spectrum curves of radial
displacements, stresses, axial forces, and bending moments. These are plots
of the absolute values of the maximum effects versus the duration of loéding,
td/To° The stress at a joint of the substitute framework is determined from
the moment at that joint and the average value of the axial forces in the
ad joining bars. The spectrum curves for stress have been caléuléted for c/r = 1.
Within the range of load durations considered, the meximum displacement is 2.58
times the corresponding static value for a complete ring under uniform pressure.
The meximum stress reaches a value 2.43 times the static value for a ring. The

maximum axial force is 1.83 PoR’ and the maximum moment is 1.47 pORr,

To indicate the relative importance of the bending effects, in the
following table are listed the ratios of the true maximum stresses to the max-
imum stresses determined-by disregarding the component due to bending. Results
are tabulated for the quarter-point and the crown for different wvalues of td/To,
and for c¢/r = 1 (%wo concentrated flange areas) and 3 (g rectangular cross-

section).

. S ‘ . dine b .
Ratio of true Omax to ohax disregarding bending

c/r.= 1 ' C/I‘ = 3

oft
S~
H

(o]

1/4% point  crowm 1/4% point  crown

0.5 1.79 1.86 2.55 2.68
0.50 1.78 1.94 2.53 2.80
0.75 1.58 1.82 2,22 2.63
1.00 1.32 1.45 1.75 2.09
1.50 1.32 1.15 1.57 1.67
2,00 1.32 1.23 1.56 1.72
4.00 1.32 1.35 1.65 1.80

It may be noted that this ratic varies from 1.15 to 1.9% for c¢/r = 1 and from
1.56 to 2.80 for c¢/r = J?Z and that there is a tendency for the ratios to
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increase with decreasing wvalues of td/TO° Obviously, the bending effects are

more important for the cross-section having the larger c/r ratio.

The absolute maximum displacement occurs on the first maximum for
the longer durations of load, and on the third or a later maximum for the
shorter durations. It follows that the effect of damping in reducing the
megnitude of the meximum values will be more pronounced for the shorter dura-
tions of loading. The absolute maximum value of the axial force occurs on

the first maximum, whereas that for bending moment occurs on the third maximum.

Since the maximum axiasl force and maximum moment do not occur at
the same time, and since the stress calculation is dependent on the ratio c/r,
it is desirable to have an approximate method for calculating the maximum
'étresses. In Table 4.8 the exact maximum stresses are compared with those

computed by use of the following equations:

1 Mmax c
omax < A lNﬁax * r T (a)
M 2 2
& 1 2 max c
cmax - A (Nmax) + ( r ( T ) (b )

Comparisons are made for two values of c/r° It can be seen that Eq. (a) over-
estimates the meximum stress by a maximum of 49 percent and a minimum of 9
percent. The results obtained from Eq. (b) are, for the most part, too low.

The maximum error is -20 percent.

4.2.5 Effect of Parameters Influencing Tendency for Buckling. The

factors which govern the tendency of a circular arch to buckle under dynamic
loading include the magnitude of the peak pressure, the duration of the loading,
and the amount of initial out-of-roundness. Solutions are presented in this
section for a perfectly circular arch and an arch with an initial out-of-
roundness for different values of po/pcr° The characteristics of the arch are
considered to be the same as before, and the duration of loading, t., is taken

‘equal to 2To°

d.,

The effect of an increase in the peak pressure is indicated in Figs.
4.13 where the results for po/pcr equal to 0.5 and 2.0 are compared. It can
be seen that the peak values of the response are affected only slightly by
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changes in the value of po/bcr; The features of the response are also very

similar except for & small decrease in frequency with an increase in pressure.

This change is attributed to the reduction in stiffness of the arch due to

the increased axial thrust. The curves presented in Figs. 4.3 for po/pcr = 1.0
= 0, d p. = 2.0,

fall between those for Po/bcr 5 an Po/Pcr 2.0

In Figs. 4.14 are shown response curves for an arch having an initial

out-of-roundness in the form of a complete sine wave and an amplitude

w = 0,001 L .
m i o
For the value of Po/Pcr = 1 considered, this corresponds to

%= 0.h52 pORE/AE )

Comparing these results with those presented in Figs. 4.3 for a perfectly
circular arch, one may cbserve that the response curves at the 1/4 point (or
3/h point) for the circular arch lie between the corresponding curves for the
arch with the initial out-of-roundness; and that the differences in the values
of the maximum effects are small. The maximum values for these solutions are
compared in Table 4.9. Also included in this teble are the results for the
different va;ues of po/pcr discussed above and cne additional solution for an
arch with an initial out-of-roundness. These results indicate that for load
durations less than td/To = 2, the effect of the magnitude of the peak pressure
or of a small initial out-of-roundness is small. However, it is expected that
for longer durations of loading the buckling tendency may become more impor-
tant. Of equal importance, however, may be the effect of damping which was

neglected in these solutiocns.

4.2.6 Effect of Arch Dimensions. The influence of the dimensions

of the srch on the response was investigated by obtaining a few solutions for
different values of the slendernmess ratio, LO/r, and the rise-span ratio,
f/LOe The values of Lo/r considered were 50, 100 and 200 for a value of f/Lo
equal to 0.2. In addition, rise-span ratios of 0.1 (@O = h5,240), v

0.2(p, = 97.21°%), and 0.5 (o, = 180°) were considered for L /r equal to 100.
In each cof these solutions, the load parameters were taken as po/pcr = 1.0 and

td/m0 = 2.0,
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The results for L /T equal to 50 and 200 sre given in Figs. 4.15 and
4.16. The maximum values are summarized in Table 4.10. From an examination
of these results and those presented in Figse 4.3 for Lo/r = 100, it can be
seen that the detailed characteristics of these curves are, in general, differ-
ent. However, insofar as the axial forces are concerned, the period of the
principal oscillations in the response curves are approximately equal to Toy
and the magnitude of the maximum forces are essentially the same. The maximum

values range from 1.7l poR to 1.74 poRa

As might be expected, the effect of changing Lo/r is most pronounced
on the response curves for moment and displacement. It can be seen that the
moment builds up more rapidly for the stiffer arches. There does not appear
to be an aeppreciable difference in the maximum values of the dimensionless
bending moment, M/poRr, for Lo/r = 100 and 200; however, for Lo/r = 50, the
value is appreciably larger. This is also true for the radial displacements.
For convenience, these results, in addition to those for the absolute maximum
stresses, are summarized in the following teble. The values presented repre-

sent the absolute‘maximum effects for the entire arch.

Absolute Maximum Values

w M ag o]

L /I' max max max - max
fo} 2
p R /AE p_Rr poR/A pOR/A
(c¢/r=1) (c¢/r="3)
50 2.8L 1.65 2,30 3.16
100 2.39 1.1k 2.22 2.88
200 2.k 1.19 2,13 2.69

It should be noted that the maximum stresses are not as sensitive to changes

in Lo/r as are the moments.

Response curves corresponding to different values of the rise-span
ratio are presented in Figs. 4.17 and 4,18, and the meximum values of the
response are given in Table 41.10. These results together with those presented
in Figs. 4.3 and Table 4.3 indicate that an increase in f/Lo has the same
general effect as an increase in Lo/r, A comparison of Figs. 4.17 and 4.15
shows a striking similarity between the corresponding time history curves.

Comparing Figs. 4.18 and 4.16 one may notice the same tendencies in the response
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curves even though the correspondence is not as pronounced in this case as in
the previous comparison. It appears that an empirical relationship might be
developed which combines the rise-span ratioc and the slenderness ratio into

a single parameter. On the basis of the meager data presented here, a possible

choice for this parameter is

L
o . ]
Ir

£ £
L r
o)

Additional solutions are necessary to determine both the adequacy and range

of applicability of this parameter.
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V. NUMERICAL SOLUTIONS FOR ARCH SUBJECTED TO A TRIANGULAR MOVING PRESSURE

5.1 Problem Parameters

Numerical solutions are presented in this chapter for two-hinged
circular arches of uniform cross-section subjected to a triangular-shaped
moving pressure as shown in Fig. 3.2. The characteristics of this type of
loading are defined by the parameters Po/?cr’ tt/To, and td/tt. The parasmeter
Po/Pcr describes the peak value of the pressure wave, P in terms of the

buckling pressure, P, The quantity t, represents the transit time, which

is the time required for the front of tﬁe wave to move;from one support of
the arch to the other; td represents the duration of the pulse, i.e., the
time required for the entire pressure pulse to pass over a fixed point on the
arch. As before, T, is the "breathing” pericd of vibration of a complete ring.
Constant values of the parameter td/tt represent pressure waves. having the
same physical length. The total length of time the pressure wave acts on the
arch is given by the sum of tt’and td° As in the preceding chapter, the aréh
dimensions are expressed in terms of f/La and Lo/r.

The’yield strain for the arch, eyy is expressed in the dimensionless

form

SRVIE

Qo

A static uniform pressure of intensity po will initiate yielding in a complete
ring when the value of the sbove parameter is equal to unity. The yield def-
ormation for a flange is equal to the product of ey and half the length of the
bar adjacent to the flange. TFor example,

L
1t _ 73
(83 )y = %2
L.
(51:t) = € _ﬁ.&
J 'y y 2

Similar expressions for the bottom flanges are obtained by replacing the super-

script t with b,

5.2 Presentation of Results

5.2.1 Typical Response Characteristics. Most of the soclutions pre-

sented in this chapter are for the arch described in Section 4.2.1. Except
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for the results discussed in Section SOE.A, the response is restricted to the
elastic range cf behavior. The response curves for a lcading characterized
by the parameters Po/bcr =1, tt/To = 1 and td/tt = 1 are presented in Figs.
5.1. In these figures are shown representative displacement configurations
and time histories of the radial and tangential displacements, axial forces,
and bending moments for the 1/4 point, crown, and 3/4 point. The curves for
axial force are actually for the bars of the analogous framework just to the
left of the designated points. All of these guantities are expressed in the

same terms described in Section 4.2.2.

As might be expected, a major contribution to the response arises
from the participation of the first antisymmetrical mode of vibration. This
can be seen clearly from the displacement configurations shown in Fig. 5.la
which have the same general shape as the first antisymmetrical mode of vibra-
tion illustrated in Fig. 4.2a. The same observations can be made from the
displacement curves for the l/h poeint and 5/& point for which the period of
the major oscillations seem to be equal to that of the first antisymmetrical

mode .

Although the most critical section of the arch is away from the
crown, the effects at the crown are also appreciable. The maximum radial
displacement at the crown is about 59 percent of that at the 1/4 point, and
the maximum moment at the crown is sbout 63 percent of that at the 3/4 point.
It is of interest to note that the period of the predominant oscillations in
the curves for radial displacement and moment at the crown appears to corre-
spond to that of the first symmetrical mode of vibration. Respbnse in the
symmetrical modes is apparent alsc in the curves for axial force for which
the principal period of oscillation is gpproximately equal to the second

symmetrical, or extensional, mode of vibration.

It is of interest to note that for all of the curves for moment and
axial force, higher frequency oscillations appear prominantly. This may be
contrasted to the very smooth and regular response curves for the uniform all-

around pressure discussed in the preceding chapter.

The time histories for the axial force reveal that N does not vary
appreciably throughout the arch. This result is in agreement with the resulis

obtained for a uniform all-around pressure. The distribution of bending
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moment across the arch can be seen from Fig. 5.2, in which are plotted the

time histories of the moment for each joint. As might be expected for a moving
pressure, the moment builds up progressively from the near support to the far
support as the pressure wave moves across the arch. The maximum moment occurs
at the 5/& point at a time when approximately one-half of the load is off the

arch.

For the solution discussed in this section the pressure acts on the
structure for a total time of 2 To' Although it is conceivable that the maximum
values of response beyond the time considered in the solution may be larger
than those obtained, this does not appear to be the case. In this connection,
it should be emphasized that the effect of damping will be to reduce the later
maxima.

The maximum values for a uniform all-around pressure with a duration
equal to 2 To are given in Table 4.3. Comparing the maximum values for the
two types of loading, one may observe that the larger displacements result from
the moving pressure. For the particular case considered, the largest radial
displacement for the moving pressure is approximately 5 p R /AE while for the
uniform sll-around pressure it is 2.4 P, R /AE The meximum bending moment is
1.63 poRr for the moving pressure and lolh poRr for the uniform pressure. The
meximum axial force, on the other hand, is larger for the uniform-pressure
solution, being equal to 1.71 pOR as compared to a value of 0.71 poR for the

moving-pressure solution.

5.2.2 IEffects of Characteristics of Pressure Pulse. The influence

of the duration, velocity, and magnitude of the pressure wave on the response
of arches is discussed in this section. In Figs. 5.3 and 5.4 are presented
respbnse curves for two load durations represented by values of td/tt equal
to 0.5 and 2.0 respectively. For both solutions, the arch is the same as
that considered before, and the characteristics of the pressure pulse are de-

fined by the parameters tt/To = 1 and Po/Pcr = 1.

In Fig. 5.5, the values of the first major maxima for moment, axial
force, and radial displacement at selected points on the arch are plotted
versus the duration of loading. In addition, the absolute maximum tangential
displacement, which occurs at the crown, is shown. It can be seen that in-

general the maximum effects increase with increasing td/tt, For td/tt = 2,
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the largest duration considered, the maximum radial displacement at the l/h
point is equal to 8.77 pORQ/AE° The gbsolute meximum moment at the 3/4 point
is 2.17 pORr, and the maximum axial force at the crown is 0.80 pOR° Except
for the axial force, these effects are gppreciably larger than the values
computed for a uniform all-around pressure. Consequently, the bending effects,
as indicated by a comparison of the values of the maximum moments and axial

. forces, are more important for the triangular moving pressures.

In order to study the effect of the magnitude of the pressure, a
few solutions were obtained for different values of the parsmeter, po/?cr'
In Fig. 5.6 are shown the response curves obtained for po/pcr = 0.001 with
tt/TO = 1 and td/tt = 2. For a small pressure of this masgnitude, the large
deflection effects are negligible and the response is essentially linear.

An indication of the buckling tendency which occcurs for the larger magnitudes
of pressure may be obtained by comparing these results with those given in

Fig. 5.4 which is for po/pcr = 1. It can be seen that the larger pressure
causes an over-all maegnification in the amplitude of the response curves as
well as a decrease in their frequencies. Maximum values for these solutions
are Compared in the following table. Also included in this teble is a com-
parison of the maximum values for two pressures of larger mangitude acting

on the arch for a shorter duration of time. For these solutions peak pressures
d/tt and tt/To both equal to unity.
{(The time histories for these solutions are presented in Figs. 5.1 and 5.7,

of Po/Pcr = 1 and 2 were considered with %

respectively.) For this comparison it was necessary to consider only the
first maxima since the second and later maxima were not attained in most of

the solutions.

td/tt = 1.0 td/tt = 2.0
Quantity  Location : 7
po/pcr =1.0 p/p_ =2.0 po/pcr = 0.001 po/pcr = 1.0

1/% point -4.90 -6.01 -5.75 -8.77
-—%;-—- crovn -2.90 -3.46 -3.03 -4.13
p R /AE 3/4 point L.87 5.22 5.89 7.25
M 1/b4 point 1.02 1.19 1.08 1.52
= crown 1.03 1,02 0.93 0.98
Po 3/ point -1.63 -1.77 -1.75 -2,18
N 1/l point . _0.61 -0, 60 -0.76 -0.76
— crown -0, 6L -0.62 -0.81 -0.80

PR 3/k point -0.66 -0.63 | -0.91 -0.86
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For the longer duration it can be seen that a change in po/pcr from
0.001L to 1.0 causes an increase in the absolute maximum displacement from
5.89 pORE/AE to 8.77 poRQ/AE or sbout 49 percent. The maximum moment at the
5/4 point increases from 1.75 poRr to 2.18 poRr,or gbout 24 percent. These
changes are apprecigbly larger than corresponding increases for & uniform all-
around pressure as reported in Chapter IV. The increases will obviously be
even larger for longer durations of load or higher pressures. For the shorter
duration, a change in pressure from '_oo/pcr = 1 to 2 produces an increase in
maximum displacement of about 23 percent and an increase in maximum moment of

only 8 percent. It may be inferred that the effect of an increase in pressure

O
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0
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as significant for short durations of load even for fairly large values

[o]
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i}
g
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The influence of the wvelocity of the pressure pulse was studied by
comparing solutions for pressure waves having the same physical length (same
value of td/tt), but different velocities (different values of tt/To). In
Fig. 5.8 are presented solutions for td/tt = 0.5, which corresponds to a
pressure wave having a length equal to one-half the span of the arch, and
tt/To equal to 2. As before, po/pcr = 1. These curves can be compared with
those given in Fig. 5.3 for tt/To = 1., In Fig. 5.9 are presented solutions
for td/tt = 2 (length of pressure wave equals 2Lo) and tt/To = 0.5 with

pO/pcr = 1, These results are comperable to& those shown in Fig. 5.4 for
tt/To = 1. The most prominent difference between the corresponding curves is
the reduction in magnitude of the response with an increase in velocity, i.e.,
with a decrease in tt/To' The absolute maximum values for these solutions are

listed in the following table.

t./t, = 0.5 ) t ./t = 2.0
) . a’ "t ) a7t
Quantity Location 1) ) 5) 1)
/T = 2.0 t£7§§ =1.0 % /T =10 ¢t /T =0.5

v 1/4 point -7.33 -2.70 =8.77 -3.82
— crown -T7.13 -1.70 -4.,13 1.62
p R /AR 3/4 point 6.41 2.7k 7.25 3.79
. 1/4 point 1l.21 0.69 1.52 0.87
T crown -2.39 0.70 -1.01 0.83
Py 3/h4 point -2.72 -1.08 -2.18 -1.21
N 1/4 point -1.03 -0.39 -0.76 -1.18
—x crown -0.96 -0.42 -0.80 -1.16
Ps 3/4 point -0.97 -0.41 -0.86 -1.16




L6

The influence of the velocity may alsc be studied,by cémparing
solutions for which the velocities of the pulse differ but the total time that
the pressure acts on the arch is constant. In the above table this amounts to
comparing column (1) with column (3) and column (2) with column (%). In the
first comparison the time that the pressure acts is 3.0 TO, and in the second,
it is 1.5 Toa

On the bagis of only four solutions, it is not clear which of these
methods of comparison is mcre desirable or whether a compariscn on some other

basis might not prove to be superior.

5.2.3 Effect of Arch Dimensions. The effects of a variation in the

dimensions of the arch for a triangular moving pressure were investigated in
the same manner as for a uniform all-around pressure. Solutions were obtained
for slenderness ratios, Lo/f, equal to 50, 100 and 200 for a value of f/LO
equal to 0.2, and rise-span ratios of 0.1, 0.2, and 0.5 were considered for

Lo/r = 100. The load parameters considered for each of these solutions were:
= = : 1‘, = °
po/Pcr o tt/To L td/‘t 1

The results for Lo/r equal to 50 and 200 are presented in Figs. 5.10
and 5.11; for Lo/r = 100, the response curves are given in Fig. 5.1. A com-
parison of these curves reveals no basic similarities in the response character-
isties. In the following table are listed the absolute maximum radial

displacements, axial forces, and moments for these soluticus.

Absolute Maximum Values

L W N M

__9_ max max max

50 k.51 1.35 2.42
100 i, 90 0.71 1,63
' 200 6.07 0.69 1.60

It can be seen that the maximum displacements increase with increasing values
of LO/r° A substantial decrease in the maximum axial force and maximum moment
occurs for an increase in Lo/r from 50 to 100, but very little change is

noticeable for slenderness ratios of 100 and 200. This large variation in
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moment for the smaller values of Lo/r was also noticedble for the uniform all-

around pressure results. However, it will be recalled that for the uniform

pressure solutions there was no change in the maximum axial force with changes
in Lo/r.

The response curves for values of f/LO equal fo 0.1 and 0.5 are
presented in Figs. 5.12 and 5.13, and those for f/Lo = 0.2 are given in Fig.
5.1. The effect of an increase in the value of the rise-span ratio appears
to be the same as for an increase in the value of slenderness ratio. This is
the same result which was found to be valid for the uniform all-around pressure
solutions. A similarity can be noticed in the response features of the two
solutions shown in Figs. 5.10 and 5.12 for which the parameter f/r is equal
to 10. This similarity is not as pronounced as for the uniform pressure;
nevertheless, it is quite apparent. Also, there is some resemblance in the
trends observable in the solutions shown in Figs. 5.11 and 5.13 for which f/r
is equal to 4O and 50, resbectively. These results appear to substantiate the
observation made in Section 4.2.6 to the effect that the two parsmeters f/LO
and Lo/r may be replaced by the single parameter, f/r.

5.2.4 Effect of Inelastic Action. To illustrate the effect of

inelastic action, two solutions were obtained using an elasto-plastic stress-
deformation relationship for the flange areas. Two different yield levels

were considered. The arch dimensions and loading are the same as for the elastic 4
solution presented in Section 5.2.1. For this elastic solution, the maximum

stress developed in the arch is equal to 1.97 p R/A and the correspondlng strain

is equal to 1.97 p R/AE The maximum radisl dlsplacement is %.90 p R /AE

In Fig. 5.14 are presented response curves for a yield level prescribed

by the parameter

€

P—OR%AE = 1.0 .

This corresponds to a yield stress in the flanges, Gy’ equal to 1.0 pOR/A or
approximately one-half the maximum stress obtained for the elastic case.
Included in this figure are the radial displacements, axial fofces, moments,
and average strains for the 1/4 point, crown, and 3/4 point. The strain is
shown only for the flange for which the maximum value is largest. At the l/h

point the largest strains occur in the top flange, whereas, at the crown and
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3/4 point, they occur in the bottom flange. In Figs. 5.lka and b are shown
also the curves for the corresponding elastic solution. These results cover
an interval of time of only 1.4 To because of the large amount of computer
time required to obtain the solution. This particular problem was run on the
JLLTAC for a total of one hour and forty minutes before the solution was dis-

continued.

The second "inelastic” soiution was obtained for a yield level given
by ' €
i);ﬁ%ﬁ: 0.5
This corresponds to a yleld stress equal to approximately one-fourth the maximum
stress obtained for the elastic system. The results are summarized graphicelly
in Fig. 5.15.

Of major interest is a comparison of the maximum values of the two
"inelastic" solutions with the corresponding elastic solution. The absolute

maximurm values for all three solutions are listed in the following table:

Absolute Maximum Values

€ € o w v N M
Yy max . max max max max max
pOR/AE pOR/ AE pOR7A PORE /AE PORE /aE pOR poRI'
Elastic 1.97 1.97 4,90 2.32 0.71 1.63

1.0 2.91 1.00 6.23 2.4k 0.64 0.78

0.5 8.56 0.50 14,82 3.51 0.50 0. 47

For €y = 1.0 poR/AE it can be seen that the maximum strain is 48 pefcent larger
than the corresponding strain in the elastic system. The maximum inelastic
strain is 1.91 times the limiting elastic strain. Of course, the maximum stress
is equal to the yield stress, Uy = 1.0 poR/A° It is of interest to note that
the maximum radial displacement is only 27 percent larger than that for the
elastic solution. For €y = 0.5 pOR/A;FJ“9 the maximum inelastic strain is 16.1
times the limiting elastic strain, whereas the maximum radial displacement is

3.0 times the corresponding displacement for the elastic system.

The values of the maximum strain at each of the joints of the

analogous arch are tabulated below for both inelastic solutions. These results
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are expressed in the form ¢ /ey° The values in parentheses do not represent

true maxima; they are the largest compubed values for the interval investigated.

Meximum Strains, € /ey

€ €
———%L— = 1.0 = 0,
Joint PoB AE POR AE ’
top flange bottom flange top flange bottom flange

0 ~0.60 -0.60 -h.71 k.71
1 -0.99 : -0.T7 -6.66 -5.41
2 -2,20 © =0.50 (-1%.33) -1.90
3 -2.91 -0.36 ~17.13 -1.36
Iy 2.4 ~0.63 -6.7T -%.00
5 {-1.81) -0.88 -1.23 -3.39
6 (-0.76) -1.14 -1.32 -k.16
7 -0.55 -1.26 1.22 -3.42
8 -0.54 (~1.68) -1.79 -1.96
9 (0.66) -2.84 ~3.59 -3.71
10 -0.38 -2.17 -2.72 (-9.47)
i1 -0.56 -1.28 -5.20 -9.83
12 -0.70 -0.70 -8.70 -8.70

It can be seen that for ey = 0.5 poR/AE yielding extends over the complete arch;
even for ey = 1.0 pOR/AE yielding covers all of the arch except for sections
close to the supports. For both sclutions the meximum strains occur at the
guarter point. It may be noted that the strains in the top and bottom flanges
are unequal over a major porticn of the arch indicating the importance of the
bending effects.
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VI. SUMMARY

6.1 Summary

6.1.1 General. This investigation was concerned with the computation
of the response of arches subjected to time-dependent forces. A method of
analysis has been developed which is applicable to both the elastic and post-
elastic ranges of deformation. In this analysis the continuous arch is approxi-
mated by a discrete framework consisting of a series of rigid bars and flexible
joints. TFor the computation of the respconse in the inelastic range, the cross-
sectional area of the arch is considered to comsist of two concentrated flange
areas connected by a thin rigid web. The stress-deformation relationshiplfor
each flange is represented by a bilinear diagram. The equations of motion for
the analogous framework are solved by use of a step-by-step method of numerical

integration.

Computer programs have been prepared for obtaining numerical solutions
on the ILLIAC, the high-speed digital computer of the University of Illinois.
These programs are applicable to ftwo general classes of problems: {a) circular
‘elastic arches subjected to a uniform all-around pressure having any timewise
variation, and (b) arches of arbitrary shape subjected to a triangular moving
pressure pulse. For the latter case response into the post-elastic range of
behavicr may be evaluated. The effect of an initial out-of-roundness may also

be considered in the case of the uniform all-around pressure.

Numerical solutions were obtained for twe-hinged circular arches of
uniform cross-section subjected to a uniform all-around pressure having a
pressure~time relationship represented by a triangle witkh an initial peak and
also to a triangular-shaped moving pressure. Observations based on these results
are summarized below. Unless otherwise indicated, these comments refer to

response in the elastic range of behavior.

6.1.2 Solutions for Arches SubJjected to a Uniform All-Around Pressure.

The major aspects of the response for arches subjected to a uniform all-around
pressure can be explained in terms of the participation of the first three
symmetrical modes of vibration. The mode which participates most significantly
is the extensional mode of vibration for which the period is close to the

"breathing" period of a complete ring. The predominance of this mode can be
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seen most clearly in the history curves of the axial force. This force is
essentially uniform throughout the arch.

In spite of the predominance of the extensional mode, the bending
effects are significant, particularly for the smaller durations of loading.

For durations, tg, less then sbout 0.75 times the "breathing” period, TO, of a

complete ring, bending contributes roughly 40 percent of the total maximum
stress for & cross-section composed of two concentrated flange areas, i.e.

for c/r = 1, and sbout 60 percent of the total stress for a rectangular cross-
section for which c/r‘= J?i For lbad durations of the order of td%To =2 or
4, the contribution of bending is about 25 percent for c¢/r = 1 and sbout kO

percent for c/r = 4 3.

As may be expected, the absolute meximum axial force increases with
an increase in the duration of the pressure Iiulse° The‘same is generally true
of the maximum values of stress and displacement; although the increase is not
continuous as in the case of the axial force. For values o% td/To in the
range between 2 to 4, the maximum value of the radial displacement is of the
order of 2.5 to 3.0 times the static deflection produced in a complete ring by
a uniform pressure having a magnitude equal to the peak dynamic pressure. The
maximum axial force is approximately 1.8 times the static value in a complete

ring, and the sbsolute maximum stress is of the order of 2 or 2.5 times the
V3.

For the range of parameters considered, the maximum effects were not

static value for c/r = l)and 5 times the static wvalue for c/r

significantly affected by variations in the magnitude of the peak pressure and
by initial imperfections in the arch of the order of ﬁ;/LO = 0.001. This

observation may not be valid for longer durations of loading.

The effects of variations in the slenderness ratio, Lo/r, or the
riée-span ratio, f/Lo’ on the maximumAeffects were not large for the limited
number of cases studied. An increase in the value of Lo/r has essentially the
same effect as an increase in f/LQ. It appears that the parameters f/LO and

Lo/r can be incorporated into the single parameter (f/Lo)(Lc/r) = f/r.

6.1.3 Bolutions for Arches Subjected to a Triangular Moving Pressure.

For the case of an arch subjected to a triangular moving pressure, the major
contribution to the response appears to be due to the participation of the

first antisymmetrical mode of vibration.
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. Although the absolute maximum effects in the arch occur at sections
away from the crown, the effects at the.érown are also appreciable. For the
solutions presented, it was found that the maximum radial displacements and
bending wements at the crown are from 30 pércenﬁ to 90 percent of the corre-
sponding absclute maximum values of‘these quantities. Thé axial force remains

relatively wniform for all sections along>the arch.,

A comparison of the maximum.effects for a moving pressure and a
uniforr all-around pressure both of which have the same magnitude and dutration
shows that the largest displacements and moments occur for the moving pressure,
whereas the meximum axial force occurs for the uniform pressure. For pressures
which act on the arch for a total time of from 2 to 3 Tc’ the maximm displace-
ments for a moving pressure are of the order of 2 to 3 times those for a uniform
pressure, and the maximum moménts are of the order of 1.5 to 2 times the corre-
sponding values for a uniform pressure. On the other hand, the maximum axial
forces for the moving pfeséure are about one-half the corresponding maxima for
a uniform pressuréo It follows from these resulits that the bending effects
due to & moving pressufe are more significant than for a uniform all-arcund

pressure pulse.

For durations of load t, of the order of 2'T09 it was found that the
buckling tendencies are apprecigble for high magnitudes of pressure. For a
value of p /P = 1, the maximum displacements were found to be gbout 50
pereent larger and the maximum moments about 25 percent larger than would have
been the case had the buckling tendency been neglected. For shorter duratiecns,
however, the maximﬁm effects arp not 1nfluenced 51gn1flcantly by changes in

the magnitude of the pressure even for large values of p /p

The effects of changes in the values of the slenderness ratico; L /r,
were found to be the same as corresponding ﬂhanges in values of the rise-span
ratio, f/Lo° Since this relationship between the slenderness ratio and the
rise-span ratio is the same as that observed from the results for a uniform
all-around pressure, it offers additional assurance‘thétithe significant

structural parameter msy be f£/r.

Because of thé‘limited number of solutions obtained, it was not
possible to make any deflnlte observations concerning the effects of the
velocity of the pressure pulse or the effects of inelastic action. Howevér,
8 few example solutioms have been presented which illustrate, to a certéin

extent, the influence of these variables.
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APPENDIX A. "EXACT" DEFORMATION-FORCE RELATIONSHIPS FOR INELASTIC BEHAVIOR

The purpose of this section is to formulate the equations for deter-

mining the actual deformations cf the individual flanges in terms of 63 and Xj”

From the geometry of the deformed joint j shown in Fig. 2.5, it can

be seen that

ot b
oL E‘lf?gb N a_lagt
J J
b P
> : " e +
o = dsT s gt
J d, 3§ dy d

where dj denotes the distance between flanges. Application of Eq. 2.2 yields

the following relationship:

t : % b
c. c, c, c.

aiisg?l + a-*l-'lag’fl + Eslzs’l.b + a-lzsgt = 5, . (A1)
31 3-1 i’ J !

An analogous procedure is followed to relate the flange deformations
to Xju With xé and Xg denoting the angle changes to the left and right of

Jjoint j, respectively, the following expressions are obtained:

] 1 3] it
X, = =— (=0, + %,
J d»(;} J)
J
r 1 rb rt
o= = (=B, + 0. ) .
'X’J d-<J J>
J
Since,
£
o= X, + X
XJ J
it follows that
1 &) it rb rt )
—_— = B, + D -8, + 0 = X. - A2
7 ; 3 J) ; (a.2)

Two additional relationships are obtained by considering the equilib-

rium of the jth bar and the jth joint. The forces in the flanges are indicated
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in a menner similer to that used to identify deformations. Thus, Ngt denotes
the force in the top right flange at joint j. Considering the equilibrium of

bar j, ae obtains the equation,

b t b Lt
R N% = N, =N, . A,
J=1 J-1 B (8.3)
If the small moments Q3 produced by the shearing forces on either
side of a joint are assumed to be negligible, the following equilibrium
equation is obtained for the jth Jjoint:
Ngbé? - N%tCF = N?bé§ - N?tcf . (A.4)
Jd d J d Jd J Jd J
It is important to notice that the forces appearing in Eqs. (A.3) and (A.4)
are actually functions of the deformations 6?? &;t

evaluated. These forces are related to the deformations through the stress-

5 €te., which are to be

deformation relationships and the following equations:

NP - oiPaP
J J 73
oo At
J Jd &
(&.5)
N?b = o?bAP
J J 73
N?t = o?tA?
J J g

However, in order to express them in terms of the corresponding deformations,
it is necessary to know the region of the stress-deformation curve in which
the deformation is located. 1In general this region is determined from a know-

ledge of the past history of the deformations.

"For a structure with z bars, there is a total of 4z unknown flange
deformations, four at each intermediate joint and two at each of the end joints.
By application of Egs. (A.2) and(A.4) to each joint and Egs. (A.1) and (A.3) . -
to .each bar, one obtains 4z-2 equations. The boundary condition equations are
specialized forms of Eqs. (A.2) and (A.4). For example, with a hinge at joint

0, M_ is equal to zero, and Eg. (A.4) becomes,

rbéb _ Nrtct - 0.
o o© o ©

N
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If joint O is fixed, Eq. (A.2) becomes

;_ (_Srb + 6rt)
o o)

3 = V. . 5
e}

1
Thus one obtains 4z equations which relate the 4z unknown deformations to 6j
and xj° The solution of these equations results in a complete determination

of the changes in length of the flanges.

Once the flange deformations have been calculated, the corresponding
forces can be computed by use of the stress-deformation diagrams. The total
axisl force, Nj’ is found from the expression on eithe: the left or right side
of Eq. (A.3), and the moment MJ is determined by use of the left or right
side of Eq. (A.L4).

As stated above, the computation of N, and Mj from the quantities

Sj and Xj involves the solution of a set of simgltaneous equations. The
computer time required for Jjust one such solution may amount to several minutes.
For a dynamicvresponse analysis, these steps are repeated several hundreds of
times. Consequently, the time reguired to effect a complete solution of the |
problem makes this "exact" method entirely impractical on present-day digital

computers such as the ILLIAC. .
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APPENDIX B. EQUATIONS FOR CIRCULAR ARCHES IN POLAR COORDINATES

The equations presented in this section are for the coordinate system
shown in Fig. 3.1. They are derived in a manner analogous to that used in the
main body of the report, and they are numbered so as to correspond to the

equations given in Chapter II.

B.1 Eguations of Motion

The equations of motion for mass mj in the radial and tengential
directions are

m¥. = Z +W, (B.2.4)
JJ J

m ¥, = Yj + VJ. (B.2.5)
The quantities Zj and Yﬁ represent the components of all internal forces at
joint J acting in the positive Wj and vj directions, respectively;'wj and Vj
represent the components of the external forces at joint j acting in the

positive radial and tangential directioms, respectively.v The gquantities %j

and Vj denote the radial and tangential accelerations of the jth mess.

By considering the equilibrium of joint j and by summing the com-
ponents of all internal forces first in the radial direction and then in the

tangential direction, one obtains the following two equations:

ZJ = -N, sin( % - \lrj) - NJ_*_l»sin( g-i- “’,j+1)

+ Qj cos( % - Wj) - Qj+l cos( g-+ ¢j+l) (B.2.6)
i} = - Nj cos( g - wj) + Nj+l cos(,gv+ wj+l)

) Q3 éini g - wj) - Qj+l sin( g-+ Wj+l) . (B.2.7)

For the case in which the analogous arch is subjected to a pressure
which remains normal to the surface, the components of the extermal forces

acting in the radial and tangential directions are given by the equationms,
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)

= |
il

£ " Q _ r Q
Pj cos( 5 wj) + Pj cos( 5+ Wj+l

)

<i|
il

] ro. o)
_PJ- sin( 5 ﬂrj) + PJ. s:.n(» 5+ wj+l

For a uniform all-around pressure D,

£ T
P. = P, = -0. L.
J d > P

B.2 Displacement-Deformation Relationships

(B.2.12)

(B.2.13)

In terms of the radial and tangential displacements, the quantitieé

3. and \vj are expressed as follows:

J
5. = - : 2 in O
SJ. = (VJ. vj_l)cos 5 + (Wj + Wj_l)sn,n = (B.2.1k4)
7 = : in® . - e
Wj = (v‘j + vj_l)s:m 5 (wJ_ Wj_l,)cos 5 (B.2.15)

The expressions for the quantities given by Egs. (2.14b) and 2.15b) are the

same for both coordinate systems. In addition, one finds that

&

g

J -2 = /12
V‘*’j + (-8,

1+ 5./L
1+ J/

Jﬁa + (1 + 83/1)2

1F]

!._l

|
|-
e

cos Y, =
WJ

/L)

Siii . = - —.l-g
¥ A“'a( ;
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APPENDIX C. MODAL METHOD OF ANALYSIS

In the modal method of analysis, the radial and tangential dis-
placements of the arch analogue are expressed by the following eguations:

n
v, = 5 ) ) e (¢
3 2 C L r( )
(c.1)
n
v. = 2 T FE) e ()
d =1 J r
—(r) . : - . th . .
where W, = radial displacement of joint j for -the r mode of vibration
: dJ
—(r) . . . . . th R .
vj = tangential displacement of joint j for the r  mode of vibration
. . s . th
fr(t) = dynamic amplification factor for the r ~ mode
c(r) = participation factor for the rth mode
n = number of degrees of freedom of the system.

The participation factors are given by the equation,

c = — (C,E)

w

T
is the concentrated mass at joint j, and Wj and Vj are as defined in Appendix

where w_ is the circular natural frequency corresponding to the r™ mode, m,
— d
B. For a uniform all-around external pressure of intensity p, Vj is equal to
zero and Wg is equal to -pL cos gw The smplification factor fr(t) is a time
function which depends on the nature of the forcing function. For a step

pulse of infinite duration,

fr(t) = (1 - cos mr‘b) = (1 - cos 2x ;’—) . (c.3)

o
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The bending moments, Mjg and the axial forces, Nj’ are determined

in an analogous manner by use of the following equations:

n
_ Y r) =(x)
N, = r; o’ £ ()
n (c.k)
M, = Z () ﬁgr) £ (%)

r=1
(r)

is the axial force in bar j for the rth natural mode of vibration
and Mﬁ(r) is the corresponding bending moment.

where N

The values of the symmetrical modes of vibration and the corresponding
natural periods for the arch described in Section 4.2.1 are listed in Table
C.l. These values were determined from the equations given in reference [3].
Also included in this table are the values of the participation factors, c(r),
for the particular modal solution mentiomed in Section 4.2.2. Thg modal
response ccefficients presented in Table 4.2 for wjg N, and Mj(i§e f?;)products
of the participation factors and the corresponding values of ﬁ} 5 Nj ; OF

ﬁgr), respectively.
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TABIE 4.1 NATURAL PERIODS OF A TWO-HINGED UNIFORM CIRCULAR ARCH
f/L = 0,2, L/r = 100, z = 32

Tabulated values represent the ratio T !o uhere'T is the
rth natural period and T is given by expressi

= 2#1/——-—— = 0.04555 E‘;

Order Antisymmetrical Symmetrical

of Modes Modes
Period

1 4,996 T 2,225
2 1.20% 1.066
3 0.592 0.78%
L 0. 4hl 0.465
5 0.389 0.342
6 0.313 0.297
T 0.164 0.240
8 0.104 0.126
9 0.080 -0.090
10 0.069 0.073
11 0,06k 0.066




[0,RN, P ~g UV I\ Ol

"2 a8 58w

1
J

f
RAAAAR

2

A

w

é?

|
lcy\g

3568

h601
.2270
.2270
6588

8346

.ohgi
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L0482
L0426
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.0320)

.0105]

.2824
.1862
.0165
2117
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TABLE 4.2 MODAL SOLUTION FOR A TWO-HINGED UNIFORM CIRCULAR ARCH

fl(t) +

fl(t) +

fl(t) +

fr(t) =

~0.4113]
-1.1729
-1.5008
~1.3086
-0.7406
-0.4385]

-0.8955
-0.8843
-0.867h4
-0.8607
-0.8678
-0.8776

-0.2087
0.1983
0.5248
0.3171

~-0.2270

C0.513Z

f2(t) +

fz(t) +

fz(t) +

-0.3045
-0.1949
0.1483
0.2020
-0.1176
-0.3310

[-0.0613
-0.0623
-0.0737
-0.0833
-0.0802

EO°O71&

[ 0.3530]
0.1991
-0.2459
-0.3173
0.0907

L_O°3637_

f3(t) +

f3(t) +

f3(t) +

amplification factor for rth

-0
0.
L0242
-0.

0

-0

0.
-0,
-0.
.0035
.0029
0052

.03Lk

.01.00
0‘

-0733
.0378
.0536
0657
.0197
0757} -

100, z = 12

0170
0313
0343]
0000]

0015
00ok2

fh(t) +

fh(t) +

fh(t) +

[~0.0065
0.0093
~0.0066
-0.0001
0.0065

-0.009L

0.0006
.0001
-000k
.0003
.0011
.0008

0.0191
L0271
0.0192
.0000
.0192

0.0272

Uniform All-Around Rectangular Pressure Pulse of Infinite Duration
f/LO = 0.2, Lo/r =

fs(t) +

fs(t) +

fs(t) +

0006
.0011
.0015
.0019
.0021
.0022)

. 0001
.0000
.0000
.0001
.0001
0001

L0019
.0036
.0052
.0063
L0071
-0073]

mode, a function of the pulse shape

f6(t) 4 oeee

f6(t) + .

f6(t) + e

e9



TABLE 4,3 MAXIMUM VALUES OF RESPONSE AND TIMES OF OCCURRENCE FOR A TWO-HINGED UNIFORM CIRCULAR ARCH
-Uniform All-Around Triangular Pressure Pulse With Initial Pesk
f/Ib = 0.2, Ib/r = 100, po/pcr = 1.0, td/Ta = 2.0, z = 12,‘At/To = 0.01

Joint

or Bar W t N t_ M £ g t g 1
J poRE/ AE To 1)oR To poRr To po ‘ A To l?oﬁ A To

' c/ r=1 c/r =2

1 -1,076 0.4 -1.712  0.50 0.762  2.08 -1.814  O.hk -2.401 1.59
2 -1.959 0.k47 ~1.700 0.50 - 0.585 2.77 +2.180 0.47 -2.703 0.45
3 -2.384 0.53 -1.684 0.50 0.934 1.61 -2.222 0.54 -2.813 1.60
L. -2. 277 0.58 -1.678 0.50 0.856 1.64 -1.890 0.61 -2.635 1.63
5 -1.936 0.52 -1.679 0.50 0.457 1.12 #1.852 0.52 -2,030 0.53
6 -1.874 0.49 -1.679 0.51 -1:136 . 1.66 -2.068 1.64 -3,197 1.65

TABLE 4.4 STATIC EFFECTS IN A TWO-HINGED UNIFORM CIRCULAR ARCH FOh A UNIFORM ALL-AROUND PRESSURE

£/, = 0.2, Lo/r = 100, z = 12

Joint W . v N M
o ?81' I‘,ORE/ p032/ AE S;-ﬁ poRr
1 -0. 400 -0.101 ~0.995 0.025
2 -0,780 -0.152 ~0.994 0.047
3 -1.110 ~0.159 -0.994 0.063
i -1.363 -0.128 -0.994 0.076
5 -1.523 -0.071 ~0.994 0.083
6 -1.578 0.000 -0.994 0.086

€9



TABLE "4.5» EFFECT OF TIME INTERVAL OF INTEGRATION ON MAXIMUM VALUES OF RESPONSE AND TIMES OF OCCURRENCE
Two-Hinged Uniform Circulér Archf Uniform All-Around Triangular Pressure Pulse With Initisl Peak

£/L, = 0.2, Lo/r = 100, po/pcr = 1.0, t4/T = 2.0

%9

Joint
or Bar LJ t .. L M t g v g t
J pORE e To pOR To poRr To poﬁ-/ A To poﬁ-/ A '1‘0
c/ r=1 c/ r=2
(&) z = lO,AAt/TO = 0J005 :
1 T -1.311 0.k42 -1.720 0.50 -0. 884 1.69 -1.946 0.4k -2,615 1.67
2 -2,211 0.50 -1.701 0.50 0.565 0.52 -2.258 0.51 -2.822 0.51
3 -2.326 0.56 -1.686 0.50 11.072 3.69 -1.965 0.58 -2.948 L.66
. -1.999 0.52 -1.683 0.50 »0.228 0.94 -1.802 0.52 -1.924 0.52
5 -1.91k 0.50 -1.683 0.52 -1.149 2.57 -1.865 1.66 -2.893 1.68
| (b) =z =12, At/T = 0.005 '
1 -1.076 0.k2 -1.713 . 0.50 0.763 2,08 | -1.814 0.44 | -2.401 1.59
2 -1.959 0.47 -1.699 0.50 .0.586 2.77 -2.181 0.46 -2.702 0.45
3 -2.385 0.54 -1.684 0.50 0.934 1.61 -2.222  0.54 -2.812 1.60
b -2.278 0.58 -1.678 0.50 0.857 . 1.64 -1.891 0.60 -2.636 1.62
5 | -1.936 0.52 -1.679 0.50 0.457 1.12 -1.852 0.52 -2.031 0.53
6 -1.875 0.48 -1.679 0.51 -1.137 1.66 -2,070 1.64 -3, 200 1.64
(¢) z=12, At/To = 0.02 |

1 -1.076  0.k2 -1.713  0.50 | 0.761 . 2.08 -1.81%  0.hk -2.212,  1.58
2 -1.957 0.48 -1.699 0.50 (0.581 2.78 -2,181 0.46 -2.561 0.46

-3 -2.384 0.54 -1.684 0.50 0.934 1.62 -2.221 0.54 -2.681 0.5k4
I -2.277 0.58 -1.679 0.50 0.856 1.64 -1.890 = 0.60 -2. 406 1.62
5 -1.937 0.52 -1.679 0.50 0.458 1.12 -1.851 0.5 -1.979. 0.54
6 -1.874 0.48 -1.677 0.52 -1.133 1.66 -2.062 1.64 -2.883 1.6h4

* : " :
Stress values in this column are for c/ r =v_5_.o .




TABLE 4.5 (Continued)
Joint w _t K t M t o t o t
B&Srj p.,o.Re /AR TO pOR To | PoRr To pOR7A To poR7A TO
‘ c/r =1 c/r =2
(a) z = 16, t/'r0 = 0.005
1 -0.802 2.66 -1.709 0.50 -0.546 1.59 -1.840 0.56 -2.141 1.60
2 -1.537 0.4k -1.701 0.50 0.610 1.9k -1.994 0.4h -2.393 0.ko
3 -2.090 0.48 -1.687 0.50 0.560 2.59 -2.208 0.48 ~2.7T45 "0.47
L -2.37h 0.53 -1.677 0.50 -0.912 1.10 -2,199 0.52 -2.767 1.59
5 -2,391 0.57 -1.67h 0.50 0.923 1.54 -2.087 0.60 -2,81L 1.5k
6 -2.,144 - 0.56 -1.675 0.50 0.296 1.48 -1.791 0.bk4 -1.964 0.43
T -1.863 0.50 -1.675 0.50 0.723 1.12 ~1.894 0.54 -2.200 1.56
8 -1.810 0.46 -1.675 0.50 1.020 1.14 -2.148 0.58 -2.927 1.58
(e) z =16, /T =0.0 '
1 -0.801 0.40 ©=1.709 0.50 0.547 1.94 -1.840 0.56 -2.,135  1.60
2 -1.537 0.4k -1.700 0.50 -0.609 1.94 -1.994 0.k ~-2.393 0.h41
3 -2,090 0.48 -1.687 0.50 0.561 2,59 -2,208 0.48 -2.745 0.4T
I -2.37h 0.53 -1.678 0.50° -0.912 1.10 -2,198 0.53 -2, 766 1.59
5 -2.391 0.57 -1.67h 0.50 - 0,92k 1.5k -2.086 0.61 -2.817 1.55
6 -2.144 0.56 ~1.67h 0.50 " 0.296 1.47 ~1.791 O.ub -1.964 0.43
7 -1.863 0.50 <1.675 0.50 0.723 1.12 *-1.893 0.5k -2,205 1.56
8 -1.810 0.46 -1.676 0.50 | 1.018 1.13 -2.149 0.58 -2.919 1,58
(£) z = 20, t/TO = 0.005
1 -0.638 0.40 ~1.708. 0.50 -0.549 1.51 -1.849 0.54 -1,986* 0.56
2 -1.250 0.42 -1.703 0.50 -0.596 1.52 -1.864 0.4k -2.075 0.40
3 ~~1.775 0.46 -1.692 0.50 0.638 2.56 -2.089 0.46 -2.418 0.4l
L -2.158 0.49 -1.682 0.50 0.555 0.46 -2.220 0.48 -2,623 0.48
5 -2,366 0.53 -1.675 '0.50 ~0.884 1.08 -2.161 0.52 -2.573 0.60
6 -2.435 0.56 ~1.673 0.50 -0.838 1.10 -2.185 0.58 -2.653 0.60
7 ~-2,288 0.56 -1.671 0.50 0.532 1.49 -1.94k 0.57 -2,226 0.60
8 -2,010 0.54 ~1.672 0.50 0.340 1.02 -1.754 0.46 -1.855 0.be
9 -1.810 0.48 -1.673 0.50 0.857 1.12 -2,.007 0.55 -2.298 0.59
10 -1.759 0.46 -1.67h 0.50 1.152 1.12 -1.379 0.60 2.176 1.12

*Stress values in this column

are for c/r =4/3 .
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TABIE 4.6 COMPARISON OF SOLUTIONS BY NUMERICAL INTEGRATION PROCEDURE AWD MODAL METHOD
Two-Hinged Uniform Circular Arch; Uniform All-Around Rectanguler Pressure Pulse of Infinite Duration

f/LO = 0,2, Lo/r = 100, z = 12

N
'VOR AR POR P Rr
£/ 5 1/4-point crown crown 1/4-point erown
Numerical Modal Numerical Modal Numericsal Modal Numerical Modal | Numerical Modal
Method Method Method Method Method Method Method Method Method Method
0.1 -0.191 -0.191 ~0.190 -0.191 -0.190 -0.190 -0.004 - -0.003 0.000 -0.001.
0.2 -0.708 -0.708 | --0.692 -0.692 -0.633 -0.634 -0.017 -0.017 -0.001 -0.001
0.3 -1. 42k -1. 424 -1.331 -1.331 -1,200 -1.200 0.056 0.056 0.003 0.003
0.4 -2.135 -2.135 -1.878 -1.878 -1.675 <1.675. 0.296 0.297 -0,009 -0.009
0.5 -2.552 -2.551 -2.128 -2.128 -1.888 -1.888 0.518 0.518 ~0.138 -0.139 |
0.6 2,476 -2.473 | -2.046  -2.0l6 | -1.811  -1.810 0.532 0.530 | -0.399  -0.400 |
0.7 -1.940 -1.935 -1.842 -1.845 -1, 433 -1. 430 0. 406 0. 404 -0. 477 -0, 475
0.8 -1.110 -1.105 -1.770 -1.775 -0.946 -0.94h 9.191 0.188 ~0.097 ~0,090
0.9 -0.201 -0.195 -1.858 -1.864 -0, 485 -0. 482 -0J176 -0.181 0.487 0.493
1.0 0.507 0.511 -g.oah -2.029 -0.216 -0.217 -0.618 -0.622 0.911 0.91k4
1.1 0.726 . 0.727 -2.226 -2.230 | -0.232 -0, 235 -0.876 -0.877 1.120 1.122
1.2 C0.330 0.326 -2.383 -2.411 | -0.k472 -0. b7l -0.762 -0.759 | 1.055° 1.053
1.3 0,552 ~0.558 -2, 402 -2, 400 -0.899 -0.901 -0.320 -0.316 | 0.643 0.638
1.k - «1.586 -1.592 -2,276 -2.273 -1.332 -1.2}’4 0.231 0.235" 0.058 0.054
1.5 -2.392 -2.395 -2.061 ~2.057 -1.680 -1.68g 0.645 0,646 -0. 480 -0. 483
1.6 -2.693 -2.691 | -1.832  -1.829 | -1.817 -1.816 0.756 0.753 -0.786  -0.786
1.7 -2. 426 -2. 401 -1.678 -9.677 -1.677 -1.675 0.588 - 0.584 -0.619 -0:611
1.8 -1.731 -1.724 <.564 -1.662 -1.340 -9.334 0.290 0.287 -0.054 -0.045
1.9 -0.843 -0.8%5 -1.320 -1.311 -0.853 -0.848 -0.078 -0.082 -0, 423 0.423
2.0 =0.072 -0.068 -0.902 -0.890 -0. 415 =0, 415 =0. 420 -0. 421 -0.531 0.52h




TABIE 4.6 (Continued)

W

-1.698

-0.190

5 K N
PR / AE B R P RY

| t/ T, 1/k-point crown crown 1/4-~point crown
Kumerical ~Modal | Numerical Modsal | Mumerical Modal | Numerical Modal | Numerical Modal
Method  Methad | Method Method | Method Method Method Method Method Method
2.1 0.248 0.246 -0 47T -0. 466 ~0.136 -0.134 | -0.459 -0. 453 0.392 0.385
2.2 '=0.006 -0.014 -0.233 -0.226 -0.127 -0.128 -0.140 -0.131 0.152 0.146
2.3 0.667 -0.675 -0,253 -0.253 -0. 419 -0.421 0.237 0.240 -0.173 -0.177
2.4 -1, 466 -1. 473 -0.547 -0.554 -0.894 -0.902 0.469 0. 467 -0. 493 -0, 493
2.5 2,161 -2.164 -1.075 -1.088 -1.446 - -1.454 20.561 0.557 -0.603 -0.597
2.6 -2.541 -2,539 -1.6%8 -1.692 -1.820 -1.821 0.586  0.511 -0.435 -0.425
2.7 -2, 497 -2.490 -2.124 -2.134 -1.912 -1.909 0.389 0.386 -0.137 ~0,129
2.8 -2.042 -2.031 -2, 248 -2.251 -1.677 -1.668 0.249 0.248 0.123 0.126
2.9 -1.280 -1.267 ~-2,0kk4 -2,083 .| -1.184 -1.179 0.050 0.04s5 0:238 0.235
3.0 -0.438 -0. 426 -1.697 -0.647  .-0.6k42 -0.193 0.202 e.218
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Two-Hinged Uniform Circuler Arch; Uniform All-Arocund Triangular Pressure Pulse With Initiel Peak

TABLE 4.7 EFFECT OF LOAD DURATION ON MAXIMUM VALUES OF RESPONSE AND TIMES OF OCCURRENCE

f/L0 = 0.2, Lb/r = 100, po/pcr = 1.0, z = 12, At/To = 0,01

Joint
or Bar W t N t M t g t g t_
J P Rg/ AE To poR To p0Rr To poi: A I1‘o poiE A l"[‘o
e/r =1 e/r = VB—
(a) td/To = 0.25
1 §0.623§ 3.00 -0.675 0.3h4 -0.480 1.4 1.038 1.93 1.37h 1.92
2. 1.069 3.00 -0.670 0.34 -0, bl 2.98 (1.083)  3.00 1. 406 2.99
3 -1.296 1.42 -0.669 0.33 0.700 1.43 -1.196 1.k42 -1.707 1l.h2
I 1.127 1.91 -0.672 0.34 -0,552 1.87 1.051 1.90 1. kb5 1.89
5 -0.991 2.54 -0.674 0.34 -0.342 1.47 -0.831 1.4k ~1.078 1.45
6 -0.820 2.61 -0.672 0.35 -0. 757 1.h7 -1.248 1.h4 -1.799 1.45
(v) td/Tb = 0.5
1 20.958) . 3,00 -1.128 0.42 - 0.783 1.95 1.725 2.00 2.277 1.99
2 1.587)  3.00 -1.119 0.42 (=0.655) 3.00. -1.513 0.4%0 ( 1.972) 3.00
3 -2.195 1.51 -1.111 0.42 1,150 1.51 -1.975 1.50 -2.815 1.50
L 1.818 2,00 -1.110 0.h42 0.795 1.55 1.607 1.99 -2.181 1.53
5 1. bl 2.63 -1.112 0.4 =0.597 1.52 -1. 437 1.51 -1.873 1.5
6 -1.534 2.69 -1.110 0.4 -1.320 1.56 -2.14%9 1.53 =3.110 1.54
(c) ty/T =0.75
1 -0.880 0.37 -1.36Q 0.4 0.853 2.01 1.887 2,06 2,486 2.05
2 -1.612 1.59 -1.347 0.46 (-0.658) 3.00 -1.778 0.43 ©2,112 0.42
3 -2.390 1.57 -1.337 0.45 1.183 . 1.56 -2.106 1.57 -2.972 1.57
h 1.93%0 2.07 -1.336 0.U45 0.841 1.59 -1.764 1.58 -2.378 1.58
5 -1.682 2.71 -1.332 0.45 ~0.629 1.57 -1.578 1.56 -2,0%8 1.57
6 -1.816 2.75 -1.326 0.45 -1.472 1.61 -2. 415 1.59 -3, 489 1.60

" Values in parentheses do not represent a

interval investigated.

. maximum. They are the largest computed values for




TABLE 4.7 (Continued)

Joint
or Bar W t N L M t g t ®
d P OR? / AR T PR T P RE T pol [ A To Py VA
c/r = 1 C/r = VS-
(a) f§d/.fT0 =1
1 -0.953 0.39 -1.492 0.48 0.749 2,02 1.607 2.09 2.116
) ~1.720 0. 44 -1.480 0.48 (-0.572)Y  3.00 -1.929 0.4k -2.281
3 -2,062 0.50 -1. 466 0.h47 1.018 1.58 -1.932 0.51 -2.559
L -1.935 0.5k4 -1.463 0. 47 0.735 1.60 -1.580 0.57 -0,077
5 -1.679 0.48 -1.461 0.h7 -0.534 1.59 ~-1.601 0.49 -1.T7hk
6 ~1.645 0.46 -1.455 0.48 -1.277 1.63 -2.109 1.62 -3.043
(e) y/T = 1.5
1 =1.033 0.41 «1.636 0.49 0.813 2.0k -1.736 0.43 2.185 2.07 .
2 -1.876 0.46 -1.62% 0.49 0.532 0.40 -2,093 0.46 -2, 463 0. 4k
3 -2.272 0.52 -1.608 0.49 0,920 1.59 -2.121 0.53 -2,517 0.54
k -2.157 0.56 -1.602 0.49 - 0.799 1.62 -1.782 0.59 -2.085 0.64
5 -1.846 0.51 -1.603 0.49 0.451 1.11 -1.765 0.51 -1.889 0.52
6 -1.795 0.48 -1.601 0.50 -1.150 1.64 -1.843 1.62 -2.680 1.63
| (£) /T =4 |
1 -1.145 0.43 -1.833 0.52 0.831 2.13 -2,16Mk 1.63 -2.745 1.63
2 -2.091 0.48 -1.819 0.52 0.574 0.h42 -2,.320 0.48 -2.715 0.47
3 -2.564 0.55 -1.80k 0.52 0.957 1.64 -2,381 0.55 -2.984 1.63
b -2.576 1.64 -1.800 0.52 0.952 1.67 -2,25% 1.65 -2.945 1.66
5 -2.079 0.54 -1.801 0.52. 0. 464 1.14 -1.989 0.54 -2,129 0.5k4
6 -1.999 0.50 -1.802 0.52 -1.117 1.69 -2. 426 1.67 -3.939 1.67
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TABLE 4,8 COMPARISON OF APPROXIMATE AND EXACT MAXIMUM STRESSES

f/1b = 0.2, L /r = 100, p,/Pop = 1.0, z = 12

Two-Hinged Uniform Circular Arch; Uniform All-Around Triangular Pressure Pulse With Initial Peak

c/ n=1 c/ r = '\/3—

t a . Gmax Gmax % crmaoc % ama.x max % Uma.x %

5; Location pOWA poiE A Error poii A Error pOR/A poR']A Error Po : A Error
| " | Eq. (a) Eq. (b) Eq. (a) Eq. (b)

0.25 1/4 point -1.196 1.372 1k.7 0.970 -18.9 -1.707 1.884 10.3 1.386 -18.8
: crown -1.248 1.429 14,5 1.012 -18.9 -1.799 1.983 10.2 1.473 -18.1
050 /4 point | -1.975 | 2.260 k.4 | 1.598  -19.1 | -2.815 | 3.102  10.2 | 2.280  -19.0
: crown -2.149 2. 430 13.1 1.725 -19.7 -3.110 3,396 9.2 2.54 | -18.3
0.75 1/k point | -2.106 | 2.509  19.1 | 1.777  -15.6 | -2.972 | 3.375 13.6 | 2.4 -17.9
: crown -2. 415 2,798 15.9 1.981 -18.0 -3, 489 3.386 11.1 2.874 -17.6
1.00 1/4 point -1.9%32 | 2.473 28.0 | 1.776 -8.1 -2,559 | 3.218 25.8 | 2.502 92.2
: crown -2.109 2.752 29.5 1.936 -8.2 -3.043 3.667 20.5 2.647 -13.0
1.50 1/ point -2.,121 2.521 18.9 1.847 -12.9 -2.517 3,194 26.9 2.259 -10.3
) crown -1.843% | 2.751 k9.3 | 1.971 6.9 | -2.680 3.59% 34,1 2.556 -k.6
.00 1/4 point -2.202 2.613 17.6 1.921 -13.5 -2.631 3,295 25,2 2.330 -11.4
) crown -2.070 2.816 36.0 2.028 -2.0 -2,883 3.639 26.2 2.581 -10.5
b.oo | /% point 22,381 | 2.759  15.9 | 2.040 -14.3 -2.984 | 3,460  16.0 | 2.448 -18.0
crown -2, 406 2.919 20.3 | 2.120 =12.6 -3,239 3.737 15.4 2.644 -18. 4

oL
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TABLE 4.9 EFFECTS OF PEAK FRESSURE AND INITIAL OUT-OF-ROUNDNESS

ON MAXIMUM VALUES OF RESPONSE
Two-Hinged Circular Arch; Uniform All-Arcund
Triangular Pressure Pulse With Initial Pesk

/L, = 0.2, Lo/r = 100, td/To‘= 2.0, z = 12

po/Pcr = 0.5 ~“c>/p¢::'r =1 po/pcr =2
Joint ¥ 7 v = 7
Quantity jor Bar 2.0 Boo | 2-o0.001] 2-=0 |-2=o0.001
J LO LO LO ) LO LO )

. 1 -1.040 -1.076 -1.13%6 <1.23%5 -1.508
i 2 -1.892 -1.959 -2.003 -2.131 -2.337
RY/ AR 3 -2.323 -2,385 -2.613 -2.535 -2.913
Po b -2.270 -2.278 -2, 469 -2.277 -2, 720
5 -1.948 -1.9%6 -1.971 -1.917 -1.950
6 -1.873 -1.875 -1.874 -1.881 -1.881
: 1 -1.698 -1.713 ~1.726 =1.743 -1.756
3¢ 2 -1.685 -1.699 -1.713 -1.729 -1.742
——é%- 3 -1.660 -1.68k -1.69% -1.71h -1.725
L L 1,664 -1.678 -1.687 -1.707 -1.716

5 =1.666 -1.679 -1.685 -1.703 -1.708 -
6 -1.668 -1.679 ~1.681 -1.699 ~1.T700
1 0.743 0,763 0.832 0.957 1.018
M 2 0.539 0.586 0.667 0.832 0.936
—-%; 3 -0.895 S 0.95% |. 1.060 1.123 1.278
Po N 0.7T7 0.857 " 0.967 1.005 1.148
5 0.525 0. 457 0.495 -0. k54 -0.528
6 1.065 -1.137 -1.135 <1.329 ~-1.326
1 -1.780 -1.814 -1.832 -1.896 =1.914
o 2 -2.128 -2.181 -2, 205 -2,310 -2.337
P %7A 3 -2.181 -2,222 -2.250 -2.317 -2.349
°© L -1.89k -1.891 -1.917 -1.852 -1.968
o/r & 1 5 -1.822 -1.852 -1.855 -1.921 -1.925
- 6 -1.993 -2.070 -2.066 -2.167 -2.164
1 2.336" -2.212 -2.336 -2.4k9 -2.593
o 2 -2.620 -2.561 -2.592 -2.751 -2.786
P %7A 3 -2.711 -2.631 -2.783 -2.794 <3.058
o - I -2.527 -2.406 -2.599 -2.553 -2.807
o/t = VE; 5 -1.979 -1.979 -1.991 -2.095 -2.107
6 ~3,003 -2,883% -2.850 -3.139 -3.134

* .
Stress values in this

column sre for ¢/r = 2.



TABLE lt.l();l EFFECT OF ARCH DIMENSIONS ON MAXTMUM VALUES OF RESPONSE AND TIMES OF OCCURRENCE
Two-Hinged Uniform Circular Arch; Uniform All-Around Triangular Pressure Pulse With Initial Peak

po/pcr = 1'0} td/TO = 2-01) Z =~12

Joint ‘
or Bar W t N t_ M t g t_ g t
J poRa/ AR To PR To P,Rr T poji: A To P, /A Lo
c/r =1 e/r = 3
(a) f/Lb = 0.2, Lb/r =50, am/¢o = 0.01
1 -1.234 1.45 -1.730 0.5k 1.166 1.45 -1.780 0.54 -2.270 1.47
2 -1.791 1.45 -1.712 0.5k 1.646 1,44 -2.133 0.50 -3.077 1.45
3 -2.209 0.49 ~1.695 0.55 1.138 1.44 -2,296 0.48 -2,788 0.47
4 -2.452 0.55 -1.686 0.55 0.403% 0.k -2.042 0.53 -2,312 0.50
5 -2.673 0.6L -1.684 0.55 1.09) 1.94 -1.948 0.65 2.31k 1.94
.6 -2.841 0.69 -1.687 0.54 1.569 1.94 -2.041 0.68 3,163 1.94
(b) f/Lo = 0.2, Lb{rwf 200, At[To = 0.01
1 ~1.453 0.43 -1.736 ~ 0.49 -0.891 2.73 -2.0k4L .45 -2.316 0. 43
2 -2,169 0.51 -1.726 0.49 0.749 2.72 -2,126 0.52 -2, 438 0.54
3 ~2.064 0.53 -1. 717 0.49 0.622 2.70 -1.720 0.52 -1.819 2.66
In -1:916 0.50 -1.710 0.49 0.893 2.2% -1.763 0.51 -2.3%8 1.63
5 -1.909 0.50 -1.705 0.50 0.269 1.39 -1.710 0.50 -1.715 0.50
6 ~2. 443 1.63 -1.703 0.50 1,185 1.73 -1.898  1.64 -2,687  1.67
(c) #/1, - 0.1, L /r = 100, &t/T_ = 0.08k
1 -1.160 1.k -1.734 - 0.54 1.225 1.4 -1.817 0.5k -2. 80 1.43
2 -1.670 o.48 | -1.731 0.55 1.665 1.%0 -2.149 0.49 -2,964 1.4
3 -2.226 0.50" -1.729 0.55 1.091 1.4 -2.291 0.48 -2, 764 0.46
L -2.529 0.56 ~1.729 0.55 0.393 0.43 -2.100 . 0.55 -2.372 0.54
5 -2.823  0.66 -1.729 0.55 1.198 1.89 -2.059  0.66 -2.478  0.70
6 -3.013% 0.70 ~1.731 0.55 1.701 1.88 -2.171 0.70 3.105 1.88

el



TABIE ' 4,10 (Continued)
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TABLE C.1 SYMMETRICAL MODES OF VIBRATION FOR A TWO-HINGED UNIFORM CIRCULAR
ARCH AND PARTICIPATION FACTORS FOR MODAL SOLUTION

f/L0 = 0.2, Lo/r =100, z = 12

r=1 r=2 T r =3 r =4
Tr/To 2,225 1.066 0.784 0.465
J Y3 \ ¥ Vs Y V3 oY
1 ~-1.179 0.096 | -0.630 -0,134 | -2,212 0.084 | -2,098 0.133
2 -1.520 0.288 | -1.643 -0.162 | -1.415  0.257 1.041 0.188
3 -0.750 0.453 | -2.299 -0.080 1.077 0.210 1.479 -0.004
L - 0,750 0.470 | <2.004  0.026 1,467 -0.028 | -1.913 -0,004
5 2.176 0.300 | -1.13% 0,056 | -0.854 -0.1k1 | -0.61k 0.134
6 2.757 0,000 | -0.672 0.000 | -2.404 0.000 2,092 0.000
(x) | |
CE -0.3027 0.6528 0.1377 Q.016h
P R /AE
. o
r=5 r=6 r=17 r=28
T /T 0.342 0.297 0.240 0.126
'Lr/.o = = == e = == == =
3 wj , 11"‘j WJ . v:j W,j v'j wJ' vj
1 -1,517 0.1ibL 0.551 -0.048 | -0.512 -1.070 0.132 1.865
2 2.152 0.071 | -1.078 ~0.015 | -0.197 -1.826 | -0.126 1,853
3 -1.540  0.019 | 1.528 40.045 | -0.015 -2.101 | -0.2k1 -0.007
I -0.017 0.108 | -1.862 -0.01k4 0.261 -1.815 | -0.120 -1,.860
5 1,500 -0.019 2.094 -0,018 0.432  -1,047 0.121 -1.857
6 -2,182 0.000 | -2.1k49 0.000 | .0.505 0.000 0.242 0.000
(r) ' ’ '
_ °2 0.0043 -0.0010 -0,00091 0.00013
pOR /A
r =9 r =10 r =11
Tr/To 0,090 0.073 0.066
J v Vs ¥y Vs ¥ vy
1 -0,005 -2,154 | 0,040 1,865 | -0.034 1.077
2 0.1h4 0.006 | -0.043 -1.870 0.020 -1.868
3 0,000 2,154 0.085 0.003 0.000 2.158
L -0.143 -0.003 | -0.043 1.867 | -0.020 -1.869
5 0.000 -2.154 | -0.0k2 -1.868 0.035 1.079
6 | 0,143 0.000 0.085 0.000 | -0.040 0.000
c\(r)\,
2'- -0,000039 0.000015 0.000006
p R /AE
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FIG. 2.1 MODEL CONSIDERED IN ANALYSIS
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FIG. 2.3 DIAGRAM USED IN DETERMINING DISPLACEMENT -DEFORMATION RELATIONSHIPS
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FIG. 2.4 BILINEAR STRESS-DEFORMATION RELATIONSHIP

FIG. 2.5 DEFORMED JOINT
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FIG. 3.1 COORDINATE SYSTEM FOR CIRCULAR ARCH MODEL

Po

o

=
can )

Lo

]

FIG. 3.2 TRIANGULAR-SBAPED MOVING PRESSURE PULSE



79

i ROUTINE (1) - ]
SET PROBLEM CONSTANTS
INPUT PROBLEM PRINT PROBLEM l
p| AND INITIAL VAWES |[—=  ueapinc
—’t—mmr" PARAMETERS AL EADI _l
I b JR—
ROUTIHE (01) ROUT IRE (21) {
SUBROUT INE (12) ves| TEST IF
e < TINE = 0
EVALUATE PRESSURE COEFF ICIENT =
3  {
ET
R/ ASSUME F IRST TRIAL
FOR .END OF TIME INTERVAL VALUES FOR
W v
l y
SUBROUT INE (10) SUBROUT INE (11) ‘ f‘ FOR EMD OF TIME INTERVAL;
CALCULATE [ C‘:LWUTEE . INTEGRATE FOR
AXIAL FORCES and W 7
DEFORMAT 10KS AKIAL FORCE Vi ¥, 3 V3
b wo | TEST FOR |ves
: COMVERGENCE
ROUT IXE (20) : 1
CALCULATE IMPROVED
ACCELERAT |ONS USING [MPROVED
Y © ACCELERAT 1OKS,
P INTEGRATE FOR
FOR END w,,v, end v,V
OF TIME INTERVAL 323 B |
o]
TEST IF
1 TRE =0
vul
I ot
ROUT IKE (M2) v
PRINT SUBROUT INE (10)
sTOP ADVAKCE TO NEXT f<g< RESULTS
) TIME INTERVAL CALCULATE FiNAL
vEs 0 ves oem%mns
FOR END OF
T AoThER L wo | TEST IF RESULTS TINE INTERVAL
TROPLEN! | VabYHe TEST FOR E“D Aiﬁ To BE ”imm
» O PROBLEM AT THIS TIME ¥
ves ™ 4 " ngg';g STRESSES
¥ Al
SUBROUTIRE. (M) SET MAXIMUM VALUES OF | s
PRINT N ¥oM s ;
, W k4
‘ HAX 100U VALUES j) J’ J’ J’ .j CALCULATE
STRESSES

FIG. 3.3 FLOW DIAGRAM OF COMPUTER PROGRAM FOR CIRCULAR ARCH SUBJECTED TO A
UNIFORM ALL-AROUND PRESSURE
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— ROUTINE (M1) _ o
. SUBROUTINE (M1.2) SUBROUT IXE (M1,8) l
BEGIN , [TuPUT PROBLEM
CALCULATE AND SET SET PROBLEM CORSTANTS '
\, | L__PARAMETERS RECTANGULAR COORDINATES |t AMp INITIAL VALUES |—o TRINT PROBLEM
j ROUT (K€ (01) T 7 ot =20y !
] ves, TEST IF
SUBROUTIME (12) SUBROUT INE (11) TIME = 0
CALCULATE  t———  (aiculaTe iuo
DEFORNAT 1018 DEF ORMAT 1055
ASSUME FIRST TRIAL
l VALUES FOR
¥,
SUBROUT (NE (13) , & J .
SUBROUT INE (%) FOR EWD OF TIME [MVERVAL;
CALCULATE
ﬂgﬁ:.és L] P  CALCULATE . IHTEGRATE FOR
AXIAL FORCES and
Am mms gJ! T‘J gj’ "IJ
USE SUBROUT INE (-4%)
L |
— - . w| YEST FOR | vee
ROUT {ME (22)‘ CONVERCENCE
SUBROUT KE (21) T
CALCULATE :
FORCES USING IMPROVED
sxrz:m ACCELERAT | OMS,,
Py Pj . INTEGRATE FOR
and »
v
4
CALCULATE IMPROVED No
ACCELERAT 10NS TEST IF
T, h ™ YIME = 0
§y e
FOR END L -
OF TIME INTERVAL | |
I ROUT {4 (K2) & -
ves| TEST IF ANOTHER SUBROUT INE (11)
PROBLEM FOLLOWS CALCULATE F 1AL
\Y!C D*E_me?..g'?‘“
mo [ TEST FOR EMD TEST IF RESULTS TIME INTERVAL
ARE TO BE PRINTED l~¢—  SUBROUTIKE (13)
l OF PROBLEM AT THIS TIME
I i CALCULATE FINAL
KVANCE T0 MEXT Y ST eag o hoes SUBROUT 1€ (12)
SUBROUT IKE (1%) | TIME INTERVAL | caeuae Fim
RN CALCULATE FINAL DETERMIIE PR DETRTAT 10K
RESULTS [ AL FORCES i TIME [NTERVAL
FOR END OF - USE SUBROUT I (-4%)
TIME INTERVAL ° -
PR

FIG. 3.4 FLOW DIAGRAM OF COMPUTER PROGRAM FOR ARCH SUBJECTED TO A

TRIANGULAR MOVING PRESSURE
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Po

fo

FIG. 4.1 TRIANGULAR PRESSURE PULSE WITH INITIAL PEAK
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Pirst Antisymmetrical Mode, T = 4.996 T,

Third Antisymmetrical Mode, T = 0.592 To

(a) Antisymmetrical Modes

'FIG. 4.2 NATURAL MODES OF VIBRATION FOR A TWO-HIRGED UNIFORM CIRCULAR ARCH
f/Lo = 0.2, Lo/r = 100, z = 12



First Symmetricel Mode, T = 2.225 T_

Third Symfietrical Mode, T = 0.784 T
(v) Symmetrical Modes

FIG. 4.2 (Continued)




(a) Displacement Configurations
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{(b) Radial Displacement, w

FIG. 4.3 TYPICAL RESPONSE CURVES FOR AN ARCH UNDER A UNIFORM ALL-AROUND
PRESSURE PULSE
£/L = 0.2, I.o/r = 100, p /p . = 1.0, td/To = 2.0
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(d) Bending Moment, M

FIG. 4.3 (Continued)



1
Py N\
7T
\ \ [ —
. N \ /
/ ) /|
NP4 )4
Pa” / e
4
1 M at 1/12 point
1
™ Y. N
N TN L LT 1)
; ‘ 17
ioo \\\ //{\ _/'/ // \
4 N LA |
M at 1/6 point
-{ -
|
,/'\
/ AN
/ N / \ RN
/// N / // N ‘
‘T i NEED S
\ /
N / \_| /]
. : \—
‘M at 1/4 point
4 it
HEEE
0 0.8 1.0 ' 1.5 . 2.0 2.5 3.0
t/To

FIG-)-I'J& RE@ONSECURVESOFBENDNGWINANARCHFORAUNIFORM
ALL-AROUND PRESSURE PULSE
£/L, = 0.2, Lo/rn 100, p/p . = 1.0, t,/T = 2.0
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FIG: 4.4 (Continued)
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(a) Radial Displacement, w, at 1/t point
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(v) Radial Displacement, w, at crown

EFFECT OF NUMBER OF BARS ON RESPONSE
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£/ o= 02 Lo/r = 100, po/pcr = 1.0, td/To = 2.0
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FIG. 4.5 (Continued)



{(a) Displacement Configurations
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.(b) Radial Displacement, W

FIG. 4.6 RESPONSE CURVES FOR AN ARCH UNDER A UNIFORM ALL-AROUND
PRESSURE PUISE--td/TO = 0.25

f/LO = 0.2, LQ/I' = 100, PO/Pc; 2 1.0
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(d) Bending Moment, M

FIG. 4.6 (Continued)
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(a) Displacement Configurations
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(v) Radial Displacement, w

FIG. 4.7 RESPONSE CURVES FOR AN ARCH UNDER A UNIFORM ALL-AROUND
PRESSURE PULSE--td/To = 0.50
f/Lo = 0.2, Lo/r = 100, po/pcr = 1.0
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(d) Bending Moment, M

FIG. 4.7 (Continued)
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(2) Displacement Configurations
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(a) Displacement Configurations
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(d) Bending Moment, M, at crown

FIG. 4+.13 (Continued)
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(a) Displacement Configurations

2 :
TV at crown
‘ o /I IN -
63 w at 1/4 point —h_ " A / / h
‘ — 1 - 2 F <
2oy Ol ?’ N/ 1 \ //( N / / J
JBN AR /L LS N
-1 A\, ,// / \w\ ’,/ \ //
Ny N AN -
-2 §\ 7 7 A
;\ //
-2 ~—
-5
0 , 0.5 1.0 15 2.0 2.5 3.0
t/‘.[‘o

(v) Radial Displacement, w

FIG. 4.15 RESPONSE CURVES FOR AN ARCH UNDER A UNIFORM ALL-AROUND
PRESSURE PULSE--LO/r = 50

f/LO = 0.2, po/pcr = 1.0, td/mo = 2.0



109

/4 T A, N SN N N S A -
[ A I
i
I
) \ - N
2 oot
o] |
NI.I. ..L\ Ilm ||||| e -
AI t
Tt !
I~
e 4 -
)

2.0 2.5 3.0

1.5
t/To

(c¢) Axiel Force, N

1.0

0.5

=t

o
e

ramm <
W‘,\.T;T b
/. _ A frr
s : M : N /..l.n I ~ w )
BT e N
N i . ) ! ' !
Y w \\\h . } i /
T O t 4 ) H ” E
PHERT G . W
@ Bt b ]
1
=, . —
1 )’ : - g
\\ // ' :
i Il ,7|1
i ~i
< | )
. l[l] - L=
= ]
2 \w\\ /./.I.Y‘
\\\. ; 7///
- (] b
X /
. S T Nt ; —
. ~o
L —
| . ~L =t |
: ' sl e
I R 0 E U N SN ~ |
.m Q_\\\\v\\ i /I./
Q f '
oAl )
SEIN ad
~ R4
L Po P
o //rf -
ol \\v\
“L\
S - U TR S A N S, S
; //
[ e ]
| ~N
ﬂ /J
Y U T— .
m ) |
(21 - o= o~
] )

2.5 3.0

2,0

1.5
t/To

(d) Bending Moment, M

1.0

0.5

FIG. 4.15 (Continued)



110

(a) Displacement Configurations
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(a) Displacement Configurations
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FIG. 4.17 (Continued)
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(a) Displacement Configurations
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(e) Displacement Configurations

6 S O O
- v at 3/ point L=
\ 7
N“ % 3 e
o) —— W at crown
£ Vv at crown - N _\i
o -+ - T — :
O 21—tV at 3/ point =—<“t= T < N -
A 3 - LT~ L 7 ¥ 1N
i = ] - g 7
i . 1 A S
5 g ™S — v at 1/4 point L // Db e
> N P prad AN .
4 \ AN pd 7 > N
\\ N - -
b AN "/ ‘\
~ —_ of
Y P~ =
& ] v at 1/4 point {-
had I
-8 0.5 1.0 1.5 2.0 2.5 3.0

t/!o

{v) Redisl and Tangential Displacemsnts, W end v
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FIG. 5.2 (Continued)
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(d) Bending Moment, M
FIG. 5.13 (Continued)
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