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I Q INTRODUCTION 

l~ Object and Scope 

The purpose of this investigation has been to develop a method for 

the computation of the dynamic response of continuous highway bridges under 

the action of moving vehicles J and to obtain information on the behavior of 

representative three=span continuous bridgeso In this study, the bridge is 

idealized as a continuous beam and the vehicle is represented by a sprung 

load unit having either one:; two or three axleso 

Whereas the dynamic response of simple span bridges has been studied 

at some length(1)*=(16), there is relatively little information available 

concerning the behavior of continuous bridgeso Some studies on the response 

of continuous beams to the action of a m'Qving load have been made by Jacobsen, 

Ayre and their associates(13L (17)=(21); however, the results are no·t directly 

applicable to the highway ~ridge problem 0 Additional studies have been con-

ducted at the Massachusetts Institute of Technology under the direction of 

Professor Jo Mo Biggsu These included a theoretical investigation of the 

response of two-span highway bridges to the action of a single-axle vehicle 

(22) loading IJ and laboratory tests on two-span and three=span continuous beam, 

mOdel£(22)i(23)o Field tests on actual continuous span bridges have been 

reported in several publicat,ions ( 4)>> (14), (24) 27) 0 

The present investigation included ;t(a) the development of a general 

method for analyzing the dynamic response of continuous bridges; (b) the 

development of a comput,er program for u.se on the ILLIAC.9 the high speed 

digital computer of the university of IllinOis, so that numerical solutions 

* Numbers in parentheses, unless otherwise identifiedJ refer to items listed 
in the Bibliography 0 
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can be obtai.ned conveniently; (c) the use of the computer program in the 

solution of specific problems; and ) a study, based on the numerical results 

obtained3 of the effects of the various variables entering into the problema 

In the analysis J the continuous beam 1Jhich has an infini toe number 

of degrees of freedom is replaced by a discrete system having a finite number 

of degrees of freedomo Tb.is discretization is ef'fected by concentrating t,he 

distributed mass of the beam into a series of point masses j but considering 

the flexibility of the beam to be distributed as in the actual systemQ A 

vehicle of the tractor=t;railer type is represented by a three-axle load unit 

oonsisting of two interconnected rigid masseso Each axle is represented by 

two springs in series road a i'rictional mechanism which simulates the effect 

of friction in the suspension spring o~ the vehicleo The use of this 

mechanism represents an important aspec~ of the present worko The equations 

governing the motion of the bridge~vehicle system are formulated in general 

terms 0 They can be applied to contdllUOUS bridges of any number of spans as 

well as to simple span bridges or cantilever bridgeso 

The ILLIAC program has been developed for three=span bridges having 

a uniform cross section a:..'1d equal side spans and for a load unit having a 

maxim~tm of three axleso The effects of damping in the bridge and of friction 

in the su.spension system of the vehicle have been consideredo The program 

can handle various combinations of the parameters defining the system, such 

as the stiffness and weight characteristics of the different, parts of the 

load unit and the bridgeo In addition, by a.il approp:riate choiee of the 

parameters , it can handle problems involving three single=ax:le loads or a 

single=axle load followed or preceded by a two=axle loading~ The surface 

of the bridge is considered to be horizontal and smootho HoweverJ with the 

aid of an additional subroutL~e» it ~~11 also be possible to consider the 



effects of surface unevenness:; such as grade} d.ead load deflection, or 

roadway irregularitieso The information output includes the interacting 

forces between the vehicle and the bridge, four reactions, moments over the 

interior supports, and moments and deflections at the middle of the center 

span and at a selected point in each side spano 

Numerical solutions have been obtained for approximately 50 dif

ferent caseso The object of this phase of the investigation has been to 

isolate the various variables entering into the problem and to study their 

effect in a systematic manner 0 Primary emphasis has been placed on a study 

of the dynamic effects produced by smoothly moving loads 0 The variables 

investigated include the speed of the vehicle, the weight of the vehicle 

relative to the weight of the bridge, the ratio of the natural frequencies 

of the vehicle and the bridge., and the number of axle loads ~ The effects 

of init,ial oscillation of the vehicle1J of friction. in the suspension system 

of' the vehicle, and of bridge damping are also consideredo 

Because of the very large number of variables involved and the 

considerable machine time required for a solution, it is impractical to 

obtain solutions for all possible combinations of the variableso Accordingly, 

the principal effort, 1~as devoted to a study of the fundamental characteristics 

of the response of continuous bridges 0 Based on t,he results of this study J 

certain concepts have been formulated which m.ay be used to predict the 

maximum dynamic effects in cont,inuolls bridges from the results of a relatively 

small number of judiciously selected solutionso 

The method of analysiS is presented in Chapter IIo In Chapter III 

the details of application of the method are described for the case of a 

three span continuous bridgeo h£.he rLLIAC program, is described in Chapter IVe 

In Chapter V the numerical sol'lltions are presented and the effects of the 
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various variables are disc'ussedo A summary of the most important results 

is given in Chapter VI" 

2" Notation 

The symbols used in this report are defined in the text where 

they are first introduced" For convenienceJ the important ones are SUID= 

marized here in alphabetical order 0 

a = ratio of the side span to the center span 

a 
1 

:: ratio of the horizontal distance 'between the center of gravity 
of the tractor and its rear axle to the axle spacing of' the 
tractor 

= l=a 
1 

a
3 

~ ratio of the horizontal distance between the center of gravity 
of the trailer and its rear axle to the horizontal distance 
between that a.xle and the gUfifth wheel pivota~ 

a
5 

=: rat,io of t,he ~ufif'th wheel RR offset to the axle spacing of the 
tractor 

c ~ coefficient of viscous damping for beam 

C :: critical value of c corresponding to the fundamental mode of 
cr ' vibration 

Dl 

D4 

D 
c 

:;;;; deflection at a prescribed point on the left hand span of the 
beam 

:= deflection at a prescribed point on the right h~~d spm1 of the 
beam 

= deflection at the center of the center span 

~ deviation of bridge profile at the point of application of Po} 
measured from a horizontal line passing through the left hani!r 
abut.,ment 

E ~ modulus of elasticity of the ~tlridge material 

F f · t" al f 0 th " 0.0 t1,.le ~ th 1 o ~ : r~c l.on oree J.n " e suspens~on sp'r~ng J..or,1..l. "= axe 
1. 

F ~ :;;;; maximum value of F ~ 
1, 1, 
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fb :; fundamental natural frequency of the bridge 

f
t 

. 
,l 

f ts,i 

:; pseudo-frequency of the ith axle if only the tire spring acts 

th :; pseudo~frequency of the i axle if both the tire and the 
suspension springs act in series 

g = gravitational acceleration 

h = length of a panel in the center span 

h ::: length of the r th panel 
r 

I = moment of inertia of the bridge cross-section 

iI' i2 :; dynamic indexes of the tractor and trailer) respectively 

; = moment''''<ieflection coeffi,cient, defined in Art" 7 
r 

k. 
1. 

th = spring constan~t for t,he i axle; refer to Arts 0 50 5 and 902 

k U = modified carry-over factor defined in Arto 7 
r 

::: effective stiffness of tires for the ith axle k
t 

. 
,1. 

k
t 

.:; effective stiffness for the ith axle when the suspension 
. s, 1. . spring and tire spring act. in series 

L == length of the center span 

iI' 12 = axle spacings, as shown in ,figo 3a 

~J" M4 = moments at ;the sections where Dl and D4 are evaluated 

M
2

, ~~ == 'moments over the first &"1d second interior support, respectively 

M = moment at -the cent,er of the center span 
c 

m == number ot panels Ln the center span 

m 
r 

. '. + th th d ,- mass concentrataon aCI ,e r no e 

n --humber of panels in either side span 

P. 
1. 

Pt· s ,:l 

= interacting force between the ith axle and the bridge 
or approach 

th 
= value of P. at the end of the s time interval 

:l 

= static reaction for the ith axle 
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~ := reaction=load coefficient, defined in Arto 50) 

~JR2JR3JR4 := reaction at the first abutment; first pier] second pier and 
second abutment, respectively 

1"'1' 

Rj 
:= reaction-deflection coefficient} defined in Arto 50) 

r 

sl' s2 := tIlL and £2/L; respectively 

WI' 

W2J 

X 

Tb := fundamental period of vibration of the bridge 

t 

u. 
1. 

:= second and third natural periods of vibration of the bridge 
model 

:= time, measured from the instant the first axle moves onto 
the bridge 

shortening of the suspension~tire system of the .th axle := 1. 

v := speed of the vehicle 

W := weight of the entire vehicle 

Wb := weight of the center span of the bridge 

W
2 

:= 9Vsprung~g weight of the tractor or trailer} respectively 

w3 := gUunsprung~U weight,s:; as shown in Fig" 3a 

== weighted average of the amplitudes of the waves in a dynamic aa increment curve 

x := distance between the first abutment and the first axle 

:= displacement of rth node, measured from the position of static 
equilibrium of the bridge 1'lhen the load is off the bridge 

:= value of y at t r s 
th 

:= deflection of the bridge under the i axle; measured from 
the static equilibrium position of the bridge under the 
action of its own weight 

:= value of yp. at t 
~ s 

z. := generalized coordinate for the ith axle J defined in Arto 502 
~ 

Z 0 =: value of z. at t 
~,s l S 

VTb 
a, = 2L J a speed parameter 

th e =: angle coefficient for the r node J defined in Arto 7 
r 



A = dimensionless coefficient in the expression for w 
n n 

~1.Q ::: F~/P t . 
1. S ,J. 

~ = x/(1+2a)L, ameasuxement of time or of the position of the 
first axle on the bridge 

P = mass per unit length of the bridge 

= standard deviation 

2" 
An J EI' th 

wn ::: L2 P ,n natural circular frequency of the bridge 
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IIo :METHOD OF ANALYSIS 

40 Idealization of Bridge and Vehicle 

4,,1 Idealization of Bridgeo It is assumed that during vibration 

the deflection configuration of the bridge in the transverse direction 

remains the same at all timeso Accordingly, the bridge may be represented 

by abeam" In the analysis of the beam; the actual distributed mass is 

lumped into a series of point masses, spaced at equal intervals within each 

spano However, the flexibility of the beam is considered to be ~istributedo 

Thus the actual system which has an infinite number of degrees of freedom is 

replaced by a system for which the number of degrees of freedom is equal to 

the number of mass concentrations used~ Figure 1 shows the replacement system 

for a simple-span bridge and a three-span continuous bridge 0 

Damping in the bridge is assumed to be viscous" In the actual 

system the damping resistance is distributed along the length of the bridgeo 

In the replacement system 'this resistance is assumed to be concentrated at 

the points of mass concentrationJ as shown by the dashpots in Figo 10 

4,,2 Idealization of Vehicle" Since the bridge has been idealized 

as a beam, the width of the vehicle and consequent1Y,9 the rolling effect 

cannot be considered in the analysiso Even when treated as a plane system.9 

a vehicle is a very complex mechanical systemo However, insofar as its effect 

on a bridge is concerned it may be represented by one or two rigid bodies 

supported on a series of springs and dashpots" 

Figure 2 shows diagrammatically the detailed features of what is 

believed to be a complete representation of a tractor-trailer combination" 

All shaded areas in this figure are considered to be rigid bodieso ~ne 

quantity WI represents the weight, of the tractor mounted on its suspension 
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systemo 
(28;· 

The quantity i
l 

is t...h.e dynamic index ", of the <tractor 0 This is 

a measure of the rotary moment of inertia of the weight WI' and it is defined 

as the ratio of the radius of gyration squared to the product of the horizontal 

distances between the two supports and the center of gravity of the weight 0 

The dashpots at the center of gravity of WI represent damping resistances 

against vertical motion and rotary motiono The rigid bar represents the chassis 

of the tractor and its weight is designated as 'WI 0 The point masses, with 
4-

weights wl and w
2

, represent the mass of the axles, springs, and tires for the 

two axles 0 The quantities W
2

, i 2, and w3 refer to the trailer and have the 

same meaning as that of the corresponding quantities for the tractor~ For 

convenience in presentation, the weights W
l 

a.nd W
2 

are referred to as ~u n sprtmg 

weights and the remaining weig..h.ts are referred to as S\msprung iO weightso 

The dynamic characteristics of the tires for each axle of the vehicle 

are represented by a spring and a dashpoto The suspension system for each axle 

is represented by a massless springy a dashpotJ and a frictional deviceo The 

dash:pot accounts for the effects of shock absorbers or air suspension) and the 

frictional device accounts for any frictional force that may develop in the 

suspensi,on system) particularly in the leaf springso ~.ae value of the 

frictional force developed at any t,j,me is designated by F and the l:Llli ting or 

maximum possi"ble value is designated by Fa 0 As long as =F u < F < F U for a 

particular axle y the suspension spring for that axle is inactive (ioeo only 

the tire spring deflects) J and the effect,ive stiffness of that axle is equal 

to the stiffness of the tires 0 On the other hands if F = ± F U
J both springs 

are actiye and the effective stiffness is that of the two springs acting in 

serieso The characteristics of the sus'pension=tire system .for a simplified 

case wi.ll be explained further in Arto 6" 20 
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In the present analysis the above system is further simplified by 

(a) neglecting all sources of viscous damping and ('by replacing the "unsprung ii 

weights by concentrated nsprungu~ weights as shown in Figo 3ao In this replace-

ment the weight of the chassis, designated as w4 in Fig~ 2, is incorporated 

into the weights wI and w2 0 This replacement is justified by the fact that 

the Viunsprungn weights are quite small in comparison to the tisprungU 'w'eights" 

For a representative tractor the ratio of the total nunsprungVe weights to 

the "sprungn weight is about 1/7, and for a trailer it is for all practical 

purposes negligible 0 In addition to the three=axle load unit, in Figo 3 are 

sho1ID specialized models for a two-axle and a single=axle load unite 

With its velocity specified, the three-axle load unit shown in Figo 3a 

has three degrees of freedom 0 The parameters which define its characteristics 

are: 

(a) the weight distribution paxameters which include the weights 

W1, W2, w1' w2 and w3 J and the dynamic indices i 1 and i 2; 

(b) the geometrical parameters which include the axle spacings I, 

and £2' and the ratios a1 through a5, as defined in Figo 3a; 

(c) the stiffness parameters for the tires and the suspension 

springs; for the ith axle (1=1)2,3)7 the stiffness of the tires is denoted 

.J.. 

by ktji and the stiffness of the tires and the suspension springs when acting 

in series is denoted by kt ," ; 
sJ~ 

(d) the friction parameters.? for the suspension systems of the 

vehicle 0 For the ith axle this is the limiting frictional force F~o 
1 

5,. Method of Analysis 

501 Assumptions 0 The analysis is based on the ordinary beam theoryJ 

which neglects the effects of shearing deformation and axial forces 0 In 
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addition, since the mass is treated as a series of point masses, the effect 

of' rotary moment Qf inertia does not enter in the solution 0 The vehicle is 

assumed to remain in contact with the bridge at all times, and its angular 

displacements are considered to be smallo It is further assumed that no 

longitudinal force can develop at the junction of the tractor and trailer~ 

This junction is known as the Ulfifth wheel pivot Hi" Finally, all springs of 

the '~rehicle are considered to be elastic <> 

502 Coordinates 0 The motion of the vehicle-bridge system is 

expressed in terms of the coordinates z. and y shown in Figo 40 The coordinate 
1. r 

z. denotes the vertical displaceme~tJ measured from a fixed horizontal plane, 
1. 

of the point of: support of the vehicle mass for the i.th axleo The coordinate 

Yr denotes the deflection of the rth node point of the beamo This deflection 

is measured from the static equilibrium position when the bridge is subject 

to its own weight aloneo Both coordinates z and y are considered to be 

positive when downwardo 

5,,3 Equa~ions of Motion for Bridge Model 0 Let P. be the interacting 
1 

f b t +h b . d f d t"h . th 1 f th h· 1 orce e ween y e r1. ge sur ace an Ae 1 . ax e 0 ~ e ve lC eo Then the 

th equation of motion for the concentrated mass at the r node of the beam, mr , 

may be expressed as follows: 

th where y is the deflect,ion of the r node, as previously defined, and a dot 
r 

superscript denotes one differentiation with respect to timeo The quantity 

Rj is defined as the reaction-deflection coefficient and represents the static 
r 

reaction at the rth node point induced by a unit deflection of the jth node 

point, when all other nodes are supported against deflectiono A reaction is 

considered as positive when directed upwardo In an analogous manner, ~ is 



=13= 

defined as the reaction=load coefficient and represents the reaction at the 

rth node point induced by a concentrated unit load at the point of application 

of Po when all nodes are supported against deflectiono Obviously, when the 
J.. 

unit load is off the bridge, ~ = 0 0 

In Eqo 1 the first term represents the inertia force for the rth 

mass, the second term represents the concentrated damping force, and the last 

two terms represent the total resisting force provided by the beamc In 

part icular J the third term denotes the resisting force produced by the dis= 

placements of the node pointso The summation for this term is extended OYer 

all node pointso The last term denotes the resisting force due to the inter-

active forces Pi when the nodes are held against deflectiono The summation 

for this term is ext,ended over all the axles considered. It should be noted 

that the interacting forces Po are not known at this stage 0 The procedure 
~ 

used to evaluate these forces is described in Arto 5050 

By applicati.on of' Ego 1 to each mass, one obtains as many equations 

as there are degrees of freedom for the bridge ~odelo The quantities R depend 

only on the characteristics of the bridge model, whereas the quantities Q 
I 

depend both on the characteristics of the bridge and the position of the load; 

hence the latter are time=dependent quantitieso Both quantities can be 

evaluated in a number of different wayso Ttle procedure used in this work will 

be described in Artsc 7 and 80 

Equation I is applicable to bridges having any boundary conditions 

and any number of spans, a~d is independent of whether the cross section of 

the bridge is unifo:rm or noto It CaTI.9 thereforeJ be applied to simple span,? 

continuous or cantilev-er bridgeso The reaction coefficients Rand Q will)' 

of course J be different in each caseo It may be noted also that the speed of 

the vehicle may vary arbi trari.ly <) 
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504 Equations of Motion for a Vehic1e& Let Pt. be the reaction 
s J ~ 

at the {th axle T:rhen the vehlQ cle 4S • °t ° f t t· °lob . ~ w. ~ ~n a pos~ lon 0 s aJlC equl l rlUIDa With 

Po denoting the dynamic reaction at any time t, the disturbing force for the 
l 

ith axle is P. = Pt' and ·the equation of motion for a three-axle vehicle 
l S, l 

can be stated in the form~ 

all al2 
a
l3 zl PI - P stll 

al2 a22 a
23 z2 ::: - ~ P

2 - P w st,2 

a
13 

a
23 

a
33 z3 P3 - Pst,3 

where g is the gravitational acceleration, W is the total weight of the 

vehicle, and all through a
33 

are dimensionless coefficients given by the 

following expressions: 

2 • ' WI 2 . W2 wI 
all ::: (al + al a2l l ) W- + a

5 
(a3 + a3a4l 2 ) W + W 

(1-1
1

) 
Wl 

a
5 

(1-a5)(a~ 
. W2 al2 

::: a
I

a
2 -+ + a3a4 l 2) W W 

... W2 a
I3 

::: a3a4a5 (1-l2) W 

(2) 

The symbols in these expressions have already been defined. The details of 

derivation are presented in Appendix Ac In the following the matrix of the 

coefficients a is denoted as matrix Ao 

Premultiplication of Ega 2 by the inverse of matrix A yields, 
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zl bl1 
b
12 b

13 PI ~ P 
st,l 

z2 :::: ~ b
12 b22 b

23 P2 - P w st,2 ( 4) 

z3 b
13 

b
23 

b
33 P3 = P st,3 

Since the matrix A is symmetric, its inverse, matrix B, is also symmetric" 

For a case involving more than one vehicle, an equation of the above form 

must be written for each vehicleo 

It can be sho-wn that a sprung mass with a value of dynamic index 

i=l is dynamically equivalent to two separate point masses attached directly 

to the supporting springs of the distributed masso The weights of the two 

masses must be equal to the static reactions produced by the distributed 

mass,o By making use of this fact) it. is possible to consider certain special 

cases of a three-axle load unito The following cases are of special interest" 

(a) \ihen i2 :::: 1 and a
3 

:::: 0, one obtains a single-axle load with a 

weight W2 + w3 preceded by a two~axle load unito In this case, the coefficients 

a
13 

and a
23 

in Eq" 2 are equal to zero, and, consequently, in Eq" 49 b
l3 

:::: b
23

:::: 00 

The two-axle load unit shown in Fig" 3b can be obtained from t,he above case by 

trueing, in addition, W2 + w3 :::: 00 In this case, the coefficient a
33 

:::: 0, 

and the matrices A and B are of the second ordero 

(b) When i l = 1, a
5 

:::: 0 and a1 = 1, one has a single=axle load of 

weight Wl + WI followed by a two=axle loado In this case, a12 = a
13 

:::: bl2 = 

b13 = 0 0 ~ne single-axle load unit shown in Figo 3c can be obtained by 

taking, in addition" W2 :::: w2 = w3 ::;:: 00 Then the matrices A and B reduce to 

all and bll' respectively 0 

(c) By taking il = i2 :::: I, a5 :::: 0, and al :::: a
3 

:::: 1, one obtains 

three single axle load units of' weights WI + WI' W2 + w2 and w3" In this 

case, A and B are diagonal matriceso 
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It should be noted that these specialized load units can be 

obtained also by a different combina.tion of the parameters involved .. 

505 Evaluation of Interacting Forceso Equations 1 and 4 are 

coupled through the interacting forces P., which remain to be evaluated~ 
1. 

Let time t be measured from the instant the first axle enters the bridgee 

Then the interacting force at time t is given by the equation 

P. = Po] 
1. 1.

1 t=o 

t 

+J 
o 

duo 
k -2:. d-r 

i d'r 

where Pi] is the initial value of Pi' k i is the instantaneous effective 
t=o 

stiffness of the suspension-tire system for the ith axle at any time 1", and 

u. is the corresponding shortening of the suspension-tire systemo 
1. 

If at the instant it enters the bridge, the vehicle is at the 

position of static equilibrium, the initial force P ] ::;; P t ,0 The 
i t=o s ,1. 

instantaneous stiffness k. depends on the magnitude of the frictional force 
1. 

F. which, in turn, depends on the history of the shortening uDo As previously 
1. 1. 

noted, when the frictional force F. for the ith axle is less than its limiting 
1. 

value F! J the quantity k. is equal to the stiffness of the tires only, whereas 
1. 1. 

when F. ::: Fl' k. is equal to the combined stiffness of the suspension springs 
1. 1. 

and the tires actLDg in series~ The procedure used to evaluate 

simplified case is described in detail in Art~ 9620 

The shortening u.o can be expressed in the form, 
1. 

u. ::;; Z. + ~. - YP' + constant 
1. 1. .l.1 1. 

k. for a 
1. 

where z. is the coordinate for the ith axle,_ as previously defined. The 
1 

(6) 

quantity dpi represents the deviation of the bridge profile from a horizontal 



line passing through the first abutment for the point of application of Po, 
. . 1 

as shown in Fig .. 4, and it is positive when upitlard" This deviation may be 

due to dead load deflection} initial camber, grade, vertical curve or roadway 

unevenness., The quantity Ypi represents the deflection of the bridge at the 

point where Pi actse The deflection Ypi is measured from the static equilibril~ 

position of the beam" when acted upon by its own weight, and it is positive 

downward" This quantity is a function of the coordinates y (io eo of the de
r 

flections of all node points) and of the magnitude and position of the inter= 

acting forces Po. The constant term, while irrelevant in subsequent computation" 
J. 

is required in the above expression since z~ is measured from an arbitrary 
J. 

reference line., 

506 Summary 0 Application of Eqso 1 and 4 to each concentrated mass 

of the bridge model and to each axle of the vehicle yield a set of simultaneous" 

second order differential equations} equal in number to the number of degrees 

of freedom of the bridge-vehicle systemo In these equations the independent 

variable is t and the dependent coordinates are y and ZoO 
r J. 

In the solution of equations of this type, it is usual to express 

all time-dependent quantities} other than the coordinates themselves, in terms 

of the coordinates and the independent variableo In the present case, the 

additional time=dependent variables in Eqs" I and 4 are the reaction-load 

coefficients" ~J and the interacting forces, Poe With the vehicle speed 
~ 1 

specified, the quantities ~ can be expressed explicitly in terms of the 

position of the load, which is a function of t, and the characteristics of 

the bridge model~ However., the quantities P. cannot be expressed explicitly, 
~ 

as can be appreciated by an examination of Eqo 50 It can be seen that. the 

right side of this integral equation includes the quantities U G and koj both 
1. 1. 

of whi.ch are functions not only of the coordinates y and z 0 and of other 
r 1 



physically determinable quantities, but also of all interacting forces Peo 
~ 

Furthermore 51 as explained 1-11 the preceding article.q the value of the ins tan -

taneous stiffness k. depends upon the past history of motion of the entire 
1. 

system .. 

These equations can be solved conveniently by a numerical method of 

integration in which the evaluation of the interacting forces P. is a major 
1. 

intermediate step~ 

As the integration of the differential equations is carried out, the 

values of all the coordinates and of the interacting forces are determined 0 

From these qua.11ti ties the -values of the corresponding deflections j moments 

and reactions at, any desired section may then be evaluated by statics 0 

It is to be emphasized that the equations of motion presented in 

this chapter can be applied also to the cases for which the bridge material 

is non-linear or even plastico For non-linear elastic materialy the reaction= 

deflection coefficients R~ and 'the reaction~load coefficients ~ in Eg" 1 

d.epend on 'the v'alue of the deflection at each node point and on the magni'tudes 

and locations of the int,eracting forces Po 0 For the plastic case J these two 
1, 

coefficients depend not only on the quarltit,ies mentioned above,~ but also on 

the deflection history of the node pointso 
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IIIo APPLICATION OF METHOD TO ANALYSIS OF THF~=SPAN CONTINUOUS BRIDGES 

This chapter is concerned with the detailed application of the 

method presented in the preceding chapter to the special case of a three=span 

continuous bridge traversed by a single vehicleo 

60 System Considered 

The system considered is sho"WIl in Figo 5; its characteristics are 

as follows ~ . 

601 Bridge 0 ~be bridge model is a three-span continuous beam of 

equal side spans and uniform flexural rigidity, EIa The length of the center 

span is denoted by L and the length of a side span by aLo The center span is 

divided into m equal panels of length h, and each side span is divided into 

m n equal panels of length - aha The nodes are numbered consecutively starting 
n 

with zero at the left abutment and terminating with (2n+m) at the right 

abutmente The panel between nodes r and r=l is designated as the rth panelo 

As before, the mass is considered to be concentrated at the node points. 

602 Vehicle" The vehicle is idealized by any one of the systems 

shoiqu in Figa 30 The following additional aSSUlllptions are made~ both the 

suspension springs and the tire springs are linearly elastic, '\. . } the ma.X1l1111m 

frictional force which can be mobilized in the suspension system of an axle 

is constant} and (c) the speed of the vehicle is constant 0 

Available test data on trucks (28) J (29) show that the sti:ffness of 

the suspension springs is fairly constant but that the stiffness of the t:tres 

is dependent on the intensity of the applied loado These tests sho,'l further 

that the maximum frictional force which can be mobilized in the suspension of 

an axle is in general a complicated function of the load transmitted through 
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the axle and depends on such factors as the condition and the age of the 

springs v However, when the variation in the magnitude of the interacting 

force is small, the assumption of linear elasticity for both springs and the 

assumption of constant maximum frictional forces are quite reasonablec These 

assun~tions appear to be acceptable even for large variations of the inter-

acting force. In selecting the stiffness of the suspension spring and of the 

tires of an axle, one should use the values corresponding to a load equal to 

the static reaction on that axle 0 Similarly, the value of the limiting fric

* tional force for an axle should be determined for a mean load equal to the 

static load on that axleo 

The relationship between the interacting force, P, and the shortening, 

u, of the combined suspension-tire system is shown in Figq 6~ Included in this 

figure, is also a diagram showing the relationship between u and the frictional 

force, Fa As an example, assume that a single=axle load unit is displaced 

from its position of equilibrium (ioeo when P = Pst)' and that ti1e initial 

value of the frictional force is equal to 2tero" As the displacement is in-

creased, the frictional force first incTeases at the same rate as the inter-

acting force" Accordingly, the initial paths of the P=u and F""u diagrams are 

parallel 0 The suspension spring remains inactive and the stiffness of the 

system, represented by the slope of line oay is equal to the stiffness of the 

tires;; kt" As the displacement is increased further, the frictional. force 

will eventually attain its limiting value FUo From that point on the fric= 

tional force will remain constant and the suspension spring will come into 

play~ AccordinglYJ the slope of the P-u curve becomes equal to the stiffness, 

ktsJ of the suspension and tire springs acting in serieso If at some instant, 

say the instant represented by point b on the diagrams, the displacement is 

* On a load=displacement diagram) the mean load is represented by a curve 
midway between the loading and unloading curvesa 
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decreased, the tire spring will rebound and the suspension spring will remain 

idle 0 The frictional force will then decrease at the same rate as the inter= 

acting force, and the unloading paths on the P=u and F=u diagrams will be 

parallel to the initial pathso If the displacement is decreased further J at 

an instant represented by points c on the diagrams the frictional force will 

become equal to -FQ o Then both springs will act in seriesa A possible path 

beyond this instant is represented by the lines cd-de~ef-fgo 

It is clear that the values of P and F depend not only on the value 

of u, but also on the past history of lio To determine whether the effective 

stiffness of the suspension-tire system is equal to kts or ktJ it is only 

necessary to know whether the locus of F-u follows a horizontal or an inclined 

line. 

70 Characteristic Coefficients of Bridge Model 

The reaction-deflection coefficients p R~ in Eqo 1 are constants for 

a given bridge modelo These coefficients may be evaluated in a number of 

different wayso The method used in this study is based on the modified moment 

distribution procedure introduced by To Yo Lin(30 ). 

The essential feature of Linus procedure is that an unbalanced 

moment at a joint is balanced and carried over to the other joints just once 

to obt.ain the final momentso The procedure makes use of the concept of the 

effective stiffness and effecti-ve carry=over factors which are defined as 

follows~ Consider a 'bar ab resting on non=deflecting supports and elastically 

restrained against rotation at end £. by a coil spring having a s·tiffness Ro 

The moment at end ~ necessary to produce a unit rotation at that end is de= 

fined as the effective stiffness of that end of the baro Denoted by K~J this 

stiffness is given by the equation} 
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where Ka and Kb are the Hardy Cross stiffnesses of the bar for the ends a 

and b respectively 0 Similarly ka.
9 
b and ~<9 a are the Hardy Cross carry-over 

fac·tors from ends ~ to :£ and from E. to ~ respectively" The ratio of the 

moment produced at end b to the applied moment at ~ is defined as the effective 

carry=>over factor., k II b J and is given by the equations 
a j 

::::: (8) 

For a prismatic bar) Ka ::::: 1\1, ;:::: 

equations become 

::::: ~Ja ::::: - 1/2, and the above 

and 

R (10) 

For a continuous beam the coil spring symbolizes the continuity of a particular 

span with the adjacent spans& 

In the course of calculating the coefficients Rj 
by this procedure j r 

one calculates also the moments at the nodes due to a unit displacement at the 

.th d J nQ,e .. These moments are termed as moment=deflection coefficients and are 

designated by ~ " 
r 

quantities are usedo 

In evaluating the coefficients R
j 

and ~J the following 
r r 

In all cases, it is assumed that the bridge model is 

supported against deflection at the node pointso 

(a) Effective Stiffness Coefficientsa Consider the portion of the 

th bridge model between the left hand abutment ~Dd the r node as a beam continuous 

over non-deflective supports at the nodeso Then the effective stiffness of the 



beam at end r may be stated as the product of' a dimensionless stiffness 

coefficient C and the quantity 4EI/h, where h refers to the length of a r 

panel in the center span of the bridge modelo By application of Eqo 9 it 

can be shown that the coefficient C is given by the following recurrence 
r 

formula~ 

th where h is the length of the r panel 0 For a panel on the center span, 
r 

hr ;:: h; and for a panel on a side span, hr ::: ~ ah .. 

It should be noted that, because of symmetry, the dimensionless 

(11) 

coefficient for the stiffness at node r for the portion of the beam between 

the rth node and the right hand support is equal to C
2 

Q 

n+m-r 

(b) Effective Distribution Factors" The effective distribution 

factor for the right hand side of the rth node, designated as dr' is given by 

the expression, 

C2n+m=r 
d ;:: ------------

r Cr + C2n+m-r 

The distribution factor for the left hand side of the rth node is 1 = d " 
r 

(c) Effective Carry=Over Factors" The effective carry-over factor 

from node r to node r~l is designated as k n By application of Eqo 10, r,r-l° 

one finds that 

:: 

L~ + 2C 
2 h reol 

r 

Since the beam is symmetrical about the center line, it follows that 

(13b) 



For the sake of brevity, in the following discussion the quantity kg ~ is 
r,r-..L 

designated as kUo 
r 

To determine the moment~def1ection coefficients Jj and the reaction
r 

deflection coefficients Rj , the jth node of the model is first displaced by a 
r 

unit amount, and by keeping all nodes fixed against rotation the fixed=end 

moments produced at the nodes (j = 1), j and (j + 1) are evaluated 0 The 

resulting unbalanced moments (if h. = h. l' there is no unbalanced moment at 
J J+ 

the jth node) are then distributed and carried over by use of the quantities 

given in Eqs" 12 and 130 The final moments at the nodes yield the coefficients 

~o The reaction=deflection coefficients Rj are next evaluated from the 
r r 

equation 

~1 = ~ 
R

j r- r - h r 
(14) 

r 

The quantities C and d are used only to evaluate the coefficients 
r r 

R~ and ~, whereas the carry=Qver factors k U and the quantities R~ and J~ are 

used repeatedly in later stages of the solution 0 

Another quantity needed in subsequent computation is the total angle 

change produced at the rth node when the beam is cut at the rth node and a unit 

bending moment is applied on the two sides of that nodeo As before, all nodes 

are assumed to be held against def1ectiono 

and is given by the expressionJ 

This angle change is denoted by e 
r 

[
1 1 J h er = ·c + C 4EI 

r 2n+m=r 

Elf use of Eqo 13 J the above expression may be written as 

[
h h J h r 2 1 a r-l 2 1 e == - - (~ + - k ) + -~ (~ + ~ k 11 ) 

r EI h ' 3 3 r h 3 3 2n+m..;.r 

It should be emphasized that the quantities defined in this article 

depend only on the characteristics of the bridge modelo 
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80 Basic Operations 

Certain operations are used repeatedly. in the numerical solution of 

the equations of motion and in the computation of deflections, bending moments 

and reactionso A systematic treatment of these operations is desirableo The 

operations involved are as follows~ 

Opo l~ Evaluate the moment and deflection at any point of a simply 

supported beam due to moments applied at the ends of the beamo 

Op$ 2: Evaluate the moment and deflection produced at any point of 

a simply supported be:am due to a concentrated load on the beam. The governing 

expressions for Operations 1 and 2 are quite smple., 

Opo 3~ Evaluate the moment at the rth node produced by the ith axle 

load P., when all nodes are held against deflection~ This moment is equal to 
~ 

the product of P. and the moment-load coefficient ~o B.y Maxwellfis law of 
~ r 

reciprocity, the latter quantity is numerically equal to the deflection at the 

ith axle produced by a unit moment applied at the rth node (with the continuity 

there cut) divided by the coefficient e 0 The latter coefficient is given by 
r 

Ego 150 To evaluate this deflection at t~e ith axle, the moments at the ends 

f th 1 t · tb .th 1 f' ~ 1.1 t d Th d t . d o . e pane suppor lng .e ~ ax e are ~rsv ca cu~a e a ese are e erIDlne 

by multiplying successively the effective carry-over factors for 'the panels 

between the rth node and the nodes where the moments are computed 0 The deflec

tion at 'the ith axle is then computed by application of Opo 10 

Opo 4~ Calculate the reaction at the rth node produced by the ith 

axle load Po y when all nodes are held against deflectiono This reaction is 
l 

equal to the product of Pi and the reaction-load coefficient ~a The latter 

coefficient is also equal to the deflection at the point of application of p~ 
..L 

due to a unit displacement at the rth nodeo To evaluate this deflection, first 

the moment-deflection coefficients, J, for the nodes on either side of the 

panel supporting the ith axle are selected, and then the deflection produced 



by these moments are determined by application of Opo 10 If the axle is on 

th a panel connected to the r node, this deflection represents only one component 

of the desired deflection. The additional component is obtained by considering 

the deflection corresponding to a rigid body rotation for that panel. 

Opo 5: th Evaluate the moment at the r· node due to kno"wn deflections 

of all node points& This moment is equal to E y. ~o 
j J r 

Opo 6~ Compute the reaction at the rth node due to known deflections 

of all node points. This is equal to E y.Rj~ 
j J r 

The last two operations may involve small differences of large 

numbers; therefore, the individual products must be evaluated to a large number 

of significant figureso 

9" Numerical Integration Procedure 

9cl General.. The equations of motion of the system have been 

solved numerically by means of a step-by~step method of integration. The time 

required for the vehicle to cross the bridge has been divided into a number of 

short intervals and the equations of motion have been Hsatisfied llw only at these 

discrete instants. Let it be assumed that the values of the acceleration, 

velocity and displacement of each coordinate of the system are kn01tn at a time 

ta J and that it is desired to find the corresponding ·v"alues at time ts+l' which 

differs from t by a short interval ~to The method used to accomplish this 
s 

consists of the following basic stepso First, an assumption is made regarding 

the manner in which the acceleration of each coordinate varies within the time 

interval., Second.)l the velocity and displacement for each coordinate are de~ 

termined in terms of known accelerations, velocities and displacements for 

the beginning of the interval and in terms of unknown accelerations for the 

end of the interval 0 Next, these UD~nown accelerations are evaluated by 

~VsatisfyingV'v the equation of motion at the end of the time interval<> The 
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velocities and displacements for this time are finally determined from the 

expressions established in the second stepo 

In the present study, the following generalized equations due to 

(31 \ 
No Mo Ne,v.mark J have been usedo 

Where ~ is a dimensionless parameter specifying the variation of the accelera-

tion within the time interval, the quantity ~ represents the displacement of 

a coordinate (either Yr or zi); and *k and Xk represent, respectively, the 

corresponding velocity and acceleration 0 The subscripts s and s+l following 

a comma identify quantit,ies corresponding to t and t l' respectively" For s s+ 

the numerical results presented in this report ~ was taken equal to 1/6; this 

value corresponds to a linear vari.ation of acce1erationo 

The following iterative procedure was used to evaluate the accelera~ 

tions, velocities and displacements of the coord5.nates at the end of a time 

interval" 

Define the position of each axle on the bridge for time tS+l" 

Assume that the accelerations Y l' and Za 1 for the end of r, s+ 1, s+ 

the time interval are the same as those at the beginning o.f, the LYlt,erval y 

and from Eqs" 16 and 17 evaluate the velociti.es y 1 and zo 1 and the r, s+, ~J s+ 

displacements y 1 and z" 1 0 

r J S+_ ::L,? S+OJ.. 

Evaluate improyed accelerations for the y coordinates pro~ 
r 

ceeding as follows~ 

By application of Eqo 1 to the first node (r=l}J obtain an 

improved value for Y1 .. -,0 The major operation in this step concerns the 
,8+-

computation of the quantities .E R
j 

Y and L: Q~ p" I" The fOTlJ1er quanti.ty 
j l j,s+l i ~ ~,s+ 



is obtained by Opo 6 and the latter by repeating Opo 4 as many times as 

there are axles 0 The values of P. used in this computation are those applic= 
l 

able to the beginning of the time interval (ioeo Pi,S)' and the values of 

Yj,s+l are those evaluated in step 20 

(b) B,y application of Eqso 16 and 17 calculate the values of 

if and Yl 1 corresponding to the accelerations determined in step 3(a)0 l,s+l ,s+ 

(c) Repeat steps 3(a) and 3{b) for the remaining y coordinates 
r 

(r = 2, 3, 00$ ), considering one coordinate at a timeo For each computation, 

use the latest available values of y . 1 and if· 10 
J,s+ J,s+ 

4 .. 

(a) 

Evaluate improved accelerations for the Zo coordinates as follows~ 
1. 

compute the interacting force Pl 1 at the end of the time 
J S + 

interval 0 The various steps involved in this computation are described in 

detail in the following subarticle~ 

From Eqo 4 evaluate zl l' using the latest available value of ,s+ 

Pi -1° For the first axle, the value of Pl 1 used is that evaluated in ,s+ ,s+ 

step 4(a), and the values of P2 1 and P3 ~ are those obtained from the 
J s+ ) S+J.. 

preceding cycle" 

(c) From the accelerati,on obtained in step 4(b), determined improved 

values of 2;l,S+l and zl,s+l by use of Eqs" 16 and 170 

(d) Repeat steps 4(a)) 4(b) and 4(c) for the remaining axles (if any)} 

considering one axle at a time, always using the latest available values of 

50 For each coordinate, compare the newly derived value of accelera= 

tion with the previously available valueo If the difference between the two 

values for any coordinate exceeds a prescribed tolerance, repeat steps 3 through 

5J always using the latest available values of P. 1 and y. 10 When all 
~Js+- J;s+ 

differences are less than the prescribed tolerance, the integration for this 
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t,ime LYlterval is considered to be completed., One then proceeds to the next 

interval 0 If desired, the values of reactions, bending moment and deflection 

at any selected point may be evaluated before proceeding to the next interval 0 

steps 3 and 4 constitute one cycle of iteration. To illustrate the details 

of the procedure, a numerical example is presented in Appendix B for one step 

of integration" 

Evaluation of Poo 
~ 

In the computation of Pi it is assumed that 

the effective stiffness of the suspension-tire system remains constant witb.in 

a ti~me interval of integration 0 In other words, the suspension spring is 

assumed to engage or disengage at the end of a time interval 0 Under this 

assumption, Eqo 5 may be written in the forrn~ 

or (18) 

where the subscripts s and s+l denote, as before, quantities corresponding to 

time t and t l' respectively 0 The quantities u. I and k{ are determined s s+ .1., s+ ..... 

as follows~ 

(a) Computation of u~ 1" 
1.1 S+ 

The value of u. 1 is determined by 1.,s+ 

application of Eqo 60 The value of ~i in this equation is specified.? and the 

value of the deflection z. is furnished by step 2 or 4(c) of the iterative pro-
1. 

cedure described in Arto 9010 The deflection under the load, YpiJ is evaluated 

by superimposing the following three components~ (i) deflection due to the 

moments acting at the two ends of the panel; (ii) deflection due to the force 

or forces P. acting on the panel; and (iii) deflection due to a rigid body 
1. 

displacement of the panelo 

The moments at the ends of the panel are obtained with the aids of 

Opsc 5 and 30 Then component (i) of the deflection is obtained by Opo 10 



The component (ii) is obtained by application of Opo 2 for each axle on the 

panel.. The rigid body displacement is determined from the known deflections 

of the end points of the panel) and the component (iii) is evaluated by slinple 

proportionc 

strictly speaking the deflection yp~ must be evaluated for each 
.~ 

cycle of iteration i.n the integration process, since the values of y and P 

involved in the computation vary from one cycle to the nexto D1asmuch as this 

computation is rather time consuming, an approximation was usedo fuis consists 

in evaluating the first two components of yp. only for the first iterative 
l 

cycle of an integration stepo The third component was evaluated for each 

cycle of iteration.. The results obtained by this approximation were found to 

be in good agreement with the lfiexactH values" A compaJ. ... ison is provided in 

Table 1 for a case for which the difference between the two sets of solutions 

is like~ to be large~ The response of the system at a few selected sections 

1\TaS compared for a few selected instantso 

(b) Determination of kio The effective stiffness of 'the suspension

tire system for an a,x:le is determined by making use of the F-u diagrar.Q for that 

axle~ as sho1in in Figo 6. Let the frictional force corresponding to be 

denot,ed by F 0 0 

ljS 
In the F=u diagram}l lll1agine a straight line "Vlhich paSSE::B 

through the point (uo J F<2 ) and is parallel to the initial line J.£t 
~>,s '!"Js 

u 
Uo be the abscissa of the point of intersection of this inclined. line and a 

l,Js 

horizon-tal line corresponding to the positive value of F U
" Similarl:fJ let 

i1 u: represent the point of intersection of this inclined. line with 
lJS -

tal line corresponding to the negative value of Fqo Then the value of ko to 
1, 

be used in Eq" 18 is determined from the follo'wing criteria ~ 
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Case Condition Consequence 

1 + llUo u 
ko kt . u < u. i,s "1 - l,S 1. ,l ~ 

llu. >0 
2 

J. 
+ lluo u 

k. k Uo > u~ = J.,s l l,S J. t8,9i 

3 + llu o 
1 k. k

t 
0 Uo > u i 

:= 
lJS l JS l "J l 

llu. <0 
i, 4 J. 

+ llu. k. k t . uo < Uo = 1,S 1 ~ l.,S 1.. ",8,:1. 

u i. It follows that the selection of k 0 depends only on the value of llU,~ u and U 0 

1 

The value of F need not be computed 0 

u i For cases 1 and 3 the values of u a.l1d u 

at time t 1 are the same as those at time t 9 whereas for cases 2 and 4 they 
s+ s· 

differ by the amount llu" 

9,,3 Initial Conditions" LYJ. ord.er to start the integration procedure, 

it is necessary to specify the initial values of the deflection and velocity of 

each node pOint,9 the velocity of each z=coordinate J the interacting force .for 

each axle, and the frictional force for the suspension system of each axle" 

Irhese values refer to the time the front axle enters the bridgeo 

904 Choice of Time Interval 0 In the application of the numerical 

procedure described in .Art" 901, the tim.e interval used should be small enough 

so that successive cycles of iteration converge and the solution is stable 0 

The criteria for convergence and stability of this procedure have been estab= 

M N k (3,l) lished by No oe"WIllar 0 For f3 = 1/6,9 convergence and stability are 

insured if 

where T is the shortest natural period of vibration of the system; in this 

case, the system is the beam='Vehicle combination" Strictly speak,ing.9 this 

period depends both on the position of the vehicle on the span and also on 



-32= 

whether the limiting frictional force of the suspension system of the vehicle 

has been overcome or noto 

The total time between the instant the front axle enters the bridge 

and the instant the last axle leaves the bridge is ( 1 + 2a + sl + s2) L/Vo 

Let N be the number of steps used for a complete solution} then 

The right side of this inequality represents the minim~un number of steps re~ 

guired for a complete solution.1I on the assumption that 6t is constant and that 

the criteria for convergence and stability are ll1dependent of the position of 

the vehicle on the bridge and the condi.tion of the vehicle" For the bridge 

model considered with a=Oo8, n=3 and m=4.1 the short,est natural period 

T :::: Oo208Tb , where Tb is the fundamental period of vibration of the bridge 

model 0 In this case, Ego 19 reduces to 

(20) 

0: = (21) 

For a single=axle loading" the minimum value of N given by Ego 20 

is 21.5 'tArhen a :::: Oo075J a.nd 135 when a :; 00120 For a multiple axle vehicle, 

the corresponding minil1TClID. values of N are of course larger 0 

In Table 2 solutions are presented for the maximum dynarftic effects 

in a three=span conti..."1UOUS bridge model considering different. values of No 

The characteristics of the system are defined in the table headinge Solutions 

are given for a value of a := Oo075J with three different values of NJ and for 

a value of a := 0,,15 with two values of No It can be seen that differences 

between corresponding solutions are generally small a For the numerical results 
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presented in the remaining part of this report the value of a ranges between . 

0~12 and 00180 For these solutions a constant value N = 600 was usedo 

100 Computation of Deflections? Moments and Reactions 

10 0 1 Static Effectso The static effects are determined by applica= 

tion of the basic operations described in Arto 8~ It is only necessary to 

consider n = m = 1 and P = Pst 0 In particular:} the deflection and moment at 

a prescribed point of a span are determined in two steps 0 First, by considering 

the span to be simply supported the effects of the force or forces Pst acting 

on that span are determined 0 To these effects are added the effects produced 

by the moments at the ends of the span cons idered 0 The reaction at a support 

is obtained by application of Opo 4 for each axle on the bridge~ 

1002 Pwnamic Effects. At the end of an integration step, the 

deflections of the node poi..nts and the interacting forces are knoWIlo From this 

information the deflections of other points and the magnitude of moments and 

reactions can be evaluated as follows~ The deflection of a point within a 

panel is determined by the addition of three deflection components in a manner 

similar to that described in Arto 902 III connection with the computation of Ypio 

Moments are evaluated in a similar way» with the exception that only the effects 

of the end moments and of the interacting forces need be considered 0 The 

reaction at a support i.s determined in two steps 0 First J the effect of the 

interacting forces is calculated by considering the beam t,o be held against 

deflections at all node pointsa To this is added the effect of the known 

deflections of the nodeso The first component is deter.mLned by Opo 4~ and 

the second component by Opo 6& 



110 Summary of Parameters 

The parameters of the problem are expressed in dimensionless form 

and include the following~ 

Bridge Parameters 

(1) The span ratio? ao This is the ratio of the side span to the 

center span. 

The damping factor, c/ C J where c is the damping force per cr 

unit mass per unit velocity, and c is the critical damping coefficient cr 

corresponding to the fundamental mode of vibration of the bridgeo 

Vehicle Parameters 

(3) The distance parameters, aI' a3 and a50 As shown in Fig. 3a, 

these parameters define the locations of the centers of gravity of the tractor 

and trailer and the location of the tffifth wheel pivot ~f 0 

(4) The weight distribution parameters, WI/W, w2/W, WI/IiI} W2/W 

a~d w3/Wo (See Fig. 3a)0 

(5) The dynamic indices i1 and i2 for the tractor and trailer, as 

deflned in Art" 4<>20 

(6) The coeffi.c ient of friction, fl J for the suspension system of 

each acxleo For the ith axle, fl. = F~/P t .0 

~ ~ s)~ 

Bridge=Vehicle Parameters 

The speed parameter a, defined by Eqo 210 

The weight ratio W/Wb J where W is the total weight of the vehicle 

and W is the weight of the center span of the bridgeo 
b 

(8) 

quantity Ib is the fundamental natural frequency of the bridge, and T. and 
t 

fts are pseudo=frequencies which are measures of the stiffnesses of the tire 

and of the suspension springs for an axle. The quanti~ f t represents the 
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frequency of a mass with a weight Pst vibrating on the tire spring, ·whereas fts 

represents the corresponding frequency of the same mass vibrating on the tire 

and suspension springs acting in serieso For the ith axle, 

it . 
1 ~ :: 

P t o/kt . }l 2lt 
S '} 1. , 1 

(22a) 

and 

f
t 

. 
1 P t .7kt . = 

S,l. 21t 
S,1. Sll 

(22b) 

When the limiting frictional force F~ is so large that the effective stiffness 
1 

of the suspension-tire system for the ith axle is always equal to kt o} or 
}l 

when Fi is so small that the effective stiffness may be considered to be always 

equal to kt 0' then it is necessary to specify a single frequency 0 This 
S,l 

frequency is denoted by f .0 

V1. 

(10) The profile variation parameter, ~ikt,i/PstJio The numerator 

of this expression represents the change in the interacting force for the ith 

axle when the tire spring is shortened by an amount equal to ~it) 

(11) The axle spacing parameters, sl and s2' defined by the equations 

in which II and 12 are the axle BpacL~gs, as ShOWll in Figo 3ao 



IV 0 COfJiPUTER PROGRAMS 

120 General 

The method described in the preceding chapter has been programmed 

for the ~IAC.9 the digital computer of the University of Illinois 0 The 

programs that have been developed can be used to compute the dynamic response 

of lmiform three=span continuous bridges with equal side spans when traversed 

by a single vehicle load having either one J two or three axlese It is also 

possible to consider three single=axle loads, or a two-axle load followed or 

preceded by a single=axle loado Two different programs have been preparedo 

The first provides results for the complete history of the response of the 

system3 while the other can be used to determine only the amplification factors 

for def,lections J moments and reactions" The term ~iamplification factorl!~ defines 

the ratio of a maximum dynamic effect to the corresponding maximum static 

effect and is abbreviated as auAoFo liB 0 

'!he parameters which must be specified in using the programs include 

1.;11e dimensionless parameters summarized in Art 0 11, the parameters n, ill and 

N v~1ich define th~ number of panels in the bridge model, and the number of the 

t:im.e in't,ervals of integration(> In addition, for the ggdynamic history program9g 

c(~rtain paramet,ers must be input to speci£':v the end of' the computation and 

the interval between print-outs~ 

If the maximum static effects are not available J they are computed 

l~thin the machineo However, if they are kno1VTI, they may be input at the 

beginning of the computation 0 At the start of the dynamic computation; that 

is) when the front axle of the vehicle enters the bridge» the progr&fi considers 

the system to be in the so=called qj)neutral condition frV 
0 For this condition, 

the bridge is at rest (y ~ Yr = 0)>> the vehicle has no vertical motion 
r 
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(z. = oJ P = P t)' and the frictional force in the suspension system of the 
1. s" 

vehicle is equal to zero (Fi = OJ~ If the initial conditions are different, 

only those conditions which are different from the Yineutral condition~g must 

be specified 0 

For each program, the information output includes the reactions at 

the four supports, the moments over the interior piers, the moment and deflec= 

tion at the center of the center span, and the moment at a selected point in 

each side spane The program for the history of the response yields, in 

addition, the interacting forces between the axles of the vehicle and the 

bridge, and the deflection at the points of the side spans where the moments 

are evaluated 0 With one exception, the magnitude of the dynamic deflection, 

moment, or reaction at a point is expressed in terms of the corresponding 

maximum static valueo The exception concerns the deflection at the side span 

which is expressed in terms of the maximum static deflection at the center of 

the center spano The interacting force for an axle is expressed in terms of 

the static reaction for that axlea 

In their present form, the programs utilize the entire Williams 

(fast) memory of the ILLIACJ which has a capacity of 1024 locations, and 

approx:im.ately 1200 locations of the magnetic drum (slow) memory" With certai,n 

modifications J the progr&ns can be specialized to the case of simple span 

bridges, two=span continuous bridges or cantilever bridgeso 

13e Description of Programs 

The computer progTam for the computation of either the complete 

his·tory of the response or t.he maxinn.:un values of the response consists of' 

three major partsv Each part consists of a block of instructions which are 

stored (recorded) on the magnetic drum memory of the computer 0 Because of 



t~he limited capacit,y of the Williams memory J at each stage of the computat.ion 

only the ggfl.mct,ioning~~ part of the program is retained in the fast memory <> 

FtLrthermore J the program is axranged so that once the integration process is 

stal'"ted n!) further reference is made to information retained in the magnetic 

drUID memory.; 

A general flow diagram for the complete program is sho1~ ll1 Figo 80 

The functdon of each part and the sequence of operations involved are described 

in the follo'wingo The 1flrit,e=up of the complete program will be plaeed in the 

ILLJ.AC Library of the Department of Civil Engiueer:ingo 

Part Io :me program starts '~d,th the reading in of the data 

(parameters) specifying the characteristics of the vehicle and bridgeJ exclud-

iD.g those parameters which specify the initial conditions Q,f the systemo Next 

the su1Jroutine labeled (GI) is entered, and the t:Lme-independent characteristic 

coe:ff'i,cie:nts for 'the bridge model are computed and stored in the Williams 

memcn:v o These coefficients include the ef'f'ective carry=over factors J k D
, the 

r 
i j 

moment=d,eflect~ion coefficients,y <1.".r' ~ the reaction=deflection coefficientsQ R " r' J r~ 

and t;he a.ngle coeffiCient,s", era The coefficients required for the static 

are determined by taking n =:: ill = 10 Follcrt{ing this ,9 subroutine 

:is entered. "to compute the values of P at and the elements of the matrix B 

'Ele va:lues of P t are determined. ::Ln terms of the parameters speci= s : 

fyi.ng i~he geomet,ry and 'weight distribution of the yehJocle 0 Tb.e mat,rix B is 

det,e::rm:ined by first forming matJrix A in Eq 0 2 and t,hen inverting ::It; 0 The 

inversion of ma.trix A is performed with the aid of subroutine (3SEB1) 0 The 

last operai,:;.ion of this part of the program is to play back (transfer) the 

second part of the program from the d..r1Jm memory to the Williams memory and 

then t,ransfer control to the second part, of the program 0 
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Up to this point, the machine operation for both the R~dynamic 

history program tt and the ij9ampl i fication factorprogram ti are identical" How = 

ever, in the latter program, there is an additional subroutine (OTJTPT) for 

punching out the values of the amplification factors at the completion of the 

computationo A more detailed description of the function of 'this subroutine 

is given after the presentation of the third part of the programo 

(b) Part IIo This part is the same fQr both the Hdynamic history 

program" and the ilA .. Fo program?9, and performs four major t~skso The first is 

to determine the maximum static effects~ This is carried out by routine (SS) 

and the results are punched out by use of subroutine (SMAX) " Routine (SS) 

mru(es use of a number of subroutines.~ of which the most important are ~ (a) 

subroutine (STP)J which defines the position of the axles on the bridge, 

(b) subroutines (SDC-M)J (SDC-P)) (SMCP) and (SQ) which perform, respectively, 

the basic operations 1, 2J 3 and 4 described in Art" 8, and (c) subroutines 

(SMC), (SMD) and (SRC) which compute, respectively, the moment over the interior 

supports, the moment and deflection at any selected pOint of the bridge) and 

the reaction at any support.. The last three subroutines make use of the 

basic operation subroutines (SDC-MY, (SDC-P)g (SMCP) and (SQ)" 

In this part of the computation the characteristic coefficients 

corresponding to n = m = 1 are useda Effects are evaluated only for the 

positions of the vehicle considered in the integration of the equations of 

motiono The maximum static effects are considered to be the maxima of the 

computed effects" These may be slightly smaller than the actual maxima which 

may occur bet1ieen two suc~essive positions conside;redo If the maximum static 

effects are known, they m~ be fed into the machine at the beginning of the 

problema Also) if these effects are already in the machine from a previous 



computation, the calculation of the maximum static effects may be bypassed 

by transferring control directly to the next operationo 

The second function of t~is part of the program is to set the 

ini t,ial conditions of t.he problem at the so ~called ~flneutral condition a~ <> This 

is done by subroutine (NIC)o If the initial conditions are different from 

these, the appropriate parameters are read in at this stage 0 

The third function is to establish for each axle the values of U
U 

and u l which are consistent with the initial values of Fao These values axe 
~ 

required to determine the value of the effective stiffness of the suspension= 

tire system as discussed in Arto 9020 

The final operation of this part of the program is to set the time 

counter <that records the value of (s + 1] equal to zero and to play back the 

third part of the program from the drum memoryo The setting of (s + 1) ;;::: 0 

~nplies that the front axle of the vehicle is at the entrance of the bridgeo 

Finally.? control is transferred to the third part of the program 0 

) Third Parto The principal func·tions of the third part are to 

integrate Eqso 1 and 4 numerically and to compute dynamic deflections, moments 

and reactionso The major operations involved are~ 

{' -i , ~, .... (! To determine the position of the -vehicle at the end of each 

time interval by use of subroutine (DTP)a 

(ii) To integrate the equations of motion for this time ll1ter7aly 

u and to store the values of P J u J u and 
lIP 

at the end of this time inte~Jalo 

T.ais operation is carried out by subroutine (DINTE) togethe1"' with an auxiliary 

subroutine (DAUX) 0 

To evaluate dynamic deflections, moments and reactionso In 

the frVdynamic history program qy J a check is made to determine whether these 

quantities are desired at the end of the time interval cons idered 0 If t...'hese 



quantities are neededJ they are computed and punched out" In the 99AoF" 

program1fB
,9 these quantities aTe computed at the end of each time interval, 

they are compared with the maxL~um values of the corresponding quantities 

computed previously, and the new maxima are retainedo 

~1e foregoing steps are repeated until the last interval is reached 0 

At tJle end of this interval, the first part of the program is played back to 

the Williams memory" In the "Ao F (> program if the amplification factors are 

then punched out with the aid of subroutine (OUTPT) 0 This constitutes the 

last step in the solution of a problema 

In Figo 9 is shown a general flow diagrrun of the integration routinee 

This is a modified version of routine SRLC 21 of the ILLIAC Library of the 

structural Research group" It is llsed to evaluate the veloei ty and displaee-

ment for each coordinate in accordance with Eqso 16 and 170 The accelerations 

y ~ and zi 1 needed in the application of these equations are computed 
rJs+..L )s+ 

by the auxiliary subroutine (DAUX) J the flow diagram of which is given in 

Fig" 10.. This auxiliary subroutine} in turn j makes use of subroutines (DDRET) 

and (DMDIN) " Flow diagrams for these subroutines are given in F.fgs, " 11 and 12" 

Subroutine (DDBET) is used to compute the quantity 

I + 

j 

for a specified node pointo For this computation this subroutine performs 

Opo 6 and enters subroutine (DQ) to perform Cpo 40 The latter subroutine is 

entered as many times as the nl~ber of axles considered~ 

Subroutine (DMDIN) is used to compute the approximate value of Ypi 

as discussed in Art" 9,,2<> As previously noted, this deflection is evaluated 

as the sum· of three componentso The first component is determined with the 

aid of subroutines (DMC) and (DDC-M)0 Subroutine (DMC) (refer to Figo 13) is 

used to perform Opso 3 and 5 and to compute the total moment at a specified 



node pointo This subroutine is entered twice to compute the moments at the 

ends of the panel under cons ideration 0 Subroutine (DDC=M) is used to perform 

Opo 10 It is entered anceo :I:'he second component of deflection is computed 

by subroutine (DDC~P) which perfol~s Opo 20 Since the last two subroutines 

are straightforward) their flow diagrams are not included 0 The third component 

of deflection is evaluated by simple proportiono 

Figure 14 shows a general flow diagram for the part of' the program 

used to calculate deflections, moments and reactions at specified. sections" 

In addition to subroutine (DDBET) which is used to obtain the reactions J this 

part of the program makes use of subroutine (D1JID) which yields the deflection 

and moment at any specified pointe This subroutine is similar to (DMDIN) and 

its flow diagram is also presented in Figo 120 

140 Time Required for Solution of a Problem 

The machine time required to obtain a solution depends on the par= 

ticular problem consideredo ~le following is an estimate of the time required 

for the solution of a problem by use of the ~gAoFo Prograrn~fi or the Hdynam.ic 

1}i history program 0 

(a) Read in time for complete program~ 3 minutes and 40 seconds" 

(b) Time required for the first part of the program~ 45 seconds 0 

(Cl 
\ " Time required for the second. part of the programg It depends 

on whe·ther the maximum static effects are to be computed or noto If the 

maximum static effects are not computed, the time required is approximately 

20 seconds" :f.b.e computation of the static effects for each position of the 

load requires 0018 sec~ for a single-axle loading, 0025 seco far a two-axle 

loading, a~d 0033 seeo for a three=axle loading 0 

Time required for the third part of the program~ This time is 

the sum of the follo~nng: (i) time required for integration, (ii) time required 



to calculate dynamic effects,i' and (iii) time required to punch the desired 

information" 

The time required for one step of integration depends on the number 

of concentrated masses considered in the beam model, the number of axles con-

sidered j and the number of axles actually present on the bridgeo The same 

factors govern the time required for the computation of dynamic effects" This 

time may be estimated from the following relationso 

Condition Estimate of Time Required, 
in Seconds 

Number Num.ber For One Step of For Computation 
n m of Axles of Axles of One Set of 

Considered on Bridge Integration Dynamic Effects 

1 1 0,,11 + 0,,19 I 0055 

2 1 0,,11 + 0,,22 I 0058 
2 0,,29 + 0,,27 I 0079 

2 3 
1 0012 + 0,,24 I 0060 

3 2 0.,30 + 0030 I 0081 
3 0,,54 + 0036 I 1002 

1 1 0014 + 0039 I 0070 

2 1 0014 + 0041 I 0,,72 
2 0036 + 0,,52 I 0 094 

3 4 
1 0,,15 + 0,,46 I 0074 

3 2 0037 + 0055 I 0 0 97 
3 0,,68 + 0063 I 1,,19 

In this table I denotes the number of cycles of iteration per step of integratione 

It should be noted that the value of I may be different for different steps of 

integration" From the results of a few numerical solutions., it has been foun.d 

that, in general, the quantity I increases with increasing number of degrees 

of freedom 0 It is approximately between 2 and 3 for a single-axle loading, 
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between 3 and 4 for a two=axle loading and 4 and 5 for a three~axle 

loading 0 

The time required for punching out one set of dynamic effects is 

approximately two seconds 0 



v 0 HESULTS OF INVESTIGATION 

150 General 

The numerical results presented herein are for continuous bridges 

with uniform cross section and equal side spanso The length of each side span 

is considered to be eight tenths of that of the center span, and the bridge 

surface is considered to be smooth and horizontalo The vehicle is represented 

by a load unit having e:i.ther one, t,i,iO, or three axles" Most of the solutions 

presented are for single=axle loading 0 Unless otheTIiise noted, it ShOlild be 

understood that a single=axle loading is cons idered 0 The major parameters in.= 

vestigated are the weight of the vehicle relative to the weight of the bridge, 

the relative frequencies of the two systems} and the speed of the vehic1eo 

Although the majority of the solutions are for smoothly moving vehicles, some 

resu~ts are included for initially oscillating vehic1eso Also included are 

solutions indicating the effect of the frictional force in the suspension 

system of the vehicle and the effects of damping in the bridge 0 

The range of parameters considered is such that the results are repre

sentative of the behavior of bridges of the SC-6-53 type as specified in the 

manual ~ ~VStandard Plans for Highway Bridge Superstructure U~., Bureau of Public 

Roads, Wash ingto nJl Do Co J 19570 These are three~'8pan continuous bridges <with 

steel girders and a concrete deck designed for H20-S16 loadingo The span 

lengths are in the ratios of 4~5~4o The weights of the center span and the 

fundamental natural frequencies of vibrat,ion of the bridges are sumrnarized in 

Table 30 These were determined as follows~ The total weight of a bridge was 

taken equal to the sum of the dead load reactions tabulated in the manual, and 

the weight of the center span was determined on the assumption that the t~tal 

weight is uniformly distributed along the bridgeo In the computation of the 
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natural frequencies j the mass per unit of length of the bridge and the cross 

s~ctional area were considered to be uniform" The flexural rigidity of the 

cross section was determined for full composite action between the beams and 

the slab, considering the entire width of the slab to be effective" 

The three-axle load unit considered in this study corresponds to an 

H20=S16 truck. loading and is referred to as a V~ty.pical~' three=axle vehicle. 

The chaxacteristics of this loading are sunmarized in the third column of 

Table 4" These are average characteristics and were obtained from information 

given in reference (28) and from manufacturers u data 0 Included in this table 

are the characteristics of a "typical i1 two ~a;xle trailer which corresponds to 

the trailer unit of the three-axle vehicle, and also a single=axle loadingc 

It should be noted that the weight of the latter loading is taken equal to the 

total weight of the two-axle 10 ading 0 Similarly, the frequency and frictional 

parameters are considered to be the same for the two systems 0 

'The quantities evaluated are summarized in Fig" 7" These include 

the deflections Dl and D4 at a distance 0042 aL from the end supports, the 

correspondj_ng bending moments, ~ and M4, the moments over the two interior 

supports, M2 and ~J the moment and deflection at the center of the center 
.-' 

spany and the four reactions) Rl , R2, R) and R40 In addition) the interacting 

forces between the vehicle axles and the bridge were evaluated and studiedo 

The sections of a distance Oo42aL from the end supports represent approxnnately 

the locations where the positive moment in the end spans is maximum" 

16u Representative HistorJ Curves 

The solution presented in this article is for a three-sp&~ UJ~damped 

bridge, traversed by a smoothly moving single-axle 10 ading 0 The spans are 

in the ratios of 4~5~4J the weight ratio W/Rb = 0,,175, and ~he speed parameter 



a = 0.,15<> The frictional force in the suspension system of the load is con

sidered to be so large that the suspension spring is not engaged and the load 

oscillates on the tire spring only: The frequency ratio is taken as f~fb = 10 

These parameters are representative of those for a three-span I-beam bridge 

with 64 9 -8o D -64.9 spans traversed by an H20-Sl6 truck loading moving at approxi

mately 60 mopoh. The solution was obtained by considering a total of seven 

mass concentrations for the beam model, as shown by the sketch in the upper 

part of Fige 150 Included in this figure are also the first four natural modes 

of vibration of the beam model~ 

The results of the solution are presented in Figso 16a through l6h 

in the form of history curves 0 A history cu-rye is a plot of the variation of 

some effect (such as deflection" moment or reaction) as a function of time, or 

'the position of the load on the bridgeo The curve in Fig. ·16a is for the 

interacting force and the curves in Figs., 16b th~ough l6h are for deflection, 

bending moments, and reactions at a few selected sections, and for the corre

sponding dynamic increments 0 Designated as DGIo J the dynamic increment for 

a particular effect is the difference between the dynamic value of' that effect 

and the corresponding static valueo 

The abscissa ~ in the history curves represents the distance between 

the first support R.~d the position of the load on the bridge in terms of the 

total length of the bridgeo Since this distance is proportional to the pro

duct o~ time and the speed of the vehicle, the coordinate ~ represents also 

the time the load has been on the bridge as a fraction of the total time re

quired for the load axle to cross the bridgeo The ordinates of the history 

curves are expressed in terms of the maximum static value of the particular 

effect considered~ The maximl1m static effects for this problem are given in 
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the third column of Table 5~ Included in this table are also the maximum 

static effects for the two-axle and three-axle loadings considered later 0 

In Figo 16a it should be noted that the maximum variation in the 

value of the interacting force is 703 percent of the static value, P to It s d 

follows then that this solution is also applicable to tllose cases for which 

the coefficient of friction for the suspension spring, ~, is larger than 000730 

Inasmuch as for ordinary vehicles the value of ~ is of the order of 0012 to 

0@28, the present solution is a realistic one, and it indicates that the suspen-

sion spring will not engageo 

Concerning the curves presented in Figso 16b through 16h, it is 

worth noting the following~ 

(1) Although the dynamic increment curves are not periodic, for 

each of ~lese curves one can identif,y waves with certain distinct periodso 

Ln general, the periods of these waves correspond to the lowest three natural 

periods of vibration of the beam, indicating that the major contribution to 

the dynamic response arises from the participati.on of the first three natural 

modes 0 

(2) There is a striking similarity between the dynamic increment 

curves for D and M presented in Figs 0 l6b and l6d. Also the dynamic in ~ 
c c 

crement c~!e for moment over an interior support appears to be similar to 

that for reaction at the same support 0 

(3) Although the dynamic increment curves for deflection and 

moment sho-wn in Figso 16b and 16d are for all practical purposes equal, the 

amplification factors for moment and deflection, and the load positions for 

which these effects are maximum are different in the two cases 0 The maximum 

dynamic deflection is 1002 percent larger than the maximurn static deflection 

and it occurs when 'the load is slightly away from midspan" The maxirm.1IIl 



dynamic moment is only 606 percent larger than the corresponding static moment 

and it occurs when the load is exactly at midspano These differences are due 

to the fact that the shape of the static curves are different in the two caseso 

170 Effect of Number of Mass Concentrations on Accuracy of Results 

In order to investigate the accuracy of the solution obtained with 

seven mass concentrations, the problem considered in Arto 16 was also solved 

by using four mass concentrations (n == 2, m == 3)0 Both solutions were obtained 

for a time interval of integration of T /600, where T is the time required o 0 

for the axle to cross the bridge) and results were evaluated and printed at 

intervals of T /100" 
o 

In Table 6 are listed the amplification factors for the two cases 

and the position of the axle producing the maximum effectse The tabulated 

values of the response are the largest among the printed valuese It can be 

seen from this table that there are differences both in the values of the 

maximum effects and in the positions of the axle for which the maximum values 

are attained" The difference between corresponding amplification factors 

ranges from zero for Dl , to a maximum of 00104 for M40 It can be seen 

further that the magnitude of this difference increases as the value of ~ 

corresponding to the maximum effect increases 0 

The cause of this difference can be seen from Figc 17 in. which are 

plotted. the history curIes for M4 for the two solutions and the correspond

ing dynamic increment cu.rveso It can be seen that the dynamic increment curves 

are very similar, except for a phase shift which becomes progressively more 

pronounced as ~ increases 0 This phase shift is attributed to the fact that 

the natural periods of the two models are not the same 0 The lowest four 

natural periods are given in Table 70 Included in this table are also the 

corresponding periods for a beam with distributed masSe The latter values 



were computed by the method described in Refe 320 It can be seen that whereas 

the fundamental periods for the two models are th~ same, the other periods 

differ slightlya If it is ass~waed that the period of the predominant waves 

in the dynamic increment curves in Figo 17 is equal to the t.1J.ird natu:r"al 

period of the bridge, T3, one finds that the phase difference between ·the two 

curves J .6.~., is given by the expression 

5. 
= T ~ 

3 

w.here .6.T3 is the difference in the values of the third natural period for the 

two modelso For the case considered and ~ = 1, this equation 'gives 

which agrees with the phase shift shown in Figo 170 

Since the shortest period of the predominant waves in the dynamic 

increm.ent curves given in Figso l6b through 16h appears to be equal to the 

third natura~ period of the beam, it is believed that the solution will be 

accurate if ·the lowest three natural periods of the analytical model used are 

in good agreement with those for the beam 1;rith distributed mass" Inasmuch 

as the natural periods of the model with n = 3 and m = 4 are close to those 

of the'continuous beam,? the results obtained from this model are believed to 

be sufficiently accurateo Because of limitations in the computer program, it 

was not possible to obtain solutions with a larger number of' mass concentrations., 

180 Effect of Speed 

The system ,considered in Arto 16 was analYzed for values of the 

speed parameter j 0, in the range between 0 0 12 and 0018 at increment of 00010 

The 'va1ues of the remaining par~eters were considered to be the same as beforeo 
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The results of these analyses are presented in this article in the form of 

history curves and spectrum curves" 

1801 History Curves" To indicate the manner in ,{hich the response 

of the bridge is influenced by a small change in t~he value of the speed para= 

meter} the history curves presented previously in Figo l6d are compared in 

Fig3 18 with the corresponding CUI1res obtained for a value of a = o~l6 or 

0001 larger than for the previous easeo This change in a corresponds to a 

change in vehi.cle speed of approximat,e 4 mopoh" on the prototype bridge" 

It can be seen from this comparison that the dynamic increment curves 

for the two cases are qui.te s:imilar; except for a phase shift which appeaxs 

to increase proportionally with So T.he amplitudes of the waves in these curves 

appears to be somewhat larger for the larger value of a; ho'wever, the difference 

is of no practical consequence" 

Considering that the time required for the vehicle to cross the 

bridge is inversely proportional to the speed parameter» a J and that the 

yg u 9i 
per~ods of the waves in the dynamic increment curves depend predominant,:ly on 

the characteristics of the bridge J one finds that the effect of' changing a by 

a small amount 00 is approximately the sarne as changing the scale cf' the S =axle 

by an amount oo/aQ In Figo 18, if the dynamic LTlcrement curve for a ::: 0 0 1,5 is 

conceived to be an elast~ic spring fixed at the left end, then the CUX'ire for 

a = 0016 may be obtained s:iruply by displacing the right end of the spring to 

the right by an 8ll1otro't equal to 

times the projected length of the spring 0 Having thus dete:rmined the dynamic 

increment curve for a := Ool6, one may then obtain the C1.:u."ye for the d,ynamic 

bending moment by superposIng the dynamic increment curve on the static moment 

curve", This technique J which obviously is appl,icable to any effect~ may be 



-52-

used to study the influence of a small change in a"~ and is particularly usefui 

in predicting approximately the value of a which will produce the maximum dynamic 

effect at a particular sectionc 

In Fig" 19 are shown time histories of the dynamic increments for de-

flection at the center of the center span for values of a in the range between 

0012 and 00180 These curves confirm the observations made previouslyo In par~ 

ticulary it can be seen that consecutive clurves are generally quite similar and 

that an increase in a is equivalent to a g~ 0 9ff stretchrng of the cur\Te to the right 0 

The waves which prodUce 'the maxDuum deflection at the center of the center span 

are ShOi,ill shaded, and corresponding waves are ident)ified by the same lettero 

There is a marked increase in the amplitude of the waves in the 

dynamic increment curves as a increases from 0012 to 0018, the amplitudes 

for a = 0018 being roughly twice as large as 'those for a = 0 0 120 The values 

of X listed on the right hand margin represent the average values of the aa 

amplitudes of the waves for each curve" In evaluating these averages only 

-waves with amplitudes in excess of 0005 were consideredo Associated with 

each value of Xaa is given the standard deviation, 0stdJ of the amplitudes 

from the average valueo This quantity is defined by the equation 

(jj +d s..., J 

where X represents the amplitudes of' the individual waves considered aIld N 
a 

the number of these waves; ~std is a measure of the uniformity of the amplitudeso 

The smaller the value of' Cf st;d the more homogeneous is the dist,ribution of the 

amplitudes 0 It can be seen that X increases from about 0 0 06 for a = 0012 aa 

to about O~ll for a = 00180 The standard deviation is approximately 00020 

1802 Spec-truro C'u,I"'\res 0 The amplification factors for deflection, 

moment and reaction f'or all the sections for which dynamic effects. have been 
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evaluated are plotted in Figso 20a through 20k as a function of the speed 

parameter a o As previously noted, the term amplification factor is used to 

designate the ratio of the maximum dynamic effect at a section to the cor~ 

responding maximum static effecto 'The amplification factor curve for Rl is 

omitted since for the smoothly moving, single~axle loading consideredJ tt is 

equal to unity for all values of ao The numerical data used to plot these 

curves are also summarized in ~crable 8 together wi til the values of ~ for which 

the maximum effects occur and some addit,ional :inf'ormation to be discussed 

later" 

It can be seen from these curves that the amplification factors for 

the various effect~ are generally fairly small 0 The maximlAffi amplification 

factor for deflections occurs at the side span and is equal to 10170 The 

maximum amplification factor for positive moment is 1015) and for negative 

moment over an interior support it is 10220 It should be pointed out, hO'weyer, 

'that for a sing1e=axle loading the maximum static moment over an interior 

support is comparatively small (see Table 5) 0 The rnaximtml. runplification factor 

for reaction occurs over an interior pier and is 10130 

The over-all characteristics of the curves in Figso 20a throl~ 20k 
;'5 '\ 

are s:ilIlilar to those for simple span beams reported previously t y:; The 

curves are undluatory in natlu"e and the peak, values of the undulations increase 

'with increasing ao That the peak values should increase 'WIth increasing a 

follows from the fact that the amplitudes of the 1{aVeS in the dynamic increment 

curves increase with increaSing 0 0 The natU2~e of the undu~ations in these plots 

may be explained readily by examining these curves in the 1igt.Lt of the cor= 

responding dynamic increment cllI"ves <' As an example consider the ampli:fication 

factor for D . (solid Cl1rve in Figs 20b) and the corresponding dynamic increment 
c 

curves presented in Figo 190 Recalling the maximum static deflection at the 



center of tbe center span occurs when the load is at midspan, from the latter 

c1xrves one finds that the wave which produces the maximum dynamic deflection at 

0017) and it is ~awave c~a when 0: :::: 00180 In the spectrum curve, the cusp at 

0: = 0,,138 marks the transition between the condition for which vVwave a H governs 

and the condition for which riwave b fiU governso Similarly, the cusp at 0: := 00171 

represents the transition between the cases .for 1t-Thich 1iwave b is or 1vave c RU 

governs 0 Between these cusps, the maximum amplification factor occurs at the 

value of a :for which the peak of the wave which produces the maximum effect 

coincides with the maximum static ef'fect" In the following discussion, the wave 

Which f'or a particular case produces the maximum effect will be referred to as 

the R~ critical Wa'fe ~1l <> 

It is of int,erest to not,e that the length of the undulations in the 

spectrum curves are different for the different ef.fects and sections considered~ 

For example ,j) the length of the undulation of the curve for D is smaller tha.n 
c 

that :for Dl <> A similar result is :found on comparing the curves for Ml and Me 0 

These dif:ferences arise from the fact that the positions of the "critical 

wave us in the dynamic increment curves for D and M are more sensitive to 
c c 

changes in the speed parameter 0: than for the curves of Dl and :t.1. <> If' l:::a 

represents the change in the speed parameter and~~ represents the correspond~ 

ing change in the position of the critical wave, then 

1Jhere ~ represents the position of the load for which the effect at the 
s 

section considered is maxinrumo It follows that for a given value of OJ the 

larger the value of ~ the more sensitive is the position of the critical 
B 

wave to a given change in 0 ~~dj consequently, the smaller is the length of 

the 1lllduJ.ation in the corresponding spectrum Cl~t"'"ve 0 
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190 Comparison of Effects at Neighboring Sections 

In Figo 21 the solid curves are the same as those presented in 

Figo 16do They represent the variation of the moment and the corresponding 

dynamic increment at the center of the center span for the system considered 

in Arto l60 The dotted curves show the variation of the corresponding quanti= 

t,ies at a section for 'which ~ :;:: 004850 This section lies at a distance OoO.5L 

to the left of the center of the center span and coincides with the position 

of the load for which the ordinate of the Vi critical wave R9 in the dynamic 

increment curve for M is maximumo The moment at this section is designated 
c 

as M 0 Both moments and the corresponding dynamic increments are expressed 
n 

in terms of the maximum stati.c moment at the center of the center spa:o." For 

clarity of presentation only that portion of the Mn curve close to midspan is 

sho"WIlo 

It can be seen from this plot that the dynamic increment curves for 

'the t;~ro sections are for all practical purposes identical" Furthermore<? since 

"the peak values of the two static curves are approximately the same, the 

maximum dynamic moment away from midspan is somewhat larger than that at 

midspan 0 To be specif'i.c, .lGhe 8111plifica'tion factor for M is 10066 and the c 

ampli~ication factor for Mn is 100930 It should be remembered that both 

amplification factors are expressed in terms of the max,imum sta,tic moment, at 

midspan~ 

The above comparison shows that ~he dynamic increment curve for a 

particular effect at a gi'len section may be used to predict also the variation 

of that effect at a neighboring sectiono ~~thermoreJ since the envelope of 

the maximum static. effects in the vicinity of a section is generally fair~y 

flat» the maximum amplification f'actor for that vicinity is approximately equal 

to one plus the amplitude of the ii critical 'wave au for the particular sectlon 



investigated 0 Obtained in this manner, the dashed-dotted line in Figa 20b 

is believed to constitute a good approximation for the largest amplification 

factor close to midspano It may be noted that this curve may be further 

approximated by a smooth curve which is tangent to the peaks of the actual 

spectrum curve for D (solid curve)o 
c 

20c Effect of Weight Ratio 

The bridge considered in Arto 16 was also analyzed for a value of 

W/Wb = 003 which represents a practical upper bound for present day vehicles 

and three=span I=beam bridges with center spans larger than about 50 fto The 

speed parameter was varied between a = 0012 and 00180 As before, the effect 

of bridge damping was neglected and the suspension spring of the vehicle was 

assumed to remain inactiveo The frequency ratio f~fb was taken equal to unityc 

In Figo 22 the time history of the deflection at the center of the 

center span and the history of the corresponding dynamic increment for a = 0015 

are compared with the corresponding curves obtained previously for a weight 

ratio of 001750 It can be seen that the over=all characteristics of the two 

sets of curves are similar and that the maximum values of the response do not 

differ appreciablyo Similar results are obtained for the other effectso 

The maximum values of the various effects that were evaluated and 

the corresponding values of g are listed in Table 8 together with the cor-

responding values for a weight ratio of 001750 From an examLnation of these 

res-ults it can be seen that the maximum effects are somewhat larger for the 

larger weight ratioc For convenience: the maximcUll amplification factors for 

the various effects are summarized in the following tableo The values listed 

are the maxima for the complete range of speeds considered 0 
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W 
Largest Amplification Factor For 

Wb Dl or D4 D ~ or M4 M M2 or .~ Reactions 
c c 

O~175 1017 1011 10,15 1,,07 1022 1012 

0,,300 1.,22 1017 1019 1010 1,,27 1020 

210 Effect of Frequency Ratio 

The effect of this parameter was investigated by obtaining numerical 

solutions for values of f/ fb in the range bet'ween 005 and 1050 The weight 

ratio and speed parameter used areg W/Wb:::: 00175 and a :::: 0018" The remaining 

parameters are the same as for the problem discussed in Arto 160 The resu.1t,s 

are summarized in Figso 23 to 250 

In Figo 23 are shown the variations of the interacting force; P, 

for frequency ratios of 006, 100 and 1050 It should be noted that in each 

case the dominant "period mr of load variation is very close to the natural 

period of vibration of the axle 0 The maximum change in P is equal to 0 0 12 P to s , 

The amplification factor for the interacting force and the corresponding value 

of ~ are surmnaried in the following table" 

AoFo for P 

0.,8 1.,0 

0,,86 

In Figo 24 are shown dynamic increment curves for D for all the 
c 

frequency ratios cons idered 0 It can be seen that for values of r/fb less 

than 008, the C1.U'Ves do not exhibit high frequency oscillations and that the 

period of the predominant oscillations is close to the fundamental period of 

vibration of the bridgeo The same is true of the clxrve corresponding to a 'value 



of f~fb = 1050 For intermediate cases y the contribution of higher modes 

becomes more pronounced 0 The high frequency oscillations present in the 

c~Jes for values of f~fb between 0 0 8 and 105 correspond to the higher 

natural modes of vibration of the bridgeo It is important to note that 

the magnitude of the oscillations in these curves are about the same for 

all the cases o In particular, the oscillations for fv/fb = 100 are no larger 

than those for the other frequency ratioso T.I1e average value, X ,of the aa 

amplitude of the waves for each dynamic increment curve and the standard de-

viation, crstd' are given on the right hand margin of Figso 24a and 24bo It 

can be seen that the values of X are fairly constant ffi1d close to Oc12o The aa 

values of 0std are approximately equal to 00040 

In FigsQ 25a through 25k the amplification factors for the various 

effects are plotted as a function of the frequency ratioo The maximum values 

of these amplification factors are listed in the following table together 

<with the corresponding values obtained for the set of the problems presented 

in Arto 18 for which f~fb :;: 1 and the speed parameter a ranged between 0012 

and 00180 It can be seen that the two sets of solutions are for all practical 

purposes the same 0 The largest difference occurs in the case of M 0 

c 
In this 

COPJlection it is worth noting from Figo 20f thaty for values of a between 0018 

and 0020, the AoFo is likely to be as high as 10140 It appears from these 

results that} whereas the amplification factor for a particular effect at a 

sect:Lon of a bridge may be sensitive to a change in the frequency ratio} the 
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ma.xinu . .IDl value of' this amplification factor for a range of speeds may be con-

sidered to be independent of' the frequency ratioQ It is to be emphasized that 

this conclusion is applicable only to smoothly moving loadso 

220 Effect of Initial Vehicle Oscl,llation and Interleaf Friction 

The response of the three-span bridge considered before was also in-

vestigated under the passage of an init,ially oscillating single-axle loadingo 

1ne initial oscillation was assumed to be such that at the instant the load 

enters the span, the bouncing velocity of the sprung mass is equal to zero and 

the interacting force:; P, is equal to O~70 P +0 :(lJJ.e weight ratio and the speed 
Su 

parameter was taken as follows; 

Solutions were obtained for three different values of the coefficient of 

interleaf friction~ ~ = 00, ~ = 0 and ~ = 00150 

.As explained previously, for ~ ::: 00 the suspension spring remains :idle 

and the vehicle oscillates on its tires only v For ~ = the suspension spring 

acts in series with tl1e tire springo The frequency rati.os for the system were 

For the case of ~ = 0015, the initial value of the frictional force in the 

suspension spring was assumed to be equal to zero 0 

Representative results for 'these solutions are given in Figso 26 

through 280 The solid curve and the dashed'~dotted curve in Figo 26 show the 

variation of the interacting force for ~ = 00 (f~fb = 1) and ~ = 0 (fv/fb = Oo6)J 

respectivelyo In both cases the u~period~v of the load variation cd'rresponds to 

the natural period of vibra.tion of the loado It should be noted that) whereas 

for f,/fb ;::: 1 the amplitude of the force varies continuously.? for fjfb = 006 

it is approximately constant 0 It appears that <when the frequency ratio f~fb 



is small compared to unity and the initial oscillation is of the order of 

magnitude considered in this example, the load unit may be approximated by a 

constant moving ~orce equal to the weight of the vehicle combined with an 

alternating ~orceo It is worth noting further that the amplitude of the varia-

tion in P when the load is close to midspan is about 0 0 26 Pst for both cases~ 

The dotted curve in Figo 26 shows the time history of P for ~ = 00150 

In addition, the diagram on the right hand shows t,he variation of the frictional 

force in the suspension system as a function of the total shortening of the 

springs} Uo Both quantities are expressed in dimensionless ~ormso Correspond-

ing points on the two diagrruns are identified by the same lettero For example, 

at the instant represented by point ~ the ~rictional resis'tance o~ the 

suspension spring becomes fully mobilized and the ef~ective sti~~ness 0f the 

system changes from k t to ktstt From these diagrams it can be seen that the 

suspension spring is engaged only in the intervals ab, cd, fg and ijo Of 

course, the frequency o~ load variation in these intervals is f ts " It is 

important to note that the history curve of P for ~ = 0 0 15 has no resemblance 

to the corresponding curve for ~ = 00 or ~ = 0 0 The most linportant effect of 

the interleaf friction is the reduction in the amplitude of the load variationo 

This reduction is due to the fact that in the intervals ab} cd; fg and ij, 

ener~1 is dissipated by the 'frictional force in the springo For ~ = 0015 the 

maximum amplitude of variation in P when the load is in the neighborhood of 

midspan is 00150 This value should be compared with the value of 0026 1~len 

f.l ::= 0 or ~ = 00 0 

In Figo 27 are shown time histories of the dynamic increment~for 

deflection at the center of the center span for the three values of ~ 

consideredo The corresponding curves ~or moment are very similar, but are not 

+ d It f t t t t / 0 6 t fill 0 81 presen",e herea . :i.s 0 in.,erest 0 no Cle ha·t for fv fb =: 0:; he perlods 



of t,he waves are between the nat-ural period of the load and the fundamental 

period of vibration of the bridgeo In fact.9 they appear to be closer to t,he 

period of the bridgeo This result should be contrasted with the fact that the 

period of variation of the interacting force is close to the natural period 

of the load~ The largest amplitude of the cunres for ~ = 0 and ~ = 00 is about 

43 percent of the maximum static deflection 0 Obviously these effects are 

large 0 For ~ = Oo15J because of the energy dissipated in the suspension 

spring.? this amplitude is reduced by over 40 percent or to a value of 23 percent 

of t,he maximum static deflectiono 

In Figso 28a through 28d are shown history curves for Dc: M2J Me 

and R
2

0 The amplification factors for the various effects and the correspond

ing values of ; are listed in the last three columns of Table 90 It may be 

observed that for this particular set of problems, the largest amplification 

factors are generally obtained for j..t :;:: 0 and the smallest for fl = 00" However.1i 

it should not be inferred that the condition tJ. :::: 0 is generally more severe 

than 1-1 == 00 or that the amplification factor for fJ. == 0015 is" in general, 

larger than for fl == 00" This may be appreciated by conSidering, as an example J 

the curve given in Fig" 28a and the corresponding clynamic increment curve 

presented in Figo 210 It can be seen that for ~ =: 0 and for p. == 0015 ·the peak, 

values of the dynamic :inc.rement cu.J;""ves are almost cO.l.nciclent, with t,h.e peak value 

of the s-tatic curve:; whereas for fJ. =: 00 the peak static value combined vTi th a 

relatively small ordinate of the dynamic increment curveo The pri.ncipal 

effect of a small ch{lllge in either the speedy frequency or initial condition 

of the vehicle is to displace t,he 'waves of these curves along the ; =axiso 

Since the peak ampl:l.tudes of the waves for both 11 := 0 and !J. = 00 are approxi= 

mately the same and appreciably larger than tllose for tJ. :; 0015 J it is expected 

that) within a range of speeds) frequencies and initial conditions:,; the 

smallest effects will correspond to tJ. := 0,,150 



230 Effect of Bridge Damping 

AI though information on the damping characteristics of continuous 

bridges is scarce, the limited data available(14} suggest that a reasonable 

value for the damping factor c/c is about 00010 The problem considered in cr 

the preceding article was reanalyzed for c/c :::: 0001, using IJ. = 00 0 In Fig" 29 cr 

the time history of the interacting force is compared with that determined 

previously by neglecting the effect of bridge damp ing 0 In Figso 30 and 31 are 

given the time histories of the deflection D and of the corresponding dynamic 
c 

incremento The maximum values of the computed effects and the corresponding 

values of ~ are summarized in the first column of Table 90 

It can be seen from the curves presented in Figso 29 through 31 

that the principal effect of bridge damping is to reduce the amplitude of the 

oscillation in the response curvesc As might be expected, the reduction in 

the amplitudes increases with increasing time) or increasing value of go It 

follows that the effect of bridge damping on the amplification factors will 

be most pronounced in those cases for which the maximunl effects occur at a 

large value of go This fac't may be seen by comparing the results presented 

in the first two columns of Table 9n In general, one finds that the reduction 

is small and, unless there is reason for considerll1g larger values of c/c J cr 

it appears that the effect of bridge damping may be neglectedc Obviously:; 

additional solutions are necessary to substantiate this conclusiono 

240 Efi'ect of Mu~ tiple'=Axle Loadings 

24vl Solutions for a Two-Axle Loading 0 The solutions presented 

in this article are for a three=span bridge without damping traversed by a 

smoothly movLng two=axle loadingo As before, the weight.ratio is taken equal 

to 00175; however J in this case the total 1ffeight of the vehicle, W, is assumed 



to be equally supported by the two axleso The axle spacing, 1.9 and the 

dynamic index, i, are taken as follows~ 

The speed parameter, oJ was varied between 0 0 12 and Oo18~ 

In Figso 32a through 32f are shown time histories of the interacting 

forces, PI and P2J and of deflection, moments and reaction at selected sections 

and of the corr~sponding dynamic increments a These results are for a = Oo15c 

Included in Figso 32b and 32d are also portions of the history curves for values 

of a = o~16J 0017 and 00180 In these curves the abscissa ~ defines the position 

of the front axleo A value of ~ = 1 corresponds to the instant the front axle 

leaves the bridgeo 

In Figo 32a it can be seen that the maximum variation in the inter-

act,ing force is about 7<>5 percent of the static value and occurs for the rear 

axle 0 This Variation is about the same as for the single-axle solution pre= 

sented in Art" 16" The characteristics of the dynamic increment curves in 

Figso 32b throu&h 32f are very similar to those presented in Figso 16b through 

16h for a singIe~axle loadingJi and the comments made previously are also 

applicable in this caseo 

In Figo 33 are shown the dynamic increment curves for deflection 

at the center of the center span for values of a in the range between 0012 

and 00180 Obviously, the observation made previously in connection with the 

curves presented in Figo 19 applies also to those curvesQ It is particularly 

important to note that' the values of X and cr td listed on the right hand 
aa s ' 

margin are generally very similar to the corresponding values given in Figo 19 

for the single-axle loading" It appears that., lt7ithin a range of speeds" the 

maximum effects for the two~axle loading and the single~axle loading will 

probably be the same 0 
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For 0 = Oo15J the time between the passage of the two axles over a 

point on the bridge is equal to the fundamental natural period of vibration 

of the unloaded bridge <> Thi,s coincidence of the period of application of the 

axle loads with the natural period of the bridge has been considered to pro

duce a condition of resonance which may lead to large dynamic effects(lO)" 

It is noteworthy that the dynamic increment curves for this case (0 = 0,,15) do 

not exhibit any unusually larger oscillationso 

The maximum yalues of the various effects evaluated are plotted in 

Figs" 34a through 34£ in the form of amplification factors as a function of 

ao These values are also tabulated in Table 10 together with the correspond-

ing values of ~o The corresponding maximum static values are given in the 

. second column of Table 50 ~le general features of these spectrum curves are 

the same as those for the single=axle loading presented in Figo 200 However, 

the detailed characteristics differ primarily. 'because of the fact that the 

static history curves for the two cases are different~ For example, it may be 

noted that the curve for M in Figo 32d is flatter than the corresponding 
c 

clurves for the single=axle loading presented in Figo l6d. Referring to Figo 32d} 

one finds that the orclinates of the static histDry curve for the two-axle 

loading are fairly cons~ant in the neighborhood of midspan, whereas the corre=' 

sp~nding C~les for the single-axle loading shown in Figo 16d exhibit a sharp 

cusp" I't .follo-w"s that in the former case the maximum dynamic value of M is c 

less sensitive to a change in a o It may "be recalled that a small increase in 

a is equivalent to a t9stretchingV~ of the dynamic increment cu.rve" 

For the range of a considered the largest amplification factors 

for the various effects are surmnarized in the follOwing table for both the 

single-axle loading and for the two-axle loading 0 



Largest Ao Fo 
Item 

Single-axle Two-axle 

Side Span Deflections, D1 and D4 1017 1017 

Center Span Deflection, D . c 1013 1017 

Side Span Positive Moments, ~ and M4 1015 1015 

Center Span Positive Moment, M 1,,08 1012 c 

Negative Moments over interior 
supports, M2 and ~ 1022 loll 

Reactions at End Supports, Rl and R4 1004 1 0 05 

Reactions at Interior Supports, 
R2 and R3 1013 loll 

It can be seen that the two sets of values are in general quite similar~ 

2402 Solution for a Three=axle Loading 0 In Figso 35a through 35f 

are given history curves for the response of the bridge considered in the pre= 

ceding article when traversed by a smoothly moving three-axle tractor-trailer 

combination with a speed corresponding to a value of a = 0 0 150 The parameters 

for the trailer are considered to be the same as those for the two=axle loading 

considered beforeo The weight of the front axle is considered to be 1/9 of 

the total weight of the vehicleo The values of the remaining parameters for 

the first axle are identified in the figures" In these figures" time is 

measured from the instant the front axle enters the bridge" AccordinglYJ 

~ defines the position of the front axleo 

It is of interest to compare the dynamic increment cuxves for this 

problem with the corresponding cux-ves for the two='axle loading starting from 

the instant the £irst heavy axle (second axle for the three~axle load) moves 

onto the bridgeo To effect this comparison, the curves for the three-axle 
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loading must be shifted to the left by an amount equivalent to the axle 

spacing of the tractor; this corresponds to a value of ~ = 0 0 04620 One then 

finds that the two sets of curves are practically identical 0 The amplifica~ 

tion factors for the various effects and the corresponding values of ~ are 

compared in Table 110 It can be seen that the two sets of results are for all 

practical puaj?oses equal 0 

250 Correlation Between Dlfnamic Increments for Deflection and Moment 

In discussing the effect of a single-axle loading in Arto 16, it 

was noted that the dynamic increment curve for moment at the center of the 

center span is similar to the corresponding c~re for def1ectiono This 

similarity is true also for multiple=axle loadings 0 This is illustrated in 

Fign 36 wherein t~e dynamic increment curves for midspan$moment for three dif-

ferent loadings are compared with t,he corresponding curves for deflection 0 In 

the following paragraphs it is shown that under certain broad conditions the 

dynamic increments for deflection and moment at the same point are linearly 

correlated 0 

Let the deflection of the beam} y, be .expressed by the equati.onJ 

00 

= ys(x,t) + I (j)n(X) "n(t) 

n=l 

* th wtlere Ys denotes the static deflection} ~ is the n natural mode, and q is 
. n n 

an arbitrary function of timeo Since the position of the vehicle on the bridge 

is a function of time J the deflection y is also a time dependent qu.ant.ity. 
s 

For each span, the expression for the natural mode may be ~~itten in the form~ 

'* Refer to Ego 117 on p~ 325 in Reference 330 



~ (x) = A sin A ~ + B cos A ~+ C Sinh A ~ ~ D Cosh A ~ (27) n n nL n nL n nL I n nL 

where A through D are constants of integration, generally different for each n n 

span, x is the distance from a support, A is a dimensionless coefficient, re
n 

lated to the nth natural circular frequency of vibration of the beam, W J by 
n 

the equation 

Then the bending moment in each span, M, is given by the equation 0 

"" EI yU - EI 
s 

00 

n=l 

where a prime superscript denotes one differentiation with respect to x~ 

Noting that the first term on the extreme right hand expression represents the 

static moment, M , and making use of Eq" 27:1 one obtains, 
s 

n=l 

(28) 

Then the ratio of the dynamic increment for moment to the corresponding incre-

ment for deflection may be written as follows~ 

where 

€ = 1 I [(:: -l)'Pn - 2 :: (Cn Sinh An i: + Dn Cosh An i:) ] ~ (30) 

CPn ~ n=l 

n=l 

It is assumed that the denominator is different from zeroo 



Let (Dolo 1M be the dynamic increment for moment for a specified 

section, expressed in terms of the maximum static moment at that section, 

(M ) 0 Also let (Dolo) be the corresponding increment for deflection in 
s m y 

terms of the corresponding maximum static deflection, (y ) 0 Then 
s m 

This expression is applicable to any point of the beam, and there is no 

restriction as to the type of the bridge or the number of axles involved 0 

Now, if the coefficients, C
l 

and Dl for the fundamental mode of 

vibration are small and, in addition, the functions q for n > 1 are negligible 
n 

in comparison to the function ql' then the quantity € defined by Eqo 30 may be 

neglected" These conditions are satisfied for simple span bridges, since C 
n 

and D are identically equal to zero and the contribution of the higher modes 
n 

of vibration are known to be insignificant (ioeo) q for n > 1 may be neglected)o 
n 

For this case, recalling that A. = 1(., one .fin.ds that Eqo 31 reduces to 

As an example, consider a two-axle vehicle with the same weight on each axle 

and traversing a simple. span bridgeo For the center of the bridge, Ego 32 

gives 

for s < ! 
-2 

where s is the ratio of the axle spacing to the span length 0 For a single 

axle loading, s = 0, and the above expression reduces to' 



The latter expression has been used previously by BiggS(16) to relate the 

maxllftUID dynamic increment for moment and deflection at midspan for a bridge 

traversed by a single-axle loading 0 

For three-span continuous bridges, Cl and Dl are identically equal 

to zero only if the spans are equal" F-urthermore, since q2 may not be small 

in comparison to ql' the quantity € in Eqo (29) may not be negligible in com

parison to unity 0 However, it is of some interest to correlate the computed 

dynamic increment for moment and deflection and to compare the results with 

those obtained from Eqo 29 assuming that € = 00 

The scatter diagram presented in Fig" 37 correlates the dynamic 

increments for moment and deflection at the center of the center span for the 

system considered in Arto 2402" Each point in this diagram defines the values 

of the two increments for a particular time" It can be seen that"the points 

fallon a straight line, indicating that the quantity € in Eqo 29 mqy be 

considered as a constanta The equation of the line} deternlined by the method 

of least squares., is 

* and has a standard error of estimation of 000030 

For this problem, the maximum static effects at the center of the 

center span are 

2 and A = 12,,4910 

Then with € = OJ Eqo 29 leads to 

* This means that 68% of values of (Do I-o)M estimated by Eqo 35 are in error 
by less than 000030 



The close agreement between Eqso 35 and 36 suggests that the quantity € may 

be considered to be negligibleo However, further study of this point is 

necessar,y to substantiate this preliminary conclusiono 

In Figsn 38 and 39 the dynamic increment curves for bending moment 

over the interior supports are compared with the increment curves for reaction 

at the corresponding supportso ~hese results are for the problem considered 

in Artso 16; 2401 and 2402 when a = 00159 It appears that the two sets of 

dynamic increments are also linearly correlated, except perhaps for the instant 

when the load is close to the support for which the dynamic increments are 

evaluated a 

260 A Possible Basis for Design 

While the information presented in the preceding articles is not 

directly applicable to design, it suggests means of arriving at a design pro

cedure for dynamic effects in highway bridgeso In this connection it should 

be kept in mind that the values of the majority of the parameters that influence 

the response of highway bridges cannot, in general, be controlled 0 A bridge 

in service is subjected to the passage of vehicles having different weights} 

frequencies and dimensionso Moreover, the speeds of the vehicles are neither 

constant nor uniform, and the initial conditions of the bridge and the vehicle 

and the conditions of the bridge surface are generally urU~owno The fact must 

also be considered that the characteristics of known vehicles and known "bridges 

cannot be calculated accurately 0 Under these conditions, it is meaningful to 

attempt to estimate only the values of the maximum effects produced under the 

most unfavorable but likely comhinations of the parameters involved" 

From the information presented in this report, it appears that a 

design procedure can be formulated most effectively on the basis of the dynamic 



increment curves rather than the spectrum curves 0 The reason for this is that 

the dynamic increment curves, as previously explained, provide more useful 

information than the spectrum curves and show more clearly the influence and 

relative importance of the various parameters involved 0 

Although the detailed characteristics of the dynamic increment curves 

are generally quite sensitive to changes in the various parameters entering 

into the problem, the over=all characteristics of these c~res are affected 

only to a minor extent by changes in some of the parametersc It appears 

reasonable, therefore, to take as a basis for design some average property of 

the dynrunic increment curves 0 For a given section of the bridge, the design 

value of the dynamic increment for moment or deflection, (Dolo)d' may then be 

expressed in the form, 

where {Dolo}d is equivalent to the impact factor, Xaa and crstd are as previously 

defined, and e is a factor Which, for a given set of dynamic increment curves, 

defines the percentage of the waves for which the amplitudes are smaller than 

the computed value of (Dolo)do The latter statement is based on the assumption 

that the amplitudes of waves are normally distribui;edo The valu.es Q,f these 

percentages for different values of e can be found in standard texts on 

statisties(34)o For e := OJ IJ 2 and 3, these percentages are 50" 84 .. 1;t 97,,7 

and 9908, respectivelyo 

In Eqo 37 the choice of the value of e should be governed by the 

shape of the curve for .the static effect at the section considered" If the 

curve is flat in the neighborhood the maximum static effect, then the possi-

bility of having a large dynamic effect at that section is great, provided of 

course that all other factors are the same 0 On the other hand" if the static curve 
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exhibits a sharp cusp, there is a smaller possibility of having a large 

dynamic effect at that sectiono Therefore, the flatter the static curve 

iS J the larger must be the value of eo For a flat cL~VeJ a value of e 

between 205 and 3 is reconnnendedJ while for cu..,ryes which are steep in the 

region of the maximum effect a value of e from 105 to 2 appears to be 

reasonable 0 

Strict,ly speakingJ the values of X and 0' ··td are functions or all aa s , 

the parameters considered in the previous articleso However j because they 

are insensitive to cha..l1ges in some of the parameters, these quantities can be 

dete:rmined from a relatively small number of solutions., For example J for 

smoothly moving loads it has been shoiftID that the most, significant variable is 

the speed parameter ex and that both Xaa and ustd increase with increasing 0: 0 

On the o·ther hand, the value of these quantities appear insensitive to changes 

in the frequency ratio; weight ratio, and the number of axles i,nvolvedJ pro= 

vided these parameters are wi t,hin the practical range e Under these conditions J 

it appears that, for a given type of bridge the values of X and (§ +d in 
aa Su 

Eqo 31 may be determined from'the dynamic increment curve for a solu.tion 

determ.11'1ed as foll01"'s;; The speed parameter must correspond to the maximum 

vehicle speed. expected; the weight ratio must preferably correspond to the 

m~Kimum design load, the frequency ratio may have any reasonable value J and 

the vehicle may be represented by a single=axle loading0 

In this presentation the problem has been over-simplified by ne~ 

glecti,ng the effect of a possible initial oscillation of the vehiclea It 

has been shown both here and elsecwhere (5) J ( 
6 ) that this effect may be quite 

important" Obviously then, the values of X and u
s

+ d will depend both on . aa v 

the magnitude of the initial oscillation and the value of the limiting 

frictional force in the suspension system of' the vehicleo Ad.ditional studies 
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are necessary to investigate the dependence of X and v td on these quantities 0 aa s 

Consideration should also be given to the influence of roadway unevennesso In 

this connection field measurements are needed to provide realistic values for 

the magnitudes of initial vehicle oscillations and the magnitude of roadway 

unevenness for different types of bridgesc 

27. Pedestrian U s Reaction to Bridge Vibration 

One aspect of the problem of bridge vibration relates to the reaction 

of pedestrians to the motion of the bridgeo From the limited data that are 

available(29),(35) it appears that the reaction of a person to vibration de-

pends primarily on the rate of change of acceleration) ordinarily referred to 

as the "jerkU
, instead of only on the magnitude of the deflection" In 

Refs 0 (28) and (29) limiting values are given for zones of human comfort and 

discomfort for vertical sinusoidal vibration" Values of U jerk v, less than 

700 in./seco3 (or 1.8g/sec~) are considered to define a zone of comfortJ values 

between 700 ino/seco3 and 2400 ino/seco3 (or 602 g/seco) define a zone of dis= 

comfort, and values greater than 602 g/sec. define a zone of extreme discomfort 0 

For the design of trucks J an upper value of 500 ino/seco 3 (lo3g/seco) has 'been 

reco:rrrrnended(29) .. 

Figure 40 shows the variation of 9'1) jerk n at the center of the center 

span for the problem considered in Art" 24020 The ordinate of the curve shows 

the t~ jerk ~f that would be- e,xperienced by a person sta:n(fling at the center of the 

center spano The physical system considered is a standard 64H-80~-64n I-beam 

bridge (36) traversed by a Vitypical V~ H20-S16 tractor-trailer combination., The 

speed parameter corresponds to a speed of 61 IDapoho This curve was evaluated 

by the method of finite difference from the history curve for D presented in 
c 

Fig., 35b., . It is of interest to note that the maximum value of iV jerk if is less 



than the recommended limit of comfort 0 It is noted further that the pre

dominant g~period~t of the oscillations in this curve is very close to the 

third natural period of' the unloaded bridgea 



VIo SUMMARY 

A numerical method has been presented for the computation of the 

response of continuous bridges subjected to the action of moving vehicleso 

In this study the bridge has been idealized as a continuous beam with dis~ 

tributed flexibility and concentrated point masses) and the vehicle has been 

represented as a sprung load unit having one, two or three axleso An i1n= 

portant feature of the vehicle model used is that it incorporates the effect 

of inter leaf friction for the suspension systemo 

computer programs have been prepared for use on the ILLIAC, the 

digital computer of the University of Illinoiso These programs are for three= 

span continuous bridges of uniform cross section and equal side spans and for 

a single vehicleo 

Nwnerical solutions have been obtained for a range of the parameters 

entering into the problemo For smoothly moving vehicles, the parameters 

studied include the speed paranleter, 0, the frequency ratio, fylfb' the weight 

ratio, W/Wb J and the number of axles of the vehicle modelo For a single-axle 

loading, one series of problems were studied for values of 0 between 0012 and 

0,,18, with the frequency ratio taken equal to one and the weight ratio taken 

equal to 0 0 175 and 0030" In a second series of problems, the frequency ratio 

was varied between 005 and 105, with the speed parameter and the weight ratio 

taken equal to 0,,18 and Oo175.~ respectively" For a t-wQ=axle load unit, a set 

of problems were solved for values of 0 between 0012 and Do18, with the 

frequency ratio for each axle equal to one and W/Wb = 001750 Only one solution 

was obtained for a three-axle loading 0 For a vehicle having an initial 

bouncing motion, the major factor~ investigated were the role of the interleaf 

frict~on and the effect of bridge dampiugo 



The major conclusions d:ra'Wll from these solutions are briefly as 

follows~ 

(I) For the solutions involving a smoothly moving vehicle, the 

maximum variation in the interacting force between the vehicle and the -bridge 

is approximately 12 percent of the static reactiono For ordinary yehicles 

'the coefficient of friction for the suspension system is generally greater 

than 12 percento AccordinglY3 for the conditions considered the sl:tspension 

springs do not engage and the vehicle vibrates only on its tire springso 

(2) If for any reason» such as a large initial vehicle oscillation 

or an irre~~larity in the roadway surface, the variation of the interacting 

force is large enough to engage the suspension springs J then it is important 

that the effect of the interleaf friction be considered in "the solution 0 Un~ 

less this is done, the over-all characteristics of the computed response may 

be quite Ullrealistico 

(3 P Both for smoothly moving loads and for initially oscillat,ing 

loads the predominant period of variation of the interacting forces is close 

to 1;he natural period (or peri.ods) of vibration of t;he vehicleo 

1 ... '4) I.; From an examination of the dynaruic increment curves for the 

1rariou.s effects at different sections of the bridge, it follows that the major 

contribution to the dynamic response arises from the participation of the first 

three natural modes of vibration of the bridgeD 

(5) For smoothly moving 10ads J the amplification factors for the 

various effects are generally fairly smal10 For the compl.et,e range of 

parameters conSidered, the maximum amplii'icat,ion fac"l;ors are Ie 18 for deflec ~ 

tion] 1015 for positive moment;l 1026 for negative moment, and 1015 for reaction" 

(6) For smoothly moving loads.\< the most significant variable is the 

speed parameter Uo In general the larger the u, the larger is the amplitudes 

of the waves in the dynamic increment curves J and J consequently, the greater 



are likely -to be the dynamic effects 0 AI though the detailed characteristics 

of the dynamic increment curves and the spectrum curves may be sensitive to 

variations in the other parameters, the over=all characteristics of the C~Jes 

are affected only to a minor extent by changes in the frequency ratio) wei~1t 

ratio, and the number of axles, provided that these variations are kept within 

the practical rangeo Therefore, for design purposes the latter parameters may 

be considered to be secondary 0 

(7) For an initially oscillating vehicle, the magnitudes of the 

maximum effects in the bridge depend predominately on the amplitude of the 

initial oscillation and on the limiting value of the interleaf frictional forceo 

The over-all effect of this frictional force is to dissipate energy and to 

reduce the magnJ.tude of the dynamic ef'fects (t 

(8) The eff'ect of bridge damping appears to be negligible for values 

of clc < 00010 cr -

(9) There is a linear relationship between the dynamic increments 

for moment and deflection for a section of the bridge away from a supporto 

AccordinglYJ if the history' curve for deflection at a section is 101own, the 

corresponding curve for moment can be estimated" It appears J moreover>~ that 

the d~amic increment for moment over an interior support is linearly 

correlated with the corresponding increment for reaction at the same support 0 
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TABLE .1 

COMPARISON OF RESULTS OBTAINED BY ftEXACT" AND "APPROXIVATE" MEW.ODS 

a = 0 . .3, n = 2, m::: 3, c/ C cr = 0, N :; 400 

Single-Axle Loading, W/Wb = 0.175, fjfb::: 1, a = 0615 

Value of Quantitz 

Quantity "Exact" "Approx .. II "Exact 81 "A:EPI"0.x" 11 "Exact tI "Approx" " "Exact" uA~ox. If 

for ~ :Ill 0.25 for ~ ;;: 0 .. 50 for ~ :=; 0.75 for t ;: 1 .. 00 

Dl -+C .. 417 +0 .. 417 -0.429 -0 .. 428 +0 .. 109 +O~l08 -0.049 -0.048 

D -0 .. 216 ... 0 .. 216 +1 .. 125 +1,,124 -0,,191 -0.192 -0 .. 020 -0.019 c 

D4 +0.102 -K> .101 -0.477 -0 .. 476 +0.412 +O .. 4l2 +0 .. 078 +0,,017 , 
~ +0.229 +0 .. 229 -0 .. 222 -0 .. 22'2 +0.076 +0 .. 075 -0.045 -0.045 co 

~ 
ff 

~ -0.028 -0 .. 628 -1,,066 -1 .. 065 +0,,069 +0.010 ·+{) .. 080 +0 .. 079 

M -0 .. 105 -00105 +1 .. 090 +1~089 -0 .. 086 -0 .. 081 -0 .. 013 -0.013 c 

~ +OGU8 +O .. ll9 -1 .. 013 -1 .. 012 -0,,664 -0 .. 664 -0 .. 058 -0 .. 057 

M4 +0,,066 +0,,0'55 -0 .. 264 -0 .. 264 +0 .. 229 +0 .. 229 +0 .. 065 +0.064 

R1 +0.113 +O.il3 -0.110 -0 .. 110 +0.037 +0.037 -0 .. 022 -0.022 

R 2 
+0.,986 +O~986 +0 .. 691 +0,,696 -O.Oll -0.012 -0.051 -·0.056 

~ -0 .. 049 -0.049 +0 .. 658 +0 .. 657 +1.013 +1.013 +0.043 +0.043 

R4 +0 .. 032 +0 .. 032 -0,,131 -0,,130 +G.ll3 +0 0,11.3 +1,,016 +1.015 
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TABLE 2 

COMPARISON OF RESULTS OBTAINED BY USE OF DI.FFERENT 
TIME INTERVALS OF INTEGRATION 

a == 0.8, n == 3, m == 4, c/ccr = 0, 
Single-Axle Loading, W/Wb = 0.175 

MaY1 mum Value of' Quantity 

Quantity N = 400 N = 600 It == 800 N == 600 N == 800 

ex = 0.075 a == 0 .. 15 

D1 1 .. 026 1 .. 0'26 1 .. 026 1 .. 088 1 .. 088 
D 1 .. 040 1 .. 035 1.033 1 .. 102 1.101 c 
D4 1 .. 017 1 .. 025 1 .. 026 1 .. 052 1 .. 051 

M:L 0·999 0 .. 999 0·999 1 .. 062 1.062 

~ 1.051 1 .. 051 1 .. 049 1 .. 121 1 .. 124 
M 1.005 1.009 1 .. 007 1 .. 066 1 .. 068 c 

~ 1 .. 041 1 .. 045 1.049 1.168 1 .. 160 

M4 1 .. 0ll 1 .. 019 1.019 0 .. 966 0 .. 971 

Hl 1 .. 000 1 .. 000 1 .. 000 1 .. 000 1.000 

R2 1.018 1.027 1 .. 029 1 .. 028 1 .. 031 

~ 1 .. 030 1.0;4 1 .. 030 1 .. 026 1 .. 034 

R4 0 .. 915 0 .. 981 0 .. 971 0.954- 0 .. 958 

TABLE 3 

WEIGHTS AND NATURAL FREQUENCIES OF sc .... 6 ... 53 BRIDGES 

Spans Wt. of Center Fund amental 
in Span in Na.tural. Frequency 
ft .. kips fb in c .. p.s .. 

40-50-40 221 6 .. 4 
48-60 ... 48 273 5 .. 2 
56-70-56 326 4 .. 4 
64-80-64 :;83 3·1 
12-90-12 450 3 .. 1 

80-100 ... 80 524 2 .. 6 

Note: Tb = 1/fb, T2 == 0 .. 654 Tb, T:; = 0 .. 532 Tb 
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TABLE 4 

DATA FOR f~ICAL tI VEHICLES 

Quantity Unit Three-Axle Two-Axle Single-Axle 
Vehicle Vehicle Loading 

W kips 72 64 64 

1~ ft. 12 14 '" ,5 

12 ft. 14 .... 75 

W1/W 0.08 0·90 

W2/W 0.80 

w1/W 0.03 0.05 

w2/w 0.05 0.05 

w,tw 0 .. 04 

i~ 0 .. 5 - 1.0 0 .. 9 .... 1,,7 

12 0·9 "., 1.7 

~ 0.602 0·5 

~ 0 .. 494 

8.5 0 .. 083 

III o .. 05'~- 0.10 0.12 .... 0.28 0 .. 12 - 0.28 

~2 0.12 - 0.28 0 .. 12 - 0 .. 28 

~ 0.12 - 0.28 

f t,l 
c .. p.a. 3·13 - 3 A 72 3 .. 13 - ,.72 3 .. 13 ... 3·12 

f t ,2 c.p.s. 3 .. 13 ,.,. 3·72 ,.13 - , .. 72 

f t ,3 c.p.s. ,.13 - ,.12 
f c.p.s. 1 .. 57 - 1.65 1.99 - 2 .. 14 1 .. 74 ... 2.36 ts,l 
f t 1""\ c.p.s. 1.99 "" 2~14 1 .. 74 ... 2.36 

s,c 
f c.p.a. 1.74 ..., 2.36 ts,) 
p kips 8 32 64 st,l 
p 
st,2 kips 32 ;2 

P at,; kips 32 



TABLE 5 

MAXIMlJ4 STATIC EFFECTS FOR SINGLE-AXLE AND MULTIPLE-A.XLE LOADINGS 

Tbree Span Uniform Beam,; e.:: 0" 8 

For Two-Axle Loading: Pst,l == Pst,2 == w/2, IlL == 0", 

For Three-Axle Loading: Pat, 1 == W /9, Pst, 2 ::: Pat, 3 ::: 4w/9, 

tIlL == 0.15, l2/L::: 0·3 

Maximum Static Value 
Q;uantity Unit 

Single-Axle Two .... AxJ.e Three-Axle 
Loading Loading Loa.ding 

Dl 
WL3 

0 .. 00712 0.00617 0 .. 00581 EI 
D u 0 .. 01064 0 .. 00903 0.00861 c 

D4 11 0 .. 00772 0 .. 00617 0 .. 0058; 

'\ WI, 0 .. 1660 0 .. 1057 0.0945 

~ 
It 0,,0877 0 .. 0776 0,,0149 

M If 0 .. 1685 0 .. 1081 0 .. 1072 c 

~ 
n 0 .. 0877 0,,0776 0,,0748 

M4 n 0,,1660 0.1057 0.1040 

Rl w 1,,0000 o~ 1686 0.7252 

R2 
WI 1 .. 0001 0,,9526 0,,9404 

1) 
B1 1.0001 0.9526 0 .. 9405 

R4 \'It 1.0000 0.7686 0 .. 68;4 
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TABLE 6 

COMPARISON OF MAXDtUM EFFEX:TS OBTAINED BY USE OF DIFFERENT NUMBER 
OF MASS CONCENTRATIONS IN BRIDGE MODEL 

Quantity 

a ::: 0 .. 8, c/c ::: 0, Single-Axle Loading cr 
W/Wb ::: 0.175, fv/fb::: 1, a::: 0.15 

Values of Amplification Factor and of 
Corresponding ~ 

4 Masses 7 Masses 

(0=2 m=3) (n=}, n~4) 

A.F. ~ A"F .. S 

1.087 0.12 1.087 0.l2 

1·129 0.49 1.102 0.49 
1.102 0.86 1.052 0.84 

1.075 0.13 1.062 0.13 , 
1.112 0.49 1.127 0.48 
1,,087 0·50 1.066 0·50 
1.138 0.55 1.168 0·53 
1.070 0.87 0,,966 0.87 
1,,000 0 1.000 0 

1·098 0·36 1.123 0·35 
1.051 0 .. 62 1.026 0·77 
1 .. 013 1.00 0·954 1.00 

TABLE 7 

NATURAL PERIOro OF VIBRATION OF BRIOOE MODELS AND OF 
CONTnruouS BEAM 

Order of 
Natural 
Period 

1 
2 

3 
4 

Three-Span Uni,form Beam; a.::: 0.8 

Value of T 
jPL4jEI 

Discrete System 
4 Masses 7 Masses 

(0=2, m=3) (n=3, m=4) 

0 .. 503 
0·336 
0.276 
0.140 

0·503 
0.330 
0.269 
0 .. 133 

Continuous 
System 

0·503 
0 .. 329 
0.268 
00131 



TABLE 8 (Cont' d on next page) 

MAXIMUM EFFECTS FOR SMOOTHLY MOVING} SINGLE-AXLE LOADING 

a = Os8} c/ccr = 0, f~fb = 1 

P Dl D D4 ~ ~ M 
c c 

a wjw
b 

A.F" ~ A"F .. ~ A.F" ~ A .. F" £ A"F .. ~ A .. F. ~ A"F .. S 

0 .. 12 0 .. 175 1,,04 089 1.00 0016 1008 0$49 1,,01 0 .. 86 0098 0 1,,08 0 .. 47 1 .. 05 0 .. 50 
0,,300 1.06 0 .. 20 1,,00 0 .. 1.08 0·51 1,,01 0.85 1.00 0013 1.07 0 .. 47 1 .. 05 0·50 

0 
0,,1'(5 1.06 0.76 1,,00 O"il 1 .. 06 0,,52 1,,05 0 .. 88 0 .. 99 0,,13 1407 0 .. 42 0,,99 0 .. 50 
0 .. 1 .. 07 O. 1,,02 0 .. 11 1 0,,52 1008 0 .. 88 1,,02 0 .. 13 1,,07 0 .. 42 1.00 0,,50 

0 .. 14 0.115 1.05 0 .. 23 1 .. 04 0012 1 .. 04 0®49 l .. ll 0 .. 85 1,,02 0.13 1,,14 0 .. 45 1,,03 0 .. 50 
0 .. 300 1.08 0 .. 46 1 .. 07 O"il 1,,11 0,,49 1,,11 0.84 1 .. 04 0.13 1.13 0.45 1.07 0 .. 50 ~ 

1,,06 0 .. 87 0 .. 49 0 .. 84 1,,06 0,,48 
II 

0.15 0.175 1,,09 0 .. 12 1 .. 10 1 .. 05 0 .. 1.13 1 .. 07 0 .. 50 
0·300 1,,07 0,,13 lel1 0.12 1,,12 0,,52 1.04 0,,84 1,,09 0.13 1.,12 0 .. 48 1,,06 0·50 

0,,16 0.175 1.06 0.,38 1.12 0 .. 13 1011 Ou 1,,09 0 .. 83 l .. il 0 .. 13 loll 0.44 1.06 0·50 
0,,300 1 .. 11 0.,85 1,.,15 0.,12 1.06 0.51 1" 0 .. 88 1,,14 0 .. 13 1,,16 0,,44 1,,05 0 .. 50 

0 .. 11 0,,175 1,,06 0,,40 1 .. 15 0 .. 13 1,,04 0,,54 1,,14 0 .. 87 1.13 0,,13 1 .. 13 0.47 0.,92 0·50 
0 .. 300 1 .. 10 0 .. 42 1 .. 19 0 .. 13 1.06 0,,46 1.15 0 .. 87 1 .. 17 0.13 1 .. 17 0.47 0,,94 0 .. 50 

0 .. 18 0.175 1 .. 06 0 .. 42 1.,17 0 .. 14 1.,09 0 .. 48 1,,03 0.,86 1,,15 0 .. 13 1,,22 0 .. 43 1 .. 05 0 .. 50 
0·300 1.12 o. 1 .. 22 0 .. 14 1.17 0 .. 49 1 .. 06 0 .. 85 1 .. 19 0 .. 13 1,,19 0,,49 1,,10 0.50 



TABLE 8 (Concluded) 

~ M4 Rl R2 ~ R4 
ex W/Wb A.F. ~ A.Fe ~ A.F. ; A .. F. S A.F. £ A.F. ~ 

0~12 
0 .. 175 1.02 0,,53 1.,00 0.87 1 .. 00 0 1.10 0.28 1.00 0.72 0 .. 98 1.00 
0 .. ,00 1~o6 0.53 0·98 0.87 1.00 0 1·09 0.28 1.08 0·72 0·98 1.00 

0.13 0 .. 175 1.10 0 .. 53 1.04 0.87 1.00 0 1.11 0·30 1.l)9 0.67 1.03 1.00 
0 .. 300 1.08 0.56 1 .. 06 0 .. 87 1.00 0 l.ll O~30 1 .. 09 0.67 1 .. 02 1.00 

0 .. 14 0 .. 175 1.10 0·56 0·99 0.37 1.00 0 1.12 0·33 1.07 0.72 0.97 1.00 
0·300 1,,06 0.50 1.05 0.37 1.00 0 1.11 0·33 1.10 0.72 1.01 1.00 

g 

0015 0.175 1.11 0.53 0·97 0.,31 1.00 0 1.12 0·35 1.03 0·71 0·95 1.00 Er 
0.,00 1,,22 0$53 Oe96 0.87 1.00 0 1.13 0·35 1.05}, 0.77 0·39 1.00 l 

0 .. 16 0$115 1.17 0 .. 57 0·98 0_81 1.00 0 1.10 0·31 1.06 0·70 0·91 1.00 
0·300 1 .. 27 0.56 1.08 0.87 1.00 0 1.12 0.37 1.07 0.70 0·97 1.00 

0017 0.175 1.15 0.54 1.12 0.87 1 .. 00 0 1.09 0.26 1,,08 0.60 0·97 1 .. 00 
0·300 1.18 0.60 1 .. 14 0.87 1.00 0 1.10 0.26 1.15 0.60 0 .. 93 1.00 

0 .. 18 0.175 1.14 0 .. 57 1.03 0$87 1.00 0 lell 0 .. 28 1.09 0 .. 63 0.96 1 .. 00 
Oe300 1 .. 12 0·56 1.00 0.87 1.00 0 1.12 0.28 la20 0.63 0·97 1.00 
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TABLE 9 

MAXIMUM EFFECTS FOR INITIALLY OSCILLATING, SINGLE .... AXLE LaA.DING 

a ::: 0.8, W/W
b 

::: 0.115 

a: :: 0.15, pl~ = 0.7 P t -0 s 

IJ.::::OO J..I.:::: ° J.1 :: 0 .. 15 

f/fb :::: 1 f/f
b 

:::: 0.6 ft/fb a 1 

fst/fb :::: 0 .. 6 
Quantity c/c :::: 0.01 c/c :::: 0 c7cer :: 0 c7ccr :m 0 cr cr 

A.F. ~ A .. F" ~ A .. F. £ A.F. £ 

D1 1 .. 11 0.19 1 .. 11 0.19 1 .. 32 0 .. 12 1.21 0 .. 11 

D 1.14 0.48 1.17 0.48 1 .. 45 0 .. 49 1 .. 20 0,,50 c 

D4 1.25 0.87 1·31 0.81 1,,34 0.87 1 .. 23 0 .. 90 

1\ 0.81 0.08 0.81 0 .. 08 1 .. 24 0.13 1 .. 11 0 .. ]2 

~ 1.11 0.18 1.ll 0.18 1.34 0 .. 41 1 .. 13 0.48 

M 0·99 0 .. 50 1 .. 01 0·50 1 .. 38 0·50 1 .. 11 0·50 c 

~ loll 0 .. 52 1.14 0 .. 52 1 .. 21 0 .. 49 1·25 0 .. 54 

M4 1.21 0.87 1 .. 28 04187 1 .. 29 0.81- 1.03 0 .. 90 

Rl 0·99 0 .. 06 0·99 0 .. 06 0 .. 85 0.08 0 .. 85 0.06 

R2 1.03 0·30 1.03 0·30 1 .. 27 0 .. 30 1 .. 09 0.36 

~ 1.08 0.67 1 .. 12 0 .. 61 1..24 0.70 1.10 0 .. 61 

R4 1 .. 12 0.99 1 .. 18 0·99 0 .. 83 0 .. 91 1 .. 01 1 .. 00 



TABLE 10 

MAXIMUM EFFECTS FOR SMOOmLY MOVING, TWO-AXLE LOADING 

a:: 0 .. 8, c/cc:r:: 0, W/Wb :: 0 .. 175, Pst,1 =: Pst,2 ::: W/2, fv1/fb =- fv2/ f b:: 1, i/L:: 0., 

Pl Po') Dl D D4 ~ M2 
c.;.. c 

a 
A.F .. ~ A.F. ~ A.F. ; A.F. S A.F. ~ A.F. ~ A.F. S 

0.12 1.06 0.19 1~O5 0.61 1.05 0.20 1.05 0.58 1.08 0·91 0·99 0.22 1.05 0·52 

0.13 1.06 0.20 1.07 0.65 1.08 0.20 1,,10 0.53 1 .. 03 0·90 1.01 0.21 1 .. 07 0·52 

0.14 1 .. 06 0 .. 22 1~06 0.92 1,,12 0.21 1.14 0.56 1,,08 0·91 1 .. 05 0,,21 1.07 0,,56 

0.15 1 .. 06 0 .. 23 1.06 0 .. 36 1.13 0 .. 22 1.08 0 .. 59 1_10 0·91 1 .. 09 0*22 1~O5 0,,53 

0.16 1 .. 06 0,,47 1.08 0.91 1.13 0.23 1.08 0.53 1.07 0 .. 93 1 .. 12 0.23 1.07 0·51 

0.17 1.06 0·59 1.06 0 .. 83 1 .. 12 0.23 1.15 0·55 1 .. 06 0.87 1.15 0.24 1.07 0·52 • co 
0 .. 18 1.06 0.02 1.07 0.88 1,10 0.24 1.1.6 o r"7 oJ t 1.17 0·91. 1.15 0.24 1.08 

\.0 
0.53 I 

M M.) M4 HI R2 R3 R4 c 
0: 

A.F. ~ A .. F ~ ; A.F. ; A.F. ~ A .. F. ~ A"F. ~ A.F. ; 

0 .. 12 1,,08 0.50 1.08 0~61 1.01 0·91 0 .. 95 0 .. 12 1 .. 07 0·39 1~O7 0.73 1.01 1.00 

0.13 1,,08 0·52 1~O3 0.58 1.01 0.87 0.96 0.12 1..03 0·31 1.06 0.78 1eOl 1.00 

0.14 1.08 0 .. 56 1 .. 09 0.56 1.02 Oe90 0 .. 98 0.12 1.07 0·33 1 .. 04 0·72 0·98 1.00 

0.15 l.ll 0.60 1.11 0.59 1.06 0.89 0·99 0.12 1.10 0·35 1.08 O~77 1.04 1.00 

0.16 1.11 0.51 1.04 0056 1.JO 0.89 0.99 0.12 1.10 0.37 1,,02 0.81 0·95 1.00 

0.17 1.10 0.54 1.03 0 .. 59 1.14 0.87 0·99 0 .. 12 1 .. 06 0·59 1.03 O~71 1.06 1.00 

0 .. 18 1.10 0·57 1·09 0·57 1.08 0·90 0.\98 0.12 1.00 0.41 1.06 0.75 0·97 1.00 



TABLE 11 

COMPARISON OF MAXIMUM ~TS OBTAINED FOR 
TWO-AXLE AND mREE-AXLE LOADINGS 

a. :::: 0.8, c/c :::: 0, ex:::: 0.15 cr 

For Two-Axle Loading: W/Wb :::: 0.115, fV1/fb :: fy2/fb :::: 1, tiL:::: 0.:; 

For Three-Axle Loading: W/Wb :::: 0.2, fV1/fb:: fv2/ f b :: fv:;/tb = 1 

tIlL:::: 0.15, l2/L :::: 0., 

Two-Axle Three-Axle 

Quantity Loading Loading 

A"F. ~ A.F. ~ 

D1 1.13 0 .. 22 l .. ll 0.21 

D 1 .. 08 0 .. 59 1 .. 05 0 .. 64 c 

D4 1.10 0·90 1.08 0 .. 95 

~ 1·09 0.22 1 .. 12 0.28 

~ 1 .. 05 0.53 1.05 0 .. 58 

Me 1 .. 11 0 .. 60 1 .. 04 0 .. 56 

~ 1 .. 11 0.59 1.10 0.65 

M4 1.06 0.89 1.02 0 .. 94 

Rl 0·99 0 .. 12 0 .. 96 0 .. 18 

R'2 1 .. 10 0·35 1 .. 08 0 .. 41 

~ 1.08 0 .. 77 1 .. 05 0 .. 83 

R4 1 .. 04 1.00 0·99 1 .. 05 
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APPEJIDIX A 

DERIVATION OF EQUATION OF MOTION FOR VEHICI~ 

AI. Notation: 

In addition to the symbols l.l.Bed in the text; the follo ..... i.ng notation 

is introduced: 

f tal " 

F
tal

, Fta2 ::::; vert1cal inertia forces of "1
1 

and W2' respective1y 

f .p ;; vertical inertia forces of 'W
l

, w2 and V .. , respecti.vely 
ta2' "'ta3 .') 

T
t

a,l' Tta2 :,; inertia. t.orques of W1 and W2' respectlvely 

R =: the difference between the dynamic and stat ic components v of the ,rerti cal lntel~acting forces at the tI t"ifth wllee 1 pivot II. 

II' 12 = rotary moments of inertia of 'H1 and \{,"" respectS, vely. 
These quantities are given by the eqUations 

A2, Der::' vation of EqUD.tions: 

Consider first the trailer as a free body, a.s shown in Fig. AI. 

The'!1,1 

Elevation of the "fifth 'Wheel pivot!! 

Elevution of the e.G. of vJ
2 

- all. z';t, + B- (elev. of II fj,fth wheel pi vat ") + a constflJrt 
,) ) 

:=: ~a5z1 + ~(1-a5):~2 + a4z3 + a constant 

1 (elev. of "fifth wheel pivot" Z3) constar-lt .::: 1:- - + a. 
,J 

1 ( ( 1-8.5) z2 z~ ] constant :: a5z
1 + ... + a 

1.3 ) 
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W 
Fta2 = g2 [a,a5z1 + a,(1-a5)z2 + a4z,] 

w 
f = .:.2 [2-: ] 
ta3 g :5 

I 
Tta2 = 12 

[a5z1 + (I-a rZ2 ... z,] 
3 

Taking moments about the "fifth wheel pivot", 'We have, 

(Al) 

(A2) 

and substi tut1ng the above expressions fQr F ta2' f'ta3' and Tta,2 into the latter 

equation, we obtain 

2 W2 ~ 
+ [(a4 + a.,a4i 2) g + g ] ·Z, + (p; - Pst,,) = 0, 

or W W 
[a.,~a5(1-i2) -I- 1 zl + [a.;a4(1-s,)(1.,.i2) w 2] z2 

Taking moments about point a, we obtain the equation 

'Wblch, by use of Eqs .. Al and A2, becomes 

W 
( 1 . ) 2 .... .. ~a4 "'~2 g z3 

Next, consider the tractor as a free bod:' (see Fig. A2).. Then, 

Elev .. of C .. G. of W1 :: 8'1 Zl + ~z2 + a constant 

1 
Angular rotation of W1 :: T (zl-z2) + a constant 

1 
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(A6) 

(A7) 

(A8) 

(A9) 

rraking moments about point c, 'We ha.ve 

a..1'1d substituting Eqs. A5 through A9 into the above identity, we obtain 

\<J 

+ [~a4(1-a5)(1-i2) w2
] Zs + ~ (P2 - Pst,2) = O. (AlO) 

Taking moments about point b; we have 

and making use of Eqs .. A5, AD, A7 and A9, 'We obtain 

(All) 

EquationsA4, AlO and All correspond to Eq. 2 given in the text 

in rna tr ix form. 
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APPENDIX B 

ILLUSTRATION OF NUMERICAL INTEGRATION PROCEDURE 

Table Bl summarizes the details of the numerical integration 

procedure for the 30th time interval of integration for the problem presented 

in Art. 22 wen the frequency ratio rjfb = 1. The values of the response at 

the end of the 29 th time interval are those evaluated on ILLIAC. The integra-

tion is accomplished by use of Eqs. 1, 4, 16 and 17, which for ease in compu-

tation are transformed into the following forms: 

2 j i ( /\t)2 
(6t) Yr = (-cm y + ~ R Y

j 
+ ~ Q- P.) ~ 

r r j r ~ Jr A ror 
(Bl) 

(B2) 

(B3a) 

(B3b) 

y -x,O:: y 29 + (L).t)Y 29 + ~ (D.t)2 Y ~9 + ~ (~t)2 Y 30 r,."I r, r,:; r,."I 0 r, (B4a) 

(B4b) 

For the particular problem conSidered, 

The sequence of operation is show in the last column of the table e 

The numbers one through ten designate the ten coordinates involved. The 

Ie tters following the numbers designate the order of computation for the 
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coordinate considered. The complete sequence of operation is from 1a to 101. 

Steps 9a. through 10i refer to the second and third axJ,.es of a three .... axle 

vehicle. For a single-axle loading, 'Which is the case considered in this 

illustra.tion, . these steps are inappllcable 8 



TABLE Bl 

EXAMPLE OF NUMERICAL INTIDRATION PROCEDURE 

Value of Value of Q~antity at t:;o for Iteration Cycle Shown Operation 
Quantity at Sequence 

Quantity Equation t29 Starting First Second Third for Cycles 
Used {Known} Cycle Cycle Cycle Cycle 1, 2 and 3 

C'*(6t)2Y1 .... 0.00525 -0 .. 00969 -0 .. 00661 -0.00667 1a 
C(6t)2u 

-0 .. 01035 -0.Oll74 -0 .. 0l233 ... 0.01232 2a Y2 
<) 

C{6.t)LY4 -0.01161 -0 .. 01203 -0.01205 -0.Ol205 3a 

C(6.t)~Y5 Eq. Bl -0.01840 
Same as -0.01761 -0.01160 -0 .. 01160 4a 

C(6t)'-y- -0.01001 for t29 -0 .. 00819 -0 .. 00882 ... 0 .. 00882 5a g 0 
f-' C(6t)2Y8 +0 .. 00540 +0.00435 +0 .. 00443 +0 .. 00443 68 0'\ 
\0 

C(6.t) 2~"'9 +0.00560 
I 

+0 .. 00270 +0.00555 +0.00555 7a 

C(6.t) 2..z1 

} Eq. B2 

-0.00144 

J 
-0 .. 01390 -0.01390 ... 0.01390 8g 

C(6t)2..i 9g 2 
C(6t)2Z3 109 

C(6.t)Yl +0 .. 43080 +0.42554 +0 .. 42333 +0.42481 +0.42484 1b 

C(L\t)Y2 +0·34420 +0.33385 +0 .. 33315 +O.}}286 +0.33286 2b 

C(6.t)Y4 .... 0.18052 +0.19213 -0 .. 19234 -0,,19235. -0.19235 3b 

C(L\t)Y5 Eq. B3a -0 .. 20236 -0.22076 -0 .. 22036 -0 .. 22036 -0.22036 4b 

C(6.t)Y6 -0 .. 11362 -0.12362 -0.12301 -0 .. 12303 -0 .. 12303 5b 
C{6.t)Y8 +0 .. 01866 +0.02046 +0.02354 +0.02351 +0.02357 6b 

C(6t)Y9 .. 0 .. 01814 -0 .. 01544 -0.01400 ... 0 .. 01402 -0 .. 01402 7b 

*C = EI/500WL3 



TABLE Bl (Cont 8 d) 

C(6t)Sl 
}Ee;,. B}b 

+2.57842 +2 .. 51099 +2.56115 +2 .. 56115 +2·56715 8h 

C(6t)~ 9h 

C(6t}Z, lOh 

Cy1 +1 .. 10922 +8.13119 +8.13665 +8.13711 +8.13115 1c 

Cy2 +5·32299 +5.66201 +5.66178 +5.66168 +5 .. 66168 ",~i. 
CY4 -1.71463 -1·90095 -1·90102 -1 .. 9010; -1 .. 90103 ;c 

CY5 Eq. B4a -1.19933 -1 .. 4l.O89 -1.41075 -1 .. 41075 ... 1 .. 41015 4c 

Cy6 -0.37802 ... 0.49664 .... 0.49644, ... 0.49644 ... 0.496"- 5c 
Cya ... 0.03213 -0 .. 01077 -0.01094 .... 0.01093 -0.01093 6c 

Cy9 .... 0.0774; ... 0.09422 -0.09374 .... 0 .. 09375 -0 .. 09315 7c 

C~ 
} Eq. B4b 

+51.45245 +54.o:tn5 +54.02607 +54.02607 +54 .. 02607 81 I 
l-' 

.......:3 CZ2 91 0 
I 

C~ 101 

CyP1 +5.08435 +5.47726 +5.41859 +5.41858 8a 

CYP2 } Refer to 980 Art. 9.2 
CYP3 lOa 

~ +46.}6810 ~.51e881 +48.5411&8 +48.54749 8b 

~ 
} Eq. 6 in 9b text 

~ lOb 

~ +2.18071 +2'~11938 +2.17939 Be 

~~ 9c 

cew, lOc 



kr<~Ul)/W 
k2 (~~)/w 

k3 (A~)/W 

Pl/W 

P2/W 

P
3

/W 

(P1-Pst,l)/W 

(P2-Pst,2)/W 

(P3-Pat,3)/W 

c~ 
u CU2 

eu; 
CuI. 

1 
I. CU2 

c~ 

**k =P
tl 1 8 , 

TABLE Bl (Concluded) 

Refer to 
Art. 982. 

1 .. 01233 

-24.39430 

-46 .. ;681.0 

f 2 
A. 
4 !!... (....!) !!... = 4.914945 2EI 

WB fb WL3 L3 

+0.01072 

1.02305 

+0.02;05 

+0.01071 +0.01071 3d 

9d 

100 

1,,02304 1.02;04 Be 
ge 

10e 

-to.02304 +0.02;04 8f 

9f 

lOf 

-26.57359 • l-' 
-1 
I-' 
« 

-48.54149 




