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I. INTRODUCTION

1. Object and Scope

The purpose of this investigation has been to develop a method for
the computation of the dynamic response of continuous highway bridges under
the action of moving vehicles, and to obtain information on the behavior of
representative three-span continuous bridges. In this study, the bridge is
idealized as a continuous beam and the vehicle is represented by a sprung
load unit having either one, two or three axles.

Whereas the dynamic response of simple span bridges has been studied

(1 )%=(26)

at some length s there is relatively little information available
concerning the behavior of continuous bridges. Some studies on the response
of continuous beams to the action of a mQving load have been made by dJacobsen,

(13}, (17%(21);

Ayre and their associates however, the results are not directly
applicable to the highway bridge problem. Additional studies have been con-
ducted at the Massachusetts Institute of Technology under the direction of
Professor J. M. Biggs. These included a theorebical investigation of the
response of two-span highway bridges to the action of a single-axle vehicle
1oading(22>g and laboratory tests on two-span end three-span continuous beam,
models(22>5(25)° Field tests on actual continuous span bridges have been
reported in several pablicati@ns(4)3<lh>’(24>m<27>°

The present investigation included“(a) the development of a general
method for analyzing the dynamic response of continuous bridges; (b) the

development of a computer program for use on the ILLIAC, the high speed

digital computer of the University of Illinois, so that numerical solutions

* Numbers in parentheses, unless otherwise identified, refer to items listed
in the Bibliography.
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canrbe obtained conveniently; {c) the use of the computer program in the
solution of specific problems; and (4) a study, based on the numerical results
obtained,; of the effects of the varicus variables entering into the‘problemo

In the analysis, the continuous beam which‘haé an infinite numbe:
of degrees of freedom is reﬁlaeed by a discrete system having a finite number
of degrees of freedom. This discretization is effected by concentrating the
distributed mass of the beam into a series of point masses, but considering
the flexibility of the beam to be distributed as in the actual system. A
vehicle of the tractor-traller type is represented by a three-axle load unit
consisting of two interconnected rigld masses. Each axle is represented by
two springs in series and a frictional mechanism which simulates the effect
gf friction in the suspension spfing of the wehicle, The use of this
mechanism represents an important aspect of the present work. The eguations
governing the motion of the bridge-vehicle system are formulated in general
terms. They can be gpplied to continuous bridges of any number of spans as
well as to simple span bridges or cantilever’bridgeso

The ILLIAC program has been devéloped for three-span bridges having
a uniform cross section and equal side spans and for a load unit having a
maximum of three axles. The effects of damping in the bridge and of friction
in the suspension system of the vehicle have been considered. The program
can handle various é@mbiﬁati@ns of the parsmeters defining the sysitem, such
as the stiffness and weight characteristics of the different parts of the
load unit and the Tn addition, by an appropriate choice of the
parameters, it can handle problems involving three single-axle loads or a
single-axle load followed or preceded by 8 bwo-axle 1Gadinge The surface
of the bridge is considered to be horizontal and smooth. However, with the

aid of an edditional subroutine, it will alsoc be possible to consider the
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effects of surface unevenness, such as grade, dead load deflection; or
roadway irregularities. The information oubput includes the interacting
forces between the vehicle and the bridge, four reactions, moments over the
interior supports, and momenits and deflecticons at the middle of the center
span and at a selected point in each side span.

Numerical sclutions have been obtained for approximately 50 dif-
ferent cases. The object of this phase of the investigation has be;n to
isolate the various variables entering into the problem and to study their
effect in a systematic manner. Primary emphasis has been placed on a study
of the dynamic effects produced by smocothly moving lcoads. The variables
investigated include The speed of the vehicle, the weight of the wvehicle
relative to the weight of the bridge, the ratic of the natural frequencies
of the vehicle and the bridge, and the number of axle loads. The effeets
of initial oscillation of the vehicle, of friction in the syspension system
of the vehiele, and of bridge damping are also considered.,

Becguse of the very large mumber of variables involved and the
considerable machine time required for a solution, it is impractical to
cbtain soclutions for all possible combinations of the variebles. Acecordingly,
the principal effort was devobed to a study of the fundamental characteristics
of the response of continuous bridges. Based on the results of this study,
certain concepts have been formulated which may be used to predict the
maximum dynamic effects in comtinuous bridges from the results of a relatively
small number of Jjudiciously selected solubiocns.

The method of analysis is presented in Chapter II. In Chapter IIX
the details of application of the method are described for the case of a
three span combtinuous bridge. The ILLIAC program is described in Chapter IV.

In Chapter V the numerical solubions are presented and the effects of the
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various variables are discussed. A summary of the most important results

is given in Chapter VI.

2. Notation

The symbols used in this report are defined in the text where

they are first introduced. For convenience, the important ones are sum-

marized here in alphabetical order.

a

il

ratic of the side span to the center span

ratio of the horizontal distance between the center of gravity
of the tractor and its rear axle te the axle spacing of the
tractor ‘

lmal

ratio of the horizontal distance between the center of gravity
¢f the trailer and its rear axle to the horizontal distance
between that axle and the "fifth wheel pivot"

oo
ratic of the "fifth wheel" offset to the axle spacing of the
tractor

coefficient of viscous damping for beam

critical valuwe of ¢ corresponding o the fundamental mode of
vibration

defiecticn at a prescribed point on the left hand span of the
beam

deflection at a prescribed point on the right hand span of the

Abeam

1}

deflection at the center of the center span

deviation of bridge profile at the point of application of P,
measured from a horizontal line passing through the left han
abutment

modulus of elasticity of the bridge material

¢ s . . . cth
frictional force in the suspensicn spring for the 17 axle

maximum value of Fi
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fb = fundamental natural frequency of the bridge
ft ; = pseudo~-frequency of the ith axle 1f only the tire spring acts
3
.§-
Tigq= pseudo=-frequency of the i”h axle if both the tire and the
J

suspension springs act in series
g = gravitational acceleration
h = length of a panel in the center span
. th
hr = length of the r  panel

I = moment of inertis of the bridge cross-section

il’ ig = dynamic indexes of the tractor and trailer, respectively
Ji = moment-deflection coefficient, defined in Art. 7T
ki = spring constant for the ith axle; refer to Arts. 5.5 and 9.2
k; = modified carry-over factor defined in Art. 7
kt,i = effective stiffness of tires for the ith axle
kts,i = effective stiffness for the ith axle when the suspension
spring and tire spring act in series
L = length of the center span
£ys B, = axle spacings, as shown in Fig. 3a
Miy Mh = moments at the secﬁions where Dl and Dh are evaluated
Mé, M3 = moments over the first and second interior support, respectively
E% = moment at the center of the center span
m = pumber of panels in the center span
m, = mass concentration at the rth ncde
n = humber of panels in either side span
Ei = interagting force between the ith axle and tﬁe bridge
or approach
Pigs = value of P, at the end of the @ time interval
P = gtatic reaction for the iﬁh axle

st,1
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Wy, W

F] W

2

W.

Wo W 5

aga

reaction~load coefficient, defined in Art. 5.3

reaction at the first abutment, first pler, second pier and
second abutment, respectively

reaction-deflection coefficient, defined in Art. 5.3
zl/L and 22/L9 respectively
fundamental period of vibration of the bridge

second and third natural periods of vibration of the bridge
model

time, measured from the instant the first axle moves onto
the bridge

shortening of the suspension-tire system of the ith axle

speed of the vehicle

weight of the entire wehicle

weight of the center span of the bridge

"sprung” weight of the tractor or trailer, respectively
”unsprung” weights, as shown in Fig. 3a

weighted average of the amplitudes of the waves in a dynamic

Ancrement curve
distance between the first abutment and the first axle

displacement of rth node, measured from the peosition of static
equilibrium of the bridge when the load is off the bridge

value of y  at tg

deflection of the bridge under the ith axle, measured from
the static equilibrium position of the bridge under the
action of 1ts own weight

value of Yps at ts

th

generalized coordinate for the 1™ axle, defined in Art. 5.2

value of z, at %
i s

Ty

2L

angle coefficient for the rth

5 a speed parameter

node, defined in Art. 7
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A_ = dimensionless coefficient in the expression for wn
¢
17 Til®e s
x/(l+2a)L, a measurement of time or of the position of the
first axle on the bridge

-
i

P = mass per unit length of the bridge

standard deviation

Q
i

hiﬂ ET th
wn =255 n natural circular frequency of the bridge
L
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IT. METHOD OF ANALYSIS

4, Tdealization of Bridge and Vehicle

4.1 Idealization of Bridge. It is assumed that during vibration

the deflection configuration of the bridge in the transverse direction
remains the same at all times. Accordingly, the bridge may be represented

by a beam. In the analysis of the beam, the actual distributed mass is
lumped into a series of point masses,; spaced at egual intervals within each
~span. However, the flexibility of the beam is considered to be distributed.
Thus the actual system which has an infinite number of degrees of freedom is
replaced by a system for which the number of degrees of freedom is equal to
the number of mass concentrations used. Figure 1 shows the replacement systenm
for a simple-span bridge‘and a three-span continuous bridge.

Damping in the bridge is assumed fto be viscous. In the actual
system the damping resistance is distributed along the length of the bridge.
In the replacement system this resisftance is assumed tc be concentrated at
the points of mass concentration, as shown by the dashpots in Fig. 1.

4,2 Idealization of Vehicle. Since the bridge has been idealized

as a beam, the width of the vehicle and consequently, the rolling effect
cannot be considered in the analysis. Even when treated as a plane system,
a vehicle is a very complex mechanical system. However, inscofar as its effect
on a bridge is concerned 1t may be represented by one or two rigid bodies
supported on a series of springs and dashpots.

Figure 2 shows dlagrammatically the detailed features of what is
believed to be a complete representation of a tractor-trailer combination.
All shaded areas in this figure are consldered to be rigld bodies. The

guantity Wi represents the weight of the tracior mounted on its suspension
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system. The quantity il is the dynamic index * of the tractor. This is

a measure of the rotary moment of inertia of the weight W,, and it is defined

as the ratio of the radius of gyraticn squared to the product of the hqrizontal
distances between the two supports and the center of gravity of the weight.

The dashpots at the center of gravity of Wl represent damping resistances
against vertical motion and rotary motion. The rigid bar represents the chassis
of the tractor and its welght is designated as W), . The point masses, with
welghts Wy and Vs represent the mass of the axles, springs, and tires for the

two axles. The quantities WE’ i,., and w, refer toc the trailer and have the

2 3

same meaning as that of the corresponding quantities for the tractor. For
convenience in presentation, the weights Wl and W2 are referred to as 'sprung’
weights and the remaining weights are referred to as “unsprung” weights.

The dynamic characteristics of the tires for each axle of the vehicle
are represented by a spring and a dashpot. The suspension system for each axle
is represented by a massless spring, a dashpot, and a frictional device., The
dashpot accounts for the effects of shock absorbers or air suspension, and the
frictional device accounts for any frictional force that may develop in the
suspension system, particulsrly in the leaf springs. The value of the
fricti@nal force developed at any time is designated by F and the limiting or
maximum possible value is designated by F', As long as -F' < F < F' for a
particular axle, the suspension spring for that axle is inactive (i.e. only
the tire spring deflects), and the effective stiffness of that axle is equal
to the stiffness of the tires. On the other hand, if F = + F', both springs
are active and the effective stiffness is that of the two springs acting in

series. The characteristics of the suspension-tire system for a simplified

case will be explained further in Art. 6.2.
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In the present analysis the above system 1s further simplified by
(a) neglecting all sources of viscous damping and (b) replacing the "unsprung"”
weights by concentrated “"sprung” weights as shown in Fig. 3a. In this replace-
ment the weight of the chassis, designated as Wy, in Fig. 2, 1s incorporated
into the weights Wy and Vo This replacement is Justified by the fact that
the "unsprung" weights are quite small in comparison tc the "sprung" weights.
For a representative tractor the ratio of the total "unsprung” weights to
the "sprung" weight is about 1/7, and for a trailer it is for all practical
purposes negligible. In addition to the three-axle load unit, in Fig. 3 are
shown specialized models for a two-axle and a single-axle load unit.

With its veloecity specified, the three-axle load unit shown in Fig. 3a
has three degrees of freedom. The parameters which define its characteristics
are:

(a) the weight distribution parameters which include the weights

ng W

o7 and w,, and the dynamic indices i, and i

2 1 o}

(b) +the geometrical parameters which include the axle spacings L.,

W.

17 v

and 12, and the ratios ay through a_, as defined in Fig. 3a;

>

{¢) +the stiffness parameters for the tires and the suspension

springs; for the ith axle {i=1,2,3), the stiffness of the tires is denoted

by k, . and the stiffuness of the tires and the suspension springs when acting

t,d

in geries is denoted by k .3
ts, 1

(a) the friction parameters, for the suspension systems of the

vehicle. DFor the ith axle this is the limiting frictional force F;o

5. Method of Analysis

5.1 Assumptions. The analysis is based on the ordinary beam theory;

which neglects the effects of shearing deformation and axial forces. In
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addition, since the mass 1s treated as a series of point masses, the effect
of rotary moment of inertis does not enter in the scolution. The vehicle is
assumed to remagin in contact with the bridge at all times, and its angular
displacements are considered to be small. It is further assumed that no
longitudinal force can develop at the junction of the tractor and trailer.
This junction is known as the "fifth wheel pivot". Finally, all springs of
the vehicle are considered to be elastic,

5.2 Coordinates. The motion of the vehicle-bridge system 1is
expressed in terms of the coordinates zg and Yy shown in Fig. 4, The coordinate
zy denctes the vertical displacement, measured from a fixed horizental plane,
of the point of support of the vehicle massifor the ith axle. The coordinate
Y, denotes the deflection of the rth node point of the beam. This deflection
is measured from the staﬁic equilibrium position when the bridge is subject
to its own weight alone. Both caordinates z and y are considered to be
positive when downward.

5.3 Eguations of Motion for Bridge Model; Let Pi be the interacting

force between the bridge surface and the ith axle of the vehicle. Then the

equation of motion for the concentrated mass at the rtn node of the beam, m.

may be expressed as follows:

m ¥ + cm ¥ -\ Rj v, = Vigte, -0 (1)
ryr fyr T “J gia Qr i

vhere y_ is the deflection of the rth

node, as previously defined, and a dot
superscript denotes one differentiation with respect tc time., The guantity
Ri is defined as the reaction-deflection coefficient and represents the static
reaction at the rth node point induced by a unit deflection of the jth node
point, when all other nodes are supported againét deflectiéna A reaction is

. ‘s . i,
considered as positive when directed upward. In an analogous manner, Qr is
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defined as the reaction-lcad coefficient and represents the reaction at the
rth nede point induced by a concentrated unit load at the point of application
of Pi vhen all nodes are supported against deflection. Obviously, when the
unit load is off the bridge, Q. = O.

In Eg. 1 the first term represents the inertia force for the rth
mass, the second term represents the concentrated damping force, and the last
two terms represent the total resisting force provided by the beam. In
particular, the third term denotes the resisting force produced by the dis-
placements of the node points. The summation for this term is extended over
all node points. The last term denotes the resisting force due to the inter-
active foreces Pi when the nodes are held against deflection. The Summati@n
for this term 1s extended over all the axies considered. It should be noted
that the interacting forces Pi are not known at this stage. The procedure
used to evaluate these forces is described in Art. 5.5.

By application of Eq. 1 to each mass, one cbtains as many equations
as there are degrees of freedom for the bridge model. The quantities R depend
only on the characteristics of the bridge model, whereas the quantities Q
dépend both on the characteristics of the bridge and the position of‘the load;
hence the latter are time-dependent quantities. Both quantities can be
evaluated in a number of different ways. The procedure used in this work will
be describeq in Arts. 7 and 8.

Equation 1 is applicable to bridges having any boundary conditions
and any number of spans, and is independent of whether the cross section of
the bridge is unifoxrm or not. It can, thersfore, be applied to simple span,
continuous or cantilever bridges. The reacticn coefficients R and @ will,

of course, be different in each case. It may be noted alsc that the speed of

the vehicle may vary arbitrarily.
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5.4 Equations of Motion for a Vehicle. ILet }?SJG 5 be the reaction

3
at the ith axle when the vehicle is in & position of static equilibrium. With

Pi denoting the dynamic reaction at any time %, the disturbing force for the

ith axle is Pi - P . and the eguation of motion for a three-axle vehicle

st,1
can be stated in the form:

— — - - ~ -

311 Fp P3| B Py - Pstn
i3 — - s -
81p  Bpp  Byz| | Z| =g | Pyt Py o (2)
a a Z P, - P
13 %25 %33 |75 3 7 st,3

where g 1is the gravitational acceleration, W is the total weight of the

vehicle, and a) through are dimensionless coefficients given by the

33

following expressions:

=

8., = (a2 +aai ) Yl + 8 (a +aai) =2 4 = 7
11 1 F %1% 3% T W
W

81, = 818, (1- = ) + ag (1-a )(a + a3a412

W?
al5 = aBaha (1~12) =

W W W s (5)
Bpp = (a +aai ) 7+ (1=~ -8 ) (aB + g8 i ) ﬁ£'+ ﬁ@
8oz = 838 (1wa5)(1~i2} T
ay5 = (o +ammi) = + g ]

The gymbols in these expressions have already been defined. The details of
derivation are presented in Appendix A. In the following the matrix of the
coefficients g is denoted as matrix A.

Premultiplication of Eq. 2 by the inverse of matrix A yields,
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Since the matrix A is symmetric, its inverse, matrix B, is also symmetric.
For a case involving more than one vehicle, an equation of the above form
must be written for each wvehicle.

It can be shown that a sprung mass with a value of dynamic index
i=1 is dynamically equivalent t¢ two separate point masses attached directly
to the supporting springs of the distributed mass. The weights of the two
masses must be equal to the static reactions produced by the distributed
mass. By making use of this fact, it is possible to consider certain special
cases of a three-axle load unit. The following cases are of special interest.

(a) When i, = 1 and =

2 P

o+ WB preceded by a two-axle load unit. In this case, the coefficients

a13 and a25 in Eq. 2 are equal to zero, and, consequently, in Eqg. 4 b15 = b25= Q.

The two=-axle load unit shown in Fig. 3b can be obtained from the above case by

= 0, one obtains a single-axle load with a

weight W

taking, in addition, Wé + w5 = 0, In this case, the coefficient a35 = O

and the matrices A and B are of the second order.

(b) When i, =1, a5 = 0 and a, = 1, one has a single-axle load of
2 . = o T i = = =

weight Wi + Wy followed by a btwo-axle load. In this case, 85 315 le
b15 = 0., The single-axle load unit shown in Fig. 3c can be obtained by
taking, in addition, W2 =W, = w5 = 0, Then the matrices A and B reduce to
aqq and bll’ respectively.

(¢) By taking i, =1, =1, a5 = 0, and a; = 8, = 1, one obtains
three single axle load units of weights Wi + Wy, w2 + W, and wge In this

case, A and B are diagonal matrices.
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It should be noted that these specialized load units can be
obtained also by a different combination of the parameters involved.

5.5 Evaluation of Interacting Forces. FEquations 1 and 4 are

coupled through the interacting forces Piy which remain to be evaluated.
Let time t be measured from the instant‘the first axle enters the bridge.

Then the interacting force at time t 1s given by the equation
T du:.,L
Pi = Pi’l -I-f ki I dat (5)
t=0 o

where Pi] is the initial value of Pi’ ki is the instantaneous effective
t=0
stiffness of the suspension-tire system for the ith axle at any time 7, and

Uy is the corresponding shortening of the suspension-tire system.
If at the instant it enters the bridge, the vehicle is at the

position of static equilibrium, the initial force Pij = P The

t=0
instantaneous stiffness ki depends on the magnitude of the frictional force

st,i°

Fi which, in turn, depends on the history of the shortening U, - As previously
noted, when the frictional force Fi for the ith axle is less than its limiting
value F;, the quantity ki is équal to the stiffness of the tires only, whereas
when Fi = F%, ki is equal to the combined stiffness of the suspension springs
and the tires acting in series. The procedure used to‘evaluate ki for a
simplified case is described in detail in Art. 9.2.

The shortening u, can be expressed in the form,

ug =z f Aoy - Ypy * constant - (6)

where zs is the coordinate for the ith axle, as previously defined. The

quantity dPi represents the deviation of the bridge profile from a horizontal
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line passing thrOugh the first abutment for the point of application of Pig

as shown in Fig. 4, and it is positive when upward. This deviation may be

due to dead lcad deflection, initial camber, grade, vertical curve or roadway
unevenness. The quantity yPi represents the deflection of the bridge at the
point where Pi acts. The deflectioﬁ Ipi is measured from the static equilibrium
position of the beam, when acted upon by its own weight, and it is positive
downward. This gquantity is a function of the coordinates Y. (i.e. of the de-
flections of all node points) and of the magnitude and position of the inter-
acting forces Pi° The constant term, while irrelevant in subsequent computation,
is required in the above expression since z; is measured from an arbitrary
reference line.

5.6 Summary. Application of Egs. 1 and 4 to each concentrated mass
of the bridge model and to each axle of the vehicle yileld a set of simultaneous,
second order differential equations, equal in number to the number of degrees
of freedom of the bridge-vehicle system. In these equations the independent
variable is t and the dependent coordinates are Y. and z,-

In the solution of equations of this type, it is usual to express
all time-dependent quantities, other than the coordinates themselves, in herms
of the coordinates and the independent variable. In the present case, the
additional time-dependent variables in Eqs. 1 and 4 are the reaction-load
coefficients, Qiy‘and the interacting forces, Pio With the vehiecle speed
specified, the quantities Qi can be expressed explicitly in terms of the
position of the load, which is a function of %, and the characieristics of
the bridge model. However, the quantities Pi cannot be expressed explicitly,
as can be appreciated by an examination of Eg. 5. It can be seen that the
right side of this integral equation includes the quantities uy and kiﬁ both

of which are functions not only of the coordinates Yy and zy and of other
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physically determinable quantities, but alsc of all interacting forces Pi°
Furthermore, as explained in the preceding article, the value of the instan-
tanecus stiffness ki depends upon the past history of motion of the entire
system.,

These equations can be solved conveniently by a numerical method of
integration in which the evaluation of the interacting forces Pi is a major
intermediate step.

As the integration of the differential equations is carried out, the
values of all the coordinates and of the interacting forces are determined.
From these guantities the values of the corresponding deflections, moments
and reactions at any desired section may then be evaluated by statiecs.

It is to be emphasized that the equations of motion presented in
this chaplter can be applied also to the cases for which the bridge material
is non-linear or even plastic. For non-linear elastic material, the reaction-
deflection coefficients Ri and the reaction=-load coefficilents Qi in Eq. 1
depend on the value of the deflection at each node point and on the magnitudes
and locations of the interacting forces Pio For the plastic case, these two
coefficients depend not only on the guantities mentioned above, but also on

the deflection history of the node points,
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IIT, APPLICATION OF METHCD IO ANALYSIS OF THREE=-SPAN CONTINUOUS BRIDGES

This chapter is concerned with the detailed application of the
method presented in the preceding chapter to the special case of a three-span

continucus bridge traversed by a single vehicle.

6. System Considered

The system considered is shown in Fig. 5; its characteristics are
as follows: -

6.1 Bridge. The bridge model is a three-span continuous beam of
equal side spans and uniform flexural rigidity, EBEI. The length of the center
span is denoted by L and the length of a side span by al.. The center span is
divided into m equal panels of length h, and each side span is divided into
n equal panels of length %~aho The nodes are numbered consecubively starting
with zero at the left abutment and terminating with (2n+m) at the right
abutment. The panel between hodes r and r-1 1s designated as the rth panel.
As before, the mass is considered to be concentrated at the node points.

6.2 Vehicle. The vehicle is idealized by any one of the systems
shown in Fig. 3. The following additional assumptions are made: ({a} both the
suspension springs and the tire springs are linearly elastic, {b) the maximum
frictional force which can be mobilized in the suspeusion‘system of an axle
is censtantzAand (c) the speed of the vehicle is censtant.

Available test data on trucks (28),(29) show that the stiffness of
the suspension springs is fairly constant bub that the stiffnese of the tires
is dependent on the intensity of the applied lcad. These tests show further
that the maximum frictional force which can be mobilized in the suspension of

an axle is in general a complicated function of the load transmitied through
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the axle and depends on such factors as the condition and the age of the
springs. However, when the variation in the magnitude of ﬁhe interacting
force is small, the assumption of linear elasticity for both springs and the
assumption of constant maximum frictional forces are quite reascnable. These
assumptions appear to be acceptable even for large variations of the inter-
acting force. In selecting the stiffness of the suspension spring and of the
tires of an axle, one should use the values corresponding to a load equal %o
the static reaction on that axle. Similarly, the value of the limiting fric-
tional force for an axle should be determined for a mean 1oad* equal to the.v
static load on that axle.

The relationship between the infteracting force, P, and the shortening,
u, of the combined suspension~-tire system is shown in Fig. 6. Included in this
figure, is also a dlagram showing the relationship between u and the frictional
forece, F. As an example, assume that a single-axle load unit is displaced
from its position of equilibrium (iaé° when P = Pst)’ and that the initial
value of the frictional force is egual to mero. As the displacement is in-
cregsed, the frictional force first increases at the same rate as the inter-
acting force. Accordingly, the initial paths of the P=-u and F-u diagrams are
parallel, The suspension spring remains inactive and the stiffness of the
system, represented by the slope of line oa, is equal to the stiffness of the
tiresj kte As the displacement is increased further, the frictional force
will eventually attain its limiting value F'. From that point on the fric-
tional force will remain constant and the suspension spring will come into
play. Accordingly., the slope of the P-u curve becomes equalAto the stiffness,

k of the suspension and ftire springs acting in series. If at some instant,

s’

say the instant represented by point b on the diagrams, the displacement is

#
On a load=displacement diagram, the mean lcad is represented by a curve
midway between the loading and unloading curves.



=01

decreased, the tire spring will rebound and the suspension spring will remain
idle., The frictional force will then decrease at the same rate as the inter-
acting force, and the unlocading paths on the P-u and F=-u diagrams will be
parallel to the initial paths. If the displacement is decreased further, at
an instant represented by points ¢ on the diagrams the frictional force will
become equal to ~F'., Then both springs will act in series. A possible path
beyond this instant is represented by the lines cd-de-ef-fg.

| Tt is clear that the values of P and F depend not only on the value
of u, but also on the past history of u. To determine whether the effective
stiffness of the suspension~tire system is equal to kts or kty it is only

necessary te know whether the locus of F-u follows a herizontal or an inclined

line.

T. Characteristic Coefficients of Bridge Model

The reaction-deflection coeffiecients, Rg in Eg. 1 are constants for
a given bridge model. These ceoefficients may be evaluated in a number of
different ways. The method used in this study is based on the modified moment
distribution procedure introduced by T. Y. LinGo}a

The essential feature of Lin's procedure is that an unbalanced
mement at a joint is balanced and carried over to the other Joints Jjust once
to obtain the final moments. The procedure makes use of the concept of the
effective stiffness and effective carry-over factors which are defined as
follows: Consider a bar ab resting on non-deflecting supports and elastically
restrained against rotaticn at end b by a coil spring having a stiffness R.
The moment at end a necessary to produce a unit rotation at that end is de-

fined as the effective stiffness of that end of the bar. Denoted by K;y this

stiffness is given by the eqguation,
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b B0 %
K”:[lag’b — J
a K +R

where Ka and Kﬁ are the Hardy Cross stiffnesses of the bar for the ends a

K, (7]

and b respectively. Similarly ka b and kb g B¥€ the Hardy Cross carry-over

b4 g
factors from ends a to b and from b to a, respectively. The ratio of the
moment produced at end b to the applied moment at g i1s defined as the effective

carry=over factor, k; B? and is given by the equationg
3

a,b = 3 ——= g1 (8)
3 - < 3
1~k )y JE + B
For a prismatic bar, K =K =K k . =k = - 1/2, and the above
equations become
.
K"z[lal K_JK {9)
K+ R
and
. R .
k! = - g (10)
a;b 2K 4+2R

For a continuous beam the coil spring symbolizes the continuity of a particular
span with the adjacent spans.

In the course of calculating the coefficients Rg by this procedure,
one calculates also the mcments at the nodes due to a unit displaéement at the

th . . ’
J node. These moments are termed as moment-deflection coefficients and are

designated by Jﬁ . In evaluating the coefficients Rg and Jig the following
quantities are used. In all cases, it is assumed that the bridge medel is

supported against deflection at the node points.

{a) Effective Stiffness Coefficients, Consider the portion of the
bridge model between the left hand abutment and the rth node as a beanm conbinucus

over non-deflective supporis at the nodes. Then the effective stiffness of the
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beam at end r may be stated as the product of a dimensionless stiffness
coefficient Cr and the quantity hEI/h, where h refers to the length of a
panel in the center span of the bridge model. By application of Eq. 2 it

can be shown that the coefficient Cr is ‘given by the following recurrence

Tormulas
b,
h 7
h 1 x
Cruhr‘:l“ul&_A.C J (ll)
h ' Tr-l
T

where hr is the length of the rth panel. For a panel on the center span,
hr = h; and for a panel on a side span, hr = %-ah,
It should be noted that, because of symmetry, the dimensionless
coefficient for the stiffness at node r for the portion of the beam between
th . .
the r node and the right hand support is equal to G2n+m-r°

(b) Effective Distribution Factors. The effective distribution

factor for the right hand side of the rﬁh node, designated as dr’ is given by

the expression,

‘ C
q = 2n+mér f (12)
T C +C
r 2n+m=r

The distribution factor for the left hand side of the rth node ig 1 = dfu

{¢) Effective Carry-Over Factors. The effective carry~over factor

from node r to node r=1 is designated as k; rol® "By application of Eq. 10,
2

cne finds that

B crml
k! = 13a
2h r=1
r
Since the beam 1s symmetrical about the center line, it follows that
k! = k {13b}

b
T on+m-r, 2n4m-r=l °
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For the sake of brevity, in the following discussion the quantity k; el
| . J

designated as k;o

To determine the moment-deflection cecefficients Jg and the reaction-
deflection coefficients Ri s The jth node of the model is first displaced by a
unit amount, and by keeping all nodes fixed against rotation the fixed-end
moments produced at the nodes (Jj = 1), j and (j + 1) are evaluated. The

resulting unbalanced moments (if hj = h,. ., there is no unbalanced moment at

J+1
the jth node) are then distributed and carried over by use of the quantities
given in Egs. 12 and 13. The final moments at the nodes yield the ccefficients

Jﬂ, The reaction-deflection coefficients Rg are next evaluated from the

equation

R) = -5 e ()
r r+l1

The quantities CT and dr are used only to evaluate the coefficients
Rg and Jﬂ; whereas the carry-over factors k' and the quantities Rg and Jg are
used repeatedly in later stages of the solution.

Another quantity needed in subsequent computation is the total angle
change produced at the rth node when the beam is cut at the rth node and a unit
bending moment is applied on the two sides of that node. As before, all nodes
are aséumed to be held against deflection. This angle change is denoted by er
and is given by the expression;

L
r Gr 62n+mmr YRT

By use of Eg. 13, the above expression may be vritten as

h h
h r 2 1 ., r=1 ,2 1 ;
r T BT [h (§,+ 3'kr) TR (§‘+ 3 kén+m—r>] ‘ (15)

It should be emphasized that the guantities defined in this article

depend only on the characteristics of the bridge model.
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8. Basie Operations

Certain operations are used repeatedly in the numerical solution of
the equations of motion and in the computation of deflections, bending moments
and reactions. A systematic treatment of these operations is desirable. The
operations involved are as follows:

Op. 1: Evaluate the moment and defle;tion at any point of a simply
supported beam due to moments applied at the ends of the beam.

Op. 2: Evaluate the moment and deflection produced at any point of
a simply supported beam due to a concentrated load on the beam. The governing
expressions for Operations 1 and 2 are quite simple.

Op. 3: Evaluate the moment at the rth node produced by the ith axle
load Pi, when all nodes are held against deflection. This moment is equal to
the product of Pi and the moment-load coefficient Mi. By Maxwell's law of
reciprocity, the latter quantity is numerically equal to the deflection at the
ith axle produced by a unit moﬁent applied at the rth node (With the continuity
there cut) divided by the coefficient Gro The latter coefficient is given by
Eg. 15. To evaluate this deflecfion at tﬁe ith axle, the moments at the ends
of thé panel supporting the ith axle are first calculated. Theée are determined
by multiplying successively the effective carry-over factors for the panels
between the rth node and the nodes where the moments are computed. The deflec-
tion at the ith axle is then computed by applicaﬁion of Op. 1.

Op. 4: Calculate the reaction at the rth node produced by the ith
axle load Pi’ when all nodés are held against deflection. This reaction is
equal to the product’of Pi and the reaction-load coefficient Qia The latter
coefficient is also equal to the deflection at the point of application of Pi
due te a unit displacement at the rth node, 'To evaluate this deflection, first
the moment-deflection coefficients; J, fér the nodes on either side of the

panel supporting the ith axle are selected, and then the deflection produced
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by these moments are determined by application of Op. 1. If the axle is on
a panel connected to the rth node, this deflection represents only one component
‘of the desired deflection. The additional component is obtained by considering
the deflection corresponding to a rigid body rotation for that panel.

Op. 5: Evaluate the moment at the rt“]{l node due to known deflections
of all node points. This moment is equal to ? yj J£°

Op. 6: Compute the reaction at the rth node due to known deflections
of all node points. This is equal to % ijio

The last two operations may involve small differences of large

numbers; therefore, the individual products must be evaluated to a large number

of siénificant figures.,

9. Numerical Integration Procedure

9.1 General. The equations of motion of the system have been
sclved numerically by means of a step-by=-step method of integration. The time
required for the vehicle t6 cross the bridge has been divided into a number of
short intefvals and the equatioﬁs of motion have been "satisfied” only at these
discrete instants. Let it be assumed that the values of the acceleration,
velocity and displacement of each coordinate of the system are known ét a time
ﬁsﬂ and that i% is desired to find the corresponding values at time té+l’ which
differs from ts by a short interval At. The method used to accomplish this
consists of the following basic steps. First, an aésumption is made regarding
the manner in which the acceleration of each coordinate varies within the time
interval. Second; the velceity and displacement for each coordinate are de-
termined in terms of known accelerations, velocities and displacements for
the beginning of the interval and in terms of uhknown accelerations for the
end of the interval. Next, these unknown accelerations are evaluated by

"satisfying" the equation of motion at the end of the time interval. The
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velocities and displacements for this %time are finally determined from the
expressions established in the second step.
In the present study, the following generalized equations due to

(31)

N. M. Newmark / have been used.

o 1 L% Joo o0
Xk,s+l = %k,s *t5 Qﬁt)(xk}S + Xk}s+1) (16)

5 1 2, 2 o0 PR
: = (At) (= = B ¢ )
xkgs+1 ngs * Vﬁt)xkys A Bllat) ngs + plos) Xk,s+l W17

where B is a diﬁensionless parameter specifying the varistion of the accelera-
tion within the time interval; the quantity Xy represents the displacement of
a coordinate (either ¥y, or zi}; and X, andyﬁk represent, respectively, the
corresponding veloclity and acceleration. The subscripts s and s+1 following
a comma identify quantities corresponding to ts and ts+lg respectively. For
the numerical results presented in this report B was taken equal to 1/6; this
value corresponds to a linear variation of acceleration.

The following iterative procedure was used to evaluabte the accelera-~
tions, velocities and displacements of the coordinates at the end of a time
interval. i

1. Define the position of each axle on the bridge for time ts+lo

2. Assume that the accelerations yrys+1 and %i,s+l for the end of

the time interval are the same as those at the beginning of the interval,

and from #gs, 16 and 17 evaluate the velocities yr’5+l and Zi,s+l and the
1 » t; o o
displacements yrgs+1 and Zlﬁs+l

3. Evaluate improved accelerations for the Y, coordinates pro-
ceeding as follows:
{a) By application of Eq. 1 1o the first node {r=1), obtain an

improved value for ¥. .. The major operstion in this step concerns the
P yl,s+

1

. S, | ] i 5 4
¥l A s 't»l > . o o e r g tdt

computation of the quantities % Rl yg,s+l and ; Ql P13s+l The former guantilty
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is obtained by Op. 6 and the latter by repeating Op. 4 as many times as
there are axles. The values of Pi used in this computation are those applic=-
able to the beginning of the time interval (i.e. P s), and the values of
J
. .

yj,s+l are those evaluated in step 2.

(b) By application of Egs. 16 and 17 calculate the values of
1,641 and V1,841 corresponding to the accelerations determined in step 3(a).
(c) Repeat steps 3(a) and 3{(b) for the remaining y,. coordinates

(r =2, 3, oc. ), considering one coordinate at a time. For each computation,

and ¥ .

use the latest available values of y, o
Jss+l Jss+l

4, Evaluate improved accelerations for the zy coordinates as follows:

(a) Compute the interacting force Plgs+l at the end of the time
interval. The various steps involved in this computation are described in
detail in the following subarticle.

{(b) From Eq. 4 evaluate % ,1» using the latest available value of

1,s
P . For the first axle, the value of P . used is that evaluated in
i,8+1 1,s+1
. > -+
step 4(a), and the values of P233+1 and P§js+1 are those obtained from the

preceding cycle.

(¢} From the acceleration obtained in step 4(b), determined improved
values of 2y ar1 and 2y 4l by use of Egs. 16 and 17.

{d) Repeat steps 4(a), 4{b) and 4{c) for the remaining axles (if any),
considering one axle at a time, always using the latest available values of

P d z

. an . 0
i,8+1 1,841

5. For each coordinate, compare the newly derived value of accelera-
tion with the previously available value. If the difference between the two
values for any coordinate exceeds a prescribed tolerance, repeat steps 3 through

and y. When all

5, always using the latest available values of Pifs+l Jys+l’

differences are less than the prescribed tolerance, the integration for this
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time interval is considered to be completedo One then proceeds to the next
interval. If desired, the values of reactlons, bending moment and deflection
at any selected point may be evaluated before proceeding to the next interval.
Steps 3 and L constitute one cycle of iteration. To illustrate the details
of the procedure, a numerical example is presented in Appendix B for one step
of integration.

9.2 Evaluation of Pic In the computation of P, it is assumed that

i

the effective stiffness of the suspension=tire system remains constant within

a time interval of integration. In other words, the suspension spring is
assumed to engage or disengage at the end of a time interval. Under this

assumption, Eq. 5 may be written in the form:

Py ooyl = Py g + (Ouy)ky
or Pi,s+l - Pi,s + (ui,s+l - ui,s}ki (18)

where the subscripts s and s+l denote, as before, gquantities corresponding to

time ts and ts+l’ respectively. The quantities ui,s+l and ki are determined

as fellows:

(a) Computation of wu, The value of wu, is determined by

i,841° i,s+1
application of Eg. 6. The value of dPi'in this equation is specified, and the

value of the deflection Zs is furnished by step 2 or U4(c) of the iterative pro-
cedure described in Art. 9.1, The deflection under the load, Ypis is evaluated
by superimposing the following three components: (i) deflection due to the
moments acting at the two ends of the panel; {ii) deflection due to the force
or forces P, acting on the panel; and (iii) deflection due to a rigid body
displacement of the panel.

The moments at the ends of the panel are obtained with the aids of

Ops. 5 and 3. Then component (i) of the deflection is obtained by Op. 1.
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The component {ii) is obtained by application of Op. 2 for each axle on the
panel. The rigid body displacement is determined freom the known deflections
T the end points of the panel, and the component [iii) is evaluated by simple
proportion.

Strictly speaking the deflection y?i must be evaluated for each
cycle of iteration in the integration process, since the values of y and P
involved in the computation vary from one cycle to the next. Inasmuch as this
computation is rather time consuming, an appfeximation was used. This consists
in evaluating the first two components of Yps only for the first iterative
cycle of an integration step. The third component was evaluated for each
cycle of iteration. The results cbtained by this approximation were found to
be in good agreement with the "exact" values. A comparison is provided in
Table 1 for a case for which the difference between the two sets of solutions
is likely to be large. The response of the system at a few selected sections
was compared for a few selected instants.

(b) Determination of k.. The effective stiffness of ‘the suspension-

tire system for an axle is determined by making use of the F-u diagram for that

n

axle, as shown in Fig. 6. ILet the frictional force corresponding to Uy be
i B

denoted by‘Fi s In the F=-u diagram, imagine a straight line which passes
- i, :

through the point (u, F } and is parallel to the initial line oca. Iet
i,s’ 4,8

bl R . o s . . e e . 5
vy be the abscissa of the point of intersection of this inclined line and a

3
herizontal line corresponding to the positive value of F's Similariy, let

£ . . . - . e . . . .
us o represent the point of intersection of this inclined line with = horizon-

I

P

tal line corresponding to the negative value of F'. Then the value of ki to

be used in Eq. 18 is determined from the following criteria:
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Case Condition Consequence
1 +ou, < uo k. =k
1, T T = s iT Tt,i
by, >0 .
i u
2 i, + Au, > u, k. =k
i,s i i,8 i ts,1
3 u, + Au, > u? k, =k
iss i i,s i t,1
Aui<o
b4 u + Au, < u k, = k
i,s i-="i,s i ts,1

It follows that the selection of ki depends only on the value of‘Augyuu and uzo
The value of F need nct be computed. For cases 1 and 3 the values of w and uz

at time ts+ are the same as those abt time t55 whereas for cases 2 and 4 they

1
differ by the amount Au.

9.3 Initial Conditions. In order to start the integration procedure,

it is mnecessary to specify the initial values of the deflection and veloecity of
each node point, the velocity of each z-coordinate, the interacting force for
each axle, and the frictional ferce for the suspension system of each axle.
These values refer to the time the front axle enters the bridge.

9.4 Choice of Time Interval. In the application of the numerical

procedure described in Art. 9.1, the time interval used should be small enough
so that successive cycles of iteration converge and the solution is stable.
The criteria for convergence and stabllity of this procedure have been estab-
lished by N. M. Newmark<51>0 For B = 1/6, convergence and stability are

insured if

At < 0.389T7
where T is the shortest natural period of vibration of the system; in this
case, the syshem is the beam-wehicle combination. Shtrietly speaking, this

period depends both on the position of the wehicle on the span and also on
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whether the limiting frictional force of the suspension system of the vehicle
has been overcome or not.

The total time between the instaﬁt the front axle enters the bridge
and the instant the last axle leaves the bridge is { 1 + 2a + S, + 52} 1/v.

Iet N be the number of steps used for a complete solution, then

f
(1 +2a)y %1% s,)T

0.389 VT = 0,380 VT

N> {19)

The right side of this inequalitykrepresents the minimum number Qf steps re-
guired for a complete solution, on the assumption that At is constant and that
the criteria for convergence and stabiliby are independent of the position of
the vehicle on the bridge and the condition of the vehicle. For the bridge
model considered with a=0.8, n=3 and m=4, the shortest natural period

T= 002081%, where Tb is the fundamental period of vibration of the bridge

model. In this case, Eg. 19 reduces to

16,1 517t %
N>+ 5165 o (20)
where ?E% ,
a = T {21)

For a single-axle loading, the minimum value of N given by Eg. 20
is 215 when Q = 0,075, and 135 when O = 0,12, For a multiple axle vehicle,
the corresponding minimum values of N are of course larger.

In Table 2 solutions are presented for the maximum dynamic effects
in a three-span continuous bridge model considering different values of .
The characteristics of the system are defined in the table heading. Soclutions
are given for a value of @ = 0.075, with three different values of N, and for
a value of ¢ = 0,15 with bwo values of N. It can be seen that differences

between corresponding sclubions are generally small., For the numerical resulis
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presented in the remaining part of this report the value of O ranges between .

0,12 and 0.18. For these solutions a constant value N = 600 was used.

10. Computation of Deflections, Moments and Reactions

10.1 Static Effects. The static effects are determined by applica-

tion of the basic operations described in Art. 8. It is only necessary to
consider n =m = 1 and P = Psto In particular, the deflection and momeni at
g prescribed point of a span are determined in two steps. First, by considering

the span to be simply supported the effects of the force or forces PS acting

t
on that span are determined. To these effects are added the effects producsd
by the moments at the ends of the span considered. The reaction at a support

is obtained by application of Op. 4 for each axle on the bridge.

10.2 Dynamic Effects. At the end of an integration step, the

deflections of the node points and the interacting forces are known. From this
information the deflections of other points and the magnitude of moments and
reactions can be evaluated as follows: The deflection of a point within a
panel ig determined by the addition of three deflection components in a manner
similar to that described in Art. 9.2 in comnection with the computation of Yps-
Moments are evaluated in a similar way, with the exception that only the effects
of the end moments and of the interacting forceévneed be considered. The
regction at a support is determined in two steps. First, the effect of the
interacting forces 1s calculated by considering the beam to be held against
deflections at all node points. To this is added the effect ¢f the known
deflections of the nodes. The first component is determined by Op. 4, and

the second component by Op. 6.
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11. Summary of Pa:ameters

The parameters of the problem are expressed in dimensionless form
and include the following:

Bridge Parameters

(1) The span ratio, a. This is the ratio of the side span to the
center span.

{2) The demping factor, e/ecr, where ¢ is the damping force per
unit mass per unit velocity, and C.p is the critical damping coefficient
corresponding to the fundamental meode of vibration of the bridge.

Vehicle Parameters

{3) The distance parsmeters, a), a, and 8- As shown in Fig. 3a,

P

these parameiters define thé locations of the centers of gravity of the tractor
and trailer and the location of the "fifth wheel pivot".

{(4) The weight distribution parameters, Wi/W, W2/W, wi/w, wg/w
and WB/We (See Fig. 3a).

{(5) The dynamic indices il and 12 for the tractor and trailer, as k

defined in Art. L4.2,

{6) The coefficient of friction, M, for the suspension system of

. i .th - Y
each axle. For the i axle, “i = Fi/Pst,i°

Bridge-Vehicle Parameters

{7} The speed parameter o, defined by Eq. 21.
{8} The weight ratio w/wgy where W is the total weight of the vehicle
and Wb is the weight of the center span of the bridge.

{9) The frequency ratios ft/fb and fts/fb for each axle., The

quantity fb is the fundamental natural frequency of the bridge, and ft and

fts are pseudo-frequencies which are measures of the stiffnesses of the tire

and of the suspension springs for an axle. The guantity ft represents the
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frequency of a mass with a weight Pst vibrating on the tire spring, whereas f%s
represents the corresponding frequency of the same mass vibrating on the tire

. R . . . . th
and suspension springs acting in series, TFor the i axle,

1
SRR
t,i - en JP L[k {22a)

and

1

1 ;
Tos,1 = 5% B (22v)

st,i’ “ts, i

When the limiting frictional force Fg is so large that the effective stiffness
of the suspension-tire system for the ith axle is always equal to kt 42 OF
. E

when Fi is so small that the effective stiffness may be considered to be always

equal to k

ts. 17 then it is necessary to specify a single frequency. This
5

freguency is denoted by fvio

The numerator

of this expression represents the change in the interacting force for the ith

(10) The profile variation parameter, dPikt,i/Pstgi°

axle when the tire spring is shortened by an amount equal to dPio

(11) The axle spacing parameters, s, and s,, defined by the equations

2)

8y = zl/I,j and 8, = zg/L

in which £. and L, are the axle spacings, as shown in Fig. 3a.

1
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IV, COMPUTER PROGRAMS

12. General

The method described in the preéeding chapter has been programméd
for the ILLIAC, the digital computer of the University of Illinois. The
programs that have been developed can be used to compube +the dynamic response
of uniform three-span continuous bridges with equal side spans when traversed
by a single vehicle load having either one, two or three axles. It is also
possible to consider three single-axle loads, or a two-axle load followed or
preceded by a single-axle load. Two different programs have been prepared.

The first provides results for the complete history of the response of the
system, while the other can be used to determine only the amplificafion factors
for deflecticns, moments and reactions. The term "amplification factor” defines
the ratio of a maximum dynamic effect to the corresponding maximum static

effect and is abbreviated as "A.F.". |

The parameters which must be specified in using the programs include
the dimensionless parameters swmarized in Art. 11, the parameters n, m and
N which define the number of panels in the bridge model, and the number of the
time intervals of integration. In addition, for the "dynamic history program”
certain parameters must be input to specify the end of the computation and
the interval between print-ocuts. .

If the maximum stabtic effects are not available, they are compubed
within the machine. However, if they are known, they may be input at the »
beginning of the computation. At the start of the dynamic compubation, that
is, when the front axle of the wehicle enters the bridge, the program considers
the system to be in the so-called "neutral condition". For this condition,

the bridge is at rest {y_ = &r = 0), the vehicle has no vertical motion
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(2. = O, P = Pst)’ and the fricticnal force in the suspension system of the
vehicle is equal to zero (Fi = 0), If the initial conditions are different,
only those conditions which are different from the "neutral condition" must
be specified.

For each program, the informaticn output includes the reactions at
the four supports, the moments over the interior piers, the moment and deflec-
tion at the center of the center span, and the moment at a selected point in
each side span. The program for the history of the response yields, in
addition, the interacting forces between the axles of the vehicle and the
bridge, and the deflecticn at the points of the side spansvwhere the moments
are evaluated. With one exception, the magnitude of the dynamic deflection,
moment, or reaction at a point is expressed in terms of the corresponding
maximum static value. The exception concerns the deflection at the side span
which is expressed in terms of the maximum static defiection at the center of
the center span. The interacting force for an axle is expressed in terms of
the static reaction for that axle.

In their present form, the programs utilize the entire Williams
{fast) memory of the IILIAC, which has a capacity of 1024 locations, and
approximately 1200 locations of the magnetic drum (slow) memory. With certain
medifications, the programs can be specialized to the case of simple span

bridges, two=-span continuous bridges or cantilever bridges.

13, Description of Programs

The computer program for the computation of either the complete

history of the respounse or the maximum values of the response consists of

Lo

three major parts. Fach part consists of a bleck of instructions which are

stored (recorded) on the magnetic drum memory of the computer. Because of
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the limited capacity of the Williams memory, at each stage of the computation
only the "functioning” part of the program is retained in the fast memory.
Furthermore, the program is arranged so thal once the integration process is
started no further reference is made to informabtion reftained in the mégnetic
drum memory.

A general flow diagram for the complete program is shown in Fig. 8.
The function of each part and the sequence of operations Involved are described
in the following. The write-up of the complete program will be placed in the
JLLIAC Library of the Department of Civil Engineering.

{a) Part I. The program starts with the reading in of the data
{parameters) specifying the characteristics of the vehicle and bridge, exclud-
ing those parameters which specily the initial conditions of the system. Next
the subroutine labeled (Gl) is entered, and the time-independent characteristic
coefficients for the bridge mcdel are compubed and stored in the Williams
memery.  These ceoefficients include the effentive carry-over factors, k;3 the
moment=deflection coefficients, Jiy the reaction-deflection coefficients, Bgy
and the angle coefficients, Ero The coefficients required for the static
compubation are determined by taking n = m = 1., Following this, subroutine
{32) iz entered to compute the values of Pst and the elements of the matrix B

in BEg. 4. The values of P_, are determined in terms of the parameters speci-

T
fying the geometry and welight distribution of the wehicle. The matrix B is
determined by first forming matrix A in Eq. 2 and then inverting it. The
inversion of matrix A is performed with the aid of subroutine {3SEBl). The
last operation of this ?art of the program is to play back (transfer) the

second paxrt of the program from the drum memory to the Willisms memory and

then transfer contrel to the second part of the program.
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Up to this point, the machine operation for both the “dynamic
history program” and the "amplification factor program” are identical. How-
ever, in the latter program, there is an additional subroutine (OUTPT) for
punching out the values of the amplification factors at the completion of the
computation. A more detailed description of the function of €this subroutine
is given after the presentation of the third part of the program.

(b) Part II. This part is the same for both the "dynamic history
program" and the "A.F. program”; and performs four major tasks. The first is
to determine the maximum static effects. - This is carried out by routine (8S)
and the reéults are punched out by use of subroutine {SMAX). Routine {SS)
makes use of a number of subroubtines, of which the most importaﬁt are: f{a)
subroutine (STP), which defines the position of the axles on the bridge,

(b) subroutines (SDC-M), (SDC-P), (SMCP) and (SQ) which perform, respectively,
the basic operations 1, 2, 3 and 4 described in Art. 8, and (c) subroutines
(sMc), (SMD) and (SRC) which compube, respectively, the moment over the interior
supports, the moment and deflection at any selected point of the bridge, and

the reaction at any support. The last three subroutines make use of the

basic cperation subroutines {SDC-M), (SDC-P), (SMCP) and (8q).

In this part of the computation the characteristic coefficients
corresponding to n = m = 1 are used. Effects are evaluated only for the
positions of the vehicle considered in the integration of the equations of
motion. The maximm static effects are considered to be the maxima of the
computbed effects. These may be slightly smaller than the actual maxima which
may occur between two successive positions considered. If the maximum static
effects are known, they may be fed into the machine at the beginning of the

problem. Also, if these effects are already in the machine from a previous
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cemputbation, the calculation of the maximum static effects may be bypassed
by transferring control directly to the next operation.

The second function of this part of the program is to set the
initial conditions of the problem at the so-called "neutral condition". This
is done by subroutine (NIC). If the initial conditions are different from
these, the appropriate parameters are read in at this stage.

The third function is o establish for each axle the values of u"
and uz which are consistent with the initial values of Fio These values are
required te determine the value of the effective stiffness of the suspension=-
tire system as discussed in Art. 9.2

The final operation of this part of the program is to set the time
counter that records the value of (s + 1) equal to zero and to play back the
third part of the program from the drum memory. The setting of (s + 1) = 0
implies that the front axle of the vehicle is at the entrance of the bridge.
Finally, contrel is transferred to the third part of the program.

{c¢) Third Part. The principal functions of the third part are o
integrate Eqs. 1 and 4 numerically and to compute dynamic deflections, moments
and reactions. The major operations involved ares |

{1} To determine the position of the vehicle at the end of each
time interval by use of subroutine (DTP).

(i1} To integrate the equations of motion for this time interval,
and to store the valuesqgf P, u, v and ug at the end of this time interval.
This operation is carried out by subroutine (DINTE) together with an auxiliary
subroutine (DAUX).

{1ii) To evaluate dynamic deflections, momenits and reactions. In
the "dynamic history program”, a check is made to determine whether these

guantities are desired at the end of the time interval considered. If these
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quantities are needed, they are computed and punched out. In the "A.F.
program", these quantities are computed at the end of each time interval,
they are compared with the maximum values of the corresponding quantities
computed previously, and the new maxima are retained.

The foregoing steps are repeated until the last interval is reached.
At the end of this interval, the first part of the program is played back to
the Williams memory. In the "A.F. program” the amplification factors are
then punched out with the aid of subroutine {(OUTPT). This constitutes the
last step in the solution of a problem.

In Fig. 9 is shown a general flow diagram of the integration routine.
This is a modified version of routine SRLC 21 of the ILLIAC Library of the
Structural Regearch group. It is used to evaluate the velocity and displace-
ment for each coordinate in accordance with Egs. 16 and 17. The accelerations
§r§s+1 and %i,s+l needed in the application of these equations are computed
by the auxiliary subroutine (DAUX), the flow diagram of which is given in
Fig. 10. This auxiliary subroutine, in turn, makes use of subroutines {DDRET)

and (DMDIN). Flow diagrams for these subroutines are given in Figs. 1l and 12.

Subroutine (DDRET) is used to compute the quantity

™ 3 o
24 yj Rr + 24 Qr Pi
J i
for a specified node point. For ﬁhis compubtation this subroutine performs
Op. 6 and enters subroutine {DQ)} to perform Op. 4. The latter subroutine is
entered as many times as the number of axles counsidered.

Subroutine (DMDIN) is used to compute the approximate value of Ypi
as discussed in Art. 9.2. As previously noted, this deflection is evaluated
as the sum of three components. Thg first component is determined with the
aid of subroutines (DMC) and (DDC-M}. Subroutine (DMC) (refer to Fig. 13) is

used to perform Ops. 3 and 5 and to compute the total moment at a specified
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node point. This subroutine is entered twice to compute the moments at the
ends of the panel under consideration. Subroutine (DDC-M) is used to perform
Op. 1. It is entered once. The second component of deflection is computed

by subroutine (DDC-P) which performs Op. 2. Since the last two subroutines

are stralghtforward, their flow diagrams are not included. The third component
of deflection is evaluated by simple proportion.

Figure 1L shows a general flow diagram for the part of the program
used to calculate deflections, moments and reactions at specified sectioms.
In addition to subroutine (DDRET) which is used to obtain the reactions, this
part of the program makes use of subroutine (DMD) which yields the deflection
and moment at any specified point. This subroutine is similar fo {DMDIN) and

its flow diagram is also presented in Fig. 12.

14, Time Reguired for Solution of a Problem

The machine tﬁne required to cbtain a solution depends on the par=-
ticular problem considered. The fellowing is an estimate of the time required
for the solution of a problem by use of the "A.F. Program” or the "dynamic
history program”.

(a) Read in time for complete program: 3 minutes and 40 seconds.

(b) Time required for the first part of the program: U5 seconds.

{c) Time required for the second part of the program: It depends
on whether the maximum static effects are 4o be computed or not. If the
maximum static effects are not compubted, the time required is approximately
20 seconds. The computation of the static effects for each position of the
load reguires 0.18 sec. for a single-axle loading, 0.25 sec. for a two-axle
lcading, and 0.335 sec. for a threewéxle loading.

{d) Time required for the third part of the program: This time is

the sum of the following: (i) time required for integration, (ii) time required
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o calculéte dynamic effects, and (iii} time reguired to punch the desired
information.

The time required for one step of integration depends on the number
of concentrated masses considered in the beam model, the number of axlies con-
sidered, and the number of axles actually present on the bridge. The same
factors govern the time required for the computation of dynamic effects. This

time may be estimated from the following relations.

Condition Estimate of Time Required,
in Seconds

Number Number For Computation
n m of Axles of Axles Fo;ngze i:iﬁaOf of One Set of
Considered on Bridge er Dynamic Effects
1 1 0,11 + 0,19 I G.55
5 1 0.11 + 0.22 T 0.58
2 0.29 + 0.27 L 0.79
2 3
1 0,12 + 0.24 T 0.60
3 2 0.30 + 0,30 I 0.81
3 0.5k +0.36 1 1.02
1 1 0.14 + 0,39 I 0.70
5 1 0,1k + 0. 41 T 0.72
2 0,36 + 6.52 1 0.9k
3 b
1 0.15 + 0. 46 T C.7h
3 2 0.37 + 0,55 I G. o7
3 0.68 + 0,63 1 1.19

In this table I denotes the number of cycles of iteration per step of integration.
It should be noted that the value of I may be different for different steps of
integration. From the results of a few nuﬁerical solutions, it has been found
that, in general, the gquantity I increases with increasing number of dégrees

of freedom. It is approximately between 2 and 3 for a single-axle lecading,
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between 3 and 4 for a two-axle loading and 4 and 5 for a three-axle
loading.
The time required for punching out one set of dynamic effects is

approximately two seconds.
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V. RESULTS OF INVESTIGATION

15, General

The numerical results presented ﬁerein are for continuous bridges
with uniform cross section and equal side spénso The length of each side span
is considered to Be eight tenths of that af‘the center span, and the bridge
surface ié considered o be smooth and horizontal. The vehicle is represented
by a load unit having either one, two, or thfee axles, Mbst of the soclutions
presented are for single-axle 1oadingq tinless otherwise noted, it should be
understood that a single-axle loading isvconsideredo The majar’parameters in=
vestigated are the weight of the vehicle relative to the weight of the bridge,
the relative frequencies of the two systems, and the speed of the vehicle.
Although the majority of the solubtions are for smoothly moving vehicles, some
results are included for initially oscillating vehicles. Also included are
solutions indicating the effect of the frictional force in the suspension
system of the vehicle and the effects of damping in the bridge.

The range of parameters considered is such that the results are repre-
sentative of the behavior of bridges of the SC-6-53 type as specified in the
menual: “Standard Plans for Highway Bridge Superstructure”, Bureau of Public
Roads, Washington, D. C., 1957. These are three-span continuous bridges with
steel girders and a concrete deck designed for H20-8S16 loading. The span
lengths are in the ratios of 4:5:4. The weights of the center span and the
fundamental natural frequencies of vibration of the bridges are sumarized in
Table 3. These were determined as follows: The total weight of a bridge was
taken equal to the sum of the dead load reactions tabulated in the manual,; and
the weight of the center span was determined on the assumption that the total

welght is uniformly distributed along the bridge. In the computation of the
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natural frequencies, the mass per unit of length of the bridge and the cross
sectional area were considered to be uniform. The flexural rigidity of the
cross section was determined for full composite action between the beams and
the slab, considering the entire width of the slab to be effective.

The three-axle load unit considered in this Sﬁu@y c@rres?onds to an
H20-816 truck loading and is referred to as a "typical® three-axle vehicle.
The characteristics of this loading are summarized in the third column of
Table 4., These are average characteristics and were obtained from information
given in reference (28) and from menufacturers’ data. Included in this table
are the characteristics of a "typical® two=-axle trailer which corresponds to
the trailler unit of the threevaxle vehicle, and alsc a single-axle loading.

It should be noted that the weight of the latter loading is taken equal to the
total weight of the two-axle loading. Similarly, the frequency and fricticnal
parameters are considered to be the same for the two systems.

The quantities evaluated are summarized in Fig. 7ab These include
the deflections Dl and DLL at a distance 0.42 al. from the end supports, the‘
corresponding bending moments, Ml and Mug the moments over the two interior
supports, Me and Mzg the moment and deflection at the center’of the center
span, and the four reactions, Rl, RQ9 R3 and Rho In addition, the interacting
forces between the vehicle axles and the bridge were evaluated and studied.
The sections of a distance O.42al from the end supports represent approximately

the locations where the positive moment in the end spans i1s maximum.

16, Representative History Curves

The sclubion presented in this griticle is for a three-span undamped
bridge, traversed by a smoothly moving single-axle loading. The spans are

in the ratios of L4:5:4, the weight ratio W/Wg = 0,175, and the speed parameter
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a = 0,15. The frictional force in the suspension system of the load is con-
sidered to be so large that the suspension spring is not engaged and the lcad
oscillates on the tire spring only. The frequency ratio is taken as fv/fb = Ll
These parameters are representative of those for a three~span I-beam bridge
with 64'-80"-6L4" spans traversed by an H20-S16 truck loading moving at approxi-
mately 60 m.p.h. The solution was obtained by considering a total of seven
mass concentrations for the beam model, as shown by the sketch in the upper
part of Fig. 15. Imecluded in this figure are also the first four natural modes
of vibration of the beam model.

The results of the solution are presented in Figs. 16a through 16h
in the form of history curves. A history curve is a plot of the variation of
some effect {such as deflection, moment or reaction) as a function of time, or
the position of the load on the bridge. The curve in Fig. -16a is for the
interacting force and the curves in Figs. 16b through 16h are for deflection,
bending moments, and reactions at a few selected sections,; and for the corre-
sponding dynamic increments. Designated as D.I., the dynamic increment for
a particular effect 1s the difference between the dynamic value of that effect
and the corresponding static value.

The abscissa € in the history curves represents the distance between
the first support and the position of the load on the bridge in terms of the
total length of the bridge. Since this distance is proportional to the pro-
duct of time and the speed of the vehicle, the coordinate £ represents alsc
the time the load has been on the bridge as a fraction of the total time re-
guired for the load axle to cross the bridge. The ordinates of the history
curves are expressed in terms of the maximum static value of the particular

effect considered. The maximum static effects for this problem are given in
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the third column of Table 5. Included in this table are also the maximum
static effects for the two-axle and three-axle loadings considered later.

In Fig. 16a it should be ncted that the maximum variation in the
value of the interacting force is 7.3 percent of the static value, Psta It
follows then that this solution is also applicable to those cases for which
the coefficient of friction for the suspension spring, H, is larger than 0.073.
Inasmuch as for ordinary vehicles the value of B is of the order of 0.12 to
0.28, the present sclution is a realistic one, and it indicates that the suspen-
sion spring will not engage.

Concerning the curves presented in Figs. 16b through 16h, it is
worth noting the following:

(1) Although the dynamic increment curves are not periodic, for
each of these curves one can identify waves with certain distinct periods.

In general, the periods of these waves correspond to the lowest three natural
pericds of vibration of the beam, indicating that the major contribution to
the dynamic response arises from the participation of the first three natural
modes,

{(2) There is a striking similarity between the dynamic increment
curves for DQ and Mc presented in Figs. 16b and 16d. Also the dynamic in-
crement curve for moment over an interior support appears to be similar to
that for reaction at the same support.

{3} Mlthough the dynsmic increment curves for deflection and
moment ghown in Figs. 16b and 16d are for all practical purposes equal, the
amplification factors for moment and deflection, and the load positions for
which these effects are maximum are different in the two cases. The maximum
dynamic deflection is 10.2 percent larger than the meximum static deflection

and it occurs when the load is slightly awsy from mnidspan.. The maximum
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dynamic moment is only 6.6 percent larger than the corresponding static moment
and 1t occurs when the load is exactly at midspan. These differences are due

tc the fact that the shape of the static curves are different in the two cases.

17. Effeet of Number of Mass Concentrations on Accuracy of Results

In order to investigate the accuracy of the solubion obtained with
seven mass concentrations, the problem considered in Art. 16 was also solved
by using four mass concentrations {n = 2, m = 3}, Both solutions were obtained
for a time interval of integration of T@/600, where TO is the time required
for the axle to cross the bridge, and results were evaluated and printed at
intervals of TO/lOO°

In Table 6 are listed the amplification factors for the two cases
and the position of the axle producing the maximum effects. The tabulated
values of the response are the largest among the printed values. It can be
seen from this table that there are differences both in the values of the
maximum effects and in the positions of the axle for which the maximum values
are attained. The difference between corresponding amplification factors
ranges from zero for Dz, to & maximum of 0,104k for Mha It can be seen
further that the magnitude of this difference increases as the value of ¢
corresponding to the maximum effect ihcreasesa

The cause of this difference can be seen from Fig. 17 in which are
plotted the history curves for Mﬁ for the two solubtions and the correspond-
ing dynamic increment curves. It can be seen thalt the dynamic increment curves
are very similar, except for a phase shift which becomes progressively more
pronounced as £ increases. This phase shift is attribubted to the fact that
the natural periods of the two models are not the same. The lowest four
natural periods are given in Table 7. Included in this table are also the

corregponding periods for a beam with distributed mass. The latter values
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were computed by the method described in Ref. 32. It can be seen that whereas
the fundamental periods for the two models are the same, the other periods
differ slightly. If it is assumed that the period of the predominant waves

in the dynamic increment curves in Fig. 17 is egual to the third natural
period of the bridge, TB, one finds thét the phase differenge between the two

curves, Af, is given by the expression
Ny (23)
where AT, is the difference in the values of the third natural period for the

)

two models. For the case considered and £ = 1, this equation gives

0.007
At = 5j§5% = 0.03

vhich agrees with the phaée shift shown in Fig. 17.

Since.the shortest period of the predominant waves in the dynamic
iﬁcrement curves given in Figs. 16b through 16h appears to be equal to the
thir& natural period of the beam, it is believed that the solution wili be
accurate if the lowest three natural periods 6f,the analytical model used are
in good agreement with those for the beam with distributed mass. Inasmuch
as the naturai periods of the model with n = 3 and m =vh are close to those
of the continucus beam;, the results obtained from this model are believed to
be sufficilently accurate. Because of limitations in the ccmpuﬁer program, 1t

was not possible to obtain solutions with a larger number of mass concentrations.

18. Effect of Speed

The system considered in Art. 16 was analyzed for values of the
speed parameter, &, in the range between 0.12 and 0.18 at increment of 0.01.

The values of the remaining parameters were considered to be the same as before.
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The results of These analyses are presented in this article in the form of
history curves and spectrum curves.

18.1 History Curves. To indicate the manner in which the response

of the bridge is influenced by a small change in the value of the speed para-
meter, the history curves fresented previously in Fig. 16d are compared in
Fig. 18 with the corresponding curves obtained for a value of @ = 0,16 or
0,01 larger than for the previous case. This change in & corresponds to a
change in vehicle speed of approximate 4 m.p.h. on the prototype bridge.

It can be seen from this comparison that the dynamic increment curves
Tfor the two cases are guite similar, except for a phase shift which appears
10 increase proportionally with‘gu The amplitudes of the waves in these curves
appears to be somewhat larger for the larger value of &; however, the difference
is of no practical conseguence.

Considering that the time required for the vehicle to cross the
bridge is inversely proportional to the speed parameter, Q; and that the
“pericds” of the waves in the dynamic increment curves depend predominantly on
the characteristics of the bridge, one finds that the effect of changing & by
a small amount AQ is approximately the same as changing the scale of the g-axle
by anramaunﬁlﬁa/ao In Fig. 18, if the dynamic increment curve for & = (.15 is
concsived to be an elastic spring fixed at the left end, then the curve fur
O = 0,16 may be obtained simply by displacing the right end of the spring to

the right by an amount equal to

Comcie R cwscmagmien  ©= Cuecwmn

times the projected length of the spring. Having thus determined the dynamic
increment curve for & = 0,16, one may then obtain the curve for the dynamis
bending moment by superposing the dynamic increment curve on the static moment

curve. This technique, which cbviously is applicable to any effect, may be
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used to study the influence of a small change in O, and is particularly useful
in prediciting spproximately the value of @ which will produce the maximum dynamic
effect at a particular section.

In Fig. 19 are shown time histories of the dynamic increments for de-
flection at the center of the center span for values of & in the range between
0,12 and 0.18. These curves confirm the observations made previously. In par-
ticular, it can be seen that consecutive curves are generally quite similar and
that an increase in @ is equivalent to a “stretching” of the curve to the right.
The waveg which produce the maximum deflection gt the center of the center span
are shown shaded, and corresponding waves are identified by the same lebter.

There is a marked increase in the amplitude of the waves in the
‘iynamic increment curves as @ increases from C.12 to 0,18, the amplitudes
for @ = 0.18 being roughly twice as large as those for @ = 0,12. The values
of Xaa listed on the right hand margin represent the average values of the
amplitudes of the waves for each curve. In evaluating these averages only
waves with amplitudes in excess of 0.05 were considered. Associated with

each value of Xaa is given the standard aeviation, Ogrq? of the amplitudes

t

from the average value. This guantiby is defined by the equation

Z(Xaa - Xa}2 5
— i
Tstq = N-1 s (2h)

vhere Xa represents the amplitudes of the individual waves considered and N

the number of these waves; o is a measure of the uniformity of the amplitudes.

std

The smaller the value of ¢ the more homogeneous is the distribution of the

[

B

amplitudes. It can be seen that Xaa increases from about 0,06 for @ = 0,12
to about 0,11 for @ = 0,18, The standard deviation is approximately 0.02.

18.2 Spectrum Curves. The amplification factors for deflection,

moment and reaction for all the sections for which dynamic effects have been
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evaluated are plotted in Figs. 20a through 20k as a function of the speed
parsmeter G. As previously noted, the term amplification factor is used to
designate the ratio of the maximum dynamic effect at a section to the cor-
responding maximum static effect. The asmplification factor curve for Rl is
omitted since for the smoothly moving, single-axle loading considered, it is
equal to wnity for all values of &, The numerical data used to plot these
curves are also summarized in Table 8 together with the values of ¢ for which
the maximum effects occur and some additional information to be discussed
later.

It can be seen from these curves that the amplification factors for
the various effects are generglly fairly small. The maximm smplification
factor for deflections occurs at the side span and is equal to 1.17. The
moximum amplification factor for positive moment is 1.15, and for negative
moment over an interior support it is 1.22. It should be pointed out, however,
that for a single-axle loading the maximum static moment over an interior
support is comparatively small (see Table 5). The maximum amplification factor
for reaction occurs over an interior pier and is 1.13.

The over=-all characheristics of the curves in Figs. 20a through 20k

(Y (969
{95/'3(31{})(: The

are similar to those for simple span beams reported previoﬁsly
curves are undulatory in nature and the peak values of the undulations increase
with increasing &, That the peak values should increase with increasing o
follows from the Tfact that the amplitudes of the waves in the dynamic increment
curves increase with Increasing Q. Thg_nature of the undulaiiéns in these plots
may be explained readily by examining these curves in the light of the cor-
responding dynamic Increment curves. As an example consider the amglificatian

factor fer Dc.(solid curve in Fig. 20b) and the corresponding dynamic increment

curves presented in Fig. 19. Recalling the maximum static deflection at the
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center of the center span occurs when the load is at midspan, from the latter
curves one finds that the wave which produces the maximum dynamic deflection at
midspan is "wave a” when @ = 0,12 and Oe15; it is "wave b" when a is 0.1L through
0,17, and it is "wave ¢” when @ = 0.18. 1In the spectrum curve, the cusp at

¢ = 0,138 marks the transition between the condition for which "wave a" governs
and the condition for which "wave b" governms. Similarly, the cusp at @ = 0,171
represents the transition between the cases for which "wave b" or wave ¢
governs. Between these cusps, the maximum amplification factor occurs at the
value of @ for which the peak of the wave which produces the maximum effect
coincides with the maximum static effect., In the following discussion, the wave
which for a particular case produces the maximum effect will be referred to as
the "critical wave'.

It is of interest to note that the length of the undulations in the
gpectrum curves are different for the different effects and sections considered.
For example, the length of the undulation of the curve for De is smaller than
that for Blo A similar result is found on comparing the curves for Mi and Mca
These differences arise from the fact that the positions of the “eritical
vave" in the dynemic inerement curves for D, and M_ are more sensitive to
Qhanges in the speed parameter‘a than for the curves of Dl and Mio It A
represents the change in the speed parameter and Af represents the correspond-
ing change in the position of the critical wave, then

N (25)
where §S represents the position of the load for which the effect at the
section considered is maximum. It follows that for a given value of &, the
larger the value of gs the more sensitive is the position of the critical

wave to a given change in Q and, consequently, the smaller is the length of

the undulation in the corresponding spectrum curve.
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19. Comparison of Effects at Neighboring Sections

In Fig., 21 the solid curves are the same as those presented in
Fig., 16d. They represent the variation of the moment and the corresponding
dynamic increment at the center of the center span for the system considered
in Art., 16. The dotted curves show:the variation of the corresponding gquanti-
ties at a section for which & = 0.485. This section lies at a distance 0.05L
to the left of the center of the center span and coincides with the position
of the load for which ‘the ordinate of the "critical wave" in the dynamic
increment curve for M& is maximum. The moment at this section is designated
as Mno Both moments and the corresponding dynamic increments are expressgd
in terms of the maximum static moment at the center of the center span. For
clarity of preséntatign only that portion of the Mﬁ curve close %o ﬁidspan is
shown.

It can be seen from this plot that the dynamic increment curves for
the two sections are for all practical purposes identical. Furthermore, since
the peak values of the twe static curves are approximately the same, the
maximum dynemic moment away from midspan is somewhat larger than that at
midspan. 7To be specific, the amplification factor for ME is 1.066 andqthe
amplificatian factorrfor Mh is 1,093, It should be remembered that both
amplification factors are expressed in terms of the maximum §tatic moment at
midspan.

The ébeve comparison shows that the dynamic increment curve for a
particular effeét at a given section may be used Lo predict alsc the variation
of that effect at a neighboring section. Furthermore, since the envelope of
the maximum static effects in the viecinity of a section is génerally fairly
flat, the maximum amplification factor for that vicinity is approximately equal

to one plus the amplitude of the "critical wave” for the particular section
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investigated. Obtained in this menner, the dashed-dotted line in Fig. 20b
is believed to constitute a good approximation for the largest amplification
factor close to midspan. It may be noted that this curve may be further
approximated by a smooth curve which is tangent tc the peaks of fthe actual

spectrum curve for D (solid curve).

20, Effect of Weight Ratio

The bridge considered in Art. 16 was also analyzed for a value of
W/WE = 0.3 which represents a practical upper bound for present day vehicles
and three-span I-beam bridges with center spans larger than about 50 ft. The
speed parameter was varied between‘a = 0.12 and 0.18. As before, the effect
of bridge damping was neglected and the suspension spring of the vehicle was
assumed to remain inactive, The frequency ratio fv/fb was taken equal to unity.

In Fig. 22 the time history of the deflection at the center of the
center span and the history of the corresponding dynamic increment for & = 0.15
are compared with the corresponding curves obtained previocusly for a weight
ratio of 0.175. It can be seen that the over-all characteristics of the two
sets of curves are similar and that the maximum values of the response do not
differ appreciably. Similar results are obtained for the other effects.

The maximum values of the vafious effects that were evaluated and
the corresponding values of ¢ are listed in Table 8 Together with the cor-
responding values for a Weighﬁ ratio of 0.175. Prom an examination of these
results it can be seen that the maximum effects are somewhat larger for the
larger weight ratio. For convenience, the maximum amplification factors for
the various effects are summarized in the following table. The values listed

are the maxima for the complete range of speeds considered.
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Largest Amplification Factor Fer

W

W

b D1 or Dh DC Mi or Muf ME M2 or Mé Reactions
0,175 1.7 1.11 1.15 1.07 1,22 1.12
0.300 1.22 1.17 1.19 1.10 1.27 1.20

21, IEffect of Frequency Ratio

The effect of this parameter was investigated by obtaining numerical
solutions for values of fv/ﬁb in the range.between 0.5 and 1.5, The weight
ratio and speed parameter used are: W/Wg = 0,175 and & = 0,18. The remaining
parameters are the same as for the problem discussed in Art. 16, The results
are sumarized in Figs. 25 Lo 25,

In Fig. 23 are shown the variations of the interacting force, P,
for frequency ratios of 0.6, 1.0 and 1.5. It should be noted that in each
case the dominant "period” of load variation is very close to ‘the natural
period of vibration of the axle. The maximum change in P is equal to 0.12 Pstu
The amplificgtion factor for the interacting force and the corresponding value

of €& are summaried in the following table.

b
A.F. for P 1.11  1.07 1.07 1.07 1.09 1.06 1.09 1.12

f{/f 0.5 0.6 0.7 0.8 0.9 1.0 1.25 1.5

E G.52 G.90 0.83 0.17 0.h6 0.87 0.88 0.86

In Fig. 24 are shown dynamic increment curves for Dc for all the
frequency ratlos considered. It can be seen that for values of fv/f% less
than 0.8, the curves do not exhibit high frequency oscillations and that the
period of the predominant oscillations 1s close to the fundamental pericd of

vibration of the bridge. The same is true of the curve corresponding te a value
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of fv/ﬁb = 1,5. ¥For intermediate cases, the contribution of higher mo@es
becomes more proncunced. The high frequency oscillations present in the
curves for values of fv/fb between 0.8 and 1.5 correspond to the higher
natural modes of vibration of the bridge. It is important to note that

the magnitude of the oscillations in these curves are about the same for

all the cases. In particular, the oscillations for fv/fb = 1.0 are no larger
than those for the other frequency ratios. The average value, Xaa’ of the
amplitude of the waves for each dynamic increment curve and the standard de-~

viation, Oy tq? 8Te given on the right hand margin of Figs. 2b4a and 24b. It

t
can be seen that the values of Xaa are fairly constant and close to 0.12. The

values of N are approximately equal to 0.04,

td
In Figs. 25a through 25k the smplificaition factors for the various
effects are plotted as a function of the frequency ratio., The maximum values
of these amplification factors are listed in the following table together
with the corresponding values cbtained for the set of the problems presented

in Art. 18 for which fv/fb = 1 and the speed parameter Q ranged between 0.12

and 0.18. It can be seen that the two sets of solutions are for all practical

Largest Ampiification Factor For

Variable ,
Dl or Dh De Mi or Mk Mc Mé or M3 Reactions
£ /5, 1.18 1.15 1.15 1.1k 1.26 1.15
a 1,17 1.13 1.15 1,08 1.22 1.13

purposes the same. The largest difference occurs in the case of MCQ In this
connection it is worth noting from Fig. 20f that, for values of O between 0,18
and 0.20, the A.F. is likely to be as high as 1.1hk. It appears from these
results that, vwhereas the amplification factor for a particular effect at a

section of a bridge may be sensitive to a change in the frequency ratio, the
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maximum value of this amplifiecation factor for a range of speeds may be con-
sidered to be independent of the freguency ratio. It is to be emphasized that

this conclusion is applicable only to smoothly moving loads.

22, EBffect of Initial Vehicle Oscillation and Interleaf Friction

The response of the three-span bridge considered before was alsgso in=
vestigated under the passage of an initially oscillating single-axle loading.
The initial oscillation was assumed %0 be such that ét the instant the load
enters the span, the bouncing velocity of the sprung mass is equal to zero and
the interacting force, P, is equal to 0.70 Psto The weight ratio and the speed
parameter was taken as follows:

w/ws = 0.175 and @ = 0.15

Solutions were obtained for three different values of the coefficient of
interleaf friction: H =, = 0 and K = 0,15,

As explained previocusly, for UL = ® the suspension spring remains idle
and the vehicle oscillates on its tires only. For M = O, the suspension spring
acts in series with the tire spring. The frequency rabtios for the system were

ft/fﬁ = 1.0 and fts/fb = 0.6

For the case of B = 0.15, the initial value of the frictional force in the
suspension spring was assumed to be equal to zero.

Representative results for these solutions are given in Figs. 26
through 28, The solid curve and the dashed-dotted curve in Fig. 26 show the
variation of the interacting force for M = = (f§/fb = 1) and 4 = O (fv/fb = 0,6},
respectively. In both cases the "period™ of the load variation cdrresponds to
the natural period of vibration of the load. It should be noted that, whereas
for fv/fb = 1 the amplitude of the force varies continuocusly, for fv/fb = 0.6

it is approximately constant. It appears that when the frequency ratio ﬂv/fb



~60=

is small compared to unity and the initial oscillation is of the order of
magnitude considered iﬁ this example, the load unit may be approximated by a
constant moving force equal to the weight of the vehicle combined with an
alternating force. It is worth noting further that the amplitude of the varia-
tion in P when the load is close to‘midSPan is about 0.26 Pst for both cases.

The dotted curve in Fig. 26 shows the time history of P for M = 0.15.
In addition, the diagram on the right hand shows the variation of the frictional
force in the suspension system as a function of the total shortening of the
springs, u. Both quantities are expressed in dimensionless forms., Correspond-
ing points on the two diagrams are identified by the same letter. For example,
at the instant represented by point a the frictional resistance of the
guspension spring becomes fully mobilized and the effective stiffnesd of the
system changes from kt to kts° From these diagrams it can be seen that the
suspension spring is engaged only in the intervals gb, ed, fg and ij. OFf
course, the frequency of load variation in these Intervals is fts° It is
imp@rtant to note that the history eurve of P for B = 0,15 has no resemblance
to the corresponding curve for H = ® or 1 = 0, The most Important effect of
the interleaf friction is the reduction in the amplitude of the load variation.
This reduction is due to the fact that in the intervals ab, cd, fg and 1ij,
energy is dissipated by the frictional force in the spring. For 4 = 0.15 the
maximum amplitude of variation in P when the load is in the neighborhood of
midspan is 0.15. This value should be compared with the value of 0.26 when
H=0o0rf=o,

In Fig. 27 are shown time hisitories of the dynamic increment-for
deflection at the center of the cenbter span for the three values of M

considered. The corresponding curves for moment are very similar, but are not

pregsented here. It is of interest to note that for f’v/fb = 0.6, the “"periods"
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of the waves are between the natural period of the load and the fundamental
period of vibration of the bridge. In fact, they appear to be closer tc the
period of the bridge. This result should be contrasted with the fact that the
period of variation of the interacting force is close to the natural period
of the load. The largest amplitude of the curves for 4 = C and K = @ is about
43 percent of the maximum static deflection. Obviously these effects are
large. TFor B = 0.15, because of the energy dissipated in the suspension
spring, this amplitude is reduced by over U0 percent or to a value of 23 percent
of the maximum static deflection.

In Figs. 28a through 284 are shown history curves for D,s My M,
and Rgo The amplification factors for the various effects and the correspond -
ing values of £ are listed in the last three columns of Table 9. It may be
observed that for this particular set of prcblems, the largest amplification
factors are generally obtained for M = O’and the smallest for 4 = =, However,
it should not be inferred that the condition M = O is generally more severe
than B = = or that the amplification factor for M = 0.15 is, in general,
larger than for B = «, This may be appreciated by considering, as an example,
the curve given in Fig. 28a and the corresponding dynamic increment curve

presented in Fig. 27. It can be seen that for U = O and for M = (.15 the peak

o s

values of the dynamic increment curves are almost coincident with the peak value
of the static curve, whereas for U = ® the peak sgtatic value combined with a
relatively small ordinate of the dynamic increment curve. The principal

effect of a small change in either the speed, frequency or initial condition

of the vehicle is to displace the waves of these curves along the £-axis.

Since the peak amplitudes of the waves for both B = O and H = ® are approxi-
mately the same and appreciably larger than those for d = 0,15, it is expected
that, within a range of speeds, frequencies and initial conditions, the

smallest effects will correspond to B = 0.15,
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23, Effect of Bridge Damping

Although information on the damping characteristics of continuous

(1k)

bridges is scarce, the limited data available( suggest that a reasonable
value for the damping factor c/ccr is about 0.0l. The problem considered in
the preceding article was reanalyzed for c/cCr = 0,01, using B = ®, In Fig. 29
the time history of the interacting force is compared with that determined
previously by neglecting the effect of bridge damping. In Figs. 30 and 31 are
given the time histories of the déflection Dc and of the corresponding dynamic
increment. The maximum values of the computed effects and the corresponding
values of E are summarized in the first column of Table 9.

It can be seen from the curves presented in Figs. 29 through 31
that the principal effect of bridge damping is to reduce the amplitude of the
oscillation in the response curves. As might be expected, the reduction in
the amplitudes increases with increasing time, or increasing value of &. It
follows that the effect of bridge damping on the amplification factors will
be mest pronounced in those cases for which the maximum effects occur at a
large value of £, This fact may be seen by comparing the resulits presented
in the first two columns of Table 9; In general, one finds that the reduction
is small and, unless there is reason for considering larger values of c/ccrg
it appears that the effect of bridge damping may be neglected. Obviously,

additional solubions are necessary to substantiate this conclusion.

2k, Effect of Multiple-Axle Loadings

2k.1 Solutions for a Two-Axle Loading. The solutions presented

in this article are for a three-span bridge without damping traversed by a
smoothly moving two-axle loading. As before, the weight.ratio is taken equal

to 0.175; however, in this case the total weight of the vehicle, W, is assumed
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tc be equally supported by the two axles. The axle spacing, £, and the
dynamic index, i, are taken as follows:
- 4/L =0.3, and i = 1.
The speed parameter, O, was varied between 0,12 and 09189-
In Figs. 32a through 32f are shown time histories of the interacting

forces, P. and P_, and of deflection, moments and reaction at selected sections

1 27
and of the corresponding dynamic increments. These results are for O = 0.15.
Included in Figs. 32b and 32d are alsc portions of the history curves for values
of @ = 0,16, 0.17 and 0.18. In these curves the abscissa & defines the pesition
of the front axle. A value of & = 1 corresponds te the instant the front axle
leaves the bridge.

In Fig. 32a it can be seen that the maximum variation in the inter-
acting force is about 7.5 percent of the static value and occurs for the rear
axle. Thisg variation is about the same as for the single-axle solution pre-
sented in Art. 16. The characteristics of the dynamic increment curves in
Figs. 32b through 32f are very similar to those presented in Figs. 16b through
16h for a single-axle loading, and the comments made previcusly are also
applicable in this case.

In Fig. 33 are shown *the dynamic increment curves for deflection
at the center of the center span for values of Q in the range between 0,12
and 0918o Obviously, the cobservaticn made previously in connection with the
curves presented in Fig. 19 applies alsc to those curves. It is particulariy
important to noie that the values of Xaa and Toig listed on the right hand
margin are generally wvery similar to the corresponding values given in Fig. 19
for the single-axle loading. It appears that, within a range of speeds, the

maximum effects for the two-axle loading and the single~axle loading will

probably be the same.
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For & = 0.15, the time between the passage of the two axles over a
point on the bridge is equal tc the fundamental natural pericd of vibration
of the unloaded bridge. This coincidence of the period of application of the
axle loads with the natural pericd of the bridge has been considered to pro-
duce a condition of resonance which may lead to large dynamic effects(:m)o

Tt is noteworthy that the dynamic increment curves for this case (O = 0.15) do
not exhibit any unusually larger oseillations.

The maximum values of the various effects evaluated are plotted in
Figs. 34a through 344 in the form of amplification factors as a function of
Q. These values are alsc tabulated in Table 10 together with the correspond-

ing values of £. The corresponding maximum sftatic values are given in the
"second column of Table 5. The general features of these spectrum curves are
the same as those for the single-dxle loading presented in Fig. 20. However,
the detailed characteristics differ primarily because of the Ffact that the
stabic history curves for the two cases are different. For example, it may be
noted that the curverfer Mc-in Fig. 32d is flatter than the cqrresponding
curves for the single-axle loading presented in Fig. 16d. Referring to Fig. 324,
one finds that the ordinates of the stalic history curve for the two-axle
loading are fairly constant in the neighborhood of midspan, whereas the corre-
sponding curves for the single-axle loading shown in Fig. 16d exhibit a sharp
cusp. It follows that in the former case the maximum dynamic value of Mc is
less sensitive to a change in . It may be recalled that a small increase in'
o is equivalent to a "stretching” of the dynamic increment curve.

For the range of @ considered the largest amplification Tfactors

for the various effects are summarized in the following table for both the

single-axle lcading and for the two=-axle loading.



Largest A. F.

Ttem
Single-axle ; Two-axle

Side Span Deflections, Bl and DA 1.17 1.17
Center Span Deflection, Dc 1.13 1,17
Side Span Positive Moments, Ml and MlsL 1.15 1.15
Center Span Positive Moment, M 1.08 1.12
Negative Moments over interior

supports, Mg end M3 ; 1.22 1.11
Reactions at End Supports, R, and R 1.04 1.05
Reactions at Interior Supports,

R2 and 35 1.13 1,11

It can be seen that the two sets of values are in general gquite similar.

24,2 Solution for a Three-axle Ioading. In Figs. 35a through 35f
are given history curves for the response of the bridge considered in the pre-
ceding article when traversed by a smoothly moving three-axle tractor-trailer
combination with a speed corresponding to a value of & = 0.15. The parsmeters
for the trailer are considered to be the same as those for the two-axle loading
considered before. The weight of the front axle is considered to be 1/9 of
the total weight of the vehicle. The values of the remaining paramsiters for
the first axle are identified in the figures. 1In these figures, time is
measured from the instant the front axle enters the bridge. Accordingly,
£ defines the position of the front axle.

It is of interest t¢ compare the dynamic increment curves for this
problem with the corresponding curves for the two-axle loading starting from
the instant the first heavy axle (second axle for the three-axle load) moves

onto the bridge. To effect this comparison, the curves for the three-axle
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loading must be shifted to thé left by an amount equivalent to the axle
spacing of the tractor; this corresponds to a value of & = 0.0462., One then
finds that the two sets cf curves are practically identical. The amplifica~
tion factors for the various effects and the corresponding Valués of £ are
compared in Table 11. It can be seen that the two sets of results are for all

practical purposes egual.

£

25, Correlaticon Between Dynamic Increments for Deflection and Moment

In discussing the effect of a single-axle loading in Art. 16, it
was noted that the dynamic increment curve for moment at the center of the
center span is similar to the corresponding curve for deflection; This
similarity is true also for multiple-axle loadings. This is illustrated in
Fig. 36 wheréin the dynamic increment curves for midspan moment for three dif-
ferent loadings are compared with the corresponding curves for deflection. In
the following paragraphs it is shown that under certain broad conditions the
dynamic increments for ﬁeflectiﬁn and moment at the same point are linearly
correlated,

Let the deflection of the beam, y, be expressed by the equation,

%0
y(x,t) = y () + ) @ (x) g (t) (26)

n=

E

where Vg denctes the static deflection, @ 1s the nth natural mode, and a4, is

o

an arbitrary function of time. Since the position of the vehicle on the bridge
is a function of time, the deflection Vg is also a time dependent quartity.

For each span, the expression for the natural mode may be written in the form:

%
Refer to Eg. 117 on p. 325 in Reference 33.
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where An through Dn are constants of integration, generally different for each
span, x is the distance from a support, Kn is a dimensionless coefficlent, re-
lated to the nth natural circular frequency of vibration of the beam, w s by

the equaticn
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Then the bending moment in each span, M, is given by the equation.
(2]
1 " O H
M=-EIly"=-Ely’ -EI ZCP

where a prime superscript denotes one differentiation with respect to x.
Noting that the first term on the extreme right hand expression represents the

static moment, Mg, and making use of Eq. 27, one obtains,

A

) (9, -2c sim kn}ic-m2DnCosh?\n%) (28)

M=M + hg EL
s 1

B
>
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[

n
Then the ratio of the dynamic increment for moment to the corresponding incre-

ment for deflection mey be written as follows:

M-M
S

2 EI
=N = (1 + e) (29)
v - 1.2
where
1 &% “n X X
€ = ————— Z [(;5]—-' - l)@n - 2 ZQ_; (Cn Sinh }\I). ‘i" + Dn'COSh ?"n i}] qn <30)
E: qh‘qn n=1 |
n=1

It is assumed that the denominator is different from zero.
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Let (DcIf}M be the dynamic increment for moment for a specified
section, expressed in terms of the maximum static moment at that section,
(Ms)mo Also let (DoIg)y,be the corresponding increment for deflection in

terms of the corresponding meximum static deflection, {ys)ma Then

4 3
\D"I“ JM _ 2 ET (;Y )

Tty L s‘m

This expression is applicable fo ény point of the beam, and there is no
restriction as to the type of the bridge or the number of axles involved,

Now, if the coefficieﬁts, Gl and D1 for the Tundamental mode of
vibration are small and, in addition, the functions a, for n > 1 are negligible
in comparison to the function 45 then the quantity e defined by Eg. 30 may be
neglected. These conditions aré saﬁisfied for simple span bridges, since Cn
and Dn are identically equal to zero and the contribution of the higher modes
of vibration are known to be insignificant (i.e., q, for n > 1 may be neglected).
For this case, recalling that A = %, one finds that Eq. 31 reduces to

(D.1.),, - 2EI (;fs)m (5)
T 7 2 0, "
As an example, consider a two-axle vehicle with the same weight on each axle
and traversing a simple span bridge. For the center of the bridge, Eg. 32
gives |

(DT )y 42 5
W*A@:(E-&*ES”S); for s <
' J

N

(33)

vhere s is the ratio of the axle spacing to the span length. TFor a single
axle loading, s = 0, and the above expression reduces %o

(D.T. )M a2

{D.1. jy S T-) (54)
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The latter expression has been used previously by Bnlggs(mj3 to relate the
maximum dynsmic Increment for moment and deflection at midspan for a bridge
traversed by a single-axle loading.

For three-span continuous bridges, Gl and Dl‘are identically equal
to zero only if the spans are equal. Furthermere, since 9, may not be small
in comparisen to qqs the quantity € in Eq. {29) may not be negligible in com-
parison to unity. However, it is of some interest to correlate the computed
dynamic increment for moment and deflection and to compare the results with
those obtained from Eq. 29 assuming that € = O,

The scatter diagram presented in Fig. 37 correlates the dynamic
increments for moment and deflecticn at the cenbter of the center span for the
system considered in Art. 24.2, Each point in this diagram defines the values
of the two increments for a particular time. It can be seen that the points
fall on a straight line, indicating that the quantity & in Eg. 29 may be
considered as a constant. The equation of the line, determined by the method
of least squares,; is

(DI} = 100&(Dazo>y + 0,000 {359

*
and has a standard error of estimation of 0.003,
For this problem, the maximum static effects at the center of the
center gpan are

(y 4, = 0.00867 W7 /ET, (M) = 0.1072 WL

and A% = 12.491.
Then with ¢ = 0, Eq. 29 leads to

(D..)y = 1.00 {D.T.), (36}

* ,
This means that 68% of values of (DDIu)M estimated by Eq. 35 are in error
" by less than 0.003.
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The close agreement between Egs. 35 and 36 suggests that the quantity ¢ may
be considered to be negligible. However, further study of this point is
necessary to substantiate this preliminary conclusion.

In Figs. 38 and 39 the dynamic increment curves for bending moment
over the interior supports are compared with the increment curves for reaction
at the corresponding supports. These results are for the problem considered
in Arts. 16, 24.1 and 24.2 when @ = 0.15. It appears that the two sets of
dynamic increments are also linearly correlated, except perhaps for the instant
when the load is close to the support for which the dynamic increments are

evaluated.

26. A Possible Basis for Design

While the information presented in the preceding articles is not
directly applicable to design, i1t suggests means of arriving at a design §r0~
cedure for dynamic effects in highway bridges. In this connection it should
be kept in mind that the values of the majority of the parameters that influence
the response of highway bridges cannot, in general, be controlled. A bridge
in service is subjected to the passage of vehicles having different weights,
frequencies and dimensions. Moreover, the speeds of the vehicles are neither
constant nor uniform, and the initial conditions of the bridge and the vehicle
and the conditlons of the bridge sﬁrfaae are generally unknown. The fact must
alsc be considered that the characteristics of known vehicles and known bridges
cannct be calculated accurately. Under these conditions, it is meaningful to
attempt to estimate only the values of the maximum effects produced under the
most unfavorable but likely combinations of the parameters involved.

. From the information presented in this report,éit appears that a

design procedure can be formulated most effectively on the basis of the dynamic
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increment curves rather than the spectrum curves. The reason for this is that
the dynamic increment curves, as previously explained, provide more useful
information than the specirum curves and show more clearly the influence and
reiative importance of the varicus parameters involved.

Although the detailed characteristics of the dynamic increment curves
are generally quite sensitive to changes in the various parameters entering
into the problem, the over=all characteristics of these curves are affected
only to a minor extent by changes in some of the parameters. It appears
reasonable;, therefore, to take as a basis for design some average property of
the dynamic increment curves. For a given section of the bridge, the design
value of the dynamic increment for moment or deflection, (DoIa}d) may then be
expressed in the form,

(DoIa)d =X, te 04 (37}

where (DoIa)d is equivalent to the impact factor, X  and ¢, , are as previously
defined, and e is a factor which, for a given set of dynamic increment curves,
defines the percenfage of the waves for which the amplitudes are smaller than
the computed value of (DoIa)ac The latter statement is based on the assumption
that the amplitudes of waves are normally distributed. The values of these
percentages for different values of e can be found in standard texts on
statistics(34)° For e = O, 1, 2 and 3, these percentages are 50, 8k.1, 97.7
and 99.8, respectively.

In Eq. 37 the choice of the value of e should be governed by the
shape of the curve for the static effect at the section considered. If the
curve 1s flat in the neighborhocd the maximum static effect, then the possi-
bility of having a large dynamic effect at that section is great, provided of

course that all other factors are the same. On the other hand, if the static curve
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exhibits a sharp cusp, there is a smaller possibility of having a large
dynamic effect at that section. Thérefore, the flatter the static curve
is, the larger must be the value of e, For a flat curve, a value éf e
between 2.5 and 3 is recommended, while for curves which are steep in the
region of the maximum effect a value of e from 1.5 to 2 appears to be
reasonabie,

Strictly speaking, the values of Xaa and Topg BT functions of all
the parameters considered in the previcus articles. However, because they
are Insensitive to changss in some of the parameters, these quantities can be
determined from a relstively small number of solubtions. For example, for
smocthly moving loads 1t has been shown that the most significant variable is
the speed parameter ¢ and that both Xaa and S5tq increase with Increasing Q.
On the other hand, the value of these quantities appear insensitive to changes
in the frequency ratio; weight ratic, and the number of axles involved, pro=-
vided these parameﬁers are within the practical range. Under these conditions,
it appears that for a given type of bridge the values of Xaa and Tata in
Eqg. 37 m=y be determiﬁed from the dynamic increment curve for a solution
determined as follows: The‘speed parameter must correspond to the maximum
vehicle speed expectad; the welght ratio must preferably correspond to the
maximum design load, the frequency ratio may have any reasonable value, and
the vehicle may be represented by a single~-axle loading.

In this presentation the problem has been over-simplified by ne-~
glecting the effect of a possible initial oscillation of the vehicle, TI%
~ has bsen shown both here and elsewhere(5)5(6> that this effect may be gquite

impertant. Obviously thenf the values of Xaa and Iata will depend both on

the magnitude of the initial oscillation and the value of the limiting

D

frictional forece in the suspension system of the vehicle, Additional studies
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are necessary to investigate the dependence of Xaa and Tgpq o8 these quantities.
Consideration shouid also be given to the influence of roadway unevenness. In
this connection field measurements are needed to provide realistic values for
the magnitudes of initial vehicle oscillations and the magnitude of roadway

unevenness for different types of bridges.

27. Pedestrian's Reaction to Bridge Vibration

One aspect of the problem of bridge vibration relates to the reaction
of pedestrians to the motion of the bridge. TFrom the limited data that are
available(29)§<55) it appears that the reaction of a persoﬁ to vibration de-
pends primarily on the rate of change of acceleration, ordinarily referred to
as the "jerk", instead of oniy on the magnitude of the deflection. In
Refs. (28) and (29) limiting values are given for zones of human comfort and
discomfort for vertical sinusoidal vibration. Values of "jerk" less than
700 in./seca5 (or 1.8g/sec.) are considered to define a zone of comfort, values
between T00 ino/seco3 and 2400 ino/sec,5 {or 6.2 g/sec.) define a zone of dis-
comfort, and values greater than 6.2 g/sec. define a zone of extreme discomfort.
For the design of trucks, an upper value of 500 ina/secc5 (loig/seca) has been
recommended(29>.

Figure 40 shows the variation of "jerk" at the center of the center
span for the problem considered in Art. 24.2., The ordinate of the curve shows
the “jerk" that would be experienced by a person standing at the center of the
center span. The physical system considered is a standard 64'-80'-64' I-beam
bridge(56) traversed by a "typical® H20-S16 tractor-trailer combination. The
speed parameter corresponds to a speed of 61 m.p.h. This curve was evaluated
by the method of finite difference from the history curve for Dc presented In

Fig. 35b.. It is of interest to note that the maximum value of ¥ierk" is less



=Th=

than the recommended limit of comfort. It is noted Ffurther that the pre-
dominant "period™ of the oscillations in this curve is very close to the

third natural period of the unloaded bridge.
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VI. SUMMARY

A numerical methOd has been presented for the computation of the
response of continuous bridges subjected to the action of moving vehicles.

In this study the bridge has been idealized as a continuous beam with dis-
tributed flexibility and concentrated point masses; and the vehicle has been
represented as a sprung lead unit having one; twe or three axles, An im-
portant feature of the vehicle model used is that it incorporates the effect
of interleaf friction for the suspension system.

Computer programs have‘been prepared for use on the ILLIAC, the
digital computer of the University of Illincis. These programs are for three-
- span continuous bridges of uniform cross section and equal side spans and for
a single vehicle.

Numerical solutions have been obtained for a range of the parameters
entering into the problem. For smoothly moving vehicles, the parameters
studied include the speed parameter;, &, the frequency ratio, fv/fb’ the weight
ratio, w/Wt, and the number of axles of the’vehicle nmodel, For a single-axle
loading, cne series of prcblems were studied for values of @ bebtween 0.12 and
0,18, with the frequency ratio taken equal to one and the weight ratio takeﬁ
equal to 0.175 and 0,30. In a second series of problems, the frequency ratioc
was varied between 0.5 and 1.5, with the speed parameter and the weight ratic
taken equal to 0.18 and 0,175, respectively. For a two=-axle load unikt, a set
of problems were solved for values of & between 0.12 and 0.18, with the
frequency ratio for each axle equal to cne and W/Wﬁ = 0,175, Only one solubtion
was obtained for a three-axlie loading. For a vehicle having an initial
bouncing motion, the major factors investigated were the role of the interleaf

friction and the effect of bridge demping.
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The major conclusions drawn from these solutions are briefly as
followss

{1} For *he soluticns involving a smoothly moving vehicle, the
maximum variation in the interacting force between the vehicle and the bridge
is appraximately 12 percent of the static reaction. For cordinary vehicles
the coefficient of friction for the suspension system is generally greater
than 12 percent. Accerdingly, for the conditions considered the suspension
springs do not engage and the vehicle vibrates only on its tire springs.

{2) If for any reasong‘such as a large initial vehicle oscillation
or an irregularity in the roadway Surface, the variation of the interacting
force is large enough to engage the suspension springs, then it is important
that the effect of the interleafl friction be considered in the solution. Un-
less this is done, theover=-all characteristics of the computed response may
be quite wnrealistic.

{(3) Both for smoothly moving loads and for initially oseillating
loads the predominant peried of variation of the interacting forces is close
to the natural period (or pericds) of vibration of the vehicle.

{4) Prom an examination of the dynamic increment curves for the
various effects at different sections of the bridge, it follows that the major
Qomﬁribution te the dynamic response arises from the participation of the Lirst
three natural modes of vibration of the bridge.

{5} Fsr smoothly moving loads, the asmplification factors for the
various effects are generally fairly small. For the complete range of
parameters considered, the maximum amplificati@n factors are 1.18 for deflec-
tion, 1.15 for positive moment, 1.26 for aegative moment, and 1.15 for reaction.

{6} For smoothly moving loads, the most significant variable is the
speed parameter @&. In general the larger the O; the larger is the amplitudes

of the waves in the dynamic increment curves, and, consequently, the greater
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are likely to be the dynamic effects. Although the detailed characteristics
of the dynamic increment curves and the spectrum curves may be sensitive to
variations in the other parameters, the over-all characteristics of the curves
are affected only to a minor extent by changes in the frequency ratio, weight
ratio, and the number of axles, provided that these variations are kept within
the practical range. Therefore, for design purposes the latter parameters may
be considered to be secondary. |

(7) For an initially oscillating vehicle, the magnitudes of the
meximum effects in the bridge depend predominately on the amplitude of the
initial oscillation and on the limiting value of the interleaf frictional force,
The over-all effect of this frictional force is to dissipate energy and te
reduce the magnitude of the dynamic effects.

(8) The effect of bridge damping appears to be negligible for values
of ¢/e_. < 0.0L

/ (9) There is a linear relationship between the dynamic increments

for moment and deflection for a section of the bridge away from a support.
Accordingly, if the history curve for deflection at a section is known, the
corresponding curve for moment can be estimated. It appears, moreover, that
the dynamic increment for moment over an interior support is linearly

correlated with the corresponding increment for reaction at the same support.
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TABLE 1

COMPARISON OF RESULTS OBTAINED BY v"EXAC‘I‘" AND "APPROXIMATE" METHODS

a=0.8 n=2, m= 3, c/ccr:O, N = k0O
Single-Axle Loading, w/wb = 0.175, fv/fb =1, a= 0.15

Value of Quantity

Quantity "Exact”  "Approx." "Exact"  "Approx." "Exact"  "Approx." "Exact" "Approx."
for £ = 0.25 for ¢ = 0.50 for £ = 0.75 for £ = 1.00
Dy 0. 417 +0.417 -0.429 -0.428 +0.109 +0.108 -0.049 -0.048
D, -0.216 -0.216 +1.125 +1.124 -0.191  -0.192 -0.020 -0.019
Dy, +0.102 +C.101 -0.477 -0.476 +0.412 +0.412 +0.078 +0.077
M +0.229 +0.229 -0.222  -0.222 +#.076  +0.075 -o.ousy -0.045
M, -0.028 -0.628 -1.066 -1.065 +0.069 +0.070 +0.080 +0.079
M, - =0.105 -0.105 +1.090 +1.089 -0.086 -0.087 =0.013 -0.013
My +.118  +0.119 -1.013 -1.012 -0.664  -0.56k4 -0.058 -0.057
My, +0.066 +0.065 =0.26k -0.26k +0.229 0,229 +0.065 +0.06k4
R, +0.113 +0.113 -0.110  -0.110 +0.037  +0.037 -0.022 -0.022
R, +0.986 +0.986 +0.697 +0.696 -0.011 -0.012 -0.057 -0.056
R3 -0.049 -0.0k49 +0.658 +0.0657 +1.013 +1.013 +0.043 +0.0k3
R, +0.032  +0.032 -0.131  -0.130 +0.113 0,113 +1.016 +1.015

- ‘[9—
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TABLE 2

COMPARISON OF RESULTS OBTAINED BY USE OF DIFFERENT
TIME INTERVALS OF INTEGRATION

&30-8; n=5, m = l"’ C/ccr= Oy
Single-Axle Loasding, w/'wb = 0.175

Maximm Value of Quantity

N = 400 N = 600 N = 800 N = 600 N = 800

Quantity
a= 0.075 a= 0.15
D, 1.026 1.026 1.026 1.088 1.088
D, 1.040 1.035 1.033 1.102 1.101
D, 1.017 1.025 1.026 1.052 1.051
My 0.999 0.999 0.999 1.062 1.062
M, 1.051 1.051 1.049 1.127 1.124
M, 1.005 1.009 1.007 1.066 1.068
M3 1.041 1.045 1.049 1.168 1.160
M, 1.011 1.019 1.019 0.966 0.971
R, 1.000 1.000 1.000 1.000 1.000
R, 1.018 1.027 1.029 1.028 1.031
35 1.030 1.03h4 1.03%0 1.026 1.034
R, 0.975 0.981 0.977 0.954 0.958
TABLE 3

WEIGHTS AND NATURAL FREQUENCIES OF SC-6-53 BRIDGES

Spens Wt. of Center Fundemental
in Spen in Natural Frequency
ft. ~ kips fb in c.p.8.

40-50-40 221 6.k
48-60-48 273 5.2
56-70-56 326 L.4
64-80-64 383 3.7
72-90-72 450 3.1
80-100-80 52k 2.6

Note: = 1/f,, T, = 0.65k T, T, = 0.532 T,

T, 5
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TABLE 4

DATA FOR "TYPICAL" VEHICLES

Quantity Unit Three-Axle Two-Axle Single-Axle
Vehicle Vehicle Loading

W kips T2 oh ol
‘N ft. 12 14 ~ 35 -
I, £t. 1 ~ 35 — -
wl/w 0.08 0.90 --
we/w 0.80 - -
wl/w 0.03 0.05 -
w2/W 0.05 0.05 --
w5/W 0.0k -- --
iy 0.5 ~ 1.0 0.9 ~ 1.7 --
i, 0.9 ~ 1.7 -- -
ay 0.602 0.5 -
33 0.494 - .-
ag 0.083 -- -
pl 0.05-~ 0.10 0.12 ~ 0.28 0.12 ~ 0.28
oy 0.12 ~ 0.28 0.12 ~ 0.28 .-
b 0.12 ~ 0.28 -- , -
ft,l C.p.B. %2.13 ~ 3.72 3,13 ~ 3.72 3.13 ~ 3.72
fk’e c.p.s. 3,13 ~ 3.72 3,13 ~ 3.72 --
ft’i C.p.s. 3.13 ~ 3.72 -- -
ftsg, c.p.8. 1.57 ~ 1.65 1.99 ~ 2.1k 1.7% ~ 2.36
ftS;E’ C.p.8. 1.99 ~ 2.14 1.7k ~ 2.36 --
fte,§ c.p.s. 1.7h -~ 2.36 .= --
Pst’l kips 8 32 64
Pst,g kips 32 32 --
P kips 32 - -

8t,3
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TABLE

5

MAXTHUM STATIC EFFECTS FOR SINGLE-AXLE AND MULTTPLE-AXLE LOADINGS

Three Span Uniform Beam;

For Two-Axle Loading:

Pat,1 = Fat,2

=W/2, (/L=0.3

a= 0.8

For Three-Axle Loading: P, ;= W/9, Pot,2 = Pat,3 = W /9,

zl/L = 0.15,

12/L = 0.3

Maximm Static Value

Quantity Unit
Single-Axle Two-Axle Three-Axle

Loading Loading Loeding

WL ,. |

Dl T 0.00772 0.00617 0.00581
Dc " 0.0106k4 0,00903 0.00867
D, " 0.00772 0.00617 0.00583
LY WL 0.1660 o.losf 0.09k45
M, w 0.0877 0.0776 0.0749
Mc " 0.1685 0.1081 0.1072
M3 " 0.0877 0.0776 0.0748
M, " 0.1660 0.1057 0.1040
Ry W 1.0000 0.7686 0.7252
R, " 1.0001 0.9526 0.940k
RB " 1.0001 0.9526 0.9405
R), u 1.0000 0.7686 0.6834
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TABLE 6

COMPARISON OF MAXIMUM EFFECTS OBTAINED BY USE OF DIFFERENT NUMBER
OF MASS CONCENTRATIONS IN BRIDGE MODEL

a= 0.8, c/ccr = 0, Single-Axle Loading
w/wb = 0.175, fv/fb =1, a= 0.15

Values of Amplification Factor and of
Corresponding &

L Masses 7 Masses
Quantity (0=2 m=3) (n=3, m=k)
A.F. £ A.F. ¢t
D, 1.087 0.12 1.087 0.12
D, 1.129 0.49 1.102 0.49
D, 1.102 0.86 1.052 0.84
My 1.075 0.13 1.062 0.13
M, 1.112 0.k9 1.127 0.48
M, 1.087 0.50 1.066 0.50
M3 1.138 0.55 1.168 0.53
M), 1.070 0.87 0.966 0.87
R, 1.000 0 | 1.000 0
R, 1.098 0.36 1.123 0.35
R3 1.051 0.62 1.026 0.77
Ry, 1.013 1.00 0.954 1.00
TABLE 7

NATURAL PERIODS OF VIBRATION OF BRIDGE MODELS AND OF
CONTINUOUS BEAM

Three-Span Uniform Beam; a = 0.8

Value of —_
JQLE/EI
Order of Discrete System Continuous
Natgral 4 Masses 7 Masses System
Period (0=2, m=3) (=3, m=l)
1 0.503 0.503 0.503
2 0.336 0.330 0.329
3 0.276 0.269 0.268
4 0.1k0 0.133 0.131




TABLE 8 {Cont'd on next pege)

MAXIMUM EFFECTS FOR SMOOTHLY MOVING, SINGLE-AXLE LOADING

1

a= 0.5 c/ccr = O, fv/fb

A.F.

A.F.

AOF.

A.F.

A.F.

A.F.

A.F.

w/wb

0.50
0.50

1.05
1.05

.47
0.47

0.13
0.13
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1.1
1.1

0.50
0.50

1.05
1.10

0.43
0.49

l.22
1.19

0.13
0.13

1.15
1.19




TABLE 3 (Concluded)

A.F.

A.F.

A.F.
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TABLE 9
MAXIMUM EFFECTS FOR INITIALLY OSCILLATING, SINGLE-AXLE LOADING

a= 0.8, w/wb = 0.175
a= 0.15, P]t=o =0.TP_,

b= o =0 p= 0.15

£ /e =1 £/2 = 0.6 i::jgb“=10.6

Quantity c/ccr = 0.01 cchr =0 c/cer =0 c/ccr = 0

A.F. & AF. & AJF. & AF. &

D 1.11 0.19 1.11 0.19 1.32 0.12 1.20 0.11
D, 1.14 0.48 1.17 0.48 1.45 0.49 1.20 0.50
Dy, 1.25 0.87  1.31L 0.87 1.34 0.87 1.23 0.90
My 0.81 0.08 0.81 0.08 1.2 0.13 1.11 0.12
M, 1.11 0.18 1.11 0.18  1.34 0.47 1,13 0.48
M, 0.99 0.50 1.01 0.50 1.38 0.50 1.11 0.50
My 1.11 0.52 1.14 0.52 1.27 0.k 1.25 0.5k
M, 1.21 0.87 1.28 0.87  1.29 0.87 1.03 0.90
R 0.99 0.06 0.99 0.06 0.85 0.08 0.85 0.06
R, 1.05 0.30 1.0 0.30 1.27 0.30 1.09 0.36
R 1.08 0.67 1.12 0.67 1.2k 0.70 1.10 0.61
R, 1.12 0.9 1.18 0.99 0.8 0.91 1.01 1.00




TABLE 10

MAXIMUM EFFECTS FOR SMOOTHLY MOVING, TWO-AXLE LOADING
a= 0.8 c/ccr = o,,w/wb = 0.175, P,

1= Py, " w/z, fvl/fb = fve/fb =1, £/L = 0.3

P, P, D, D, D), My M
a

AF. & AF. & A.F 3 AF. & AF. & A.F 3 A.F 3
0.12 1.06 0.19 1.05 C.61 1.C5 0.20 1.05 0.58 1.08 0.3%1 0.99 0.22 1.05 0.52
0.13 1.06 0.20 1.07 0.65 1.08 0.20 1.10 0.53 1.05 0.90 1.01 0.21 1.07 0.52
0.1k 1.06 0.22 1.06 0.32 1.12 0.21 1.14 ©.56 1.08 0.91 1.05 0.21 1.07 0.56
0.15 1.06 0.23 1.06 0.36 1.13 0.22 1.08 0.59 1.10 0.91 1.09 0.22 1.05 0.53
0.16 1.06 0.h7 1.08 0.91 1.13 0.23 1.08 0.53 1.07 0.93 1.12 0.23 1.07 0.51
0.17 1.00 0.59 1.06 0.83 1.12 0.2% 1.15 ©.55 1.06 0.87 1.15 0.2k 1.07 0.52
0.18 1.06 0.o2 1.07 0.38 1.10 0.24 1.16 0.57 17 0.91 1.15 0.24 1.08 0.53

M M3 My, R, R, R§ R),

[0}

A.F £ AF. & A.F. & A.F £ ALF 3 AF. & AF. &
0.12 1.08 0.50 1.08 0.61 1.0 0.91 0.95 0.12 1.07 0.3%9 1.07 0.73 1.01 1.00
0.13 1.08 0.52 1.03 0.58 1.01 0.87 0.96 0.12 1.03 0.31 1.06 0.78 1.01 1.00
0.1k 1.08 0.56 1.09 0.56 1.02 €.90 0.98 0.12 1.07T Q.33 1.0k 0.72 0.98 1.00
0.15 1.11 0.60 1.11 0.59 1.06 0.89 0.99 0.12 1.10 0.35 1.08 0.77 1.04 1.00
0.16 1.11 0.51 1.0k 0.506 1.00 0.39 .99 0.12 1.10 0.37 1.02 0.81 0.95 1.00
Q.17 1.10 0.54 1.03 0.59 1.14 0.87 0.99 0.12 1.06 0.39 1.03 0.71 1.06 1.00
0.18 1.0 0.57 1.09 0.57 1.08 0.90 0.98 0.12 1.00 0.41 1.06 0.75 0.97 1.00
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TABLE 11

COMPARISON OF MAXIMUM EFFECTS OBTAINED FOR
TWO-AXLE AND THREE-AXLE LOADINGS

a = 0.8, c/ccr =0, o= 0.15
fﬁ/fb =1, £/L= 0.3

oo/t = Tiz/fy= 1

For Two-Axle Loading: w/wb = 0.175, fvl/fb

i

For Three-Axle Loading: W/W_ = 0.2, fvl/fb

ll/L = 0.15, 12/1. = 0.3
Two-Axle Three-Axle
Quantity Loading Loading
A.F. 3 A.F, 3
D, 1.13  0.22 1.11 0.27
D, 1.08  0.59 1.05 0.64
Dy, 1.10  0.90 1.08  0.95
M 1.09  0.22 112 0.28
M, 1.05 " 0.53 1.05  0.58
M, 1.11  0.60 1.0  0.56
My 1.11  0.59 1.10  0.65
M, ‘ 1.06  0.89 1.02  0.9%
R, 0.99 0.12 0.96  0.18
R, 1.10  0.35 1.08  o.k
Ry 1.08  0.77 1.05 0.8

R, 1.0%  1.00 0.99  1.05




Flexible beam with lumped masses

e

poLoE 7

(a) Simply Supported Bridge

Flexible beam with lumped masses

7777

(b) Three Span Continuous Bridge

FIG. 1 BRIDGE MODELS
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/7 Fixed horizontal plemes — —
/* S Ll r/ - . . : . o \M
‘ ts |
i = o
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——}__° Bridge Deck - |
i asll .
; 2
. — i
(a) Model for Three-Axle Vehicle
/N~ Fixed horizontal plames —
: T/ / ) \\ P YA /)l . . \ P 7 -, - L -
. K c cC:o : 2 w z
-3 b 1 f

g alz ,*,gzz —— ¢ - Bridge _Deck)
L g
(b) Model for Two-Axle Vehicle (c) Model for Single-Axle
Load Unit

FIG. 5> VEHICLE MODELS




/ — Fixed horizontal planes — =\

e ‘ teesl A N\ sk ~ Actual bridge profile

Reference horizontal datum

2.3 Z, zy {passing through deck surface

at first sbutment

Instentaneous bridge
configuration

z panels slong total length of bridge

FIG. & COE;EINATIOEV OF BRIDGE AND VEHICLE MODELS -- ANY TYPE OF BRIDGE




— Fixed borizontal planes .. ey
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15 gbutment 1

/“ Actual bridge profile

Reference horizontal plane passing

/ /“ [through deck surfsce at first sbutment

~ Instanteneous bridge configuration

-¢6~

2 d pier 2“‘1 abutment

FIG. 5 COORDINATE SYSTEM FOR A THREE SPAN CONTINUOUS BRIDGE




Interacting Force, P

(a) P-u Diagram
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(b) P-u Disgram

 FIG. 6 INTERACTING FORCE, P, AND FRICTIONAL FORCE, F,
VERSUS SHORTENING OF SUSPENSION-TIRE SYSTEM, u

Ml MQ Mc M3 Ml&
.. ' AN B, = =
Oo 2‘2&!0 Oo SL OD 5],0 . 00 l"eaL
aL L L al

FIG. 7 LOCATIONS FOR WHICH DYNAMIC RESPONSE WAS CALCULATED
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e _______ coeffs.?

of program to
Williams memory

O

Playback 2nd part| !

(3SEB1)
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Compute
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* Refer to Fig. 9
#% Refer to Fig. 14

FIG, 8 GENERAL FLOW CHART FOR COMPLETE PROGRAM
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#Refer to Fig.

10

FIG. 9 GENERAL FLOW CHART FOR INTEGRATING EQUATIONS OF MOTION FOR A SINGLE TIME INI‘ERVAL



Determine value
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Determine
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FIG. 10 GENERAL FLOW CHART FOR SUBROUTINE (BAUX) -- USED IN COMPUTATION OF DERIVED ACCELERATION
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FIG. 11 GENERAL FLOW CHART FOR SUBROUTINE (DDRET)--
FOR COMPUTATION OF “REACTION" AT THE r‘h NODE FOINT



=101~

/For the intervel of

Enter* | Plant Jintegration considered
1imk 1 Is 0 < r < 2nem? ) for (MDIN) [} "{his the first time
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AFPENDIX A

DERIVATION OF EQUATION OF MOTION FOR VEHICLE

Al. DNotation:

Iin addition to the symbols used in the text, the following notation

is introduced:

— age : “~ 1 b}
Ftal’ FtaE = vertical inertia forces of Wi and WE’ respectively
£ - et 1 ot i . v T ) r
ftal’ ftaz’ feas vertical inertia forces of Vi Wy and x?, respectively
m = 1inertis ) % vt
Ttal’ ta2 inertla torques of wl and Wz, respectively
Rv = the difference between the dynamic and static components
of the wvertical interacting forces at the "fifth wheel pivot”
Il* I2 = rotary moments of inertia of WV, and W., respectively.
These quantities are given by “the eguations
Ei = g.8,1 Eé EE = a8 i Eg |
27 Bi%ty gy T T &M
1 )
1 >
A2. Derivation of Equations:
Consider first the trailer as a free body, as shown in Fig. AL,
Then,

Elevation of the "fifth wheel pivot"

= &521 +

Elevation of the C.

= ahz?). +

= B3B5%y

Angulaxr rotation of W

(1»a5)22 + & constant

G. of w2

8 (elev. of "fifth wheel pivot") + a constant

{ \ - .
+ l-a_}z, + 2., + o]
33\ 5; o 8, 3 a constant

2

= %; {elev. of "fifth wheel pivot" - z.) + a constant
s 3

=L {a.z. + (1-a_)z. = z_,] + a constant
I - %% 5% " %3



«16k4=

w N
2 (3] 0@ Ll
Fyop = ra [ajaszl + &5( l-a-av.s)z2 + g.hsz]
-3
fee3 = 3 ( 3]
12
Tian = I; [asiz'l + (l-a ), - 23]’

Taking moments about the "fifth wheel pivot", we have,

T

ta2
8y Fraz * Tie3 - I # (By = Poy,3) = O
and substituting the sbove expressions feor Ft 8’ ta}’ and Ttaz

equation, we obtain

W,
asey05(1-1, ) 5 4+ el (1n1) £ %
W, W.
+lsf +agma) 242 1% 4 (P - Py 5) =

or

Yo o Yoo .
Ea-ja.has(l«ia) = 18 + {a.ja.h(l-a.s)(l-ie) Tl %

o+ Uag + %ahl) +-2}'°3 E(py -, ;)=

8%,3

Teking moments about point &, we obtain the equation

T

ta2
Rv+a3Fta2+ 13

=O,

which, by use of Eqs. Al and A2, becomes

. 2 "2y 2 ¥
v = --a,s(a,3 + a5ahi2) e % - (l-a.s)(aj + ajahiz) ra ﬁa

W
L] 2 26
- aﬁal}(l"lz) z %

Next, consider the tractor ss a free body (see Fig. A2).

Elev. of C.G. of Wl = alzl + 8,2, + & eopstan‘t
Angular rotetion of W, = %?-

1 (zl-ze) + a constant

(A1)
(a2)

(a3)

into the letter

0. (Ak)

(a5)

Then,



oy = = (&%) +a)%) (46)

fypn = (A7)

fop= = (A8)

Ii—‘H mh\)i: UQ!‘_‘E: O'QI

Tiaa ©

E
~
ITH
[
'
S
no

5 (A9)

-

Taking moments about point c, we have

7
tal
8 F gy - (1-8g)R, - I Leao

+ (P2 - P = 0.

St,2)

and substituting Egs. A5 through A9 into the above identity, we obtain

N 2 N B
Falae(lql) Tt as(l-as)(a.). + a3au12) = ] Z
+ [(ag + ala,ail) W:'L' + (a,g + 838'1&12)(1-35)2 W?_ N WQ_ ] ..,2
W |

+ [ajah(l-as)(l—ig) ﬁgl 25 + % (P2 - PSt,Q) = 0. (A10)

Taking moments about point b, we have

T .
tal
alFtal-aSRv+wil + f

gar * (B = Pgy q) = 05

and making use of Egs. A5, AG, A7 and A9, we obtain

W W W
[(ai +8y8,1, g£ + ag (a% + aBahie) ﬁg + ﬁi 12,
! 2 Wy
+ [ala2(1~il) ot 8.5(1-&5)(83 + 333.1&5‘2). = ] A
+ e e(1-1) =L -8k -, )=0, (A11)

Equations A4, Al0 and All correspond to Eq. 2 given in the text

in matrix form.
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APPENDIX B

ILLUSTRATION OF NUMERICAL INTEGRATION PROCEDURE

Table Bl swumerizes the details of the numerical integration
procedure for the 30th time interval of integration for the problem presented
in Art. 22 when the frequency ratio fv/fb = 1. The values of the response at
the end of the 29th time intervel are those evaluated on ILLIAC. The integra-
tion is accomplished by use of Egs. 1, 4, 16 and 17, which for esse in compu-

tation are transformed into the following forms:

(607§, = (cemd +IRy, + 2 G 7 %)—2 (B1)
(at)? ¥, = 3: ‘:(At)e &y J] (P, - Py ) (B2)
(84)7, 50 = (B)F, g + 3 :(At) Va9 *+ (0% ¥, 5 (B3a)
(88)%, 5o = (68)2; oo + 5 :(At)z % pg * (at)? 21’30- (B3b)
Ve 30 = Ye,00 + OO oo + 5 (0007 ¥, o+ g (00025, o0 (Ble)
% 50= Zy,39 + (B8)E; o +% (at)? Hy og * z (a1)? 2 30 (Blb)

For the particular problem considered,

| 3
= - 0.0006033k =iz

2 § °
(o) Zb 5T

1l

The‘seqnence of operation is shown in the last column of the table.
The numbers one through ten designate the ten coordinstes involved. The

letters following the numbers designate the order of computation for the
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coordinate considered. The complete sequence of operation is from la to 10i.
Steps 9a through 10i refer to the second and third axles of a three-axle
vehicle. For & single-axle loading, which is the case considered in this

illustration, these steps are inapplicable,



TABLE Bl

EXAMPLE OF NUMERICAL INTEGRATION PROCEDURE

Value of Value of Quantity at t,. for Iteration Cycle Shown Operation
: Quantity at : 20 Sequence

Qua.ntity Equation t29 Starting First Second Third for Cycles

Used (Known) Cycle Cycle Cycle Cycle 1, 2 and 3
c*(m:) yl 3 -0.00525 -0.00969 -0.00661 -0.00667 la
C(At) y, -0.01035 -0.01174 -0.01233 -0.01232 2a
C(At) yh -0.01161 -0.01203% -0.01205 -0.01205 3a
C(At) Eq. Bl -0.018%0 Same as -0.01761 -0.01:760 -0.01760 La
C(At) yo -0.01001 for tog -0.00879 -0.00882 -0.00882 58
*(m;) y8 +0.00540 +0.00L435 +0.00443 +0.00k4k43 6a
C(At) y9 +o,Qoe"{o +0.00560 +o.‘00555 +q.00555 Ta
c(m;) i ~0.007hk ~0.01390 -0.01390 -0.01390 8g
C(At-.) Z, }Eq. B2 - - - - 9g
c(m;) z - - - - 10g
C(At)yl 1 +0.43080 +0.42554 +0.%2333 +0. 42487 +0. 42L8l 1b
C(A‘t)ie +0.34k420 +0.33385 +0.33315 +0.33286 +0.3%286 2b
clat)y), -0.18052 +0.19213 -0.19234 -0.19235 -0.19235 3b
c(m;);}5 'Eq. B3a -0.20236 -0.22076 -0.22036 -0.2203%6 -0.22036 Lb
C(At,)jr6 -0.11362 -0.12362 -0.12%01 -0.12303 -0.12303% 5b
c(m);;r8 +0.01866 +0.02046 +0.02354 +0.02357 +0.02357 6b
c(m;);;r9 J -0.0181k4 -0.0154% -0.01400 -0.01k02 -0.01k02 Tb

*C = EI/SOOWL?

.-69{..



TABLE Bl (Cont'd)

' Eq. Bha

+2.57842

+7.70922

+5.32299

-1.71463

=1.19933
-0.37802
-0.03213
-0.07743

451.45245

+2.57099

+8.13719
+5 .66201
=1.90095
-1.41089
-0.4966%
-0.01077

-0.09k22

+54.02715

+2.56775

+2.56775

+2.17939

Sh
10h

;.c

B
.,<.~:/%

3¢

5¢
6c
Te
81
9i
101

98,
10a

gb
10b

10e

~0LT~



TABLE Bl (Concluded)

ki(au, ) A +0.01072 +0.01071 +0.01071 8
k. (ouy)/vW - - - 94
ks (o) /v - - - 10d
Pl/w 1.01233 1.02305 1.02304 1.02304 8e
Bo/¥ - - - - 9e
Pi/w - - - - 10e
(Pl Py l) /v +0.02305 +0.0230k4 +0.0230k4 8¢
(ByPy, 0)/¥ - - - 9%
(P5 Pst’s) /W - - - 10f -
cu) N -24.39430 -26.57359
Cug - -
u _ -

cu} L 2;?"9"‘2’ -46.36810 48,5449
Cué - -
ol J : i
e v FvZ 2EI

¢ = Xy 2= . e

k) = Pag,1 M Wy (fb o - 9LOHS 0

AL






