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SYNOPSIS 

The effect of weld·ing on the axial fatigue properties of a 

queRche·d·andtempered steel in the life range between 100,000 and 2,000,000 

cycles has been investigated on a zero-to-tension and partial tension-to­

tension stress cycle. Included in the studies are the effect of surface 

geometry and the metallurgical changes imparted by the welding. 

The test results indicate that the introduction of a transverse 

butt weld in this steel decreases the fatigue strength corresponding to 

2,000,000 cycles by approximately 40 percent. On a zero-to-tension stress 

cycle, no significant increase has been found in the fatigue strength of 

welds in the quenched and tempered steel over comparable welds in ASTH 

A-7 or A-242 steels. The quenched and tempered steel has also been found 

to be more notch sensitive in fatigue and highly susceptible to even the 

most minor internal discontinuities. 

The data indicate that the superiority of the quenched and 

tempered steel lies in its ability to resist high mean stresses and is 

thus eminently suited for applications where high dead to live lead ratios 

are encountered. 
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EFFECT OF WELDIN~ ON THE AXIAL 
FATIGUE PROPERTIES OF HIGH 
STRENGTH STRUCTURAL STEELS 

I. INTRODUCTION 

101 GENERAL CONSIDERATION OF PROBLEM 

Recent years have seen a growing interest in the use of high 

strength structural steels for the fabrication of welded structures. 

However, the application of these steels has raised a number of questions, 

one of which is the possibility of fatigue fai lures in such structures 

under the action of repeated loads. 

It is well known that a weld, or for that matter any stress 

concentration, can have a significant influence on the fatigue behavior 

and can possibly induce failures in metals that are sUbjected repeatedly 

to nominal stresses considerably below their static ultimate strength. 

Besides repetitions of stress, the conditions generally associated with 

fatigue fai lures include one or more of the following: 

a) Stress concentrations. 

b) Large amplitudes of stresso 

c) High maximum stress. 

d) Corrassive environment. 

Tne ral e played by a weld in fat··j·9ue i sgenera l1y associated 

with three important factors. First, in a majority of cases, a weld 

constitutes a sudden dimensional discontinuity which, in turn, acts as a 

stress concentration. The effect of a stress concentra~ion in reducing 

the fatigue resistance of structural components is very well known. 
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The· secQnd factor is the change ·of properties, both physical and 

chem-i-ca-l-, reStllt-i·fl9--from--the-we-ld-i·Ag· ·process·. Th ismay be att r Q buted, in 

part, to the metallurgical changes accompanying the localized heating and 

rapid cooling. For example, the structure of the base metal in the heat 

affected zone, i.e., the part of the parent metal affected by the weld, is 

changed as a result of the heating and cooling cycle in such a manner that 

grain coarsening results. This change in grain structure is usually 

accompanied by a change in physical properties of the metal. 

The third factor contributed by welding is the state of residual 

stresses imparted to the welded joint. Since residual stresses may change 

the local cyclic conditions of stressing there is reason to believe that 

they may also have an influence on the fatigue behavior of a welded member. 

Over the years, this matter has been the subject of considerable controversy 

and of much experimental and theoretical research. 

~n addition to the above discussed role played by a weld, there 

are several other factors that deserve attention. ~t is well known that 

materials respond differently to the effect of stress concentrations in 

fatigue; the higher strength materials are generally affected more than 

the lower·-s·t-ren.gth ·mater i.a·ls. Thus ,the high strength materials are con­

sidered more notch sensitive in fatigue and it is in this sense that this 

term is employed throughout this report. Secondly, it may be expected that 

various steels, because of variations in their basic characteristics, will 

respond differently to the various changes imparted by welding. lastly, 

one might consider that fatigue fractures consist of two stages - the 

initiation and the propagation of cracks, each of which may be governed 

by different criteria. 
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The problem· of fati·gue ·in welded structures is further compl icated 

by the fact that it is practically impossible to obtain perfectly sound welds 

or to duplicate welds in the strict sense. Also, at present there are no 

satisfactory methods avai lable for assessing accurately the effect of weld 

flaws on the fatigue behavior of welded members. 

102 EX~STING FATIGUE DATA 

Relatively little information is avai lable concerning the fat~gue 

behavior of welded members in high strength structural steels, especially 

those of the quenched and tempered typeo Most of the published fatigue data 

is for welded members in ASTM A-7 steel with some data on low alloy steels 

of the ASTM A-242 typeo 

Published fatigue data on high strength steels have led to the 

general belief that high strength steels have little advantage over ordinary 

mi Id steels under conditions of repeated loadings. For instance, it has been 
.. v"" ... '-t.. 

reported (3)" that the fatigue strength'''' of a butt-welded joint in ASTM 

A-242 steel may be only 7 to 17 percent higher than that of a comparable 

weld in ASTM A-7 steel on a zero-to-tension stress cycle (depending on the 

chem.i.cal .and.physi-eal pr-ape.r.ties of the steel, the type of joint preparation 

and the orientation of the weld, among other factors). The increase in 

allowable stress for static load design wi 11 generally be significantly 

higher than this percentage. 

The observation that high strength steels may show little advantage 

over ordinary steels in the welded condition when subjected to repeated 

* Numbers in parentheses refer to correspondingly numbered items in the 
bib 1 i og raphy. 

~rl: Unless otherwise stated, the term 'fatigue strength i is used throughout 
this report to represent the fatigue strength corresponding to 2,000,000 
cyc 1 es 0 
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loadings can be further illustrated by a comparison of fatigue ratios 

for a particular- type- ofweldedmember-, as shown below. 

Steel Ultimate Type of F 2,000,000 Fatigue Source 
Strength, Member (zero-to-tension) Ratio 

ksi ksi 

ASTM A-7 57.4 Plain Plate 34.6 0.603 (3) 
(As-Ro 11 ed) 

ASTM A-7 57.4 Transv. Butt 24.0 0.417 (3) 
(As-We 1 ded) 

T-l 123.0 Plain Plate 50.0 0.406 ( 1 ) 
(As-Ro 11 ed) 

T-l 123.0 Transv. Butt 21.0 0.171 ( 1 ) 
(As- We 1 ded) 

It is apparent that the fatigue ratios for both plain as-rolled 

plates and transverse butt-welded joints are considerably lower for the higher 

strength steel. 

The observation that high strength steels are more notch sensitive 

than ordinary structural steels, however, requires some special comments on 

the use of the high strength steels. Besides the superiority of these steels 

under static loading conditions, it can be expected that the higher strength 

steels should be able to withstand higher repeated loadings at high mean 

stresses than A-7 type steel because- of this superior static strength. 

Avai lable information indicates that under conditions of repeated loading, 

high strength steels are in fact superior to ordinary steels in two cases. 

The first case is one in which the fluctuation of the applied stress (the 

range of stress) is relatively small. Such a case arises where the dead 

* The ratio of fatigue strength to the ultimate tensi Ie strength. 
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load stresses are considerably higher than the live load stresses. The 

second case where high strength steels- have been found to be superior to 

ordinary steels is in applications where the number of repetitions is 

qu i te lowo 

1.3 OBJECT AND SCOPE OF INVESTIGATION 

Any welding process involves the generation of a considerable 

amount of heat. The mechanical properties, as well as the metallurgical 

structure, of a metal exposed to the complex thermal cycle involved in 

welding are consequently subject to change. These changes are largely 

dependent on the conditions of welding and the rate of cooling, in addition 

to the characteristics of the parent and deposited metal. As a result it 

ss to be expected that a welding process wi 11 influence the properties of 

steels in varying degrees, the most seriously affected being the steels 

which owe their physical characteristics to certain types of heat treatment 

or whose properties are susceptible to great changes by heat treatment. 

The steel which forms a major part of the investigation reported 

herein derives its physical characteristics from a process of quenching and 

temperingo As noted above, this steel is thus likely to be considerably 

affected.by any .welding process. 

·.The present i.nvest·i gat ionwa.s in it.iated to study- .quant i tat i ve ly 

the effect of welding on the fatigue properties of a quenched and tempered 

steel. The reduction in fatigue resistance due to the presence of a weid 

is largely a result of the dimensional discontinuity at the weld and partly 

due to the metallurgical changes introduced. ~n addition, some loss ~n 

fa-t·i 9ue··res-~staAce is to be expected &ecause of the int-r+nsi c change i In 

homogeneity caused by the welding. 
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To investigate the separate effects of the various factors on the 

fatigue resistance, a transverse butt-welded specimen was selected. Tests 

were conducted on specimens in the as-welded condition, with the reinforce-

ment removed and in a heat-treated condition. The base for the computation 

of reduction in fatigue strength due to the various effects of welding was 

taken as the fatigue strength of plain as-rolled plates. These tests were 

conducted on a zero-to-tension stress cycle. 

~n addition to the above tests, one series of fatigue tests on 

as-welded transverse butt welds were conducted on a cycle of stress varying 

from a partial tension-to-maximum tension. However, in these tests the 

maximum tension was held constant. 

A limited number of fatigue tests on transverse butt welds in a 

commercial ASTM A-242 steel were also conducted. The available material 

limited the study to one series of zero-to-tension tests on transverse butt 

welds in the as-welded condition. , 
Metallurgical examinations of typical specimens have been conducted 

to determine the metallurgical changes imparted due to the welding and heat 

treatment process and to evaluate the effect these changes might have on the 

fatigue behavior of the members. 
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I I. DESCRIPTION OF MATERIALS AND TESTS 

20 I MATERIALS 

The quenched and tempered steel used in this investigation was 

supplied in 3/4 ina plates from a single heat. The chemical composition 

and physical characteristics of the steel are presented in Tables I and 2, 

respectively. 

The chemical composition and physical characteristics of the 

ASTM A-242 steel used for the exploratory series of tests are also given 

in Tables I and 2, respectively. In Table 2, two sets of properties are 

described for the ASTH A-242 steel; in the as-received condition and the 

* heated condition. This heat treatment was carried out in order to correct 

for difficulties encountered in welding. The treatment is discussed in 

Section 40 10 It should be pointed out that the heat treatment significantly 

lowered the yield and ultimate strength of the material. This change was 

accompanied by an increase in the ducti lity of the material as appraised by 

the elongation. 

Both EllOl6 and El2016 grade electrodes were employed in welding 

the quenched and tempered steel. For welding the ASTM A-242 steel, electrodes 

of E7016 grade were used. All electrodes were stored in an oven at 200 to 

3000 F unti I used. 

2.2 TEST SPECIMENS 

The specimens used in the test program had a width of 12 in., an 

overall length of 48 in., and a reduced section at the center. Detai Is of 

the plain plate and transverse butt-welded specimens are shown in Fig. I. 

* See Table 2. 
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The first series of transverse butt-welded joints was prepared as 

shown in Fig. l(b). Some of the subsequent tests employed a central test 

section butt-welded to pull heads salvaged from previousl,Y tested specimens. 

The welds connecting the pul 1 heads to the central test section are referred 

to in this report as spull head welds! and in each case were ground flush. 

The minimum distance from the pull head welds to the central test weld was 

kept greater than 7 in. to eliminate any effect of the pull head weld on 

the test weld. 

2.3 fABR~CATION OF SPECIMENS 

For the preparation of plain plate specimens, 12 in. by 48 in. flame 

cut blanks were first dri lIed at the ends and the profi Ie of the specimen then 

machined to the final dimensions indicated in Fig. lea). No material near the 

test section was removed by flame cutting. 

As a first step in the preparation of the welded specimens, the 

operator and the welding procedure were qualified in accordance with standard 

practice (6). After the welding procedure had been established, the edges of 

the blanks were prepared for welding and all mi 11 scale and undesirable 

material was ground off in the area where the weld was to be deposited. The 

specimen was then securely clamped in a jig that could be rotated about a 

horizontal axis so that all welding could be carried out in the flat position. 

The members were then welded and allowed to cool in the jig unti 1 they reached 

room temperature. 

The rates of travel recorded for the welding procedures (Figs. 3,4) 

were minimum values so that the heat inputs did not exceed the specified 

values. 
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All transverse butt welds were of the double-Vee type with a 

60 deg. included angle. The detai 15 of the welding procedures employed 

for these members are presented in Figs. 3 and 4. In each case a 7 in. 

length of weld was prepared and then the test section finished to the 5 in. 

width shown in Fig. l(b). 

The 7 in. length of weld was too long to allow the completion of 

a single pass without changing electrodes. In order to more closely control 

the duplication of the specimens, the changes in electrode were made at 

fixed points as shown in Figs. 3 and 40 By the use of this procedure, every 

pass of the weld was stopped and restarted within the test section. Adjacent 

passes were welded from opposite directions and changes of electrodes did not 

occur one over the other. 

Welding procedure A (Fig. 3) was used for only 6 specimens (see 

Table 5)0 All subsequent welds were prepared with welding procedure B 

(Figo 4) 0 The electrode employed in each case is specified along with the 

results of the fatigue tests in Tables 5 through 12. ~t should be noted that 

no preheat was employed in the preparation of the weidso 

Welding of the test section (in cases where central test section 

blanks were employed with previously used pull heads) to the pull heads was 

carried out in a manner simi lar to that described above, with no control 

being exercised over the positions of change of electrode. 

Subsequent to the welding and machining of the specimens, the edges 

of all specimens were draw filed. The welds from which the reinforcement was 

to be removed were ground flush with a portable disc grinder o The grinding 

was started with a 36 grit wheel and then finished with a 120 grit wheel in 

such a manner that the final markings from the grinding were parallel to the 

direction of loading. 
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2.4 PREPARATION OF SPECIMENS FOR METALLURGICAL EXAM~NATION 

After each fatigue test, the test section of the specimen was 

removed and the pull heads discarded unless they were to be used subsequently 

as mentioned in Section 2.3. The metallurgical examinations were carried out 

on small sections of the specimen taken from positions near the point of 

initiation of the fatigue cracks. 

The sections thus obtained were prepared for metallurgical examina­

tion using standard polishing techniques. The sections were etched using a 

two percent nital solution and then examined. The results of the metallurgical 

examinations are described in Chapters 3 and 4. 

2.5 TESTING EQUIPMENT 

All of the fatigue tests reported herein were conducted at room 

temperature in an ordinary non-corrosive environment using Universoty of 

~llinois 200,000 lb. lever type fatigue machines. The speed of these machines 

is approximately 200 cycles per minute. 

The essential features of the ~ llinois fatigue machines are shown 

schematically in Fig. 2. A variable throw eccentric transm1ts the force 

through a dynamometer to a lever which, in turn, transmits the force to the 

upper pull head at a mUltiplication ratio of approximately 15 to 10 The force 

that is exerted on the specimen originates in the double throw eccentric which 

is adjusted to give the desired range of load before the test is started. 

The maximum load is controlled by the adjustable turnbuckle mounted between 

the eccentric and the dynamometer. 
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206 TESTANG PROCEDURES 

All of the fabricated specimens were subjected to a thorough 

visual inspection for cracks upon completion of welding and prior to 

testing o However, in no case were any cracks found. 

fai lure of the specimens, as far as feasible, was taken as that 

point at which approximately half the cross sectional area of the specimen 

had fractured. This procedure could not be followed in all cases because 

the automatic microswitches on the fatigue machines did not always stop 

the machines before the members had fractured half way through. In cases 

where complete fracture occurred, no attempt was made to correct the life 

to that for which approximately half the cross sectional area would have 

fractured. There are several reasons for following this procedure. First, 

there is not sufficient information avai lable to determine the rate of 

crack growth in welded members under repeated loads. Second, laboratory 

observations have indicated that the number of cycles required for fatigue 

cracks to propagate through the type of members tested is usually a small 

percentage of the total fatigue life. finally, if one considers the inherent 

scatter associated with fatigue testing, small corrections of the nature 

discussed above are not justified. 

207 EVALUAT~ON OF fATIGUE STRENGTH 

To compare the results of fatigue tests of specimens tested at 

different stress levels, fatigue strengths corresponding to fai lure at 

particular lives have been computed using the equation 

k 
F = S (!i) 

n 
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where 5 is the stress at which the specimen fai led after N cycles, n is the 

number of cycles for which the fatigue strength F is desired and k is an 

experimentally determined parameter. 

Equation (2.7) is an empirical equation, derived on the basis of 

laboratory observations (7) and is based on the assumption that the finite 

part of the S-N relationship, when plotted to a logarithmic scale, can be 

represented by a straight line. Laboratory investigations have revealed 

that k, the slope of the S-N curve, is a function of' the material character­

istics, the geometry of the specimen and the cyclic conditions of loading 

to which it is subjected. As a result, the computed values of fatigue 

strength are only approximations. Nevertheless, because of the logarithmic 

nature of the relationship, the error associated with values of computed 

fatigue strengths resulting from any error in the assumed value of k is 

generally relatively small. 

The results of all series of fatigue tests in this study have been 

plotted on a logarithmic basis using nominal applied stresses, and average 

curves have been drawn for these data. A value of k was assumed initially 

and the fatigue strength for two lives computed 0 The average values of these 

fatigue strengths were then used to determine a new value of k and the process 

repeated unti 1 the assumed and computed values of k coincided. 

The number of cycles at which the fatigue strengths were computed 

were taken as 100,000 and 2,000,000. The latter value, 2,000,000 cycles, is 

an arbitrary value, sometimes considered to represent the number of repeti­

tions of stress certain bridge members would probably be expected to withstand 

during their normal life span. Furthermore, the S-N diagrams for many types 

of welded joints tend to be~ome horizontal at approximately 2,000,000 cycleso 
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The other point at which the fatigue strength has been computed for 

purposes of comparison has been taken as 100,000 cycles. This, too, is an 

arbitrary value and was probably originally conceived by investigators for 

purposes of comparison only. It has been observed from test data that the 

S-N curves for many types of members can be approximated by a linear relation­

ship in the region between 100,000 and 2,000,000 cycles. The exact shape of 

the S-N curve is probably not linear for the entire range, but very little 

information is av~i lable to better define it. 
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I!! 0 ANALYSIS AND DISCUSSION OF 

RESULTS OF TESTS ON QUENCHED AND TEMPERED STEEL 

301 FATIGUE TESTS OF AS-ROLLED PLATE SPECIMENS 

The results of fatigue tests on as-rolled plate specimens are 

presented in Table 3 and are shown diagramatically in Figo 50 Six tests 

were conducted on a zero-to-tension stress cycleo 

Also shown in Figo 5 are the results of fatigue tests reported on 

simi lar specimens of two other quenched and tempered steels, T-l steel (1) 

and HY-80 steel (2)0 Data on the physical characteristics of all these 

steels along with simi lar data on ASTM A-242 and A-7 steels (the results of 

which are not shown in Fig. 5) are summarized in Table 4. The S-N curve 

shown in Fig. 5 is only for the results of the present tests on the 3/4 in. 

quenched and tempered steel. 

From the .(7j.~ta presented in Figo 5, it may be seen that the fatigue 

ratio and the strengths of the 3/4 ino quenched and tempered steel (reported 

herein) are lower than those of the 1/2 ino quenched and tempered T=! steel, 

reported in Ref. 10 On the other hand, the strengths of the 3/4 ino nY-80 

steel are consistently lower than those on the 1 1/2 ino HY-80 steel. it is 

noteworthy that the above increase or decrease in fatigue resistance is 

coincident with a simi lar change in the static tensile strength of the parent 

material (Table 4). 

it is believed that the differences in the fatigue resistance for 

the 3/4 in. quenched and tempered and 1/2 in. 1-1 as-rolled p1ate specimens 

as well as those from simi lar specimens of 3/4 and 1 1/2 in. HY-80 S~~S~ are 

significant enough to warrant a further discussion as to the cause of these 
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differences. However, at present, no simple explanation for these differences 

in the fatigue strengths is avai lable. The mOst common explanation is based 

on the observation that the fatigue resistance of as-rolled plate specimens 

is primari ly a function of the static tensi le strength, the fatigue resist­

ance increasing with an increase in the static strength. The data shown in 

Table 4 and Fig. 5 appear in general to substantiate this position. However, 

the data on simi lar as-rolled plate specimens of ASTM A-242 and A-7 steels 

give considerably higher fatigue ratios. The statement that the fatigue 

resistance is a function of the static tensi Ie strength cannot, therefore, 

be accepted as the only factor which contributes to the fatigue strength. 

~t has been observed that high strength steels are relatively more 

notch sensitive in fatigue (the stress raisers in the as-rolled plate being 

the mi 11 scale and the rolling defects) and thus they cannot be expected to 

show any significant advantage in fatigue resistance over ordinary structurar 

steels. Therefore, the fatigue ratios tend to decrease with an increase in 

the static tensi Ie strength. That this is so is readi ly verified from the 

data in Table 4. It is seen that the fatigue ratio is highest for A-7 steel 

(i .e., it is the least notch sensitive). The fatigue ratios decrease for the 

A-242, the HY-80 and the quenched and tempered steels indicating that with an 

increase in the static tensi le strength, the notch sensitivity of the steel 

increases. There are considerable data avai lable in the literature in support 

of the above noted behavior (7,9,10). 

One interesting fact emerges from the data presented in Table 4. 

The fatigue ratios for the quenched and tempered, the T-1, and the HY-80 

steels are almost the same although the static tensi le strengths vary from 
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9402 to 12300 ksi. All these steels have a tempered martensitic structure 

with differences in hardness level. This suggests that the fatigue resist-

ance of as-rolled plate specimens might also be a function of the metallur-

gical structure of the parent material. However, such a conclusion would 

require additional work on a variety of materials. The agreement shown in 

Table 4 may be purely coincidental and may have been caused by differences 

in the surface geometry of the specimens. At first glance, it would appear 

that since these tests were all conducted under axially repeated loads with 

no intentional stress raiser, there should be no effect of gemoetry. However, 

if one considers the mi 11 scale and rolling imperfections to be unintentional 

stress raisers in the as-rolled plate specimens, the effect of geometry could 

cause differences in the fatigue resistance of the specimens of different 

thicknesses. However, definite evidence of the effect of geometry is not 

yet avai lable though isolated test results substantiate the idea that the 

specimen geometry can ca~$e significant differences in the fatigue resistance (8)0 

The fatigue failures of all but one as-rolled plate specimen initiated 

at the end of the fi llet radius (at the end of the test sectaon), due to the 

discontinuity in the section at that point. The exception to this type of 

fai lure was specimen FTT-33 in which fracture inotiated in the test sectiono 

All fatigue cracks initiated at the surface. Photographs of typical fracture 

locations and fracture surfaces are shown in Fig. 60 

302 FAT~GUE TESTS OF AS-WELDED TRANSVERSE BUTT-WELDED JO~NTS 

Results of fatigue tests on as-welded transverse butt-welded joints 

on the quenched and tempered steel are summarized in Table 5 and are shown 

diagramatically in Fig. 7. Nine fatigue tests were conducted on a zero-to­

tension stress cycle. 
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Also presented in Fig. 7 are the results of fatigue tests reported 

on simi lar specimens of T-1 steel (1) and of two thicknesses of HY-80 steel (2). 

Pertinent data on all these tests, along with simi lar data on AS1M A-242 and 

A-7 steels are presented in Table 6. The straight line S-N curve shown in 

Fi~. 7 is for the results of the present tests on the 3/4 in. quenched and 

tempered steel only. 

It wi 11 be noted that the data presented in Fig. 7 for the 3/4 in. 

quenched and tempered steel falls within a very narrow scatter band. There 

does not appear to be any significant effect of the difference in electrode 

employed, probably due to the fact that all specimens fai led at the edge of 

the weld due to the dimensional discontinuity introduced by the weld reinforce-

mento 

As in the case of the as-rolled plate specimens, there are signifi-

cant differences in the results for the 3/4 ino quenched and tempered steel 

and 1/2 in. T-l steelo This same result appears in the data for the two 

thicknesses of HY-80 s~~e1o However J these differences do not appear to be 

consistento In the case of HY-80 steel, the welded joints in the 1 1/2 in. 

material appear to be inferior at all lines when compared to those in the 

3/4 in. material (which has a lower static strength than the 1 1/2 in. HY-80) 

under conditions of repeated loadingo This behavior is in line with expecta-

tions (9,11). On the other hand, when 1-1 and the quenched and tempered steel 

results are compared, the welds in the 1/2 ino T-l material appear to be 

superior to those in the 3/4 in. material up to fatigue lives in the neighbor-

hood of 300,000 cycles whereqs at longer live~ the joints in the 1/2 in. 
I 

material appear to be inferior to those in the 3/4 ino material. In addition, 
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the data on the ASTM A-242 steels presented in Table 6 show that the welds 

in 1/2 ina material are superior to the welds in 3/4 ino material under 

conditions of repeated loadings (see also Figo 19)0 

~n spite of the somewhat contradictory behavior mentioned above 

for the results of the as-welded transverse butt-welded joints in various 

steels and for various thicknesses, a pattern seems to emergeo First, it 

appears that the role played by a weld in fatigue is somewhat different at 

longer lives than at shorter lives, the exact nnfluence being governed by 

the geometry of the spe·cimen and the tensi Ie strength of the material, among 

other factors. This seems to be consistent with recent claims that short 

life fatigue is a mechanism altogether different from long life fatigue (12)0 

Second, it appears that high strength steels are relatively more sen~it~ve 

under fatigue conditions to the presence of welds than are ordinary structural 

ste~ls, i oe., high strength steels are more notch sensi~ive in fat~gueo 

from the discussion, it is apparent that the exact role played by 

welds in fatigue is not yet fully understoodo Due to the large number of 

variables present, the comparisons presented cannot be considered as fina] 

proof of their validity. One of the major purposes of the above discussion 

has been to point out some of the more significant differences in fatigue 

behavioro ~t follows then that the avai lable test data must be used with 

discretion. 

It has already been mentioned that all of the transverse butt-welded 

joints tested in the as-welded conditLon fai led at the edge of the weld 

reinforcement. Typical fracture surfaces of welds ~n this series 3re shown 
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3.3 FAT8GUE TESTS OF HEAT-TREATED TRANSVERSE BUTT-WELDED JO~NTS 

One series of ten transverse butt-welded joints of the quenched 

and tempered material were tested in a heat-treated condition with the 

weld reinforcement in place. The purpose of this heat-treatment was simply 

to alter the characteristics in the region of the weld heat-affected zone 

(see Seco 3.7)0 The heat treatment consisted of heating the completed 

butt-welded joint to l650oF, quenching cold in water, and tempering at 

l1500 F for 30 minuteso Unfortunately, this heat treatment caused 3 specimens 

(see Table 7) to warp considerably, causing some bending stress to be intro­

duced upon testing o The results for these 3 specimens were consistently 

lower than for the other specimens and were not included in the averages 

indicated in Table 70 

The results of the 7 specimens used to obtain an average value of 

fatigue strength of the heat-treated transverse butt-welded joints are fairly 

consistent and are plotted in Fig. 100 The average values obtained for 

F100 ,000 and F2 ,000,000 were 4409 and 2906 ksi respectively, an increase of 

approximately 14.5 percent over corresponding values for the as-welded 

transverse butt welded joints. 

In general, the specimens in this series fai led at the edge of the 

weld reinforcement due to the dimensional discontinuity at the specimen 

surface. There was one exception; specimen FTT-14 (see Table 7) fai led in 

the pull head weld in which there appeared to be a small internal flaw. 

Photographs of fracture surfaces of typical specimens in this series are 

shown in Fig. II. The somewhat different texture of the fracture surface 
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from that of the as-welded specimens (fig. 8) is noticeable. Also note-

worthy is the marked resemblance of the texture of the fracture surface to 

that of the plain plate specimens shown in fig. 6. 

3.4 FAT~GUE TESTS OF TRANSVERSE BUTT-WELDED JOiNTS W~TH RE~NfORCEMENT 
REMOVED 

Fatigue tests of transverse butt-welded joints with the weld 

re!nforcement removed were conducted to determine the extent of the effect 

of the weld reinforcement on the fatigue strength under a zero-to-tension 

stress cycle. 

The removal of the weld reinforcement eliminates the dimensional 

discontinuity on the surface of the specimen at the edge of the weld and, 

as a result, it can be expected that the fatigue strength of the member 

would be increased. At the same time, however, the removal of the weld 

reinforcement can be expect.ed to increase thes i gn if i cance of i nterna 1 

weld flaws. To realize fully the advantage of the removal of the weld 

reinforcement would require welds that are completely free of internal 

flaws. 

The results obtained from the tests on members with the weld 

reinfor-'cement removed are in agreement with the behavior discussed .3boveo 

Further discussi~n of the role of weld flaws in fatigue is presented !n 

~n Table 8 are summarized the results of fatigue tests on 

transverse butt-welded joints tested with the weld reinforcement removed 0 

~n all these tests, fai lure occurred at the edge of the weld. The:;e 'l"'e~:_~H::::. 

are shown diagramatical1y in Fig. 13. At a life of 2,000,000 cycles remova1 
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of the weld reinforcement increased the average fatigue strength by 

approximately 11 percent. 

Three specimens with the weld reinforcement removed fai led in 

the weld metal and exhibited a fai lure pattern different from that usually 

encountered for normal sound welds. These are discussed in Sec. 3.5. 

305 FATIGUE TESTS OF TRANSVERSE BUTT-WELDED JOINTS W~TH WELD FLAWS 

It has been stated in Sec. 3.4 that removal of the weld rein­

forcement can be expected to increase the significance of internal flaws. 

This section is devoted to a brief discussion of the role of weld flaws 

in fatigue and to a presentation of data obtained from fatigue tests of 

welds with flaws. 

It must be noted that the degree to which weld flaws affect the 

fatigue resistance of a particular type of welded joint in a particular 

steel is undoubtedly a function of the shape, size, location, and the 

orientation of the flaw. ~n cases where serious flaws are present, the 

fatigue resistance of a member, even with the weld reinforcement removed, 

may be less than that of a sound joint o On the other hand, under static 

loading conditions with normal weld flaws, the full static strength of 

the parent metal is usually developed. In the case of fatigue the internal 

weld flaws act as stress raisers and as nuclei for the initiation of 

fatigue cracks. Thus, it is imperative that data be avai lable on the 

exact nature of the weld flaw to make any quantitative predictions of the 

effect of weld flaws on fatigue. 

Due to difficulties associated with the production and duplica­

tion of weld flaws of a desired severity, little quantitative information 
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is avai lable on the subjecto Much of the qualitative information on work 

on the influence of defects on fatigue strength has been summarized by 

Newman (13)0 Five types of weld flaws are discussed - cracking9 lack of 

fusion, lack of penetration, porosity and slag inclusionso 

In Table 9 are presented the results of transverse butt-welded 

j 0 i nts tested wi th the we I d rei nforcement removed wh i ch fa i led in the 

weld metalo There were three specimens in which fai lure occurred fin the 

central weld and three in which fai lure occurred in the pull head weldso 

Because of a lack of quantitative information on the subject, It is extremely 

difficult to interpret the limited results of weld failure tests when the 

reinforcement has been removed 0 ~n an attempt to overcome this situation, 

the weld fai lure tests wi 11 be compared on the basis of lives rather than 

fatigue strengthso ~n Table 9, for each of the specimens that fa! led sn 

the weld, the expected life on the basis of sound welds (Table 8 and figo 13) 

has been presentedo 

The results presented in Table 9 can be separated into two partso 

The three specimens which fai led in the central test welds had minor weld 

flaws (Specimen FTT-23, Figo 14 is typical of this group) 0 The actual 

lives obtained for these three specimens (Specimens FTT-28, 26. 2Z, Table 9) 

are lower than expected but the extent of the reduction fin fat~S~Je Etrengtns 

is not as severe as for the second group which exhibited lack of p~~3tr2t~ono 

Three other specimens (FTT-lI, 7, 10, Table 9) each fai led in the pull head 

we Id and the actua IIi ves are drast i ca 11 y short of the expected 1 i ves 0 The 

fracture surfaces of two of these specimens, FTT-7, fTT-lO D are s~n~~ " .. 

Figo 140 ~t wi 11 be noted that in specimen FTT-7 severe undercuttcng us 



-24-

present; in spite of the undercutting, the fai lure of this specimen appears 

to have initiated internally due to lack of penetration. 

In Table 10 are presented the results of three fatigue tests 

conducted on specimens with the weld reinforcement in place which were 

stress relieved. ~n each case, fai lure occurred in the weld metal due to 

lack of penetration. Typical fracture surfaces for two of these specimens 

are shown in fig. 15. 

As before, the lack of penetration of the stress rel-feved specimens 

appear to have drastically reduced the fatigue life, and hence fatigue 

strengtho 

From the data, it is apparent that the nature of the weld flaw 

can have a profound influence on the fatigue resistance of welded joints. 

Whereas minor inclusions can reduce the fatigue life considerably, major 

flaws like lack of penetration can cause drastic reductions in fatigue 

1 i yes and fat i gue st ren.gths 0 

~t has been mentioned earlier that I-I steel is relatively more 

notch sensitive than ordinary steelso The same is true of HY-80 steelo 

Thus, the drastic reductions in fatigue lives encountered in tests of 

welds with flaws, as seen from the data presented in Tables 9 and 10 and 

in Ref. 2, may, .. tQ a· cert.ain extent, be associated with the characteristics 

of the parent material i oeo, its notch sensitivity in fatigue o Avai lable 

data on ASTM A-242 and A-7 steels indicate that the role of defects in 

these steels is not as severe, indicating that these steels are not as 

notch sensitive as the quenched and tempered steelso This aspect is 

discussed further in Chapter 40 
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306 FATOGUE TESTS OF AS-WELDED TRANSVERSE BUTT-WELDED JO~NTS 

Thus far, results of fatigue tests on transverse butt-welded 

joints in this quenched and tempered steel conducted on a zero-to-tension 

stress cycle have been presentedo -However, welded joints encountered in 

engineering practice are rarely called upon to resist a cycle of stress 

varying from zero-to-tensiono For example, the cycles of stress to which 

the usual bridge member is subjected is a function of the initia! or dead 

load carried by the said member 0 The minimum stress is consequently more 

or less constant and depends on the type, span, and purpose of the bridgeo 

On the other hand, the maximum stress is a function of the loadso Since 

the number of applications of the maximum design live load 1S by no means 

certain, ~t may be assumed that the maximum stress in the stress cycle is 

the static design stress used for the material of the membero Thus, for a 

bridge member subjected to tension, a cycle of s-tress varying from an An~tial 

tension to a maximum tension may be assumedo 

With these facts in mind, a series of tests was conducted O~ a 

partia~ tension-to-tension stress cycle y the maximum stress ~n ail tests 

being kept at 50,0 ksi and the minimum stress being varied f~~~; test to 

testo ~n all, four specimens in the as-welded conditaon were tested, the 

mnnnmum tension being O~ 1205, 25.0 and 3500 ksi 3 respectivelyo The results 

of th~s series of tests are presented in Table 11 and are shown d~agram~ 

matical1y in figo 170 ~n these tests the maximum stress was kept constant p 

consequently an increasing stress ratio ind~cates an ~ncreasin9 minimum 

stress and a decreasing range of stresso 
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The results of the tests in this series do not appear to yield a 

linear variation on the type of plot shown in Fig. 17. It is observed that 

a stress ratio of 0.70 (corresponding to a dead load to live load ratio of 

2.33) represents approximately the value of F2,000,000. This value is 

greater than the ratio of dead load to live load in many bridge members, 

but may be comparable to that which occurs in long span highway bridges. 

With the data obtained, it has been possible to construct the 

approximate Modified Goodman Diagram shown in Fig. 18. Constant life contours 

have been drawn for lives of 100,000 and 2,000,000 cycles. ~t must be empha­

sized that this diagram is based on very limited data - in fact, no data are 

avai lable for the completely reversed stress cycle - and is shown for the 

purpose of bringing out the salient features of the fatigue behavior of 

as-welded transverse butt-welded joints in this quenched and tempered steel. 

From the Modifled Goodman Diagram shown in Fig. 18, it appears that 

in the life range under consideration the behavior of transverse butt-welded 

joints is governed by the maximum cyclic stress as well as the range of 

stress. However, since no data are avai !able on a completely reversed stress 

cycle, a detai led evaluation of the behavior cannot be madeo 

~t is also possible to examine the effect of variation of either 

the a 1 terna,ti.ng. ·o.r··.meanst ress on the 1 i fe by means of the const ruct i on 

shown in Fig. 180 Using an inclined grid system, the constant life contours 

can be examined as functions of the alternating stress and the mean stress. 

From such a presentation, one can readi ly see the effect of mean stress~ 

maximum stress, or alternating stress on the fatigue behavioro The constant 

life contours meet at a mean stress and maximum stress corresponding to the 
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static strength but diverge as they approach a zero mean stress (complete 

reversal) 0 It again appears that, irrespective of life, the behavior of 

the joints is governed both by the mean or maximum stress and the alternating 

stresso 

!t must once again be emphasized that the analysis of the data 

presented above is based on a limited amount of data and that the curves 

have been plotted through only a few points. Nevertheless, it is believed 

that the curves are indicative of the general trend of the fatigue behavior 

for as-welded transverse butt welds in this steelo It must also be noted 

that the figure is based on specimens exhibiting normal modes of fracture 

(fai lure at the edge of the weld reinforcement) and should only be applied 

to sound weldso 

307 METALLURGICAL EXAMINATIONS OF BUTT-WELDED JOINTS 

This section is concerned with the metallurgical studies carried 

out on typical transverse butt welds. The metallurgical examinations of 

the welds were made to evaluate the changes in metallurgical structure that 

resulted from the welding process and to correlate these structures with 

the fatigue behavior of the welded joints, 

3,), 1 b~!a11urglcal Characteristics of the Parent Metal 

The steel used in these tests is a quenched and tempered~ ful1y-

ki lIed, fine-grain al loy steel which derives its metallurgical characteristics 

from the quenching and temperingo The significant features of the chemical 

composition of this material (see Table 1) are its low carbon content which 

provides toughness and weldabi lity, and the use of alloying elements which 

impart hardenabi lity and insure that transformation products form at low 

temperatures. 
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30702 Metallurgical Effects of Welding the Quenched and Tempered Steel 

During welding, the base metal in the vicinity of the weld is sub-

jected to a complex thermal cycle and steep temperature gradients ranging 

from the original or ambient temperature of the metal to its melting pointo 

The effect of this thermal cycle on the metallurgical structure of the base 

metal is especially noticeable in the region subjected to the higher tempera-

tureso These changes in the base metal depend not only on the maximum 

temperature to which a particular point is heated but also on the rate at 

which the heat is dissipated subsequent to the welding operation c The cooling 

rates, in turn, depend on the rate of heat input, the preheat temperature, 

the thickness or size of the specimen and the geometryc High heat inputs 

and preheating favor slow cooling whereas heavy sections encourage fast 

cooling rateso As a consequence, a gradient in the metallurgical structure 
~ 

results in the HAZnc 

The metallurgical characteristics of the weld metal may be affected 

by the composition and type of electrode, the type of joint, and the size of 

the specimen as well as the nature of the base metalo When the weld metal is 

bui It up from a succession of passes or beads, the original metallurgical 

structure of the inner passes may be partially or completely altered by the 

heating of the subsequent passes o The weld metal of the first passes is 

refined by the subsequent passes, the extent of refinement depending on the 

cooling rates, the location within the weld, the temperature to which the 

weld metal is heated, and the composition of the weld metalo Thus the 

initial passes in a multi-layer weld usually show greater refinement than 

the outside layerso 

* Heat-affected zoneo 
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The metallurgical gradients in the HAl due to the welding process 

can also be related to the hardness in the various regions in the weld and 

base metal. The hardness increases to a maximum near the junction of the 

refined anc coarsened zones in the HAl of the base meta1. In the transition 

from the coarsened zone to the fusion line the hardness usually drops, 

perhaps somewhat erratically. The hardness of the weld metal itself is 

dependent on the type and composition of the electrode and the manner in 

which the weld has been deposited. It should be noted, however, that the 

hardness gradients in the transition from the base metal to the weld metal 

are to a certain extent dependent upon the location of the line along which 

the hardnesses are determined. 

3.703 Microstructures of As-Welded Joints 

Specimen FTT-3 was typical of the as-welded transverse double-Vee 

butt-welded joints. The microstructures of the various zones of the weld 

of this joint are shown in Fig. 9. The fatigue fai lure occurred at the edge 

of the weld reinforcement. ~t appears that the fatigue crack in!tiated at 

the top adjacent to the reinforcement in the HAl and then traversed almost 

in a straight line through the base metal rather than foilow~n9 the HAZo 

The base metal of this quenched and tempered steel is made up 

essentially of tempered .martensite. On observation of the martensitoc 

needles, the former grain boundaries of the grains of austenite from which 

the martensite was formed by the rapid quenching given to this steel in its 

manufacture can be seen. There is also some retained austenite in the 

structure, possibly due to the large'austenitic grain size or uneven cooling. 

The black spots appearing on the microstructure (Fig. 9) are inclusions. 
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Some of the inclusions have an elongated shape, perhaps a consequence of 

the hot rolling. The inclusions and any retained austenite may lower the 

static strength, but only slightly. 

As a result of the complex thermal cycle involved in welding, a 

gradient in the metallurgical condition is present. Traversing out into 

the plate from the center of the weld, one finds the change in metallurgical 

structure decreases to a point where the welding process has no effect on 

the base metal. 

The plate tempering temperature used in the manufacture of this 

quenched and tempered steel is high and the zone in the base metal heated 

below or up to the plate tempering temperature wi 11 be unaffected by the 

weld heat. The next zone, where the plate tempering temperature is exceeded 

but the lower, critical temperature, A
l

, is not exceeded is generally termed 

a 'soft zone!. There wi 11 be practically no metallurgical change in this 

region but the high tempering temperature causes the static tensi le strength 

and the hardness to drop. This soft zone is very narrow and avai lable data 

on static tests of welded joints indicates that it does not affect the static 

strength of a welded joint. 

The principal metallurgical effect of the welding process starts 

at the point where the Al temperature is exceeded. At such points, some 

austenite, higher in carbon than the base metal, wi 11 form. This austenitic 

formation appears in the form of small grains which nucleate at the grain 

boundaries. The density and size of these grains increases as we go towards 

the zones subject to higher temperatures. These grains continue to form up 

to the region where the A3 temperature is exceeded. However, at the rapid 
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cooling rates predominant in this region, the austenite formed wi 11 be 

relatively low in alloy and wi 11 transform to bainnte on coolingo This 

region wi 11 also contain the original undissolved carbides and ferriteso 

Nearer the weld metal where the A3 temperature is exceeded» the 

cooling rate is relatively high and a structure of martensite or of bainite 

wi 11 be obtainedo ~n the micrograph of the WM-HAZ interface in Figo 9, 

such a structure can be seeno 

The weld metal structure for specimen fTT-3 shown in figo 9 appears 

to have a random structure, completely different than the base metalo This 

is understandable in view of the different composition of the electrodec 

The weld metal appears to have solidified in columnar grainso Because the 

flow heat from the weld is highly directional towards the adjacent cold metal, 

the weld develops distinctly columnar grains perpendicular to the bondo Also 

present in the weld metal .a.:are numerous pearlitic colonies, though these are 

very smal 1 in sizeo 

30704 Microstructures of Reheat-treated Joints 

The weld of specimen fTT-31 is typical of the heat-treated transverse 

butt welds and the microstructures of the various zones for this weld are 

shown in figo 120 This weld was a double-Vee butt weld and the fatague faihue 

occurred at the- . ..edge -of the weld reinforcement, as may be seen from the 

macrograph in Figo 120 

This weld was prepared in the as-received matercalo After the we1d 

was deposited, the specimen was subjected to a heat treatment (see Seco 303) 0 

Before the heat treatment was carried out no metallurgical examinatfion of th~ 

specimen was made; however, it can be assumed that it had a metallurgical 
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structure simi lar to that of specimen FTT-3 (Section 30703 and Figo 9) 

since it was prepared using the same welding procedure o The heat tr~atment 

consisted in quenching cold in water from l6500 F, causing a structure of 

martensite to be formed throughouto This temperature, however, was not 

high enough to destroy the columnar grain structure of the weld metal 

(Figo 12) 0 A tempering of the weld was then carried out at ll500 F, just 

below the Al temperature. The martensite or bainite formed on quenching 

appears to have become somewhat darkero 

The absence of the HAZ in the heat-treated specimen should be 

noted. A slight gradient in the metallurgical condition is present at the 

BM-WM interface. Typical micrographs and a macrograph of Specimen FTT-3l 

are shown in Figo 12. 

307.5 Analysis of Results 

A welding process produces metallurgical changes which depend on 

the size of specimen, joint geometry, initial temperature, heat input, and 

the welding technique employed as well as the characteristics of the base 

metal and of the welding electrodeo ~n terms of the metallurgical effects 

of welding and their bearing on fatigue, it is seen that~the dimensional 

discontinuity at the surface of a specimen has a greater effect on fatigue 

than the metallurgical factors introduced by welding, provided the weld is 

free of flaws. Studies have indicated that the meta!lurgical structure 

and the grain size govern only the local propagation of a crack, which 

generally traverses perpendicular to the applied stress (2)0 ~n cases 

where weld flaws overshadow the dimensional discontinuity at the surface, 

the weld flaws wi 11 act as nuclei for the initiation of fatigue cracks, 

irrespective of the metallurgy of the HAZ. 
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3.8 D!SCUSS~ON OF TEST RESULTS 

The current tests of transverse butt welds afford a quantitative 

measure of the effect of geometrical and metallurgical factors on the 

fatigue strength of transverse butt-welded joints in this quenched and 

tempered steel. A summary of the S-N curves obtained for the tests on 

this steel is presented in Fig. 16. It is seen that the introduction of 

a transverse butt weld in a plate of this steel reduces the value of F2 ,000,000 

from 42.8 ksi to 25.8 ksi, a reduction on the order of 40 percent. This 

reduction takes into account the loss in fatigue strength due to both geo­

metrical as well as metallurgical factors. However, if the external geomet­

rical factor is eliminated by removing the weld reinforcement, the fatigue 

strength corresponding to 2,000,000 cycles reduces from 42.8 ksi to 2807 ksi, 

a reduction on the order of 33 percent. On the other hand, if the metallurgical 

effects of welding are substantially eliminated (heat-treated specimens), the 

fatigue strength is reduced from 42.8 ksi to 29.6 ksi, a reduction on the 

order of 31 percent. 

It thus appears that of the 40 percent reduction caused in the 

fatigue strength of a plate of this quenched and tempered stee1 due to the 

introduction of a transverse butt weld, 9 percent is attributable to 

metallurgi{A3-1. factors-alone" Thus approximately 31 percent of the loss in 

fatigue strength is due to geometrical factors or other factors unaccounted 

foro These may be internal as well as external geometry, non-homogeneity of 

welds, possible change of the physical properties of the joint, and residual 

stresses, among other factors. 

The test results on a zero-to-tension stress cycle have indicated 

that under this stress cycle the fatigue strength of the quenched and 
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tempered steel is not much superior to that of A-7 or A-242 steels on this 

same stress cycle. However, since the fatigue strength is a function of 

the maximum stress as well as the range of stress, the advantages of the 

use of this steel over other structural steels occur under special circum­

stances. The tests carried out on a partial tension-to-tension stress cycle 

can be used to demonstrate this point (Fig. 17). The maximum stress used 

in these tests (50.0 ksi) would be almost impossible to attain in A-7 or 

A-242 steel without general or limited yielding. Since the fatigue strengths 

of welds in A-7, A-242 and this quenched and tempered steel are very close to 

each other on a zero-to-tension stress cycle, it is probable that the same 

range of stress could be resisted by the ASTH or A-242 steels as long as 

the maximum stress was below the yield strength. In other words, the ~ 

stress resisted by a weld in the quenched and tempered steel, because of its 

high yield strength, may be considerably higher than that resisted by a 

comparable weld in A-7 or A-242 steel. This is where the superiority of 

t his s t ee 1 1 i e s 0 
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IV. ANALYSIS AND DISCUSSION OF 

RESULTS OF TESTS ON AN A-242 STEEL 

4.1 FATIGUE TESTS OF AS-WELDED TRANSVERSE BUTT-WELDED JOINTS 

The fatigue tests conducted on the ASTM A-242 steel did not 

actually form a part of the primary objective of this investigation. They 

were essentially of an exploratory nature since it was found that this 

particular A-242 steel was not readi ly weldable in the as-received condition. 

Since only a limited amount of material was avai lable, only five fatigue 

tests of as-welded transverse butt-welded joints were conducted. 

Prior to any fatigue testing, weld qualification tests were 

conducted using three different welding procedures. However, none of these 

procedures gave satisfactory results. Two fatigue specimens were finally 

prepared using 'welding procedure B (Fig. 4). Results of fatigue tests on 

these two specimens (RF-l, RF-2) are presented in Table 12. Specimen RF-l 

fai led at the edge of the weld reinforcement and a gas pocket was visible 

at the fracture surface. Specimen RF-2 fai led in the weld metal, again due 

to the presence of gas pockets (Figo 20). 

Since a low hydrogen type electrode (E7016) was employed for the 

above tests, it was thought that the parent metal might itself contain 

entrapped gases o To investigate this, the parent material was heated to 

14000 F in a furnace and allowed to cool over a period of several days in 

the furnace itself. This heat-treated material was then welded and static 

tensi 1e tests indicated the weld to be soundo The subsequent fatigue tests 

of transverse butt-welded joints in this material were conducted after the 



-36-

parent metal was initially heated in the manner described above. The 

results of these tests (specimens Rf-3, 4, and 5) are also presented in 

Table 120 

One interesting observation from these tests is that the heat 

treatment of the parent metal in this way permitted sound welds to be 

obtained. The net effect was to move the point of initiation of the 

fracture to the critical geomtrical zone of the weld, i oeo, the edge of 

the weld reinforcemento However, this was accompanied by little or no 

increase in the fatigue resistance of the jointso 

The results of the fatigue tests on the A-242 steel are shown 

diagrammatically in Figo 190 Also presented on figo 19 are the results 

of fatigue tests reported on. other types of ASTH A-242 steels (3,4)0 

Pertinent data on these steels is presented in Table 60 The S-N curve 

shown in figo 19 is for the data on the present tests onlyo 

From the data shown in figo 19 it can be seen that most of the 

data fa 115 ina '''na rrow scat ter band 0 The on 1 y except i on is the data on 

1/2 ino A-242 steel (4) which shows consistently superior fatigue resist­

anceo No explanation for such a behavior is currently available except that 

it may be due to the difference in the geometry of the specimenso 

Fai l..ur.e··su·r.fa.ces···.of ··the specimens. i nthe two different. cond it ions 

are shown in Figo 200 

402 METALlURG~CAL EXAH~NAT~ONS Of BUTT-WELDED JO~NTS 

Two transverse butt-welded joints in A-242 steel were examined 

metallurgicallyo These were specimens RF-l and Rf-50 Specimen RF-l was a 

weld in the as-received material and specimen RF-5 was in the heat treated 

mater i a 1 0 
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4.2.1 Specimen Rf-l 

This weld was prepared in the as-recieved A-242 steel. The 

microstructure of the base metal along with that of the different parts 

of the weld is shown in Fig. 21. The base metal has the structure of an 

ordinary low carbon steel and consists of pearlite grains in an equiaxed 

ferritic matrix. The pearlite grains are highly irregular, possibly due 

to the fact that the pearlite had to form in the austenite retained 

between the ferrite grains of the matrix. 

With a decrease in the distance between the weld metal and the 

base metal, the temperature attained on welding becomes higher. At the 

point where the temperature just exceeds the Al temperature, the pearlite 

9rains seem to have recrystallized into smaller grains. This cond~tion 

exists up to the region where the A3 temperature is attained. ~n the 

region where the A3 temperature is exceeded, an austenitic structure 

seems to have formed. The high cooling rate in this region is probably 

the reason that the austenitic structure is homogeneous and fine grained. 

These austenitic grains are surrounded by ferrite. 

In the region next to the weld metal a needle like structure 

appears and the grain boundaries are distinguishable. This needle lske 

structure is either martensite or bainite and is very simi Iar to the 

structure obtained near the weld metal in weld FTT-3 in the quenched and 

tempered steel (Section 3.7 and Fig. 9). The weld metal again has a 

columnar grain structure, highly irregular in shape. An equiaxed structure 

is also distinguishable in the weld metal in regions which are farthest 

from the base metal on that particular weld pass. There does not appear to 
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be any pearlite in the weld metal, possibly due to the low carbon content 

of the electrode employed. 

Typical micrographs for specimen RF-l are shown in Figo 210 From 

the macrograph, also shown in Fig. 21, it can be seen that the fracture 

occurred in the HAZ. 

402.2 Specimen RF-5 

This particular weld was made after the base metal had been heated 

to 14000 F and allowed to cool slowly in the furnace. Fai lure of this speci­

men occurred at the edge of the weld as can be seen from the macrograph 

shown in Figo 22. 

The structure of the base metal in this specimen is very simi lar 

to that in specimen RF-J except that the pearlitic grains seem to have 

spherodized due to the heat treatment which the base metal received prior 

to welding o ~n all other respects, the changes introduced by the thermal 

cycle of welding are essentially the same as in weld RF-l. This can be 

seen from the microstructures in Figo 22. 

4.3 D~SCUSSION OF TEST RESULTS 

Since very few tests were conducted in this investigation on the 

fatigue behavior of transverse butt-welded joints in A-242 steel, no general 

conclusions can be presented. However, some important observations have 

been made and are briefly discussed below. 

Relatively speaking, ASTM A-242 steels are found to be consider­

ably less notch sensitive than quenched and tempered steels reported herein. 

This conclusion is based on the observation that there is very little 

difference in the fatigue strengths of the specimens of A-242 which fai I 
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internally (in the weld metal due to flaws) when compared to those whfich 

faa 1 at the edge of the weld rei nforcement 0 Thus it appears that only a 

negligible increase in fatigue strength 'would accompany the elimination 

of the internal flaws unless such measures also improve the fatigue 

resistance at the edge of the weld (the HAZ). Such behavior is attributed 

to the low notch sensitivity of this group of steelso 

A study of the avai lable literature on the fatigue behavoor of 

transverse butt welds in ASTM A-242 steels shows considerable scatter in 

the results s especially at shorter lives. Thus fact can be observed fin 

Figo 190 Again, no apparent reason for such a behavior is avai lableo 

Undoubtedly, part of the difference is attributable to the different physical 

and chemical characteristics of these steelso ~t is also posseble that 

geometry may be a significant factor ~n causing these differenceso for 

instance, all of the data on the 3/4 ino thick steels can be grouped together 

in a narrow scatter band in Figo 19 whereas the data on the 1/2 Ino stee! is 

considerably differento This is also! l1ustrated by the Modified Goodman 

Diagram drawn for three different A-242 steels (Fig. 23) 0 The relat8ve 

differences in the fatigue strengths corresponding to 100,000 cyc~es are 

noteworthyo 
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V. SUMMARY 

5. I SUMMARY OF. RESULTS. 

The results of axial fatigue tests on as-rolled plate specimens 

of a quenched and tempered steel and on transverse butt-welded joints in 

this material in various geometrical and metallurgical conditions have been 

presented in Chapter 3. Except for one series of tests, all tests were 

conducted on a zero-to-tension stress cycle. The results of tests of a 

limited number of transverse butt-welded joints in an A-242 steel are 

presented in Chapter 4. A summary of all the zero-to-tension test results 

is presented in Table 13 for ready reference. 

From the test data obtained on the quenched and tempered steel, 

it appears that the introduction of a transverse butt weld in a plate of 

this steel reduces the value of F2 ,OOO,000 by approximately 40 percent of 

which approximately 9 percent is attributable to the metallurgical changes 

imparted by the introduction of the weld. The balance of the reduction is 

accounted for by the geometrical factors, as investigated in this study, 

and to the inherent welding process which necessari ly causes a joint with 

at least some degree of non-homogeneityo 

The fatigue test results from transverse butt-welded joints in 

the quenched and tempered steel on a zero-to-tension stress cycle indicate 

that the fatigue resistance of this steel is about the same as that of 

ASTM A-7 or A-242 steels on this stress cycle. However, since the fatigue 

resistance is a function of the maximum stress as well as the range of 

stress, the advantages of the use of this steel over ASTM A-7 or A-242 

steels can be realized only when it is subjected to higher mean stresses. 
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Thus, there wi 1 1 be a definite advantage in using the quenched and tempered 

steel in members subjected to high dead load stresses and when the fluctuat~ 

ing or alternating stress is low. Many such conditions occur in practice; 

the most notable being in long span highway bridges. 

There is a general belief that high strength steels have little, 

if any, advantage over ordinary steels when subjected to repetitions of 

loading. The data obtained in this study indicates that such a general 

statement is misleading and oversimplifies the problem. In the discussion 

presented above and in Chapter 3, an attempt has been made to clear up this 

situation by pointing out that fatigue resistance is a function not only of 

the range of stress but also of the mean stress. 

One serious disadvantage of high strength steels of the quenched 

and tempered type, when used in the welded condition, arises from the high 

fatigue notch sensitivity of this group of steels. Even minor internal 

discontinuities in a weld in this steel can act as a point of initiation of 

a fatigue crack in the weld metal and thereby reduce the fatigue strength; 

sometimes considerably (Sec. 3.5). Drastic reductions in fatig,ue strength 

can be obtained from major flaws. Thus a rigid and thor~ugh inspection of 

welds becomes imperative. Such inspection wi 11 redu(:e"~ a't least to some 

extent, the benefits which result from the use of high strength steels. 

The removal of the dimensional discontinuity at the surface 

eliminates a stress concentration but at the same time accentuates the 

ftmportance of even minor internal flaws; the type of flaws which would 

normally. be overshadowed by the surface geometry in the as-welded member~ 

and which may not be detected by X-ray methods (2)0 The higher fatigue 
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notch-sensitivity of the high strength steels appears to reduce or almost 

eliminate the effect of removal of the weld reinforcement for many weldso 

Relatively speaking, ASTM A-242 steels appear to be considerably less notch 

sensitive than the quenched and tempered steels (see Chapter 4) 0 

The results of the metallurgical examinations of the welds have 

revealed that the dimens.ional discontinuity at the surface of a specimen 

has a much greater effect on the fatigue strength than any of the metal­

lurgncal factors introduced by welding, provided the weld is free of flawso 

The metallurgical factors introduced by welding wi 11 assume an important 

role only in cases where there is no dimensional discontinuity at the 

surface and the weld is free of flaws. However, in this case, even a minor 

weld flaw wi 11 become important because 'an internal discontinuity is, in 

most cases, a more severe stress concentration than a metallurgical gradient. 

502 CLOS~NG REMARKS 

The results of the present series of tests, along with those from 

previous investigations, have produced considerable valuable information on 

the fatigue properties of welds in h-igh strength structural steels. However, 

it is important to bear in mind that the number of tests are very limited and 

as such, no dogmatic conclusions can be madeo 

~n all the comparisons presented in the previous chapters and in 

the preparation of the Modified Goodman Diagrams, use has been made of 

average values of fatigue strengths. Because of the inherent scatter associated 

with fatigue tests, results of individual tests may vary considerably and con­

sequently the average values must be considered as such, particularly since 

so few tests have been conducted in each of the test series. Since it is 
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practically impossible to duplicate fully and exactly a particular weld 

geometry, some of the scatter in the test results .is probably associated 

with this factoro In addition, unless stated to the contrary, the average 

fatigue strengths refer to the results of tests on flawless welds that 

exhibit normal modes of fracture {failure due to the stress concentration 

of the w~ld)o Nevertheless, the analyses presented are believed to be 

indicativ~ of the general tt;'ends of f.~ti9ue, behavior. 
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TABLE 1 

CHEMICAL COMPOSITION OF 'BASE METALS 

* Chemical Content 

J. 

percent 

C 
Mn 
p 

S 
S i 
Nt 
Cr 
Mo 
At 
Va 
Cu 

" Check Analysis 

Q-T** 
Steel 

00 12 
0075 
00016 
00026 
0022 
0079 
0062 
0042 
00019 
00012 
0032 

Material 
A ... 242 

00 13 
0042 
00066 
00025 
0043 
0028 
0093 
0001 
None 
0020 
0033 

-J.--k' . 
In all future tabies 9 Q-T refers to quenched 
and tempered steelso 



-47-

TABLE 2 

PHYSICAL CHARACTERISTICS OF BASE METALS 

Properties in Hateri a 1 
Longitudinal Q-T A-242 

Direct ion Steel As-Received Heat Trea ted;\-;~,'" 

it: 
Yield, psi 94,200 49,500 43,700 

Ultimate, psi 108,500 82,000 73,500 
-;'n', 

Elongation , percent 21.0 33.0 37.5 

Reduction in 
Area, percent 64.5 69.0 69.0 

* 0.2 percent offset 

*k in 2 in. gage length 

1rl~~ Material heated to 14000 F and cooled slowly in furnace. (See 
Sec 0 4. l) 



Specimen 
Noo 

FTT-34 
fTT-34 (Retest) 
FTT-46 
ETT~45 

FTT-35 
FTT-33 
FTT-36 

-1. k = 00 130 

TABLE 3 

RESULTS OF AXIAL FATIGUE TESTS OF AS-ROLLED 
PLATE SPECIMENS OF Q~T STEEL (ZERO-TO-TENSION) 

Stress Cycle, Cycles to 
ksi Failure 

o to +40.0 4,168,200+ 
o to +50.0 302,300 
o to +44.0 930,700 
o to +4500 1,433,300 
o to +4705 462,100 ° to +5500 274,400 
o to +7000 137,100 

Locat i on 
of Fracture 

No Failure 
Radius 
Radius 
Radius 
Radius 
Test Section 
Radius 

Average: 

* Computed Fatigue Strengths t ksi 

FIOO,OOO F2 ,000,000 

"""'Q,I"" 

40.0""+ 

58.8 39.9 
63.6 430 1 
58.0 39.3 
62.7 42.5 
72.9 49.4 

63.2 42.8+ 

')'d( Not inc 1 uded in average. 

I 
~ 
00 
I 



TABLE 4 

SUMMARY OF AXIAL FATIGUE TESTS OF AS-ROLLED 
PLATES OF VARIOUS STEELS (ZERO-TO-TENSION) 

Steel Thickness, Yield, Ultimate, F Fatigue 
in. ksi ksi 2,000,000 Rat i 0'-" (Zero-to-Tension) 

ksi 

A-7 3/4 33.3 5704 34.6 0.603 
A-242 (T) 3/4 47.8 73.6 42.5 0.577 
A-242 (p) 3/4 56.8 76.7 38.5 0.502 
A-242 (Q) 3/4 53.1 77.6 40.0 0.515 
HY~80 1/2 80.5 101 . 1 43.0.,'d" 0.425 
HY-80 3/4 79.5 94.2 40.0"'(";', 0.424 
Q-T 3/4 94.2 108.5 42.8+ 0.394 
T-l 1/2 11600 12300 50.0 0.406 

"1'( F t" R t" . - Fatisue Strensth 
a Igue a 10 - Ult· t St th Ima e reng 

it~.( Approxomate Value. 

Source 
(See Bibliography) 

(3) 
(3) 
(3) 
(3) 
(2) 
(2) 

Table 3 8 
~ 

( 1 ) W 
8 



TABLE 5 

RESULTS OF AXIAL FATIGUE TESTS OF TRANSVERSE BUTT-WELDED 
JOINTS IN THE Q-T STEEL IN THE AS-WELDED CONDITION (ZERO-TO-TENSION) 

, 'k'k 
Specimen Welding Electrode Stress Cycles Location Computed Fatigue Strengths, ksi 

Procedure Cycl 7, ~o of Fracture* FIOO 000 F2 000 000 
See k s I Fa I 1 u re ' , , 

Figs. 3 and 4 

FTT-5 A E120l6 o to +26.0 1,054,300 a 38.0 25.0 
FTT-3 A E12016 o to +26.0 1,586,100 a 38.3 25.2 
FTT-4 A EI1016 o to +26.0 1,648,400 a 38.5 25.3 
FTT-6 A Ell016 a to +26.0 2,112,200 a 39.9 26.2 
FTT-2 A E 11016 o to +30.0 596,000 a 38.5 25.3 
FTT-l A E12016 o to +3000 628,000 a 38.8 2505 
FTT-20 B El1016 o to +35.0 157,700 a 37.3 2405 
FTT-19 B El1016 o to +3500 197,200 a 3805 25.3 
FTT-39 B El1016 o to +50.0 54,400 a 4509 30.2 

Average: 39.3 2508 

-k a = Fai lure initiated at edge of weld reinforcement. 

~'n': k = O. 140. 

I 
(J1 

0 
I 



TABLE 6 

SUMMARY OFAX~AL FAT~GUE TESTS OF AS-WELDED TRANSVERSE 
BUTT=WELDED JO~NTS ~N VAR~OUS STEELS (ZERO-TO-TENSION) 

Steel 

A-7 
A-242 (T) 

'A-242(P) 
A-242(Q) 
A-242_ 
HY-80 
HY.,..80 
Q-T 
1-1 

Thickness 
in 0 

3/4 
3/4 
3/4 
3/4 
1/2 
3/4 
1/2 
3/4 
1/2 

Yield, 
ksi 

33.3 
47.8 
56.8 
5301 
58.7 

. 79.5 
8005 
94.2 

116.0 

Ultimate, 
ksi 

5704 
73.6 
7607 
77.6 
84. 1 
94.2 

101. 1 
10805 
12300 

F t " R t" Fatigue Strength a Igue a 10 = . Ultimate Strength 
.,'( 

"'\i'( K = fat i Que St rength of As-Ro 11 ed P I ate 
e Fatigue Strength of Welded Joint 

F Fatigue 2,000,000 Rat i 0"'( 
(Zero-to-Tension) 

ksi 

23.8 0.415 
26.7 0.363 
2603 0.343 

28.2 00335 
2200 00234 
1603 o Q 161 
2508 00238 
2100 00171 

-10'( 

K Source 
e (See Bibliography) 

1.45 (3) 
1059 (3) 
1.46 (3) 

(3) 
(4) 

1.82 (2) I 

(2) 
(]'I -

1.66 Table 5 I 

2038 ( 1 ) 



TABLE 7 

RESULTS OF AXIAL FAT~GUE TESTS OF TRANSVERSE BUTT-WELDED 
JOINTS IN THE Q-T STEEL IN THE REHEAT-TREATED CONDITION* (ZERO-TO-TENSION) 

......... ' ....... 9 .. 

Specimen Welding Electrode Stress Cycles location Computed Fat i gue St rengths';"" ks i 
Procedure Cycle 
See fig. 4 

FTT-21 B E 11016 o to +27.0 
FTT-14 B E 110 16 o to +28.0 
FTT-22 B E 110 16 ° to +28.0 
FTT-16 B EI1016 ° to +31.0 
FTT-15 B E 11016 o to +3100 
FTT-31 B EII016 o to +38.0 
FTT-32 B E 110 16 o to +38.0 
FTT-17 B E 11016 o to +2800 
FTT-13 B E 11016 o to +2800 
FTT-18 B E 110 16 o .to +2800 

to 
Fai lure 

4,094,600+ 
3,341 ,300+ 
4,138,100+ 

651 ,200 
1 ,031 ,800 

285,300 
1 ,009,400 

445,000 
447 J 600 
864,600 

of 
Fracture,,;'d: 

No fai lure 
d 

No fai lure 
a 
a 
a 
a 
e 
e 
e 

Average: 

FIOO,OOO F2,000,000 

40.3 
4300 
44.0 
52.4 

44.9' 

i',"ln'n'( 
2 7 0 O+~,~.,~.,_,~ 

28. o+:,::,~,::,: 
28.0+ 
2605 
28.3 
28.9 
34.5 

2906 

";~ After preparation of weld, heat to 1650oF, quench cold .in water, temper at 11500 F for 30 minutes. 
-;'n'( a = Fai lure initiated at edge of weld reinforcement. 

e = Fai lure initiated at edge 'of weld reinforcement, specimens warped. Not included in average. 
d = Fai lure initiated at edge of weld in pull head weld. 

"':,,',,,': k = o. 140 

,,'o'n'\'#': Not inc 1 uded in average. 

8 
(J1 

N 
8 



Specimen 
No. 

FTT-29 
fTT-27 
FTT-30 
FTT-25 
FTT-24 

i', a: 

TABLE 8 

RESULTS OF AXIAL FATIGUE TESTS OF TRANSVERSE BUTT-WELDED 
JOINTS IN THE Q-T STEEL WITH THE WELD REINFORCEMENT REMOVED (ZERO-TO-TENSION) 

Welding Electrode 
Procedure 
See Fig. 4 

B EII016 
B' E 11016 
B EI1016 
B EI1016 
B E 11016 

Stress 
Cycle, 

ksi 

o to +28.0 
o to +28.0 
o to +28.0 
o to +30.0 
o to +37.0 

Fai lure initiated at edge of weld. 

"i'n', 
Cycles to Location of Computed Fatigue Strengths, ksi 

Fa i 1 u re . Fractu re;'( F100 ,000 F2,000,000 

2,719,600 a 44.5 29.2 
2,119,700 a 42.9 28.2 
1,416,000 a 40.6 26.7 
1,500,800 a 43.8 28.8 

532,700 a 46.8 30.8 

Average: 43.7 28.7 

,·n': k = 0.14. 

• (J1 
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Specimen 
No. 

FTT-28 
fTT-26 
fTT-23 

FTT-ll 
FTT-7 
FTT-IO 

,)'( 
b~ 
d: 

Welding 
Procedure 
See Fig. 4 

B 
B 
B 

B 
B 
B 

TABLE 9 

RESULTS OF AXIAL FATIGUE TESTS OF DEFECTIVE 
TRANSVERSE BUTT-WELDED JOINTS ON THE Q-T STEEL WITH 

WELD REINFORCEMENT REMOVED (ZERO-TO-TENSION) 

Electrode Stress Cycles Locat i on Expected Fatigue Life For a 
Cycle, to of Sound Weld (k = 0.140) 
ksi Fai lure F rae t u r e')'( 

EI1016 o to +28.0 814,000 b 2,000,000+ 
E11016 o to +3000 945,300 b 1,500,000 
E 110 16 o to +37.0 112, 100 b 325,000 

E12016 o to +2000 168,500 d 2,000,000+ 
E12016 o to +20.0 268, 100 d 2,000,000+ 
EI1016 o to +20.0 383, 100 d 2,000,000+ 

fai lure initiated in weld metal (central test weld) 
Fai lure initiated in weld metal of pull h~~d weld due to lack of penetration. Stress on 
pull head weld is given above. 

8 
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Specimen Welding 
Noo Procedure 

See Fig. 4 

FTT-l2 B 
fTT-9 B 
FTT.,.8 B 

TABLE 10 

RESULTS OF AXIAL FATIGUE TESTS OF DEFECTIVE 
TRANSVERSE BUTT-WELDED JOINTS IN THE Q-T STEEL IN THE 

STRESS-RELIEVED* CONDITION (ZERO-TO-TENSION) 

Electrode Stress Cycles Location Expected Fatigue Life For a 
Cycle, to of 'i',·k Sound Weld (k = 0.140) 

ksi Fai lure Fracture 

EllOl6 o to +30.0 127,500 c 600,000 
EI20I6 o to +3000 177, 100 c 600,000 
E 110 16 o to +30.0 220,000 c 600,000 

i', Stress Relieved for 30 minutes at 1100oF. 
'itn', c~ Fai lure initiated in weld metal due to lack of penetration. 

I 
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TABLE 11 

RESULTS OF AXIAL FATIGUE TESTS OF TRANSVERSE BUTT-WELDED 
JOINTS IN THE Q-T STEEL IN THE AS-WELDED CONDITION 

(Partial Tension-to-Tension) 

i'rld( 
Specimen Welding Electrode Stress Stress Cycles Location Comeuted Fatisue Strength. ksi 

No. Procedure Cycle, 
See Fig. 4 ksi 

FTT-39 B E 110 16 o to +5000 
fTT-38 B E 110 16 1205 to +5000 
FTT-37 B E 110 16 2500 to +50.0 
FTT-40 B E 110 16 3500 to +5000 

,'\ Minimum Stress 
Stress Ratio = Maximum Stress 

Rat i o~' to 
Failure 

0 54,400 
0025 122,000 
0.50 488,800 
o. 70 2,407,500 

~n~ a: Failure initiated at edge of weld reinforcement. 

i'n'('/( k::: 0014 

of ih'( flOO,OOO F 
Fracture 2,000,000 

a o to +45.9 o to +30.2 
a + 1 2 . 8 to +5 1 04 +8.4 to +33.8 
a +31 .2 to +6204 + 2 0 0 5 to +4 1 0 0 
a +5406 to +78 +35.8 to +5102 
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TABLE 12 

RESULTS OF AXIAL FATIGUE TESTS OF TRANSVERSE BUTT-WELDED JOINTS 
IN ASTM A-242 STEEL IN THE AS-WELDED CONDITION (ZERO-TO-TENSION) 

")'\1,")'\ 
Specimen Welding Electrode Stress Cycle Location Comeuted Fatisue Stren9thsl ksi 

No. 

*i'n'\ 

RF- 5-;." .• 
Rf-4 - -
RE-l- -
RE- 2;.n'. 
RE-3 

i', 

i'O', 

.. 'dde 

Procedure Cycle, to to i': F100 ,000 F 
See Fig. 4 ksi Fai lure Fracture 2,000,000 

B E70l6 o to +26.0 898,000 
B E7016 o to +26.5 567,600 
B E70l6 o to +30.0 186,900 
B E70l6 o to +30.0 437,400 
B E7016 o to +30.0 691, 700 

a: Fai lure initiated at edge of weld reinforcement 
b~ Fai lure initiated in weld metal 

a 35.4 
a 33.9 
b 
b 
a 39.3 

Average: 36.2 

Parent metal heated to 14000 F and cooled slowly in furnace prior to preparation of welds. 

k = 0.140 

23.3 
22.2 

25.8 

23.8 

8 
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Steel Type of Specimen 

Q-T Plain Plate 
Q-T Transverse Butt Weld 
Q-T Transverse Butt Weld 
Q-T Transverse Butt Weld 

A-242 Transverse Butt Weld 

TABLE 13 

SUMMARY OF RESULTS OF AXIAL FATIGUE TESTS 
(ZERO-TO-TENSION) 

Condition 

As-Ro lIed 
As-We 1 ded -k 
Reheat ... treated 
Reinforcement Removed 

As-Welded -Ide 
Parent Metal Heated 

Average Fatigue Strengths, ksi 

FIOO,OOO F2,000,000 

63.2 42.8+ 
39.3 25.8 
44.9 29.6 
43.7 2807 

3602 23.8 

k 

O. 130 
0.140 
00140 
O. 140 

0.140 

* After preparation of weld, heated to 1650oF, 'quenched cold in water, tempered at I 1500 F for 30 minutes. 

"n~ Parent metal heated to 14000 F and cooled slOWly in furnace prior to preparation of welds. 
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'2 I I I 5" 

• • • • • ••• 

• • • • • 
.. 

'---- I ii Dio. Holes 

(0) Plain Plate' 

• • • • • • • • 

• • • • • • • •• 

(b) Transverse Butt -Welded Joint 

FIG. I DETAILS OF TEST SPECIMENS 
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Specimen 

I It 
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o 0 
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Lever 

Dynamometer 
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FIG.2 ILLINOIS' FATIGUE TESTING MACHINE AS USED FOR AXIAL LOADING OF WELDED 
JOINTS 



Root Opening - in. 

" 5· Test Section ~ I 

I 
.. 

318 
I 4" .. ! 

3 
12" 5" I ... I 

: ~ . 
5" 2"! 

1 2" 5" 
ft i 

I _v . 
1 

ft -' 
I 5

11 

v 2"! 
2 

! 3" 4" 
, 
I ... I 6 

7" 

Arrows indicate direction of Welding 

x indicates change of Electrode 

A:lss Electrode Size, in. Current, amps Rate of Travel, in./min. 

I 5/32 180 6.0 

2 5/32 180 6.0 

3-6 3/16 230 5.5 

Voltage 

Polarity 
Preheat 

Interpass Temp. 

21 volts 

D,C. Reversed 
. None 

250
0 

F (maximum) 

Heat Input 55,000 Joules/in. (maximum) 

Electrode As specified for individual specimens 

Surface of plate adjacent to weld cleaned by grinding 

All welding done in flat position 

8ackchip underside of pass I before depositing pass 2 

FIG. 3 WELDING PROCEDURE A 
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3/4 

I" 5" Test Section ~ I 

I 4" 3" I 

3 
'2" 5" ". I 

.. 
I ~ - I " 2" ! 5" .. 
12" 5" '" ! -
: n 

5" 2": .. .. 
2 

I 3" 
~ 

I 
p 

- 4" 
I " I 6 

7" ~I 
Root Opening 1/8 in. 

Arrows indicate direction of Welding 
x indicates change of Electrode 

Pass Electrode Size, in. Current, amps Rate of Travel, in.lmin. 

1 5/32 130 5.0 

2 5/32 140 5.0 

3 3/16 275 6.5 

4 3/16 250 5.5 

5,6 3/16 225 5.5 

Voltage 

Polarity 

Preheat 

Interpass Temp. 

Heat Input 

21 volts 

D.C .. Reversed 

None 

250
0 

F (maximum) 

57,000 Joules/in. (maximum) 

Electrode As specified for individual specimens 

Surface of Plate adjacent to weld cleaned by grinding 

All welding done in flat position 

Backchip underside of pass I before depositing pass 2 

FIG. 4 WELDING PROCEDURE B 
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0 aT 3/4 Table 3 

• T-I 1/2 ( I ) 
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0 HY-SO 3/4 (3) 
r, : Retest of Specimen FTT-34 
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~ I 1 1 10 
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Cycles to Failure 

FIG. 5 _ RESULTS OF AXIAL FATIGUE TESTS OF AS~'ROLLED PLATE 

SPECIMENS OF QUENCHED AND TEMPERED STEEL 
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FTT-33 FTT-36 

O. FRACTURE SURFACES 

FTT-33 FTT-36 

b. LOCATION OF FRACTURES 

FIG. 6 TYPICAL FRACTURE SURFACES OF AS-ROLLED PLATE SPECIMENS 
OF QUENCHED AND TEMPERED STEEL 
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FIG. 7 RESULTS OF AXIAL FATIGUE TESTS OF -TRANSVERSE BUTT-WELDED JOINTS IN 

Qu::':~\J(:'HFU .AND TEMPERED STEEL IN THE AS-WELDED CONDITION 
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FTT-I FTT-3 

FTT-2 FTT-6 

FIG. 8 TYPICAL FRACTURE SURFACES OF AS-WELDED TRANSVERSE BUTT WELDS IN 
QUENCHED AND TEMPERED STEEL 



)(1.5 

Bose Metal x250 HAZ x250 Weld Metal )(250 

8M -HAZ Interface x 250 HAZ -WM Interface )(250 

FIG. 9 PHOTOMICROGRAPHS OF SPECIMEN FTT -3 IN QUENCHED AND TEMPERED STEEL 

(AS-WELDED TRANSVERSE BUTT WELD) 
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. FIG .. 10 RESULTS OF AXIAL FATIGUE TESTS OF TRANSVERSE BUTT-WELDED JOINTS .IN 
QtJENCHED AND TEMPERED STEEL IN THE HEAT TREATED CONDITION 
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FTT-13 

FTT-31 

FIG. II TYPICAL FRACTURE SURFACES OF HEAT-TREATED TRANSVERSE 
BUTT WELDS IN QUENCHED AND TEMPERED STEEL 



x 1.5 

Bose Metal x 250 BM-WM Interface x250 Weld Metal x250 

FIG. 12 PHOTOMICROGRAPHS OF SPECIMEN FTT-31 IN QUENCHED AND TEMPERED STEEL 
(HEAT-TREATED TRANSVERSE BUTT WELD) 
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FIG 13 RESULTS OF AXIAL FATIGUE TESTS OF TRANSVERSE BUTT~WELDED JOINTS IN 
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FTT-23 

FTT-7 

FTT-IO 

FIG. 14 TYPICAL FRACTURE SURFACES OF DEFECTIVE TRANSVERSE 
BUTT WELDS IN QUENCHED AND TEMPERED STEEL 

TESTED WITH THE REINFORCEMENT REMOVED 



FTT-8 

FTT-9 

FIG. 15 TYPICAL FRACTURE SURFACES OF STRESS RELIEVED DEFECTIVE 
TRANSVERSE BUTT WELDS IN QUENCHED AND TEMPERED STEEL 
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Stress Cycle: Zero - to - Tension 

10 1__ ___ . _____ _ L I 1 I 1 I I 

7xl04 !05 5xl05 106 5xl06 

Cycles to Failure 

FIG.16 SUMMARY DIAGRAM SHOWING THE EFFECT OF GEOMETRICAL 4ND 

METALLURGICAL FACTORS INTRODUCED BY WELDING ON FATIGUE 

LIFE OF QUENCHED AND' TEMPERED STEEL 
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FIG. 1'7 EFFECT OF STRESS RATIO ON THE FATIGUE LIFE OF A TRANSVERSE BUTT­
WELDED JOINT IN THE AS-WELDED CONDITION (QUENCHED AND TEMPERED STEEL) 
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FIG. 19 RESULTS OF AXIAL FATIGUE TESTS OF TRANSVERSE BUTT-WELDED JOINTS IN 

ASTM A-242 STEEL IN THE AS-WELDED CONDITION 



RF-I 

RF-3 

RF-2 

o. PARENT METAL IN THE AS RECEIVED CONDITION 

RF-4 

o 
b. PARENT METAL HEATED TO 1400 F. 

FIG. 20 TYPICAL FRACTURE SURFACES OF AS-WELDED TRANSVERSE BUTT WELDS 

IN A-242 STEEL 
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FIG. 21 PHOTOMICROGRAPHS OF SPECIMEN RF-I IN A-242 STEEL (AS-WELDED TRANSVERSE WELD 
IN AS RECEIVED MATERIAL) 
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