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1.1 Object and Scope 

NUMERICAL INTEGRATION FOR 
ONE-DIMENSIONAL STRESS WAVES 

I. INTRODUCTION 

The purpose of this report is to develop a satisfactory dynamic 

model and numerical integration technique which wi11 solve the problem of 

one-dfmensfonaal stress wave propagation in a wIde variety of materials. 

Primary interest is in linear visco-ela~,ic type materials, but materials 

which have purely elastic or nonlinear resistances are also treated. The 

one-dimensional bar of materIal being considered need not be homogeneous, but 

may vary in both density and stIffness with length .. 

In order to design intelligently underground structures to resist 

atomic bomb loadings which pass over the ground surface, a knowledge of the 

forces transmitted through the soil cover must be known .. Field results are 

available in classified reports, but these results are not altogether cons's-

tent and include a very limited selection of unusual sofl types. A theoreti

cal means of 501ving the problem of blast wave transmission through soils 

would be extremely valuable. One possible means of doing t·nis would be 

through the use of a dynamic analytical model and a numerical integratIon 

Tnfs three-dimensIonal problem can be reduced to two dimensions by 

assumIng the wave front to be plane rather than the true arc of a circle. 

This assumption contributes little error unless the weapon yield is small or 

the area being InvestIgated is close to "ground zero ll .. In these cases the 

straight line wave front deviates from the. circle seriously .. 



It Is obvio~s, however, that a solution of th's type would be 

extremely difficult without some knowledge of the behavior of one-dimensIonal 

dyn*R'e mode:!... Therefore, the purpose of this t~rl is to develop a 

satisfactory model for the one-dimenslona1 ease .. This st'udy could then serve 

as II first step in the development of a t~imens'onal model .. Several 

dynamic models are examined, and a new modeJ, designated as the Newmark mode~ 

as shown in Fig" 1 (e), Is selected for use In thfs r~por'" Thrs model is 'of 

II vlsco .... el.stlc nat,ur., i .. e., stresses are transmitted by ,viscous elements 

(dashpots) as well as elast.ie elements (springs) .. The model, I. characterrzed 

by a comparative sImplIcity of computation and by a amount of flex'bIJ· 

Ity In use. By propet choice of parameters It can made to approximate the 

we 11 known Voi gt, Maxwell, and medif' ed Vol gt model s.. Vari It fons f n soil 

densIty and/or stiffness with depth are convenIently handled, and II nontinear 

stresi-strain relationship may be considered by use of a multIlinear approxi

mation to the stress .... straln curti. Means of handling frlc:tlonl/l dampIng and 

mater'a1, In which the yield strength and ultImate strength depend on the 

rate of strain are also Incluaed. 

A step-by-step numerical IntegratIon technique, the ~lntegratJon 

method (17)(27)1, Is used to compute the response of the lumped mass system .. 

In this manner the displacements, veloeftfes, accelerations, stresses, and 

strains are determined at ill fi te 'UoI!lIll.u1l;;; of points for time Interval. 

Thus, transmission ae(:omp.~ylng attenuation of 

be traced as the wave passes through the soil mass. 

A method's developed to prevent reflections from the fixed end of 

the mode 1, 

column. 

thus It 15 possIble to consJ an I 'nl 

1 u Numbers in parentheses refer to the Bibliography_ 

y long soIl 
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Although in most of the numerical work leal parameters simIlar 

to those that might be found in a vertical 5011 column 

materials which may be considered are tn no 1 i rot 

used, the 

to 50i15 Of ,to soll-

like materials. It is felt that stress wave prO'~~(I~~ion In 

be studied in the manner presentede 

al 

It must be emphasi is report Is not a solution to 

general problem of blast waye attenuation in soIls. effeets are present 

in the actual problem, the on~-dimenslonal attenuation considered here, and 

a spatial dispersion occurring in ree dimensions .. is spatial dispersion 

Is considered In the Appendix for an elastic, homogeneous, isotropic, and 

massless half space loaded wI a plane wave. A posslbl Ifty exists that the 

t\HO solutions could be combined In some manner to give an roximate soiu-

tlon for the combined effects. The method of superposition Is unkno~, 

any such method would undoubtedly highly approximatee 

The one-dimensional solution Is more app poInt 

being investigated lies directly under an atomic air blast. entire 

ground surface beneath the bl~st is virtually simultaneously. Since 

the ng Is approxi y In Ion 

the msJor effects in the soil 

addition, there are many 

'I occur in the vertical ree: t i on on 1 y .. In 

ally one-dimensional and which can be sol 

waves In any bar of mater' 

2-the lateral dimensions .. 

In 

2.. For certain restrictions to 

are sssentl-

is manner, e.g_, stress 

Ion 2" 1.. 



1.2 Brief Summary of Important Previous Work 

It would be impossible to mention more 11 

the previous studies dealing th waves in one-dimensional 

of 

Ii.. Interest 

in this general field of wave propagation dates from the 17th Century when 

Newton attempted an explicit mathematical solution to problem sound 

wave propagation, II solution fInally c.ompl by lord leigh In the 19th 

Century (22, p. 148). For an excellent summary of wave propagation studies 

prior to 1953 consult Kolsky·, __ ~ __ ~ ____ ~~~ __ Is reference 

contains a blb11ographyof more 

The theory of propagation of longitudinal waves In an elastic 

prismatic bar Is presented In a number of references.. Among those which 

present the theory In a concise and east ly understood manner are 

l. H. Qonnell (6) and Timoshenko Goodier (2.6) .. C it for the develop .. 

ment of this theory is shared by several authors, primarily In the 19th 

Century. The solutIon for this case can be said to be rtual1y complete if 

the assumption is accepted that to 1 

expansion or contraction are negligJbleo The resulting error is not slgnlfl-

cant if the wave length of the wave is long campa lateral dlmen ... 

slons of the bar. Pochhammer (1816) solved the problem considering lateral 

inertia for eli cylindrIcal bar oniy (11, p. 54)G es (1 also consider ... 

ed lateral Inertia In arrlvi 

summarized his work and the 

at il more 

in 

presentation with another very complete hi b 11 

c.ommemoratlve Yolume (5)" in 1) s 

studies (15) I> 

A consl 1e amount 

elastic materf SI> Koisky (11) is n an 

solutIon Is 

Is line fn an excellent 

in Sir Go I • 

11 fl uttons In hIs 

so ven to 'fnear SCQ-

lent in 15 fiel 
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presents the standard models of vf$eo~elastlclty by Ma)(WB 

{1 and 9t (18,2) as as more complex three four 

parameters. 8rown University os Iy the 

study of linear vfseo-elastici sky results obtaIned 

experImentally for high,polymers over a wide f with results 

obtai from two and ree models (1 J. A. Ison, also at 

Brown, has developed a mathematical solution for the propagation of a step 

pulse In both 8 Voigt model several three models (16). 

A valuable method usIng a modified means of superposition valid for 

nonlinear materials was developed by l. He Donnell In 1930 (6). The complete 

theory of plastic wave propagation was developed only recently durfng the 

Second rid Classlfl s written by T .. Von , by le Van 

Gri ffl 5 M. p.. te, and G .. I. lor were loped lndepe~dently 

at this tf and publicatIons summarlzJ developments were Issued 

the war in unci.5sfff for:m (30) (23)G ments at the 

California InstItute of Technology fiG EG Duwez others have 

qualltatJ y veri fi this theory (7) (9) (10) G l .. E~ vern extended 

this theory In 195J to • bar 

(13) " 

mater! Ich exhibits at strain rate effect 

A numerical Integration of the wave equation usl a method quite 

sl lar to is was 

of this was to yze the act'on a pile while 

purpose 

n9 Iven Into 

the ground.. Sm! considered a y elastIc sprl 

Ing plans to fncl 'etiana) a 

pile In later calculations .. 

methods of at llmf 

es mentl here 

cons I 

00 

51 of 

else-II:Il~1II11"'1I!IiII 

uni form' densi ty 



6 
stiffness of the mater! 

response could not be considered, and vIce versa. Classical mathematical 

so1utlons become very difficult when considering problems of II more general 

nature. Thus, th.r~ was no technique Ich considered more than JUlt II few 

of the. factors. Fer this reason II new technIque WilS desired. 

1 e 3 Hot at fen 

Each symbol used in the text is fully explaIned when it is first 

introduced. However, 8 summary of the notation Is presented for the conv.n!-

enee of the reader. 

A 

b o 

b 
n 

c 

== AmplItude ef vibration of ML in highest mode of vlbrlltlon 

= Amplitude cf vibration of m in highest mode of vibration s 

• Point on surfaee of ground dlrect1y under blast wave front 
(AppendIx) 

- Point on surface of ground n integration Intervals behind blast 
wave front (AppendIx) 

• Viscosity of relative dashpot 

e •• Viscosity Qf absolute dashpot 

C· • Dlstrrbuted capacitance o-f electrical analog 

£) :Ill Voung's modulus for spring with no parallel dashpot 

:III YQung's modulus for spring with parallel dashpot 

F :III Total Coulomb force on one complete Nel~arl( model 

= Concentrated Coulomb damping force on Ml 

:III Concentrated CQulomb damping force on ms 

:III strtbuted Coulomb damping force 

= Unit of acceleration, 32 .. 2 ft/sec 2 

h = Increment of time for ~-integratJon method 

• Influence coefficient for horizontal stress (Appendix) 

I = Influence coefficIent for vertfcal stress (Append he) v 



i (subscr i pt) 

J (subscri pt) 

k. 
o 

L. 

I. 

m 

m s 

n 

n 

p 

P (t) 

p 

r 

Q 

.th 
:= i mass 

= Jth time Interval 

= Spring stiffness for one complete Ne~rk element 

= Spring stiffness of spring wIth no parallel dashpot 

= Spring ~tiffness of spring with parallel dashpot 

= CoefficIent of earth pressure at rest 

= Distribute~ inductance of electrical analog 

= length of sample 

= Mass of impact mass 

= Total mass of one complete Newmark element 

= Larger mass within element 

= Smaller mess within element 

:: Integer 

:lit Number of masses In main thesis 

= Number of integration Interval being considered, 
in Appendix only 

~ line load (AppendIx) 

= Applied force (on end mass only) 

= Undamped natural frequency 

= Instantaneous value of overpressure (Appendix) 

:: Maximum value of overpressure (Appendix) 

= Percentage of critical damping In single-degree
of-freedom system 

:: Internal forces (spri ngs and dashpots) 

= Amplitude of inct ~ reflected, and refracted 
waves, respectively 

I: Shortest of vibration 

7 



t == TI me 

•• u 

- Displacement of mass 

c Velocity of mass, du/dt 

= Acceleration of mass, d2u/dt 2 

= (j3u/dt 3 

v = Instantaneous velocity of impact mass 

v - Impact velocity of impact mass o 

" = Velocity of propagatIon in elastic model 

"f == Fast velocity of propagation 

"5 !II: Slow velocity of propagation 

W =: Yield of atomic weapon In kilotons (Appendix) 

w = Displacement of mass 

x = longitudinal coordinate (In direction of u) 

Z = Surge Impedance of el ect ri cal ana log 

z = Depth (Appendix) 

~ == Parameter in~-lntegratlon method 

1 = Parameter used to study convergence, 1 s ph 

E :: Strain 

EO = Strain at whIch time strain rate effect computatIon 
begins 

1) =: RatIo of masses, ms/Ml 

X = Distance between masses 

p := Densf ty 

C1 == Stress 

8 



u = Stress at beginning of impact 
o 

UH = Horizontal stress (Appendix) 

a = Vertical stress (Appendix) 
v 

T = RelaxatIon time for Maxwell model only 

T = Retardation tIme, C/K2, for other models 

T • Critical retardation time cr 

~ • Dimensionless distance, distance/z (Appendix) 

t = Ratio of Impact mass to mass of bar 
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J I. GENERAL METHOD OF ANALYS IS 

2.1 Basic Assu!ptions and Methods 

The first step is to consider a column of material, the length of 

which is assumed very long with respect to the diameter. This means that 

transverse waves can be neglected, and only longitudinal di1atatlonal 

(irrotatlonal) waves considered. The continuous mass of the column is lumped 

into finite masses with generally equal distances between each mass. The 

masses are connected by springs and/or dashpots in order to represent the 

elasticity and viscosity of the system. The force, or pressure pulse, can 

then be placed on the first mass and the response of the system computed by a 

numerical integration technique. 

The assumption that the kinetic energy of the transverse waves can 

be neglected is the most restrictive and basic assumption made. It Is valid 

for two general classes of problems. One type is the wave propagation in a 

very large mass of material in which the entire surface is loaded uniformly .. 

The second type Is all bar of mattrial in which the longitudinal dimension and 

the wave lengths are much greater than the lateral dimensions. In the first 

case lateral straIns cannot occur due to the restraining action of the adJa

cent material. The assumption Is certainly valid for this case; if lateral 

straIns Ire restricted, l~teral kinetic energy cannot develope In the second 

case the lateral Inertia does modify the wave front, but this effect can be 

often safely neglected, as verified by both theory and experimental results 

(11, Chapter III). However, when the wave lengths and lateral dimensions 

are of the same order of magnitude, serious errors may result as shown in the 

experiments reported in Sectlons 7.3 and 7.4. 
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It is further assumed that the applied force is applied equally over 

the end of the bar and that plane sections throughout the length of the bar 

remain plane. The stress at each section Is assumed to be uniformly dlstrlbu .... 

ted over the section. 

2.2 General Description of Models Used in Various Parts of the Investigation 

This Investigation of one-dimensional wave propagation can be divided 

into three general areal .. The first area, or preliminary phase, deals with a 

study of wave propagation in a purely elastIc medium.. for this phase a simple 

perfe-ct1y elastic model; is used. The purpose of this phase is to examine the 

effect of certain very fundamental characteristics of the numerical technique .. 

The preliminary phase is reported in Chapter III. A more complex model, desig

nated as the Newmark model, is then used for the bulk of the study. This model 

contains dissipative elements and is of a visco-elastic nature .. The primary 

purpose of this phase of the \I\fIOrk is to study the behavior of the model When 

certain model parameters are varied. This phase is reported In Chapters IV 

and VI" Flnal1y, in Chapter VI' an attempt is made to compare experImental 

results with the response of models. In comparing the results of experiments 

with copper wire no vfscous elements are used, but trilinear stress-strain 

re1ations are introduced tnto a model otherwise simIlar to the model used in 

the pre! imlnary studies. In the case of tests on Ottawa sand specimens a 

Newmark model with nonlinear springs Is used. 

2.3 a-Integration Method 

The technique chosen for Integration of the model response is the 

~""integration method developed by N. M .. Ne~ark.. For @ill complete descriptIon 

and derivation of this method see Reference (17). 



where 

The generalized fonm of the ~/inte9ration equations follows: 

u 

J 

p(t) 

== pit) OlD q 
m 

= Deflectfon of mass 

u Velocity of mass 

== Acceleration of mass 

ttl 
Ill!: J time J n t e rva 1 

::.: External.l loads 

Q = Internal loads 

m == Hass 

h = Increment of time 

~ = Parameter of ~~method 

12 

(2.1) 

th The quantitIes above all refer to one mass, the i mass 9 but those subscripts 

are omitted to avoid confusion. 

Thfs method of integration Is a successive approximation type. At 

each time interval the following steps are taken: 

1 ) Assume UJ +1 for each mass. 

2) Compute U J +1 for each mass from equation (2.2). 

3) Compute uJ +1 for each mass from equation (2 .. 3) • 

4) Compute YJ+l for each mass from equation (2.1). 

5) Compare UJ +1 from step 4) with 1). Use step 4) value for assumed 

U in next cycle and repeat until the desired accuracy is obtained. 

The chorce of 8 particular value of f3 can be associated with the 

shape of the acceleration-time curve in the integration interval e For examp"le, 
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~ • 1/4 a,sumes • uniform acceleration with a value equal to the average of the 

acceleration at each end of the tIme Interval. ~ = 1/6 assumes a linear varIa

tion In acceleration. ~ = 0 assumes a concentrated acceleration pulse at each 

interval, which In turn causes an instantaneous Jump In velocity at the begin

ning of each interval. The classical wave theory assumes the velocrty at any 

given point equals zero until the wave reaches that point, at which tIme the 

velocIty jumps instantaneously to Its maximum value (for an InItially peaked 

pulse only). Thus, It would seem probable that ~ = 0 would give the closest 

agreement with theory, and for this reason should not be e1 fmlnat·$d from consi

deratIon, even though ~ = 0 Is very seldom used In structural problems. 
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I t I .. PREl INARY STUD I ES 

Since the purpose of the preliminary studies Is to Investigate the 

effect of certaIn very basic parameters on model response, it is very desirable 

to pick the simplest possIble model .. The model selected is represented in 

Fig. 1 (a) and is a purely elastic model .. 

ConsIder a prismatic elastic bar of material whose length Is large 

compared with its lateral dimenslons@ The bar is divided into n sections, each 

section of equal length. The mass of each sectIon is then divided in half and 

concentrated at the end of each section,,) The result is n + 1 masses, the 

masses concentrated at the ends of the bar having one-half the value of the 

interior masses .. These masses are connected by elastic weightless springs. 

For convenlence the mass, m, and spring stiffness, are conside equal to 

one.. The number of masses are at enough to prevent ectlons from 

the end of the moael. 

,.2 Differential Equation and Method of Solution 

Consider again a long, prismatic, and elastic bar of unit cross ... 

sect ronal area with a simple tension or compression wave traveling in the 10ngi-

tudinal direction. Extracting a small element of length Ox and density p, in 

which the axl deformation is u, the unit strain on one side of the element Is 

on the other side is e The stress on ther 51 wi 11 be the 

product of the modulus of elastfei unit st n. "9 forces 

3. Several prob ems were computed concentrating the masses at mIdpoint of 
each section, making n masses of equal welghtG Results were not as satis
factory as with the method 
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on the element In the longitudinal direction and using Newton IS equation of 

motIon, 

or (3. 1) 

where t refers to time. 

This equation Is the well known wave equation. 

Using a three point finite difference expression with interval A to 
02y 

expand ::r yields 
Ox 

The lumped constants K and m are related to E and p by 

If u o 

E 
K =: ~ lind m =~ " A " (3.2) 

th is considered to be the displacement of the I mass and (3.2) Is used, 

This equation could also be derived dIrectly by summing forces on a mass In 

the model shown in fig .. 1 (II) and 15 presented In this manner to show that the 

model solution Is actually Identical to II mathematical solution In which the 

finite dIfference expression is used to expand the wave equation when the bar 

Is prismatic. If the bar is nonprismatic, the finite difference expression 

canrwt be used; the governing ~quattons are instead derived directly from the 

model. 



The University of Illinois high-speed electronic digital computer 

(Iillac) ~s used to compute the numerical results for the model using an 

existing code.. Although this code was originally written for solution of 

multi-degree-of-freedom shear beams, it is applicable since It integrates n 

differential equations of the type of Equation (3.3) using the ~integration 

method .. 

3.3 Convergence limit 

The shortest period of vibration for this system may be determined 

when the masses are vibrating as indicated in Fig. 1 (a) and when 

16 

X, _) = -xl:::: xi+l 

the fo 1Iowl"9: 

a::: U .. A summation of the forces acting on the mass m, gives 

or 

51 nee T 

2-
K e 2u + K • 2u - m p u 

or K 2. 4-=p m 

p := 2. (!) 1 /2 :::: undamped natu ra 1 frequency 
m 

For ~ = 0 the stability limit is T I~. This value, T 1~.ls also the 
s s ' 

convergence lfmlt for ~ = 1/4. Furthermore, this value represents the most 

I Uty for the useful ~hoices of ~ (17). Therefore 

1/2 <i) == convergence and st i 11 ty limi t. 



Using equations (3.2), 

Then 

But 

Therefore. 

£1/2 
(-) = v = velocity of propagation. p 

1/2 A. (i> = v = Transit time between masses. 

Thus, the time required for the wave to propagate from one mass to 

the next Is Identically ~qual to the stability and convergence limit. 

3.4 Results of Parameter Variation 

3.4.1 Variation of Rise Time 

17 

The f"fluenee of rise time Is the most important factor in determin-

log the degree of accuracy of the preliminary model. For nann.l choices of h, 

the step pulse (no rise time) Is severely distorted. In fact, for any rise 
1/2 

time less than ~~) =1, the wave is propagated with an increased rise time and 

some oscillation. When the rise time is equal or than T ,exce11ent s 
reproduction of the wave shape Is obtained for all ~ values. In fact, for rise 

1/2 
times equaling 2<i>. the distortion Is slight and the solution quite satisfac-

tory. See Fig. 2 for a comparison of problems with varIous rise times. 

Owing to a peculiarity of the ~ = 0 method, a step pulse will propa~ 
1/2 

gate exact ly if h == <i> and the end mass has a value of mil. Thl s type of 

solutio~ is of very limited valu~ since either the use of any other value of ~ 

or any tIme interval other than the transit time between masses, or the addition 

of damping will very severely distort the step pulse. 
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The InabIlity of models of this type to propagate accurately a step 

pulse (no rise time) has previously been considered a serious defect. In 

actuality, although step pulses are often very attractive theoretically, few 

experimental pulses even approach thts condition. If, however, the actual rise 

time Is very small, by taking a large number of masses this model can be made 

to propagate a wave with a reasonably ~11 rise timeo 

Further anr41ysls of Fig. 2. wilt show the spreadfng action which 

occurs with thIs model and all other lumped mass models. The numerical Inte .... 

gratlon technique used tends to spread the wave fonm slightly, both ahead and 

behInd the theoretical shape .. ThIs is an Inherent error in this method of 

analysis. 

3.4.2 Variation of Integration Constant @ 

As mentioned In Seetlon 2.3, the choice of a given value for ~ is 

assocl.ted with the shape of the acceleration-time curve within a given time 

interval. Nonmal1y ~ values of 1/6 or 1/4 are felt to give the best approxi .... 

matron to thIs shape for structural problems, and sInce a ~ value of 0 assumes 

a discontinuous acceleration .... time curve, it is not usually considered as an 

acceptable value. However, since the ~ = 0 assumption Is closest to the 

classical wave th~ry, it's tested along with ~ = 1/4 and ~ = 1/6. Because 

the time Interval for convergenee is ~al1, the difference in these assumptions 

Is also s~11, and there is 1fttle to choose between the three wIth regard to 

the degree of agreement with the theoretical solution. In fact, for rIse 
1/2 

times equal tng J(~) the three solutions plot almost as one 1 inee For 
" 

~a11er rIse times the agreement is not as good, but for every comparison ~ = 0 

gives the best $Olutlon, th average errors about two-thirds that of the 

f3 = 1 /4 and ~ • 1/6 so 1 ut 'ons 0 
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f3 .. 0 n.s other advantages.. The f3""integration equations are somewhat 

simplIfied for this case and the m~i::hod becomes noniterative without dampIng .. 

With dMp I ng, especially when the amount of damp I n9 Is small, convergence Is 

more rapid when ~ - O. On the other hand, stability is more critical for f3 • O. 

3.4 .. 3 Choice of Integration Time Interval 

1 A tIme Interval of h ~ 2 Ts gives excellent results if the rise time 

Is sufficiently long. If, however, the rise time is too short, the rise time 

effects camouflage any improvement that might be gained by decreaSing h. 

A second exact solution was discovered when' theoretically examinlng 

values of h. This exact solution occurs only when the following conditions are 

met exactly: 

1) ~ =: 0 
1/2 

2) h == ~ • <i) 
3) Forcing function is a series of straight lines. The intersection 

of any two of these straight lines must occur at times equal to 
1/2 

M .. ~) , where N is an integer .. K 

4) First mass =- m, not m/2 .. 

This solution is also actually of littie practical va1uG since very poor 

results wIll occur if there is any variatfon in sprIng st"iffness or mass size 

or If My daMpIng is 'ntroduced .. Therefore, for good results, h should not 
1/1 

exceed 1 /2 <i> .. 
3.5 I!PKt of ,. Rigid Mass on the End of a lar Whose Other End Is Fixed 

The 'problem of a rigId mass strIkIng the end of a perfe¢tly elas,tic 

bar has long been a cLassical wave propagation problem. A complete 

mathematIcal solution to thi$ problem was given by J. BOY5Sinesq (1883) 

&nd numerl ues calculated by Saint Venant (lS83) .. The c1assical 

theory is discussed by Timoshenko and Goodier (26, Chapter 15), but a more 
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compJete\,..fbtort of Saint Venant's numerical results is presented In Handbueh 

der PhY$ih'(8). l" H. Donnell (6) also discusses the problem • 

• t e&n be shown that the stress and particle veloc:i:ty for II forward 

t In9 wave are related by the following expression (2', p. 441): 

1/2 
a • V (Ep) (3.6) 

where v = particle velocity or instantaneous impact 
velocity of the rigid body 

Therefore, the Initial velocity of the rigid body and the inltfal Impact 

stress are related by the expression 

As the rIgid mIISS is slowed down by the bar, the value of the stress wave· 

beIng Imparted to the bar by the mass 8150 decreases. Thus, e compression 

stress wave with front cr and with a monotonically decreasing stress behind o 

the front trave1sdown the bar. When it reaches the fixed end It Is reflected 

as II eompresslon wave, doubling the stress at the fixed end. When the 

reflected wave returns to the HfreeH end (actually now a fixed end slnee the 

velocfty of the Impacting mass cannot ehange abruptly), a second compressIon 

WIve reflection occurs. Thus, by equations (3.6) and (3 .. 7), the Instantaneous 

wi I , now be 

1/2 
r/ =: 2cr + V ( Ep ) 

o 

The stress-tIme curve at the free end 11 therefore 

(3,,8) 

of curves 

with decaying 11 tude , but wI r nstMtaneous Jumps of 2.a every 21,1'1 time 
o 

units, in which I, Is the length 



This problem is solved by the use of the elastic model. The bar Is 

divided Into 25 sections with half masses on the ends. The Impact mass Is 

rigidly attached to the half mass at the free end and ;s given an InItial 
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velocity Vo. This case of an Instantaneously applied Impact velocity Is the 

same .s the step pulse, and for the nonnal choice of model parameters the step 

pulse wIll be propagated with a definite rise time and oscillatory error. 

However, If the parameters chosen are those of the special case discussed In 
1/2 

3 .. 4.1, i.e .. , f3 ::: 0 and h ==~) , the wave front wf 11 be propagated exact ly .. 

Therefore, In the first set of problems this special case is consider-

ed. Two factors should cause the solution to deviate slightly from 

Sto Ven.ntls exact solut'on. One, the ~ method assumes the velocity-tIme 

curve for the rigid mass to be similar to a series of stair steps rather than 

tho true smooth curve. Since the time scale Is divided Into from 15 to 350 

Intervals, depending on the total duration of the impact, It is felt that this 

error is not too serious. Two, although the stresses at the extreme ends of 

the bar are desired, the stresses in the first and last springs are not 

exactly at the ends, but rather a distance of llSO from the ends 0 To overcome 

this disadvantage Ii parabola was mathematically fitted to the plot of the 

appropriate stresses of the last three springs on both ends and then extrapo-

lated to the end of the bar. The extrapolath:m reduces the small error 

betw.en the last spring and St. VenantAs solution by about 50 percent. 

A total of five problems with this special method were computed for 

various villue, of V' III If M is the mass the rigid body, 



or , 15 the ratio of the mass of the bar to the mass of the rigid body. 

FIgures 3 and 4 show part of the results of these problems and also show the 

results of St. Venantls calculations In parentheses. The end of impact Is 

defined as the tIme at which the stress at the impact end first equals zeroo 

The exact time that thIs occurs is also determined by means of a parabolic 

extrapolation" 
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The agreement In Fig .. 3 Is thought to be excellent with the exceptIon 

4 'lit 
of one point, i ",e", at a time of T for 1fr = 1/2. .. The value reported In ,both 

Tlmoshenko and Goodier (26, p. 450) and Handbuch der Physik, (18, p. 541) Is In 

error for this value .. The basic theory indicates: that the value of the stress 

Jump at this time must be 2~ rather than the a shown in these references, o 0 

and the correct value must therefore be either 2.135 or 2.136 rather th8n 

1.135. Since the. duration of impact of 4.709 checks exactly with the value 

determined in this numerical integration" the error is probably one of trans-

positron from Saint Venantls original work. In Fig. 4 Saint Venant's curve 

for the maximum reaction end stress versus 1/, is plotted and the points from 

the five problems also shown. It is impossible to show ~y difference in the 

values for the two theories on this figure. 

The speclsl ca,edescrfbed above is really a trick method since it 

wi 11 not work for any case besides the prismatic elastic bar considered. The 

purpose of this thesis is to develop II more general method applicable to a 

wide range of problems of a nonunifonm andlor nonlinear nature. Although the 
- 1 1/2 

nonnal selection of h ::; 2' <i) wIll obviously result in some osci 1 hat ion and 

flattenlng of the wave front" three problems were computed using a va1ue of 
1/2 

h := 0 .. 4 <i> ., No extrapolation technique is used; the stress In the last 

spring is plotted di n~ctly since it is approximately Slime as at the 

extreme end.. This also results in an increase in the apparent rise time 



of 0.04 thDe units. The results of these problems are 5ho~ In Fig. 5 along 

with replotted curves from Fig. 3.. Reasonably good agreement 'I ·obtalned .. 

23 

The large dIscrepancy for t = 1/4 at the end of the impact Is easily explained. 

In the first solution the stress became zero prior to the third return of the 

front of the compressive wave. In the second case, due to a slight errer in 

duration, the front of the wave arrived prior to the end of Impact and the 

!tress (nereased considerably at this point. It is felt that the second 

solution, although it deviates more from the exact theory" is of more value 

slneelt is appllcable to a wider range of problems .. The agreement with the 

theoretical soluttonwould be greatly Improved if the Impact velocity had any 

allIppreeJable rise time. 
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IV. DEVELOPMENT OF NEWMARK HODEL FOR VISCO-ELASTIC MATERIALS 

4.1 Time Effects to be Considered 

The behavior of many materials under dynamic loads has often been 

found to be very dependent on the rate of deformation. This effect has never 

been fully explained theoretically. One method of considering these time 

effects is by the use of viscous elements in the dynamic model. tn this 

manner part of the stress wave is transrnitted by Ilviscous action 1i
• The rela ... 

tive size of this viscously transmitted part wi 11 be determined by the rate of 

straining of the system:~ To accomplish this result dashpots of the Newtonian 

type, In which the stress is proportional to the difference between the velo

city on each side of the element, will be included in the couplings between 

masses. This type of inter-mass viscosity is referred to as relative damping

Absolute damping, in which the dashpot is attached from a moving mass to a 

fixed reaction, is very commonly used in structural dynamics, but it is less 

useful in this case since there is no stationary reference within a moving 

mass of material to act as a reaction for absolute dashpots. The reSUlting 

visco-elastic action of such models has often been considered as applicable 

to high polymers of rubber and plastics, and it is felt that this general type 

of model is applicable to soi1s~ 

The effect of the addition of viscous elements depends on the model 

chosen and is described more comp1etely in the discussion of each model. 

Generally it permits the more rapid propagation of rapidly applied strains and 

causes a decrease of the maximum stress propagated along with a change in the 

wave form, but It does not fully or satisfactorily expJain all the time effects 

in the case of the dynamic models considered. The partial propagation of the 

stress wave by the viscous elements will result in a steeper stress-strain 
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curve in any viscous model since the dashpot stress is additive to the spring 

stress. However, when the elements unload, they wi 11 not retrace their origI

nal path, but wi IJ recover along a curve below the original stress-strain 

curve, since the viscous action is now subtracting stress from the spring 

stress. A hysteresis loop results, and the area enclosed by the loop repre

sents a loss in the mechanical energy. In the majority of the work done in 

this thesis the internal friction of the material is assumed to be caused 

solely by this phenomenon. 

A second type of time ef·fect wi 11 be considered In an attempt to 

consider more correctly the phenomena of Increased yield stress under rapid 

loading. This concept is designated as IIStrain Rate Effectl' and is divorced 

from viscous action. A more complete discussion of strain rate effect Is 

presented in Section 4.6. 

4.2 Choice of Dynamic Model 

A number of possible dynamic models are considered, each one basically 

the same type of lumped mass system as in the preliminary model, but with more 

involved couplings between the masses. These models were each analyzed with 

respect to theJr'degree of accomplishment of the following Items: 

1) Consideration of viscous time effects 

2) Transmission of static stress 

3) Wide range of attenuation of maximum stress and change of wave 

form. 

4) Equations of simple form 

5) Upper limit to velocity of propagation 

6) Consideration of nonlinear stress-strain relationships possible 

7) Numerical integration technique readily available 



26 

8) Sufficient number of variable parameters to enable model to fft 

test data .. 

None of the models considered fit these requirements completely, but 

it is felt that the Ne\toll1ark model came closer than any other model considered .. 

In the following sections the major deficiencies and strong points In the 

eight items above are discussed for the models considered. 

4.2 .. 1 Haxwe 11 Model 

This model consists of a spring and dashpot connected in series. As 

shown by Kolsky (11, p. ,107), the differential equation relating stress, ~, 

and strain, €, for this model is 

(4 .. J) 

where T is the relaxation time of the solid. Consider a load applied at a 

constant rate. The response will be the same as an elastic solJd at first. 4 

As the stress increases, the solid behaves more and more like a viscous fluid 

with vlscosJty ET until, when the duration is long compared to T, the solid 

Is almost completely vfscouso 

Whereas this model might be of some value in creep or similar 

studies, lt cannot be considered further since it will not offer resistance 

to a static load. This observation Is valid whenever a dashpot is used wlth-

out a spring in parallel with it. 

4. For an elastic solid cr = E • € 

Differentiating; dcr 
-= dt 
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4.2.2 Voigt Model 

The Voigt model consists of a spring and dashpot in parallel. Since 

the dIfferential equation of motion for the Newmark model is very similar to 

that of the Voigt model, the Voigt model equation is derived. Consider a 

prismatic bar of VoIgt material. The stress in each element is the sum of the 

stress in the dashpot and in the spring. 

Therefore, 

where C~ is the distributed viscosity of the material. Differentiating with 

respect to x, 

(4.2) 

The wave equation (3.1) can be written in a mOre general form for a material 

in which the stress is not directly proportional to the strains, i.e., 

Substituting (4.3) in (4.2), 

(4.4) 

Using three point finite difference expansions on the right-hand side of 

equation (4~4) and substituting 

m = p~ and 
(3.2) 

in which C = CA 7 A = viscosity of dashpot. 
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This expression is identical to that obtained by summing forces on a single 

mass of the model. 

The Voigt model is somewhat more attractive than the Maxwell model 

since it wi 1 1 transmit an elastic static stress. Howev~r, stresses are propa-

gated much more rapidly than the theoretical elastic velocity of propagation. 

There is actually no upper bound to the Voigt model velocity of propagation; 

a small stress will reach the end of any finite length model instantaneously. 

This feature was considered a serious flaw. Elasto-plastic resistances5 to 

statIc loads are not correctly handled by a Voigt model. Whenever the yield 

resistances of the spri~gs are exceeded,the masses will deflect at increasIng 

velocities until the enti re excess stress Is transmitted by the dashpots. 

Thus, a statIcally applied stress which is considerably above the yield point 

will be transmitted without attenuation. Furthermore, other studies have 

shown that two parameter models are very inadequate in attempts to fit their 

response to experimental data. 

4.2.3 Standard Linear Model 

The modified Voigt model, or standard linear model, adds a spring In 

series with the Voigt element as shown in Fig. 1 (b). This mode) Is mathemati-

cally equivalent to a Maxwell model wi th a sp,ring added in parallel. 

The differential equation governing the motion of a modified Voigt 

material is derived by summing strains across one complete element (lJ, p. 115), 

resulting in 

(4 .. 6) 

5. An elasto-plastic resistance Is a bilinear stress-strain relationship in 
which the second slope Is zero. 
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The subscript 1 refers to the spring with no parallel dashpot; the subscript 2 

to the spring with a parallel dashpoto 

Again using a three point finIte difference approximation to expand 

the derivatives with respect to x, and using the equations (} .. 2), we obtain 

the following: 

em tr +mti 
&<l K2 

(u. 1 2u . + U i +1 ) K}+K2 == Kl+~ 
.... ,- I 

CK1 (u i ... 1 2u. + u. 1) (4.7) + . -K1+Kz I 1+ 

This third order differential equation now contains only one variable and could 

be integrated numerically by a number of methods, e.g., by an extension of the 

~-Integration method. Such a scheme was developed and some calculations made 

on a desk calculator. However, the time consumed is much greater than for a 

second order equation. Furthermore, there have been no convergence or stabl1-

ity studies for an integration of this type. 

The standard linear model has all the advantages of tHe Voigt model 

except for the simplicity of the equations and availability of tested integra-

tlcn techniques. In addition, it has a definite upper limit for the velocity 

of propagation, and has one more parameter to increase the possibility of 

getting a better fit to test data. The case of elasto-plastic resistance can 

be correctly considered. The only reason that the Newmark model (actually a 

very slight modification of the standard linear model) is used In preference 

to this model is that it possesses all the attributes of the standard linear 

model plus the Voigt model advantage of simplicity. 
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4.2.4 Four end Five Parameter Models 

There aroe a number of possible four or five parameter models which 

could be considered, e.g., two Voigt elements in series, two Maxwell elements 

in parallel, or either of the above with a third spring in series or parallel. 

None of these models nor other more complex models were considered tn this 

investigation. It Is felt that the additional flexibility in the choice of 

parameters does not warrant the adoption of a more complex and time consuming 

numerical technIque. 

4.2.5 Newmark Model 

The Newmark model is obtained by sfmply Introducing a mass between 

the Voigt element and the series spring Kl as shown in Fig. 1 {c}. The actual 

effect of this mass on the numerical results wi 11 be discussed in Section 6.7.4, 

but the major advantageous effect is the reduction of the order of the govern

ing differential equation from three to two. In addition, there are numerous 

app 11 cat ions of the f3 ... methods to second order equat I ens. The most usefu 1 f3-

method reference considers viscous damping in a single-degree-of-freedom 

system (27), but since a multi-degree-of-freedom system may be analyzed by 

superposition of all the modes, it is useful in the Newmark model analysis. A 

detailed analysis of this model is presented in the rest of this chapter. 

4.3 Differential Equations for Newmark Model 

The Newmark model may be thought of as a Voigt model with every other 

dashpot missing. Therefore, the equations (4.2) through (4.5) discussed for 

the Voigt model are somewhat applicable to a Newmark model. However, since 

for the Newmark model the spring stiffness and viscosity of adjacent elements 

are not necessari ly equal, the finite difference equation (4.S) must be 

altered. It is therefore best to sum the forces on any mass in the lumped 
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mass model and to derive the differential equation for the model directly. 

The resultIng general expression is 

mlli, = P(t), + [U 1_1 - U1] K'_l + [U 1+1 - Ur] K, 

+ [~I-l - ~IJ '1-1 + [d l +! - ~I] Ci 
(4 .. 8) 

In the actual coding of thIs equation several "additional terms are included 

(see Section 4.7). One of the C values will always be zero and pet) will act 

only on the end mass. If Kr _1 = Ki and "_1 = Ci , it can be noted that 

equation (4.8) can be rewritten and becomes identically equal to equatIon (4 .. 5) .. 

WIth only a few exceptions ~ = 0 was used for the Newmark model calcu

lations. For this case the ~-integration equations (2.2) and (2.3) become 

(4.9) 

(4.10) 

Although f3 == 0 is nonlterative where there is no damping, It is iterative for 

this case since the trial value of uJ+1 affects uj +1' which in turn affects 

the new computed ilJ+l" Equations (4 .. 8) through (4 .. 10) are thus the basic 

equations used in N~rk model computations. 

4 .. 4 D,escription of Parameters a, Tl, 'Is' and vf " 

In order to keep the total mass and elasticity of one complete 

Newmark model e1ement constant, the sum of two adjacent masses, ms + rol' will 

be designated as m, and the combined elasticity of Kl and K2 in series as K. 

These subscript designations are shown on Fig. 1 (C)6 
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let (4. 11 ) 

Then 

Therefore m ==.....!L.. 
s 1 +fl 

.. m , (4.12) 

and 
1 0+1 -:le-
t( 01(1 

Therefore (0:+1) 8;F 

K1 == f\ a K2 == (0+1) K (4 .. 13) 

For this model the maximum, or fast, velocity of stress propagation, 

v
f

' for a high frequency wave can be differentiated from the mInImum or slow 

velocity of propagation, v , for a slow frequency waveo For a very rapId 
s 

movement of th. masses the dasnpots "lock In" and the system acts as If the 

springs k1 rtpresent the only elasticity in the system. Therefore, 

tt, 1/2-
'If - ("in") • On the other hand, when a load is applied very slowly the system 

1(1/2 
acts as if the dashpots were not present and the slow velocity is Vs =~) , 

where K is the combined stiffness of the two springs in series. v
f 

may be 

thought of as due to an increased Young's modulus for rapid strain rateso If 

v
f 

>:> Vs (when K) > > K2) the various speed components tend to spread out 

over a wide range, greatly increasing the attenuation.. If, however, "If ~ Vs 

(when Ka» 0(.1)' no spreading will occur, and attenuation will be small .. It 

would therefore appear that the parameter a: will be a very effective parameter 

in causing a variation in the amount of attenuation. 

4.5 Convefgence and Critical Damping 

One advantage of the Newmark model Is that a coefficient of critical 

damping can be computed for the lowest period of vi"bration .. Since previous 
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studies have shown that the convergence limit of undamped multi-degree-of-

freedom systems is the shortest period, T , divided by ~, the determination of s 

T will also be of value. 
s 

If the system is vibrating in its highest frequency the masses wIll 

be moving as shown in Fig. 1 (c). 

Let u = deflection of masses m
L 

Let w = deflection of masses m 
5 

Since the vibration wi 11 be harmonic, let 

Therefore 

Therefore 

u = A sin pt ; w = B sin pt 

u = pA cos pt ; w = pB cos pt 

... 2A • GI' 2 r 
u = -p sIn pt ; w = -p 8 sin pt 

w = B/A u 

w == B/A y 

W ::: B/A U 

By summing forces on masses mt and ms ' 

mA. U + K
J 

(u + w) 

m (~l + K1 (u + w) 
S 

Therefore 

or 

Using (4.14), 

+ K2 (u + w) 

+ K2 (u + w) 

m .. l. 
w:-u 

·m 
5 

+ C (u + w) 

+ C (Li + w) 

(4.14) 

:= 0 
(4 .. 15) 

:: 0 

(4.16) 

mt 1 
Replacing -- by - from (4 .. 11) and substituting the above into the second of 

ms '11 

(4.15) yields 
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+ K
2

) (u + .~) 
q .. 

(K
1 

+ C (u 
u 

ml U + + -) e 0 
T} 

ti + 
K1+Kz 

(u) (.1l±l) cu (.1l±l) a: 0 or (m ) +-
l 

T} m
L 

T} 

Using relations ( 4 0 1 2) an d ( 4 e 1 3) and simplifying, 

2 2- 2 
U K (a+l) (!)+1) + .£ (u+1) . 

:: 0 (4.17) + ...... • u • u m aT} m 11 

The equation has now been reduced to a single-degree-of-freedom 

equation of the well known fonm: 

u + 2r p 

where r :: percentage of critical damping. 

Solving forT using (4.17) and (4.lS), 
s 

2 2 2 :: ! (0+1) (n+1) 
P m aT) 

p = (!)/2 (a+l)~n+l) 
m (0: Tl) /2 

1/2 

(c;m~ .. 
{a+i ( T}+i) 

(4.18) 

(4.19) 

(4.20) 

If the hIT requirement for stabi Iity and convergence for a single

degree-of-freedom system is met by hITs in fA multl-degree-of-freedom system, 

the chosen value of h will of necessity Insure stabilIty and eonvergence of all 

the modes of vibration. Therefore, the requirements for hIT In the one mass 

system will be applied to the highest mode of vibration of the Newmark model. 
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This is done by analysis of the results of To P. Tung and N. M. Newmark for at 

damped single-degree-of-freedom system (27). The following analysis is from 

their work: 

If 

then in the case of ~ = 0 

2 ., ::: 
2h2 

P 

2 If., exceeds four, the solution wi 11 always diverge. Therefore, from (4.21), 

2 Ts 
) Convergence limi t = P = '7 

However, when 4> y2 > 2 the solution may oscillate seriously. The lower 

limit therefore sets up an absolute safe limit for h, or for ph. 

Thus, maximum ph = (2)1/2= 1.414 

(4.22) 

(4.23) 

The problems of Tung and Newmark had values for r of 1, 1.5, and 2.0. If in 

. the Newmark model critical damping occurs when TIT = 1, f' and TIT may be cr cr 

related directly. A conservatfve empirical formula obtained from Tung and 

Newmark's numerical results relating r, p, and h which will insure good results 

in the range 2 2:: r 2:: 1 is 

rph ~ 0.5 (4.24) 

Since the use of this formula gives increaSingly conservative results when r 

is increasing, it is felt that it is applicable whenever r ~ 1. Further 

analysis of the trends indIcates th~t when r = 0.5 at ph of 1.0 will give satis-
JI' 

factory resultseO However, it is arbitrarily stated that 1.0 will be the 

6. When r = 1 .. 0, the choice of ph = 1 .. 0 gave results wIth satisfactory 
amplitudes, but with some error in time. With r = 0.5 the results 
must be improved. 
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maximum value for ph even with n0 damping, thus insuring that equation (4.23) 

wi 11 not be violated. For the range 1 :2: r ~ 0 the following formula fs there ... 

fore arbitrarily and conservatively chosen: 

1 
ph := 1 +r 

Equations (4.24a) and (4.25a) can be rewritten in terms of T and T/T s cr 

h 
T = 41C • T/T 

S , cr 
T/T > 1.0 cr .... 

1 ~ T/T ~ 0 cr 

(4.25a) 

(4.24b) 

(4.25b) 

This pair of formulas in conjunction with (4.20) will determine the time inter-

val which wIll gIve satisfactory results wIth a minimum of wasted computation 

ffme. If the model parameters vary with length, the element which gives the 

shortest h must be used. Since these equations are based in part on extrapo-

latIons of other results, they were checked by numerical calculations. 

Sc~lfn9 difficulties In the 111iac prevented checking these expressions 

completely, but the results shown in 6.7.1 do verify them satisfactorily. 

Although the term T/T has been used in the convergence analysis, cr 

the meaning of critical damping Is now fully dlscussed. Using (4.17) and 

(4.18), 

or 

Since rcrJti~al = 1 

C ...a...;{n ...... +_l )_2 
2 rp ::: -- - -m 1') 

c = 2 rpm - ..... n~2 
(1')+ 1 ) 



Substituting (4.19) for p, 

• m • 

or 
1/2 1/2 

C c r == 2 (KIn) ~~). (~ 

n 
2 

(11+1) 

37 

(4 .. 26) 

The concept of "retardation time '1 , 'r, used by Kolsky (11, POI 120) is useful. 

let 

Using (4.13), 

Substituting C from (4.26), cr 

1/2 1 1/2 
1" == 2 (1<ro)@.:-1)1.!l) cr fj+ 'a 

Therefore, 

,. == 2-
cr 

1/2 1/2 

<i> (~ 
1 

• 11+1 

When 

(in units of time) 

(4.27) 

or Is identically equal to the slow transit time across one complete element. 

The concept of critical retardation time applies only to the highest 

mode of vibration" It therefore does not exactly predict the actual degree of 

damping; but It will be used, nevertheless, throughout the thesis to compare 

the relative amounts of damping In the various problems. 
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4.6 Method for Considering Strain Rate Effect 

As ment i ooed inSect i on 4. 1, the response of the vi seo-e 1 ast i c mode Is 

does not fully explain all the time effects observed in experimental work. The 

major difficulty occurs when nonlinear stress-strain curves are considered, 

especially in the elasto-plastic case. 

Huch investigation concerning the changes in the stress-strain 

curves for dynamic loadings has occurred at the University of IllinoIs and 

elsewhere in recent years (13)(14)7. The Investigations reported In Massard l ! 

summary of dynamic testing (14) indIcate that the major effect in mild steel 

Is an Increase In the Yield stress with increasing strain rate. This type of 

behavior wIth an assumed static elasto-plastic resistance cannot be properly 

considered with the visco-elastic models previously discussed. The discrepancy 

discussed in 4.2.2 for the Voigt model, in which the dashpots carry the full 

amount of the applied stress in excess of the spring yield point for a static 

load, is present whenever a model has an uninterrupted dashpot connection 

between masses. However, if this connection Is Interrupted, as in the case of 

the standard linear or Newnark models, the elasto-plastlc resistance of the 

sprIng Kl detenmines the maximum stress transmitted through this element 

regardless of the strain rate. 

To overcome this difficulty an approximate method is used to 

increase the yield stress;n the sprIng elements when the strain rate is more 

rapid than the Ustatlc te.St" strain rate .. The cause of thIs type of strain 

rate effect Is beyond the scope of thIs thesis, but it Is arbitrarily assumed 

to be independent of viscous action. Actually, as far as this method is 

concerned, the important fact is that some materials do act approximately In 

this fashion .. 

1. See list of references in these publJcatlons for other investigations. 
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Thus, two types of time effects can be consideredo The fIrst Is a 

viscous type action which acts as a dissipative force in attenuatfng the maxl-

mum stress and In changing the wave fonn. The second effect is more apropos 

to materials such as steel or copper and permits an Increased yield point or a 

propagation of stress at reduced strain in the case of materials with no deft-

nite yield point .. The two effects may be considered separately or jointly_ 

In most of the available experimental work an "average strain rate" 

has been used in the calculation of the strain rate effect. Since the strain 

rate usually was not constant, an averaging scheme normally was used to deter
)1 

mine the average strain rate. To be consistent with the test data to be used, 

the average strain rate was used here. The question as to the extent of the 

portion of the loading history which affects the yield point of a material is 

cOinplex. Does the material possess a "long m~l1Oryll and therefore does the 

initia1 strain rate influence the yield point as much as the strain rate 

immediately prior to yielding, or is the only important part of the strain rate 

history that part near the actual yield point? In the method developed an 

arbitrary strain level, € , may be picked, for example, 50 percent of the 
o 

static yield strain, and the strain-rate history occurring prior to that 

strain is not considered in computing the strain rate. 

In the uti lization of this method a bi linear or tri linear approxima

tion is made to the static stress strain curve. 8 As the applied force is 

applied to the Newmark model, a stress wave propagates through the bar of 

material .. The actual average strain rate,€,in each spring is computed by 

means of the following equation: 

(4.28) 

8. The choice of only two or three lines is strictly a matter of convenience 
in coding for the Illiac. More lines could be handled with an appropriate 
code modification. 
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€o is the value of strain discussed in the previous paragraph. Subsequent to 

the arrival of time, t , when € is first reached, the average strain rate is 
o 0 

computed for each mass at each tIme interval. An experimental curve of straIn 

rate versus increase in yield stress (or strain) is then entered with the 

computed strain rate. The yield strain is increased by the amount detenmined 

from thIs curve. The process is continued for each time interval, the yield 

stress and strain being continuously adjusted to agree with the computed aver-

age strain rate. Once this yield stress is reached in a p~rticular spring 

element,the yfeld point 1s frozen at that level and the response is based on 

thi 5 final computed stt'ress ... strain curve. For an example of the actual use of 

thIs method refer to Section 6.9. 

This scheme for considering strain rate effect cannot be defended 

as being rigorous. It is admittedly only intended as an approximate solution. 

However, since variations in the strain rate of one order of magnItude cause 

little variation in the yield stress chosen, differences in the average strain 

rate are not significant. As more experimental and theoretical information 

concerning time effects in materials becomes available, more precise approxfma ... 

trons wi 11 be warranted. 

4.7 Programming for 1111ac 

To solve the differential equations (4.8) through (4.10) the 

University of Illinois Digital Computer (ll1iac) was used. A code, IIOST, was 

written to solve not only the problem as stated previously in thIs presentatIon, 

but also to include several other factors designed to make the code more general, 

and thus make It more applicable to other types of problems. 

The major additions to the previously stated problem were the addl-

tion of two other forms of damping, absolute damping and frictional, or 
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Coulomb, damping. Two terms are therefore added to equation (4.8), resulting 

In 

(4.29) 

where (Ca) I refers to the coefficient of absolute damping on mass i and Ff 

refers to the frictional force acting on mass i 0 Fi is shown with both plus 

and minus signs since its direction depends on the velocity of the mass. It 

is nec.essary to have the sign of Fj depend on the velocity of mass i at the 

previous time interval (j) rather than at the present time interval 0+1) for 

which computations are being made. When the sign of F
J 

was allowed to vary 

with the velocity at interval J+I, on several occasions the problem entered a 

never ending cycle in whic.h the reversal of the sign of F. introduced a large 
I 

enough change in the force ac.ting on ~ mass to cause the velocity to change its 

sign again fo the next iteration. This would then change the sign of the 

frictional force and cause the nonconvergent cycle. The method of handling the 

sign of Fj introduced a small, but necessary error .- this error always occur

ring well after the maximum response had been reached. 

A resistance-deflection subroutine was written to handle purely 

elastic" bi linear, or trilinear stress-strain curves. In all cases recovery 

is assumed to be elastic, i.e." parallel to the first slope. 

Either an applied stress pulse or impact velocity may be applied to 

the end mass by approximating the stress or velocity versus time curves with a 

series of up to ten straight lines. The strain rate versus yield strain 

curves were straight line approximatIons with up to thirteen straight lines. 



42 

Except for the details already mentioned, the problem solved by 

this code is the one described in the previous sections. When the strain rete 

effect modification is used, the springs must all have the same stJffness,9 

but otherwIse complete flexibility is possible. SprIng stiffnesses, mass 

sizes" yield strains, and the viseous parameters a and l' may be varied in any 

desired manner. The maximum number of masses, nJ is twenty-five. 

It is anticipated that this code may be utilized for purposes other 

than those discussed in this thesIs. Other wave propagation problems such as 

the pi Ie driving problem discussed by E. A. Smith (20), wave propagation In 
) . 

re'ilroad trains, and a variety of structural dynamics problems In which the 

shear beam technique Is used could be handled. It Is felt that the relative 

damping considered in this thesis might be superior to the absolute type In 

the analysis of a multi-story shear be~TI structure. Sliding problems in ~~ich 

Cou 10mb damp i n9 is present may a 1 so be 501 ve.d wi th 11 08T .. 

The numerical results of this 111iac code have been checked by desk 

calculator results for a number of cases including elastic models, linear 

visco-elastic models, models with bilinear and trilinear springs, models with 

Coulomb damping, models with absolute damping and models using the strain rate 

effect modification. Although these solut!ons on the desk calculator were not 

carried very far in accuracy or duration, it Is felt that the correctness of 

the Illiac solution has been established without a doubt. 

9. This restri~tion could easily be removed by rewriting a portion of 
Code 11 OST .. 
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Ve LINE TERMINATION 

.5 G 1 Pu rpose of li ne Termi nat ion Devi ce 

For wave propagation in bars of a finite length there is no problem 

with regard to termination of the model. The end of the model can be consider .... 

ed as either free or fixed. Either case is very easily handled, the fixed end 

by conSidering the half mass at the end as never deflecting, and the free 'end 

by adding a spring with no resistance to the end of the model. However, It is 

sometimes desired to study the stress wave propagation in a finite length of 

an infinitely 10ng bar. For example, it might be desired to find the attenua

tion in the top 200 ft. of an infinitely deep soi 1 column. Any model must 

have a definite length with a specified end condition. If this end condition 

is specified as fixed, the reflected wave has the same sign as the Incident 

wave, and the stress is doubled. If it is considered free, the reflected wave 

is of the opposite sign and the net stress is zero. 

It is possible to eliminate reflections by considering a column of 

soil so long that the reflectfons do not return to the area considered until 

after the entire original wave has passed the region of Interest. However, 

since n has a maximum value of 25, for any but the shortest durations of load

ing, 1\ must be taken very large. This results in numerfcal values being 

obtained in only the first few springs repre~enting stresses at widely sep~rat~ 

ed points. In addition, the results are less accurate in these first fewele

ments, and the rise time requirement becomes quite restrictive. 

For these reasons a line tennination device is developed to enable 

a finite length model to approximate an infinitely long bar of materiai. 
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Since this problem is similar to the problem of transmission line 

termination, a solution is der from the electrical analog. The mechanical 

elements of the Newma model are t nmed into the electrical analog by 

using the transformations Von rman and Biot {l8, po 372)0 This 

transformation is shown in Fig 6e If a transmission line is terminated with 

a t:es i stance in ohms equa 1 to IISU i mpedance" J 0 r "eha racter is tic i mped

ance Ji
; of the line, no refle,ction will occur. For a "perfect llne", analogous 

to the elastic model,Bewley the surge impedance, 

where eli s the 

(1, p" 54) 0 

complex quantity 

concept fs the 

st 

and may be nonlinear0 

determining a satls 

sst 

An extensive 

tions whfch would 

vsri ed wi 

section p 

time. 

to 

'Ie no 

r, 

nne 

less, 

termination 

(5 e 1 ) 

l distributed inductance 

rtunately, the surge Impedance is a 

time. Also complicating thIs 

constants along its length 

ton (5Ql) is the key to 

was in attempting to design complex termina-

l aet ions Jll $lome of wh i ch had res i stances wh i ch 

Sf 1e termination described In the following 

The design of termination is most easily visualized by the 

description of an illustrative Ie. that the analysis of the 

stress wave p ion in • of an i nf i n i te 1 y deep homogeneous 

soIl deposit is desi Six 1s will be needed for this 
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computation if A is taken as 20 ft. It was found that connecting a single 

terminating dashpot to the end of these six elements did not give acceptable 

results. Instead, a somewhat more elaborate termination is used. Two addi-

tional identical elements are added to the system as llbuffers l' .. The "buffers" 

are followed by a perfect element consisting of two equal springs in series 

(no dashpots, a = ~ = 1). This element has its total stiffness and mass equal 

to that of the previous elements, and since a := T} :::: I, from equations (4.12) 

and (4.13), m d:::: O.5m and K d:::: 2 K. Finally the system is terminated to a en en 
1/2 

fixed end by an absolute dashpot with Ca :::: (Km) ,the equivalent mechanical 

element for the terminal resistance described by equation (5 .. 1)0 

At the junction of the Ilbuffers" and the perfect element a reflec-

tion wi 11 occur since the impedances are not perfectly matched. However, the 

effect of this reflection on the original system is remarkably small. Since 

the impedance of the terminating dashpot Is identical to that of the perfect 

system, no reflection occurs at the fixed end. 

In the "buffer zone ll the effect of the reflection is somewhat 

larger, but the resulting stresses are 5ti 11 reasonably valid. 

Figure 7 shows the remarkable efficiency of this termination as 

compared with two systems without a proper termination .. Code 110BT was modi-

fled to allow a 29 mass system (problem A-79) to be solved. Seven of these 

half-elements represented the termination. in this problem it would take 

0.23 seconds for the small reflections from the perfect elements to reach the 

sixth element. There would be no major reflections, even if these perfect 

elements were fixed ends, up to almost 0 .. 4 sec. Therefore it is reasonably 

valid to consider the long model used ~n A-78 as infinite as far as the 

results in element six are concerned .. Problem A-98 was only a thirteen mass 

system, Seven masses of whIch were also line terminationo The stresses in the 



sixth element from the loaded end, the 1 ast e I ernent before the ''buffers ' ', were 

compared for the two problems. If severe reflections were occurring, the 13 

mass model length t s short enough and the time durat fon long enough to allow 

these reflecttons to modIfy the stresses in all elements. Nevertheless, the 

results are in very close accord. Results for other choices of model parameters 

also show this close agreement. 

Problems A-99 and A-101 show the very large reflectIon errors Intro

duced when the terminating resistance Is omftted. The oscIllations In these 

problems are caused by multiple reflections which occur as the reflected wllve 

bounces back and forth between the free and fIxed ends. 

At the present time Code 110BT will consider only lInear dashpot 

resIstances. lIne terminations for models with bilinear or trilinear springs 

must have terminations of the same shape. The existing code must be modIfied 

if infinite length systems with nonlinear resistances are considered. 
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VI. NUMERICAL RESULTS WITH NEWMARK MODEL 

6 .. 1" ,ttY$ i eel 1 .. rob 1 em Cons r dered 

in keepIng with the original desire to examine wave propagation in 

soils, in this part of the thesis parameters which might fit a hypothetical 

sofl were used .. Although the velocities of propagation are roughly those which 

have been observed in Nevada soIls at the Atomic Energy Testing Grounds, no 

real attempt is made to relate the model parameters to those found in any parti-

eular 5011, nor is there any attempt to fit the results of this investigation 

to measured stresses observed in the field. Even if such comparisons were made, 

they would not be valid, since for all measured data the effects of spatial 

dispersion would have to be separated from the one-dimensional attenuation. 

Unifonn soils with velocIties of propagation of 1000 and 2000 ft. per 

sec. are analyzed .. Stratified soils and a soil whose stiffness increases 

gradually with depth are also considered. linear visco-elasticity was assumed. 

This assumption is at least approximately valid, since very little plastic 

deformatIon has been shown to occur In field tests at this pressure level. 

Strain rate effect in soils is considered. Table I sho~ a list of all the 

problems discussed in this chapter.. Other problems whose results appear more 

as background Information are not listed~ 

The question of the increase of stiffness with depth Is not ,easy to 

answero An empIrical relatIon between the horizontal pressure and the modulus 

of elasticity may be determined by triaxial tests. However, the dete:1lT1Jnation 

of the horizontal pressure Is not elementary. The portion of the horLzontal 

pressure due to the static loading of the soil itself is equal to the product 

of the coeffIcient of earth pressure at rest, k , and the vertical weight of a 
o 

5011 column of unit area. Actual data concerning reliable values for'k are o 



almost nonexistent (24, pp. 139 and 323). The dynamic loading of the soU 

causes a horizontal pressure which decreases with depth. The horizontal pres-

sure attenuation with depth due to spatial dispersion in a homogeneous soil is 

greater than the corresponding vertical pressure attenuation (see Appendix). 

Therefore, this effect may more than counteract the increased static pressure 

vii th depth e For example, if a soil weighs 100 lbe per cUe fto and k = 005, 
o 

the static hori zontal pressure at 100 ft. is about 3S;:psi. ,As' sh.o~n in: the 

:Appendix, the difference in maximum horizontal pressure for a 40 Kt weapon 

between 10 ft. and 100ft. might easi 1y be 40 psi considering spatial dispersion 

only. Furthermore, the stiffness variation with depth actually changes with 

time. These effects must be more precisely handled in any two dimensional sotu-

tion to this problem. Work being accomplished by M. R. Mehta at the University 

of ill inois concerning stresses in layered systems may be of some help in formu .... 

1ating a solution to this problem. For the present, however, the assumption of 

a uniform stiffness with depth may not be as badly in error as a casual observ-

ation might indIcate. 

The solutions presented here could have been equally well presented 

In dimensionless form. If the shape of the applied force remains constant, 

the time scale and length scale may be scaled equally and results obtained for 

wave propagation in bars of much less length for forces of correspondingly 

shorter durationo Thus, the results of these calculations can be applied 

qualitatively to other problems as long as the applied force shape is not 

markedly different. 

6.2 Choice of Model Parameters 

Since the primary purpose of this investigation is to analyze the 

effect on the model response when certain model parameters are varied, most 
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paramGters were varied over a wi range. The effects of variation of these 

parameters are dls~ussed in SectIwt 6.70 However, the value of certain of the 

parameters remained constant for most problems.. The reasons for the constant 

values selected for these parameters are given below. 

The ratio of the masses, ~, w~s taken as unity for most of the 

problems, jince computatIon tIme greatly increases if ~ '5 taken too small. For 

one representatIve problem, In comparison with the computation tIme when 'Il ::: 1, 

taking" := 1/9 doubles the computation time, and if 'Il ::: 1/25 the time is 8 trmes 

as long. As shown in Sect ron 6.7.4, the choice of ~ does not affect the numerl-

cal results greatly.. If ~ Is taken quite small, the response of the model should 

approach that of the standard linear model .. 

The choice of 'A., the distance between each mass, is influenced by 

fou r factors .. 

1) Since the time interv~l for convergence is directly proportional 
21\. 

to the transit time between masses, i &e., ,increasIng A decreases computa-Vs 

tion time. 

2) Increasing the total number of subdivIsions In a bar of material 

by decreasing ~~ Increases the ~ccuracy of the results by giving values of the 

stress at more points along the bar and also by virtue of the fact that finite 

difference expressions are more accurate with decreasing interval length. 

3) se time studIes (see Section 3.401) indIcate that the rise time 

must be at least Since for the Newmark model m k refer to one 

complete element of length 2~p the minimum rise time requirement for the 

m 1/2 ~ 
Newmark model is (k) ,or v ,if both a and ~ ::: 1. If a relatively short 

s 
rise time is required, this factor will dictate a maximum As 

4) The depths at which reliable stresses are desired must not be too 

close to either end of the models That is, if the model is 19 masses in length 
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(3 of which represent line termination not including Hbuffers"), the stresses 

in springs 3 through 12 exhibit less spurious effects than the springs 1, 2, 

and 13 through 16. Thus, if the stress is desired at both 50 ft. and 200 ft., 

a very narrow range of ~ will place both 50 ft. and 200 ftc within springs 3 to 

12. For this example this range would be 11.4 ft. to 20 ft. 

In this phase the number of masses was normally taken as 19. as a 

compromise between greater accuracy and smaller computational time. A = 20 ft. 

was found to be the most satisfactory compromise between the four factors men-

tioned and wes used throughout thIs phase. However, the use of ~ - 20 ft. 
,/ 

meant that rise times of 40 mSe were used for most problems, 80 ms. beIng 

required for one. 

lues for the slow velocity of propagation were arbitrarily taken 

as 2000 ft. per sec .. for most problems.. ThIs corresponds to a static modulus 

of elasticity of approximately 85,000 psi if the density Is 100 lb .. per cu. ft. 

Other values of 1000 and 4,000 ft. per sec., used In several problems, repre

sent moduli of 21,500 psi and 345,000 psi .. 'f these values seem high, it must 

be considered that a very hIgh lateral pressure exists and that lateral 

strains are prevented. In fact, these values represent average values deter-

mined from observations of acoustic velocities of soIls In place. 

6.3 AePlled Forces 

The applied stress wave on the ground surface is considered to be 

caused by the ground surface detonation of atomIc weapons .. The'maximum pressure 

Is assumed to be 100 psi and is also assumed to be caused by either a 40 Kiloton 

or S Megaton weapon.. Brode's curves (2) are used to determine the shape of the 

pressure-time curves. Only the positive phase of the blast wave was considered, 

and its duration was obtained from the Atomic Energy Commission I, 1957 handbook 

(25). The rise times were chosen by the criteria established in the preliminary 
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studies in order to prevent spurious oscillations. A rise time of 40 millisec

onds was generally used .. Straight line approximations were made to Brode's 

curves so as to keep the areas under the curves relatively constant. Since the 

same requirements as for rise time are valid concernIng changes In slope of the 

applied forces, no straight lines are used with a projection on the time axis 

of less than 40 milliseconds. Figure 8 shows both 8rode Bs curve and one of the 

straight line approximations for the 40 Kt weapon. Brode's curve for the 5 Mt 

weapon has the identical shape, but the duration is increased to 2.38 sec. 

The straight line appr?ximation Is much better for the 5 Mt weapon, sInce the 

40 ms. restriction does not introduce as much error. 

6.4 Method of Presentation of Results 

Host of the figures used in the presentation of the results for this 

phase fall into one of three categories. 

I) Stress or acceleration versus tlmeo In this type of plot the 

stress or acceleration in a given element with respect to time is showne These 

plots would be most valuable in the design of underground structures. If 

several plots are shown on one figure for one problem, an idea as to the change 

in wave form can be indirectly visua1izedo Similarly, the effect of parameter 

variation on the wave fonn can be deduced when several problems at the same 

depth are plotted on one figure. These plots should be shown as smooth curves; 

however, most of them have been drawn as a series of straight lines. 

2) Stress versus depth at a given time. These stress distribution 

curves show the stress in every element at one specific time. The change in 

shape of a wave as It passes through the soil is directly obvious. This type 

would nonmal1y be more valuable than type J) in studying wave distortion, but 

unfortunately the wave is so spread out along the depth axis that for any 
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given time only at portion of the wave is within the model, and the entire wave 

shape cannot be shown. 

3) Maximum stress or acceleration versus depth. These plots are 

actually summary curves in which the maximum value of stress or acceleration 

reached in each element is plotted. They show the attenuation of the maximum 

values conveniently- For accelerations they are the only really worthwhile way 

of plotting the results. 

The effect of lumping a half mass at the ground surface causes a 

large error in the computed ground surface acceleration. If ~ were decreased, 

a smaller surface mass would be used, and the accelerations would be larger. 

For this reason it is felt that the numerical values of accelerations are not 

valid. On the other hand, it is felt that the percentage attenuation of the 

acceleration with depth Is of value, and, except for Fig- 9, all acceleration 

data are presented in relation to the acceleration of the mass concentrated at 

the ground surface. The points on these acceleration curves tend to fallon 

two smooth curves that are practically parallel. When a mass is preceded by a 

Voigt element, the stress is transmitted more rapidly, resulting in a higher 

acceleration than is experienced if the mass were preceded by a simple spring. 

A smooth compromise curve is therefore drawn between these two curves. 

In the normal case of ~ = 1 the stress in any given model element is 

said to represent the stress midway between the masses, or at the center of the 

sections into which the original bar was subdivided. However, when ~ < 1, the 

inertia force of m Is correspondingly smal1eG and therefore the stress in the s 

elements on each side of m are more nearly equal. When ~ c 0, ~s In the s 

standard linear model, the stress in the spring 1<1 and in the Voigt element are 

identical. In the latter case It would seem more reasonable to assume that 

this stress is the stress midway between the large masses. Simi larly, when 
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1 > ~ > 0, the stress is assumed to represent the stress at a point closer to 
m 

ms than m
l

, the distance from ms being ms +smL . ~. When thIs slight dIffer-

ence in location is considered, the results of anyone problem plotted as 

type 2) or 3) above fallon a smoother curve. 

6 .. 5 Basic Uniform Soil with 40 Ki loton Weapon loading (Problem A-48) 

Problem A-48 is considered as the basis for comparlson,of most of 

the following results. A soil of constant stiffness and v = 2000 ft. per sec. 
s 

is loaded with a 40 Kt applied force as shown in Fig. 8. The ratio of spring 

stiffnesses, a, and the ratio of the masses, ~, were taken equal to one, and 

the retardation time, T, was one-half T • cr 

Results of Problem A-48 are included in Figs. 9 through 21, excepting 

Fig. 18, but only Figs. 9 through 11 relate solely to this problem. Figure 9 

shows the stress versus time at four depths. The stress wave front flattens, 

and the maximum stress attenuates. The law of conservation of momentum applies, 

and since the area under the stress-time curve is proportional to the momentum, 

the areas under these curves are all equal. In Fig. 10 the accelerations of 

three masses are shown. As stated previously, the numerical values of acceler-

ation are less than would be expected in actual tests. The stress distribution 

or wave shape as it passes through the soi 1 is shown in Fig. 11 for a number of 

various times. The spreading effect on the wave form is obvious. 

The other figures containing data from Problem A-48 will be discussed 

in the following sections. 

606 Comparison of Problem A-48 with Voigt Model 

One problem was computed using the Voigt model to point out the 

disadvantage of the high velocity of stress propagation. This problem,A-73, 

used the same model parameters as A-48, the only difference being the extra 

dashpot used in A-73 .. The two solutions are compared 'in fig. 12. As expected, 
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the Voigt model attenuates the wave much more rapidly by sending a large portion 

of the wave energy ahead in high velocity components. This extremely high vela· 

city propagation of small strains is one feature of the Voigt model which makes 

it less desirable than the Newmark model. 

Also shown on this figure is the theoretical solution for an elastic 

medium .. It can be noted that the Newmark model also sends high velocity stress 

components ahead of Vs but none more rapid than vf " SInce some test results 

indicate a more rapid propagation of small strains than elastic theories 

predict, a small effect of this type is desired. The maximum stress is props ... 
;' 

gated at approximately the v speed for both problems. s 

6'.] Effect of Parameter Variation 

A complete investigation of the effect of each model parameter was 

accomplished by varying each of the parameters while the others remaIned 

constant. The effect. of each parameter can be measured by plotting the results 

versus some standard, usually Problem A-48o In order to fit the model response 

to experimental results,a knowledge of the results which occur when these para-

meters are varied must be known. 

6 .. 7 .. 1. Variation of Time Interval 

in Section 4.5 expressions (4.20), (4.24bh and (4.25b) were derived 

in order to Insure stab; lity and convergence of the numerical method as well as 

a satisfactory degre~ of accuracy. The purpose of this section Is to verify 

the usefulness of these expressions. in writing the Code 110ST, scaling factors 

were used in such a manner as to attempt to prevent the accidental use of much 

larger time intervals than specified by these equations.. In doing this, it made 

it impossible to pick time intervals that would cause instability or a lack of 

convergence. In Table 1 the theoretical h from the equations is shown as we11 
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as the h actually used. In most cases the h chosen was the value closest to the 

theoretical h which allowed the use of convenient scaling factors; therefore the 

h values fallon both sides of the theoretical. Since almost all the problems 

reported had very little undesirable oscillation, it is felt that the expressions 

are verified as being somewhat conservative yet not overly wasteful of computing 

time. The few problems that did oscillate considerably, e.g_, A-lOS, had time 

intervals that were certainly small enough, and the oscillations were probably 

due to other causes. Several problems were checked with smaller h values than 

shown in Table 1 with little change in the numerical solution. 

6.7.2 Variation of Percentage of Critical Damping 

With all other quantities remaining the same as Problem A-48, the 

retardation time, ~, was varied from 0.1 ~ to 5.0 T ,where 
cr cr 

l' == 2 cr (4.27) 

The results 9f the variation are shown in Figs. 13 and 14. In Fig. 13 the 

change in shape of the wave is shown. 

The area inclosed within the hysteresis loop fonned by the dynamic 

stress-strain curve gets progressively larger with Increasing T, and the dissi-

pation of energy associated with this loop is therefore larger for large T 

values. Increasing ~ also tends to propagate more of the stress wave at veloci-

ties between v and vf" When T gets very large, the bulk of the wave is transs 

mitted at veiocities near vfo This variation of the velocity of propagation 

tends to decrease the maximum stress by spreading the wave. However, when T 

exceeds a certain value, the velocity effect tends to concentrate the wave front 

near the vf speed and increases the maximum stress, even though the total energy 

of the wave has been decreased. 
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Figure 14 is a summary figure in which the maximum stresses at 

selected depths are shown for 18 problems. The solid curves show the maximums 

obtained from the series similar to A-48. The maximum attenuation seems to 

occur in the vicinity of T although the value of T which causes the maximum cr' 

attenuation seems to increase with depth. 

A series of problems with the ratio of spring stiffness, 0, not 

equal one was also run. The effects of a varratlon are discussed in 6.7.3, but, 

as far as T variation is concerned, at a constant a the above remarks apply 

equally well. These curves for a < 1, however, must be treated as possibly 

An oscillation developed in some of these problems making 

the maximum value for the stress somewhat in doubt. For this reason it is felt 

that the values at T = T for a = 1/10 are too high, especially the value at cr 

go ft. 

No figure is presented for accelerations, but the maximum attenua-

tion for depths greater than 100 ft. occurs near T for Ct == 1 .. Howeverpthe cr 

variation with depth is opposite that for stres~ and at 60 ft. for a = 1 the 

minimum acceleration has not yet been reached when T == 5.0 T 
cr 

6.7.3 Variation of Ratio of Spring Stiffnesses 

Decreasing the ratio of k2 to k1, OJ increases Vfe When this occurs, 

the spreading effect of the wave increases, more energy being sent ahead of the 

main part of the wave. This effect is easily seen in both Figs. 15 and 16, 

where results of problems with a values of 1, 1/3,and 1/10,are presented .. Note 

that T remained constant In these problems. Since T is a function of 0, from cr 

(4.27) the TIT values for A-48, A-65, and A-67 are 0.5,0.289, and 0.158 cr 

respectively. If the ratio of TIT had been held constant whi le T varied, cr 

there would be even more difference in the three curves. To compare attenuation 

at constant TITer refer to Fig. 14. 
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The maximum accelerations as shown in Fig. 17(a) are much less for 

the two a < 1 problems than they are for the a = 1 problem. However, a = 1/10 

plots above a = 1/3. This seemIng inconsistency may be due to spurious oscil-

lations. On the other hand, since the theoretical accelerations are proportion-

a1 to the rate of change of the stress, and since these maximum accelerations 

occur fairly early in a problem, it is possible that the more rapid rate of 

change of the stress for a = 1/10 in the early stages of the problem might 

cause a = 1/10 to plot above·a = 1/3-

Figure 17(b) shows the maximum stress versus depth. As expected, 

decreasing a causes a decrease in the maximum value of stress propagated. Had 

~/~ remained constant this decrease would have been larger. cr 

The hysteresis loop produced by rapidly loading a Newmark model is 

an excellent measure of the mechanical energy which is dissipated by viscous 

dampIng. Figure 18 shows the dynamic stress strain curves for two problems .. 

The average stress in one complete Newmark element is plotted versus the strain 

in the same element. Problem A-58 shows relatively little dissipation occurring 

when a = 1 and T = 0.5 ~ cr For A-78 the damping is slightly increased to 

0.72 ~ , but a = 1/3. This change in a greatly increases the area within the cr 

hysteresis loop. The greatly increased dissipation, however, has not reduced 

the maximum stress markedly since the duration of loading is so long (see section 

6.7.6) .. 

Spurious asci l1ations occurred in a number of the problems in this 

set. It is felt that the time interval was sufficiently short, but the osci 118-

tions might be due to a rise time difficulty across the soft springs (kZ) caused 

by the rapid stress transmittal through the adjacent stiff springs (k]). If 

additional problems with a < 1 are .computed, this difficulty should be investJ ... 

gated further. In these problems ~ = 1. It might be happenstance, but in 
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subsequent problems when a < 1, ~ was less than one also, and the oscillations 

were not present. Actually, the effect is not important in most cases. It is 

most noticeable here when attempting to perform a study on the effect of para

meter variation. An error of five percent can cause a curve to break at the 

wrong point or plot incorrectly in another manner. These osci 11ations ~$ual1y 

cause artificially high maximum stresses to be stored and are therefore conserv

ative. In no other section of the thesis were these oscillations bothersome. 

607~4 Variation of Ratio of Masses 

In this section It wi 11 be seen that the value of the ratio of the 

masses, ~, has no majbr effect on the numerical results. The parameter ~ was 

norma11y taken as one to speed convergence as in Problem A-48. The stress-time 

curves in the 8th element· for problems in which ~ is 1/4, 1/9, and 1/19 are 

compared to the simi lar curve for Problem A-48. As shown In Fig. 19, the 

results are very similar. In fact, when ~ = 1/9, the curve agreed so closely 

with the ~ = 1/19 curve that both curves could not be shown on the figure. The 

maximum stresses for these two problems were 73.97 psi versus 74.08 psi 

respectively. Due to the closeness of the plotted curves the points at which 

the stresses are known are not shown. The print interval for A-48 was 0.Ot5 

sec. and for A-74 and A-76 0.01 sec. 

Despite the great dIfference in the mass sizes the accelerations 

agree remarkably well. For the 8th mass {14O ft.} the maxi~Jm accelerations 

for ~ = 1, 1/4, 1/9, and 1/19 are 1.50, 1.38, 1.30, and 1.26 g3 s respectIvely. 

It may be noted on Fig. 19 that the depths shown are not the same 

for all problems. This is because ~ varies. If this difference in depth is 

considered, the agreement is even better. 

Based on these problems, the assumption that the Newmark model 

behaves much like the standard linear model seems acceptable, even when ~ = 1. 



59 

It seems reasonable to assume that the results obtained when ~ S 1/4 will agree 

very closely with the standard linear model results. These conclusions are of 

course based on the further assumption that the ~ = 1/19 model is virtually a 

standard linear model. Since the change between ~ = 1/9 and ~ = 1/19 is neg11-

gible, this assumption seems warranted. 

The fact that the very close agreement in these problems occurred 

when the value of T remained constant 15 of interest since T is a function of cr 

~, the value of TIT ranged from 0.5 for ~ = 1 to 1.15 for ~ = 1/19. This 
cr 

fact adds weight to the statement that the ratio TIT does not completely 
cr 

describe the amount of damping within the system but only the percentage for 

the highest mode of vibration. Even though the results of these problems in 

this section are practically identical, due to the different values of ~ the 

amount that any particular mode is excited probably varies considerably from 

problem to prob1em. For these reasons it may sometimes be of more value to 

compare results at a constant T rather than a constant TIT • cr 

6.7.5 Variation of the Amount of Coulomb Oamping 

Frictional, or Coulomb, damping is added to the column of material 

as a force, f, in psi per ft. of length. This unusual choice of units was 

selected so that the total frictfonal force acting in one complete element 

could be readi ly determined by mUltiplying f by 2~ , since ~ is given in feet 

in this section. The resulting coulomb force, F, was then applied to the two 

masses within one element in proportion to their mass. 

A number of problems with Coulomb damping were worked, and the 

results for three probiems are shown In Figs. 20 and 21. it should be noticed. 

that the shape of the stress-tfme curve in Fig. 20 remains unchanged but is 

lowered everywhere by an amount which increases slo~,ly with time. In Problem B~3 

the stress abruptly levels off at about 20 psi. Since the frictional force 
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acting on each mass is 5 psi, the stress in each element wi 11 not decay to zero 

but will instead reach an equilibrium when the unbalanced force in the elements 

on each mass equals 5 psi. It is also in this region that the small numerical 

errors occur due to the reversal of the direction of the frictional force one 

time interval after the change in the direction of the velocity. 

In FIg. 21 the wave form is essentially the same for all problems, 

but the amount of the stress decrease gets larger with increasing depth, since 

more and more Coulomb forces are encountered by the stress wave. 

Both figures show that the propagation of wave energy near v
f 

is 

retarded since the static frictional force (assumed to be equal to the dynamic 

frictional force) must be overcome before movement occurs. 

If a plot of stress-time curves, similar to Fig. 9, were drawn for 

one of these problems, the area under the curves would no longer be equal, 

since momentum Is removed from the system with the frictional forces. 

607.6 Variation of Duration of loading 

The response of this model to a pulse of much longer duration is 

examined by loading with a pressure pulse produced by a 5 Mt weapon at the 

100 psi level. The duration of the pulse is five times that of the 40 Kt 

weapon .. 

Figures 22 through 24 deal with the 5 Mt loading on the same model 

as Problem A-48. The stress attenuation is considerably less for the longer 

duratIon loadIng. However, by comparing Figs. 17(a) and 24 It can be seen that 

the acceleration attenuation for the 5 Mt problem and A-48 are almost identical. 

Furthenmore, the numerical values of acceleration in gDs compare equally well. 

This shows that the accelerations are more a function of the rise time than of 

weapon yiel~ .. This is true because the maximum acceleration occurs usually 

in the early part of the problem, e.go, for the eighth element at 0.087 sec. for 
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both problems. As can be seen in Fig. 22, this is before the longer duration 

of the 5 Ht weapon is even felt by this element. Since the duration does have 

a slight effect on the slope of the stress-time curve at the lower depths, a 

very slight trend towards higher acceleratIons can be detected for the larger 

weapon at the lower depths. 

The variation of model parameters has little effect on the results 

for large durations of 1oading. This can best be understood by reference to 

the 5 Mt problems discussed in Sections 6.7.3 and 6.7.7. 

6.7.7 VariatiOn of Acoustic Velocity 

In Fig. 25 two acoustic velocities, v , are considered with ill 40 Kt s 

weapon, and in Fig- 26 three acoustic velocities are considered with ill 5 Mt 

weapon .. 8y looking at the two figures separately two entirely different 

concepts of the effect of the choice of v could be obtained. s 

In Problem 8-50 of Ffge 25 the attenuation is relatively high due 

mainly to the short duration of loadIng- Therefore, decreasing v from 2000 to 
s 

1000 ft. per sec. greatly increases the attenuation. Furthermore, the value of 

~/~ remained constant, thus the numerical value of ~ for v = 1000 ft. per cr s 

sec. is twice that for v = 2000 fto per sec. s 

In the problems of Fig. 26 the attenuation Is sma11 due to the long 

duration loadinge Therefore, changes in v , Cl, T, or any other variable do not 
s 

show up markedlYe Also J in these problems T remained constant. This meant 

that for v = 4000 ft. per sec_, T = 1.0 T ,whereas for v c 1000 ft. per 
s cr s 

secoa T ~ 0.25 ~ G This further reduced any variation expected in the three cr 

problems. The only really noticeable differences are therefore the movement 

along the time axis and a slight de~rease in the maximum stress. The decrease 

in initial stope for v = 1000 ft. per sec" Js mainly due to the fact that an s 

80 ms. rIse time was used for this case to prevent spurious oscIllations. 
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Only a slight difference in slope occurs between the Vs = 4000 ft. per sec. and 

v == 2000 f t.. per '5 ec Q p rob 1 ems 0 

s 

Since the stiffness of the soils with a slower v is less, the s 

applied forces cause much larger accelerations at the ground surface. However, 

if the attenuation of stress is high, as in B-51, the maximum stress and slope 

of the stress-time curve decrease more rapidly than for the stiffer soil. This 

results in smaller accelerations at large depths. For example, the accelera-

tions of the mass at the surface and at 220 ft. are 1.92 g'5 and 0.82 gls 

respectively for a-50 with v = 2000 ft. per sec., whereas for a-51 with v = 
s 5 

1000 ft. per sec. the corresponding accelerations are 3.51 9'5 and 0.63 gls. 

The accelerations for the 5 Mt problems are higher for the softer soils at all 

depths .. 

6.7.8 Variation of Integration Constant § 

In order to further establish ~ = 0 as a valid choice for the~-

integration technique, a series of problems with ~ = 0 (A-48), 1/12, 1/8, 1/6, 

and 1/4 is compated. It is impossible to plot the results because the largest 

spread was only 0.641 psi, i.e., all ~ values gave virtually the same answer. 

If plotted on an expanded scale the ~ = 0 and ~ = 1/4 solutions would form an 

envelope which contains the other results. 

~ = 0 converged somewhat more rapid1y,since its new computed values 

are more dependent on the previous time interval than are those for any other 

~ value. ~ = 1/4 was the slowest, since It depends equally on the past and 

present values. However, the difference is of very little importance. For the 

problem considered, ~ = 0 took an average of 8.00 trials per interval and 

~ = 1/4 an average of 8.54 trials per interval. 
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6.8 Stress Wave Propagation in Soils Whose Stiffness Varies with Depth 

In any soil in which the stiffness or densfty changes either abrupt-

ly or gradually, reflections and refractions of the incident wave occur. An 

increase in stiffness will cause an increase in stress above and below the 

interface, and a decrease in stiffness wi 11 cause an opposite effect. It is 

sometimes hard to visualize a reflection of this first type causing a stress 

increase in the refracted wave if part of the energy is reflected. Therefore, 

an explanation of the theory is presented along with an example. 

In a perfectly elastic medium the following equations govern the 

reflection at a plane interface (11, p. 34): 

5 
52 = (601) 

P2 v2 + P1 VI 

S 

53 = 
P2 v2 + Pl v1 

where 51' 52' and S3 are the amplItudes of the incident, reflected, and refract

ed waves. 

Consider a step function stress wave of stress a
o 

and amplitude 51 

striking an interface at which the velocity of propagation increases by a 

factor of two and the density does not change. According to (6el) the 

reflected wave would have an amplitude of 51/3, increasing the stress in the 

top layer to 1033 cr 0 In the lower layer the refracted wave would have an o 

amplitUde of 25,/3. Since the 
I 

lus of elasticity is four times as large, 

despite the decrease in amplitude of wave the stress propagated is 2.61 cr • 
o 

In a visco-elastic material the relations Indicated above are not valid, but 

the qualitative reasoning applies~ 

The first soil with vari e stiffness to be considered is one in 

which the acoustic velocity Is to vary linearly with depth from 
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problem is handled by stratifying the soil into 40 ft. layers, so that each 
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layer Is represented by one complete element of the model. The springs Kl 

and K2 within each layer are given the stiffness corresponding to the average 

acoustic velocity within the layer. ~ remains constant with depth, and since 

K2 increases with depth, the coefficient of damping, C, increases with depth. 

Since the transit time decreases with depth, ~ also decreases with depth; cr 

the ratio of ~/~ is 0.25 at the surface and 1.0 at 200 ft. cr 

figures 27 through 29 show the results of this problem. As predicted, 

reflections occur at each Interface. The effect of these reflections is 

greater than the attenuation between layers, and the stress therefore increases 

with depth as shown in Flgso 27 and 28e On the other hand, the acceleration 

versus depth plot of Fig. 29 shows the much more rapid acceleration attenuation 

in a soil of this type. 

The series of problems designated as "Stratified Solis 111 compares the 

results of three 2-1ayer systems and one 3-1ayer system with a problem in which 

the soil column is prismatic. The upper layer for these problems always has a 

v of 1000 ft. per sec. The soil profi les are shown In Fig. 30 and the maxis 

mum stress versus depth directly below in Fig. 310 Since ~ = 1/4 in this 

model, the stresses obtained in the individual elements are closer to m and 
s 

represent stresses at depths of 16 ft .. , 24 ft., 56 ft., 64 ft", etc.. In 

plotting it is expedient to average the stresses for two elements and plot the 

results at 20 fto, 60 ft., etc. 

By using Fig. 31 it Is possible to determine the effect that an 

abrupt increase in stiffness would have on the maximum stresses .. The maximum 
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stress, however, does not give the entire picture as to the resulting change 

in loading that would occur. Figure 32 shows the stress versus time for three 

of the soils In this group. In the three-layer problem multiple reflections 

from the two interfaces and the free end occur. The much reduced duration of 

loadIng Is a result of tension reflections from the free end. 

The following three figures, FIgs. 33 through 35, deal with '~trati-

fied Soils 11 11 • The effects of an underlying soft layer, a thin interbedded 

soft layer, a thin Interbedded hard layer, an infinitely hard base, and an 

infinitely soft base are all consldered& In all cases the upper layer has a 

v of 2000 ft. per sec. 
s 

In Figo 34 both the underlying soft layer and interbedded soft layer 

show that a substantial decrease in the maximum value of the stress occurs 

above~ in, or below such a 1ayere Surprisingly, however, the Interbedded hard 

layer did not markedly affect the maximum stress below the hard layer. The 

fixed end problem might represent a soft clay layer resting on hard rock basee 

The last plotted stress for this problem is not double that of 8-50, since the 

stress represented Is actually 20 fto from the end of the model. Figure 35 

again shoW$ the effect of the multiple reflectionso The stress wave at the 

center of the embedded soft layer (B-47) shows a marked increase In durationo 

6.9 Stress Wave Propagation In a Soil ~Ich Exhibits a Strain Rate Effect 

The theory and method of handling the strain rate effect concept are 

discussed in Section 4.6. A number of problems were computed using this 

concept, and the results of one problem are presented in Figs. 36 through 40. 

The static stress-strain curve is not assumed to be linear as in all 

previous problems, but rather elasto-plastic as shown in Fig .. 36(b). The yield 
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resistance fs 50 psi, and the velocity of propagation is 2000 ft. per sec. One 

problem, B-30, uses the static stress-strain curve. The maximum stress drops 

immediately to the static yield stress, 50 psi, except for the first few Voigt 

elements in which the stress slightly exceeds 50 psi. The acceleration also 

attenuates rapidly in the top 20 ft. In B-31~ however, the value of the yield 

stress is made to vary along with the average strain rate as shown in Fig. 36(b) 

and (c). A report on the study of dynamic testing of soils at the Massachusetts 

Institute of Technology presented Fig. 36(c) relating the maximum compressive 

strength with the rate of strain as compared to the strength at a strain rate 
i'. 

of 10.2 percent per ~econd (21, p;,46)e This chart summarized several series of 

tests on Boston clay.. A summary of this work was presented at the Fourth Inter

national Conference on Soil Mechanics (31). The stress-strain curves presented 

for Boston clay can be very nicely approximated by an elasto-plastic resistance. 

The arbitrary choice of a Vs of 2000 ft. per sec. and a static yield stress of 

50 psi are not necessari Iy representative of Boston clay. Therefore, the 

results for 8-31 are not the results of wave propagation in Boston clay, but 

rather for a hypothetical soil whose strain rate effect is the same as that of 

Boston clay= !n fact, it would be an impossibly brittle soil that would have 

such a high velocity of propagation and yet such a low yield stress. The 

choice of these values are made simply to be consistent with the previously 

worked problems .. 

When strain rate is considered,the stress wave is propagated more 

rapidly and with considerably less attenuation as shown in Figs. 31 and 38. Tne 

acceleratIon of the ground surface for B-30 is greater than for B-31,since the 
\ 

spring resistance is much less for 8-30 .. However, s-ince the stress is not 

propagated as rapidly or completely for B-30 as for B-31, the acceleration in 

8-30 attenuates much more rapIdly.. Figure 39 shows that the acceleration curves 

cross before the second mass at 20 ft .. depth is reached. In Fig .. 40 the fact 
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that the strain rate decreases with length is shown by observing the decrease 

in the maximum stress which is also the yield point in this problem for the 

springs which have yielded. At least the first half dozen springs have yielded. 

It has often been suggested in the field atomic tests that the top 

ten or twenty feet of the soil yield, whereas the remainder of the soi 1 remains 

elastic. This type of response results in maximum stress versus depth curves 

which are very similar to the Fig. 40 curves, especially the 8-31 curve. The 

use of elasto-plastic resistances or other bi linear resistances will therefore 

actually give stressi,attenuation curves of the same shape as the field datao 
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VII. COMPARISONS OF HODEL RESPONSE TO EXPERIMENTAL RESULTS 

7.1 Description of Plastic Wave Propagation Tests in Copper Wire 

During the Second World War a series of tests under P. E. Duwez at 

the California Institute of Technology was conducted In order to verify the 

theory of plastic wave propagation developed by Von Kannan (29). These tests 

on 40 to 80 in. copper and aluminum wires, 8 and 11 in. bars of copper and 

aluminum, and later l.n steel and lead specfmens are comprehensively reported 
/d 

In National Defense Research Committee Reports which have been declassified 

since the end of the war (8)(9)(10). The tests are summarized by Duwez and 

Clark In a more readily obtainable Reference (7). Only computations based on 

the copper wire are included In this thesis. It is felt that the other mater-

ials could have been equally conveniently handled had time permItted .. 

The copper wire was carefully annealed and stretched to a diameter 

of 0.100 In. and then scratched at l~fn. Intervals prior to testing so that 

the permanent strains could be easrly detected. The static stress ... strain curve 

is presented in Fig. 41. The impact-testing machine can be' described as a 

sling-shot machine in which an impact hammer is accelerated by means of large 

rubber bands untiJ it strikes the tup at a certain impact velocity. The tup,-

to which the wire is attached, and hammer then move together at constant velo'" 

city, since the rubber bands continu~ to exert force on the hammer. When the 

tup strikes the anvil,the loading is stopped, after which time the wire is free 

to continue its motion until the krnetic energy of motion is converted into 

strain energy in the wire. The durations of loading were chosen in the 80-in. 

specimens so that the plastic wave front would have progressed from 10 to 20 in .. 

along the wire at the time the force was removed. In the two SO-in. cases 



considered this duration was 1 .. 7 mSe For the 50-in. wire the duration was 

longer, 2.77 ms in the case considered, in order to study the effect of reflec

tion .. 

The results of the tests are presented primarily as plots of the 

pennanent strains in the wire versus distance from the impact end after the 

completion of the tests. The results are then compared to Von Kanman's theory .. 

In the first report (9) the agreement is not too good,since the effect of 

reflections and of the unloading wave produced by the release of the deforming 

force were not considered. In other words, the theoretical solution froze the 

strains at the values which occurred at the time the load was released. In the 

latter reports the stopping effect was consJdered,and the theoretical and 

experimental curves were in reasonably close agreement (9)(10). Malvern also 

considered the results of these tests in his theoretical investigation of 

strain rate effect (13). His theory explained part. but not all of the discrep

ancies still noted between theory and experiment. 

7 .. 2 Comparl'son of Elastic-PlastIc Model Response with Copper Wire Tests 

A considerable number of problems were solved in an attempt to repro ... 

duce the results of Duwez. The agreement for the final models used, which wIll 

be described below, is thought'to be reasonably good. It is felt, however, 

that with a closer approximation to the stress-strain curve the results would 

have been better. The results in-Figs. 42 and 43 show the same general shape 

as Von Karman1s theory and Duwez·s results .. Generally these figures show that 

a region of relatively constant permanent strain Is reached at the impact end, 

followed by a region of decreasIng strain in the center of the bar, and a 

region of reflection and increased strain at the fixed end. 

In Fig. 44, in which the wire is shorter and the duration of impact 

longer, the strain is practi~al1y constant with length. ThIs general 
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observation Is true also for the experimental curve. It should be realized 

that the stress-strain curve is quite flat in this region, and a very small 

discrepancy in stress can account for the differences shown in this figure and 

in the other figures as well. It is further believed that the results in 

Fig- 44 are within the experimental error. 

For these problems the model consists of 20 masses. A modification 

of the ,lIlac code allows an impact velocity, which could be varied with tfme, 

to be applied at the end of the wire. A true impact on the end of the bar is 

simr lar to a step puJ/,se which, as prevlous1y noted, wi) J cause osci l1ations. 

For that reason both a solutIon with a true impact velocity and one with an 

applied velocity with a 0.2 mS. rfse time were considered. This hypothetIcal 

rise time was actually used by Duwez in an attempt to bring the theory closer 

to experimental results without much success (9, Appendix) and was also used 

by Halvern (13). The difference in the results obtained with these two differ

ent assumptions was very small, Slight decrease in the strains being noted for 

the 0.2 ms. rise time case. For this reason the original true impact velocity 

solution is presented. 

Since stress-time curves were not presented, it Is virtually impos

sible to determine the best values of the viscous parameters a and~. Time 

effects do not show up in a plot of permanent strains. In fact, after an 

approximation for the stress-strafn curve Is made, the effect of adding viscous 

elements does not markedly change the shape of the permanent set curve. This 

was true for a series of problems in which a varied from to 1/10 and T/T 
Cf 

varied from 0 to 0.5. In addition, the consideration of a strain rate effect 

of the $ame magnitude as Habib's results reported by Malvern (13) for copper 

cylinders did not change the strain at anyone point enough to make it worth

while to include a plot showing the strain rate effect solution. Actually, a 
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and T can be so chosen as to give a reasonab1e approximation of Malvern l s 

assumed dynamic stress-strain curves. 

For these reasons, the results presented are for a model very similar 

to the preliminary model of Fig. 1 (a) except that the springs are either biline-

ar or trilTnear approximations to the static stress strain curve as shown in 

Fig- 41. Whereas the choice of other parameters does not exert IS large influ ... 

ence on the solution, the selection of a replacement stress-strain curve is 

very fmportant; These replacements are chosen by attempting to keep the area 

under the curves rougJlly equal for all strains less than the maximum strains 

expected. Recovery is assumed to be parallel to the first slope of the replace-

ment curve. The discrepancy between solutions for the bilinear and trilinear 

approximations in Fig. 42 shows the importance of the stress-strain curve. The 

fact that these two solutions more or less bracket the experimental solution Is 

of some Interest, and it is felt that closer agreement could be obtained by the 

use of better approximations. The choice of a maximum number of three straight 

lines was used to avoid wrftlng an Intricate and space consuming subroutine for 

the 1111ac. A continuous curve or larger number of straight Jines could be used 

if 110BT were suitably modified. Using three straight lines means that the 

strains are propagated at three A:++"" ............ .e. 
.... , IGJ Gil\, wave veloeitfei • The manner in which 

these three waves reinforce and partially cancel each other could be consider-

ably different from the manner in which the infinite number of wave velocities 

act .. Certainly a better approxImation would show more of an increase in the 

stress at the fixed end due to reflection than the trilinear approximation doeso 

703 Description of Wave Propagation Tests in Ottawa Sand Specimens 

A comprehensive study of the behavior of soils under dyn"amic loading 

was accomplIshed at the Massachusetts Institute of Technology under Taylor and 

Whitman In 1952 through 1954 for the U. Sa Army Corps of Engineers (31)(22). 
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Whitman presented a summary of these tests in a more readily obtainable refer

ence (30). In these tests the primary objects were Investigation of strain 

rate effect, wave propagation 1 and dynamic loading of footings. 

Strain rate effects for a number of solIs were determfned. 10 No 

appreciable strain rate effect was noticed wIth sand~ although viscous time 

effects were detected. The wave propagation tests were almost exclusively in 

Ottawa sand wIth sample lengths ranging from 7 In. to 32 In. In Fig. 45 a trf-

axial stress-strain curve at a confining pressure of 14 psi Is shown 

(22, Fig. 11.1)0 Unfortunately, the Mel.T. report presented a curve for an 

Ottawa sand with void ratio of 0.49 and maximum compressive strength of 32 psi 

but then used an Ottawa sand with a void ratio of 0.53 and maximum compressive 

strength estimated at 28 psi. Therefore, in obtaining Fig. 45 all ordinates 

were scaled by a factor of 28/32. 

The w~ve propagatIon tests were conducted in a "long trIaxial 

machine ll under a confining pressure of 14 psi G The 2-in. diameter samples were 

mounted horIzontally and supported by celluloid slings. A spring loaded ram 

with a 50-lb. mass was released and allowed to strike a lighter pressure gage 

assembly at the end of the soil sample. Because of its lighter mass the pres

sure gage assembly separated from the ram, the ram being stopped shortly there

after by a glass fibre stop. The pressure gage assembly acted as a loading cap 

and compressed the soil specimen. Impact velocities were those of the pressure 

gage assembly or loading cap. As the loading cap compresses the soil sample, 

it loses its momentum, and when the stress at the end becomes zero, the mass 

rebounds. Thus, this problem is identical to the impact of a rigid mass and 

elastfc bar considered in Section 3.5 except that the bar is now soil instead 

of an elastic material. 

10. Part of these results are used in Section 6.9 and Fig- 36(c). 
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The stress-time records at the impact end and reaction ends were 

made by using dIaphragm type pressure gages and were plotted on one oscil10-

scope. Some difficulty was reported with nonlinearity of the response of the 

asci 11oscope and with drift-of the zero position. 

These experiments do not fIt Into either of the two classes of 

problems described in SectIon 2.1, in which the assumption of negligible 

lateral kinetic energy is valid. Although a lateral pressure exists within the 

triaxial chamber, lateral straIns are definitely not prevented. Furthermore, 

the length to diameter ratio varies from 3.5 to 16, hardly enough to qualify as 

the class of problems in which the lateral inertia effect can be safely disre-

garded. Thus, when the Impact velocity is applied to these samples, a serious 

deviation from the theoretical solution should be expected. 

7.4 Comparison of Visco-Elastic-Plastic Hodel Response with Ottawa Sand Tests 

Although the M.loT. report considered the 20-in. sample resu1ts as 

somewhat inconsistent, this length is selected as the best for this analysis 

for two reasons. One, the lateral inertia effect is theoretically more signi-

flcant for smaller length samples. Two, the longer 32-ln. samples buckled 

laterally and could not be accurately analyzed. 

These 20-'n. samples were divided into 20 elements of 1 in. each, 

loe., 10 complete Newmark elements. The impacting mass was rigIdly attached to 

the end half-mass and given an initial velocIty. Th~ st~esses in the first and 

last springs were considered to be those of the impact and reaction ends. Vari-

ous parameters were chosen for the models used, and the best agreement obtained 

is presented in Figs. 46 through 49. The value of ~ = 1/4 is chosen to approxf-

mate the standard linear model without appreciably Increased computer time. 

Values of a = 1 and TIT = 0.31 give arrival times an~ initial slopes for the cr 
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stress waves that agree roughly with the experimental results. Since other 

errors of more importance occurred In the solutions, the best values of these 

parameters are still unknown and can be determined only from experimental tests 

In which the experimental conditions are closer to the assumptions inherent in 

this numerical method. 

The remarks of Section 7.2 concerning the errors ~aused by the 

choice of the trilinear stress strain approxImation apply equally well to this 

case. 

The main cause of the rather large discrepancies in the experImental 
J 

and theoretical results in Fig. 46 through 49 is the lateral inertIa effecto 

When a rapidly applied stress pulse propagates Into the sample, a certain amount 

of time elapses before the 1ateral Inertia can be overcome. In this short 

length of time the sample acts as If Jateral strains were prevented, and 

stresses much higher than the static ultimate strength are attained momentarily. 

As the soil particles begin to move laterally, this stress decays rapidly to the 

value whIch would occur without lateral inertia. This fnitfal stress occurs 

with very small strains, and the strain, or stress, propagated to the reaction 

end is delayed considerably. 

These theoretical deductions are verified in the experimental results 

shown In these figures. The initiaJ high impact end stress and delayed rise at 

the reactIon end are shown. The small initial stress at the reaction end is 

caused by the rapld propagation of the small strains occurring at the impact end 

durIng the Inlt.al stages of impact. The length of time of the delay is roughly 

equal to the time associated with the decay of the high Impact end stress peak. 

The theoretical curves do not show any of the lateral Inertia effect, 

but they usually agree fairly well wfth what we might assume the experimental 

shape would be without this effect. These theoretical curves break sharply at 

20 psi e This break represents the delay in arrival time between the wave whose 
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velocity is determined by the initIal slope and the wave whose velocity is 

determIned by the second slope of the stress-strain curve. Reflection causes 

thIs break to be at a higher stress than lndicated by the stress-strain curve, 

but attenuation and the fact that the stress is not at the extreme end causes 

this break to be at less than double the stress indicated by the stress-strain 

curve. 

The size of the impact weight used was 8 lbs. In the Mei.T. reports. 

It was stated that the pressure gage assembly weighed 6 Ibs. when originally 

r desIgned. However, In the remarks which followed several modrficatfons were 

mentIoned. Although the final weight of the impact mass was not given, prelImI

nary results from the Illiac using 6 lbs. gave durations which were much too 

short. Arbitrarily increasing the weight to 8 lbs. resulted In much better 

agreement; therefore, thfs size mass is used. 

The slightly higher stress obtained by theory in the flat part of 

the stress-time curves could very probably be due to the assumed perfect reflec

tlon which, as suggested in the M.leT. report, probably did not occur in the 

experIment. The much hIgher value for the reaction end shown in Flg. 49 cannot 

be due to this cause. The most logical explanation for a decrease in stress 

when the Impact veiocrty has Its highest value is that the sample buck1ed later

ally In the same manner as the 32-in. sampleso 

The dIscrepancies noted in this section are not discouragfng so far 

as the possibility of theoretically analyzing stress wave propagation in salls. 

On the contrary, If tests In which the lateral strains are prevented can be 

successfully conducted, It is felt that the model response could be reasonably 

well fitted to the results. 
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VII'. SUMMARY AND CONCLUSIONS 

In this thesis the problem of stress wave propagation in a one-

dimensional medium has been analyzed by the use of a lumped mass dynamic model 

and the ~-Integration method. The purpose Is to present a simple and approxf-

mate method for handlin~ some of the problems in elastic, elastic-plastic, 

visco-elastic, and visco-elastic-plastic materials which are either impossible 

or very time consuming to solve by classical mathematical treatments. Thfs 

class of problems Includes those in which the stiffness or density varies with 

the length of the material G 

The effect of lateral inertia is neglected, and it Is shown that 

this assumption Is acceptable for two classes of problems, those In which the 

lateral strains are prevented and those in which the longitudinal dimension and 

the wave 1ength of the stress wave are much larger than the lateral dimensions. 

This technique may be of interest in studying the two or three dimen-

sional problem of blast wave transmission in soi Is. This method, however, is 

not offered as a solution to that problem, except when the loading is such that 

the entire ground surface fn the general vicinity is loaded simultaneously. 

This situation is approximately reached when a high air burst is detonated 

directly above the sci 1 column being considered. 

In the preliminary studies a perfectly elastic model is considered. 

A minimum rIse time of about is necessary to prevent spurious osci 11a-

tions. Pulses with rise times shorter than Ts are transmitted with Increased 

rise time. A value of zero fo.r /3 in the t3"'integration method is selected as 

the best value. The convergence and stabl lity limits equal the transit time 

between masses, and the integration time interval should be equal to or less 

than half this value to insure good results. A 'Itrick /l exact solution exists 
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for the step pulse with ~ ~ 0 and 8 time interval equaling the transit time. 

Th f s lit rf ck 1/ method and the s tanda rd cho I ce of t f me i nt erva 1 are u sed to so 1 'Ie 

the classical problem of 8 rigid mass striking an elastic bar. 

A number of dynamic models are examined using selected criteria, and 

a new model, designated as the Newmark model, Is finally selected as the model 

to be used for visco-elastic materials. The models examined and the principal 

disqualJfying property of each follow: 

a) Maxwell model -- does not transmit static stress. 

b) Voigt model -- no upper limit to velocity of propagation 

c) Standard linear model -- third order equation increases difficulty 

of solutIon and no real advantage exists over the Newmark model 

d) Four and five parameter models -- equations Increasingly complex. 

The Newmark model is formed by placing an intermediate mass between 

the auxilfary spring and Voigt element of the standard linear model. The para

meters in the model are discussed, and expressions are derived for the shortest 

period of vibration, maximum time interval, and critical retardatIon time for 

the highest mode of vibration. The various time effects occurring in materials 

are divided into two classes, viscous action and strain rate effect. Strain 

rate effect is considered by adjusting the yield stress according to the average 

rate of strain. The 111 lac is used for the solution of the problem, and abso

lute damping and Coulomb damping are added to the model at this point. 

By the use of the electrical analog an efficient line termination is 

developed which allows stress wave propagation in an infinite bar of material 

to be considered 'by a properly terminated finite length model. 

in order to obtain numerical values to compare the effect of the 

variation of parameters,a soil column is loaded with 40 Kt and 5 Mt applied 

forces. The results of wave propagation in a large variety of hypothetical 
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soils are presented in figure form. The formulas derived to pick out the time 

interval are checked by problem results. The amount of stress attenuation can 

be increased by increasing the relaxation time, T, or decreasing 0, the ratio 

of the sprIng stfffnesses. Both measures tend to send a larger part of the 

stress wave energy ahead of the rest of the wave and to increase the size of 

the hysteresis Joop, thereby spreading the wave out and decreasing the maximum 

stress. The less powerful of the two means of attenuation, T, reaches a maxi-

mum value for stress attenuation when T is in the vicinity of T ,after which cr 

value so much of the wave is being propagated at the higher velocity of propaga-

tion that the maximum stress increases. The parameter 0, however, continually 

spreads the wave out and never reaches a maximum effective valuee The parameter 

~J the ratio of the masses, is shown to have very little effect on response, 

thus showing the close relationship between the Newmark and standard linear 

models. Coulomb damping decreases the stress propagated without changing the 

general shape of the stress wave. This effect increases with depth, but at a 

given depth the effect of Coulomb damping Increases only slightly with time. 

Decreasing the acoustic velocity causes a large increase in stress attenuation 

for the 40 Kt weapon but has very little effect with the 5 Mt weapon. Very 

little difference can be detected in the results obtained from various choices 

of the ~ parameter in the ~-method. 

In stratified soils the results are qurte interesting. In a soil 

whose stiffness increases gradually from v = 1000 ft. per sec. at the surface s 

to 4000 ft. per sec. at 200 fte the stresses actually increase with depth? 

while the opposite is true for accelerations, their attenuation being more 

rapid than in a uniform soil. The decrease in stress occurring when a hard 

layer overlies a soft strata is noted, as well as the fact that stiffer 

layers increase the stress both above, in, and below the stiff layer. 



The results of the consideration of strain rate effect in a sorl 

with a static elasto·plastic stress-strain curve are studied. A response of 

this type is thought to be quite possible in many soils. 
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Experimental copper wire tests form the basis for a comparison of 

elastic-plastic model response with a model with bilinear or tri linear springs. 

The extreme dependence in this type of problem on the stress-strain curve is 

noted. Yet, even with only a tri linear approximation, the resulting permanent 

strains are not grossly in error. 

The next comparison ;s between Ottawa sand specimen results and 

visco-elastic-plastic model response. In this case the agreement is not too 

satisfactory; the effect of lateral inertia caused large discrepancies in the 

experimental and theoretical results. 

The technique described could be a valuable and simple method of 

calculating the propagation of stress waves in a wide variety of materials. 

However, the full utilization of this method is dependent on the accomplishment 

of carefully instrumented tests on the materials to be considered. For exampJe, 

tests on soils in which the lateral strains are prevented should be conducted. 

The main difficulty to be overcome in these tests is the effect of the frlction~ 

a1 forces along the sides of the sample. In these tests accurate dynamic and 

static stress-strain curves must be obtained. These tests should not be 

carried to failure, but instead should include recovery. In doing this, they 

would be of value in not only the determination of the static stress-strain 

approximation to be used but also in the determination of the viscous para

meters a and T to obtain a good approximation for the hysteresis ·loop formed 

by the stress-strain curve at various rates of loading. Once these values are 

determined for a given material, the wave propagation due to any loading on one

dimensional bars of this material may be predicted. The determination of 

experimental values for these parameters is beyond the scope of this thesis. 
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Four drawbacks in the application of this method sti 11 exist. One 

is the computational time required. The average value of h in Chapter 6 was 

3 ms. If we are interested in the response of the soi I at the 200-ft. depth 

for a larger weapon of 20 Mt, it may be necessary to run the problem for a 

total time of at least 0.75 sec. This means 250 iterations, which would be 

prohibitively time consuming, unless a high speed computer which can handle 

about 20 such iterations per minute is available. If a or ~ do not equal 1, 

the running time will increase. The second objection is the need for a finite 

rise time. If the actual wave front is nearly vertical, it contains a higher 

percentage of high frequency components than the sloping front wave. Thus, the 

actual wave would attenuate more rapidly than would the delayed rise pulse. 

Furthermore, accelerations do not correspond in magnitude due to the rise time 

error. The third disadvantage is the stress-strain curve errors. These errors 

consist of two parts, the use of only three lines to represent a nonlinear 

function and the fact that recovery in some materials, especially soi ls, is not 

necessari Iy linear. The method could be improved by fitting more complex 

approximations to new experimental stress-strain curves which show the nature 

of recovery. The fourth serious drawback has already been discussed and 

concerns the lack of knowledge concerning reasonable values for the viscous 

constants a andx. These last two items are related to each other very closely. 

It is felt, however, that only the last drawback stands in the way 

of extensive use of the model presented. The attempt has been made to simplify 

the solution of what has previously been a very complex mathematical problem. 

The assumptions used have not been too restrictive in the hope that this 

method will be of some value in future wave propagation studies. 
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APPENDiX 

SPATIAL DISPERSION OF A BLAST WAVE IN A MASSLESS, ELASTiC, 
HOMOGENEOUS, AND ISOTROPIC SOIL 

1. Introduction 
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The attenuation of blast waves in solids can be considered as due to 

two separate causes. The first cause, which is normally the more important 

of the two causes, is a spatial dlspersfon. This spatial dispersion is nothing 

more than a spreading out of a blast wave front over a larger volume, thus 

reducing the energy at any single point. The spatial dispersion effect is 

considered in this Appendix. The other effect is the much more complex dfssi-

pation of the maximum stress due to damping, nonlinear resistances, and inertia. 

This effect is treated for the one-dimensional case in the main text of the 

thesis. It is felt that an approximate solution might be obtained by a Judi-

clous combinatIon of the two effects. No method for thIs combination Is 

presented here. 

2. Method of Analysis 

The solution adopted is valid only for a homogeneous, eiastic, iso-

tropic, semi-infinite medium in which the Inertia of the medium is neglected. 

Since the mass is ~onsidered to be zero, the velocity of propagation is there-

1/2 fore infinite because v = (E/p) 8 

A blast wave from a'ground surface atomfc burst is considered to be 

movrng across the ground. Surface waves (Rayleigh and love waves) are not 

considered. This,blast wave is assumed to have a plane front rather than the 

arc of a circle with center at ground zeroo However; it can be shown that the 

error involved is smal1)since in the regions where the ground pressure has a 

high influence the discrepancy between the arc and straight line is very small. 
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The error in horIzontal pressure will be greater than the error in vertical 

pressure, but it is felt that this unconservative error is not significant 

for weapon yields over 20 Kt •. 

With tni s ass.umption the problem becomes two-dimensional, and the 

solution for stresses in homogeneous semi-infinite platesdue to a line load 

of infInite lateral extent is applicable .(26). Introducing some new nomen .... 

clature, the equations for vertical and horizontal stress from Tlmoshenko and 

Goodier may be rewritten as 

2P I 
(f :::: - e 

2 2 v ",Z 
( 1 + (0 ) 

2P 
2 

CT
H 

= ......... P 
1(2 

( I 2)2 +cp 

where (fti == hor i zonta 1 p ressu re 

(f ::: vertical pressure v 
p == intensity of 1f ne load 

cp ::: ratio of horizontal dIstance of b from the n 
underground point to the depth 

I :::: depth of point being exami ned 

Thus, for a unit line load the influence coefficients for vertical and 

horizontal stress are 

I 
2 1 

:::-

2)2 v 1(2: 
( 1 +q> 

2 
2 

'M :-
p 

1'CZ (1 z 2 
+ q> ) 

Figure 50 shows the plane wave at one instant of timeG 

(Ae 1) 

The p versus so 
range cu rve J sat raj ecto ry 0 f the max i mum pres su re at the f ron t 0 f the wave as r t 
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progresses further away from IIground zero". If the instantaneous value of the 

pressures at the pofnts designated as b , b1, ... , b in Fig. 50 are known, 
o n 

they can be multiplied by the corresponding influence coefficient from equation 

(A.I). The area under the resultant curve represents the total pressure at the 

desired depth and is evaluated by Simpson1s one~third rule, which assumes a 

parabolic shape between 3 consecutive points" The wave front is then moved to 

the right to a new position and the process repeated unt; J sufficient points 

are located to draw a curve showing the vertical or horIzontal pressure versus 

time .. 

The job of finding the correct pressures at b represents a major part 
n 

of the problem. Since the problem was designed for computation on the 1111ac, 

the procedure ;s different from the most efficient desk caleu'lator procedure. 

The value of the peak overpressure, Pso' can be determrned by the overpressure

time curve presented in the A.E.C. Handbook (25, Fig. 3.948). For overpressures 

greater than 100 psi, p is assumed to vary as the cube of- the range, r .e", so 

(p) Range
2 

3 
so I 

(p ) = (Rangel) 
so 2 

(A.2) 

This value is applicable only when the wave front is directly over the b point 

In question. At any later time the pressure will have decayed from this value. 

The A.E.C. curve relating arrival time to range (25, Fig. 3.96) is used to get 

the decay time, i .. e'., the length of time it took for the w~ve front to pass 

from the b po i nt ; n quest j on to b. For ranges near IIground zero" Ii st rai ght 
a 

line extrapolation was used, but a better extrapolation would make use of the 

relation 

Shock velocity = 1129 (1 6 + ..... 
7 

Pso 1/2 
p ) 
atmospheric 
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The positive phase duration curve from the A.E.C. handbook (25, Fig- 3.96) was 

also used. For the IIclose-in" region the duration was arbitrari ly chosen $5 

0.1 sec. at zero range and 0.15 sec. at II range of 0.08 miles for a 1 Kt weapon, 

and the variation was assumed linear in this region. When the positive phase 

duration and the decay time are determined, Brode1s curves (2, Fig .. 29) can be 

used to find the instantaneous pressure, p • rhe approximate exponential 
S 

equations given by Brode were used to approximate these curves. 

The time factor in the resulting stress-time plots is also computed 

by the use of the arrival time versus ra.nge curve. Due to the erroneous 
( , 

assumption of an infinfte velocity of propagation, there w'11 be no real corre

lation between the various depths and the arrival time of the stress pulse. 

It ls possible, by means of Ii minor modification, to consider the length of 

time it takes for iii wave to propagate from b to the underground pofnt. 
n 

Although thIs results in an inconsistent assumption, the solutIon would undoubt-

edly be closer to realIty. This modifIcation, which Is not used here, would 

result in 4ft somewhat increased maximum pressure and a conSiderably more abrupt 

rise time" 

A more elaborate analysis of this type will be possible upon the 

completion of H. R. MehtaDs present work mentioned Section 6.1. 

3.. Results of Numerical Calculations 

A series of 24 problems Q41ars computed for three weapon sizes: 40 Kt, 

I Ht, and 5 Mt. - The integration interval was 002z. The p-ressure versus range 

curve and time of arrival versus range curve were approximated by 2) straight 

lines and the duration versus range curve by 8 straight lines. 

Table 2 shows a list of these problems and summarizes the mllxlmum 

verth;al and horizontal stresses.. Figures 51 and 52 show the decrease in maxi-

mum horizontal and vertical pressure with depth for both the 100 200 psi 
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levels. Although an individual problem ;s required for each depth for one bomb 

s)z.e, once this curve is established the values for other weapon yields, w, 

can be scaled by the following 1aw: 

(A.4) 

Points from the 1 Ht and 5 Mt yields are scaled to 40 Kt and are shown on 

Fi 9s D 51 and 52 shawl n9 the a lmost perfect sea 1 i ng.' 

Figure 53 shows the variation of vertical stress with time at various 

depths for the 40 Kt weapon, and FIg. 54 shows the horizontal stress versus 

time at the same depths. The obvious discrepancy on the time scale which 

shows the stress reaching the deeper points earlier than the shallow points 

Is a result of the massless soil-infinite velocity of propagation assumption. 

Making the velocity of propagation finite would translate each curve to the 

right a time approximately equal to z/v and would also steepen the front and 

increase the maximums. The percentagewlse increase is larger with the smaller 

yields and greater depths and would be approximately five percent for the 5 Ht 

weapon at too ft. 

MetzRefarence Room 
Engineering Department 

BI06 C.E. BUilding 
University of Illinois 

,Illinois 61BQl 



TABLE J. LiST OF PROBLEMS REPORTED IN CHAPTER VI 

Problem App1ied Vs Transit Theor. Actual 
T * Tlme@ Vs h h TITer ex Figs .. Remarks No. Force ft/sec sec sec 

ms. ms. 

A-48 40 Kt 2000 20 3 .. 3 3 0.01 0.5 9-21 except 18 

A"" 50 40 Kt 2000 20 2.) 0.02 l.0 13, 14 

A-51 40 Kt 2000 20 4 5 0.005 0.25 13, 14 

A-52 4Q,Kt 2000 20 4.6 5 0.002 (30 J 14 

A-58 5 Mt 2000 20 ).3 3 0.01 0.5 22-24,26, 18 

A .... 63 5 I1t 1000 40 8 10 0.0) 0.25 1 26 Rise Time = 80 ms. 

A"" 64 5 Nt 4000 10 1.25 0.01 1.0 1 26 

A-65· 40 Kt 2000 20 3e4 3 0.01 0 .. 289 1/3 14-17 
1\ ... 66 itO Itt 2000 20 ],,0 3 00015 0.433 1/3 14 

A-67 40 Kt 2000 20 2 .. 48 2 {LOl 0.158 I/Hl 14-17 

A-67b 40 Kt 2000 20 2.21+ 2: 0.0182 0.288 1/10 14 

A-68 40 Kt 2000 20 2051 2 0.0091 0.1" 1/10 14 
A ... 68b 40 Kt 2000 20 2.67 2 0.005 0.079 1/10 14 

A-69 40 Kt 2000 20 0.5 0.5 o. 1 5.0 14 

14.-70 40 Kt vari eS varies 0 .. 42 0.5 O~Ol varies 27-29 Vs increases w/depth 

A-71 40 Kt 2000 20 1.43 I 00035 1 .. 15 14 

A-72 It.o Kt 2:000 20 0.82 0.67 0 .. 06 3.0 14 

A-73 40 It 2000 2Q 3 0,,01 0.5 J2 Vol gt model 

A-74 40· Itt 2000 20 2 .. 33 2 0001 0.62 19 11 = J/~ 
A. .... 76 40 Itt 2000 20 0 .. 95 1 0001 L 15 1 19 "I := 1/19 
1\ .... 18 5 Mt 2.000 20 1..74 2 0.015 0 .. 72 1 7,18 n = 29, 1} = 1/9 
A-·98 5 Nt 2000 20 1.71t 2 0.015 0.72 J 7 n - 13. " - 1/9 ** 

A-99 5 Mt 2000 20 1.74 2 0.015 0 .. 72 1 ** n - J 2, 11 - 1/9 
;4\-10) 5 "t 2000 20 J .. 74 2 0.015 0.12 ** 00 7 n l1li:: 6, 11 - 1/9 \D 



TABLE 1 (CONTI HUED) 

Problem App 1 led 'Is Transit Theor. Actual 
"f * Time (!tJ "s h h -r/"fcr a FJ 9s .. Re~rks 

Hoo Force ft/sec sec sec mso roSe 

1\-102 '*0 Kt 2000 20 2. 17 0.015 1.0 1/3 14 

A-l0) 40Kt 2000 20 1.08 00069 2.0 1/3 14-

A-I 40 Kt 2000 20 1.80 0.038 0.6 1/10 14 

lOS 40 itt 2000 20 1.414- 1 00063 1.0 1/10 14 

A-lOS 40 It 2000 20 O.l2 t/2 0.126 2.0 J/IO 14 

B-3, '+0 Kt 2000 20 3.3 3 0 .. 01 O.s 20.21 f II1II (L 25 psi 1ft 

8-6 40 Itt 2000 20 3 .. 3 3 0 .. 01 0.5 20,21 f 0 0.05 psi/ft 

B .... 1 40 Kt 2000 20 3.3 l 0.01 0,5 20,21 f = 00025 psi/ft 

B-)O 40 Kt 2000 20 3 .. 3 3 0.01 0.5 36-38 Elasto .... plastic springs 

8 .... 31 40 Kt 2000 20 3.3 3 0.01 0.5 36-38 8-)0 plus strain rate 
effect 

8-50 ItO Kt 2000 20 2.55 .2 0 .. 01 0.36 1/) 25,33-35 11 - J /4 
a-5J ItO, let 1000 Jt.o 5. I 4 0.02 36 1/3 25,)0-]2 '1 = 1/4 

8-52 40 It varies varies 2.55 .2 varies - 0036 1/3 30,,31 ~ - 1/4, 2 layers 

8-53 40 Kt varies varies 2.55 2 varies 0.36 1/3 )0,)1 'I - 1/4, 2 layers 

8-54 ~O Kt varIes vart es 1.28 J varies 0.36 1/3 30"'32 ~ := 1/4, 2 layers 

8 .... 55 40 varies varies 2 .. 55 2 vart es 0.36 1/3 33-35 ~ = 1/4, 2 layers 

8-56 !to It _ varies vari es 1.28 1 varies 0.36 1/3 30-32 ~ := 1/4, 3 layers 

B-57 '+0 varl es vari as 2.55 2 varies 0.36 1/3 33-35 ~ • 1/4, 3 layers 
B-58 -- 40 I<t varies varies L28 1 varies 0 .. 36 1/3 33-35 ~ • 1/4, 3 layers 

8-59 !r.O Itt 2000 40 2.55 2 O .. OJ 0036 1/3 33,34 'l &II: J/It,fixed end,n=8 
8-60 40 Kt 2000 40 2055 2 O.(U ColO 1/3 33. 'I lit 1/4& free end,,,.9 

-* n • J 99 11 := 1, A == 20 f t J Rise Time ala itO ms., and f - 0 un 1 as s noted I n Remarks" 
** These problems same as A-18 but with various line terminations. 

\D 
0 



TABLE 2. MAXIMUM' VERTICAL AND HORIZONTAL STRESSES 
IN SPATIAL DISPERSION PROBLEMS 

Problem Weapon Pressure Depth 
cr max. No. SIze leve 1, psi ft \! 

H"') 40 Kt 100 50 64.4 
H .... 2 40 Kt JOO JOO 50.9 
H-l 40 itt 100 150 42.4 

H-4 40 Kt 200 SO 106.0 

K-S 40 Kt 200 JOO 78.7 

H-6 40 Kt 200 150 63.8 
H .... 7 1 Ht 100 50 80.5 
H-S 1 Ht 100 100 70.8 

H-9 J Ht 100 150 63.9 
H-l0 1 Ht 200 50 144.9 
H .... n 1 Mt 200 100 J 21. 0 

H ... 12 1 Ht 200 150 lQ4.9 

H .... 13 ' 5 Mt 100 50 86 .. 2 

H-14 5 Ht laO 100 78.1 

H-IS 5 Ht JOO 150 73.0 
H-16 5 Ht 200 50 159.7 

H"'17 5 Ht 200 100 140.0 

H .... 18 5 Ht 200 150 12507 

H-19 40 Kt 100 10 86.2 
H-20 40 Kt 100 20 78.7 
H .... 2l 40_ Kt 100 35 70.6 
H .... 22 40 Kt 200 10 15!L 1 
IIJI ... ?~ 40 ·Kt i'lIfil"\ 20 14000 U iIio,il ,\IV 

~ \J 

H-24 40 Kt 200 35 119.0 

91 

(fH max. 

3J.2 

22. i 

18.2 

45.3 

29.3 
23.8 
seL2 
31.9 
)0.6 

80~ J 

56.6 
1+4.5 
58.7 

47.5 
40.3 
98.6 

74.7 
6J.O 
58.7 

47.5 

37.5 
98.6 

74.7 

56. J 
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FIG. 53 VERTICAL STRESS VERSUS TIME, EFFECT OF SPATIAL 
DISPERSION -- 40 Kt WEAPON 

35 

30 

.-en 
Q. 

... 
en 
en 20 Q) 
t:... .... 

en 

0 .... 
II: 
(;) 
N 10 
t:... 
(;) -J: 

Time, sec. 

FIG. 54 HORIZONTAL STRESS VERSUS TIME, EFFECT OF SPATIAL 
DISPERSION - 40 Kt WEAPON 


