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Abstract

Murid c-herpesvirus-4 (MuHV-4) promotes polyclonal B cell activation and establishes latency in memory B cells via unclear
mechanisms. We aimed at exploring whether B cell receptor specificity plays a role in B cell susceptibility to viral latency and
how this is related to B cell activation. We first observed that MuHV-4-specific B cells represent a minority of the latent
population, and to better understand the influence of the virus on non-MuHV-4 specific B cells we used the SWHEL mouse
model, which produce hen egg lysozyme (HEL)-specific B cells. By tracking HEL+ and HEL2 B cells, we showed that in vivo
latency was restricted to HEL2 B cells while the two populations were equally sensitive to the virus in vitro. Moreover,
MuHV-4 induced two waves of B cell activation. While the first wave was characterized by a general B cell activation, as
shown by HEL+ and HEL2 B cells expansion and upregulation of CD69 expression, the second wave was restricted to the
HEL2 population, which acquired germinal center (GC) and plasma cell phenotypes. Antigenic stimulation of HEL+ B cells led
to the development of HEL+ GC B cells where latent infection remained undetectable, indicating that MuHV-4 does not
benefit from acute B cell responses to establish latency in non-virus specific B cells but relies on other mechanisms of the
humoral response. These data support a model in which the establishment of latency in B cells by c-herpesviruses is not
stochastic in terms of BCR specificity and is tightly linked to the formation of GCs.
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Introduction

The murid c-herpesvirus-4 (MuHV-4, also known as MHV-68

or cHV-68) has led to valuable insights in understanding human c-

herpesvirus related diseases caused by Epstein-Barr virus (EBV)

and Kaposi’s sarcoma associated herpesvirus (KSHV) [1].

Whereas primo infection by c-herpesviruses can be responsible

for lymphoproliferative disorders in immune competent hosts, they

are usually well controlled [2]. As with EBV, MuHV-4 is mainly

lymphotropic and establishes latency in class-switched and

germinal center (GC) B cells [3,4]. The course of the infection

in mice is now well described (see [5] and [1]). Upon intranasal

inoculation, infection starts with an acute lung infection controlled

by the CD8+ T cell response. The virus then disseminates to

secondary lymph organs via serial events of lymphoid/myeloid

cellular exchanges [6] where it promotes a CD4-dependent

polyclonal B cell response and finally establishes latency in long-

lived memory B cells [1,5,7,8]. This polyclonal B cell activation

can lead to the emergence of auto-antibodies but MuHV-4

infection is usually not associated with the development of auto-

immune diseases or lymphomas in immune competent mice [9].

CD4+ T cells, and in particular follicular helper T cells [10], have

been shown to be essential for the establishment of MuHV-4

latency. Antibody-mediated depletion experiments [11,12] as well

as work performed on MHC class II deficient mice [13] (which are

CD4+ T cells deficient) have led to similar observations, that the

absence of CD4+ T cells leads to lower latency levels.

On the virus side, few proteins have been shown to be involved

in the establishment of latency [1]. Among them, M2 has received

particular interest for its ability to interfere with B cell activation.

Studies performed with M2-deficient MuHV-4 have shown its

essential role in the establishment of latency, although it is not

required for acute lung infection [14,15]. Biochemical analysis

have established that M2 is able to interact with the Fyn/Vav,

Plcc2 and PI3K pathways, involved in BCR signaling [16–18]. In

vivo, B cells infected by M2-deficient MuHV-4 have been shown

to acquire a GC phenotype comparable with the WT virus, but

were unable to class-switch and differentiate into plasma cells [19].

MuHV-4 LANA has recently been shown to stabilize cellular Myc

and promotes its activity, leading to B cell proliferation, a process

required for GC formation and viral latency [20].

The lower level of viral latency observed in mice deprived of

CD4+ T cells as well as with M2-deficient MuHV-4 are good

examples showing that the establishment of MuHV-4 latency relies

on mechanisms that mix the physiologic B cell response and the

intervention of viral modulators. Several questions remain to be

explored to better understand this complex interaction: How does

MuHV-4 trigger a polyclonal B cell activation? Are latently

infected B cells also polyclonal, or is latency restricted to MuHV-4

specific B cells? Finally, what are the respective roles for the virus

and the B cells in the establishment of latency?

Until recently, those were difficult questions to address

experimentally because of two major hurdles on the virus and

the B cell sides. At peak of latency (,14 days post-infection in
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C57BL/6 mice), latently infected B cells represent a low

percentage of total B cells [3,4] and tracking these cells was

impossible until the development of a YFP expressing MuHV-4

[4]. On the B cell side, questions concerning BCR specificity are

delicate to address due to the enormous diversity of the B cell

repertoire and to the difficulty to trace one clonal population, but

major improvement was made with the development of the switch

hen egg lysozyme mice (SWHEL) [21–24]. Based on the MD4

model [25], SWHEL mice have been engineered to contain up to

,10% of HEL-specific B cells. But contrary to MD4 mice, SWHEL

HEL+ B cells can perform GC reactions in a competitive

environment, class-switch and differentiate in long-lived memory

B cells. Moreover, HEL-specific (HEL+) and non-specific (HEL2)

populations can easily be distinguished by direct staining of the

BCR with fluorescently labeled HEL.

In the present study, we aimed at clarifying the role of BCR

specificity in the establishment of MuHV-4 latency in B cells.

Taking advantage of the SWHEL mice and the YFP-MuHV-4 we

designed experiments to study in parallel how MuHV-4 influences

a normal B cell repertoire (HEL2) and a clonal population of non-

virus specific B cells (HEL+) in order to determine in which

population latency is established and how this relates with B cell

activation.

Results

MuHV-4 latency is not restricted to virus-specific B cells
To evaluate the frequency of MuHV-4 specific B cells in

infected and non-infected populations, we challenged C57BL/6

mice with YFP-MuHV-4. Infected and non-infected CD19+ B

cells were sorted at 14 dpi based on their YFP expression and used

in an ELISPOT assay to evaluate the number of total IgGs and

anti-MuHV-4 IgGs secreting cells (Figure 1A). Both YFP2 and

YFP+ B cells showed a low frequency of virus-specific antibody-

secreting cells (ASC) cells when compared to the total ASC. That

is, ,10% of total ASC for the YFP2, and ,1% for the YFP+

populations, showing that in both populations the majority of ASC

are not MuHV-4 specific. As the frequency of GC B cells (GL-7+,

CD95+) is significantly different between YFP+ and YFP2 B cells

(Figure 1B), we tried to refine our analysis by sorting infected and

non-infected GC cells based on GL-7 and CD95 expression. Yet,

purified cells died quickly and could not be used for ELISPOT

assays, probably due to anti-CD95 induced apoptosis [26]. Our

ELISPOT assay did not include the monitoring of IgGs specific for

non-structural proteins. However, it would be unlikely if they

accounted for the 90 to 99% of the ASC not detected in our anti-

MuHV-4 IgGs assay. These data indicate that latent infection is

not restricted to MuHV-4 specific B cells and that the virus is able

to promote the activation of non-virus-specific B cells indepen-

dently of their infection status. In order to explore these two

points, we next used the SWHEL mice [21], which allowed us to

monitor MuHV-4 influence on non-virus-specific HEL+ B cells.

HEL+ B cells are not latently infected by MuHV-4
SWHEL mice were infected with YFP-MuHV-4 and we

monitored YFP expression in HEL+ and HEL2 B cells 14 dpi

(Figure 2A). While we did not detect YFP expression in the HEL+

population, HEL2 B cells harbored a frequency of YFP+ cells

comparable with what has been previously reported in WT B cells

[4]. We confirmed that HEL2 B cells are solely latently infected by

sorting HEL+ and HEL2 B cells on which we monitored

reactivation of latent virus by ex vivo explant co-culture assay

(Figure 2B) and the presence of viral DNA by limiting dilution

PCR (Figure 2C). It is important to note that HEL2 B cells emerge

from a spontaneous replacement of the Vh10 exon encoding for

the HEL-specific heavy chain leading to the reconstitution of a

polyclonal repertoire [21], minimizing the impact of genetic

differences between these two populations. However, HEL+ B cells

only belong to the B-2 lineage, while HEL2 differentiate into both

B-1 and B-2 B cells [21]. It is unknown in which population of B

cells MuHV-4 latency is established. To evaluate if the B-2 bias of

the HEL+ B cells would account for their resistance to latent

infection, we phenotyped latently infected cells in C57BL/6 mice

(Figure S1). B-2 B cells represented the vast majority of YFP+ B

cells, but a small fraction of latently infected cells was also detected

in B-1a and B-1b B cells. The proportion of B-2, B-1a and B-1b in

YFP+ and YFP2 B cells corresponded to what has been described

for naı̈ve animals, with the B-2 lineage being dominant in splenic

B cells [27]. Overall, these data make it unlikely that the B-2

commitment of HEL+ B cells would explain their resistance to

MuHV-4 latency.

Finally, to monitor that MuHV-4 latency in SWHEL HEL2 B

cells reproduces what has been described in a normal repertoire,

we determined the phenotype of YFP+ HEL2 B cells (Figure 3). As

for WT B cells (Figure 1B), ,75% of YFP+ HEL2 B cells harbored

a GL-7+ CD95+ phenotype, with a minor fraction harboring a

plasma cell phenotype and ongoing class-switch (CD138+ IgM2).

Together these data show that HEL+ B cells are not latently

infected by MuHV-4 while latency takes place normally in HEL2

B cells.

HEL+ and HEL2 B cells are both sensitive to MuHV-4
infection in vitro

MuHV-4 poorly infects B cells in vitro [28], but work by

Frederico et al overcame this hurdle by developing an in vitro co-

culture assay, and showed that MuHV-4 transits by myeloid cells

in order to get access to B cells [29]. Taking advantage of this

experimental setting we investigated whether the absence of

latently infected HEL+ B cells in vivo was due to an intrinsic

resistance of these cells to the virus. As the YFP-MuHV-4 used for

in vivo experiments allows the detection of latently infected cells

we used in this experiment an EF1a-eGFP+ MuHV-4, in which

GFP expression can be detected 48 h post infection. We used in

Author Summary

Murid c-herpesvirus-4 (MuHV-4) is a good model to study
infectious mononucleosis in mice, in which the virus
ultimately establishes life-long latency in B cells. Whereas
several viral proteins have been shown to modulate B cell
behavior, in the present study we aimed at clarifying the
parameters that dictate the establishment of viral latency
from the B cell perspective. Indeed, the B cell repertoire is
highly diverse and it remains unknown whether latency
takes place randomly in B cells. To study this question, we
isolated latently infected B cells in which we observed a
low frequency of virus-specific B cells, suggesting that viral
latency is not restricted to this population. To better
understand MuHV-4 influence on non-virus specific B cells,
we then followed the fate of B cells specific for a foreign
antigen, hen egg lysozyme (HEL). While in vitro experi-
ments showed that HEL-specific B cells could be acutely
infected by MuHV-4, these cells were resistant to MuHV-4
latent infection in vivo. These results suggest that while
establishment of c-herpesvirus latency is not restricted to
virus-specific B cells, it does not take place randomly in B
cells and relies on mechanisms that remain to be
identified.

MuHV-4 Latency Is Not a Stochastic Event
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parallel gp150+ and a gp1502 viruses, the later leading to a better

B cell infection in co-culture assay [29].

We co-cultured freshly isolated SWHEL splenocytes with

infected RAW-264 or BHK-21 cells, or exposed the splenocytes

to free viruses (Figure 4). 48 h post co-culture, cells were harvested

and GFP expression was monitored in both HEL+ and HEL2 B

cells. Contrasting with our in vivo observations, we observed that

both populations were equally sensitive to MuHV-4 infection

when co-cultured with infected RAW-264, while they remained

not infected with exposed to free virions or co-cultured with

infected BHK-21 (Figure 4). Fitting with previous observations,

percentages of infection were greater with a gp150-deficient virus.

Overall, these in vitro data show that the absence of latently

infected HEL+ B cells in vivo is not due to an intrinsic resistance of

these cells to the virus.

MuHV-4 induces transient B cell activation, but HEL+ B
cells are excluded from late phases of the humoral
response

MuHV-4 is known to induce proliferation of both T cells and B

cells [30]. To evaluate the influence of MuHV-4 on early B cell

activation, we performed a kinetic analysis monitoring the number

and CD69 expression of HEL+ and HEL2 B cells isolated from

spleen and cervical lymph nodes (CLN) (Figure 5). We observed an

increased number of both HEL+ and HEL2 B cells in the spleen

and CLN, which peaked at 14 dpi (Figure 5A), suggesting that

MuHV-4-driven B cell proliferation does not rely on the infection

status. We monitored CD69 expression by two complementary

methods: measuring the intensity of CD69 expression (Figure 5B)

and by evaluating the percentage of CD69high cells (Figure 5C). In

the spleen, beside a small population of CD69high cells observed on

HEL2 B cells at 7 and 14 dpi (Figure 5C), we did not detect a

significant increase of CD69 expression on HEL+ and HEL2 B

cells. On the opposite, in the CLN we observed a peak of CD69

expression on both HEL+ and HEL2 B cells at 7 dpi, which

disappeared at 14 dpi. In both organs, YFP+ B cells were restricted

to the HEL2 B cells indicating that this transient activation of

HEL+ B cells is not sufficient to allow viral latency (Figure S2).

As MuHV-4 is known to establish latency in GC B cells, we next

monitored the late phase of the B cell response by following the

frequency of GC and plasma cells in HEL+ and HEL2 B cells

(Figure 6A & 6B). Although our ELISPOT (Figure 1), proliferation

(Figure 5A) and early activation (Figure 5B & 5C) data suggested a

polyclonal B cell activation upon MuHV-4 infection, HEL+ B cells

did not acquire a GC or plasma cells phenotype at 14 dpi

(Figure 6A). In contrast, HEL2 B cells entered GC reactions and

differentiated into plasma cells (Figure 6B). The frequency of YFP+

cells in HEL2 GC was ,8%, in accordance to what we observed

in C57BL/6 mice (Figure 6C).

Spatial organization of the GC is an essential component of the

B cell response as it dictates the interaction between B cells and the

other cellular players such as follicular helper T cells and dendritic

cells [31]. To have an insight into the organization of the HEL+

and HEL2 B cells in infected mice, we performed immunofluo-

rescent staining on spleen sections from naı̈ve and 14 dpi SWHEL

mice (Figure 7). As natural YFP signal was lost during fixation,

infected cells were revealed with an Alexa-488 anti-GFP antibody.

In naı̈ve mice (Figure 7A), HEL+ B cells were homogeneously

spread in the B cell area of the follicle, and no GFP+ or GC cells

were observed. At 14 dpi, clusters of GL-7+ cells were present in

the B cell area (Figure 7B), in which latently infected cells were

found but HEL+ B cells were excluded. The number of GFP+ cells

Figure 1. MuHV-4 specific B cells represent a minor part of infected and non-infected cells. (A) As presented in the FACS plot, infected
(CD19+ YFP+, black bars) and non-infected (CD19+ YFP2, grey bars) B cells were sorted from C57BL/6 mice 14 dpi. Cells were used to assess the
frequency of total (left) and MuHV-4 specific (right) antibody-secreting cells (ASC) by ELISPOT. These data are from 3 independent experiments, in
each experiment spleens from 3 to 4 mice where pooled before performing the sorts. Post-sorts purities were systematically .95% for YFP+ B cells
and .98% for YFP2 B cells. (B) To monitor the frequency of GC cells in YFP2 and YFP+ B cells, spleens from YFP-MuHV-4 infected C57BL/6 mice (n = 9)
were isolated at 14 dpi for FACS analysis. All the mice harbored a frequency of infected B cells .0,05%, with at least 500 events in the YFP+ gate. A
representative FACS plot showing the frequency of CD95+ GL-7+ cells is shown on top and compiled data obtained from 4 independent experiments
is shown below. Bars represent the average percentage.
doi:10.1371/journal.ppat.1004269.g001
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varied greatly between GCs; a heterogeneity also seen in C57BL/6

mice [32]. However, no matter the number of GFP+ cells present,

we systematically observed an exclusion of the HEL+ B cells from

the GC (Figure 7B).

These histological data confirm our phenotypical analysis

(Figure 6) and overall these data show that while HEL+ B cells

are sensitive to MuHV-4 infection in vitro (Figure 4) and get

activated in vivo (Figure 5), they do not support latent infection

and do not participate to the GC reaction induced by MuHV-4.

SWHEL mice develop an anti-MuHV-4 IgG response but
fail to secrete long-lasting anti-HEL IgGs

To support our phenotypic and histologic observations, PBS or

MuHV-4 challenged SWHEL mice were bled to measure plasmatic

levels of anti-MuHV4 and anti-HEL IgG1, IgG2a and IgG2b

(Figure 8). We were not able to quantify the amount of circulating

antibodies as no standards were available, but the magnitude of

these responses was assessed by systematically analyzing the time

points from identical mice together, limiting the impact of

technical variations. MuHV-4 has been previously shown to

trigger an anti-viral response dominated by the production IgG2a

and IgG2b [8] and our kinetic analysis followed the same pattern

(Figure 8, left graphic). This response appeared between 7 and

14 dpi and gradually increased. For the anti-HEL response,

although we did not detect a HEL+ GC response, we observed a

peak of anti-HEL IgG2a and IgG2b antibodies 14 dpi, which

declined quickly thereafter (Figure 8, right graphic). Naı̈ve SWHEL

mice have a basal level anti-HEL IgGs [21] and the expansion and

transient activation of HEL+ B cells observed in the CLN after

MuHV-4 infection (Figure 5) could account for this burst of anti-

HEL IgGs. However, the fact that this anti-HEL response is

transient indicates the absence of a long-term anti-HEL response,

fitting with our previous observations.

MuHV-4 does not benefit from acute B cell responses to
establish latency in non-virus-specific B cells

Our data show that HEL+ B cells are not latently infected and

do not participate in the GC response induced by MuHV-4 while

they are equally sensitive to infection in vitro. Moreover, our

ELISPOT data show that viral latency is not restricted to virus-

specific B cells, indicating that latency is established in B cells of

other specificities. This set of observations leads us to propose that

Figure 2. MuHV-4 latent infection is restricted to polyclonal HEL2 B cells. SWHEL mice were left untreated or infected for 14 days with YFP-
MuHV-4 virus at 104 PFU. Splenocytes were isolated and analyzed by FACS or sorted for plaque assay and limiting dilution PCR analysis. HEL+ and
HEL2 B cells were identified based on HEL-A647 binding and CD19 expression. (A) On top are representative FACS plots showing the percentage of
YFP+ cells in both populations at 0 and 14 dpi. Data are compiled in the graphics below showing percentage of YFP+ cells in HEL+ (grey circles) and
HEL2 (white circles) B cells at day 0 (n = 12) and 14 (n = 16) dpi. The bar represents the average percentage. (B) To detect presence of latent MuHV-4, a
plaque assay was performed on sorted HEL+ and HEL2 B cells 14 dpi (n = 8). # indicates that no plaques were detected in HEL+ B cells and based on
the average number of HEL+ B cells plated, we estimate the level of latent infection to be ,1 PFU/382000 in this population. The analysis of lysed
cells showed an absence of preformed viral particles in both populations. (C) Limiting dilution PCR was performed to detect viral genome in sorted
HEL+ and HEL2 B cells from day 14 infected SWHEL mice. Data are representative of two independent experiments in which splenocytes were pooled
before sorting (n = 3 & n = 2). The frequency of cells harboring MuHV-4 DNA is shown, # indicates signal below the assay’s limit of detection. We
evaluated the frequency of MuHV-4 DNA+ cells in HEL+ B cells to be #1/36770 and #1/102891 for the two experiments we performed. Error bars
indicate the 95% confidence interval. Purity of sorted cells was systematically above 90%.
doi:10.1371/journal.ppat.1004269.g002
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the establishment of latency is not a stochastic event and takes

place in a restricted population of polyclonal B cells. This model

implies that MuHV-4 does not overcome the stimulatory signals

provided by the BCR stimulation and the cognate CD4 help, but

manages to benefit from it in order to settle in long-lived memory

B cells.

To test if MuHV-4 could benefit from acute CD4-dependent B

cell responses, we stimulated a physiological number of adoptively

transferred HEL+ B cells in C57BL/6 mice with sheep red blood

cells (SRBC) conjugated to recombinant HEL [23]. We used an

adoptive transfer assay in order to avoid competition between

HEL+ B cells in SWHEL mice, in particular from being in too great

an excess over the available SRBC-specific CD4 help. Indeed,

SWHEL immunized with SRBC-HEL showed a poor GC response

(,1% of GC HEL+ B cells, Figure S3A) when compared to

C57BL/6 adoptively transferred with HEL+ B cells (,70% of GC

HEL+ B cells, Figure S3B). We controlled that SRBC-HEL could

not induce an endogenous HEL-specific B cell response in

C57BL/6 mice by co-transferring SRBC-HEL with or without

HEL+ B cells and showed that transferred HEL+ B cells were

required for the emergence of HEL+ GC B cells (Figure S3B).

As schematized in Figure 9A, we transferred HEL+ B cells 24 h

before infection and immunized the infected mice with SRBC+/2

HEL at 0, 4, 7 or 10 dpi. We decided to test different time of

immunization, as it is currently unknown when the virus/B cell

encounter happens and whether it infects naı̈ve or activated B cells

in vivo. At 14 dpi, we monitored the GC differentiation and

percentage of infection in HEL+ and HEL2 B cells (Figure 9B).

Immunization with SRBC-HEL at either of the time point tested

triggered the GC differentiation of HEL+ B cells when compared

to mice immunized with SRBC alone (Figure 9B, top left) while it

did not affect the GC phenotype of HEL2 B cells (Figure 9B,

bottom left). The magnitude of the GC response observed in

HEL+ B cells was different between the time of immunization,

certainly due to a mixed influence of the GC dynamic and survival

of the transferred cells. While we could detect for the first time a

HEL+ GC response in the context of MuHV-4 infection, these

cells remained YFP2 (Figure 9B, top right), YFP+ cells being

restricted to the HEL2 population (Figure 9B, bottom right), in

which frequency of infection was not affected by SRBC-HEL

immunization. We verified that adoptively transferred B cells

could get latently infected by transferring WT CD45.1+ spleno-

cytes into WT CD45.2+ recipient mice and showed that frequency

of infection and GC differentiation was equivalent between donor

and recipient cells (Figure S4).

These data support the fact that HEL+ GC B cells are resistant

to MuHV-4 latency and that MuHV-4 does not benefit from acute

B cell responses to establish latency in non-virus-specific B cells,

likely relying on other mechanisms yet to be identified.

Discussion

In this study, we attempted at better understanding how c-

herpesviruses establish latency in B cells with a particular focus on

the role of the BCR specificity. By following HEL+ B cells in

MuHV-4 infected SWHEL mice, we were able to monitor the

behavior of non-virus specific B cells during the establishment of

MuHV-4 latency and showed that those cells were excluded from

the latently infected population.

Previous studies have established that MuHV-4 latency depends

on B cell activation and proliferation [33], but it is still not clear

whether MuHV-4 can drive such activation independently of

BCR specificity. When we compared the proliferation and CD69

expression of HEL+ and HEL2 B cells, we observed that both

populations behave in a similar manner, with proliferation in both

spleen and CLN and a transient CD69 upregulation in the CLN.

This confirms previous work that showed CD69 upregulation on B

cells exposed to MuHV-4 in vitro and a temporary B cell

proliferation in MHC-II-deficient I-Ab2/2 mice [7]. However,

HEL+ B cells did not participate to the long-term humoral

response, as they did not differentiate into GC or plasma cells. We

think we observed here two distinct waves of activatory signals.

The first wave triggering a non-specific activation of the global B

cell population, followed by a second wave that promotes the

differentiation into GC of a restricted pool of B cells. The

respective role of these two waves in the establishment of latency is

Figure 3. YFP+ HEL2 B cells differentiate into GC and plasma
cells. Splenocytes were isolated from SWHEL mice 14 dpi and analyzed
by FACS. Cells were gated on the HEL2 CD19+ population. On top is
shown a typical phenotype of YFP+ HEL2 B cells, monitoring GC (CD95+

GL-7+) and plasma cells (IgM2 CD138+). Data were compiled in the
graphics below; showing the percentage of GC cells (n = 14) and plasma
cells (n = 11) in YFP+ HEL2 B cells.
doi:10.1371/journal.ppat.1004269.g003

MuHV-4 Latency Is Not a Stochastic Event
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not completely clear, but the first wave of activation is not

sufficient to allow the establishment of latency in B cells, as

supported by the fact that HEL+ B cells do not get latently

infected. While we do not identify the mechanism driving the first

wave of activation, it has been shown that both T cells and B cells

are responsible for the MuHV-4 driven splenomegaly [30],

suggesting that the first wave of activation is not due to factors

specific of the B cell response, and is probably cytokine mediated.

Concerning the second wave of activation, correlation analysis

performed on our dataset showed that frequency of YFP+ cells in

HEL2 B cells correlates positively with the magnitude of the GC

response (Figure 10). This is in accordance with recent observa-

tions by Collins et al who observed a positive correlation between

the frequency of YFP+ cells and the frequency of follicular helper

T cells, an essential player of the GC response [10]. That said, the

fact that HEL+ B cells are sensitive to the virus in vitro but do not

get latently infected and are excluded from the GC reaction go

against a model where MuHV-4 could drive a stochastic

manipulation of the B cells and would instead rely on BCR

specificity.

One previous study looked at the influence of MuHV-4 on non-

virus specific B cells by reconstituting mMT B cell 2/2 mice with

B cells from MD4 mice (designated HELMET mice [34]). In

MuHV-4 infected HELMET, HEL+ B cells expressed CD69 and

proliferated but contrary to our results, MuHV-4 latency was

detected in HEL+ B cells by PCR. The absence of competition in

HELMET mice, where B cells are all HEL-specific could account

for these discrepancies. Indeed, in SWHEL mice, HEL+ B cells

coexist with a majority of polyclonal B cells. Our in vitro infection

by co-culture assay supports the fact that HEL+ B cells are sensitive

to MuHV-4, suggesting that a selection mechanism might occur in

vivo, leading to the disappearance of these infected cells. In

HELMET mice, the absence of competition could allow for the

survival of latently infected HEL+ B cells. This role for competition

Figure 4. HEL+ and HEL2 B cells are both infected by MuHV-4 in vitro. In vitro infection by co-culture assay was performed as described in
the material and methods. Briefly, freshly isolated SWHEL splenocytes were exposed to free viruses or co-culture with BHK-21 or RAW-264 cells
previously infected with EF1a-eGFP+ or EF1a-eGFP+-gp1502 MuHV-4. GFP expression in HEL+ and HEL2 B cells was monitored by FACS after 48 h of
co-culture. Representative FACS plots are shown on top, compiled data representing average percentage and standard deviation are shown below.
Splenocytes were identified based on FSC SSC parameters, excluding BHK-21 and RAW-264. Cells were then gated on CD19+ CD11b2 and GFP
expression was monitored in HEL+ and HEL2 B cell. Data were obtained from two independent experiments with two splenocytes suspensions in
each.
doi:10.1371/journal.ppat.1004269.g004
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is supported by the work of Kim et al [35] who studied how

latency evolved in mice containing CD40+ and CD402 B cells.

Although the two populations got latently infected, latency was

ultimately lost in CD402 B cells and GC differentiation was

restricted to CD40+ B cells.

To explore whether the presence of CD4 T cell dependent

antigens could be involved in the selection of latently infected cells,

we triggered an endogenous anti-HEL response concomitantly

with MuHV-4 infection. Although we were able to induce the

emergence of HEL+ GC B cells, these cells remained refractory to

latent infection. These data support that, at least in our

experimental setting, MuHV-4 cannot hitchhike an acute humoral

response to gain access to GC B cells and might instead benefit

from other antigen/BCR interactions. In humans, it is estimated

that up to 20% of a normal B cell repertoire is made of self-

reactive B cells that need to be constantly kept under control

[36,37]. One of the tolerance mechanism is the induction of a

functional unresponsive state known as anergy, which requires

endogenous BCR signaling [38,39]. The high prevalence of self-

reactive B cells offers a good opportunity for c-herpesviruses to

manipulate these processes in order to retrieve B cells from their

anergic state and promote polyclonal B cells activation in an

antigen-dependent manner. Supporting this point, recent studies

performed in humans [40] and mice [41,42] have shown that c-

herpesviruses are found in self-reactive B cells. Two studies have

explored MuHV-4 impact on anergic B cells [42,43], but it is still

not clear how MuHV-4 can modulate this processes.

SWHEL6ML5 mice [21], in which HEL+ B cells are anergic due

to the presence of soluble HEL, could be an alternative model to

study the influence of the virus on competent anergic B cells.

Further work will be required to elucidate how MuHV-4

promotes GC B cells differentiation independently of their infection

status, and how this event is linked to the establishment of latently

infected B cells in memory B cells. c-herpesviruses are known to be

Figure 5. Proliferation and transient activation of total B cells. Spleens and CLN from YFP-MuHV-4 infected SWHEL mice were harvested at 0,
7, 14 and 21 dpi and cells were stained with CD69 PE, CD19 APC-Cy7 and HEL-A647. (A) Live cells were enumerated, and the number of HEL+ and
HEL2 B cells was established based on their frequency obtained from the FACS data. (B) Representative FACS histograms showing CD69 expression
on HEL+ (grey curves) and HEL2 (white curves) B cells isolated from CLN and spleen at the different time points are shown. CD69 was monitored by
measuring the Geo MFI and compiled values are shown in the graphic below. (C) On the same samples, the frequency of CD69high cells was
evaluated. Representative FACS plots are shown and compiled percentages are presented in the graphic below. These data were obtained from two
independent experiments, with a total 5 to 6 mice per time point. In the graphics, mean values are reported and error bars represent the standard
deviation.
doi:10.1371/journal.ppat.1004269.g005
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mildly pathogenic in immune-competent hosts and it has been

shown that MuHV-4 latent infection does not induce autoimmune

disorders and actually confers protection in lupus-prone animals

[41]. This highlights the fact that the interrelationship between

MuHV-4 and B cells is complex and that co-evolution between c-

herpesviruses and their host as allowed for the emergence of subtle

mechanisms that promote B cell activation but limits associated

immune disorders in order to establish life-long latency.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations of the Portuguese official Veterinary Director-

ate, which complies with the Portuguese Law (Portaria 1005/92).

The Portuguese Experiments on Animal Act strictly comply with

the European Guideline 86/609/EEC and follow the FELASA

(Federation of European Laboratory Animal Science Associations)

guidelines and recommendations concerning laboratory animal

welfare. All animal experiments were approved by the Portuguese

official veterinary department for welfare licensing under the

protocol number AEC_2010_017_PS_Rdt_General and the IMM

Animal Ethics Committee.

Mice
SWHEL mice [21] were obtained from Dr Antonio Freitas,

Institut Pasteur, Paris, in accordance with Dr Robert Brink,

Garvan Institute, Melbourne. To screen for expression of the

VH10tar heavy chain and the Vk10-k light chain genotyping was

performed on DNA isolated from mouse-tails using DirectPCR

solution (Viagen). Mice heterozygous for both genes were used for

experiments. HEL+ B cells were identified by FACS and confocal

microscopy (see details below) by direct labeling with recombinant

HEL (Sigma-Aldrich) conjugated with Alexa 647 (noted HEL-

A647). This conjugation was made with the Alexa Fluor Antibody

Labeling Kit (Invitrogen) following manufacturer instructions. A

Bio-Gel P-6 (Biorad) loaded column was used to separate HEL-

A647 conjugates from free dye. C57BL/6, CD45.1 and CD45.2

mice and were purchased from Charles Rivers Laboratories. Mice

were between 7 and 15 weeks old at time of infection and were

sacrificed by CO2 inhalation or cervical dislocation.

Viruses
The YFP expressing MuHV-4 [4] was obtained from Dr

Samuel Speck, Emory Vaccine Center, Atlanta. EF1a-eGFP+

MuHV-4 and EF1a-eGFP+-gp1502 MuHV-4 [29] were obtained

Figure 6. GC and plasma cell differentiation are restricted to the HEL2 B cells. Splenocytes were purified from SWHEL mice at 0 and 14 dpi
and analyzed by FACS. Cells were gated on (A) HEL+ or (B) HEL2 B cells for phenotype analysis, monitoring the frequency of GC (CD95+ GL-7+) and
plasma cells (IgM2 CD138+). Top parts of the figures show representative FACS plots, bottom parts are the compilation of data obtained from
different SWHEL mice (GC: day 0 n = 12; day 14 n = 16/Plasma cells: day 0 n = 10; day 14 n = 13). (C) Germinal center cells in C57BL/6 B cells and HEL2 B
cells harbor an equivalent frequency of YFP+ cells. Frequency of YFP+ cells in GC cells was evaluated 14 dpi by gating on the CD95+ GL-7+ population
from total B cells of C57BL/6 mice (left dot plot and diamonds, n = 12) or from HEL2 B cells of SWHEL mice (right dot plot and circles, n = 16). The bar
represents the average percentage.
doi:10.1371/journal.ppat.1004269.g006
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from Philip Stevenson, University of Cambridge, Cambridge.

Viral stocks were prepared by infecting BHK-21 cells and titrated

by plaque assay using previously published procedures [44,45].

For infections, mice were anaesthetized with isoflurane and

inoculated intranasally with 104 pfu of YFP-MuHV-4 under

20 ml of PBS.

IgGs secreting cells ELISPOT assay
ELISPOT assay to enumerate MuHV-4 specific B cells was

adapted from [8]. Briefly, purified MuHV-4 were disrupted for

10 min in PBS+0.05% Triton X-100 and plated at 56106 PFU/

well in 96-well MultiScreen HA mixed cellulose filter plates

(Millipore, Billerica, MA). Plates were incubated overnight at 4uC,

washed with PBS and blocked for 1 h at 37uC with complete

medium (RPMI-1640+10% heat inactivated FBS, 2 mM

glutamine, 100 U/ml penicillin and streptomycin and 1 mM

sodium pyruvate). Latently infected (CD19+ YFP+) and non-

infected (CD19+ YFP2) B cells were sorted from spleens on a

FACS Aria (BD Biosciences). Serial four-fold dilutions of sorted

cells were prepared in complete medium and added under 100 ul/

well in four replicate wells per cell amount. Cells were incubated

overnight at 37uC in a humid 5% CO2 incubator. Plates were

washed with PBS and incubated for 2 h at room-temperature with

Alkaline phosphatase (AP)-conjugated rabbit anti-mouse IgG (H+
L) antibodies (Southern Biotech) diluted 1/500 in PBS+0.5% FBS.

After thorough washes spots were revealed at room temperature

with 1 mg/ml of 5-bromo-4-chloro-3-indolyl phosphate (Sigma) in

diethanolamine buffer. Upon optimal spot development plates

were washed and dried. Blue spots representing single antibody-

secreting cells (ASC) were counted under an Olympus SZ51

Figure 7. HEL+ B cells are excluded from the GC. Spleens were isolated from (A) day 0 (n = 2) and (B) day 14 (n = 4) infected SWHEL mice for
microscopy analysis. Spleens were treated as indicated in the material and methods, and stained with an anti-GFP, anti-GL-7, HEL and nuclei dye
Hoechst. Separate channels are shown as thumbnails, in the merge image below nuclei were excluded for clarity. Follicles (Fo) were localized based
on Hoechst signal, showing delimited clusters of nuclei. GCs were identified as clusters of GL-7+ cells. Spleen sections were thoroughly analyzed and
images shown are typical organization of splenic follicles of SWHEL mice at 0 and 14 dpi. At 14 dpi, infected cells were mainly localized within the GC,
from which HEL+ B cells were systematically excluded. Scale bars represent 100 mm.
doi:10.1371/journal.ppat.1004269.g007
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Figure 8. SWHEL mice mount a long-lasting anti-MuHV-4 antibody response. SWHEL mice were inoculated intranasally with PBS (n = 2) or
MuHV-4 (n = 6). At indicated time points, mice were bled and sera were analyzed by ELISA to monitor levels of circulating anti-MuHV-4 and anti-HEL
IgG1 (red triangles), IgG2a (blue squares) and IgG2b (green circles). For MuHV-4 infected mice, 3 independent experiments with 2 mice in each were
analyzed. As no standard were available to quantify these antibodies, samples of different time points from identical mice were run together to be
able to compare the absorbance at 405 nm.
doi:10.1371/journal.ppat.1004269.g008

Figure 9. Activated HEL+ B cells remain refractory to MuHV-4 infection. (A) Experimental design: Bulk SWHEL splenocytes containing 104

HEL+ B cells were transferred in C57BL/6 mice 24 h prior YFP-MuHV-4 infection. Recipient mice were challenged intravenously by a single
immunization with 2.108 SRBC or SRBC-HEL performed at 0, 4, 7 or 10 dpi. At 14 dpi, spleens were collected and analyzed by FACS. As shown in the
representative FACS plots, transferred HEL+ were identified with HEL-A647 staining while transferred HEL2 B cells could not be discriminated from
endogenous B cells. On both HEL+ and HEL2 (transferred+endogenous) B cells, GC differentiation and percentage of infection was determined using
GL-7/CD95 and YFP expression respectively. (B) For each time of immunization, frequency of GC B cells and YFP+ B cells were compared between
SRBC and SRBC-HEL immunized mice in both HEL+ (top panel) and HEL2 B cells (bottom panel). Each dot represents an individual mouse and bars
represent the average percentages. The data were obtained from 4 to 6 mice per experimental group.
doi:10.1371/journal.ppat.1004269.g009
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microscope. Total number of ASC were determined as described

above except that plates were coated with 0.5 mg/well of a goat

anti-mouse k antibodies (Southern Biotech) diluted in PBS.

In vitro infection by co-culture assay
In vitro infection by co-culture assay was adapted from [29].

24 h prior co-culture, 3.105 RAW-264 and BHK-21 cells were

seeded in 24-well plate. After cell adhesion (4–6 h), media was

removed and cell infected overnight with indicated MuHV-4 at

9.105 pfu per condition. The next day, spleens were harvested and

single cell suspensions were prepared by spleen disruption,

filtration on 100 mm cell strainer and red blood cells removal by

centrifugation on ficoll gradient (Biowest). Splenocytes were

washed and added to cells at 106/well. As a negative control,

splenocytes were exposed to free viruses. In order to have enough

cells to work with, spleens from two SWHEL mice were pooled. For

each experiments, two suspensions were analysed in parallel. After

48 h of co-culture, cells were harvested and stained with CD11b

(to exclude RAW-264 cells), CD19 and HEL. Infection of RAW-

264 was systematically evaluated 24 h post infection by monitoring

GFP expression in cells not co-cultured with splenocytes (data not

shown).

Flow cytometry
Single cell suspensions were prepared from spleens. Red blood

cells were lysed in hypotonic NH4Cl and stainings were performed

at 4uC in PBS+4% FCS and 1 mM EDTA. Briefly, cells were

blocked by 10 min incubation with FcBlock (anti-CD16/32,

2.4G2, BD bioscience), washed, and stained for 20 min. For

biotinilated antibodies, extra 20 min incubation with streptavidin

was performed. MuHV-4 infected cells were monitored based on

their endogenous YFP expression. The following antibodies were

used: anti-CD69 PE (H1.2F3), anti-CD95 PE (Jo2), anti-CD19

APC-Cy7 or APC-H7 (1D3), anti-IgM PE (R6-60.2), anti-IgD

Biotin (11-26c.2a), CD11b PE or v450 (M1/70) (BD Biosciences);

CD45.2 Brilliant Violet 510 (104) (BioLegend); anti-CD45.1

PeCy7 (A20), and anti-GL-7 Biotin (Ebioscience). Streptavidin-

Cy5 (BD Biosciences) was used to reveal biotinilated antibodies.

HEL specific B cells were identified with the HEL-A647 conjugate

described above. Samples were acquired on a FACS Canto or on a

LSR Fortessa (BD Biosciences), using DIVA software (BD

Biosciences) for acquisition and Flowjo v.6.4.7 (Tree Star) for

analysis. Cells were gated on live cells based on FSC/SSC

parameters and cell doublets were excluded based on FSC-W

signal.

Immunofluorescence histology
Spleens were fixed overnight at 4uC in periodate-lysin-

paraformaldehyde (PLP) [46,47] and dehydrated by successive

2 h incubation in 10%, 20% and 30% sucrose solutions at 4uC.

Spleens were then embedded in OCT (Tissue Tek), frozen and

sectioned (40 mm). For immunofluorescence staining, sections

were encircled with a Fatpen and rehydrated 10 min in phosphate

buffer. All incubations were made in humid chamber, protected

from light. Sections were permeabilized for 1 h at room

temperature in 1% triton and blocked 1 h in 1% BSA+FcBlock

(anti-CD16/32, 2.4G2, BD bioscience). Stainings were performed

using the following reagents: anti-GFP Alexa 488 (Invitrogen),

anti-GL-7 Biotin (GL-7, Ebioscience), HEL-A647 (described

above) and Hoechst 33343 (Invitrogen). Streptavidin Alexa568

(Invitrogen) was used for biotinilated antibodies, incubated 1 h at

room temperature. Slides were washed, mounted in Fluoromount-

G (SouthernBiotech) and kept at 4uC. Images were acquired on a

LSM 510 META point scanning confocal microscopes (Zeiss) and

analyzed using LSM Image Browser (Zeiss) and Photoshop CS2

(Adobe).

Figure 10. The frequency of infection correlates with the magnitude of the germinal center response in HEL2 B cells. To study the
interrelationship between the GC response and the frequency of YFP+ cells, matched data obtained from SWHEL mice 14 dpi (n = 16) were plotted
against each other. For each SWHEL mouse, the Y-axis shows the frequency of YFP+ cells in HEL2 B cells (data from Figure 2A) and the X-axis shows the
frequency of GC (data from Figure 6B). Rs was calculated using Spearman’s rank correlation coefficient.
doi:10.1371/journal.ppat.1004269.g010
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Cell sorting and in vitro reactivation assay
HEL+ B cells (CD19+, HEL+) and HEL2 B cells (CD19+,

HEL2) were sorted using a FACS Aria (BD Biosciences) and used

for in vitro reactivation assay to quantify latent infection. Serial

dilutions of freshly isolated cells were co-cultured with BHK-21 in

complete media supplemented with 50 mg/ml of Gentamycin

(Invitrogen). Lysing half of the sorted cells by a quick freeze/thaw

cycle before coculture allowed us to assess the presence of

preformed viral particles, indicative of lytic infection. After 5 days,

BHK-21 were fixed with 4% paraformaldehyde and stained with

toluidine blue for plaque counting. The number of plaques in each

sample was expressed as plaques forming unit (pfu)/107 cells.

Limiting dilution PCR analysis
The frequency of virus-genome-positive cells was determined

from pools of 2 to 3 spleens by limiting dilution combined with

real-time PCR as previously described [48]. Sorted HEL+ and

HEL2 B cells were serially two-fold diluted and eight replicates of

each dilution were analysed by real time PCR (Rotor Gene 6000,

Corbett Life Science). The primer/probe sets were specific for the

MuHV-4 M9 gene (59 primer: GCCACGGTGGCCCTCTA; 39

primer: CAGGCCTCCCTCCCTTTG; probe: 6-FAM-CTT-

CTGTTGATCTTCC–MGB). Samples were subjected to a

melting step of 95uC for 10 min followed by 40 cycles of 15 s at

95uC and 1 min at 60uC. Positive vs. negative reactions were

scored using the Rotor Gene 6000 software. Our data were

compatible with the single-hit Poisson model (SHPM) as tested by

modeling the limiting dilution data according to a generalized

linear log-log model fitting the SHPM and checking this model by

an appropriate slope test as described [3,49]. A regression plot of

input cell number against log fraction-negative samples was used

to estimate the frequency of cells with viral genomes. Estimation of

the cell subset frequency of MuHV-4 infection consisted of

computation by maximal-likelihood estimation as follows: let f be

the estimate of the cell frequency; the maximum likelihood of f is

the value of f that maximizes

log Lð Þ~
Xk

i~1

log
n!

ri! ni!{ri!ð Þ

� �
zri log Pið Þz ni{rið Þlog 1{Pið Þ

� �

where log(L) is the natural logarithm of the likelihood function L
and Pi is given by Pi = exp(-f xi) according to the SHPM. The

variance of f was calculated as the negative reciprocal of the

second derivative of log(L), var(f) = 1/[d2 log(L)/df2]. The 95%

confidence interval (CI) for f was calculated as 95% CI

(f) = f61.96SE (f). Abbreviations are as follows: k = the number

of groups of replicate PCRs, numbered i = 1, 2, … k; ni = the

number of replicate reactions; ri = the number of observed

negative PCRs; and mi = the observed fraction of negatives

(mi = ri/ni).

Adoptive transfers and SRBC+/2HEL immunization
Freshly isolated bulk splenocytes from SWHEL mice containing

104 HEL+ B cells were transferred into C57BL/6 mice by

intravenous injection, as previously described [50]. Sheep red

blood cells (SRBC) were obtained from Miguel Fevereiro,

Laboratório Nacional de Investigação Veterinária, Lisbon.

Recombinant HEL was covalently conjugated to SRBC with 1-

ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (Sig-

ma-Aldrich) as described [25]. Conjugation was confirmed by

FACS by staining mock or HEL-conjugated SRBC with the

HyHEL10 (an anti-HEL IgG1 [21]) followed by an anti-IgG1 APC

(BD Biosciences). HEL-A647 was used to identify transferred

HEL+ B cells.

Anti-HEL and anti-MuHV-4 IgGs ELISA
To measure anti-HEL and anti-MuHV-4 antibody production,

sera were regularly collected by facial-vein bleeding. To measure

HEL-specific antibodies, maxisorp plates (Nunc) were coated with

60 ml of recombinant HEL (10 mg/ml) diluted in NPP buffer

(adapted from [21]). For MuHV-4 antibodies, plates were coated

with viral particles disrupted with 0,1% triton and diluted in NPP

buffer (adapted from [7]). Coated plates were incubated overnight

at 4uC and blocked for 1 h with 100 ml PBS+1% BSA. Sera were

diluted to 1/200 in PBS+0,1% BSA and 50 ml were incubated 2 h

at room temperature. IgG1, IgG2a and IgG2b subclasses were

measured using 50 ml of anti-mouse IgG1, IgG2a and IgG2b

conjugated to alkalyne-phosphatase (SouthernBiotech) diluted to

1/500 and incubated 1 h at room temperature. Bound antibodies

were revealed using 100 ml of 1 mg/ml P-Nitrophenyl Phosphate

(MP Biomedical) prepared in NPP buffer and incubated 40 min at

37uC. Absorbance was measured at 405 nm.

Statistics
p values were calculated using non-parametric Mann-Whitney

U test; ns indicates p.0.05, * indicates p#0,05, ** indicates p#

0,005, and *** indicates p#0,001.

Supporting Information

Figure S1 B-2 lineage represents the majority of latently
infected B cells. C57BL/6 (n = 5) were infected with YFP-

MuHV-4 and spleens were analyzed 14 dpi. Cells were stained

with CD19, CD5 and CD43 to identify B-2 (CD52 CD432), B-1a

(CD5+ CD43+) and B-1b (CD52 CD43+) B cells. (A) Represen-

tative FACS plots from YFP2 (left) and YFP+ (right) B cells are

shown. (B) Average population percentages obtained from the 5

mice are shown for the YFP2 (grey bars) and YFP+ (black bars) B

cells.

(TIF)

Figure S2 MuHV-4 is restricted to HEL2 B cells in both
LNs and spleen (complement to Figure 5). Spleens and

CLN from YFP-MuHV-4 infected SWHEL mice were harvested at

0, 7, 14 and 21 dpi and cells were stained with CD69 PE, CD19

APC-Cy7 and HEL-A647. Frequency of infected cells was

monitored in HEL+ (Left panel) and HEL2 B cells (right panel)

based on YFP expression. Representative FACS plots are shown

and compiled percentages are presented in the graphic below.

These data were obtained from two independent experiments,

with a total of 5 to 6 mice per time point. In the graphics, mean

values are reported and error bars represent the standard

deviation.

(TIF)

Figure S3 Poor GC response in SWHEL mice and
absence of endogenous HEL+ B cell activation in
C57BL/6 challenged with SRBC-HEL. (A) SWHEL mice

were immunized intravenously with 2.108 SRBC (n = 3) or 2.108

SRBC-HEL (n = 3). 7 days post-challenge splenocytes were

harvested and analyzed by FACS. Representative FACS plots

shows frequency of GC cells (CD95+ GL-7+) in HEL+ B cell from

mice challenged with SRBC or SRBC-HEL. (B) C57BL/6 were

immunized intravenously with 2.108 SRBC-HEL in presence

(n = 3) or absence (n = 3) of co-transferred 104 HEL+ B-cells. 7

days post-challenge splenocytes were harvested and analyzed by

FACS. Representative FACS plots shows the frequency of HEL+
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B-cells and their GC phenotype (CD95+ GL-7+) in each condition.

A HEL+ B cell population with a GC phenotype was only detected

when HEL+ B cells were co-transferred with SRBC-HEL,

indicating that SRBC-HEL alone induced an undetectable

HEL-specific response in C57BL/6.

(TIF)

Figure S4 Adoptively transferred B cells get latently
infected. 24 h prior MuHV-4 YFP infection, CD45.2 C57BL/6

recipient mice (n = 6) received intravenously 107 bulk splenocytes

freshly isolated from CD45.1 C57BL/6 donor mice. At 14 dpi,

spleens were isolated and cells stained with anti-CD19, CD95 and

GL-7 as well as with anti-CD45.1 and CD45.2 in order to

discriminate between donor (CD45.1+) and endogenous (CD45.2+)

B cells. MuHV-4 infection in CD45.1+ and CD45.2+ B cells was

evaluated by monitoring the frequency of YFP+ cells in each

population (top panel). GC phenotype was assessed by monitoring

CD95 and GL-7 expression on CD45.1+ and CD45.2+ B cells

(central panel) as well as on YFP+ B cells in each population

(bottom panel). For each panel, representative FACS plots and

compiled data are shown. Bars represent average percentages.

(TIF)
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