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In seasonal environments, sinks that are more persistent than sources may
serve as temporal stepping stones for specialists. However, this possibility
has to our knowledge, not been demonstrated to date, as such environments
are thought to select for generalists, and the role of sinks, both in the field
and in the laboratory, is difficult to document. Here, we used laboratory
experiments to show that herbivorous arthropods associated with seasonally
absent main (source) habitats can endure on a suboptimal (sink) host for
several generations, albeit with a negative growth rate. Additionally, they
dispersed towards this host less often than towards the main host and
accepted it less often than the main host. Finally, repeated experimental evol-
ution attempts revealed no adaptation to the suboptimal host. Nevertheless,
field observations showed that arthropods are found in suboptimal habitats
when the main habitat is unavailable. Together, these results show that evol-
utionary rescue in the suboptimal habitat is not possible. Instead, the sink
habitat functions as a temporal stepping stone, allowing for the persistence
of a specialist when the source habitat is gone.
1. Introduction
Most organisms face temporal and spatial environmental variability. In extreme
cases, environmental variation may lead to certain habitats becoming temporally
entirely unavailable, for instance, owing to strong seasonality, pulsed resources or
human activity [1–4]. Nevertheless, many species occur in these highly variable
environments [5], which necessitates an understanding of the mechanisms that
allow their persistence.

Overecological time, speciesdistributions in temporallyvariable environments
are generally not restricted to habitat patcheswhere population growth is positive.
Local demographic processes coupled with dispersal often lead to source–sink
dynamics, inwhich persistence in sinks (where the population growth rate is nega-
tive) is contingent upon immigration from sources, i.e. areas with positive growth
[6–9]. Even though sinks cannot persist in isolation, they may lead to the stabiliz-
ation of the overall demographic system and, therefore, guarantee the long-term
persistence of populations [8,9]. For example, sinks can act as alternative habitats
when sources are overcrowded [6,7,10,11] or temporally absent.

Evolution in sinks (i.e. evolutionary rescue) is possible under specificmigration
and local adaptation values [12,13], population sizes [14], rates of environmental
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change [15] or temporal fluctuations in the availability of the
sink habitat [16]. Empirical tests have revealed that adaptation
to sink habitats occurs in some cases (e.g. [17,18]) but not in
others (e.g. [19]). If evolutionary rescue occurs in sinks in tem-
porally variable environments, then theory predicts the
evolution of generalists, which perform reasonably well (i.e.
have a positive growth rate in the long run), across a wide
range of habitats [20–23]. This prediction has been confirmed
in some empirical studies (e.g. [24,25]) but not in others (e.g.
[26–28]). Additionally, other responses, such as adaptation to
habitat switching [29] or diversification among populations
[28,30,31], can evolve in temporally variable environments.

To fully understand species distribution and performance
in source–sink environments, these ecological and evolutionary
perspectives should be merged in a common framework [32].
Such studies, however, are rare, owing to incomplete fitness
measures, the difficulty of identifying sinks in the field or lim-
ited study durations [32]. Here, we aimed to fill this gap and
applied a comprehensive ecological-evolutionary approach to
explain the persistence of organisms in temporally unavailable
habitats. Obligatory herbivorous arthropods provide ideal
study systems for this approach because most herbivorous
crop pests are associated with temporally fluctuating habitats.
They typically occur on hosts that are harvested at a particular
time of the year and hence are temporally unavailable. Some
studies have demonstrated the occurrence of spatial source–
sink dynamics and their impact on herbivore populations
(e.g. [33–37]). However, studies on the effect of temporal sinks
on herbivorous arthropods are much scarcer (but see [38,39]).

Here, we address how a herbivorous wheat curl mite
(Aceria tosichella, WCM hereafter) copes with its cyclically
fluctuating environment, in agricultural systems (cereal
fields). WCM is a crop pest of wheat, but it also occurs on
other cereals and permanently available wild grasses.

Our goals were to determine whether this arthropod is
truly a generalist by rigorously evaluating whether its habitats
are sources or sinks, determine whether evolutionary rescue is
possible on a sink host, and document seasonal patterns of host
use to test for evidence of temporal source–sink population
dynamics. To this aim, we first estimated population growth
in as well as acceptance of and emigration towards both habi-
tats. Second, we performed an experimental evolution study in
a potential sink or a source, either with or without temporal
variation between these habitats. Finally, we documented occu-
pancy in both habitats for several months in the field. If WCM
is a true generalist, we expect that (i) it will have positive popu-
lation growth in both habitats for many generations, (ii) it will
disperse towards good and poor habitats at a similar rate and it
will readily accept both habitats, (iii) it will adapt to the sink
habitat during long-term experimental evolution, and (iv) its
prevalence in the field will exclusively hinge upon host avail-
ability. By combining laboratory experiments (encompassing
population growth, behaviour and experimental evolution)
and field surveys, we demonstrated an important role of the
sink habitat in temporally varying environments.
2. Material and methods
(a) The study system
The WCM has long been considered a generalist phytophagous
mite found on approximately 100 species of grasses [40].
However, DNA barcoding has indicated that WCM actually
represents a cryptic species complex consisting of at least 29
genetically divergent lineages that differ in their host specificity
[41]. Here, we conducted experiments on the WCM MT-1 geno-
type (known as type 2 in Australia and North America, [42,43]),
which is distinguished by its distinct mitochondrial cytochrome
C oxidase subunit I (COI) sequence [44]. This genotype exhibits
a very high population intrinsic growth rate on wheat (Triticum
aestivum L.) (R0 = 50.5; 95% confidence interval (CI) = 46.2–57.1),
but it also develops on other cereals and wild grasses, albeit at
lower rates. On smooth brome (Bromus inermis Leyss.), a wild
grass species used in this study, intrinsic population growth is
six times lower (R0 = 8.2; 95% CI = 7.7–8.9) than that on wheat [45].

(b) Experiments
(i) Mite stock population
For all experiments, we used WCM MT-1 individuals from a
genetically diverse stock population that was established in
November 2017 using WCMs collected from nine localities in
Poland (1–5 populations from each locality). Field-derived (i.e.
initial) populations were initiated with 1–100 individuals that
had been collected from a separate wheat spike or grain (ca 500
total wild individuals). During the build-up of the initial popu-
lations, randomly chosen individuals were barcoded (using
COI) to confirm their MT-1 genotype. Once the initial popu-
lations were established (in total 26), approximately 1000 adult
females from each of the populations were combined to establish
the stock population. The stock population was maintained for
four weeks before individuals were used in the experiment. All
populations were maintained on wheat plants under constant
conditions (22–24°C, 12 L : 12 D cycle; 40% relative humidity
(RH)). Plants for all populations and experiments were grown
from seeds and cultivated in pots in separate rooms to avoid acci-
dental mite infestation. Details of population creation and
husbandry conditions can be found in the electronic supplemen-
tary material, appendix S1.

(ii) Population growth rate
To determine whether wheat and brome were source and sink
environments, respectively, we assessed the WCM population
growth rate on these plants. For this purpose, approximately
300 mites were transferred from the stock population to clean
potted wheat or smooth brome plants (10–14 and 30 days old,
respectively, corresponding to approximately the same biomass:
leaves of at least ca 100 mm long and 5 mm width). The plants
(20 per pot, 30 pots per species) with mites were kept in incuba-
tors under controlled conditions (27°C, photoperiod 16 L : 8 D
cycle, 60% RH). Egg-to-egg developmental time of WCM MT-1
at 27°C is 7 days [46]; thus, we counted mites after 14, 21 and
28 days, roughly corresponding to two, three and four gener-
ations, respectively, with 10 replicates (i.e. single pots) of each
plant species per time interval. Because accurately counting the
number of mites required destructive sampling, we used 30
pots per host species to obtain 10 replicates per plant species
and time interval.

(iii) Emigration
WCMs, as all herbivorous mites, disperse passively with wind,
and thus the place where such dispersers land is outside their
control [47–49]. Owing to such unpredictability, the decision to
initiate and undertake dispersal is especially crucial. Indeed,
there is ample evidence that herbivorous mites use different
types of cues upon which they base their decision to undertake
aerial dispersal [50,51]. Moreover, they are also ambulatory dis-
persers, using cues to move from or towards patches [52,53].
Here, we evaluate these two types of dispersal in WCM exposed
to wheat or brome.
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Emigration was measured as (i) dispersal rate via wind from
wheat towards both hosts (the proportion of individuals that dis-
persed relative to the total number of individuals on the source
plant), and (ii) acceptance rate of mites placed on both hosts (the
proportion of individuals that stayed on the experimental arena
relative to the total number of individuals placed on it).

Wind dispersal was measured in wind tunnels built accord-
ing to Kuczyński et al. [54]. These wind tunnels were composed
of (i) a wind generator producing wind at the speed of 2.5 m s−1

(sufficient wind speed for WCM MT-1 dispersal; [55]); (ii) source
plants, i.e. wheat plants infested with mites that were exposed to
wind to trigger mite dispersal; and (iii) target plants, i.e. an area
composed of either brome or wheat plants on which mites could
settle after dispersal. Mites were exposed to a fluctuating wind
regime (electronic supplementary material, appendix S2) to
mimic natural conditions in which the wind blows intermittently
and allow mites to receive cues (kairomones) from the plant
located downwind. Single upwind source plants were trans-
planted from the mite stock population and contained 1000 to
3500 mites. WCM densities on source plants were similar in treat-
ments with both target plant species and had no effect on
dispersal rates (electronic supplementary material, appendix
S3). Each blowing session lasted 24 h. After exposure to wind
currents, the number of individuals on the source plant was
counted. The number of dispersers was estimated as the differ-
ence in the number of mites present on source plants before
and after each blowing session. There were 10 replicates per treat-
ment (wheat–wheat or wheat–brome).

To measure host acceptance, 10 adult WCM females were
placed on leaf fragments (5 × 5 mm) of either wheat or brome
in individual wells of 6-well Plexiglas plates filled with artificial
culture medium [56]. After 30 min, the number of mites that
remained on the leaf fragments was counted. There were 20 repli-
cates for each host plant species.

(iv) Experimental evolution
WCM MT-1 has been found on brome in the field. Moreover, lab-
oratory experiments have shown that its growth rate after two
generations allows population replacement [45]. Therefore, we
tested whether WCM MT-1 adapted to this plant species using
an experimental evolution set-up. Mites from the stock population
were allocated to three host–plant selection regimes: wheat (10
populations), brome (33 populations) and wheat–brome (alternat-
ing every three generations on each host species; 30 populations).
Each replicate population was established with approximately
300WCMMT-1 individuals transferred from the stock population
to potted plants (20 plants per pot). Independent regimes were
incubated separately in growing chambers (under the same con-
ditions as the population growth rate experiment). Every three
weeks (three WCM generations at 27°C), approximately 300 indi-
viduals from each population were transferred to a pot with 20
new plants according to the selection regime. Populations on
wheat evolved for 39 generations (and they are still being main-
tained, currently reaching approximately 100 generations with
no extinctions observed), whereas those on the other regimes
were followed until extinction.

(c) Seasonal pattern of host plant infestation
To characterize the temporal patterns of natural infestation on
wheat and brome, we used data collected from the entire area of
Poland (greater than 311 000 km2) during the summer season
from June to August 2012–2014. To achieve an even distribution
of sampling localities, a stratified random sampling scheme was
used. The area of Poland was divided into 367 30 × 30 km squares
(i.e. strata). Within each stratum, a 1 × 1 km square of the agrarian
landscape was randomly selected. Randomization was restricted
to agrarian cover types based on the Corine Land Cover database
[57]. At the centre of each 1 × 1 km square, wheat from the cereal
field and smooth brome from nearby field margins were collected.
Each stratum was sampled once during the season. To collect
mature cereals in the period they are available (two months),
the area of Poland was divided into four parts and in each part,
collections were made simultaneously by a different group of
researchers. Each sample consisted of at least 10 plant shoots of a
given plant species (total samples: 281). Samples were transported
to the laboratory where each entire plant (leaves, leaf sheathes and
seed head spikes) was examined under a stereomicroscope (for
more details see [58]). The number of WCMs was recorded, after
which mites were soaked in ATL tissue lysis buffer for subsequent
DNA identification using COI barcodes (according to [59]).

DNA identification of the 2012–2014 surveys showed the total
absence of the WCMMT-1 genotype on brome in locations where
the main host (wheat) was available in the field. Other WCM gen-
otypes specialized to brome, namelyMT-9, MT-10 andMT-14 [41]
were found on brome in these locations. To assessmite distribution
in other periods, we used additional data over a longer period of
time (2007–2014), covering the time before wheat ripening and
after wheat harvesting (i.e. April to October). These data included
37 samples in total (all collected fromdifferent locations) consisting
of at least five shoots. Sampleswere collected and examined,WCM
specimens were counted, and DNA was barcoded as described
above. The distribution of all 318 sampling locations is presented
in the electronic supplementary material, appendix S4.

Data were not collected from November (late autumn) to
March (early spring) because fields are often hidden under
snow cover, and thus mites are very difficult to find.

(d) Statistical analyses
All statistical analyses were performed in R v. 4.0, [60] using the
‘mgcv’ package to fit generalized additive mixed models
(GAMMs) [61] and the ‘glmmTMB’ package to fit generalized
linear models (GLMs) [62].

(i) Population growth rate
The per capita population growth rate (r) was used as a measure of
the reproductive performance of WCM on both host plant
species. This was defined according to the following formula:

r ¼ ln
n
n0

� �
=t ,

where n0 corresponds to the number of females placed on each
plant at the beginning of the experiment, and n corresponds to
the number of mites (which are progeny of the n0 females)
after each tested time period, t, where t was expressed as the
number of generations. If r < 0, the population size decreases
and r = 0 indicates no change in population size.

To test whether the population growth rates differed between
wheat and smooth brome and changed across generations, a
GLM was used with a Gaussian error structure, with the target
host plant (wheat versus brome), generation number and their
interaction as predictors. As the data showed some degree of het-
eroscedasticity, the dispersion was also modelled within the
glmmTMB framework, allowing for separate estimates of var-
iance for each factor combination.

(ii) Emigration
To test whether both dispersal and acceptance rates differed
between wheat and brome, two separate GLMs were built. In
both models, a factor coding host species (i.e. ‘wheat’ or ‘brome’)
was used as predictor, with a binomial distribution for the
response and the logit link function. Thereafter, the effect size for
each model, Δ, was calculated, which was defined as the mean
difference between the dispersal or acceptance rate estimated
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for wheat and brome. To test whether the effect size was signifi-
cantly different from zero, we derived the distribution of Δ by
simulating posterior distributions of model parameters using the
‘simulate’ function available in the R package ‘glmmTMB’. Ten
thousand posterior samples were drawn, forming the resampled
distribution of the Δ statistics, given the observed data. Empirical
95% CIs for Δs were calculated as their 2.5% and 97.5% quantiles,
respectively.

(iii) Experimental evolution
Using survival analysis, we calculated the persistence time
(expressed as the number of generations) of WCM populations
subjected to three selection regimes: wheat only, brome only
and alternating wheat and brome. Populations with at least
one individual mite were considered persistent. A proportional
hazards model [63] was used to test whether the survival of
populations maintained in these regimes differed. Populations
that persisted until the end of the experiment (after 273 days =
39 generations) were coded as ‘censored’.

(iv) Seasonal pattern of host plant infestation
GAMMswere used to test whether seasonal patterns of infestation
differed between wheat and brome. For all 318 plant samples (181
samples of wheat and 137 of brome, each consisting of 5–22
shoots), the number of successes (infested shoots) and the
number of failures (uninfested shoots) were used as response vari-
ables in GAMM modelling using a binomial distribution for the
response and logit as a link function. Host plants (wheat or
brome) and the day of year (fitted as a smooth function represent-
ing seasonal patterns ofWCM infestation) were used as predictors.
Separate fits were allowed for the seasonal patterns for each host
(representing a statistical interaction between host plant species
and seasonal patterns). Additionally, to account for spatial vari-
ation in WCM prevalence, a Gaussian process smooth with a
Matérn covariance function [61] was fitted using geographical
coordinates, for each host separately. Moreover, as the data were
collected over several years (2007–2014), a year identifier was
included as a random factor, whichwas assumed to be an indepen-
dent and identically distributed random intercept representing
between-year variability in the WCM infestation.
3. Results
(a) Population growth rate
The WCM population growth rate differed significantly
between hosts (Wald χ1

2 = 342.9, p < 0.0001) and generations
(Wald χ2

2 = 83.0, p < 0.0001). The interaction term was not sig-
nificant (Wald χ2

2 = 3.4, p = 0.1842). On wheat, the mean
growth rate was well above replacement in the second,
third and fourth generations. By contrast, on brome, the
growth rate did not differ from zero in the second and
third generations, and it declined below the replacement
rate in the fourth generation (figure 1).

(b) Emigration
The dispersal rate (i.e. the proportion of individuals dispersed
by wind) was significantly higher when mites dispersed
towardswheat (14.8%,CI: 14.2–15.3) thanwhen they dispersed
towards brome (11.2%, CI: 10.7–11.6; Wald χ1

2 = 115.6, p <
0.0001). The mean difference (the effect size, Δ) was 3.6% and
the 95% CIs (2.90–4.32) did not include zero (figure 2a).

The acceptance rate (i.e. the proportion of individuals that
stayed on the plant leaf) also differed significantly between
hosts (Wald χ1
2 = 24.48, p < 0.0001) and was higher when

mites were placed on wheat (96.5%, CI: 93.3–98.5) than
when they were placed on brome (77.6%, CI: 71.4–82.9).
The mean difference (the effect size, Δ) was 19.0% and its
95% CIs (13.0–25.5) did not include zero (figure 2b).

(c) Experimental evolution
Smooth brome sustained WCM populations for fewer than 15
generations in all replicates. Mite populations persisted for
longer periods on brome when it was temporally interspersed
with wheat. However, even in this case, populations could
not persist for longer than 22 generations (figure 3a). Survival
differed significantly among host–plant selection regimes
(Wald test z = 2.40, p = 0.0164). The median persistence time
on brome was 4.5 generations (95% CI: 4.5–7.5), whereas, in
a fluctuating habitat, it was 7.5 (4.5–13.5) generations. In
the wheat regime, no extinctions were recorded (figure 3b).

(d) Seasonal pattern of host plant infestation
The GAMM modelling revealed significant host and spatio-
temporal patterns in WCM infestations (table 1). Indeed,
there were clear differences in WCM prevalence on both
host plants according to the season. On wheat, the prevalence
was relatively stable from the beginning of May (which corre-
sponds to wheat emergence) until the end of July, when it
started to increase gradually, reaching the highest levels just
before harvest. By contrast, brome was virtually uninfested
during the time when wheat was available in the fields, but
it became infested outside of this period (figure 4).
4. Discussion
In this study, we showed that brome is a sink environment for
WCMs, because its long-term growth rate in this environment
was below the replacement threshold. We also found that
mites were less likely to disperse towards and accept brome
relative to wheat. Additionally, mite populations failed to
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adapt to the brome environment, even in conditions of a het-
erogeneous environment, i.e. when interspersed with wheat,
which should select toward generalists [20]. Finally, we
showed that WCM is found on brome in the field only in
periods in which wheat is absent. Together, these results
show that brome is a sink environment that allows the persist-
ence of WCM populations when the source environment
(wheat) is unavailable.

(a) The failure of evolutionary rescue in the sink
environment

Given the ubiquitous occurrence of sink habitats, one possi-
bility is that populations adapt to this environment, thus
leading to evolutionary rescue [64,65]. The likelihood of
such evolutionary rescue increases with the amount of
standing genetic variation available for adaptation to the sink
environment [15,66,67]. The WCM population we used to
test adaptation to brome was established from a large
number of individuals collected at several distant geographical
locations, a procedure that is likely to maximize genetic var-
iance [53]. By following this method, we ensured a much
larger level of genetic variation than that usually found in
populations used in most studies of experimental evolution,
which have shown adaptation to a given environment
[19,68,69]. Despite many attempts, we did not find that
WCM adapted to brome. Therefore, it is unlikely that WCM
adaptation to brome occurs in the field, where the populations
colonizing brome are probably much smaller than those we
used in the laboratory.
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bands around these fits. (Online version in colour.)

Table 1. Significance of model terms (Wald test) in the generalized
additive model examining temporal patterns of natural host plant
infestation by WCM. (Estimated degrees of freedom (edf ) reflect the
smoothness of the fitted curve. The overall model fit, expressed as
explained deviance, is 55.3%.)

model term edf
Wald
statistics p-value

parametric term:

host plant species 1.0 9.8 0.0018

smooth terms:

seasonal pattern on wheat 2.8 34.1 <0.0001

seasonal pattern on brome 4.1 70.7 <0.0001

spatial trend surface on wheat 5.8 34.0 <0.0001

spatial trend surface on brome 2.0 7.4 0.0242

random intercept for year 5.3 61.7 <0.0001
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(b) Does a variable environment lead to the evolution
of generalists?

In the laboratory, we testedwhether mite populations adapted
to bromewhen placed in an environment where this plant was
temporally interspersed with wheat, which roughly corre-
sponded to the conditions they experience in the field.
Theory predicts that evolution in such temporally variable
environments selects for generalists (e.g. [20,21]). While
some experimental evolution studies have met these predic-
tions [70,71], many others have found different evolutionary
outcomes, such as diversification among [28] or within [30]
populations or even higher performance than specialists in
all environments [25]. Other studies failed to find signs of
adaptation to a temporally varying environment [19,26,72].
Here, we also found that experimental evolution with tem-
poral variation between brome and wheat did not result in
the ability to use both hosts; rather, this condition led to extinc-
tion, albeit at a slower rate than that occurring in a constant
brome environment. We also found that mites settled less on
brome and tended to move to wheat more frequently than to
brome. This form of habitat choice is predicted to hamper
adaptation to sink environments [73,74].Moreover, adaptation
to temporal sinks is favoured when the rate of change between
environments is slow [16], which was not the case in our lab-
oratory experiment, or the field. On the other hand, temporal
auto-correlation is expected to facilitate adaptation to a tem-
porally fluctuating environment [16,75]. This could be the
case in our system, as an alternation between good and bad
environments occurred every three generations. Whether
such alternation selects for a generalist is expected to hinge
on the degree of genetic variance for traits associated with
adaptation relative to the pace of environmental change [76]
and on whether a genetic trade-off between adaptation to
the two environments and/or a cost of plasticity exists [21].
We do not have information on these variables in our
system. Still, we did not observe the evolution of a generalist
via experimental evolution. In the field, WCMs were found
on brome only when wheat was absent. Additionally, data
on the population growth rate and population prevalence in



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211604

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 S

ep
te

m
be

r 
20

21
 

the field over several generations showed population declines
in brome, despite relatively constant numbers in the initial
generations. Moreover, behavioural data showed that WCMs
tended to leave brome and colonize wheat more often than
the reverse. Hence, these data confirm that brome is clearly a
sink environment. Our results emphasize that short-term
data on field distribution and population growth rates are
not sufficient to ascertain whether a given habitat is part of
the fundamental niche of a population because identifying
sinks may require data on at least several generations.

(c) The maintenance of sink habitats
We have clear evidence supporting the fact that the realized
niche of WCMs is larger than its fundamental niche, which
is one of the most direct consequences of the existence of
sinks [7,77]. The evolutionary maintenance of sink habitats
is possible when (i) fitness in the source is temporarily
lower than fitness in the sink and (ii) individuals that disperse
into the sink leave descendants, which can then successfully
disperse back into the source [78,79]. Our system fulfils these
conditions. Indeed, after harvest, the effective fitness on
wheat is zero, whereas on brome, although populations are
declining, they can thrive for a few generations, implying
that their fitness on this plant is higher than that on wheat.
Moreover, as populations in the sink environment persist
over a few generations, as evidenced from field and labora-
tory data, they can recolonize the source once wheat
becomes available again. Additionally, our habitat choice
experiments show that brome is not an ecological trap, as
both the acceptance and the colonization of this habitat by
WCMs are lower than those of wheat. The fact that brome
is not an attractive sink is expected to favour population
persistence [80,81].

(d) Sinks as temporal refuges
Interest in source–sink systems has generally focused on
their spatial dimensions [82], in which sinks may stabilize
metapopulations by providing alternative habitats when
sources are overcrowded [7]. Temporal aspects of source–
sink dynamics have been considered more rarely. For
example, Boughton [38] showed, in a metapopulation of the
herbivorous butterfly Euphydras editha, that similar habitats
could be sources or (pseudo)sinks depending on the complex
temporal dynamics caused by environmental effects on both
plant senescence and the butterfly life cycle. Similarly,
Johnson [39] showed that source–sink dynamics in popu-
lations of the rolled-leaf beetle Cephaloleia fenestrate depend
on the frequency of floods.

Our laboratory data suggest that WCM can persist on
brome for only a few generations. One may ask whether that
is sufficient to overcome the approximately 10-month period
(August–May) inwhichwheat is absent in the field. Generation
time in ectotherms increases with a decrease in temperature
[83]. Considering the monthly mean temperatures in Poland
and the relationship between the temperature andWCMdevel-
opmental time, we can roughly estimate the expected number
ofWCMgenerations producedwhen fields are without wheat.
Based on this, the cumulative number of generations from
August toMay in natural conditions is estimated to be 5.6 (elec-
tronic supplementary material, appendix S5, figures S3–S6),
which roughly fits the number of generations that WCM per-
sisted on brome in our experimental evolution (electronic
supplementary material, appendix S5 and figure S7). Our
data thus strongly suggest that brome, a sink habitat, can
serve as a temporal refuge for WCM populations, potentially
allowing them to recolonize wheat, i.e. their source environ-
ment, once this plant becomes available again. That is, the
sink habitat may act as a source, not via evolutionary rescue,
but rather by allowing population persistence in the system
despite declining population sizes. In other words, we show
that brome serves as a temporal stepping stone for the persist-
ence of this herbivore in the source environment. This potential
role of sinks in temporally varying environments has been pos-
tulated in mathematical models [79,84,85], but to our
knowledge, it has not been specifically tested.
5. Conclusion
Together, our results have broad-ranging implications for the
understanding of populations’ evolutionary responses to
varying environments. They emphasize the importance of
temporal source–sink dynamics in shaping species’ ecological
niches and have significant implications for explaining
patterns of host use by specialists.
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