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Abstract 

Biomass represents one of the renewable resources with greatest potential of application, 

being an efficient raw material for the use in many industries. The large amount of wasted 

biomass, namely forest residues, constitute a dramatic environmental problem. These residues 

are available in large quantities and poorly used, while boosting forest fires.  

The present work intended the valorisation of Portuguese forest residues, namely of 

Cupressus lusitanica Mill and Cistus ladanifer L., while contributing to a small-scale 

biorefinery within regional small and medium-sized enterprises (SMEs) premises to reach zero 

waste. A steam-distillation procedure was applied to each of these biomasses, resulting four 

distinct fractions: a) essential oils (EOs), b) hydrolates (Hs), c) distiller condensation waters 

(DCWs) and d) extracted solid residues (ESRs), which underwent chemical and biological 

activity characterization while different valorisations were tested.  

α-Pinene, limonene, δ-3-carene and sabinene were the main C. lusitanica EO constituents, 

whereas its Hs volatiles were dominated by cis-3-hexen-1-ol, camphor, umbellulone, 

p-cymene-8-ol and terpinen-4-ol. C. ladanifer EO major constituents were α-pinene and 

camphene, whereas 2,6,6-trimethyl cyclohexanone and trans-pinocarveol dominated the Hs 

volatiles. DCWs and ESRs showed a high phenolic content, mainly tannins. Catechins were the 

major compounds found in both species. Gallic acid, quercetin, hydroxycinnamic acid 

derivatives, salicylic acid, apigenin and syringic acid were only identified in C. ladanifer. 

C. lusitanica and C. ladanifer ESRs were both rich in lignin. All fractions showed antioxidant 

activity while Hs showed the highest anti-inflammatory one.  

Besides the potential of C. lusitanica and C. ladanifer biomasses as source of natural 

bioactive compounds, preliminary assays showed the potential of these biomasses in artisanal 

soaps and pellets production. A simplified economic viability study showed that the valorisation 

of these biomasses within the framework of a local small-scale biorefinery may be 

economically viable for SMEs.  

 

 

 

Keywords: Cistus ladanifer L., Cupressus lusitanica Mill., forest biomass, small-scale 

biorefinery, valorisation  
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Resumo 

A biomassa vegetal representa uma das fontes de energia renovável com maior potencial 

para produção de biocombustíveis, energia e produtos químicos, sendo útil como matéria-prima 

para diversas indústrias. As grandes quantidades de biomassa que são desperdiçadas, 

nomeadamente sobrantes florestais, constituem um grave problema a nível ambiental, uma vez 

que, na maioria das vezes, são deixadas ao abandono potenciando incêndios florestais. 

Estes sobrantes correspondem à fração de biomassa produzida a partir das operações de 

exploração florestal, onde se destacam as operações de abate, corte, desbaste, poda e limpeza, 

das quais resultam muitos resíduos como folhas, ramos, troncos e cascas. De acordo com os 

últimos dados disponíveis, a produção anual de biomassa florestal em Portugal é cerca de 6,5 

milhões de toneladas, onde apenas 2,2 milhões de toneladas são efetivamente utilizadas, sendo 

essa utilização essencialmente para fins energéticos. Foi a indústria da pasta de papel a pioneira 

no aproveitamento da biomassa florestal, sendo atualmente também utilizada para 

aproveitamento energético noutras indústrias como a indústria transformadora de madeira. Os 

principais consumidores deste tipo de biomassa em Portugal são as centrais termoelétricas a 

biomassa florestal, dedicadas à produção de eletricidade. Apesar da sua importância, esta 

biomassa ainda constituiu um recurso energético com um papel pouco relevante para a 

economia dos países desenvolvidos. A aposta na biomassa florestal tem-se restringido apenas 

à produção de energia, quer sob a forma de calor quer sob a forma de eletricidade, contudo o 

seu potencial não se limita apenas à produção de energia, mas poderá igualmente ser utilizada 

para a obtenção de outros produtos de elevado interesse para uma vasta gama de indústrias.  

Nesse sentido e, de forma a aproveitar todo o potencial da biomassa florestal, surgem as 

indústrias de biorrefinaria. Uma biorrefinaria consiste numa unidade indústrial que pretende 

utilizar de forma integral e sustentável os recursos endógenos, de forma a obter uma vasta gama 

de produtos, não só calor e eletricidade, mas também biocombustíveis, materiais e produtos 

químicos, criando dessa forma novas cadeias de valor em volta da biomassa num conceito de 

bioeconomia circular. Desta forma, a criação de pequenas biorrefinarias regionais poderão ser 

assim uma alternativa viável para as pequenas e médias empresas ligadas ao setor das florestas. 

Em Portugal, são inúmeras as empresas cuja atividade está diretamente ligada à floresta e 

que não tiram partido das grandes quantidades de biomassa que resultam das suas atividades. 

A Silvapor – Ambiente e Inovação, Lda., é uma empresa portuguesa localizada na Quinta da 

Devesa, concelho de Idanha-a-Nova, distrito de Castelo Branco, que tem como principais 

atividades a prestação de serviços florestais, agrícolas e outros, nomeadamente trabalhos de 

silvicultura geral, específica e preventiva. Como resultado das suas atividades, derivam muitos 

resíduos sem valor aparente e sem qualquer destino, sendo muitas vezes deixados ao abandono 

no solo ou queimados a céu aberto. A preocupação com a quantidade de resíduos resultantes 

das suas atividades e a oportunidade de obtenção de um rendimento complementar, levaram a 

Silvapor a instalar uma pequena destilaria nas suas instalações. Como principal objetivo a 
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empresa pretendeu valorizar estes resíduos através da obtenção de óleos essenciais, contudo, 

do processo de extração resultam outras frações que poderão igualmente ser valorizadas. Esta 

valorização dos resíduos sobrantes provenientes das atividades florestais, num conceito de 

biorrefinaria e desperdício zero, foi o ponto de partida para todo o trabalho aqui apresentado. 

Neste sentido, o presente trabalho teve como principal objetivo a valorização integral da 

biomassa florestal endógena subaproveitada de Cupressus lusitanica Mill e Cistus ladanifer L., 

resultante das atividades de limpeza e manutenção pela empresa Silvapor, no contexto de uma 

micro-biorrefinaria. Pretendeu-se avaliar o potencial de valorização destas biomassas através 

da caracterização química e biológica das quatro frações que se obtém por destilação por 

arrastamento de vapor: i) óleos essenciais (EOs1), ii) hidrolatos (Hs), iii) águas de condensação 

(DCWs) e iv) resíduos sólidos extratados (ESRs) e pela utilização de algumas destas frações, 

nomeadamente os EOs e os ESRs, na produção de outros produtos como sabonetes e pellets, 

respetivamente. 

A composição química dos EOs e dos compostos voláteis dos Hs foi avaliada por 

cromatografia gasosa e cromatografia gasosa acoplada a espetrometria de massa. No caso dos 

hidrolatos foi necessária uma extração prévia líquido-líquido com n-pentano para isolamento 

dos voláteis. As DCWs e os extractos de ESRs foram avaliados quanto ao teor em fenólicos 

totais, flavonóides e taninos, sendo o perfil fenólico das DCWs e dos extratos obtidos por 

ultrasons com etanol seguido de acetona a 70 % dos ESRs caracterizado por eletroforese capilar 

de zona. A atividade antimicrobiana dos EOs e dos Hs, foi testada, usando o método de difusão 

em agar, contra as bactérias Escherichia coli e Staphylococcus aureus e contra a levedura 

Candida albicans. A atividade antioxidante dos EOs, Hs, DCWs e ESRs foi determinada 

utilizando diferentes métodos, nomeadamente: i) captação do radical livre ABTS (sal 

diamónico do ácido 2,2’-azino-bis(3-etilbenzotiazolina-6-sulfonato)), ii) captação do radical 

anião superóxido, iii) inibição da xantina oxidase e iv) quelação de iões metálicos. A atividade 

anti-inflamatória dos Hs, DCWs e ESRs foi também determinada utilizando o método de 

desnaturação da albumina. Os ESRs foram avaliados em termos da sua composição 

lenhocelulósica, nomeadamente teor em celulose, hemicelulose, lenhina (Klason e solúvel), 

proteína e cinzas. 

Os EOs de ambas as espécies mostraram ser constituídos maioritariamente por 

hidrocarbonetos monoterpénicos, enquanto os monoterpenos oxigenados dominaram os 

voláteis dos Hs. O α-pineno, o limoneno, o δ-3-careno e o sabineno foram os componentes 

dominantes (≥10 %) encontrados no EO de C. lusitanica, enquanto o cis-3-hexen-1-ol, a 

cânfora, a umbelulona, o p-cimeno-8-ol e o terpinen-4-ol foram os componentes dominantes 

(≥10 %) identificados nos voláteis do H. Os compostos maioritários (≥10 %) identificados no 

EO de C. ladanifer foram o α-pineno e a cânfora, enquanto o 2,6,6-trimetil ciclohexanona e o 

 
1 Para evitar a sobreposição, e/ou confusão, de abreviaturas, optou-se por apresentar na versão em Português do 

resumo as mesmas abreviaturas utilizadas na versão em Inglês. 



 

vi 

trans-pinocarveol dominaram (≥10 %) os voláteis do H desta mesma espécie. As DCWs e os 

extratos dos ESRs mostraram ser ricos em compostos fenólicos, maioritariamente taninos, 

mostrando um perfil fenólico complexo, com a predominância de catequinas. Foi também 

possível identificar compostos como o ácido gálico, quercetina, derivados do ácido 

hidroxicinâmico, ácido salicílico, apigenina e ácido siríngico apenas nas amostras do 

C. ladanifer. Das diferentes extrações feitas aos ESRs, foi a extração com acetona a 70 % a 

mais eficiente na remoção dos compostos fenólicos para ambas as espécies. A análise à 

composição lenhocelulósica dos ESRs mostrou que ambas as biomassas são ricas em lenhina. 

Das diferentes atividades biológicas testadas, observou-se que os EOs de C. lusitanica e 

C. ladanifer apresentaram uma fraca atividade antimicrobiana contra E. coli, S. aureus e 

C. albicans. Por outro lado, todas as frações apresentaram uma considerável atividade 

antioxidante, tendo sido os EOs de ambas as espécies os que apresentaram melhores resultados 

pelo método de inibição da xantina oxidase. Das várias frações testadas, foram os Hs de ambas 

as espécies que apresentaram elevada atividade anti-inflamatória.  

Para além do potencial como fonte de compostos bioativos de elevado interesse para diversas 

indústrias, ensaios preliminares mostraram também o potencial de algumas das frações, 

nomeadamente dos EOs e dos ESRs, na formulação de outros produtos como os sabonetes 

sólidos artesanais e os pellets.  

Em conclusão, verificou-se que a valorização da biomassa florestal subaproveitada integrada 

num conceito de micro-biorrefinaria numa pequena e média empresa local é uma realidade 

possível e economicamente viável.  

 

 

 

Palavras-chave: Biomassa florestal, Cistus ladanifer L., Cupressus lusitanica Mill., micro-

biorrefinaria, valorização 
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Context and Motivation 

Forest biomass production accounts for around 6.5 million tons/year in Portugal, with only 

2.2 million tons/year effectively used for energy production (CAM, 2013). Diverse 

maintenance and logging operations result in different types of residues, such as bark, leaves, 

branches and wood parts. This biomass is usually underused, left in the ground or sent for 

energy recovery. However, in an integrated biorefinery concept, this biomass can be used as a 

raw material for the simultaneous production of fuels, energy, chemicals and other value-added 

products (Carvalheiro et al., 2008; Moure et al., 2001; SIADEB, 2013). Within this group of 

products, bioactive compounds can be highlighted, such as polyphenols and compounds that 

occur in essential oils, such as terpenoids. These compounds are widely valued due to their 

potential biological activities as antioxidant, antimicrobial and anti-inflammatory, among 

others, being thus of high interest to pharmaceutical, food and cosmetic industries (Albano et 

al., 2012; Raut and Karuppayil, 2014; Roseiro et al., 2013). Obtaining tradable products from 

underutilized endogenous resources, such as forest wastes, is highly demanded. However, this 

is an issue without an easy solution since it involves not only know-how on the technical-

scientific aspects that lead to economically viable processes, but also on the logistical and 

regional aspects that impose major constraints on the economic viability of many of the 

processes currently available. Indeed, most of these processes are characterized by focusing on 

the production of only a single product from these wastes and, in most cases, from a single 

waste or a small part of it. Thus, the strategy could then involve the full valorisation of the 

available biomass, within a biorefinery concept, producing a broader set of products towards 

zero waste. This recovery will bring many benefits, thus reducing the ground waste available 

fuel in the event of a fire, production of new value-added products, greater economic power 

and job creation. 

This work intended to contribute to the valorisation of some Portuguese forest residues, 

resulting from cleaning and maintenance activities of a national company – Silvapor - Ambiente 

e Inovação, Lda. As such, the company may use the residues resulting from its activities into 

added-value products within a local small-scale biorefinery approach, thus reducing their 

accumulation in the environment, boosting local use of biomass and creating new products with 

greater national and international economic potential. 

 

Objectives 

The large amount of biomass that is wasted is currently a serious environmental problem. 

Forest biomass is one example of such residues, due to the large quantities available while 

poorly used, being thus a boost for forest fire events. Therefore, the reutilisation of these 

residues, mainly from maintenance and logging operations of small/medium enterprises, must 
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be considered.  

Bearing this in mind, the main goal of the present work was the full valorisation of two 

Portuguese forest species residues, Cupressus lusitanica Mill. and Cistus ladanifer L., within 

an integrated biorefinery concept. For that purpose, these two biomasses were subject to steam-

distillation at an industrial scale in Silvapor premises, a SME company dedicated to forest 

maintenance, in order to obtain essential oils and hydrolates as immediate added-value products 

thereof. The remaining by-products of this process, namely, distilled condensation waters and 

extracted solid residues, were also studied and characterised, aiming to further valorization 

within a local small-scale biorefinery concept and towards zero waste. 

 

The specific goals were: 

i) Chemical characterization of C. lusitanica and C. ladanifer essential oils and 

hydrolates obtained by steam-distillation of its biomasses, and comparison with the 

same products obtained by hydrodistillation at a lab scale; 

ii) Chemical characterization of the extracted solid residues of C. lusitanica and 

C. ladanifer in terms of cellulose, hemicellulose, Klason lignin, soluble lignin, 

extractives, protein and ash; 

iii) Investigation for the presence of value-added compounds, namely phenolics, in 

distilled condensation waters and in extracted solid residues; 

iv) Evaluation of some biological activities, (namely, antimicrobial, antioxidant and 

anti-inflammatory activities), of essential oils, hydrolates, distilled condensation 

waters and extracted solid residues; 

v) Valorisation of the four different fractions obtained by steam-distillation and 

production of new value-added products using some of the previous fractions, 

namely, incorporation of essential oils in hygiene products, such as soaps, and use 

of the residual extracted solid residue to produce solid fuels, such as pellets; 

vi) Simplified financial and economic analysis associated to the steam-distillation 

process and valorisation of C. lusitanica and C. ladanifer biomasses.  

 

Thesis outline 

The PhD thesis was organised in 5 chapters, 2 of these chapters consisting of peer review 

scientific works published in International Crops and Products journal. These 2 chapters contain 

abstract, introduction, methodology, results, discussion, conclusions, and independent 

bibliography, according to the guide for authors of the referred journal. 

Chapter I consists in an introduction to the topics covered in this thesis. Being biomass the 

raw material of this work, this chapter intends to define this subject, namely on lenhocelulosic 

biomass, as well as its relationship with the concepts of biorefinery and circular bioeconomy. 
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While presenting Silvapor - Ambiente e Inovação Lda., the biomass under study, Cupressus 

lusitanica Mill. e Cistus ladanifer L resulting from the cleaning and maintenance work carried 

out by Silvapor is addressed. This chapter also defines the four distinct fractions that result from 

the distillation process of both biomasses, carried out in Silvapor: i) essential oils, ii) hydrolates, 

iii) distiller condensation waters and iv) extracted solid residues. Transversally to all fractions, 

different biological activities were assessed in this work, thus this topic is also referred in this 

chapter, namely the antioxidant, anti-inflammatory and antimicrobial activities.  

Chapter II discusses the work developed with two of the fractions, namely the essential oils 

and hydrolates, resulting from the steam-distillation process of C. lusitanica and C. ladanifer 

biomasses. The composition of the corresponding essential oils and hydrolates volatiles was 

presented, as well as the results of the biological activities determined, namely the 

antimicrobial, antioxidant and anti-inflammatory ones.  

Chapter III reports the work developed with the other two fractions, distiller condensation 

waters and extracted solid residues. The potential of both fractions was evaluated for total 

phenolic content and antioxidant and anti-inflammatory activities. The extracted solid residues 

were also chemically characterized in terms of its lenhocelulosic composition.  

Chapter IV addresses the possible valorisations that may be given to the C. lusitanica and 

C. ladanifer considering the literature and the results obtained in the present study, giving 

special relevance to the production of soaps and pellets. In this chapter, a simplified economic 

analysis is also made on the viability of the biomass valorisation process for Silvapor. 

Final considerations are described in Chapter V, where global conclusions and future work 

is presented.  
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2 

1. Biomass and Biorefinery 

According to the latest data, the portuguese forest occupies about 36 % of the mainland 

(ICNF, 2015). Forest maintenance, such as thinning and cleaning of trees, can lead to 

considerable amounts of residues, including shrubs, trees and their trunks, barks, branches, 

leaves, flowers and even fruits (PCM, 2017). The availability of biomass associated with its 

composition is the basis to produce other types of products, such as biofuels, bioenergy and 

other bioproducts, that are increasingly replacing products derived from fossil fuels. The 

expansion and utilization of fossil fuels was crucial to modern industrial growth and human 

society innovation. However, its use leads to severe environmental problems. The most serious 

is the large amount of carbon dioxide (CO2) produced during combustion of fossil fuels. Carbon 

dioxide is one of the greenhouse gases that contrinute to global warming (Kiang, 2018). Other 

problems is related to the fact that fossil fuels resources are not renewable and finite (Basu, 

2013). In this way, biomass could be a strong alternative to the use of non-renewable resources, 

because it’s a CO2-neutral fuel, renewable and infinite (Basu, 2013; Kiang, 2018). 

In a biorefinery concept, the full valorisation of biomass to obtain other products is becoming 

crucial to a better environment, economy and society (Han et al., 2018; Kehili et al., 2016). 

Given the need for an integrated forest policy that promotes the sustainability of the forest and 

its management, as well as the prevention of forest fires, it is intended that the development of 

biorefineries using endogenous resources can create new and sustainable value chains around 

the biomass in the so-called circular economy and bioeconomy (PCM, 2017, Zeller et al., 2018).  

 

1.1. Biomass 

According to the Directive 2009/28/EC, biomass is defined as “biodegradable fraction of 

products, waste and residues from biological origin from agriculture (including vegetal and 

animal substances), forestry and related industries including fisheries and aquaculture, as well 

as the biodegradable fraction of industrial and municipal waste”. 

Among all renewable energies, biomass is the only one that can be simultaneously converted 

into energy, fuels, materials and chemical products, being efficient as a raw material for 

industrial processes, such as biorefinery (COM, 2005/628; Kamm and Kamm, 2004). However, 

there are large amounts of biomass that are wasted, namely industrial and agro-industrial wastes 

of lignocellulosic nature (Carvalheiro et al., 2008), which are increasingly an environmental 

issue. One example is the forest biomass, in particular forest leftovers, which can constitute a 

serious problem due to the large quantities available, thus boosting forest fires. Forest biomass 

(FB) is identified as lignocellulosic materials from forest exploitation activities, under-cover 

forests and uncultivated areas (CAM, 2013). It is estimated that the annual production of FB in 

the Europe is 18 600 million tons / year, being around 48 % used for energy production (Camia 

et al., 2018). According to the latest data, in Portugal, the annual production of FB is around 
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6.5 million tons, while the availability of biomass with potential of being used is only 

2.2 million tons. It should also be noted that, in practice, all the valorisation given to this 

biomass is for energy purposes (CAM, 2013). 

 

1.1.1.  Lignocellulosic biomass  

The lignocellulosic biomass (LB) corresponds to different types of plant biomass, 

constituted mainly by polysaccharides (cellulose and hemicelluloses) and lignin (Verma et al., 

2011), with an estimated global production of 10-50 billion tons/year (Salanti et al., 2010). 

Cellulose, hemicellulose and lignin are the main constituents of the cell walls of plant biomass, 

being these polymers responsible for the support structure of plant cell walls. The primary 

structure of the cell walls is composed of rigid fibers, called cellulose microfibrils enclosed by 

hemicellulose molecules, with lignin impregnated in hemicellulose molecules (Figure 1.1) 

(Pereira et al., 2003; Santos et al., 2012).  

In the secondary structure of the cell, lignin is, many times, the major component. Contrary 

to the first layer, the second one presents a greater rigidity, forming a complex vascular system, 

resistant to the penetration of molecules of high molar mass, like enzymes, and to 

microbiological attacks (Pereira et al., 2003). Thus, the degradation of lignocellulosic materials 

is difficult and can only be achieved by chemical or mechanical processing (Aguiar and Ferraz, 

2011). 

 

 

Figure 1.1. Structure of lignocellulosic biomass (Adapted from Santos et al., 2012). 

 

The major structural components of LB are cellulose (40-50 %), hemicellulose (20-30 %) 

and lignin (20-30 %) (Lee et al., 2014; Isikgor and Becer, 2015) (Table 1.1). These individual 

parts give the LB a very strong polymer structure making it difficult to use. Thus, it is usually 

necessary to use pre-treatments involving physical, chemical and/or biological processes in 

order to obtain a selective and efficient separation of these fractions (Silveira et al., 2015). 
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Table 1.1. Types of lignocellulosic biomass and their relative proportion of cellulose, hemicellulose and lignin 

(Adapted from Isikgor and Becer, 2015). 

Lignocellulosic biomass  Cellulose (%) Hemicellulose (%) Lignin (%) 

Hardwood Eucalyptus 54.1 18.4 21.5 

 Oak 40.4 35.9 24.1 

 Poplar 50.8-53.3 26.2-28.7 15.5-16.3 

     

Softwood Douglas fir 44.0 11.0 27.0 

 Pine 42.0-50.0 24.0-27.0 20.0 

 Spruce 45.5 22.9 27.9 

     

Agricultural and  Barley Hull 34.0 36.0 13.8-19.0 

agro-industrial  Barley Straw 36.0-43.0 24.0-33.0 6.3-9.8 

materials Corn Cobs 33.7-41.2 31.9-36.0 6.1-15.9 

 Wheat Straw 35.0-39.0 23.0-30.0 12.0-16.0 

 Oat Straw 31.0-35.0 20.0-26.0 10.0-15.0 

 Rice Straw 29.2-34.7 23.0-25.9 17.0-19.0 

 Sugarcane Bagasse 25.0-45.0 28.0-32.0 15.0-25.0 

 Miscanthus 36.2-39.9 21.9-28.9 9.5-18.6 

 

In addition to the structural components, LB consist of proteins, pectins, starch, inorganic 

compounds, such as ash, and other groups of compounds called extractives (Kuila and Sharma, 

2017). The extractives correspond to a large variety of compounds that can be divided into three 

groups: i) phenolic compounds, such as, flavonoids, phenolic acids, lignans and tannins; 

ii) terpenes, terpenoids and their derivatives; iii) aliphatic compounds such as alkanes, alkanols, 

waxes and free fatty acids. Furthermore, they are part of extractive inorganic compounds that 

comprise the whole fraction of ash, namely compounds like potassium, magnesium and silicon 

(Alén, 2000; Pereira et al., 2003). Unlike cellulose, hemicellulose and lignin, the extractives 

are easily extracted using suitable solvents. Separating and obtaining different components of 

LB is possible and thus result into value-added products like biofuels, materials and chemicals. 

 

Cellulose 

Cellulose is a linear homopolysaccharide made of repeating units of cellobiose linked to 

each other by β-1,4 glycosidic bonds. Cellobiose is formed by two glucose molecules bounded 

to each other through hydrogen bonds which the oxygen atom establishes with the 3-OH bond 

of the next molecule (Figure 1.2) (Rebouillat and Pla, 2013). The degree of polymerization 

(DP) of cellulose ranges from 500-15000 monomeric units according to the type of material. 

Agricultural residues, such as wheat straw and sugarcane bagasse, are composed of cellulose 

chains with lower DP (about 1000), while hardwood and softwood materials have a higher DP 

(about 5000) (Hallac and Ragauskas, 2011). Therefore, a high DP corresponds to a more rigid 

cellulosic material. Linear cellulose chains organize in parallel forming elementary fibrils that 
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are bound together by strong hydrogen bonds. The aggregation of elementary fibrils leads to 

the formation of microfibrils, consisting of highly ordered crystalline regions and amorphous 

sections (Ruel et al., 2012, Kirk and Farrel, 1987). Due to its crystalline structure and hydrogen 

bonds, cellulose has a high chemical resistance and is insoluble in most solvents (Fenger and 

Wegener, 1989; Sjöström, 1981). In the context of a biorefinery, it is expected that the pulp 

plays an important role as a raw material to produce various products, such as biofuels, 

nanocomposites and biofilms.  

 

 

Figure 1.2. Molecular structure of a cellulose polymer chain (Adapted from Rebouillat and Pla, 2013). 

 

Hemicellulose 

Hemicellulose is an amorphous heteropolysaccharide, composed of several heteropolymers 

including xylan, galactomannan, glucuronoxylan, arabinoxylan, glucomannan and xyloglucan 

(Isikgor and Becer, 2015, Rose, 2003). The heteropolymers are composed by a wide range of 

5- and 6- carbon monosaccharide units: pentoses (e.g. xylose and arabinose), hexoses units (e.g. 

glucose, mannose and galactose) and associated uronic acids (e.g. 4-O-methyl-glucuronic and 

galacturonic acids) (Figure 1.3) (Isikgor and Becer, 2015; Pereira et al., 2003; Puls, 1997). 

Unlike cellulose, hemicelluloses have low DP (between 80-200) (Waldron, 2010). This low DP 

associated with the lack of crystalline regions in the hemicellulose structure allows the 

hemicelluloses to be quite soluble in acids or alkaline solutions, being able to be hydrolysed in 

their monomeric components (Alén, 2000; Pereira, 2003). Depending on the lignocellulosic 

biomass, hemicelluloses differ in composition. Hardwood hemicelluloses contain mostly 

xylans, while softwood contain mostly glucomannans (Isikgor and Becer, 2015). The diverse 

macromolecular composition of hemicellulose offers a wide range of possibilities for the use 

of this fraction of lignocellulosic biomass. For example, furfural is one of the major chemicals 

resulting from the dehydration of pentoses derived from hemicellulose (Binder et al., 2010). 

Also, xylitol and arabinol are examples of products which can be obtained from hydrolysates 

of hemicellulose (Dietrich et al., 2017). Like cellulose, hemicellulose has also an important role 

in the context of a biorefinery, since it serves as a raw material to produce other products, such 

as thickeners, adhesives, emulsifiers and biofuels. 
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Figure 1.3. Chemical structure of the main monosaccharide units in hemicelluloses and an example of structure 

of glucomannan (Isikgor and Becer, 2015; Pereira et al., 2003; Puls, 1997). 

 

Lignin 

Lignin is a branched heteropolymer of polyphenolic and amorphous nature consisting of 

basic phenylpropane units linked together by carbon-carbon bonds and ether linkages. This 

aromatic macromolecule is formed by the dehydrogenation polymerization in the presence of 

three precursors and an enzyme, a process known as lignification. These precursors are the 

coniferilic, p-coumarilic and synapylic alcohols, which give rise to phenylpropane units 

guaiacyl, p-hydroxyphenyl and seringyl, respectively (Figure 1.4) (Brandt, 2013). Its origin can 

vary depending on whether it is hardwood or softwood. Hardwood lignin is generally composed 

of coniferyl and synapyl alcohols, while softwood lignin is mainly derived from coniferyl 

alcohol (Jönsson, 2016). In general, lignin has a complex three-dimensional structure, hard to 

degrade, giving the plants an important physical support (Fenger and Wegener, 1989). Due to 

its chemical nature, lignin is little affected by acids, bases or enzymes, being one of the most 

resistant natural polymers. However, and compared with polysaccharides, it is more sensitive 

to oxidation reactions or the action of organic solvents (Weng et al., 2008). Lignin is also a by-

product of the pulp and paper industry, presenting several applications as a binder, dispersant 

and emulsifier (Chakar and Ragauskas, 2004). Within a biorefinery, lignin has shown to be a 

promising source of aromatic chemicals. For instance, the production of polyurethane and 

polyesters from lignin for bioplastic production can be highlighted (Bonini et al., 2005; Pandey 

and Kim, 2011). 

 

C6 sugaresC5 sugares
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Figure 1.4. Chemical structure of three precursors and the respective phenylpropanoid units composing lignin 

macromolecule (Adapted from Brandt, 2013). 

 

Other compounds 

In addition to the structural components, cellulose, hemicellulose and lignin, lignocellulosic 

materials also have in their constitution other compounds, such as proteins, pectins, ashes and 

extractives (Fenger and Wegener, 1989; Kuila and Sharma, 2017). Focusing on the extractives, 

they comprise a variety of generally low molecular weight chemical compounds, being non-

structural components contained in plant cells without being chemically attached to the cell 

wall (Pereira et al., 2003). Most of the extractives are secondary metabolites that play other 

roles in the plant besides the ones involved in the growth and cell development. This includes 

the protection of the plants against pathogens (Barnett and Jeronimidis, 2003). Extractives 

comprise very different classes of compounds and can be classified into the following groups: 

phenolics, terpenoids, fatty acid esters (fats and waxes) and alkaloids (Alén, 2000; Fenger and 

Wegener, 1989). In contrast to cellulose, hemicellulose and lignin, the extractives are 

extractable using solvents of suitable polarity without changes in the structural characteristics 

of the cell (Pereira et al., 2003). Although they constitute a small fraction of LB (under 10 %), 

they are currently of interest to the food, cosmetic, and pharmaceutical industries (Barnett and 

Jeronimidis, 2003).  

 

1.2. Biorefinery 

The search for clean and economically viable alternatives, such as renewable resources, with 

the aim of replacing fossil fuels, has sharply increased. Also, the concern with reuse and 

sustainable development has been growing over the last years, leading to the concept of 

biorefinery. By analogy to oil refineries, the concept of biorefinery emerged, consisting of an 
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industrial unit that integrates several processes of biomass conversion in a sustainable way for 

the simultaneous production of a wide range of value-added products, such as, energy, fuels, 

chemicals and materials (Figure 1.5) (Carvalheiro et al., 2008; SIADEB, 2013). 

 

 

Figure 1.5. Concept of biorefinery (Adapted from SIADEB, 2013). 

 

Despite the advantages of the use of biomass in relation to other resources of fossil origin, 

the process associated with the transformation of the biomass into other products is not easy, 

because it consists of several fractions, with very variable chemical composition. Thus, it 

requires advanced studies and processes to enable them to be used efficiently (Kamm and 

Kamm, 2004; Kamm, 2007; Ragauskas et al., 2003). Biorefineries can be classified according 

to the raw material used, the technological process and/or process technology. There are several 

technological processes that may be involved in the processing of biomass in order to obtain a 

greater number of added value products, such as separation processes, chemical/biochemical 

conversions and thermochemical conversions. Thus, biorefineries can be classified according 

to the type of technological process involved, and defined in different platforms: biochemistry, 

thermochemistry, biodiesel and biogas (Kamm et al., 2006; Kamm, 2007). The biochemical 

platform involves physical, physical-chemical, chemical or biological pre-treatment processes 

in order to convert the biomass into simple sugars and subsequent fermentation, with a view of, 

for example, producing liquid biofuels. The thermochemical platform involves the 

decomposition of the biomass by gasification and/or pyrolysis, using heat and catalysts (Kamm, 

2007; Kamm et al., 2006). Both platforms are the most important and the use of each of them 

will depend on the type of installation, the technology involved and the products that are 

intended to be obtained. A higher operation efficiency of these facilities requires the 

improvement of the biochemical and thermochemical processes, as well as the development of 

new equipment. This will lead to a low amount of generated waste and consequently improved 

yield (Bozell and Petersen, 2010). 
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1.2.1.  Small-scale Biorefinery 

Biorefineries are needed to supply the market in the next years with all types of products, 

including, fuels, chemicals, materials and energy. However, the development of large-scale 

biorefineries will be always facing issues related to logistics and transports, especially due to 

limitations in terms of raw material availability and its accessibility (Loaiza et al., 2017). 

A promising approach to speed up the implementation of integrated biorefineries is the 

stimulation and sponsoring of small and regional biorefineries. Small-scale biorefinery are 

useful ecologically, economically, and socially (Visser and Ree, 2016). Small-scale 

biorefineries have many advantages, namely: i) could be located on rural zones; ii) it requires 

relatively low initial investments; iii) it can integrate simple and inexpensive process 

technologies; iv) it results in the reduction of transportation costs; v) it may involve local 

stakeholders; vi) it increases rural employment, and, most importantly, vii) it makes full use of 

available local resources (Bruins and Sanders, 2012).  

Small-scale biorefineries is a subject that has not been much studied in literature. Although 

they are very important for the rural development, this concept is still not really applied by 

Small and Medium-sized Enterprises (SMEs). One of the aims of this work it to show that it is 

possible to create a small-scale biorefinery by a National SME.  

 

1.3. Circular economy, Bioeconomy and Circular Bioeconomy 

The current fossil-based economy has been assigned as non-renewable, unsustainable, 

environmentally dangerous, incapable to manage waste and preserve resources. In addition, 

environmental concerns, such as climate change issues, have increased dramatically (Jong and 

Jungmeier, 2015). Alternatively, the European Union has been looking for solutions to these 

problems without affecting the economic growth. In response, two concepts have been 

proposed: circular economy and bioeconomic (COM, 2012/60; COM, 2015/614; McCormick 

and Kautto, 2013). The circular economy represents the ideology of preserving the economic 

value of products, materials, and resources for as long as possible, thus minimizing the 

generation of waste (COM, 2015/614). On the other hand, the use of biomass resources as raw 

materials to produce food, bio-based materials and bioenergy is the basis of a bioeconomy 

(COM, 2012/60; McCormick and Kautto, 2013). Both concepts share some of the targets like 

a more sustainable and resource efficient world with a low carbon footprint, reduction of fossil 

carbon and waste valorisation (Carus and Dammer, 2018). The crossover between circular 

economy and bioeconomy corresponds to the new concept of circular bioeconomy. Sharing, 

reusing and recycling, all associated with the usage of biomass resources for production of new 

materials and bioenergy, are the main principles of a circular bioeconomy (Carus and Dammer, 

2018). The merging of these concepts will result in the production, utilization, consumption, 

storage, recycling and reuse of biological and renewable resources towards: i) rational 
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management of resources; ii) sustainable value chain creation in industry; iii) zero or reduced 

impact in the existing and future environmental issues and iv) sustainable growth of population 

worldwide (COM, 2012/60; COM, 2015/614; McCormick and Kautto, 2013).  

 

2. Silvapor – Ambiente e Inovação, Lda. 

With 30 years of history, Silvapor – Ambiente e Inovação, Lda., is a company located at 

Quinta da Devesa, municipality of Idanha-a-Nova, district of Castelo Branco. Its activity started 

in 1989, initially as Silvapor - Agricultura e Silvicultura Lda. From 2015, its name changed to 

Silvapor - Ambiente e Inovação Lda., designation which is currently used (Silvapor, 2019). 

Silvapor is characterized by its entrepreneurial and agile structure, supported by a dynamic 

team. In addition to the team located at Idanha-a-Nova, other mobile teams are distributed 

throughout different regions of the country. Each team is committed to the sustainable 

development of the forest, maintaining the necessary environmental concern that results from 

its activities. Using its know-how, creativity and equipment, Silvapor is prepared to respond to 

the needs of the customers. 

Forest related, agricultural and other services, namely general, specific and preventive 

works, as well as the production and commercialization of forest plants are the main activities 

of Silvapor. With the objective of enriching the range of skills, Silvapor is also engaged in other 

type of works, such as dune work, installation and maintenance of gardens, elimination of 

spontaneous vegetation along riverside areas, dams and river basins, berms and roadways 

slopes. 

"The difference is in the quality" is the slogan of Silvapor and based on this saying, the 

company participated, between 2007 and 2008, in the Small and Medium-sized Enterprises 

(SMEs) Project "Business Excellence" (Excelência Empresarial) promoted by the Portuguese 

industrial association AIP (Associação Industrial Portuguesa) and by the business association 

of the region of Castelo Branco NERCAB (Associação Empresarial da Região de Castelo 

Branco). As a result, Silvapor attained in 2008, the certification no. 2008 / CEP.3335 on quality 

management systems according to the Portuguese standard NP EN ISO 9001:2008 Sistemas de 

Gestão da Qualidade. In addition, Silvapor has the construction permit IMPIC no. 60,795, from 

IMPIC (Instituto dos Mercados Públicos, do Imobiliário e da Construção), the Portuguese 

entity that regulates and supervises the construction and real estate sector. 

In 2012, Silvapor obtained the licence 010-AT, issued by the Portuguese department of 

agriculture and rural development DGADR (Direção Geral de Agricultura e Desenvolvimento 

Rural), which allows supplying services of land-based application of plant protection products. 

In the same year, Silvapor has been awarded by the Portuguese agency for competitiveness and 

innovation IAPMEI (Agência para a Competitividade e Inovação) with the Leader SME Status 

(SME Líder) that distinguishes national SMEs with the best economic-financial performance 

and risk levels. 
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Due to the current and future requirements, innovation in companies is fundamental. As 

such, Silvapor has also dedicated the last years to innovation, research and development. With 

the project INFORMAT – Intelligent Forest Management Technologies, Silvapor won the 5th 

edition of the Entrepreneurship and Innovation Award 2018 (Prémio Empreendedorismo e 

Inovação 2018) in the Rural Development category, awarded by the credit institution Crédito 

Agrícola. 

Internationally, Silvapor has the exclusive representation of "Pepiniéres NAUDET", the 

largest company in France in the production of forest plants and services (Silvapor, 2019). 

The concern with the amount of waste that results from the company activities and the 

opportunity to obtain a complementary income, led the SME Silvapor to install a small distillery 

in its facilities, in order to study the possibility of obtaining essential oils thereof. This 

valorisation of residual waste from forest activities, in a concept of zero waste within a small-

scale biorefinery approach to this SME, was the cause for all the study presented in this 

dissertation. 

 

3. Biomass under study 

Cupressus lusitanica Mill. and Cistus ladanifer L. were the species studied in the present 

work. These were selected, since large amounts of these species biomass result from 

landscaping works of Silvapor, Ambiente e Inovação Lda. C. lusitanica is an ornamental tree, 

abundant in the region, thus requiring constant maintenance. C. ladanifer, is a species that, due 

to its low height, constitutes a problem in the case of a fire, since it helps spreading it closer to 

the ground. For this reason, soil maintenance is very important, keeping it free from biomass 

which could be a problem. Generally, the waste resulting from these activities is not used for 

any purpose other than for domestic burning and is often left discarded on the ground. Thus, 

this results in an environmental problem, because its accumulation on the fields constitutes a 

fuel for fires. 

 

3.1. Cupressus lusitanica Mill 

Cypress trees are Cupressaceae native to the temperate climate and are specifically located 

in Mediterranean regions, North America and Asia. Cypresses are beautiful trees popular for 

landscaping. They can grow extremely tall, up to 45 m in height. It is estimated that more than 

two dozen types of trees are found in different regions all over the world. Different types of 

cypress have distinct shapes. The foliage of cypress is known to have different shades of green, 

from dark green to lighter bluish green depending the type of plants. These plant species 

produce fruits (cones) of different sizes, the largest size around 5 cm. Each cone has 

approximately 30 seeds. All the cypress varieties have one thing in common, they demonstrate 

to be heaven for all types of wildlife, namely birds that like cypress trees due to their strong 
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branches, excellent for building nests (Shaheen et al., 2020). 

Wood of cypress is also very famous for firewood, and commonly used in manufacturing 

tables, boats, cabinets and boxes. Essential oil of cypress species is abundantly used in hair 

shampoo and various beauty products and when is topically applied, it reduces inflammation 

because it possesses potential to decrease swollen blood vessels, as a result of which it helps to 

recover from oedema. In aromatherapy, it is used to transmit a sense of emotional tranquillity. 

The EO of cypress species has several health benefits, as it significantly contributes to a number 

of pharmaceutical products due to its antiseptic, antispasmodic, astringent, deodorant, diuretic, 

haemostatic, hepatic, sedative and sudorific properties, along with the capabilities to treat the 

respiratory disorders. Alcoholic extracts of cypress branches are known for their strong 

antibacterial potentials against gram-positive and gram-negative bacteria. Aqueous and 

alcoholic extracts of these plants have also shown antioxidant and anti-inflammatory potentials. 

In vitro studies proved that extracts of some Cupressaceae species have anticancer potential and 

ability to inhibit human immunodeficiency virus (HIV) (Shaheen et al., 2020). 

Cupressus lusitanica Mill. is a cypress tree (Figure 1.6), commonly known as cedar of Goa, 

Mexican cedar and Portuguese cedar (Kuiate et al., 2006). It is a native tree from Central 

America (Costa Rica, Guatemala and Mexico), growing nowadays in many countries, including 

Brazil, California, France, Italy, New Zealand, Portugal and Spain (Adams et al., 1997; Kuiate 

et al., 2006). In Portugal, its presence is mainly in Mata do Buçaco, Parque da Pena, Monserrate 

and Serra da Gardunha, mostly in central and northern parts of the country, but it is used in all 

country as an ornament tree (Araújo, 1966). C. lusitanica is a fast-growing tree that can reach 

25 to 30 m in height (Figure 1.6 A). It has a dense pyramidal crown and a trunk surrounded by 

a brown bark (Figure 1.6 B). It is also distinguished from other cypresses by the blue-green 

leaves with free pointed tips in spreading sprays (Figure 1.6 C) and yellow flowers, between 

February and March (Figure 1.6 D). The fruits are small cones 1 to 1.5 cm diameter, gray-blue 

when young, but with age, have a brown and bright hue (Figure 1.6 E). Although C. lusitanica 

can adapt to different climates, it prefers humid ones (Kuiate et al., 2006; Serralves, 2019).  

C. lusitanica is essentially used as an ornamental tree and in commercial forest plantations. 

The wood is also used in furniture manufacture due to its lightness, low density, fine texture 

and high dimensional stability (Kuiate et al., 2006). The leaves are used traditionally to protect 

stored grains from insect infestation and also to treat skin diseases caused by dermatophytes 

(Bett et al., 2016; Kuiate et al., 2006; Teke et al., 2013). The EO from the leaves is commonly 

used to treat haemorrhoids, rheumatism, whooping cough and styptic problems (Teke et al., 

2013). The EO is also used in aromatherapy and massage to restore tranquillity, soothe anger, 

improve blood circulation and treat coughs and bronchitis (Bett et al., 2016). 

There is still little information on the chemical composition of C. lusitanica, being only 

possible to find information on the composition of EOs extracted from this species (referred in 

Chapter II, Table 2.3).  
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Figure 1.6. Cupressus lusitanica Mill. tree (A), bark (B), leaves (C), flowers (D) and fruits (cones) (E) (Adapted 

from Serralves, 2019). 

 

Some biological properties have been attributed to C. lusitanica EO. Hassanzadeh et al. 

(2010) reported antibacterial activity of C. lusitanica EO against Bacillus cereus and antifungal 

activity against Aspergillus niger. Teke et al. (2013) reported the use of the EO as a natural 

antimicrobial agent for human infectious diseases, namely those caused by Enterococcus 

faecalis, Proteus mirabilis and Candida albicans. Bett et al. (2016) reported that C. lusitanica 

EO is a promising insecticide and repellent to be used against insect pests of stored food grains. 

Also, Guimarães et al. (2010) reported the antioxidant activity of C. lusitanica EO using 

different antioxidant activity assays, namely 1,1-diphenyl-2-picrylhydrazyl-hydrate (DPPH) 

free radical scavenging, reducing power and lipid peroxidation inhibition. 

 

3.2. Cistus ladanifer L. 

Cistus plants are Cistaceae Mediterranean native shrubs (Barrajón-Catalan et al., 2016). 

Cistus genus is disseminated over different areas of the Mediterranean region, namely Canary 

Islands, Greece, Italy, Portugal, Spain, Turkey and north-west Africa (Barrajón-Catalan et al., 
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2010). Most Cistus species are very fragrant with sweet-smelling, being much appreciated in 

the perfume industry and for ornamental proposes (Barrajón-Catalan et al., 2016). Cistus plants 

are perennial shrubs with evergreen, opposite, usually slightly rough-surfaced, 2-8 cm long 

leaves. The flowers are hermaphroditic and actinomorphic, with three or five sepals opposite to 

petals. The colours of petals ranging from white to purple and dark pink depending on the 

subgenus, with a conspicuous dark red spot at the base of each petal in a few species, like Cistus 

ladanifer (Barrajón-Catalan et al., 2016). In some species, the leaves are coated with a highly 

aromatic resin called labdanum. Labdanum cannot be considered an EO, although it contains a 

high percentage of volatile compounds, most of them in common with the corresponding EOs. 

EOs and resins produced by plants have several vital functions. They can contribute to 

pollination, act out as insect repellent agents, protect against bacterial and fungal attack, as well 

as prevent against ultraviolet damage (Greche et al., 2009).  

Traditional folk medicine has used extracts and EOs of Cistus species for a large variety of 

purposes such as antioxidant, anti-inflammatory, antiulcerogenic, cytotoxic and vasodilator 

remedies. Aqueous extracts of leaves have also been used as an antidiarrheic and antispasmodic 

(Zidane et al., 2013). Cistus EOs and extracts have demonstrated antimicrobial activity which 

has been reported against several Gram-positive and Gram-negative bacteria and against some 

fungal infections (Barrajón-Catalan et al., 2010; Greche et al., 2009; Tomás-Menor et al., 

2013). Cistus EOs have been only marginally used as a flavouring agent for food (Barrajón-

Catalan et al., 2016). 

C. ladanifer is a shrub (Figure 1.7) with the common English name of rockrose, and “esteva” 

in Portuguese (Dentinho et al., 2014; Frazão et al., 2018). C. ladanifer is one of the most 

significant natural shrubs in the Mediterranean, mainly distributed in countries such as Algeria, 

Greece, Italy, Morocco, Portugal and Spain (Alves-Ferreira, 2019a). In Portugal, it extends 

throughout the country, especially in the centre and south regions, being present in native forest 

and uncultivated lands (Dentinho et al., 2014; Ferreira et al., 2009; Alves-Ferreira, 2019a). 

C. ladanifer is recognizable by the typical white flowers with crimson spots at the base of petals 

(Figure 1.7 D). It is an odorous shrub up to 2 m high (Costa et al., 2009; Mariotti et al., 1997). 

It occurs in acidic soils, poorly developed and with nutritional deficiency (Rossini-Oliva et al., 

2016). It grows spontaneously, and their overgrowth may lead to environmental problems. This 

shrub colonizes degraded areas and restricts or inhibits the growth of other plants, and/or the 

germination of their seeds (Barrajón-Catalan et al., 2010; Dentinho et al., 2014). Showing high 

proliferation, it occupies abandoned or unmanaged agricultural areas, representing a fire hazard. 

It is known that, if not properly controlled, this species is one of the major responsible for fire 

spreading in the Mediterranean forest (Alves-Ferreira et al., 2019a). On the other hand, 

C. ladanifer plays an important role in the recovery of forest areas after fire, providing available 

mycorrhizal inoculum to colonize tree roots as new zones are developed (Hernández-Rodríguez 

et al., 2013). C. ladanifer ecosystem also provides high production of edible mushroom species 
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(Hernández-Rodríguez et al., 2015). In addition, C. ladanifer is considered promising for 

animal feed, for phytoremediation and revegetation programs of contaminated soil and as raw 

material to produce bioproducts (e.g. bioethanol) (Rossini-Oliva et al., 2016; Santos et al., 

2016). 

 

 

Figure 1.7. Cistus ladanifer L. shrubs (A), leaves (B), flower bud (C) and flower (D). 

 

C. ladanifer leaves are coated with labdanum, which is much appreciated in the perfume 

industry due to its excellent fixative properties. Labdanum is also used as an additive to 

aromatize some types of tobacco, and to treat catarrh, diarrhoea, dysentery and menstruation 

discomfort (Barrajón-Catalan et al., 2010; Barrajón-Catalan et al., 2016). C. ladanifer is 

particularly interesting for the extraction of EOs (Gomes et al., 2005; Mariotti et al., 1997; 

Teixeira et al., 2007). 

EO of C. ladanifer is extremely complex, with, in some cases, up to 300 compounds having 

been detected (Mariotti et al., 1997). Chemical composition of C. ladanifer EO has been 

thoroughly studied (referred in Chapter II, Table 2.7) Although C. ladanifer shows a low 

A

B C D
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essential oil yield, (around 0.1 %), it has a potential use in cosmetic, food and pharmaceutical 

industries (Frazão et al., 2018).  

C. ladanifer EO has shown significant antioxidant and antimicrobial properties (Greche et 

al., 2009; Zidane et al., 2013). In the same way, several biological activities have been 

attributed to C. ladanifer solvent extracts, such as, antioxidant (Andrade et al., 2009; Barrajón-

Catalán et al., 2010; Zidane et al., 2013), antibacterial (Greche et al., 2009; Tomás-Menor et 

al., 2013), antifungal (Chaves et al., 2001; Greche et al., 2009), cytotoxic (Barrajón-Catalan et 

al., 2010), allelopathic (Chaves et al., 2001; Herranz et al., 2006) and hypoglycemic (El 

Kabbaoui et al., 2016). 

Some works reported the composition and potential of C. ladanifer lignocellulosic biomass 

(referred in Chapter III, Table 3.2). In general, extractives, lignin and cellulose were the major 

fractions (Alves-Ferreira et al., 2017; Alves-Ferreira et al., 2019a; Alves-Ferreira et al., 2019b, 

Carrión-Prieto et al., 2017; Fernandes et al., 2018; Ferro et al., 2015), reporting potential as a 

source of phenolic compounds and an interesting feedstock option for production of biofuels 

(Alves-Ferreira et al., 2017; Ferro et al., 2015).  

 

4. Biomass fractions of interest 

Taking advantage of the small distillery installed at the SME Silvapor facilities, this was 

used to obtained essential oils (EOs), and their hydrolates (Hs), distiller condensation waters 

(DCWs) and extracted solid residues (ESRs) as distillation products and/or by-products from 

the forest biomass, aiming at its valorisation towards zero waste. From all mentioned fractions, 

the EOs are currently the most valorised, although hydrolates are also commercialized and the 

extracted solid residues used for heat production. However, the study and demand for Hs has 

increased over the years, as well as the use of biomass solid residues to produce biofuels such 

as pellets. Among these fractions, the least exploited, and consequently valued, are the DCWs. 

However, it is also a fraction with strong potential, particularly as a possible source of bioactive 

compounds.  

In the present work, all four fractions from steam-distillation of C. lusitanica and C. 

ladanifer biomass were obtained and studied with the aim of getting added-value products 

thereof. 

 

4.1. Biomass Distillation 

Throughout the present work, the extraction methods used were the steam-distillation at the 

industrial scale and hydrodistillation at the laboratory scale. Steam-distillation was the 

extraction method used in Silvapor. Besides the equipment that is already owned by the 

company, this method is also used at the industrial scale since it allows the distillation of large 

quantities of biomass and under controlled conditions. Additionally, the hydrodistillation 



 

Chapter I - Introduction 

17 

method was used to compare the composition of some fractions (EOs and Hs) obtained by 

different methods, at different scales. 

 

4.1.1. Steam-distillation 

In the steam-distillation process, water vapor is produced in a boiler and then injected, under 

controlled pressure, into the barrel (Figure 1.8 A) where the plant material is located (Figueiredo 

et al., 2014). Water vapor passes through the material, and drags the volatile compounds, which 

is followed by a step of condensation in the so-called condenser. It is in the collector that the 

separation between the aqueous phase (hydrolate) and the EO occurs, resulting from the 

condensation process of the vapor mixture, with the EO being, usually, collected from the upper 

part and the aqueous phase from the lower part of the collector (Axtell and Fairman, 1992).  

In this type of extraction, as the plant material is not in direct contact with water and the 

distiller does not overheat, the degradation of the EO constituents is lower (Axtell and Fairman, 

1992). The whole process is a less energy consuming, and faster extraction method compared 

to hydrodistillation. Industrially, this is the most used method because, and besides the large 

amounts of biomass that can be distilled, it allows obtaining better quality EOs due to the 

operating conditions (Figueiredo et al., 2014). 

 

 

Figure 1.8. Steam-distillation (A) (Adapted from Axtell and Fairman, 1992) and Clevenger (B) (Adapted from 

Lourenço, 2007) apparatus. 

 

4.1.2. Hydrodistillation 

In the hydrodistillation process, the plant material is immersed in water which is then boiled 

by heating. The steam generated and containing the volatile compounds passes through a 

condenser, where it cools and condenses. As a result, an aqueous phase and an EO is obtained 

(Lourenço, 2007). According to the Portuguese Pharmacopeia VIII (2005), the Clevenger 
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apparatus (Figure 1.8 B) is the distiller used in this type of distillation.  

Hydrodistillation is a simple and versatile process, however, it can present some problems 

such as direct heating that can be difficult to control and stabilize and thus lead to variations in 

distillation yield. In the case of overheating, the plant material can be burned, reducing the 

quality of the product or even making it impossible to recover (Proença da Cunha et al., 2012). 

The fact that plant material is in direct contact with water is favourable to hydrolysis, oxidation 

and other reactions that may lead to the formation of artefacts. On the other hand, some more 

water-soluble EO compounds may remain in the water and thus not be recovered. It is usually 

a process that takes time and consequently there is a higher energy consumption (Figueiredo et 

al., 2014). 

As a result of this same extraction, different sub-products are obtained, namely i) essential 

oils, ii) hydrolates, iii) distilled condensation waters and iv) extracted solid residues.  

 

4.2. Essential oils 

The EOs are defined by the International Organization for Standardization (ISO) as a 

“product obtained from natural raw material of plant origin, by steam-distillation, by 

mechanical processes from the epicarp of citrus fruits, or by dry distillation, after separation of 

the aqueous phase, if any, by physical processes” (ISO 9235, 2013). Essential oils are a complex 

mixture of secondary metabolites of low molecular weight, which are produced and stored in 

the secretory organs of aromatic plants (Proença da Cunha et al, 2012). Chemically, EOs consist 

mainly in terpenes (mono-, sesqui- and diterpenes), along with phenolic compounds, such as 

phenylpropanoids, and other groups of compounds that can also appear in relevant amounts 

(Figueiredo et al., 2007).  

Various processes may be used to extract natural products from plants, but only two are used 

to obtain EOs: by a mechanical process (e.g. in the case of the Citrus genus) or by distillation 

(Figueiredo et al., 2014). The expression is the mechanical process used in fruits of Citrus 

genus, such as orange, lemon and tangerine, whereby pressing the epicarp it’s possible to obtain 

the EO. This is subsequently separated from the water by centrifugation or decantation (Proença 

da Cunha et al., 2012). The distillation process uses water and/or steam to extract volatile 

compounds. Water in the form of steam passes through the plant material and drags these 

compounds, the essential oils, which after condensation constitute the supernatant phase 

floating on the surface of an aqueous phase (also known as hydrolate or hydrosol) (Axtell and 

Fairman, 1992). Three types of distillation are considered: i) hydrodistillation, ii) steam-

distillation and iii) distillation by water/steam (FAO, 1992).  

The composition of an EO may be affected by different factors: i) physiological variations 

such as plant organ (i.e. leaf, flower, fruit) development, type of plant material and seasonal 

variation, ii) type of material harvested (flowers, leaves, stems, fruits, among others), iii) 

geographic variation, iv) environmental conditions such as climate, storage and soil quality and 
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v) genetic factors are aspects that may affect the composition of EO (Figueiredo et al., 2008). 

EOs are of a particular economic interest because they can be used in several types of 

industries, such as food, perfumery, and pharmaceutical (Proença da Cunha et al., 2007). This 

interest is due to the various biological activities attributed to them, such as antioxidant, anti-

viral, antibacterial, fungicidal, insecticidal, herbicidal, among others (Dadalioglu, 2004; Isman, 

2000; Isman, 2006; Milhau et al., 1997). In general, the biological activities of the EOs result 

from the combined effect of several compounds and not from a single one (Faria, 2015). For 

commercialization purposes, the general rules for labelling and marking of containers of 

essential oils (ISO/TS 211, 2014), should be followed, that is, the label should include 

information on the common and the scientific name of the species, the part of the plant used, 

the cultivation type and extraction method, the country of origin, among others. 

 

4.2.1. Essential oils composition 

Terpenoids are one of the major and most diverse classes of natural products. Some classes 

of terpenoids are composed by substances that generally give plants their fragrance, being the 

important and most dominant constituents of essential oils (Jan and Abbas, 2018). Terpenoids 

are biosynthesized from isopentenyl pyrophosphate by mevalonate acid pathway (Ruchica et 

al., 2019). Typical structures contain carbon skeletons represented by (C5)n and depending on 

the number of isoprene units, they are classified as hemiterpenes (C5), monoterpenes (C10), 

sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30) and tetraterpenes 

(C40) (Dewick, 2009; Ruchica et al., 2019). Hemiterpenes contain a single unit of isoprene, 

being isoprene the only one. However, oxygen-containing derivatives of isoprene, such as, 

isovaleric acid and prenol are also included in this category (Jan and Abbas, 2018). 

Monoterpenes are the major classes of terpenoids, followed by sesquiterpenes and diterpenes. 

 

Monoterpenes 

Monoterpenes contain two isoprene units. They are typical volatile components of plants 

and are widely used in the fragrance industry (Boysen and Hearn, 2010). They also have large 

pharmaceutical properties, including antibacterial, antifungal, antiviral, antioxidant, anti-

inflammatory, anticancer, antihistaminic, antispasmodic and local anaesthetic (Kozioł et al., 

2014). Monoterpenes can be grouped into distinct classes, such as acyclic (e.g., β-myrcene, 

β-ocimene, citral, citronellal, citronellol, linalool, geraniol, among others), cyclic (e.g., 

α-terpineol, carvacrol, carvone, eugenol, limonene, p-cymene, terpinen-4-ol, thymol, 

1,8-cineole, among others) and bicyclic (e.g., α-pinene, β-pinene, cis-verbenol, isoborneol, 

among others) (Figure 1.9) (Kozioł et al., 2014). It is common to find oxygenated compounds 

such as alcohols, aldehydes and acetones, associated with these hydrocarbons (Proença da 

Cunha, 2005).  



 

Chapter I - Introduction 

20 

Sesquiterpenes 

Sesquiterpenes are composed by three isoprene units. Although they are a small group of 

terpenoids compared to monoterpenes, their sources are extensive, having been isolated from 

higher plants, terrestrial fungi, marine organisms and insects (Awouafack et al., 2013; Boysen 

and Hearn, 2010). Some sesquiterpenes have spicy flavours as found in ginger (zingiberene) 

(Boysen and Hearn, 2010). They occur in nature as hydrocarbons or in oxygenated forms 

including alcohols, aldehydes, acetones and acids (Awouafack et al., 2013). Farnesol, farnesene 

and germacrene-D are some examples of compounds belonging to this group (Figure 1.9). 

Sesquiterpenes have been reported to possesses several pharmacological activities, such as, 

antibacterial, antifungal, antiviral, anti-inflammatory, antimalarial, antitumoral, cytotoxic, 

among others (Awouafack et al., 2013).  

 

 

 

Figure 1.9. Examples of monoterpenes, sesquiterpenes and diterpenes (Adapted from Figueiredo, 2017). 

 

Diterpenes 

Diterpenes contain four isoprene units and are classified into several categories, namely 

abietanes, labdanes, phytanes, clerodanes, pimaranes, among others (Pasdaran and Hamedi, 

2017). Some examples are abietadiene, abietol and abietatriene (Figure 1.9). The various 

biological activities from this class of compounds have increased interest. An example is taxol, 

a diterpene with potential anticancer properties (Boysen and Hearn, 2010; Pasdaran and 

Hamedi, 2017).  

In general, terpenoids play an important role in plant defence, being the phytoalexins an 

example (Jan and Abbas, 2018). These natural compounds also show antibacterial, antiviral, 
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anti-inflammatory, anticancer, antimalarial, antiulcer, antihepaticidal and diuretic properties 

(Jan and Abbas, 2018). Some pain-relieving properties of cannabis have been attributed to the 

terpene-phenols cannabinoids present in this plant. Others terpenoids present in cannabis, such 

as β-myrcene and carvacrol, exhibit a potent anti-inflammatory effect (Hazekamp et al., 2010). 

 

4.3. Hydrolates 

Hydrolate (H), also referred as hydrosol or floral water, corresponds to the distilled water 

that remains after the hydro- or steam-distillation, being usually rich in EO water-soluble 

components (ISO 9235, 2013). Hydrolates are constituted predominantly by hydrophilic 

compounds (Lobiuc et al., 2014), being the volatiles composition dominated by oxygen-

containing compounds (Aazza et al., 2011). Although highly diluted, the Hs keep the strong 

smell, but still smother than the corresponding EO (Śmigielski et al., 2013). Like the EOs, also 

the Hs should be carefully stored. Hs should be collected in aseptic containers and stored in a 

cool place. After storage, lifetime is about 1 year. After this period, the smell and composition 

tend to change (Jeannot 2003). When commercialized, should include information on the 

common and the scientific name of the species, chemical composition, the part of the plant 

used, the cultivation type and extraction method, the country of origin and the certificate of 

purity. There is nowadays a growing interested in the use of Hs and, for this reason, the 

information on Hs volatile composition is very important, not only for the producer, but also 

for the consumer.  

 

4.3.1. Extraction and analysis of the hydrolate volatiles 

The analysis of the H volatiles fraction requires a previous extraction, usually using a liquid-

liquid extraction (LLE) procedure. There are several solvents used for this extraction procedure, 

being the most common n-pentane, n-hexane, ethyl acetate, diethyl ether and dichloromethane 

(Zatla et al., 2017). Of these, n-pentane has been shown to be the most efficient for the recovery 

of volatile compounds from H (Śmigielski et al., 2013). Solid phase microextraction (SPME), 

solid phase extraction and purge-and-trap-automatic thermal desorption (P&T-ATD) are other 

procedures used for extraction and simultaneous analysis of volatile fraction from Hs (Paolini 

et al., 2008). Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) 

techniques, are then used to make the volatile component analysis. Despite its importance, there 

are still few studies on the volatile composition of Hs when compared with EOs. However, 

more and more Hs and corresponding volatiles composition have raised the interest from the 

scientific community.  

An upadated literature survey, (Table A.1 in Annex A), showed that 282 hydrolates, obtained 

from 162 species from 39 families, have been studied in terms of the volatile composition. The 

hydrolates main volatile components (≥ 5 % or ≥ 5 mg/mL or ≥ 1 mg/kg) were detailed in Table 
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A.1, and whenever reported, the information on the corresponding essential oil main 

components was also detailed. Whereas in most cases the Hs and EOs share similar main 

compounds, in some cases the composition of the Hs does not coincide with the EO. For 

instance, the studies of Edris (2009) with Cymbopogon citratus, Matos et al. (2015) with 

Campomanesia viatoris and Sutour et al. (2008) with Mentha suaveolens, for example, showed 

a major qualitative resemblance between Hs and the corresponding EOs, differing only in 

quantitative terms. On the other hand, the volatile composition of Daucus cartora and Abis alba 

hydrolate, for example, was completely different from the corresponding EO (Zatla et al., 2017; 

Wajs-Bonikowska et al., 2015). 

Inouye et al. (2008) compared the volatile composition from fourty four Hs and that of the 

corresponding EOs and concluded that in 42 % of the cases the Hs and EO showed different 

compositions. Moreover, the Hs major components were found in lower concentration when 

compared to EOs (Inouye et al., 2008). 

The oxygen-containing compounds are usually dominant in the Hs volaties and, among 

these, borneol, camphor, carvacrol, terpinen-4-ol, thymol are frequent main Hs volatiles 

compounds. Generally, the percentage of this type of compounds in this fraction is relatively 

high and dominant (Lei et al., 2018). It is also known that the distribution of oxygenated 

compounds in Hs differ with type of species and regional conditions (Acheampong et al., 2015). 

 

4.3.2. Properties and applications of hydrolates 

Several properties have been attributed to Hs, namely biological and organoleptic properties 

(Aazza et al., 2011). Of the various biological properties, the most mentioned have been 

antimicrobial (antibacterial and antifungal) and antioxidant activities (Hay et al., 2018; Lei et 

al., 2020). However, other studies have been developed and more properties have been 

attributed to Hs, such as, allelopathic (Souza et al., 2017), antifeedant (Soto-Armenta et al., 

2019), ecotoxic (Pino-Otín et al., 2019), insecticide (Traka et al., 2018), larvidicide (Carvalho 

et al., 2003), nematicide (Andrés et al., 2018) and sedative/anaesthetic (Zekri et al., 2016). 

Due to the various properties attributed to Hs, several works report their potential to be used 

in the food and cosmetic industries (Ndiaye et al., 2017; Śmigielski et al., 2013), or in organic 

farming, in particular to eliminate mushrooms, mould and insects, as well as for soil fertilization 

(Zatla et al., 2017; Paolini et al., 2008). An increasing number of studies report their potential 

to be used in agriculture as biocontrollers (Soto-Armenta et al., 2019), bioherbicides (Souza et 

al., 2017), bio-insecticides (Rebolledo et al., 2012), bionematicides (Sainz et al., 2019) and 

biopesticie (Zekri et al., 2016). Other studies yet reported its potential applications in 

aquaculture management as sedative for fish transport (Silva et al., 2018). 
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4.4. Distilled condensation waters 

The DCWs correspond to one of the sub-products resulting from the steam-distillation 

process. In general, this fraction is always discarded during the process and is not at any time 

considered as a potential valued product. Being zero waste the one of the objectives of 

biorefinery, the valorisation of this fraction, in the same way as the previously described 

fractions (EOs and Hs) are here considered. In this sense, and in the case of an aqueous extract 

from vegetable material, the presence of bioactive compounds, namely phenolic compounds, is 

expected. In such case, one possible valorisation of this sub-product may be its use as a natural 

antioxidants source by different industries.  

 

4.4.1. Phenolic compounds 

Phenolic compounds (PCs) are often considered one of the most important groups of 

secondary metabolites of plants and constitute nonessential human diet components (Ballard 

and Junior, 2019; Maestri et al., 2006). From the chemical point of view, the PCs have a variable 

structure, with at least one phenol unit, which means with one hydroxyl group (OH) substituent 

bonded to an aromatic ring (Ballard and Junior, 2019; Gan et al., 2019; Maestri et al., 2006; 

Proença da Cunha, 2005; Saranraj et al., 2019). There are several methods used for extraction 

of this type of compounds, the maceration, infusion and decoction are the simplest and 

ultrassound extraction, Soxhlet and steam-distillation some of the most complex and those who 

need the specific equipment. 

PCs can be divided into different subgroups based on their chemical structures. Flavonoids, 

tannins, phenolic acids and phenylpropanoids are the main subgroups of PCs (Figure 1.10), 

while coumarins, lignans, quinones, stilbenes and curcuminoids are the other subgroups 

(Aldred et al., 2009; Figueiredo, 2017; Li et al., 2018; Panche et al., 2016). Being one of the 

major sub-groups of phenolic compounds and due the many biological properties attributed, the 

flavonoids and tannins were explored in this work. 
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Figure 1.10. Examples of phenolic compounds (Adapted from Aldred et al., 2009; Figueiredo, 2017; Li et al., 

2018; Panche et al., 2016). 

 

Flavonoids 

Flavonoids are the most important group of phenolic compounds in the human diet and are 

widely present in plants. They represent one of the most predominant classes of compounds 

found in vegetables, fruits, nuts and plant-derived drinks, including wine and tea (Babu and 

Liu, 2009; Ballard and Junior, 2019; González-Gallego et al., 2014; Horn et al., 2001; Trugo et 

al., 2003). The basic structure of flavonoids is the flavan nucleus with 15 carbon atoms 

organized in three rings: an aromatic A-ring fused to a heterocyclic C-ring that is attached 

through a single carbon-carbon bond to an aromatic B-ring (Babu and Liu, 2009; Ballard and 

Junior, 2019). Normally, they are classified into six subgroups based on their chemical 

structure: flavanols, flavonols, flavones, isoflavones, flavanones and anthocyanins (Babu and 

Liu, 2009; Ballard and Junior, 2019; Gan et al., 2019). This classification is carried out 

according to the replacement in the arrangements of hydroxyl, methoxy, prenyl and glycosidic 

side groups and in the conjugation of rings (Ballard and Junior, 2019).  

All these subgroups of flavonoids can be found in food and beverages in the human diet 

(Table 1.2). Flavonoids are synthesized in plants and are responsible for protection against 

ultraviolet radiation, pathogens and herbivores (Babu and Liu, 2009; Proença da Cunha, 2005). 

The beneficial properties of flavonoids may be derived from their antioxidant characteristics as 

free-radical neutralizers (Trugo et al., 2003). Besides antioxidant activity, others have been 

reported to flavonoids in preventing common diseases, such as inflammation, cancer, 

cardiovascular disease, gastrointestinal disorders and metabolic syndrome (e.g. diabetes, 

obesity) (Ballard and Junior, 2019; González-Gallego et al., 2014; Horn et al., 2001; Neilson 

et al., 2017; Trugo et al., 2003). 
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Table 1.2. Flavonoid subgroups, representative compounds and common food sources (adapted from Babu et al., 

2009, Ballard et al., 2019, Neilson et al., 2017). 

Subgroups Compounds Sources  

Flavanol Catechin, epicatechin, epicatechin gallate, 

epigallocatechin and epigallocatechin 

gallate 

Apples, legumes, cocoa, chocolate, green tea and red 

wine 

   

Flavonol Quercetin, myricetin and rutin Apple, grapefruit, broccoli, onion, tomato, black tea 

and red wine 

   

Flavone Apigenin, chrysin, luteolin  Citrus, parsley, peppers, tomato skin, vegetables, 

herbs, cereals, red wine  

   

Isoflavone Daidzein, genistein and puerarin Legumes (e.g., soybean) and herbs 

   

Flavonone Eriodictyol, hesperetin and naringin Citrus fruits, peppermint and tomatoes 

   

Anthocyanin Cyanidin, delphinidin and malvidin Berries, cherry, raspberry, strawberry and red wine 

 

Due to the properties shown by these phenolic compounds, their moderate consumption in 

diet is important to reduce the risk of having several diseases (Babu and Liu, 2009; Ballard and 

Junior, 2019; Heldt and Piechulla, 2011; Neilson et al., 2017). 

 

Tannins 

Tannins are the second most abundant phenolic compounds present in plants. Its main role 

is to protect plants against pests and extreme effects such as drought, heat and UV radiation 

(Sussela, 2019). With molecular weight between 500 and 3000 Da, these phenolic compounds 

give a characteristic astringent taste when present in foods (Horwath., 2015; Ogwuru and 

Adamczeski, 2000). Tannins are classified as hydrolysable, complex and condensed tannins, 

being both hydrolysable and condensed tannins two major classes that can be found in plants 

(Horwath, 2015). Hydrolysable tannins are produced by angiosperms and may be classified into 

gallotannins and ellagitannins. From the chemical point of view, it consists in a central glucose 

molecule linked to molecules of gallic acid (gallotannins) or hexahydroxydiphenic acid 

(ellagitannins) (Heldt and Piechulla, 2011; Pietta et al., 2003). Agrimoniin, corilagin, geranin, 

pentagalloylglucose and tannic acid are some examples of hydrolyzed tannins (Pietta et al., 

2003). Hydrolysable tannins can be hydrolyzed by weak acids or weak bases to produce 

carbohydrates and phenolic acids (Izawa et al., 2010). Usually, these compounds are stored in 

leaves, fruit pods and galls (Zaprometov and Timiriazev, 1998). 

Condensed tannins, also called proanthocyanidins, are produced by angiosperms and 

gymnosperms and formed by oxidative condensation of flavonoids (Horwath., 2015; Sussela, 

2019; Zaprometov and Timiriazev, 1998). They are polymers of 2-50 flavanols units, with three 
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rings linked by C-C bonds that are not susceptible to hydrolysis (Heldt and Piechulla, 2011; 

Horwath., 2015). Epicatechin and epigallocatechin are examples of these compounds (Pietta et 

al., 2003). The condensed tannins are responsible for the astringent tastes of many fruits and 

wines (Stewart and Stewart, 2008) and are usually stored in heartwood and bark (Zaprometov 

and Timiriazev, 1998). 

Extracts of plants rich in tannins are many used in medicinal applications. Some examples 

include, leaves of Geranium thunbergii, that contain gerannin, and are indicated to treat 

intestinal disorders (Okuda and Ito, 2011). Roots of Potentilla erecta, with epigallocatechin and 

catechins in their composition, are indicated to treat inflammations, bleeding, diarrhoea, 

bacterial, fungal and viral infections, as well as antiseptic for the mouth and throat (Tomczyk 

and Latte, 2009). The bark of Syzygium cumini, with corilagin, is indicated for bronchitis, 

asthma and ulcers (Ayyanar and Subash-Babu, 2012). Beyond the already mentioned 

bioactivities, tannins also show antidiabetic, anti-obesity, cytotoxic, cardioprotective properties 

(Sieniawska and Baj, 2017). As flavonoids, also tannins have shown health benefits when 

carefully consumed in the human diet (Izawa et al., 2010; Okuda and Ito, 2011; Sieniawska and 

Baj, 2017).  

In general, phenolic compounds have several demonstrated properties, not only for the plant, 

but also for the human body. In plants, they can protect against UV radiation, pathogens, 

oxidative stress and harsh climatic conditions. For the human body, they have diverse biological 

effects such as antioxidants, anti-inflammatory, antibacterial, antifungal, anti-diabetic, 

anticancer, cardioprotective and others. All these properties show that PCs have the potential 

to be used in treatment for various diseases. However, it is important to take into account the 

dose at which they are taken since the toxicity of these concentrated compounds is still 

unknown. 

 

4.5. Extracted solid residues 

In addition to the EOs, Hs and DCWs, other considerable fraction results from the steam-

distillation process, the ESRs, which are still a major volume of residue from the original 

biomass. In general, these residues are used only for for production of energy in the form of 

heat, an application of low economic value (Alves-Ferreira et al., 2017). However, and 

considering that this type of extraction is relatively soft, solid residue remains practically 

unchanged at the structural level, thus presenting the potential to be used in the production of 

other products with a higher economic value. An exemple is the use of this type of resiudes to 

produce bioethanol from the fermentation of sugars. These residues are lignocellulosic material, 

rich in cellulose and hemicellulose, that are commonly hydrolyzed by treatment with acids and 

then fermented by microorganisms for bioethanol production (Balat, 2011). In addition to 

cellulose and hemicellulose, lignin is another major fraction os this type of residues, which can 

be extracted and recovered through appropriate fractionation processes (Ferreira et al., 2009). 
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The lignin can be integrated into polymeric materials, including conductive polymers, 

polyurethanes, and thermoplastic (Varanasi et al., 2012). They can also be used to produce 

adhesives, binders and phenolic resins (Stewart, 2008). 

These residues are also a source of extractives that can potentially be valued as bioactive 

products, namely phenolic compounds (Alves-Ferreira et al., 2019b). Despite the large 

quantities and the bioactive potential of these extracted solid residues, information on the 

chemical characterization and biological properties of the active compounds is still scarce in 

literature. Sánchez-Vioque et al. (2013) have detected phenolic compounds with antioxidant 

activity in Cistus ladanifer, Lavandula x intermedia, Santolina rosmarinifolia and Thymus 

mastichina and Torras-Claveria et al. (2007) have reported flavonoids with antioxidant activity 

in Lavandula x intermedia.  

In addition, the valorisation of lignocellulosic fraction and extractives, there are a still solid 

residue that can be valued. This residue could be still transformed into a solid biofuel, such as 

pellets. This valorisation allows reaching the final goal, in the sense that it shows that all 

fractions resulting from the distillation processes can be valorised, and thus obtain zero waste. 

 

5. Biological activities  

Transversally to all fractions resulting from the steam-distillation process are the biological 

properties exhibited by some of the compounds present in their composition. Active compounds 

produced during secondary metabolism of plants are usually responsible for the biological 

properties of some species (Silva and Júnior, 2010). Among the several biological properties 

attributed to these compounds, the antibacterial, anticancer, anti-inflammatory, antioxidant and 

antiviral activities can be highlighted (Ortega and Campos, 2019). 

The continuous search for natural antioxidants and anti-inflammatory drugs, as well as new 

alternatives to combat microorganisms responsible for numerous infections, lead to the choice 

of antioxidant, anti-inflammatory and antimicrobial activities to be the biological properties 

under study in this dissertation. 

 

5.1. Antioxidant activity 

Antioxidants are defined as substances that inhibit or delay the oxidation of biologically 

relevant molecules either by quenching free radicals or by chelation of redox metals. They are 

important because they act as a protection mechanism against reactive oxygen species (ROS) 

(Flora et al., 2015).  

ROS are produced in all aerobic cells, normally as by-products of respiratory metabolism 

and resulting from oxygen reduction. ROS include free radicals’ such as superoxide (O2
•-), 

hydroxyl (HO•), hydroperoxyl (HO2
•), carbonate (CO3

•-), peroxy (RO2
•), alkoxy (RO•) and 

carbon dioxide (CO2
•-) and non-radical molecules with high reactivity, such as hydrogen 
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peroxide (H2O2), ozone (O3), hypochlorous acid (HOCl), among others (Bertout et al., 2004). 

The high reactivity of these species is related to their electron configurations.  

ROS are responsible for causing irreparable damage to biological systems, attacking and 

damaging almost all molecules due to their very short half-life, being thus extremely reactive. 

The production of ROS does not only have metabolic origin. Foods, air pollution, UV radiation, 

among other factors are also responsible for the imbalance between ROS production and its 

elimination, the as-called oxidative stress (Miguel, 2007).  

Antioxidants are substances who protect cells against ROS (Bertout et al., 2004). The 

equilibrium between oxidation and antioxidation is critical in maintaining healthy biological 

systems. Antioxidants can be classified as primary or secondary, according to their mode of 

action. Firstly, antioxidants react directly with free radicals making them more stable. Secondly, 

antioxidants do not react directly with free radicals, but with substances that interact with them. 

The last ones can retard the rate of radical initiation by elimination of initiators. This occurs 

due the ability of these antioxidants scavenging of oxygen, chelating metal that catalyzes free 

radical reaction or inhibition of enzymes (e.g. xanthine oxidase) (Mishra and Bisht, 2011).  

Antioxidant activity should not be concluded based on a sigle antioxidant method. Several 

in vitro techniques are carried out for evaluating antioxidant activity (Alam et al., 2013). Some 

of the most used used are DPPH scavenging, ABTS radical cation decolorization, hydrogen 

peroxide scavenging, ferric reducing-antioxidant power (FRAP), inhibition of superoxide anion 

radical formation and oxygen radical absorvance capacity (ORAC) (Pisoschi and Negulescu, 

2011). ABTS (2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) cation 

radical decolourisation method, inhibition of superoxide anion radical formation, inhibition of 

xanthine oxidase and chelating metal ions was used in present study to evaluate the antioxidant 

activity.  

 

5.1.1. ABTS cation radical decolourisation method 

The ABTS method, also known as Trolox equivalent antioxidant capacity (TEAC) assay, 

measures the antioxidants relative ability to scavenge the generated ABTS radical, as compared 

with the standard Trolox. The ABTS radical is generated by the reaction of ABTS salt with a 

strong oxidizing agent (e.g., potassium persulfate). This is a method that relies on the transfer 

of an electron, where an oxidant (ABTS radical) accepts an electron from the antioxidant, 

leading to a colour change. The reduction of the green blue ABTS radical by antioxidants is 

measured by spectrophotometric methods (Singh and Singh, 2008).  

The ABTS method was used because it is a simple, rapid method and has been widely used 

for screening and routine determinations. On the other hand, it can be used in both water and 

organic solvents, which enables the antioxidant capacity of both hydrophilic and lipophilic 

compounds (Opitz et al., 2014). 
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5.1.2. Inhibition of superoxide anion radical formation method 

Superoxide anion is a highly reactive species produced when oxygen is reduced by a single 

electron or through a hypoxanthine-xanthine or a non-enzymatic system (Miguel, 2007). 

Xanthine oxidase exists in tissues in the form of dehydrogenase xanthine that transfers electrons 

to nicotinamide adenine dinucleotide (NAD+), reducing it to NADH and oxidizes xanthine or 

hypoxanthine to uric acid. Under stress conditions, dehydrogenase xanthine is converted into 

xanthine oxidase that produces superoxide. However, electron transfer is not to NAD+ but to 

molecular oxygen that is transformed into superoxide anion (Gulcin, 2020). In a non-enzymatic 

system, superoxide anion is generated through the reaction of phenazine methosulphate in the 

presence of NADH and molecular oxygen. In both cases, superoxide anion reduces nitro-blue 

tetrazolium (NBT) into formazan. Formazan formation is evaluated by spectrophotometric 

methods (Whaley-Connell et al., 2012).  

Unlike the ABTS radical, the superoxide anion is a highly reactive species produced in the 

human body and xanthine oxidase is a major source of ROS in vivo. In this sense, inhibition of 

superoxide anion radical formation and inhibition of xanthine oxidase were also used.  

 

5.1.3. Inhibition of xanthine oxidase method 

Xanthine oxidase (XO) is an enzyme that generates ROS such as superoxide radicals (O2
•-) 

and hydrogen peroxide (H2O2). These ROS are formed when XO catalyzes the oxidation of 

hypoxanthine to xanthine (Reaction 1) which can further catalyze the oxidation of xanthine to 

uric acid (Reaction 2) (Figure 1.11) (Kostić et al., 2015). 

 

 

Figure 1.11. Production of ROS from xanthine oxidase (Adapted from Kostić et al., 2015). 

 

An excess of uric acid in body induces a medical condition known as gout (Rome and 

Frecklington, 2015; Santi et al., 2018). Allopurinol is used as the first-line treatment of this 

pathology, but it has been reported that its prolonged use may cause serious problems, such as 

hepatitis, hypersensitivity, dermatological eruption, diarrhoea and others (Page, 2008). 

Alternative natural compounds to XO inhibitors are needed, and some flavonoids, curcumin, 

and other compounds have been reported as a possible option (Santi et al., 2018). Xanthine 

oxidase activity can be determined by measuring the formation of uric acid from xanthine. The 

most frequently used method consists in a pre-incubation of assay mixture of the test sample 

with xanthine oxidase enzyme and buffer solution (pH 7.4), where the most commonly used 

buffer is a carbonate or a phosphate. The reaction is then initiated by the addition of the substrate 

Hipoxanthine + O2 + H2O → Xanthine + H2O2 (Reaction 1)

Xanthine + 2O2 + H2O → Uric acid + 2O2
•- + 2H+ (Reaction 2)
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(xanthine solution). The assay mixture is incubated again during a period of 15 to 30 min. The 

reaction is stopped by the addition of hydrochloric acid. Spectrophotometric determination of 

the XO activity is based on the measurement of the uric acid production from xanthine substrate 

(Kostić et al., 2015). 

 

5.1.4. Chelating metal ions method 

The antioxidant action may be due the different mechanisms. Chelating of transition metals 

is one of the possible mechanisms of the antioxidative action and was studied in present study. 

Transition metals, such as iron (Fe), copper (Cu) and manganese (Mn), which have unpaired 

electrons in the valence orbital, accept and give electrons that promote the transfer of an electron 

to an oxygen and result in the formation of ROS (Miguel, 2010). An example of the role of 

transition metals in the production of ROS is in the Fenton reaction, where the conversion of 

hydrogen peroxide (H2O2) to hydroxyl radical (HO•) is promoted by Fe2+ (Pisoschi and 

Negulescu, 2011). A way of neutralizing the effect of transition metals is by using chelating 

agents. Chelating agents are chemical compounds that bond to metals in two or more sites, as 

chelating molecules possess the electrons required to form bonds with positively charged metal 

ions. A chelating agent forms a stable complex with toxic metals, protecting biological targets. 

It has been suggested that an ideal chelator should have high solubility in water, be resistant to 

biotransformation, have the ability to reach the sites of metal storage, retain chelating capability 

at pH of body fluids and form metal complexes that present lower toxicity than the free metal 

ions (Flora et al., 2015). 

The chelating method that uses ferrozine, which can result in the formation of complexes 

with Fe2+. In the presence of chelating agents, the complex formation is reduced, which leads 

to a diminished red colour of the complex ferrozine-Fe2+. Thus, the rate of colour reduction 

allows assessing the chelating activity of the chelator (Alam et al., 2013).  

 

5.2. Anti-inflammatory activity 

When human cells are damaged by microbes and by physical and chemical agents, the injury 

is in the form of stress. Inflammation is thus a complex protective process response of the body 

to stress and against dangerous agents, such as microorganisms or damaged cells. It is a vital 

immune response by the host that enables the elimination of harmful stimuli as well as the 

healing of damaged tissue (Ahmed, 2011).  

The inflammatory response can be divided into acute and chronic phases (Kӧher-Forsberg 

and Benros, 2018). The acute one is the initial response, which is characterized by resident cell 

activation, with movement of plasma and leukocytes (especially granulocytes) from de blood 

into the injured tissues. This inflammatory response usually lasts only a few days and it is 

manifested through redness, heat, swelling, pain and loss of function (Leelaprakash and Dass, 
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2011). If the cause for the inflammatory response is not eliminated, there will be a progression 

towards a chronic inflammatory response. On the other hand, chronic inflammation is a 

prolonged response characterized by a gradual change in the cellular composition of the 

inflammation area with lymphocytes, macrophages and plasma cells replacing neutrophils, 

which, over time, cause permanent damage in the affected zone (Eschenbacher, 2007). In both 

types of inflammation, there is an increasing local blood flow, vasodilation, fluid extravasation, 

liberation of proinflammatory mediators, increase of protein denaturation and others (Barboza 

et al., 2018).  

Inflammation is associated with many neurodegenerative diseases such as Alzheimer, 

Parkinson and multiple sclerosis. Over the last decade, it turned out that inflammation plays a 

critical role in promoting cancer (Ahmed, 2011). Thus, the continued demand for efficient and 

natural anti-inflammatory drugs is increasing. Anti-inflammatory studies using natural 

products, namely terpenoids, showed potent anti-inflammatory activity (Sultana and Saify, 

2012). In vitro anti-inflammatory activity can be evaluated by different methods. One of the 

most widely used in vitro method was the inhibition of albumin denaturation assay, being the 

method used in present study.  

 

5.2.1. Inhibition albumin denaturation method 

Human serum albumin (HAS) is the most-abundant protein in plasma and is also a major 

component of most extracellular fluids (Ezra et al., 2017). HAS has been related to Alzheimer’s 

disease, the most common progressive chronic neurodegenerative disorder and one of the 

leading causes of dementia in people who are over 65 years old (Cvetković-Dožić et al., 2001). 

To date, there is no treatment available that can stop the progressive deterioration of cognitive 

functions in Alzheimer’s disease patients. However, there are treatments focussing on 

pathologies associated with Alzheimer’s disease, such as problems associated to the functioning 

of human serum albumin (HAS), which demonstrated to have the potential to treat this disease. 

The additional relationship with the Alzheimer´s disease is that levels of these protein decrease 

with aging (Ezra et al., 2017). Most biological proteins lose their biological function when 

denature, which means that they lose their structure by the application of external stress, 

compounds or heat. Denaturation of proteins has been widely reported because of its connection 

to inflammation (Leelaprakash and Dass, 2011). Using the inhibition albumin denaturation 

method, it is possible to evaluate the anti-inflammatory activity of extracts. It consists of a 

simple method, where a bovine serum albumin (BSA) is generally used. BSA function well for 

a protein standard because it is usually available in high purity and an inexpensive cost. Under 

the action of heat, the protein denaturation is promoted and is observed through turbidity. The 

samples turbidity is also measured with spectrophotometric methods.  
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5.3. Antimicrobial activity 

Infectious disease remains a major cause of death and illness, being the second most common 

cause of mortality. Although the development of antimicrobials has significantly reduced death 

and morbidity from infectious diseases, at least in the developed world, the appearance of 

resistance to antimicrobials endangers these advances (Song, 2003). Because of available 

antimicrobials failure to treat infectious diseases, the need to find new antimicrobial agents is 

of utmost importance (Manandhar et al., 2019). Therefore, many researchers have focused on 

the investigation of natural products as source of new bioactive molecules (Valgas et al., 2007). 

In the field of antimicrobial activity, antibacterial and antifungal activity are the most studied, 

because de large number of infections that bacteria and fungi microorganisms cause.  

Gram-negative, such as Escherichia coli, and Gram-positive, such as Staphylococcus aureus 

bacteria and the yeast, such as Candida albicans have been the most studied microorganisms 

in virtue of the significant number of infections leaded by them. For these reasons were the 

microorganisms studied in present dissertation. 

E. coli is one of the most important pathogens (Allocati et al., 2013). Some strains cause 

serious illness, which can result in severe diarrhoea and even kidney damage (Rowe and Sprigg, 

2014). In the same way, S. aureus is an opportunistic pathogen who can cause a wide range of 

diseases. In addition to food poisoning, S. aureus is responsible for other diseases such as skin 

infections, internal organ infections and poisoning (e.g. toxic shock syndrome) (Langsrud, 

2009). Antibiotics are also essential for the control and treatment of E. coli and S. aureus 

infections in humans and animals. However, antimicrobial resistance is associated to the 

quantity of antibiotic consumption (Allocati et al., 2013). Hence, the incorrect use of 

antimicrobials increased the resistance in pathogens increasing (Kadlec et al., 2015) and the 

need for new antibacterial agents is essential.  

Some species of Candida can be pathogens, being C. albicans the most common. 

Candidiasis infections either superficial, affecting the skin and mucous membranes, or invasive, 

affecting the gastrointestinal (oropharyngeal to oesophageal), respiratory and urinary (bladder 

and kidney) systems. Several drugs are available for the treatment of Candida infections, 

however, in all cases, microbial resistance is an increasing problem (Dowd, 2007). The great 

resistance of traditional antifungals has encouraged the search for new alternatives among 

natural products (Oliva et al., 2013). 

A variety of laboratory methods can be used to evaluate the potential antimicrobial activity 

of a test sample. The most known and first line of screening are the diffusion (agar diffusion 

method) and dilution (broth or agar dilution) methods (Balouiri et al., 2016). 

 

5.3.1. Agar diffusion method  

In the present work, the agar diffusion method was used for the evaluation of the 
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antimicrobial activity. The main reasons for using it is because this method is reproducible, easy 

to perform, requires a small amount of sample, is of low-cost and allows testing huge numbers 

of microorganisms and antimicrobial agents (Balouiri et al., 2016). 

The agar diffusion method, in which discs or holes are employed, is the most widely used. 

The reservoirs used consist of filters made from paper discs (about 6 mm in diameter) or holes 

that are directly made in the medium itself. The effectiveness of the sample is revealed by the 

size of the growth inhibition zone of the microorganism that is used, while the degree of activity 

is expressed as the diameter of the mentioned zone (Faleiro, 2007). Depending on the inhibition 

demonstrated by the sample in the first step, the next one is usually to determine the minimum 

inhibitory concentration (MIC) of the same sample, that is, the lowest concentration that 

completely inhibits the growth of a microorganism (Valgas et al., 2007). However, the agar 

diffusion method is not appropriate to determine the MIC, because it is impossible to quantify 

the amount of the antimicrobial agent diffused into the agar medium (Balouiri et al., 2016). 
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1. Abstract 

Unattended forest wastes are, among others, a potential source of wildfires, as well as a 

growth media for forest pests. As a way of lowering the detrimental effect of these wastes, it is 

important to convert these under-valued resources into a value-generating market forest wastes 

use. Essential oils (EOs) and hydrolates (Hs) from Cupressus lusitanica and Cistus ladanifer 

waste products, resulting from forest landscaping in Portugal, were evaluated for chemical 

composition and biological activity. Essential oils and Hs were obtained by steam-distillation 

(SD) and hydrodistillation (HD). Essential oils and Hs volatiles were analysed by gas 

chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The 

antimicrobial activity of EOs was studied by disk agar diffusion method against Escherichia 

coli, Staphylococcus aureus and Candida albicans. Antioxidant activity of EOs and Hs was 

evaluated by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) 

free radical, superoxide anion radical formation, xanthine oxidase and chelating metal ions 

assays. Anti-inflammatory activity of Hs was assessed by albumin denaturation assay. 

Monoterpene hydrocarbons and oxygen-containing monoterpenes dominated C. lusitanica EO 

(SD, 82-86 %, HD, 80-85 %) and Hs volatiles (SD, 93-94 %; HD 64-81 %), respectively. 

α-Pinene (14-36 %), limonene (8-21 %), δ-3-carene (8-19 %) and sabinene (6-18 %) were the 

main EO constituents. Hydrolates volatiles were dominated by cis-3-hexen-1-ol (0.1-13 %), 

camphor (1-11 %), umbellulone (traces-48 %), p-cymene-8-ol (11-16 %) and terpinen-4-ol (21-

31 %). C. ladanifer EOs were dominated by monoterpene hydrocarbons (SD, 48-80 % and HD, 

29 %) and Hs by oxygen-containing monoterpenes (SD, 38-43 %, HD, 39 %). The EO major 

constituents were α-pinene (13-28 %) and camphene (5-25 %), whereas 2,6,6-trimethyl 

cyclohexanone (2-12 %) and trans-pinocarveol (5-13 %) dominated the Hs volatiles. This study 

reports for the first time the chemical composition of the hydrolate volatiles of these two species 

and their anti-inflammatory properties. Among the studied biological activities, the EOs 

showed the best antioxidant properties while Hs demonstrated higher anti-inflammatory 

activity.  

 

2. Introduction 

The Portuguese forest occupies approximately 35 % of the mainland, therefore, there is a 

considerable potential for waste coming from the forest, namely, shrubs, diseased or fire-killed 

trees, as well as their roots, trunks and branches, removed during forest thinning, or their bark, 

needles, leaves and even fruits (PCM, 2017). This biomass availability is the basis for making 

renewable bioenergy, biofuels and other bioproducts that are increasingly replacing fossil-fuel 

based products, thus, it should be recovered with environmental, economic and social benefits, 

as an alternative to open burning (Han et al., 2018). The concept of biorefinery is defined as an 
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approach for the generation of value-added products such as chemical products, biofuels, heat 

and electricity from renewable energy sources such as forest biomass (Kehili et al., 2016). 

There is a need for an integrated forest policy that promotes the sustainability of the forest and 

its management, and also the prevention of forest fires for defending the physical integrity of 

the populations and the preservation of their means of subsistence and patrimonial assets. To 

this aim, is intended that the development of advanced biorefineries using endogenous 

resources sustainably, generate new value chains around biomass in the so-called bioeconomy 

and circular economy (PCM, 2017). These concepts are intended to achieve more waste 

prevention and better resource management (Zeller et al., 2018).  

Essential oils (EOs) are complex mixtures, internationally defined as the product obtained 

by hydro-, steam- or dry-distillation of a plant or any of its parts, or by a mechanical process 

without heating from the epicarp of Citrus fruits (Council of Europe, 2010; ISO, 2013). During 

EO isolation procedure, in addition to EO, also hydrolates can be obtained. An hydrolate, 

sometimes also referred as hydrosol or floral water, corresponds to the distilled water that 

remains after the hydro- or steam-distillation and the separation from the corresponding EO, 

being usually rich in EO water-soluble components (Aazza et al., 2011; Hamdi et al., 2017; 

ISO, 2013). 

Essential oils, and by-products such as hydrolates, can be obtained within the biorefinery 

concept from forest biomass as they are high value, low volume commodities, extremely 

attractive for the perfume, cosmetic and flavour industries (Belabbes et al., 2017; Machale et 

al., 1997) and are also known to possess different pharmacological activities. In fact, 

antimicrobial, antioxidant, anti-inflammatory, antispasmodic, and relaxing properties, among 

others, have been described for essential oils and hydrolates, both in animals and humans 

(Belabbes et al., 2017; Tognolini et al., 2006). 

The aim of the present work was to evaluate the potential for obtaining essential oils and 

hydrolates from the underutilized residues of Cupressus lusitanica Mill. (Cupressaceae) and 

Cistus ladanifer L. (Cistaceae). Both species are frequent in Portuguese landscape, and large 

amounts of their waste products are obtained from forest management.  

Cupressus lusitanica (“cipreste-do-Buçaco” in Portuguese), also known as Cedar-of-Goa or 

Mexican cypress, was introduced in Portugal more than 300 years ago and is still widely used 

as an ornamental plant and for reforestation (Proença da Cunha et al., 2012). Cistus ladanifer 

(“esteva”), also known as rockrose, is a Mediterranean shrub widely distributed in the Iberian 

Peninsula and with high importance in the perfumery industry due to a particular extract, the 

labdanum, used as fixative. Both species are referred as having several biological activities 

(Bett et al., 2016; Zidane et al., 2013).  

Although some studies have addressed the composition of Portuguese C. lusitanica and 

C. ladanifer EOs, no previous works evaluated their hydrolate volatiles. The present study, 

detailed in the flowchart of Figure 2.1, aimed at evaluating C. lusitanica and C. ladanifer 
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landscaping wastes EOs and hydrolates volatiles composition, as well as their antioxidant, 

antimicrobial and anti-inflammatory activities. 

 

 

Figure 2.1. Flowchart of the extraction, chemical composition and biological assessments, including 

representative images of the results obtained with some of the biological activities evaluated. 

 

3. Materials and methods 

3.1. Plant material 

Waste samples of Cupressus lusitanica Mill. and Cistus ladanifer L. aerial parts, resulting 

from forest landscaping, were collected at Beira-Baixa, Portugal, in 2017 and 2018 by Silvapor 

- Ambiente e Inovação Lda. After collection, the plant material was either extracted fresh or 

after drying, under open air conditions (Table 2.1). For C. ladanifer essential oil, the analysis 

of five Portuguese commercial samples, obtained in different years from three local producers, 

was included, only in the chemical study, for comparison purposes. The plant material was 

identified at the Herbarium of the Museum, Laboratory and Botanical Garden of Lisbon and 

kept under voucher number LISU262295 for C. lusitanica and LISU266731 for C. ladanifer. 
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Table 2.1. Cupressus lusitanica and Cistus ladanifer collection sites and sampling year, plant part used for 

extraction, extraction procedure and type of extract with corresponding code. 

Plant species Collection 

place in 

Portugal 

Collection 

 date 

Plant 

condition 

Type of 

extract 

Extraction 

method 

Code 

Cupressus lusitanica Alcains January 2017 Dry* EO SD 17 January 

    H  17 January 

  February 2017 Dry** EO SD 17 February 

    H  17 February 

 Idanha-a-Nova May 2018 Dry** EO HD 18a May 

      18b May 

      18c May 

    H  18a May 

      18b May 

      18c May 

       

Cistus ladanifer Medelim March 2017 Fresh EO SD 17 March 

    H  17 March 

  August 2017 Fresh EO SD 17 August 

    H  17 August 

  August 2017 Fresh EO HD 17 August 

    H  17 August 

* For a month; ** For a week; EO: Essential oil; H: Hydrolate; SD: Steam-distillation; HD: Hidrodistillation. a – c: replicate 

samples. 

 

3.2. Essential oil isolation and hydrolates volatiles extraction 

The EOs were obtained by hydrodistillation (HD) and steam-distillation (SD). 

Hydrodistillation was run for 3 h, using a Clevenger type apparatus according to the European 

Pharmacopoeia (Council of Europe 2010), with a distillation rate of 3 mL/min. Approximately 

420 g of C. lusitanica and 270 g of C. ladanifer, were used for hydrodistillation. Steam-

distillation was performed at Silvapor®, using approximately 100 kg of each species in a 

stainless-steel distiller (1100 L, Vieirinox®, Aveiro, Portugal), during 1 h:30 min at 0.5 bar. 

Volatiles from hydrolates were obtained by a liquid-liquid extraction, using in-lab distilled 

n-pentane, in a ratio of 3 volumes of n-pentane per volume of hydrolate (x 3). Pentane extracts 

were concentrated, at room temperature under reduced pressure on a rotary evaporator (Rotary 

Evaporator RE-51). Each extract was then collected in a vial and concentrated to a minimum 

volume (100 µL), at room temperature, under nitrogen flux, using a blow-down evaporator 

system. Essential oils and hydrolate volatiles were stored at -20 °C, until analysis.  

 

3.3. Essential oil and hydrolates volatiles composition analysis 

The EOs and the hydrolates volatiles were analysed by gas chromatography-mass 



 

Chapter II- Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L 

60 

spectrometry (GC-MS) for component identification, and by gas chromatography (GC) for 

components quantification.  

 

3.3.1. Gas chromatography (GC) analysis 

Essential oils and hydrolates volatiles were analysed using a Perkin Elmer Autosystem XL 

gas chromatograph equipped with two flame ionization detectors (FIDs), a data handling system 

and a vaporizing injector port into which two columns of different polarities were installed: a 

DB-1 fused-silica column (100 % polydimethylsiloxane, 30 m x 0.25 mm i.d., film thickness 

0.25 μm; J & W Scientific Inc., Rancho Cordova, CA, USA) and a DB-17HT fused-silica 

column ((50 % phenyl)-methylpolysiloxane, 30 m x 0.25 mm i.d., film thickness 0.15 μm; J & 

W Scientific Inc.). Oven temperature was programmed, 45-175 °C, at 3 °C/min, subsequently 

at 15 °C/min up to 300 °C, and then held isothermal for 10 min; injector and detector 

temperatures, 290 °C and 280 °C, respectively; carrier gas, hydrogen, adjusted to a linear 

velocity of 30 cm/s. The percentage composition of the volatiles was computed by the 

normalization method from the GC peak areas, without the use of correction factors, calculated 

as mean values of two injections from each sample. 

 

3.3.2. Gas chromatography-mass spectrometry (GC-MS) analysis 

Gas chromatography-mass spectrometry analysis were run on a Perkin Elmer Clarus 600T 

gas chromatograph, equipped with DB-1 fused-silica column (30 m x 0.25 mm i.d., film 

thickness 0.25 μm; J & W Scientific, Inc.), and interfaced with a Perkin-Elmer Clarus 600T 

mass spectrometer (software version 5.4.2.1617, PerkinElmer, Shelton, CT, USA). Injector and 

oven temperatures were as above; transfer line temperature, 280 °C; ion source temperature, 

220 °C; carrier gas, helium, adjusted to a linear velocity of 30 cm/s; split ratio, 1:40; ionization 

energy, 70 eV; scan range, 40-300 m/z; scan time, 1 s. The identity of the components was 

assigned by comparison of their retention indices, relative to C8-C24 n-alkane indices and GC-

MS spectra from a laboratory-made library, constructed based on the analyses of reference oils, 

laboratory-synthesized components and commercially available standards.  

 

3.4. Essential oils and hydrolates bioactivities analysis 

Essential oils and hydrolates obtained by steam-distillation were used in the bioactivities 

assays as depicted in the flowchart, Figure 2.1. 

The antimicrobial activity was tested against Escherichia coli, Staphylococcus aureus and 

Candida albicans using disk agar diffusion method. Two separate assays were performed and 

each with two replicates.  
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The antioxidant activity of was determined using different methodologies, namely the 

i) capacity for scavenging the free radicals 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic 

acid) diammonium salt (ABTS) and superoxide anion, ii) xanthine oxidase inhibiting activity 

and iii) chelating metal ions capacity. Each assay had four replicates. 

The anti-inflammatory activity of hydrolates obtained by steam-distillation was evaluated 

through the albumin denaturation assay. Each assay had four replicates.  

 

3.4.1. Antimicrobial activity determination 

The antimicrobial activity of the EOs and hydrolates was determined by disk agar diffusion 

method, according to Faleiro et al. (2003). The tested microorganisms were Escherichia coli 

DSM 1077, Staphylococcus aureus ATCC 6538 and Candida albicans 1098. The bacterial 

strains were maintained in tryptic soy agar (TSA) at 4 °C. Original cultures are maintained at -

70 °C in glass beads. Tryptic soy broth was used to cultivate bacteria, except S. aureus which 

was grown on brain heart infusion (BHI, Biokar) at 37 °C for 18 h and C. albicans which was 

grown on yeast malt broth (YMB) and incubated at 37 °C. A volume of 0.1 mL of the culture 

was used to inoculate the TSA plates. Sterile filter paper discs (6 mm Ø), containing 3 µL of 

the samples (essential oil dilute 1:2 with n-propanol or hydrolate), were distributed on the agar 

surface. Chloramphenicol was used as the positive control for E. coli and S. aureus, and 

amphotericin B (10 μg/mL) for C. albicans. Inhibition zones were determined after an 

incubation period of 24 h at 37 °C.  

 

3.4.2. Antioxidant activities  

3.4.2.1. ABTS cation radical decolourisation assay 

The experiments were carried out using an improved ABTS decolourisation assay (Re et al., 

1999) which is applicable for both lipophilic and hydrophilic compounds, adapted to a 

microplate format using spectrophotometric detection and microtiter 96-well plates. The ABTS 

radical cation (ABTS+•) was generated by oxidation of ABTS with potassium persulphate. The 

ABTS+• solution was prepared by mixing 7 mM ABTS (5 mL) and 140 mM potassium 

persulphate (88 µL) leading to a 2.45 mM final concentration, and the mixture was incubated 

in the dark at room temperature for 16 h. The ABTS+• solution was then diluted with 80 % (v/v) 

ethanol to obtain an absorbance of 0.700±0.005 at 734 nm. Aliquots of the essential oil or 

hydrolate (30 µL) were added to the radical solution (3 mL) and 200 µL of each were placed in 

each well. Trolox ((±)-6-Hydroxyl-2,5,7,8-tetramethylchromane-2-carboxylic-acid) was used 

as standard. The decrease in the initial absorbance was recorded at zero and after 6 min on a 

microplate reader (Multiscan GO, ThermoFischer Sc.). The percent absorbance reduction was 

determined as follows: % ABTS+• inhibition = ((Absb -Absf)/Absb) × 100, where Absb is the 
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absorption of blank sample (t = 0 min) and Absf is the absorption of tested solution (t = 6 min). 

3.4.2.2. Inhibition of superoxide anion radical formation 

Scavenging ability of superoxide anion radical was evaluated as previously reported by 

Soares (1996) with some modifications. Superoxide anions were generated in a non-enzymatic 

phenazine methosulfate (PMS) - nicotinamide adenine dinucleotide phosphate (NADH) (PMS-

NADH) system by oxidation of NADH and assayed by reduction of nitroblue tetrazolium 

(NBT). The superoxide anion was generated in 240 µL of phosphate buffer (19 mM, pH 7.4) 

containing 60 µL NBT (43 µM) solution, 180 µL NADH (166 µM) solution and 60 µL of the 

oil or hydrolate samples. The reaction was started with the addition of 60 µL PMS solution 

(2.7 µM) to the mixture. The reaction mixture was incubated at room temperature for 10 min 

and the absorbance reading was performed at 560 nm in a UV/VIS spectrophotometer. Ascorbic 

acid was used as standard. The percentage of inhibition was calculated using the equation: % 

inhibition = ((A0-A1)/A0) × 100, where A0 is the absorbance of the control (without sample) and 

A1 is the absorbance in the presence of the sample.  

 

3.4.2.3. Inhibition of xanthine oxidase 

Xanthine oxidase activity was determined by measuring the formation of uric acid from 

xanthine. Xanthine oxidase inhibiting activity was measured with a modified assay according 

to Umamaheswari et al. (2013). The assay mixture consisted of 50 µL of the EO or hydrolate 

samples, 175 µL of phosphate buffer (50 mM, pH 7.5) and 22.5 µL of xanthine oxidase enzyme 

solution (0.4 units / mL in phosphate buffer, pH 7.5), which was prepared immediately before 

use. After pre-incubation at room temperature for 15 min, the reaction was initiated by the 

addition of 165 µL of 0.150 mM xanthine solution (substrate). The assay mixture was incubated 

for 30 min. The reaction was stopped by adding 50 µL of 1 M HCl, and the absorbance was 

measured at 290 nm using UV/VIS spectrophotometer. Allopurinol was used as standard. The 

percentage of inhibition was determined according to the following formula: % inhibition = 

((A0 −A1)/A0) × 100, where A0 is the absorbance of the control (without sample) and A1 is the 

absorbance in the presence of the sample. 

 

3.4.2.4. Chelating metal ions 

The degree of chelating of ferrous ions by EO or hydrolate samples was evaluated by the 

method described by Wang et al. (2004). Samples (200 µL of EO or hydrolate) were incubated 

with 100 µL of FeCl2.4H2O (2 mM). The reaction was initiated by adding 400 µL of ferrozine 

(5 mM), then after 10 min, the absorbance was measured at 562 nm. An untreated sample 

served as the control. EDTA (ethylenediaminetetraacetic acid) was used as standard. The 
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percentage of chelating ability was determined according to the following formula: % inhibition 

= ((A0 – A1)/ A0) x 100, where A0 is the absorbance without sample and A1 is the absorbance 

in the presence of the sample. 

 

3.4.3. Assessment of in vitro anti-inflammatory activity of hydrolates 

In vitro anti‐inflammatory activity of hydrolate samples was evaluated by using the albumin 

denaturation assay, according to Leelaprakash and Dass (2011) with minor modifications. The 

reaction mixture consisted of 1 mL hydrolate and 1 mL of 0.2 % aqueous solution of bovine 

serum albumin (BSA) fraction V. The samples were incubated at 37 °C for 20 min and then 

heated to 72 °C for 5 min. After cooling, the turbidity was measured spectrophotometrically at 

660 nm. Water was used as blank, and acetylsalicylic acid as a standard anti-inflammatory drug. 

Percent inhibition of protein denaturation was calculated as follows: % inhibition = ((Abscontrol 

– Abssample) / Abscontrol) X 100, where Acontrol is the absorbance without sample and Asample is the 

absorbance in the presence of the sample. 

 

3.5. Statistical analysis 

Results are presented as mean values with their corresponding standard deviations. All 

analytical determinations were carried out in quadruplicate. The mean value was considered for 

each analysis. 

 

4. Results and discussion  

4.1. Cupressus lusitanica Mill. 

4.1.1. Essential oil 

Cupressus lusitanica essential oils yields ranged between 0.12 and 0.26 % (v/d.w.) for 

steam-distillation (SD) and 0.1 % for hydrodistillation (HD), Table 2.2. In total, seventy-eight 

compounds were identified by SD and eighty-six by HD, accounting for 94-98 % and 95-97 % 

of the total composition, respectively (Table 2.2).  

Monoterpene hydrocarbons were the major constituents obtained both by steam-distillation 

(SD, 82-86 %) and by hydrodistillation (HD, 80-85 %).  

Independently of the time of the year of plant collection and of the distillation procedure, α-

pinene (SD, 14-36 %; HD 24-32 %), sabinene (SD, 13-18 %; HD 6-11 %), δ-3-carene (SD, 8-

17 %; HD 13-19 %), limonene (SD, 8-20 %; HD 15-21 %) and terpinen-4-ol (SD, 2-3 %; HD 

3-6%), were the main components (≥ 5 %) of C. lusitanica essential oils (Table 2.2). 

Previous studies on the EOs from C. lusitanica grown in Portugal, and in Cameroon and 

Kenya, have also shown, in general, α-pinene, sabinene, δ-3-carene, limonene and terpinen-4-
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ol as main components (Table 2.3). β-Pinene, γ-terpinene, umbellulone, abietadiene and 

linalool were also reported in some C. lusitanica essential oils, although always in a percentage 

higher than that found in the present study (Table 2.3). Conversely, germacrene D, epi-

zonarene, trans-totarol, cis-calamenene and ο-cymene were also reported in these species 

essential oils but were not identified in the present study. The chemical composition of EO 

depends on several factors, namely the part of plant used and collection time, in addition to 

other geographical, physiological, environmental, genetic and socio-political factors 

(Figueiredo et al., 2008), which may justify the differences observed in this study compared 

with what was previously described. 

 

4.1.2. Hydrolate volatiles 

Twenty-seven and fifty-two compounds were identified in C. lusitanica hydrolate volatiles 

obtained by steam-distillation (SD) and by hydrodistillation (HD), attaining 93-94 % and 78-

88 %, of the total, respectively (Table 2.2). The hydrolate volatiles obtained by both methods 

were dominated by the oxygen-containing monoterpenes (SD, 93-94 %; HD 64-81 %). 

Nevertheless, although the hydrolate volatiles obtained by SD were qualitative and 

quantitatively similar at the two collection moments, they differed from those obtained by HD. 

Whereas umbellulone (48 %) dominated SD hydrolate volatiles, this compound was present in 

traces in HD hydrolate volatiles (Table 2.2). Although umbellulone is considered more soluble 

in ethanol and DMSO, the SD pressure conditions may facilitate the extraction of this 

compound. p-Cymen-8-ol (11-16 %) was one of the dominant compounds of the HD hydrolate 

volatiles but was not detected in SD hydrolate volatiles. This difference may be related to the 

extraction method used and/or the harvesting year. In order to understand whether the difference 

in the chemical composition is related either to the extraction method or the harvesting time, 

further distillations will be carried out at different harvesting moments and with both SD and 

HD. 

Although no previous study addressed C. lusitanica hydrolate volatiles, Nakagawa et al. 

(2016), also evaluated the EO and the hydrolate (hydrosol) from another Cupressaceae, 

Cryptomeria japonica. The hydrolate volatiles were rich in oxygenated monoterpenes 

compared with the essential oils, in agreement with that found in the present study. 
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Table 2.2. Percentage composition of the essential oils, isolated by steam-distillation and hydrodistillation, and 

hydrolate volatiles isolated from Cupressus lusitanica aerial parts (for codes vide Table 2.1). 

  Cupressus lusitanica 

Components RI EO  H 

  SD  HD  SD  HD 

  17 

January 

17 

February 

 18a-c  

May 

 17 

January 

17 

February 

 18a-c 

May 

     Min Max     Min Max 

cis-3-Hexen-1-ol 868    t 0.1  0.2 0.1  2.2 13.2 

n-Hexanol 882       0.1 0.1  0.2 0.9 

Isobutyl isobutyrate 909 0.4 0.1  t t  0.1 0.1  t t 

Tricyclene 921 0.2 0.3  0.1 0.7       

α-Thujene 924 0.7 1.6  0.5 0.9       

Benzaldehyde 927       0.1 0.1  0.1 0.2 

α-Pinene 930 13.8 35.7  24.2 32.1       

α-Fenchene 938 t 0.4  0.6 0.7       

Camphene 938 1.0 0.5  0.6 0.7       

Thuja-2,4(10)-diene * 940 0.5 t  t 0.1       

Sabinene 958 17.7 13.4  5.5 10.9       

β-Pinene 963 0.5 0.9  0.9 1.4       

Dehydro 1,8-cineole 973 t t  t t       

β-Myrcene 975 2.9 4.4  3.0 3.5       

α-Phellandrene 995 0.1 0.3  0.1 0.1     0.2 0.2 

Isopentyl isobutyrate 995 0.1 t  t 0.1       

δ-3-Carene 1000 16.8 7.6  13.2 19.0       

α-Terpinene 1002 1.3 2.0  1.1 2.1       

Benzene acetaldehyde 1002          0.1 0.2 

p-Cymene 1003 0.4 0.9  0.2 0.3       

β-Phellandrene 1005 1.9 4.6  0.7 0.8     t 0.2 

1,8-Cineole 1005       2.8 2.4    

Limonene 1009 19.5 7.7  15.1 20.9       

Acetophenone 1017          t t 

cis-β-Ocimene 1017 0.2 0.1  t 0.1       

trans-β-Ocimene 1027 t 0.5  0.3 0.5       

γ-Terpinene 1035 2.0 2.3  1.6 3.2       

trans-Sabinene hydrate 1037 0.1 0.1  t 0.1     0.1 0.2 

cis-Linalool oxide 1045       0.1 0.1  0.2 0.4 

Fenchone 1050 0.4 t  t t  0.1 0.1  t 0.1 

2-Nonanone 1058 0.2 0.1  0.1 0.4  0.1 0.1  0.1 0.4 

trans-Linalool oxide 1059       0.1 0.1  0.5 1.3 

6-Methyl-3,5-heptadien-2-one 1064          t 0.1 

Terpinolene 1064 2.0 2.5  1.9 2.1       

cis-Sabinene hydrate 1066 0.1 t  t 0.1     0.2 0.5 

n-Nonanal 1073 t t  0.1 0.1       

Linalool 1074 t 0.3  0.3 0.6  1.5 1.5  1.1 2.1 

2-Methyl butyric acid 1074    t 0.2       

trans-Thujone 1081 0.5 0.1  t 0.1  0.1 0.2  t 0.2 

endo-Fenchol 1085    t 0.1     t 0.1 
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  Cupressus lusitanica 

Components RI EO  H 

  SD  HD  SD  HD 

  17 

January 

17 

February 

 18a-c  

May 

 17 

January 

17 

February 

 18a-c 

May 

     Min Max     Min Max 

α-Campholenal 1092 0.1 0.1  0.1 0.2  0.1 0.1  0.1 0.2 

cis-Limonene oxide 1095          0.1 0.2 

trans-p-2-Menthen-1-ol 1099 t 0.2  0.1 0.2  1.2 1.0  1.2 1.9 

Camphor 1102 0.3 0.5  0.1 3.6  5.4 4.4  1.0 11.1 

trans-Pinocarveol 1106 1.3 0.5  t t     0.2 0.5 

cis-Verbenol 1113 t t  0.1 0.1       

cis-p-2-Menthen-1-ol 1114 0.1 0.2  0.1 0.1  1.1 1.0  1.6 1.8 

trans-Verbenol 1114    0.1 0.2       

Camphene hydrate* 1114    0.1 0.2       

Isopulegol 1116          1.8 2.5 

Citronellal 1121 t t          

trans-Pinocamphone 1121 t t          

cis-Pinocamphone 1122    t 0.1       

Pinocarvone 1123 t t  0.2 0.2       

Umbellulone* 1128 0.7 3.2     47.5 48.2  t 0.1 

Borneol 1134    0.1 0.2     1.0 1.6 

Lavandulol 1142    t t     t 0.1 

p-Cymen-8-ol 1148          10.5 15.7 

Terpinen-4-ol 1148 2.3 2.9  3.4 5.9  23.5 24.0  21.0 31.4 

α-Terpineol 1159 0.1 t  0.2 0.6  3.7 4.2  5.9 9.7 

4-cis-Decenal 1163 0.1 t          

Verbenone 1164    t 0.1  1.1 1.0  2.5 3.9 

Myrtenol 1168    t 0.1       

2-Decanone 1166 0.2 0.3          

cis-Piperitol 1182 t t          

trans-Carveol 1189    0.1 0.1  0.1 0.1  0.3 0.7 

trans-Piperitol* 1189 t t  0.1 0.2     0.5 0.8 

α-Fenchyl acetate 1200 t t  t t       

cis-Carveol 1202          0.1 0.4 

Citronellol 1207 t t  1.2 1.5  0.4 0.5  3.4 6.1 

Thymol methyl ether 1210 0.3 0.1          

trans-Ocimenone 1211    t t  0.3 0.3  t 0.5 

Piperitone 1211 t t  0.1 0.2  0.5 0.5  0.2 0.4 

Carvacrol methyl ether 1224 t t  t 0.1       

Geraniol 1236    t 0.1       

Isoamyl hexanoate 1240    t 0.1       

cis-Chrysanthenol acetate  1242          0.2 0.4 

Linalyl acetate 1245 0.1 t  t 0.1       

n-Decanol 1259    t 0.1       

Nonanoic acid  1263          t t 

Bornyl acetate 1265 0.1 0.2  t 0.2  0.1 0.1    

p-Cymen-7-ol 1265 t 0.1          

trans-Verbenyl acetate 1267 0.1 t          
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  Cupressus lusitanica 

Components RI EO  H 

  SD  HD  SD  HD 

  17 

January 

17 

February 

 18a-c  

May 

 17 

January 

17 

February 

 18a-c 

May 

     Min Max     Min Max 

2-Undecanone 1275    t t       

Thymol 1275       3.2 3.6  t 0.1 

trans-Pinocarvyl acetate 1278    t 0.1       

Carvacrol 1286    t t  0.1 0.1  t 0.1 

Myrtenyl acetate 1290          t 0.1 

Terpinen-4-ol acetate* 1297 0.1 0.5          

trans-Carvyl acetate 1303 t t  t t       

α-Terpenyl acetate 1334 0.1 0.4  t t  0.3 0.3    

Citronellyl acetate 1343 0.7 t  t 0.1       

α-Cubebene 1345 t t          

cis-Carvyl acetate 1346    t t       

Borneol propinoate 1361 t t          

Geranyl acetate 1370    t t       

α-Copaene 1375 t t          

β-Bourbonene 1379 0.1 t          

Longifolene 1399 t t          

β-Caryophyllene 1414 t t  0.1 0.1       

cis-Thujopsene 1423 1.1 0.1  t t       

α-Humulene 1447 t t  t 0.1       

Cadina-3,5-diene* 1458 2.3 1.4  0.3 0.5       

γ-Muurolene 1469 t t        t 0.2 

α-Muurolene 1494    t 0.1       

trans,trans-α-Farnesene 1500    t t       

γ-Cadinene 1500 0.2 0.1  t t       

trans-Calamenene 1505 0.3 0.1  t t       

δ-Cadinene 1505 0.2 0.2  t t     t 0.1 

β-Caryophyllene oxide 1561    t 0.1     0.1 0.1 

Humulene epoxide II* 1580    t 0.1     t t 

1-epi-Cubenol 1600    t t     t t 

epi-α-Cadinol 1616          t 0.1 

α- Cadinol 1626 0.1 0.1  t 0.1     0.1 0.4 

Isopimara-9(11),15-diene 1821 t t  t t       

Sandaracopimara-8(14),15-diene 1956 t 0.1  t t     t t 

Abietatriene 2027 t t  0.1 0.2     t 0.1 

Abietadiene 2060 0.1 0.1  0.7 1.1     0.1 1.1 

             

% Identification  94.4 97.8  94.8 96.9  93.9 94.3  77.5 88.4 

             

Grouped components             

Monoterpene hydrocarbons   81.5 85.7  79.5 85.3     0.2 0.4 

Oxygen-containing 

monoterpenes 

  7.5 9.4  7.4 13.5  93.3 93.8  63.7 81.5 

Sesquiterpene hydrocarbons   4.2 1.9  0.4 0.8     t 0.3 
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  Cupressus lusitanica 

Components RI EO  H 

  SD  HD  SD  HD 

  17 

January 

17 

February 

 18a-c  

May 

 17 

January 

17 

February 

 18a-c 

May 

     Min Max     Min Max 

Oxygen-containing 

sesquiterpenes 

  0.1 0.1  0.1 0.2     0.2 0.6 

Diterpene hydrocarbons   0.1 0.2  0.8 1.3     0.1 1.2 

Others   1.0 0.5  0.4 0.8  0.6 0.5  3.1 15.0 

             

Yield (%, v/d.w.)  0.26 0.12  0.1 0.1       

RI: In-lab calculated retention index relative to C8-C21 n-alkanes on the DB-1 column; EO: Essential oil; H: Hydrolate; SD: 

Steam-distillation; HD: Hidrodistillation; Min: Minimum; Max: Maximum; t: traces (˂ 0.05 %); * Identification based on mass 

spectra only; Values ≥ 5 % in bold; v/d.w.: Volume / dry weight.  

 

Table 2.3. Data on previous studies on Cupressus lusitanica essential oils obtained by hydrodistillation. 

Country 

of Origin 

Collection 

time 

Plant Part Essential oil 

yield  

(%, v/f.w.) 

Main components (≥ 5 %) Reference 

Cameroon June 2003 Leaves 0.33 α-Pinene (7 %), umbellulone (18 %), 

germacrene D (8 %), epi-zonarene (5 %) 

Kuiate et 

al., 2006 

Cameroon March 2004 Fruits 0.50 α-Pinene (64 %), myrcene (6 %), 

δ - 3- carene (7 %) 

Kuiate et 

al., 2006 

Cameroon August 2010 Leaves 0.32 Linalool (6 %), umbellulone (6 %), 

terpinen-4-ol (6 %), germacrene D (19 %), 

epi-zonarene (8 %), cis-calamenene (8 %) 

Teke et al., 

2013 

Kenya August 2012 Leaves 0.35 α-Pinene (10 %), sabinene (8 %), 

δ- 3- carene (7 %), ο-cymene (6 %), 

limonene (8 %), umbellulone (18 %), 

terpinen-4-ol (6 %) 

Bett et al., 

2016 

Portugal  Leaves and 

Branchlets 

0.05-0.30 α-Pinene (18 %), β-pinene (7 %), sabinene 

(7 %), limonene (6 %), γ-terpinene (6 %) 

Carmo and 

Frazão, 

1989 

Portugal  Leaves 0.34 α-Pinene (6-17 %), sabinene (7-10 %), 

δ- 3- carene (1-8 %), umbellulone (traces-

6 %), abietadiene (11-24 %), trans-totarol 

(5-7 %) 

Adams et 

al., 1997 

v/f.w..: Volume/ fresh weight; traces: <0.05 %. 

 

4.1.3. Biological activities 

4.1.3.1. Antimicrobial activity 

Escherichia coli DSM 1077 and Staphylococcus aureus ATCC 6538 were used in these 

assays to determine the activity of C. lusitanica EOs against Gram-negative and Gram-positive 

bacteria, respectively. The determination of the susceptibility of C. albicans was done since this 
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microorganism besides being a commensal yeast is also an opportunistic pathogen that can 

cause infections of the oral or vaginal mucosa of healthy individuals (Gow and Yadav, 2017). 

The essential oils isolated from C. lusitanica showed weak antimicrobial activity for 

different microorganisms (2 bacteria and 1yeast) (Table 2.4). The antibiotic (chloramphenicol) 

and antifungal (amphotericin B) used demonstrated a significantly higher activity (30-40 ± 0.0 

mm and 13-15 ± 0.0 mm, respectively) than the tested EOs. The essential oil from C. lusitanica 

obtained in January and February had the highest activity against S. aureus (9.5 ± 0.0 and 9.3 

± 0.0 mm, respectively). The results also showed that the antimicrobial activity of essential oils 

obtained at different times (17 January and 17 February) were similar. Teke et al. (2013), tested 

the essential oil of C. lusitanica obtained by HD against E. coli, S. aureus and C. albicans using 

agar disc diffusion technique and the results obtained were in the same order of magnitude as 

those obtained in the present study.  

 

Table 2.4. Antimicrobial activity of the essential oils of Cupressus lusitanica and Cistus ladanifer. 

 Diameter of the inhibition zone (mm)* 

Microorganism Cupressus lusitanica EO  Cistus ladanifer EO 

 17 January 17 February  17 March 17 August 

Escherichia coli DSM 1077 7.2 ± 0.1 8.8 ± 0.1  9.3 ± 0.1 12.0 ± 0.0 

Staphylococcus aureus 

ATCC 6538 8.5 ± 0.0 9.3 ± 0.0  8.5 ± 0.1 9.8 ± 0.0 

Candida albicans 1098 7.5 ± 0.0 8.5 ± 0.0  8.8 ± 0.0 9.0 ± 0.0 

* Including disc diameter, 6 mm Ø; EO: Essential oil; The values are the mean of four experiments ± standard deviation. 

 

4.1.3.2. Antioxidant activity 

4.1.3.2.1. Essential oil 

The antioxidant activity of essential oils is of great interest as they can be used in food for 

preserving it from oxidation processes, thus prolonging its shelf-life without losing nutritional 

quality attributes. They can also be used in health for scavenging free radicals, preventing some 

diseases in which cellular damage are caused by these radicals (Miguel, 2010). The possible 

toxicity associated with synthetic antioxidants, as well as consumer preference for natural 

foods, has led to a growing demand for natural antioxidants (Augustyniak et al., 2010). 

In the present study, different antioxidant activity evaluation methods showed diverse 

results, for the different volumes of essential oils assessed (Table 2.5). All the positive controls 

evaluated showed 100 % inhibition capacity. By ABTS method the EOs showed a moderate 

inhibition capacity > 50 % (62-63 %) and by xanthine method showed a strong inhibition 

capacity > 90 % (92-94 %), using 30 μL (9.9 μL/mL) and 50 μL (108 μL/mL) of EO, 

respectively (Table 2.5). On the other hand, the results showed that the antioxidant activity was 

similar at the two collection moments (Table 2.5).  
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Some studies describe the antioxidant activity of EOs from Cupressaceae species (Emami et 

al., 2010; Fayed 2015; Guimarães et al., 2010). Guimarães et al. (2010) reported the antioxidant 

activity of C. lusitanica EO obtained by HD, using different antioxidant activity assays, namely 

1,1-diphenyl-2-picrylhydrazyl-hydrate (DPPH) free radical scavenging, reducing power and 

lipid peroxidation inhibition, with EC50 values of 53.5, 4.4 and 0.7 mg/mL, respectively.  

 

4.1.3.2.2. Hydrolate 

Independently of the method used, the hydrolates exhibited lower antioxidant activity than 

the respective essential oils (˂ 50 %) (Table 2.5). In this case too, the antioxidant activity was 

similar at the two collection moments. Inhibition of xanthine oxidase (18-19 %) and chelating 

metal ions (33-35 %) were the methods with which higher antioxidant activity was observed. 

 
Table 2.5. Antioxidant activities of essential oils and hydrolates from Cupressus lusitanica and Cistus ladanifer 

evaluated by different methodologies (for sample codes vide Table 2.1). 

  Antioxidant activities (%)* 

 Assay ABTS Superoxide Xanthine Chelating 

Plant Sample Volume (μL)  30 60 50 200 

Cupressus EO 17 January 62.7 ± 0.8 nd 92.4 ± 0.1 nd 

lusitanica EO 17 February 61.8 ± 0.2 nd 93.7 ± 0.1 nd 

 H 17 January 3.3 ± 0.1 7.5 ± 0.2 18.1 ± 0.2 33.0 ± 0.3 

 H 17 February 3.1 ± 0.2 8.4 ± 0.1 18.8 ± 1.0 34.6 ± 0.7 

      

Cistus EO 17 March 68.1 ± 0.1 nd 96.9 ± 0.2 nd 

ladanifer EO 17 August 69.7 ± 1.2 nd 98.5 ± 0.2 nd 

 H 17 March 8.2 ± 0.2 14.3 ± 0.1 25.3 ± 0.5 24.1 ± 0.3 

 H 17 August 8.1 ± 0.1 13.4 ± 0.5 25.7 ± 0.3 25.1 ± 1.0 

* The values are the mean of four experiments ± standard deviation; ABTS: 2,2′-azino-bis (3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt; EO: Essential oil; H: Hydrolate; nd: Not determined. 

 

Depending on the method of evaluation of the antioxidant activity, the EOs and hydrolates 

showed different results, as expected. Oxidation is a complex process that occurs in several 

steps and the capacity of a compound for acting in every step is also different (Miguel et al., 

2010). Therefore, there is not a universal antioxidant able to act in all steps of oxidation 

mechanisms. Sometimes, two or more antioxidants are used in combination because they 

possess synergistic effect, not only by acting at different steps of the oxidation but also one 

antioxidant can also be able to regenerate the other (Cho and Min, 2009). Lower performance 

or absence activity obtained in a test does not mean that a positive result is not obtained with 

another test to evaluate the same biological property (Figueiredo, 2017).  
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4.1.3.3. Anti-inflammatory activity of hydrolates 

There were no differences in inflammatory inhibition capacity for hydrolate samples (1 mL) 

harvested at different moments, 93 % (17 January) and 94 % (17 February). Acetylsalicylic 

acid used as positive control showed 95 % of inhibition at 0.1 mg/mL. Although no evaluation 

was performed with C. lusitanica hydrolate volatiles individual components, studies have 

shown that some of the detected compounds, namely terpinen-4-ol, linalool, thymol and 1,8-

cineole, showed anti-inflammatory activity (Kamatou et al., 2006; Miguel, 2010; Wei and 

Shibamoto, 2010). The observed anti-inflammatory activity of these compounds still needs to 

be confirmed with further experiments, viewing to understand the traditional use of the genus 

Cupressus in the treatment of inflammations (Harraz et al., 2018). In line with the present 

results, investigation of new and effective anti-inflammatory agents from natural resources such 

as forestry biomass, with less undesirable effects than the commercially available ones, is of 

utmost importance. 

 

4.2. Cistus ladanifer L. 

4.2.1. Essential oil 

In C. ladanifer EO, obtained by steam-distillation (SD) and hydrodistillation (HD), sixty-

nine and seventy-seven compounds were identified, representing 87-96 % and 73 % of the total, 

respectively (Table 2.6). The EO yields were respectively 0.01-0.04 and 0.15 % (v/w). 

Although monoterpenes were dominant in all essential oils, namely the monoterpene 

hydrocarbons fraction (SD, 48-80 % and HD, 29 %), there were some differences in the EOs 

composition according to the moment of collection and type of distillation. Whereas α-pinene 

was the major component in all EOs (SD, 17 March, 28 % and 17 August, 25 %; HD, 17 August, 

13 %), the relative amount of the second main component, camphene, was lower at warmer 

months, both when isolated by SD and HD (SD, 17 March, 25 % and 17 August, 13 %; HD, 17 

August, 5 %) (Table 2.6). Interestingly, the relative amount of the oxygen-containing 

sesquiterpene fraction increased in the same samples (SD, 17 March, 3 % and 17 August, 10 %; 

HD, 17 August, 9 %) (Table 2.6). 

For comparison purposes, five commercial Portuguese C. ladanifer EO samples, obtained in 

different years, by SD, from different producers, were used. All these samples showed similar 

qualitative and quantitative profile to that of the samples under study (Table 2.6). 

Several studies addressed the volatile composition of C. ladanider, either by evaluating the 

plant parts solvent (Oller-López et al., 2005, Ramalho et al., 1999) or supercritical extracts 

(Ricón et al., 2000), the enantiomeric ratio of the plant essential oils (Costa et al., 2009), or the 

oleoresin essential oil (Weyerstahl et al., 1998). Table 2.7 gathers only the data from the 

essential oils obtained from C. ladanider aerial parts, either by HD or SD, the same procedures 
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and type of plant material used in the present study. Comparison of the literature data (Table 

2.7), from plant material collected in different countries showed, in some cases, variable 

chemical composition, diverse from that herewith reported. If this reflects natural chemical 

variability of these species essential oils, or if it results from different collection places, 

physiological stage of the material, existence of different varieties or subspecies, or other 

distillation related factors, remains elusive. Torcato (2015) studied the effect of C. ladanifer 

leaf age on the essential oil yield and composition. Whereas the EO yield from young leaves 

ranged between 0.2 and 0.3 % (v/f.w.), it was not higher than 0.1 % in mature leaves. Although 

α-pinene dominated in the young leaf EO (40-44 %), its relative amount ranged from 9 to 22 % 

in mature leaf. Conversely, viridiflorol ranged from 1 to 2 % in young leaf and 5 to 22 % in 

mature leaf (Table 2.7). This stresses the importance of C. ladanifer physiological stage in EO 

composition and yield. 

 
Table 2.6. Percentage composition of the essential oils, isolated by steam-distillation and hydrodistillation, and 

hydrolate volatiles isolated from Cistus ladanifer aerial parts (for codes vide Table 2.1). For comparison purposes, 

the minimum and maximum percentage range of the components identified in five Portuguese commercial 

essential oil samples, was included.  

  Cistus ladanifer 

Components RI EO  H  EOC 

  SD  HD  SD  HD     

  17 

March 

17 

August 

 17 

August 

 17 

March 

17 

August 

 17 

August 

 Min  Max 

1,2,4,4-Tetramethyl cyclopentene* 851 1.3 1.3  1.0         1.2 

cis-3-Hexen-1-ol 868      1.3 0.5  0.3    t 

2-trans,4-trans-Hexadienal  870         0.1    t 

2-Acetylfuran  897         0.2    t 

1-Methyl cycloheptanol* 909      2.8 5.2  4.6    1.7 

Tricyclene 921 4.8 2.3  0.6         2.7 

α-Thujene 924 0.2 0.4  0.5         0.4 

Benzaldehyde 927      1.8 1.1  0.6    0.8 

α-Pinene 930 27.9 24.7  13.2       29.8  59.5 

Camphene 938 25.3 12.6  5.0  0.3 0.1  0.2  2.6  14.7 

Thuja-2,4(10)-diene * 940 0.5 0.5  1.6       1.0  1.3 

Sabinene 958 3.2 0.2  t       t  0.3 

β-Pinene 963 0.9 0.7  0.4       0.5  0.9 

6-Methyl-5-hepten-2-one 968    0.1  0.2 0.5  0.3    0.1 

Dehydro-1,8-cineole 973    0.5          

2-Penthyl furan 973 t 0.1  t          

β-Myrcene 975 0.8 0.1  0.2       0.1  0.3 

α-Phellandrene 995 0.1 0.3  0.2       0.2  0.4 

δ-3-Carene 1000 4.2 t  0.3         0.6 

α-Terpinene 1002 0.5 0.4  0.4       0.2  0.9 

Benzene acetaldehyde 1002         0.4     

p-Cymene 1003 2.3 2.9  4.3       1.1  3.4 
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  Cistus ladanifer 

Components RI EO  H  EOC 

  SD  HD  SD  HD     

  17 

March 

17 

August 

 17 

August 

 17 

March 

17 

August 

 17 

August 

 Min  Max 

2,6,6-Trimethyl cyclohexanone 1003 2.3 2.9  4.3  12.4 9.1  2.2  0.4  3.4 

1,8-Cineole 1005    0.3  0.4 0.5  0.2    4.3 

β-Phellandrene 1005 0.4 0.4  0.3       0.0  1.3 

Limonene 1009 6.6 1.0  0.1       0.8  1.7 

Acetophenone 1017    0.7  2.3 1.9  3.1  0.1  1.9 

γ-Terpinene 1035 0.9 0.7  0.3       0.6  1.3 

cis-Linalool oxide 1045      0.3 0.3  1.6    0.2 

Fenchone 1050 t 0.3  0.7          

trans-Linalool oxide 1059      0.4 0.4  1.0     

2,5-Dimethyl styrene 1059 0.2 0.2  0.8       t  2.7 

Terpinolene 1064 0.8 0.3  0.6       t  0.5 

6-Methyl-3,5-heptadien-2-one 1064      1.2 1.2  0.9    0.2 

n-Nonanal  1073 0.1 0.2         t  0.6 

Linalool 1074 0.1 0.1  t       0.3  1.9 

cis-Rose oxide 1083 0.1 0.2  t       0.2  0.6 

α-Campholenal 1092 0.5 0.6  1.2  1.7 1.6  1.7  0.4  1.8 

trans-Rose oxide 1100 t t           0.2 

Camphor 1102 0.2 0.4  0.2  1.8 1.8  1.1    0.5 

trans-Pinocarveol 1106 0.4 2.1  5.3  5.0 12.6  7.8  1.8  5.9 

cis-p-2-Menthen-1-ol 1114 0.1 0.2  1.2          

trans-Verbenol 1114      1.1 0.5  1.2     

Pinocarvone 1121 0.3 1.0  2.1  1.8 3.0  1.7  t  1.5 

Borneol 1134 0.7 1.3  3.8  8.5 7.2  3.1  0.6  2.1 

p-Methyl acetophenone 1143      0.5 0.6  0.8    t 

Terpinen-4-ol 1148 0.6 0.5  1.0  6.2 2.0  1.5  0.6  1.8 

p-Cymen-8-ol 1148         2.9     

Myrtenal 1153 0.1 0.4  0.2  1.1 1.0  0.7  0.3  1.3 

α-Terpineol 1159 0.1 t  0.7  1.1 0.7  1.1  t  0.7 

Verbenone 1164    1.1  4.9 1.4  7.8    3.1 

Myrtenol 1168 t 0.2  t         0.8 

n-Decanal 1180 t 0.2            

trans-Carveol 1189    0.9  1.1 0.9  2.3  0.1  0.7 

α-Fenchyl acetate 1200    t         t 

Bornyl formate 1200 t 0.2           0.1 

Cumin aldehyde 1200    0.4         0.3 

Citronellol 1207 0.1 0.1            

cis-Ocimenone 1210    0.4         1.9 

Carvone 1210    0.3  0.3 0.3  0.3  t  0.2 

trans-Ocimenone 1211    0.3     0.2    0.7 

Piperitone 1211         0.1     

β-Fenchyl acetate 1212 t 0.3  0.2          

Geraniol 1236      0.5 0.3      0.2 

cis-Chrysanthenyl acetate 1241         t     

p-Cymen-7-ol 1265         0.2     
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  Cistus ladanifer 

Components RI EO  H  EOC 

  SD  HD  SD  HD     

  17 

March 

17 

August 

 17 

August 

 17 

March 

17 

August 

 17 

August 

 Min  Max 

Bornyl acetate 1265 3.7 6.3  4.2  3.2 1.6  1.0  2.1  6.1 

trans-Pinocarvyl acetate 1278 t 0.3  0.2         0.3 

Carvacrol 1286    t  3.2 1.6  1.0    0.3 

Myrtenyl acetate 1290 0.1 0.2  0.4         0.7 

trans-Carvyl acetate 1305 t 0.2  t       0.1  0.3 

trans-2-Undecenal 1323    0.1          

Eugenol 1327    0.1          

cis-Myrcenyl acetate 1334 t 0.1            

α-Terpenyl acetate 1334 0.3 t            

Citronellyl acetate 1343 t t           0.2 

α-Cubebene 1345 0.1 0.2  0.1         0.1 

Cyclosativene 1363 t 0.1  0.2       t  0.8 

α-Copaene 1375 0.2 1.1  0.3       0.1  0.8 

β-Caryophyllene 1414 0.1 0.2  0.1         0.2 

Aromadendrene 1428    0.1          

allo-Aromadendrene 1456 1.0 2.0  0.3       0.2  1.6 

trans-Cadina-1(16)-4-diene 1469    0.5         t 

γ-Muurolene 1469 0.1 0.4            

Germacrene D 1474 t t           0.1 

β-Selinene 1476 t 0.2           0.1 

Eremophyllene 1477 t 0.5           t 

1,1,5,6-Tetramethyl -1,2-

dihydronaphthalene* 

1480    t          

Viridiflorene 1487 0.1 1.6  0.5     0.1  0.3  4.5 

α-Muurolene 1494 t 0.4  0.1         0.1 

1,1,5,6-Tetramethyl -1,2,3,4-

tetrahydronaphthalene* 

1495    0.2       t  0.1 

γ-Cadinene 1500 0.1 0.3            

trans-Calamenene 1505 0.1 0.5  0.2         0.4 

δ-Cadinene 1505 0.5 1.4  0.3       0.2  0.5 

α-Calacorene 1525 t 0.3  t         0.2 

Spathulenol 1551 0.1 0.4  0.4  0.1 0.2  0.1    0.1 

β-Caryophyllene oxide 1561 0.1 0.2  0.6         0.1 

Viridiflorol 1569 1.7 6.2  4.6  0.7 0.5  0.9  0.8  1.9 

Ledol 1580 0.7 3.0  2.6  0.5 0.5  0.6    0.8 

1-epi-Cubenol 1600    0.2     0.1     

α-Muurolol 1616 0.2 t  0.3          

α- Cadinol 1626 0.2 0.3  0.2          

n-Nonadecane 1900 t t  0.1          

15-nor-Labdan-8-ol * 1946 0.1 0.2  0.3     t    0.3 

Tetradecyl angelate 2065    0.3         0.1 

               

% Identification  96.1 86.9  73.2  66.7 59.1  54.0  85.1  96.1 
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  Cistus ladanifer 

Components RI EO  H  EOC 

  SD  HD  SD  HD     

  17 

March 

17 

August 

 17 

August 

 17 

March 

17 

August 

 17 

August 

 Min  Max 

Grouped components               

Monoterpene hydrocarbons   79.6 47.7  28.8  0.3 0.1  0.2  46.2  79.7 

Oxygen-containing monoterpenes   7.4 15.0  25.7  42.6 37.7  38.5  8.3  24.5 

Sesquiterpene hydrocarbons   2.3 9.2  2.7     0.1  1.0  8.6 

Oxygen-containing sesquiterpenes   3.0 10.1  8.9  1.3 1.2  1.7  1.2  2.6 

Oxygen-containing diterpenes   0.1 0.2  0.3     t  t  0.3 

Others   3.7 4.7  6.8  22.5 20.1  13.5  0.7  6.5 

               

Yield (%, v/f.w.)  0.01 0.04  0.15       0.1  0.1 

RI: In-lab calculated retention index relative to C8-C21 n-alkanes on the DB-1column; EO: Essential oil; H: Hydrolate; EOC: 

Portuguese commercial essential oil samples; SD: Steam-distillation; HD: Hidrodistillation; Min: Minimum; Max: Maximum; 

t: traces (˂ 0.05 %); * Identification based on mass spectra only; Values ≥ 5 % in bold; v/f.w.: Volume/ fresh weight. 

 
Table 2.7. Data on previous studies on Cistus ladanifer essential oils obtained by hydrodistillation or steam-

distillation.  

Country 

of 

Origin 

CM Plant Part Plant 

condition 

EP Essential oil 

yield (%, 

v/w) 

Main components (≥ 5%)* Reference 

Corsica August 

1990 

Leaves and 

stems 

Dnp HD** 0.07 α-Pinene (39 %), viridiflorol 

(12 %) 

Mariotti et al., 

1997 

    HD*** 0.16-0.41 α-Pinene (11-47 %), trans-

pinocarveol (4-11 %), 

viridiflorol (5-11 %) 

 

Corsica dnp Aerial parts Dry HD dnp α-Pinene (47 %), camphene 

(5 %), globulol (6 %) 

Rossi et al., 

2007 

France  dnp Leaves Fresh SD 0.081-0.119 § α-Pinene (216), 2,2,6-

trimethyl cyclohexanone (54), 

viridiflorol (57) 

Robles et al., 

2003 

Germany Autumn Leaves and 

steams 

Fresh SD 0.0-0.1 α-Pinene (43 %), camphene 

(12 %), δ-cadinene (7 %) 

Gülz, 1984 

Morocco August 

2004 

Leaves and 

small 

branches 

Fresh HD 0.3-0.4 α-Pinene (5 %), camphene 

(12 %), bornyl acetate (17 %), 

ledol (8%), viridiflorol (19 %) 

Greche et 

al., 2009 

Morocco VP Leaves  HD 1.4 1,8-Cineole (19 %), γ-terpinene 

(6 %), viridiflorol (16 %) 

Viuda-

Martos et 

al., 2011 

Morocco May 

2012 

Leaves Dry HD 0.14 Camphene (16 %), 

2,2,6-trimethyl cyclohexanone 

(7 %), borneol (11 %), 

terpinen-4-ol (6 %), δ-cadinene 

(6 %) 

Zidane et 

al., 2013 

Portugal 

  (South) 

Summer dnp Dnp HD 0.1 α-Pinene (20 %), 

trans- pinocarveol (7 %), 

Miguel et 

al., 2004 
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Country 

of 

Origin 

CM Plant Part Plant 

condition 

EP Essential oil 

yield (%, 

v/w) 

Main components (≥ 5%)* Reference 

viridiflorol (6 %) 

Portugal July- Leaves and  Fresh HD dnp Viridiflorol (15 %) Gomes et  

  

(Center) 

August 

2001 

small 

branches 

Dry HD 0.2-0.3 Globulol (5 %), viridiflorol 

(17 %) 

al., 2005 

Portugal July- Leaves and  Fresh HD dnp Viridiflorol (15 %)  

  (North) August 

2001 

small 

branches 

Dry HD 0.2-0.3 Viridiflorol (14 %), 

15- nor- labdan-8-ol (5 %) 

 

Portugal 

  

(Center) 

March 

2015 

Leaves Young HD 0.2-0.3 α-Pinene (40-44 %), 

2,2,6- trimethyl cyclohexanone 

(6-8 %) 

Torcato, 

2015 

   Mature HD traces-0.1 α-Pinene (9-22 %), 

2,2,6-trimethyl cyclohexanone 

(4-7 %), trans-pinocarveol (2-

6 %), viridiflorol (5-22 %), 

ledol (3-10 %) 

 

Spain dnp Leaves and 

stalks 

dnp ndp dnp # α-Pinene (24), camphene 

(13), α-copaene (8), 

cis-pinocamphone (6), bornyl 

acetate (6) 

Costa et al., 

2009 

Spain October 

2006 

Leaves Fresh HD 0.34 trans-Pinocarveol (20 %), 

terpinen-4-ol (6 %), bornyl 

acetate (7 %), viridiflorol 

(14 %) 

Verdeguer 

et al., 2012 

CM: Collection moment if provided; EP: Extraction procedure; v/w: Volume/ weight; * Unless otherwise stated the data is 

provided in percentage; dnp: data not provided; HD: Hidrodistillation; SD: Steam-distillation; ** Hydrodistillation using 

an industrial apparatus; *** Hydrodistillation using a Clevenger-type apparatus; VP: Vegetative period; § Data given in 

concentration (μg/μL); # Data given in absolute amounts (g/100g).  

 

4.2.2. Hydrolate volatiles 

The oxygen-containing monoterpenes were the major constituents (SD, 38-43 %, HD, 39 %) 

of the hydrolate volatiles. The chemical composition was qualitatively similar with some 

quantitative differences for samples of different moments and different distillations procedure. 

2,6,6-Trimethyl cyclohexanone (17 March, 12 %, 17 August, 9 %), trans-pinocarveol (17 

March, 5 %, 17 August, 13 %), borneol (17 March, 9 %, 17 August, 7 %), terpinen-4-ol (17 

March, 6 %, 17 August, 2 %) and 1-methyl cycloheptanol (17 March, 3 %, 17 August, 5 %) 

was the major compounds obtained by SD and trans-pinocarvol (8 %) and verbenone (9 %) by 

HD (Table 2.6).  
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4.2.3. Biological activities 

4.2.3.1. Antimicrobial activity 

In virtue of the significant number of infections leaded by both Gram-negative and Gram-

positive bacteria and by the yeast C. albicans, it is important to find alternative approaches to 

combat these pathogens. In view of this, also C. ladanifer EOs were assessed against these 

microorganisms. 

The EOs isolated from C. ladanifer showed weak antimicrobial activity against E. coli, S. 

aureus and C. albicans (Table 2.4). Chloramphenicol and amphotericin B demonstrated a 

higher activity (30-40 % and 13-15 %, respectively) than the EO (Table 2.4).  

The obtained results are in line with those reported by Vieira et al. (2017) for C. ladanifer 

EO obtained by HD, against E. coli (10 mm) and S. aureus (11 mm) using the agar disc 

diffusion technique. 

Cistus ladanifer hydrolates showed no antimicrobial activity against the microorganisms 

under study. 

 

4.2.3.2. Antioxidant activity 

4.2.3.2.1. Essential oil 

By ABTS method the EOs showed a moderate inhibition capacity > 50 % (68-70 %) and by 

xanthine method showed a strong inhibition > 90 % (97-99 %), using 30 μL (9.9 μL/mL) and 

50 μL (108 μL/mL) of EO, respectively (Table 2.5). There was not much difference in the 

antioxidant activity between the samples harvested in different periods of the year (Table 2.5).  

The antioxidant activity of C. ladanifer EO was already reported by Zidane et al. (2013) 

using DPPH free radical scavenging assay, with comparable results. 

 

4.2.3.2.2. Hydrolate 

The SD hydrolate showed an activity less < 50 %, lower than the respective essential oils 

(Table 2.5). Again, there was no difference in the antioxidant activity observed in the samples 

harvested in different periods (Table 2.5). Inhibition of xanthine oxidase (25-26 %) and 

chelating metal ions (24-25 %) were the methods where higher antioxidant activity was 

observed. 

 

4.2.3.3. Anti-inflammatory activity of hydrolates 

The hydrolate of C. ladanifer (1 mL) showed a potent anti-inflammatory activity (94 %), but 

no differences between the two collection moments (17 March and 17 August). Acetylsalicylic 
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acid showed 95 % inhibition at 0.1 mg/mL. 

Considering that Miguel (2010) reported the anti-inflammatory properties of 1,8-cineole and 

terpinen-4-ol, which are also present in C. lusitanica hydrolate, it would be interesting to verify 

whether the activity observed in the present study is due to these compounds.  

Like for the genus Cupressus, several Cistus species have also been extensively used in 

traditional medicine for the treatment of inflammation associated diseases (Barros et al., 2013), 

which might be partly explained by the results here described.  

 

5. Conclusions 

The results from this study showed that Cupressus lusitanica and Cistus ladanifer forest 

wastes may have an added value, by turning these residues into useful products for the 

consumer. Before burning for energy purposes, or just being discarded, C. lusitanica and 

C. ladanifer forest wastes may be used to obtain bioproducts such as essential oils and 

hydrolates, which, in addition of being consumed de per se, can be used in co-formulations in 

the perfumery, beverages, food and health industries. Although these EOs were obtained from 

biomass wastes, they showed the same chemical characteristics as those obtained from plant 

material harvested for that purpose. In addition, these EOs have shown some biological 

properties, that may support their use for diverse purposes, namely, both C. lusitanica and 

C. ladanifer EOs showed a strong xanthine oxidase inhibiting activity. 

This study reports for the first time the chemical composition of the hydrolate volatiles of 

these two species and their strong anti-inflammatory properties. These are richer in oxygen-

containing monoterpenes when compared to the corresponding essential oils, which might be 

partly the reason for their anti-inflammatory characteristics. There is nowadays a growing 

interest in hydrolates, both by producers and consumers, not only because they are an essential 

oil production by-product, which would be important to value, but also because of its potential 

use in the food, drink, cosmetic, perfumer, aromatherapy, veterinary and agro-industries. For 

these reasons, it is important to gather information on the composition and biological activity 

of hydrolates. 
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1. Abstract 

Obtaining essential oils and hydrolates from underutilized biomass is an economic and 

sustainable way for production of these high added-value bioproducts. However, this process 

still generates large amounts of residues as the by-products obtained during distillation, which 

can be a concern for the environment, but also adequate substrates for other applications. 

Considering this fact, the waste distilled by-products remaining after steam-distillation of 

underutilized biomass from Cupressus lusitanica and Cistus ladanifer, were evaluated as a 

natural source of other high value products with biological activities, namely, phenolic 

compounds. Thus, the remaining extracted solid residues (ESRs) were characterized and subject 

to further treatments by ultrasound-assisted extraction (UAE) with ethanol and 70 % acetone, 

in order to prepare phenolic-rich extracts thereof: ESRs(EtOH) and ESRs(70 % Ace). Together 

with the distiller condensation waters (DCWs), these extracts were characterized for their 

phenolic content (total phenols, tannins and flavonoids). Their antioxidant activity was also 

evaluated by different methodologies. The phenolic profile of DCWs, ESRs(EtOH) and 

ESRs(70 % Ace) from both waste species was obtained by capillary zone electrophoresis (CZE) 

and phenolic compounds were tentatively identified. Results obtained for C. lusitanica biomass 

are here disclosed for the first time. Generally, all samples revealed to be rich in phenolic 

compounds, being C. ladanifer biomass the one with higher phenolic content. DCWs presented 

values of 140 mgGAE/g for C. lusitanica and 210 mg GAE/g for C. ladanifer, from which ca. 

60 % were tannins. Extracts obtained with 70 % acetone were the ones with the highest results, 

except for the antioxidant activity by xanthine oxidase and superoxide inhibition, which was 

higher in DCWs. Catechins were the major compounds found for both species, but 

gallocatechins and gallic acid were only identified in C. ladanifer. Hydroxycinnamic acid 

derivatives and salicylic acid were also identified in C. ladanifer, partly justifying the anti-

inflammatory effect referred for this species.  

 

2. Introduction 

Following the Renewable Energy Directive (Directive 2009/28/EC), the Roadmap 2050 

(2015) and the Paris Agreement to reduce greenhouse gas emissions by at least 40 % by 2030 

(2015), the use of biomass as a renewable source of energy has been significantly encouraged, 

and forest residues such as bushes and aerial parts of trees, which play an important role in 

forest management, have been used mainly for fuel (Puy et al., 2011). However, the use of these 

bioresources for producing high added value products is becoming more and more important in 

the context of sustainability and bioeconomy, as biomass of natural origin can be recovered in 

biorefineries with environmental, economic and social benefits (Budzianowski, 2017; Ali et al., 

2015). In the scope of a policy of valorisation of renewable energy sources, and in the context 
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of the valorisation of biomass according to the existing national potential, the Portuguese 

National Plan for the Promotion of Biorefineries (PCM, 2017) was launched, which reinforces 

the valorisation of the renewable energy sources through the sustainable use of biomass not 

only for energy, but also for various economic sectors. Generally, biorefineries are primarily 

energy-based, i.e. the plant is optimised primarily to generate bioenergy products from biomass, 

(namely biofuels, electricity and heat), while generating co-products that may be precursors of 

products of higher added value for non-energy applications. However, there are biorefineries 

that are optimised to generate (in mass percentage) mainly bioproducts, namely, biomolecules, 

intermediate chemicals, proteins, bioactive substances, etc (Cho et al., 2020; Mahmood et al., 

2019; Chirat, 2017). 

In our previous study, (Tavares et al., 2020), the potential for obtaining essential oils and 

hydrolates from the underutilised biomass of Cupressus lusitanica Mill. and Cistus ladanifer 

L., their chemical characterisation and several in vitro bioactivities were evaluated. Numerous 

biological activities have been attributed to the essential oils and these are value-added products 

from biomass that can be readily used in the perfume/cosmetic industry or as bioblocks for 

different other industries (Tavares et al., 2020). Nevertheless, the yield of distillation is 

considerably small and the process for obtaining essential oils and hydrolates from the biomass 

still generates large amounts of residue as the by-product obtained during distillation, which is 

of growing concern for the environment if not properly managed. In the present study, the by-

products remaining after removing the essential oil through steam-distillation, namely, distiller 

condensation waters and the extracted solid residues were evaluated as natural sources of other 

high value products with biological activities, namely, phenolic compounds, which are valuable 

extractives from biomass (Volf and Popa, 2018), and can be mainly used as antioxidants for 

different industries, before an ultimate energy application of the solid residues. Identification 

of new sources of natural antioxidants is a priority for example, for the food and feed industries, 

as the safety of the widely used authorized preservatives, such as butylated hydroxytoluene and 

butylated hydroxyanisole is very controversial (Wollinger et al., 2016). Thus, the aim of this 

work was to test the potential of the remaining residues from steam-distillation as source of 

antioxidant compounds and broaden the utilization of these biomasses. Figure 3.1 illustrates the 

complete valorisation potential of these biomasses, highlighting the procedure described in the 

present study. 
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Figure 3.1. Illustrative scheme for the valorisation of Cupressus lusitanica or Cistus ladanifer underutilized 

biomass, highlighting the present study (round corner rectangle). 

 

3. Materials and methods 

3.1. Plant material and steam-distillation by-products 

Cupressus lusitanica Mill. and Cistus ladanifer L. underutilized biomasses (aerial parts) 

were collected separately for obtaining essential oils and hydrolates by steam-distillation, which 

was performed at a semi-industrial scale using a stainless-steel distiller (1100 L, Vieirinox®, 

Aveiro, Portugal) at Silvapor premises, as described in Tavares et al. (2020). Circa 100 Kg of 

aerial parts were subject to steam-distillation to get an average essential oil yield <0.3 % for 

Cupressus and <0.04 % for Cistus, and 20 litres of hydrolate from each biomass (Tavares et al. 
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2020). After steam-distillation of each of these biomasses, samples of the remaining extracted 

solid residues (ESRs) were collected and taken to the lab for further sequential ultrasound 

assisted extraction (UAE), which is a simple and efficient extraction method that prevents 

possible chemical degradation of the targeted compounds (Ghafoor et al., 2009), using ethanol 

(EtOH) and 70 % acetone (70 % Ace), and characterization of the corresponding extracts. Also, 

1.5 litres of the distiller condensation waters (DCWs) were obtained from each biomass and 

distillation assay, collected and freeze-dried for further analysis.  

 

3.2. Characterization of the extracted solid residues (ESRs) 

Representative samples of Cupressus lusitanica Mill. and Cistus ladanifer L. ESRs obtained 

after steam-distillation were air-dried for one week at open air conditions, then chemically 

characterized for their moisture, ash, carbohydrate, Klason lignin, soluble lignin and protein 

content. After milling to a particle size smaller than 0.5  mm, the moisture content was 

determined by oven-drying at 105 °C to constant weight. Ash content was determined at 550 °C 

using NREL/TP-510-42622 protocol (Sluiter et al., 2008). The quantification of 

macromolecular compounds was determined by sequential quantitative acid hydrolysis with 

72 % (w/w) H2SO4 and 4 % (w/w) H2SO4 following a method based on NREL/TP-510-42618 

protocol (Sluiter et al., 2012). The amounts of glucan, xylan, arabinan, galactan and mannan 

were calculated based on the concentrations of sugars in hydrolysates obtained after quantitative 

acid hydrolysis. An HPLC (Agilent, Germany) was used, equipped with RI detector and an 

Aminex HPX-87P column (Bio-Rad, Hercules, CA, USA) operating at 80 ºC, in combination 

with a microguard CarboP column (Bio-Rad), and using water as the mobile phase at the flow 

rate 0.5 mL/min. The acid-insoluble residue was considered as Klason lignin, after correction 

for ash. The acid-soluble lignin was determined in the filtrate of sugars in hydrolysates by UV 

spectroscopy at 206 nm using 110 L / (g cm) as absorptivity (extinction coefficient) (TAPPI, 

1991). The determination of protein was carried out according to the Kjeldahl method (AOAC, 

1975) using the N×6.25 conversion factor.  

 

3.3. Preparation of phenolic-rich extracts from extracted solid residues 

The ESRs obtained after steam-distillation from either C. lusitanica and C. ladanifer were 

mixed with ethanol at a solid:liquid ratio of 1:20 and subjected to ultrasound-assisted extraction 

(UAE) at 30 °C for 30 min, using a Transsonic T700 sonifier (320 W, 35 kHz) (Elma GmbH & 

Co, Germany), according to a previously used UAE method for phenolics from biomass 

(Roseiro et al., 2013a). Extracts were then filtered through filter paper (Whatman nº. 1), 

concentrated under vacuum at 45 ºC in a Rotavapor R-210 BUCHI (with vacuum controller V-

850 and heating Bath B-491, also from BUCHI) to obtain the ethanolic extract. This procedure 

was repeated 3 times. The remaining UAE solids were further extracted with 70 % acetone at a 
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solid:liquid ratio of 1:20 using the same procedure, and the acetone extracts were pooled, 

concentrated under vacuum and freeze-dried at -56 ºC in a Heto Power Dry LL3000, Thermo 

Scientific. Figure 3.2 shows a schematic drawing of the procedure. Remaining solids from both 

UAEs solvent systems of each biomass were oven dried at 45 ºC for one week and stored for 

future trials to produce pellets.  

 

 

Figure 3.2. Schematic representation of the sequential ultrasound-assisted extraction (UAE) from the extracted 

solid residues (ESRs), using ethanol [extract for analysis (a)] followed by 70 % acetone [extract for analysis (b)]. 

 

3.4. Phenolic composition from distiller condensation waters (DCWs) and ultrasound-

assisted extracts (UAEs) of extracted solid residues (ESRs)  

3.4.1. Total phenolics, tannins and non-tannins content 

Total phenolics were determined in the DCWs and all the UAEs extracts for both C. 

lusitanica and C. ladanifer biomass residues, by the Folin–Ciocalteu colorimetric method 

according to the procedure described in Roseiro et al. (2013b), adapted to a microplate format 

using spectrophotometric detection and microtiter 96-well plates. Briefly, reconstituted samples 

(1 mg/mL) of distiller condensation waters and UAE extracts (0.1 mL; or water for blank) were 

mixed with 0.4 mL distilled water, 1/1 (v/v) diluted Folin–Ciocalteu reagent (0.25 mL) and 

20 % m/v Na2CO3.10 H2O (1.25 mL). Aliquots of 200 µL were placed in each microplate well. 

Absorbance was measured at 725 nm on a microplate reader (Multiscan GO, ThermoFischer 

Sc.). A calibration curve of gallic acid was prepared. Tannins content was determined based on 
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the same methodology as above (Roseiro et al., 2013b), after removal of tannins by their 

adsorption on an insoluble matrix (polyvinylpolypyrrolidone, PVPP). The non-adsorbed 

phenolics (non-tannins) in the supernatant were transferred into the microplate wells and 

determined as previously described. Calculated values were subtracted from total phenolics 

content to obtain the total tannins content. Results were expressed as mg gallic acid equivalent 

(GAE) / g of extract. 

 

3.4.2. Flavonoids content 

Flavonoids content were determined in the DCWs and all the UAEs extracts for both species 

according to Miguel et al. (2014) with some modifications. Briefly, 0.25 mL of 2 % aluminium 

chloride-ethanol solution was added to 0.25 mL of reconstituted sample or standard in a test 

tube. After 1 h at room temperature, absorbance was measured at 420 nm using a UV-Vis 

Shimadzu UV-160A spectrophotometer. Quercetin was used as a standard for the calibration 

curve. Results were expressed as mg quercetin equivalent (QE) / g of extract.  

 

3.4.3. Phenolic profile by Capillary Zone Electrophoresis (CZE) 

Phenolic profile of DCWs and all the UAEs extracts was obtained by capillary zone 

electrophoresis (CZE) using an Agilent Technologies CE system (Waldbronn, Germany) 

equipped with a diode array detector (DAD), as described in Roseiro et al. 2013b. 

Electropherograms (e-grams) were recorded at 200 and 280 nm, and phenolic compounds were 

identified by electrophoretic comparisons (migration times and UV spectra) with data from 

authentic standards run under the same conditions and stored in library.  

 

3.5. Antioxidant Activity 

The antioxidant activity of DCWs and all the UAE extracts for both C. lusitanica and 

C. ladanifer biomass by-products obtained by steam-distillation was determined using different 

methodologies as referred previously in Tavares et al. (2020) and summarized below. These 

methodologies were chosen according to some of the standardized antioxidant method criteria, 

namely, for being simple, rapid and reproducible with chemicals and instrumentation readily 

available using methods with a defined endpoint and chemical mechanism, for both hydrophilic 

and lipophilic antioxidants, and being representative of biomolecules.  

 

3.5.1. ABTS cation radical decolourisation assay 

The ABTS radical scavenging was carried out as reported by Re et al. (1999) adapted to a 

microplate format using spectrophotometric detection (Multiscan GO, ThermoFischer Sc.) and 

microtiter 96-well plates. Aliquots of the reconstituted DCWs and UAEs extracts (30 µL) were 
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added to the radical solution (3 mL) and 200 µL of each and placed in each microplate well. 

Trolox ((±)-6-Hydroxyl-2,5,7,8-tetramethylchromane-2-carboxylic-acid) was used as standard 

and results were expressed as Trolox equivalent antioxidant capacity (TEAC). 

 

3.5.2. Inhibition of superoxide anion radical formation 

Scavenging ability of superoxide anion radical was evaluated according to Soares (1996) 

with some modifications. In brief, reconstituted samples (60 µL) were used and the reaction 

mixture was incubated at room temperature for 10 min and the absorbance reading was 

performed at 560 nm in a UV/VIS spectrophotometer. Ascorbic acid was used as standard and 

results were expressed as ascorbic acid equivalent (AAE). 

 

3.5.3. Inhibition of xanthine oxidase 

Xanthine oxidase inhibiting activity followed the Umamaheswari et al. (2013) method using 

allopurinol as standard and 50 µL of the reconstituted samples. The assay mixture was 

incubated for 30 min, after which the reaction was stopped and the absorbance was measured 

at 290 nm in an UV/VIS spectrophotometer. Results were expressed as allopurinol equivalent 

(AE). 

 

3.5.4. Chelating metal ions 

Chelating of ferrous ions by the reconstituted DCWs and UAEs samples (200 µL) was 

evaluated according to Wang et al. (2004) method. EDTA (ethylenediamine tetra-acetic acid) 

was used as standard and results were expressed as EDTA equivalent (EDTAE).  

 

3.6. Statistical analysis 

All analytical determinations were carried out in quadruplicate and results are presented as 

mean values with their corresponding standard deviations. 

 

4. Results and discussion 

4.1. Chemical composition of the extracted solid residues 

Literature data for Cupressus lusitanica other than essential oil is very scarce, particularly 

when compared with literature for Cistus ladanifer. To the best of our knowledge, there are no 

published results concerning the chemical composition of C. lusitanica aerial parts neither for 

other Cupressus trees. Table 3.1 compares the results here obtained with results in literature for 

Juniperus spp, which are in the same family (Cupressaceae) and for Pinus radiata and Picea 
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abies wood, both the same order as Cupressus (Pinales) and also softwood trees. Table 3.2 

shows the composition of C. ladanifer aerial parts used in the present study and compares it 

with literature results. It can be observed from Table 3.1 that the composition of the extracted 

solid residue for C. lusitanica differs largely, which would be expected, considering that, not 

only this has suffered an extraction by steam-distillation, but also its native biomass consisted 

on leaves, small branches and globular seed cones from the tree top, and not the wood from the 

trunk of the tree. Only the cellulose value was similar to the one for Juniperus sibirica needles, 

but conversely, Klason lignin was within the range of values found for the other species wood.  

 

Table 3.1. Chemical composition of the extracted solid residue (ESR) from distilled aerial parts of Cupressus 

lusitanica and comparison with other species of the same family (Cupressaceae) and order (Pinales). 

Chemical composition (% w/w) 

 

 

Plant part 

Cupressus 

lusitanica 

 

 

Juniperus 

sibirica 

Juniperus 

communis 

 Picea 

abies 

 Pinus radiata 

ESR  Needles Wood Wood  Wood  Wood Wood Wood 

Cellulose            

Glucan 14.6  18.1-20.9 38.0-41.0 61.9  44.0  45.3 31.1-42.5 44.9-54.1 

Hemicellulose 17.7    37.9  23.3  22.2 21.4-26.0 6.1-11.1 

Xylan 7.5    11.9  6.0  6.4   

Arabinan 2.5    1.4  2.0  1.5   

Galactan 3.3    7.5  2.3  2.1   

Manann 4.4    17.1  13.0  12.2   

Klason lignin 39.0  15.2-19.9 30.0-32.0 30.1  27.5  26.8 29.4-39.0 26.3-30.0 

Soluble lignin 2.5           

Protein 6.6           

Ash 5.7      1.6  0.2   

Others (by difference) 13.9           

            

            

Reference Present study  Artemkina 

et al., 2016 

Bogolitsyn 

et al., 2015 

Hӓnninen et 

al., 2012 

 Sassner et 

al., 2008 

 Araque et 

al., 2008 

Berrocal et 

al., 2004 

Uprichard, 

1971 

 

Table 3.2 shows results from the present study for C. ladanifer and from literature, including 

the ones disclosed by Alves-Ferreira et al. (2019a,b and 2017), which are within the same broad 

research study. Results show that Klason lignin (37 % w/w) was much higher in the present 

study than in the others, particularly when compared to results from Alves-Ferreira et al. (2019b 

and 2017), and also higher than the carbohydrate content (26.2 % w/w). The later agree with 

the ones previously determined by Alves-Ferreira et al. (2019b and 2017). Also, for other 

studies, the composition of the starting material used was different from the one here described. 

Alves-Ferreira et al. (2019a) and Fernandes et al. (2018) used the extracted solid residue from 

steam-distillation and the raw material, respectively, after being subject to Soxhlet extraction 

with several solvents, and obtained lower results for Klason lignin (29 % and 32 % w/w) but 
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higher results for carbohydrate content (47 % and 41 % w/w), respectively, when compared to 

our study, nevertheless, both data were within the same range. However, Carrión-Prieto et al. 

(2017) and Ferro et al. (2015), which used the original raw material, obtained values of 25 % 

and 16 % w/w for lignin and 65 % and 42 % w/w for carbohydrate, respectively, showing their 

heterogeneity. Despite all studies refer to the aerial parts, the fact that one has more leaves in 

its composition and the other more branches, may justify the difference observed in lignin 

content. Also, in addition to the differences in the starting material (extracted by different 

procedures versus raw), the place and time of harvest and in particular the age of the plant are 

also factors that can influence the lignocellulosic composition of this species, thus justifying 

the observed differences. Nevertheless, the high content in lignin of the ESRs for both 

C. ladanifer and C. lusitanica species here revealed suggests an additional potential for its 

valorisation. 

 

Table 3.2. Chemical composition of the extracted solid residue (ESR) from distilled aerial parts of Cistus ladanifer 

obtained in the present work and comparison with previous studies in literature. 

Chemical composition (% w/w) 

 Aerial parts 

Plant part ESR ESR ESR ESR(Sx) RM(Sx) RM RM 

Cellulose        

Glucan 10.6 17.8 16.1 27.8 26.6 55.0 34.9 

Hemicellulose  12.3    10.2 6.6 

Xylan 9.3  8.0 15.7 12.0   

Arabinan 1.7  2.5 3.6 2.5   

Galactan 2.4       

Manann 2.2       

Klason lignin 37.0 19.3 17.0 29.4 32.1 25.3 15.6 

Soluble lignin 8.0 1.7 1.8 2.9    

Protein 4.6  5.7 7.3   9.2 

Ash 5.7 4.8 4.3 4.2 2.9  3.1 

Others (by difference) 18.5   7.4  9.5  

        

Reference Present study Alves-Ferreira 

et al., 2019b 

Alves-Ferreira 

et al., 2017 

Alves-Ferreira 

et al., 2019a 

Fernandes et 

al., 2018 

Carrión-Prieto 

et al., 2017 

Ferro et al,. 

2015 

ESR(Sx): Soxhlet extract of ESR with different solvents; RM(Sx): Soxhlet extract of RM with different solvents; RM: Raw 

material without any previous treatment. 

 

4.2. Total phenolics, flavonoids and tannins content 

The yield of the UAE phenolic-rich extracts obtained from the ESRs of C. lusitanica and 

C. ladanifer, and also the polyphenolic content for both UAE extracts and DCWs for both 

biomass species, are detailed in Table 3.3. The results show that the yield of phenolic-rich 

extract for C. ladanifer was ca. 3 times higher than the yield obtained for C. lusitanica, 

independently of the extraction solvent, which indicates that this biomass is potentially richer 
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in these compounds. The total phenolics, tannins and flavonoids content obtained show again 

that C. ladanifer extracts are richer in these compounds than C. lusitanica extracts, which are 

in agreement with the yields obtained and the phenolic profiles shown below (Figure 3.3). 

The 70 % acetone extracts for both species presented higher total phenolics, flavonoids and 

tannins content than the ethanol extracts. The DCW of C. lusitanica and C. ladanifer also 

showed the presence of phenolic compounds, mostly tannins. Regarding C. lusitanica, the total 

phenolic content for DCW was lower than UAE extracts, while for C. ladanifer, the total 

phenolic content of DCW was superior than UAE extracts with ethanol, but lower than UAE 

extracts with 70 % acetone. Overall, it was found that extraction with 70 % acetone was more 

efficient in removing phenolic compounds than the other solvents used for both species.  

Although it is known that Cupressus trees are rich in phenolics, flavonoids and tannins 

(Harraz et al., 2018), there are very few studies about their composition in C. lusitanica. 

Guimarães et al. (2010) were the first to disclose the phenolic estimation and antioxidant 

activity of a 50 % methanolic extract from C. lusitanica fresh leaves harvested in North-eastern 

Portugal, revealing values of 30 mg GAE / g extract. The reported value was much lower than 

that obtained in the present study, probably due to the different material used (fresh leaves 

against dried aerial parts) and also different extraction solvents and conditions. No references 

were found in literature for the flavonoids and tannins content of C. lusitanica. The only results 

found for Cupressus genus was the study of Selim et al. (2014), which determined the total 

flavonoid content of a methanol extract from Cupressus sempervirens aerial parts (leaves) as 

being 53 mg QE / g of sample, which is approximately ten times higher than the values here 

reported for C. lusitanica. However, some data could be found for other Cupressaceae species, 

particularly for Juniperus species. A study of water and 80 % ethanol extracts of chopped dried 

leaves from five Juniperus species disclosed a total phenol content ranging from 4.0 – 139 

mg GAE / g for the water extract and 111 – 206 mg GAE / g for the 80 % ethanol extract 

(Orhan et al., 2011). The same study reported the flavonoid content in quercetin equivalents 

(mg QE / g extract). Even though results are within a wide range according with the different 

Juniperus species, results from the present study are within the same order of magnitude with 

the ones reported by Orhan et al. (2011) for total phenols of C. lusitanica extracts obtained with 

the same solvent system. However, flavonoid content for the 80 % ethanolic extracts were 

generally more than ten times higher than the ones of water extracts for Juniperus species, while 

our results present flavonoid content for C. lusitanica of 5 to 6 times higher for ethanol and 

70 % acetone extract than for water extract, respectively. 

Regarding C. ladanifer, the previous study by Alves-Ferreira et al. (2019b), obtained values 

between 271-286 mg GAE/g extract for ESR(50 % EtOH) by UAE at 50 ºC for 60 minutes. 

These values are higher than the ones here obtained with pure ethanol, but within the range of 

the ones obtained with 70 % acetone extracts. In the same study, flavonoids (33-39 mg CE/g 

extract) and tannins (22-26 mg CE/g extract) were determined. The flavonoids content were 
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higher than the ones in the present study, but tannin values were lower. These latter results 

complement the ones here disclosed and show the effect of different conditions of extraction 

(higher temperature and time) and also of solvent used (50 % ethanol allows the extraction of 

water soluble glycosides and sugars, which are also accounted in the Folin method). 

Flavonoids and tannins were determined using a different procedure than in the present 

study, also justifying these differences. Dudonné et al. (2009) found values of 103 mg GAE/g 

extract of total phenolics for aqueous extracts of initial plant material harvest in Spain, which 

were lower than the results shown in Table 3.3, independently of the extraction solvent. The 

differences observed may also be due to the origin and conditions of the material used. Also, 

total phenolics and flavonoids content of ethanolic (95 %) and acetone/water (60:40) extracts 

obtained by reflux of wood/stalks, bark and leaves of C. ladanifer was determined by Andrade 

et al. (2009), disclosing values of 255 and 335 mg GAE/g extract, respectively, and 21 and 23 

mg QE/g extract, respectively. These authors also concluded that acetone extracts give rise to 

more compounds than ethanol. Values were higher comparing with the present study for 

ethanolic and acetone/water extracts, which is expected considering that they also include 

results for bark. Again, these variations are also dependent of several factors, including the state 

of the material, harvesting time and area, and the extraction conditions. Nevertheless, 

C. ladanifer extracts here studied showed to be rich in phenolics, supporting the additional 

potential for valorisation of these residues as a source of bioactive compounds. 

 

Table 3.3. Extraction yield, total phenolics, flavonoids and tannins of distiller condensation waters and the 

different extracts obtained from Cupressus lusitanica and Cistus ladanifer distillation by-products. 

 Cupressus lusitanica Cistus ladanifer 

DCW ESR 

(EtOH) 

ESR 

(70%Ace) 

DCW ESR 

(EtOH) 

ESR 

(70%Ace) 

Extraction yield (%)  4.02  3.85   13.3  11.0  

       

Total Phenolics 

(mg GAE/g extract) 

139.7 ± 0.2 178.9 ± 0.4 251.3 ± 0.6 209.6 ± 0.2 177.5 ± 0.2 275.6 ± 0.0 

       

Flavonoids 

(mg QE/g extract) 

1.3 ± 0.1 4.5 ± 0.1 6.3 ± 0.0 11.5 ± 0.8 12.3 ± 0.2 15.2 ± 0.1 

       

Tannins 

(mg GAE/g extract) 

86.8 ± 0.3 23.0 ± 0.2 82.2 ± 0.4 133.3 ± 1.2 110.5 ± 0.6 116.6 ± 0.8 

DCW: Distiller condensation water; ESR: Extracted solid residue; EtOH: Ethanol; Ace: Acetone; GAE: Gallic acid equivalents; 

QE: Quercetin equivalents. 

 

4.2.1. Phenolic profile by Capillary Zone Electrophoresis 

The phenolic profile from the DCWs and the different UAEs extracts obtained from 

C. lusitanica and C. ladanifer distillation by-products are shown in Figure 3.3. Both species 
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extracts present very rich and complex, nevertheless different phenolic profiles. Each species 

shows a characteristic profile, similar for all the extracts within each species, except for the 

extracted solid residue ethanolic extract of C. lusitanica. It is noteworthy from the e-grams in 

Figure 3.3 that Cistus extracts present a higher and more complex phenolic content than 

Cupressus extracts. Phenolic compounds identification and the % matching with the available 

authentic standards are also shown in the e-grams. Catechins were the major compounds found 

for both species extracts and also 3-hydroxybenzoic acid was found as a common compound. 

Gallocatechins, hydroxycinnamic acid derivatives and gallic acid were only identified in Cistus 

extracts.  

 

 

Figure 3.3. Electropherograms at 280 nm showing the phenolic profiles obtained for obtained for C. lusitanica 

and C. ladanifer wastes distilled by-products: a) distiller condensation waters (DCWs), and ultrasound-assisted 

extracts from the extracted solid residues obtained with b) EtOH (ESR(EtOH) and c) 70 % acetone (70 % Ace). 

Matching % was obtained by comparison with authentic standards. See text for CZE conditions. 

 

As previously mentioned, results for the phenolic composition of Cupressus sp. are scarce, 

particularly for C. lusitanica. Cowan et al. (2001) reported two lignans (arctigenin and 

matairesinol) in a dichloromethane extract of stems from C. lusitanica and referred also the 

presence of tropolones in this species. Romani et al. (2002) reported a method of high 

performance liquid chromatography with diode-array detector combined with mass 
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spectrometry (HPLC-DAD-MS), for the identification and quantification of flavonoids and 

bioflavonoids present in 70 % hydroalcoholic extracts of Cupressaceae green leaves, including 

C. lusitanica. In their study, Romani et al. (2002) identified quercetin-glucoside and quercetin-

rhamnoside, cupressusflavone, amentoflavone, robustaflavone and methylamentoflavone in C. 

lusitanica fresh leaves.  

The current study refers to by-products and extracts from a steam-distillation procedure of 

1 h:30 min (Tavares et al., 2020), which have suffered hydrolysis and thermal degradation in 

the different preparation steps. Therefore, it was only expected to find non-conjugated forms of 

the flavonoids and phenolics. Nevertheless, only 3-hydroxybenzoic acid and catechins, could 

be identified with matching confidence (≥ 95 %), namely epicatechin. Catechin and epicatechin 

are the building blocks of proanthocyanidins, a type of condensed tannins, which justifies the 

values found for the tannins content in C. lusitanica DCW and ESR (70 % Ace) extracts. 

Opposite to C. lusitanica, C. ladanifer phenolic composition is well known and studied, as 

this is an important aromatic plant widely used in the perfumery industry. Phenolic compounds 

identified in C. ladanifer steam-distillation by-products, with the available standards, (Figure 

3.3), are in agreement with literature data, although these compounds content in Cistus species 

are highly variable (Papaefthimiou et al., 2014). Our results revealed high concentrations of 

tannins, which have also been determined in various Cistus species, including C. ladanifer, such 

as gallic acid, as reported by Barrajón-Catalán et al. (2011). Several flavonoids belonging to 

the groups of flavones, flavonols and flavon-3-ols, such as apigenin, quercetin, gallic acid and 

gallocatechins here identified, were previously detected in C. ladanifer (Chaves et al.,1997; 

Fernández-Arroyo et al., 2010; Barrajón-Catalán et al., 2011) and also in the Soxhlet ethanolic 

extract of C. ladanifer analysed by Alves-Ferreira et al. (2019b). Although hydroxycinnamic 

acid derivatives in C. ladanifer were reported before (Chaves et al., 2001; Herranz et al., 2006), 

they were not present in the Soxhlet ethanolic extract analyzed by Alves-Ferreira et al. (2019b), 

but were here identified with a matching > 90 %. 

 

4.3. Antioxidant activity 

The antioxidant potential of UAE extracts and DCW of C. lusitanica and C. ladanifer 

distillation by-products are summarized in Table 3.4. In general, extracts of C. ladanifer showed 

higher antioxidant activity than those of C. lusitanica. Also, UAE with 70 % acetone were the 

ones with highest results determined by all methods for both species, except for superoxide, 

which was higher for DCWs. The results here obtained show a valid assessment for the potential 

use of DCWs and ESRs extracts as natural antioxidants in different industries, such as food, 

cosmetic and pharmaceutical. The potential antioxidant activity of these extracts was previously 

evaluated, and their results expressed in terms of % inhibition (Tavares et al., 2019) and the 

same tendency was observed. Antioxidant activity is usually associated with the presence of 

phenolic compounds (Ballesteros et al., 2017). The activity observed in the present study may 
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be due to the type of phenolic compounds, namely catechins and gallocatechins, as well as other 

flavonols and flavanols. Only one study in literature refers the antioxidant activity of 

C. lusitanica extracts (Guimarães et al., 2010) suggesting a maximum of 80 % DPPH inhibition 

for this species methanolic extracts.  

Cistus species rich in phenolic compounds, especially flavonoids, are known to demonstrate 

significant antioxidant activity (Papaefthimiou et al., 2014), namely, aqueous extracts were able 

to generate strong antioxidant activities in a dose-dependent manner, using several free radical 

scavenging methods. Water and ethanol extracts of this species aerial parts showed high 

scavenging ability of DPPH radical, the water extracts showing 70-95 % inhibition and 95 % 

in case of the ethanolic extracts (Zidane et al., 2013). Guimarães et al. (2010) also obtained a 

maximum inhibition of 90 % with the leaf methanolic extracts, using the DPPH method.  

 

Table 3.4. Antioxidant activity of distiller condensation waters and the different extracts obtained from Cupressus 

lusitanica and Cistus ladanifer distillation by-products. 

 

 

Antioxidant activities 

Cupressus lusitanica Cistus ladanifer 

DCW ESR 

(EtOH) 

ESR 

(70%Ace) 

DCW ESR 

(EtOH) 

ESR 

(70%Ace) 

ABTS 

TEAC (mM/g extract) 

1.6 ± 0.0 0.8 ± 0.2 2.0 ± 0.1 2.6 ± 0.0 1.8 ± 0.1 4.1 ± 0.0 

       

Superoxide 

AAE (mg/g extract) 

768.4 ± 2.7 724.5 ± 2.4 753.2 ± 2.2 813.0 ± 6.2 703.8 ±1.3 795.0 ± 2.8 

       

Xanthine 

AE (mg/g extract) 

85.5 ± 0.2 70.6 ± 0.2 73.5 ± 0.2 87.6 ± 0.7 71.4 ± 0.1 76.4 ± 0.3 

       

Chelating 

EDTAE (mg/g extract) 

16.7 ± 0.1 14.7 ± 0.7 16.3 ± 0.1 15.1 ± 0.2 13.8 ± 0.0 15.8 ± 0.1 

DCW: Distiller condensation water; ESR: Extracted solid residue; EtOH: Ethanol; Ace: Acetone; ABTS: 2,2′-azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid) diammonium salt; TEAC: Trolox equivalent antioxidant capacity; AAE: Ascorbic acid 

equivalent; AE: Allopurinol equivalent; EDTAE: EDTA equivalent. 

 

The results here obtained for the antioxidant activity support the fact that aerial parts of 

cypress trees (Harraz et al., 2018; Ibrahim et al., 2009; Kuiate et al., 2006) including 

C. lusitanica (Romani et al., 2002; Selim et al., 2014) and also species of Cistaceae, including 

C. ladanifer (Barros et al., 2013; Attaguile et al., 2000) have been traditionally used as remedies 

in folk medicine to treat several diseases, including anxiety, headaches, asthma, infection, 

inflammation, diabetes and various types of cancer, among others. These effects are mainly 

attributed to the bioactivities of essential oils and secondary metabolites such as phenolics 

present in these species, in particular to their antioxidant and anti-inflammatory activity (Alam 

et al., 2016). The same bioactive compounds are also present in these species biomasses. It is 

important to refer that hydroxycinnamic acid derivatives were identified in DCW and ESR 
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extracts of C. ladanifer, and salicylic acid was found in ESR (70 % Ace), partly justifying the 

anti-inflammatory effect referred for this species (Barros et. al., 2013). In fact, recently, the 

anti-inflammatory activity of steam-distillation hydrolates and by-products from both 

C. lusitanica and C. ladanifer biomasses were evaluated for the first time, with C. ladanifer 

evidencing higher activity for all the samples tested (Tavares et al., 2019 and 2020).  

DCWs and ESRs extracts are thus an abundant source of natural phenolic compounds, 

tannins in particular, that can be exploited as building blocks in different industries (Rahim et 

al., 2018), not only as natural antioxidants, dyes and food additives, but also as raw materials 

for producing medical drugs or other chemicals such as polymers (Li et al., 2019; Cavaca and 

Afonso, 2018; Duval and Avérous, 2016; Garcia et al., 2016; Ramires et al., 2010). 

 

5. Conclusions 

Distiller condensation waters and extracted solid residues resulting from steam-distillation 

of essential oil from wastes of Cupressus lusitanica and Cistus ladanifer, were here 

characterized and their phenolic composition as bioactive compounds was evaluated. The 

ethanol and 70 % acetone extracts obtained from these residues and the distiller condensation 

waters were here studied for the first time and have remarkable phenolic content and antioxidant 

activity, the extent of which depending on the solvent used and the original species. Results 

indicate some correlation of the antioxidant activity with the type of phenolic compounds 

identified, namely catechins and hydroxycinnamic acid derivatives, and other flavonoids such 

as quercetins. Thus, the present work together with previous researches shows that forest 

biomass has a great potential as a renewable resource for recovery of bioproducts, in particular 

phenolic compounds, to be used as building blocks in different industries. Within a biorefinery 

context and towards zero waste, the use of the remaining extracted solids for pellets production, 

alone or together with other biomasses, is currently an ongoing study. 
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1. Introduction 

Valorisation of forest biomass is of upmost importance, not only at environmental level, but 

also for social economy. Hence, this chapter intends to show the possible value that may be 

given to the different fractions that result from the steam-distillation process at Silvapor - 

Ambiente e Inovação, Lda., and for biomasses of Cupressus lusitanica Mill, and Cistus 

ladanifer L. Essential oils (EOs), hydrolates (Hs), distiller condensation waters (DCWs) and 

extracted solid residues (ESRs) are the different fractions that can be directly or indirectly 

valued from the initial forest biomass waste. 

The EOs market is nowadays well established, while further growth is predicted. In 2018, 

its global market value comprised 7.03 billion dollars, being expected to increase to 15 billion 

dollars in 2026 (FBI, 2019). The EOs odoriferous and biological properties, allow their use in 

numerous applications by incorporation in: i) the manufacture of food and beverages (Sarkic 

and Stappen, 2018), ii) products for personal use, such as perfumes, creams, deodorants, 

shampoos, bath lotions, soaps and mouth lotions, iii)  household products, such as flavourings, 

detergents and cleaning products (Mason et al., 2015), iv) pharmaceutical products (Lawal and 

Ogunwande, 2013) and v) alternative therapies such as aromatherapy (Proença da Cunha et al., 

2012). Besides all benefit properties of EOs, their toxicity should also be taken into 

consideration. In cosmetics and perfumes, the amount of added EOs should not exceed 5 %., 

whereas in food, should be < 0.1 % (Proença da Cunha et al., 2012). In addition to the amount 

of EO added, also the quality of the EO is important. The International Organization for 

Standardization (ISO), of which Portugal is a member, through the national standards 

organization Instituto Português da Qualidade (IPQ), has contributed to develop and revise EOs 

technical standards to ensure their quality, safety and efficacy and facilitate world trade 

(Figueiredo et al., 2014). 

Although commercialised by some national producers, such as Ervitas Catitas (Ervitas 

Catitas, 2020), there is no international or national standard for C. lusitanica EO, nor 

documented reference to its use in food and drinks, in perfumes and pharmaceuticals. The EO 

extracted from C. ladanifer is very appreciated in the perfume and cosmetic industries 

(Barrajón-Catalán, 2016; Alves-Ferreira et al., 2017). It is also used as essence in detergents 

(Proença da Cunha et al., 2012). Due to its international relevance, an ISO standard is being 

prepared on this EO. 

Likewise, the Hs may be used directly or incorporated into the formulation of other products. 

Currently, Hs have still a small market share when compared to EOs. However, it is predicted 

a growth of 5.2 % between 2019 and 2024, reaching a global market value of 437 million dollars 

by the end of this period (MRF, 2019). Despite the reduced use of Hs when compared to EOs, 

they also have a vast number of applications, namely as aromatizing in detergents and air 

fresheners. In food industry, Hs have been used as aromatics in food and drinks. In perfumery 

and cosmetics, their use is even more frequent, from perfumes to creams and shampoos. In 
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aromatherapy, they are fairly used in massage, baths, inhalations, flavouring, sprays and 

compresses. Hs find application in all these fields due to their aromatic, aphrodisiac, calming, 

antibacterial, antifungal, antiseptic, astringent, analgesic, antioxidant, anti-inflammatory and 

cicatrizing properties (Rao, 2013). Concerning the Hs from C. lusitanica and C. ladanifer, 

beyond its traditional uses, there are no references to their use in food, cosmetic and 

pharmaceutical industries. However, Hs from both species are commercialised in Portugal by 

producers such as Ervitas Catitas (Ervitas Catitas, 2020). In addition, C. ladanifer H is also 

commercialised by Aromas do Valado and Plena Natura (Aromas do Valado, 2020; Plena 

Natura, 2020). 

Of all the four steam-distillation fractions, the DCWs are so far, the least exploited. As 

referred in Chapter III, these residual waters resulting from the steam-distillation process 

showed interesting bioactive compounds, such as phenolic compounds, that can be used for 

different industries, as natural antioxidants. Phytochemical antioxidants can be used for many 

products, such as pharmaceuticals, functional foods, food supplements, cosmetics, among 

others. Although these DCWs still need further processing, they can be sold as starter material 

for production of other products, provided they are adequately preserved, e.g. freeze-dried.  

Another fraction resulting from the distillation process is the ESRs. In general, these residues 

are discarded or used for burning, being the last option an application of low economic value 

(Alves-Ferreira et al., 2017). A more economical valorisation for these ESRs could be 

transformation into solid biofuels such as pellets. Pellets consist of small cylindrical-shaped 

biomass produced from waste resulting from the wood processing industry, in particular 

sawdust and chips (Martos, 2020). They are a solid renewable biofuel used for production of 

thermal energy in various sectors, including the domestic, public (e.g. hospitals, nursing homes, 

schools, swimming pools and hotels), agricultural (e.g. greenhouses) and agri-food (e.g. 

bakeries) sectors (EPC, 2015). There are several advantages associated with the use of pellets, 

such as (i) valorisation of underused endogenous forest resources, (ii) CO2 neutral emission, 

(iii) sustainable and renewable biofuel, (iv) easy to transport and store, (v) clean, safe and easy 

to use and (vi) more economical than fossil fuels (Martos, 2020). In addition, and in context of 

this study, one of the great advantages of pellets production for Silvapor additional to direct 

commercialization is the possibillity of using them also to feed the boiler to steam-distillation 

process, thus closing the valorisation cycle.  

Considering that the present study was carried out in collaboration with a company in order 

to provide them different valorisation options for the large amounts of waste resulting from 

their activities, it was also considered important to evaluate the economic viability of this 

project. In this way, a simplified economic viability analysis was carried out. Economic 

viability analysis is an important tool for any company that wants to know if it is worth to invest 

in a particular project. The evaluation of an investment project can be carried out through flow 

indicators, being cash flow one of the most used. Cash flow is associated to the costs or benefits 
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expected to result from an investment project over a specified period. Three types of cash flows 

are considered: i) operating cash flow, ii) investing cash flow and iii) financing cash flow (Saias 

et al., 2006). There are several models based on cash flows that can be used to evaluate the 

viability of a project. The most used ones are Net Present Value (NPV), Internal Rate of Return 

(IRR), Pay-Back Period (PBP) and Project Profitability Index (PPI). Among them, the most 

used and least contested is the NPV (Soares et al., 1999). 

In the present work, a preliminary approach was conducted by using both C. lusitanica and 

C. ladanifer biomasses in the small-scale valorisation of the steam-distillation fractions 

obtained thereof, namely, using EOs for the production of two types of handmade solid soaps: 

glycerine-based and olive oil-based, and using the ESRs for pellets production. Additionally, a 

simplified economic viability analysis was carried out with the aim of assessing the profitability 

of the forest biomass valorisation in a small-scale process for Silvapor Company towards a 

small-scale biorefinery.  

 

2.  Materials and methods 

2.1. Artisanal small-scale production of soaps  

2.1.1.  Glycerin-based solid soap 

Three types of glycerine-based soaps were produced, with, and without addition of a 

colorant, EO and dried plant parts. Blue, red and yellow food colorants (Vahiné) were used. In 

preliminary experiments the colorants were tested separately and mixed together to obtain the 

desired colors, namely brown (6:7:2 drops of red, yellow and blue colorants - one drop 

approximately 0.1 ml) and green (4:3 drops of yellow and blue colors).  

To prepare the soaps, “crystal glycerine” (commercial solid form of glycerol for soaps 

production, 1 kg, Lacrilar) was sliced in small portions in a glass beaker and melted in a water-

bath without shaking. After cooling to 50°C, the glycerin was divided into three parts: 

1) without any other ingredient (control sample), 2) with C. ladanifer EO [2 % v/v, according 

Mourato and Falcão (2014)] plus brown color and 3) with C. lusitanica EO (2 % v/v), green 

color and dried C. lusitanica aerial parts. Each portion of glycerine without, or with the added, 

ingredients was poured into different silicone moulds and left for 24 h, at room temperature, to 

solidify. Whenever needed the soap surface was sprayed with alcohol to remove the bubbles 

formed. After 24 h, the soaps were demoulded and stored in a dry and cold place or kept at 

room temperature without individual wrapping. Three independent batches of soaps were 

produced. Organoleptic (colour, appearance and odour) and physico-chemical (weight and pH) 

characteristics were monitored monthly for 4 months. Soaps with C. lusitanica EO, without 

colorant or biomass were also prepared, however the organoleptic evaluations were only 

performed on soaps 3). The measurement of pH was carried out according the European 

Standard EN 1262:2003, using a pH meter (Chemtrix Type 45AR pH controller) and an 
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aqueous soap solution (1 %).  

 

2.1.2.  Olive oil-based solid soap 

Two types of olive oil-based soaps were produced, with, and without C. lusitanica or 

C. ladanifer EO according to Mourato and Falcão (2014). Olive oil (400 g) and coconut oil 

(100 g) were mixed in a glass beaker and heated to 120-130 °C in a waterbath. Separately, the 

lye water was prepared, in a fume hood under safety conditions (wearing lab coat, gloves and 

goggles). Sodium hydroxide (lye or caustic soda) (66 g) was slowly and carefully added to the 

distilled water (155 g) and gently stirred until the lye has fully dissolved. Once both the lye 

water and the oils mixture cooled to 45˚C, the lye water was added to the oils mixture, first 

gently stirred by hand for a few seconds, and then with a stick blender until a light trace was 

reached. The mixture was divided into two portions: 1) without EO (control sample) and 2) with 

either C. lusitanica or C. ladanifer EO (2 % v/v), added under constant stirring with a glass rod 

until a homogeneous mixture was obtained. Each portion of soap mixture was poured into 

different silicone moulds, which were covered with cling film, and left, at room temperature, 

for 24 h to 48 h. After this period, the cling film was removed, and the soaps were demoulded 

and stored in a dry and cold place and were kept at room temperature without individual 

wrapping. Three independent batches of soaps were produced. Colour, appearance, odour, 

weight, and pH parameters were monitored monthly for 4 months. The measurement of pH was 

carried out as previously described according the European Standard EN 1262:2003. 

 

2.2. Pellets production 

Cylindrical pellets of C. lusitanica (wood) and C. ladanifer (non-wood) extracted solid 

residues resulting from the steam-distillation process were produced. These ESRs were air-

dried for one week under open air conditions at room temperature. The biomass was then 

crushed in a Viking® GE 355 crusher and sieved (ASTME 11 Ser.No.246762) until < 4 mm in 

diameter particles was obtained. When required, the particles whose dimensions were larger 

than those definded by the pelletizer were milled in a Waring® Commercial Blendor. This was 

then inserted in a domestic pelletizer (PL T-100 Smartwood), with a production capacity of 

around 70 kg pellets/hour, with 20 mm diameter and 6 mm length. The production process used 

is schematized in Figure 4.1. Prior to characterization, the pellet samples were ground 

(0.25 mm) using a microfine grinder drive (MF 10 basic IKA WERKE) and then characterized 

in terms of i) length and ii) diameter using an electronic digital calliper (POWERFIX) and 

iii) net calorific value, iv) moisture, v) ash, vi) volatile matter, vii) carbon, viii) hydrogen, 

ix) chlorine, x) nitrogen and xi) sulphur content. The tests were carried out in the Accredited 

Laboratory (IPAC L0041 ISSO/IEC 17025) of Biofuels and Biomass - Bioenergy and 

Biorefinery Unit of LNEG (Laboratório Nacional de Energia e Geologia, Campus do Lumiar) 
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according to the standards referred in Table 4.2.  

 

 

Figure 4.1. Flowchart for pellets production from C. lusitanica and C. ladanifer. 

 

2.3. Evaluation of the investment project 

The profitability of project investment was therefore evaluated by the Net Present Value 

(NPV) model through the determination of cash-flows, on a 6-year time frame and considering 

investment, costs and sales over each year. The NPV was calculated according to Soares et al. 

(1999) following the formula (1): 

C. lusitanica ESR C. ladanifer ESR

C. lusitanica Pellets C. ladanifer Pellets

Crushing Sieving Milling

Pelletizing

C. lusitanica ESR milled

C. ladanifer ESR milled



 

Chapter IV- Valorisation of forest biomass and Economic viability analysis 

111 

  (1) 

 

Where: 

CFGt : Represents the global cash flow obtained in period t, being calculated based on net cash 

flow which corresponds to the sum between operating cash flow, OCF (which consists in the 

money received or spent as a result of the main activities of the company) and investing cash 

flow, ICF (which corresponds to money received or spent in investments or acquisitions).  

t : Represents the period of time (from 1 to n), 

n : Represents the number of predicted time periods, 

r : Represents the discount rate, in other words the rate of return that the investors expected.  

 

The OCF and ICF was calculating following the formulas (2) and (7), respectively. The OCF 

took into account the Result after tax (RAT), Financial charges (FC), Depreciation and 

amortization (D.A), Result before tax (RBT), Tax (T), Operational result (OR), Gross result 

(GR), Personnel costs (PC), External supplies and services (ESS), Total expected profits (TEP) 

and Costs of good acquired and materials consumed (CGAMC). The ICF corresponds to the 

total investment (TI). 

 

 

 

The calculations needed for the determination of NPV were made considering the expected 

investment, costs and profits. For the calculation of the investment, all equipment, materials, 

and furniture needed for the project were considered (Table 4.5). The interest and amortization 

as well as financial charges were also considered (Table 4.6). The expected costs can be divided 

into: i) costs of goods acquire and materials consumed (CGAMC), ii) external supplies and 

services (ESS) and iii) personnel costs (Table 4.7). Essential oils, hydrolates, soaps and pellets 

were the products considered for sales (Table 4.8). All parameters described above have been 

considered for the calculation of the operating cash flow and investing cash flow used for 

determination of NPV to a discount rate of 10.7 % (r) (Table 4.9). 

 

NPV = 

OCF = RAT + FC + D.A (2) ICF = TI (7)

RAT = RBT – T (3)

RBT = OR – FC (4)

OR = GR – (D.A + PC + ESS) (5)

GR = TEP – CGAMC (6)
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3. Results and discussion  

3.1. Artisanal small-scale production of soaps 

3.1.1. Glycerin-based solid soap 

Three types of glycerin-based soaps were produced, 1) the control sample without any other 

ingredient, 2) with C. ladanifer EO and colorant and 3) with C. lusitanica EO, colorant and 

C.  lusitanica dried aerial parts (Figure 4.2). The colour and appearance did not change over the 

4 months of evaluation. Nevertheless, the odour intensity vanished over time, particularly from 

those kept at room temperature without wrapping, for one month.  

Four months after production, the average weight decreased around 4 % for all samples 

(Table 4.1). The observed weight losses can be related with the natural evaporation process. 

The measurement of the soaps pH 4 months after the first evaluation and 24 h after production, 

did not show major changes, neither over time, nor between the control sample and those to 

which essential oil was added (Table 4.1). The average pH of the produced soaps (pH 9) was 

within the limits of the pH range of the commercial soaps (pH 7 to 9). Although most of the 

soaps in market present an alkaline pH, from the dermatological point of view, the ideal pH 

should be acid, about 5.5, since this corresponds to the skin pH (Tarun et al., 2014). Alkaline 

soaps increase the skin surface pH, diminishing the skin antibacterial capacity and barrier 

function (Duncan et al., 2013). 

 

 

Figure 4.2. Examples of glycerin-based solid soaps: control sample (A), with C. lusitanica EO, colorant and 

dried aerial parts (B) and with C. ladanifer EO and colorant (C) (bar = 1 cm). 

 

3.1.2.  Olive oil-based solid soap 

Two types of olive oil-based soaps were produced, 1) without EO (control sample) and 

2) with either C. lusitanica or C. ladanifer EO (2 % v/v). The odor did not change over the 4 

months of evaluation. The colour and appearance changed over the first 24 h after production, 

with a whitish film appearing at the surface (Figure 4.3 A and B). This effect is known as “ash”, 

which results from the reaction of sodium hydroxide (lye or caustic soda) with carbon dioxide 

CA B
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in the presence of air. Normally, it emerges in the region of the soap that has direct contact with 

air over the drying step. A way to avoid this is by covering the soap with a film so that contact 

with air can be avoided (Mourato and Falcão, 2014). Despite having been covered with a 

protective film during the first 24 h, some soaps showed the “ash” effect (Figure 4.3 A and B). 

This may indicate that the soaps were not completely dried prior to wrapping. The procedure 

was repeated, but, this time, the soaps were stored for 48 h before removing the film and from 

the silicone moulds. In this case the ash effect did not develop (Figure 4.3 C).  

 

Table 4.1. pH and weight values of glycerine and olive oil-based solid soaps after 24 h following production and 

after 48 h and 4 months storage. 

Glycerine-based   Olive oil-based  

Sample pH Weight (g)  Sample pH Weight (g) 

CS_24 h 9.2 ± 0.0 49.2 ± 0.0 CS_48 h 11.1 ± 0.0 78.5 ± 0.0 

CS_4 M 9.3 ± 0.0 47.5 ± 0.0  CS_4 M 9.6 ± 0.0 57.7 ± 0.0 

       

ClaS_24 h 9.4 ± 0.0 50.4 ± 0.0  ClaS_48 h 11.2 ± 0.0 79.5 ± 0.0 

ClaS_4 M 9.4 ± 0.0 48.3 ± 0.0  ClaS_4 M 9.3 ± 0.0 58.6 ± 0.0 

       

CluS_24 h 9.4 ± 0.0 71.2 ± 0.0  CluS_48 h 11.3 ± 0.0 79.2 ± 0.0 

CluS_4 M 9.3 ± 0.0 68.4 ± 0.0  CluS_4 M 9.3 ± 0.0 58.6 ± 0.0 

CS: Control soap; M: month; ClaS: C. ladanifer soap; CluS: C. lusitanica soap. 

 

 

Figure 4.3. Examples of olive oil-based solid soaps: control sample 24 h following production (A), and with the 

addition of C. lusitanica EO, 24 h (B) and 48 h (C) following production (bar = 1 cm).  

 

The olive oil-based solid soaps showed a higher reduction of weight over time than the 

glycerine-based soaps. Four months after production the average weight decrease was around 

36 % for all samples (Table 4.1). The measurement of the soaps pH 48 h and 4 months showed 

differences. Initially, olive oil-based soaps presented an alkali pH around 11, that decreased to 

pH 9 after 4 months. The initial pH is related with the high lye concentration which decreases 

with the curing time. This 4-month period is thus of high relevance since a soap with a pH > 10 

A B C
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may be too aggressive to the skin, and its use should be avoided. As previously mentioned, 

ideally the pH of the soap should be close to the skin pH. However, a soap manufactured with 

this cold process is naturally alkaline, having a pH ranging from 8 to 10, so that the skin can be 

smoothly cleaned without causing allergies and being thus compatible with body washing 

(Mourato and Falcão, 2015). Therefore, the produced soaps presented a pH within the expected 

range. 

Comparing both types of solid soaps, the olive oil-based soaps surface was more prone to 

changes than the surface of the glycerin-based ones. On the other hand, the odour of the olive 

oil-based soaps remained over larger periods than that of the glycerin-based ones. This may be 

due to the soap’s own composition, preserving volatiles for longer time.  

There are no references to the commercialization of soaps with C. lusitanica EO in Portugal. 

On the other hand, Herdade Vale Covo (Herdade Vale Covo, 2020) is a Portuguese company 

that commercializes soaps with C. ladanifer EO. 

Considering the aromatic factor and the results obtained in the present study for antioxidant 

activity demonstrated by C. lusitanica and C. ladanifer EOs, it would be interesting to study 

the possibility to use these soaps against the natural oxidation of the skin. In addition to the 

benefits of the use these soaps might have, it is equally important to evaluate the prossible side 

effects. Therefore, before these artisanal products can be marketed with due safety, they should 

be subjects to toxicity and allergology analyses.  

 

3.2. Pellets production 

C. lusitanica and C. ladanifer pellets were evaluated for length and diameter according to 

ISO 17829:2015, for net calorific value according to ISO 18125:2017, for moisture according 

to ISO 18134-3:2015, for ash and volatile matter according ISO 18122:2015 and ISO 

18123:2015, respectively, for carbon and hydrogen according EN 15104:2011, for chlorine and 

sulfur according EN 15289:2011 and for nitrogen according EN 15104:2011 (Table 4.2). 

 

Table 4.2. Results of physical and chemical analysis of Cupressus lusitanica and Cistus ladanifer pellets. 

Parameters (Units) C. lusitanica C. ladanifer ISO/EN Test Method 

Length (mm) 18.4 ± 5.3 18.1 ± 4.3 ISO 17829:2015 

Diameter (mm) 6.1 ± 0.0 6.1 ± 0.0 ISO 17829:2015 

Net calorific value (MJ/Kg) 20.9 20.3 ISO 18125:2017 

Moisture (w-%, as received) 7.8 ± 0.2 8.5 ± 0.2 ISO 18134-3:2015 

Ash (w-% dry 105˚C) 6.1 ± 0.4 4.8 ± 0.3 ISO 18122:2015 

Volatile matter (w-%, as received) 74.9 ± 0.5 74.6 ± 0.5 ISO 18123:2015 

Carbon (w-% dry 105˚C) 51.5 50.9 EN 15104:2011 

Hydrogen (w-%, as received) 5.7 5.4 EN 15104:2011 

Chlorine (w-% dry 105˚C) 0.25 0.22 EN 15289:2011 

Nitrogen (w-% dry 105˚C) 1.06 1.03 EN 15104:2011 

Sulfur (w-% dry 105˚C) 0.05 0.06 EN 15289:2011  
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Results for the C. lusitanica pellets revealed that, with exception for ashes, chlorine and 

nitrogen contents, all the other parameters were according to ISO 17225-2:2014 reference 

values for wood pellets (Table 4.3). 

 

Table 4.3. Specifications of pellets produced from woody and non-woody biomass according to ISO 17225-2:2014 

and ISO 17225-6:2014 standards.  

 Wood pellets 

ISO 17225-2:2014 

Non-woody pellets 

ISO 17225-6:2014 

 

Parameters (Units) ENplus® A1 ENplus® A2 ENplus® B A B ISO/EN Test 

Method 

Length, L (mm) 3.15 < L < 40.0 3.15 < L < 40.0 ISO 17829:2015 

Diameter (mm) 6.0-8.0 ± 1.0 6.0-8.0 ± 1.0 ISO 17829:2015 

Moisture (w-%, as received) ≤ 10.0 ≤ 10.0 ≤ 10.0 ≤ 12.0 ≤ 15.0 ISO 18134:2015 

Ash (w-% dry)  ≤ 0.7 ≤ 1.2 ≤ 2.0 ≤ 6.0 ≤ 10.0 ISO 18122:2015 

Net calorific value (MJ/Kg) ≥ 16.5 ≥ 16.5 ≥ 16.5 ≥ 14.5  ≥ 14.5  ISO 18125:2017 

Nitrogen (w-% dry) ≤ 0.3 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 ISO 16948:2015 

Chlorine (w-% dry) ≤ 0.02 ≤ 0.03 ≤ 0.03 ≤ 0.10 ≤ 0.30 ISO 16994:2016 

Sulfur (w-% dry) ≤ 0.04 ≤ 0.05 ≤ 0.05 ≤ 0.20 ≤ 0.30 ISO 16994:2016 

ENplus: World-leading wood pellets certification; A: Pellets produced from herbaceous biomass; B: Pellets from fruit 

biomass or aquatic biomass. 

 

Further than the ash values obtained being above the ISO 17225-2:2014 specifications, they 

were also not comparable to those obtained by other authors for softwoods like Pinus spp. 

(Table 4.4). It should be mentioned that, in the present study, pellet samples were essentially 

made of leaves and small stems. This may be the reason for the higher amount of ashes when 

compared to other samples mostly made of wood. It is known that the amount of ashes is 

essential for the pellets energetic excellence, since high levels contribute to the reduction of the 

calorific value. This is because not every element that constitutes the ashes contributes to the 

combustion process (Garcia et al., 2018). On the other hand, more and more customers look for 

biofuels that produce fewer ashes for hygienic reasons. Given this, an alternative would be the 

addition of other biomass materials (e.g. wood chips) in the production of pellets from C. 

lusitanica. 

Chlorine and nitrogen contents were also above the reference. In general, the chlorine 

content in solid woody biofuels is relatively low, < 1 % (Jenkins et al., 1998). Although most 

of the chlorine is left in the ashes, part is also released in the form of hydrogen chloride and 

thus causes corrosion of the equipment (Barros, 2013). Even though the chlorine content 

obtained in the C. lusitanica pellets was below < 1 %, it was above the ISO 17225-2:2014 

reference values (Table 4.3). This was also higher than the chlorine content from other 

softwoods (Table 4.4). The nitrogen contents should not be above those in the standard since it 

participates in the formation of nitrogen oxides during combustion while being harmful to the 

environment when exhausted. Usually, both biomasses from agriculture activities and leaves 
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from trees show nitrogen contents above woody biomass (Barros, 2013). Given that the sample 

is mostly made of leaves, this may justify the higher nitrogen contents that was obtained, and 

when compared to the corresponding standard and other softwoods (Table 4.4). Again, a 

possible solution may be the addition of wood parts of C. lusitanica or other biomasses, like 

chips. 

 

Table 4.4. Data extracted from previous studies on some woody and non-woody pellets and biomass. 

Parameters Wood pellets Non-woody biomass 

 (Units) Pinus spp.* Pinus spp.* Pinus 

spp.* 

Miscanthus Peanut shell Straw Sugarcane 

bagasse 

Net calorific value 

(MJ/Kg) 

19.2 17.0 16.7-17.9 16.9 17.0 15.7 16.5 

Ash 

(w-% dry 105˚C) 

0.6 0.9 0.2-0.3 1.8 3.6 6.2 1.9 

Volatile matter 

(w-%, as received) 

dnp dnp dnp 82.9 74.1 76.3 dnp 

Carbon 

(w-% dry 105˚C) 

51.8 dnp 49.1-49.8 48.9 47.0 43.8 50.5 

Hydrogen 

(w-% dry 105˚C) 

6.1 dnp 6.0-6.1 6.7 6.8 6.8 6.1 

Chlorine 

(w-% dry 105˚C) 

0.01 0.01 0.06-0.07 dnp dnp dnp 0.03 

Nitrogen 

(w-% dry 105˚C) 

0.2 0.2 0.05-0.1 0.4 1.3 0.6 0.2 

        

Reference Garcia et al., 

2018 

Duca et al., 

2014 

Alakangas, 

2005 

Sher et al., 

2017 

Sher et al., 

2017 

Sher et al., 

2017 

Garcia et al., 

2018 

*Mean values; dnp: data not provide. 

 

There are no standards reporting on carbon and hydrogen contents in pellets. However, these 

are elements that have a positive influence in the calorific power. Generally, a woody material 

presents carbon and hydrogen contents of around 50 % and 5-6 %, respectively (Jenkins et al., 

1998). The carbon and hydrogen contents of the C. lusitanica pellets obtained in the present 

study are comparable to the ones indicated for the woody materials, while being also similar to 

the ones found in literature for softwoods (Table 4.4). 

Besides the calorific power, the high volatiles content is another characteristic that make 

biomass a suitable fuel. In opposite to coal, the main source of energy in biomass comes from 

burning the volatiles that contributing to the high output performances (Werther et al., 2000). 

Like for the parameters mentioned before, there are also no standards for the volatiles content. 

In the present work, C. lusitanica pellets show volatile values of 69 %, which is below the ones 

obtained for other softwoods, e.g. 82 % (Oliveira et al., 2017) and 85 % (Amorim et al., 2015) 

for Pinus spp. The low values could be related to the fact that biomass undertook a previous 

steam-distillation step, where part of the volatiles was extracted. 
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Results for C. ladanifer pellets showed that all parameters were according to the ISO 17225-

6:2014 standard for non-woody pellets (Table 4.3). Like in woody pellets, there are also no 

mandatory parameters for the carbon, hydrogen and volatile contents in non-woody ones. 

Although no information on C. ladanifer pellets was available, it is possible to find information 

on other non-woody species such as Miscanthus spp., peanut shell, sugarcane bagasse and straw 

(Table 4.4). It was found that the values obtained in the present work are similar to the ones 

found in literature. The exception is the chloride content that was found to be 20 times above 

the values of sugarcane bagasse, for example. Also, the volatile content is below the ones for 

non-woody species. Again, the fact that the biomass went a pre steam-distillation step may 

justify these results. 

Therefore, with the present data it was verified that the production of pellets from solid 

residues obtained after steam-distillation from both C. lusitanica and C. ladanifer, could be a 

viable pathway towards valorisation of these residual fractions. It allows reusing a material that 

is already considered as waste throughout its transformation into an added-value product. In 

addition to the production of pellets from the ESR of each species individually, tests were 

carried out by joining the ESRs of the two biomasses, with good apparent results for the final 

pellets, although no further assays have been performed. Thus, joining these extracted solid 

fractions from steam-distillation with several other biomasses. to produce pellets, including the 

ones with no value for EO extraction, constitutes another option for integrated valorisation of 

these wastes for the company. 

 

3.3. Evaluation of the investment project 

The profitability of project investment was evaluated by the Net Present Value (NPV). For 

calculation of the NPV, the net cash flow (sum between operating and investing cash-flows) 

(CFG) were determined considering three main parameters, i) expected investment, 

ii) expected costs and iii) expected profits, which will be described below. The calculation was 

made a 6-year time (t) to a discount rate of 10.7 % (r). 

 

3.3.1. Expected investment 

For the calculation of the investment, all equipment, materials, and furniture needed for the 

project were considered. Except for the physical space that already existed, all the investment 

described below corresponds to what was acquired, or it is necessary to acquire for the 

execution of this project at Silvapor. The necessary equipment includes the distiller and a 

pelletizer, and the values correspond to the ones found at Vieirinox and Ecofricalia, 

respectively. The cold equipment corresponds to fridges and freezer cabinets, the cost having 

been calculated based on market values. The laboratory resources include glassware (flasks, 

graduated beakers, gobelets, funnels, separatory funnel, graduated pipettes, and Pasteur 
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pipettes), stainless steel based material (universal holder and rings), among other materials. The 

required values were calculated using the Labbox 2019 catalogue. Office supplies include a 

computer, scientific books, notebooks and writing materials, being the purchasing values 

estimated based on market prices. The estimated cost of the necessary furniture has also been 

calculated, which includes storage cupboards, countertop, desk, and chairs. In this way, it is 

expected that total investment (TI) value will be 20600.00 € including VAT (value-added tax) 

(Table 4.5). 

 

Table 4.5. Predicted project investment costs. 

Investments Company source Price (€)* 

Distiller VieiraInox 15000.00 

Pelletizer Ecofricalia Sostenible 2300.00 

Cold equipment Radio Popular 900.00 

Laboratory material Labbox Export: Lab supplies 700.00 

Office material Staples  700.00 

Furniture Leroy Merlin 1000.00 

   

Total investment (TI)  20600.00 

*Price including VAT (value-added tax) 23 % 

 

The value of each investment was multiplied by the amortization rate (0.125), obtaining the 

value for the annual amortization. The sum of the annual amortization of each investment 

corresponds to the value of the depreciations and amortizations. From banking point of view, 

the value of the loan was the value of the total investment required. The medium/long-term loan 

interest rate used it was based on the value tabulated by the national Caixa Geral de Depósitos 

bank at the date of the present study, 0.05 €/year. The interest was calculated by multiplying 

the outstanding capital (portion of the capital amount which has not been repaid by the borrower 

to the lender) by the interest rate, while the amortization was calculated by the difference 

between the instalment value (a partial payment on a financial obligation) and interest (Table 

4.6). The outstanding capital in the following years was always calculated by the difference 

between the outstanding capital of the previous year and the respective amortization of that year 

(Table 4.6). The financial charges (total cost of borrowing, including interest charges and other 

charges paid by the borrower for availing the loan facility), was calculated by the sum of the 

interest with the instalment value. Depreciations, amortizations, and financial charges were 

used to calculate the OCF and the value of total investment was considered as ICF.  
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Table 4.6. Bank interest and amortization over a period of 6 years. 

Interest and Amortization 

Bank lending (€)   20600.00  

ML-term loan interest rate (€)/year   0.05 

Instalment value (€)/year   3433.30  

    

Years Outstanding capital (€) Interest (€) Amortization (€) 

1 (T0) 20600.00 1015.60 2417.80 

2 18182.20 896.40 2536.90 

3 15645.30 771.30 2662.00 

4 12983.30 640.10 2793.30 

5 10190.00 502.40 2931.00 

6 7259.10 357.90 3075.50 

ML-term: Medium and long-term. 

 

3.3.2.  Expected costs 

The expected costs of this project can be divided into three large groups: i) reagents, which 

correspond to the costs of goods acquired and materials consumed (CGAMC), ii) fuel, energy, 

chemical analysis, shipping fees, design/prints, communication, vigilance and safety, which 

correspond to external supplies and services (ESS) and yet iii) personnel costs (PC). In all, total 

cost will be 15947.00 € (Table 4.7).  

 

Table 4.7. Expected individual and overall costs for the project per year. 

Costs Price (€)* / year 

  

CGAMC  

• Reagents 300.00 

  

ESS  

• Fuel 210.00 

• Energy 240.00 

• Chemical analysis 380.00 

• Shipping fees  400.00 

• Design/Prints 200.00 

• Communications 310.00 

• Vigilance 270.00 

• Safety 72.00 

  

Personnel costs  

• Operators 13550.00 

  

Expected total cost 15947.00         

Price including VAT (value-added tax) 23 %, CGAMC: Costs of 

goods acquired, and materials consumed; ESS: External supplies 

and services. 
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For the calculations, the costs of water and cleaning of the workspace were not considered, 

because these are not additional costs to this project.  

For the costs related to reagents, a value was stipulated considering the prices charged by 

LaborSpirit and Norauto companies. The reagents considered were distilled water (2.49 € / 5 L 

com VAT), ethanol (1.71 €/ 25 L + 23 % VAT) and acetone (4.0 €/ 2 L + 23 % VAT).  

The cost of fuel contemplated the transport of biomass (approximately 84 km round-trip) 

and was calculated considering an average fuel consumption of the vehicle of 10 L / 100 Km 

and the price of diesel at Idanha-a-Nova region at the time of execution of this study (1.267 €, 

Intermarche). 

The cost of energy included the consumption of i) cold equipment (173 kWh / year for a 

fridge with a gross capacity of 213 L and 193 kWh / year for a freezer cabinet with a gross 

capacity of 250 L, on a daily over the year), ii) pelletizer (consumption of 4.0 kW, considering 

that it works 60 days/year), iii) to the lighting of the facility itself (consumption of 10 W, 

considering that it is switched on during half of the year) and iv) other equipment, such as a 

desktop PC (consumption of 200 W, considering that it is connected all days of the year). For 

the overall calculations, the present energy cost at Castelo Branco city in Portugal, 

0.153 €/kWh, was considered.  

Costs with the chemical analysis of the essential and volatile oils from hydrolates, were 

calculated based on current pricing table at Centro de Biotecnologia Vegetal, CESAM Lisboa, 

FCUL, 67.50 € + IVA / sample and 87.50€ + IVA / sample, respectively.  

The postage prices were calculated based on DHL carrier pricing list. 

For design and printing, the value was established based on the ones practiced by several 

companies in the market.  

It was also stipulated that the gross salary of a graduate employee would be 950.00 €/month. 

On this amount will also be taken into account the costs for the social security (Segurança 

Social) (11 %), accident at work insurance (250 €/year), Christmas and holiday subsidy and the 

meal allowance (4.77 €/working day).  

CGAMC, ESS and PC costs were considered for the calculation of the OCF. 

 

3.3.3.  Project viability 

As a result of the valorisation of forest biomass studied during this project, it is expected that 

different added value products will be obtained and can be commercialised directly by Silvapor. 

These products are the essential oils and hydrolates of C. lusitanica and C. ladanifer, soaps with 

EO extracted from both species and also pellets produced with extracted solid residues of 

C. lusitanica and C. ladanifer. The estimated profits with the commercialization of these 

products for one year will be 17540.00 € (Table 4.8). All sales estimations were stipulated 

separately for C. lusitanica and C. ladanifer. Based on prior knowledge of seasonality to obtain 

the best EO yield, the total expected profits was made considering the amount of EO and H 
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produced for one month in year (considering 16 days/month to be distilled) for each species.  

 

Table 4.8. Expected yearly profits from sales. Sold products result from the valorisation of Cupressus lusitanica 

and Cistus ladanifer biomass. 

 Expected sales and profits / year 

Products Base price (€) / amount Expected quantity sold Expected profit / year (€) 

C. lusitanica    

Essential oil 9.00 / 10 mL 6480.0 mL 5832.00 

Hydrolate 3.00 / 125 mL 144000.0 mL 3456.00 

Soap with essential oil 2.50 / unit 100.0 unit 250.00 

Pellets 4.00 / 15 kg 240 unit 960.00 

    

C. ladanifer     

Essential oil 22.00 / 10 mL 1080.0 mL 2376.00 

Hydrolate 3.00 / 125 mL 144000.0 mL 3456.00 

Soap with essential oil 2.50 / unit 100.0 unit 250.00 

Pellets 4.00 / 15 kg 240 unit 960.00 

    

Total expected profits (TEP)   17540.00 

 

In the case of C. lusitanica, only one Portuguese company sells this EO, at 7.5 € / 10 mL. 

Considering cypress species, the EO of C. sempervirens is the most commercialized, with prices 

ranging from 2.5 and 10 € / 10 mL. For C. ladanifer EO, the national market prices range 

between 20.9 and 23.0 € / 10 mL. For both species EOs, a current average value was considered 

in the calculations. 

Considering the trials carried out in the present study and the quantities of C. lusitanica and 

C. ladanifer EO obtained, it was estimated that the distillery has the capacity to perform three 

distillations/day, using 100 Kg of biomass/assay. For each distillation, the average amount of 

EO of C. lusitanica and C. ladanifer obtained should be about 190 mL and 30 mL, respectively, 

that is, an average yield of 0.19 % on a dry weight and 0.03 % on a fresh weight, respectively. 

In case of Hs, the average amount obtained per distillation should be about 20 L. Taking into 

account the market and demand, the present analysis was carried out considering that 75 % of 

EOs and 15 % of Hs produced for one month would be sold in the national and international 

markets every year.  

It was also considered that sales of solid handmade soaps would be around 100 units/year. 

For pellets production, it was considered that 1200 kg of ESRs may be produced per week and 

the pelletizer average production would be about 80 bags of 15 kg pellets/week, or 320 

bags/month. In the national market, it would be expected that 75 % of the production would be 

sold/year, equivalent to 240 bags of 15 kg for each species. Total expected profits were 

considered for the calculation of the OCF.  

Considering all the parameters mentioned above, it was possible to determined the OCF and 
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ICF following the formulas (2) and (7), respectively, and consequently NPV following the 

formula (1), considering a 6-year time (t) and a discount rate of 10.7 % (r). A statement table 

was built with all this information (Table 4.9). 

 

Table 4.9. Valorisation project estimations for the underutilized forest biomass. It accounts for a period of 6 years 

and was calculated based on the NPV. 

Income statement (€) 

  2020 2021 2022 2023 2024 2025 

Total expected profits (TEP) 17 540.00  19 065.98 20 724.72 22 527.77 24 487.69 26 618.12 

CGAMC 300.00  326.10 354.47 385.31 418.83 455.27 

Gross result (GR) 17 240.00  18 739.88 20 370.25 22 142.46 24 068.86 26 162.85 

ESS 2 082.00  2 263.13 2 460.03 2 674.05 2 906.69 3 159.57 

Personnel costs (PC) 13 550.00  13 550.00 13 550.00 13 550.00 13 550.00 13 550.00 

Depreciation and amortization (D.A) 2 575.00  2 575.00 2 575.00 2 575.00 2 575.00 2 575.00 

Operational result (OR) -967.00  351.75 1 785.22 3 343.41 5 037.16 6 878.27 

Financial charges (FC) 4 448.91  4 329.72 4 204.65 4 073.41 3 935.70 3 791.20 

Result before tax (RBT) -5 415.91 -3 977.97 -2 419.42 -730.00 1 101.46 3 087.07 

Tax (T) -1 137.34 -835.37 -508.08 -153.30 231.31 648.28 

Result after tax (RAT) -4 278.57 -3 142.60 -1 911.34 -576.70 870.16 2 438.78 

Operating cash flow (OCF) 2 745.34 3 762.12 4 868.30 6 071.71 7 380.86 8 804.99 

Residual value (RV)           5 150.00 

Investing cash flow (ICF) -20 600.00 0.00 0.00 0.00 0.00 0.00 

Net cash flow (NCF) -17 854.66 3 762.12 4 868.30 6 071.71 7 380.86 8 804.99        

Updated net cash flow -17 854.66 3 399.71 3 975.54 4 480.63 4 922.03 5 306.10 

Accumulated cash flow -17 854.66 -14 454.95 -10 479.41 -5 998.78 -1 076.75 4 229.35 

       

Net present value (NPV)  
    

4 229.35 € 

CGAMC: Costs of good acquired and materials consumed; ESS: External supplies and services. 

 

Some considerations were taken into account for the calculation of the parameters, namely 

i) yearly growth rate of 8.7 %, because is expected that the EOs market have an annual growth 

in this value order until 2026 (AMR, 2020), ii) tax (T) of 21 %, according to the value tabulated 

at the date of the present study (ATA, 2020) and iii) discount rate of 10.7 %. According to the 

income statement, it was estimated that the value of NPV would be 4229.35 €. The results of 

the simplified economic viability study demonstrated that this project is considered viable if all 

the conditions mentioned above are met. This study showed that, in addition to the costs with 

i) investment, ii) CGAMC, iii) ESS and iv) PC, if the company manages to sell in a year 

v) 75 % of the EOs and 15 % of Hs produced in one month/year for each species, vi) 100 units 

of soaps with EO of both species and vii) 75 % of the pellets produced from C. lusitanica e 

C. ladanifer ESRs, after 6 years the project will generate a profit in the order of 4229.35 € 

considering only two months of production/year. This means that, despite the anual profits 

(NCF), it is expected that it is only after the end of the 6 years that all investment is settle, being 

effective gains in the order of 4229.35 €. 

https://dictionary.cambridge.org/dictionary/english-portuguese/to
https://dictionary.cambridge.org/dictionary/english-portuguese/the
https://dictionary.cambridge.org/dictionary/english-portuguese/statement
https://dictionary.cambridge.org/dictionary/english-portuguese/it
https://dictionary.cambridge.org/dictionary/english-portuguese/was
https://dictionary.cambridge.org/dictionary/english-portuguese/estimated
https://dictionary.cambridge.org/dictionary/english-portuguese/that
https://dictionary.cambridge.org/dictionary/english-portuguese/the
https://dictionary.cambridge.org/dictionary/english-portuguese/value
https://dictionary.cambridge.org/dictionary/english-portuguese/of
https://dictionary.cambridge.org/dictionary/english-portuguese/would
https://dictionary.cambridge.org/dictionary/english-portuguese/be
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4. Conclusions 

From the four different fractions obtained out of the steam-distillation process, only the 

essential oils and the extracted solid residues were used in the incorporation and production of 

other value-added products, namely in the incorporation of solid soaps and in the production of 

pellets. Both value-added products may be a viable alternative for the company.  

The EOs and Hs of C. lusitanica and C. ladanifer are the products of greatest commercial 

interest for Silvapor. This may be promoted either for a local market or for a wider industrial 

market and may also be sold as such or incorporated into other products, as soaps. In case of 

solid soaps more studies have to be performed in order to create a validated production method 

which grants that all normative specifications are met while the commercialization is carried 

out with due safety and quality. 

Also, the ESRs used in the production of pellets have shown to be a viable alternative to 

these wastes that, as a rule and unlike the EO, have no direct valorisation. The preliminary 

results obtained in the present study, showed that pellets produced from C. lusitanica and C. 

ladanifer ESRs, showed good characteristics, according to the parameters analyzed, with the 

exception of the ash content, considering the wood and non-woody pellets standards. As for 

soaps, more testing will have to be done, so that all parameters are in conformity with pellet 

standards. Certification of this product could also be a possibility, not only because it increases 

consumer confidence, but also strengthens the pellet market in Europe, in line with international 

requirements recognised by the whole industry. 

According to the simplified economic viability study, this project will cover the initial 

investment, being viable for the company if all the conditions presented are executed, bringing 

a profit of 4229.35 € after 6 years, considering only two months of production per year. This 

process of forest biomass valorisation to obtain new value-added products, proved to be a viable 

alternative to complement other activities developed by Silvapor. In addition to being a process 

with environmental and economic benefits, it also contributes to the circular bioeconomy.  
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1. Conclusions 

The large amounts of biomass that are wasted worldwhile, in particular industrial and 

agroindustrial residues, constitute a dramatic environmental problem. Forest biomass is an 

example of such residues since large quantities are available and left to abandonment on the 

ground while they feed potential forest fires.  

In the present thesis, different possibilities for the valorisation of underutilized endogenous 

forest biomass were studied, within a local small-scale biorefinery concept. Cupressus 

lusitanica Mill and Cistus ladanifer L., resulting from Silvapor - Ambiente e Inovação, Lda., a 

company dedicated to cleaning and maintenance of the forest, were the tested species. Applying 

the steam-distillation methodology to each of these biomasses, four distinct fractions were 

obtained: essential oils, hydrolates, distiller condensation waters and extracted solid residues. 

Each fraction was evaluated separately in terms of chemical composition and biological 

activities. The valorisation of some fractions was tested, namely by producing soaps and pellets 

using the essential oil and the extracted solid residues fractions, respectively. The profitability 

of this project for the Silvapor company was also assessed through a simplified economic 

analysis. Considering all the results obtained, the main conclusions and final considerations are 

presented below. 

 

1.1. Essential oils 

For both C. lusitanica and C. ladanifer, monoterpenes were dominant in all EOs, namely the 

monoterpene hydrocarbons fraction, being this independent of the collection date and type of 

distillation. The main components (≥ 5 %) were the same for C. lusitanica EOs, independently 

of both the time of plant collection and the distillation procedure. For C. ladanifer, some 

differences in the EOs composition were detected, varying according to the moment of 

collection. While the major component (α-pinene) was the same in all C. ladanifer EOs, the 

relative amount of the second main component (camphene) was lower for the warmer months. 

Thus, C. ladanifer EO showed more chemical variability than C. lusitanica EO, which can be 

important in terms of the stability of production. 

From the different biological activities tested for the steam-distillation EOs of both species, 

the antioxidant activity assays showed the best results. Xanthine oxidase method showed a 

strong inhibition capacity, i.e. > 90 %, for both C. lusitanica and C. ladanifer EOs. Moreover, 

the antioxidant activity was approximately the same in EOs from biomasses collected in 

different periods. This antioxidant capacity may indicate a potential use in food preservation, 

protecting against oxidative processes, and thus prolonging its nutritional quality attributes. 

Opposite to the antioxidant activity, the EOs from both species showed weak antimicrobial 

activity for the tested microorganisms, i.e. E. coli, S. aureus and C. albicans, with negligible 

differences between different periods of collection.  
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In addition to their valorisation per se, the EOs may be used in the formulation of other 

products, namely in cosmetics. In this way, two types of soaps were produced throughout this 

study: glycerin-based solid and olive oil-based solid soaps, both containing either C. lusitanica 

or C. ladanifer EOs. Hence, it was verified that, in a first approach, the conception of the 

mentioned soaps was possible and well succeeded. Like EOs, also soaps are value added 

products resulting from the valorisation of the underutilized forest biomass. In the medium/long 

term, and under specific conditions, this approach may be implemented at the Silvapor 

company. 

 

1.2. Hydrolates 

This study reported, for the first time, the chemical composition of the hydrolate (H) volatiles 

from C. lusitanica and C. ladanifer and their corresponding biological properties. 

The chemical analysis of the Hs volatiles, obtained by both distillation methods (steam-

distillation and hydrodistillation), showed that they were dominated by the oxygen-containing 

monoterpenes. Although the H volatiles obtained by steam-distillation of C. lusitanica were 

qualitative and quantitatively similar in the two collection moments, they differed from those 

obtained by hydrodistillation of the same species. For C. ladanifer, the H volatiles chemical 

composition was qualitatively similar, but with some quantitative differences according to 

different sample collection moments and distillation procedures. 

The anti-inflammatory activity assays showed the best results, among the different biological 

activities tested for the Hs of both species obtained by steam-distillation. In each case no major 

differences were found between samples harvested in different periods. As mentioned above, 

Hs showed to be richer in oxygen-containing monoterpenes when compared to the 

corresponding EOs, which might be the reason for their anti-inflammatory characteristics. The 

anti-inflammatory capacity observed in Hs may thus indicate a potential use in health area. 

For both species, the Hs showed an antioxidant activity lower than the corresponding EOs, 

being this independent of the method used for antioxidant evaluation. Again, there was no 

difference in the antioxidant activity observed in the samples harvested in different periods. 

Xanthine oxidase and chelating metal ions were the methods where higher antioxidant activity 

was observed. 

Although tested, C. lusitanica and C. ladanifer Hs showed no antimicrobial activity against 

the microorganisms under study and for the assessed concentration. 

In addition to their valorisation per se, as aromatizing agents for home or household 

products, Hs can be used in the co-formulations of other products, such as cosmetics or health-

based products. 
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1.3. Distiller condensation waters 

The chemical composition and the biological activities of the distiller condensation waters 

(DCWs) of both C. lusitanica and C. ladanifer were reported for the first time in the present 

study. 

This fraction was characterized in terms of its phenolic content (total phenols, tannins and 

flavonoids) and their corresponding biological properties, namely antioxidant and anti-

inflammatory activities.  

The C. lusitanica and C. ladanifer DCWs showed to be rich in phenolic compounds, mostly 

tannins. C. ladanifer extract presented a higher and more complex phenolic content than the 

C. lusitanica extract. Catechins were the major compounds found in the DCWs from both 

species. It was possible to identify 3-hydroxybenzoic acid and epicatechin in C. lusitanica 

DCW and quercetins, gallocatechins, hydroxycinnamic acid derivatives and gallic acid in 

C. ladanifer DCW. 

Both C. lusitanica and C. ladanifer DCWs presented antioxidant and anti-inflammatory 

properties. Among the different methods used to evaluate the antioxidant activity, the inhibition 

of superoxide anion radical formation assay was the one that showed the best results. 

C. ladanifer DCW showed higher antioxidant activity than the ones of C. lusitanica. 

DCWs are thus an abundant source of natural phenolic compounds that can be exploited as 

building blocks in different industries. Besides working as natural antioxidants for different 

industries, they can be used as raw materials for producing medicinal drugs or other chemicals 

such as polymers. 

 

1.4. Extracted solid residues 

The extracted solid residues fraction (ESRs) remaining from these biomasses after steam- 

distillation were also assessed as value-added by-products. The ESR of C. lusitanica was here 

characterized for the first time in terms of the chemical composition. The results showed that 

these residues were mainly rich in Klason lignin, followed by carbohydrates, namely 

hemicellulose. Although the chemical composition of C. ladanifer ESR has already been 

reported, the results from the present study showed that the Klason lignin was higher than the 

carbohydrate content, and well above the Klason lignin content determined in other published 

studies. Thus, it was possible to conclude that, in addition to the differences in the starting 

material (extracted by different procedures), the place and time of harvest and the age of the 

plant are factors that can influence the lignocellulosic composition of these biomasses, in 

particular of C. ladanifer. 

The results showed that the yield of phenolic-rich extract for C. ladanifer was higher than 

the yield obtained for C. lusitanica, being independent of the extraction solvent. The extracts 

from 70 % acetone presented higher total phenolics, flavonoids and tannins content when 
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compared to ethanol-related ones. Thus, extraction with 70 % acetone was more efficient in 

removing phenolic compounds from both species. C. ladanifer ESR presented a higher and 

more complex phenolic content than C. lusitanica ESR. In the ESR extracts of both species, 

catechins were the major compounds found, while 3-hydroxybenzoic acid was common to both 

species.  

Among the different methods used to evaluate antioxidant activity, the inhibition of 

superoxide anion radical formation assay was the one that showed the best results. It was also 

found that ESR with 70 % acetone showed higher antioxidant activity than the ethanolic 

extracts. Results for the anti-inflammatory activity were particulary interesting for the ethanolic 

extracts in both species. 

In addition to DCWs, valorisation of C. lusitanica and C. ladanifer ESRs extractives as a 

source of natural phenolic compounds could also be exploited as building blocks in different 

industries such as natural antioxidants and also as raw materials for producing medicinal drugs 

or other chemicals such as polymers.  

The present study also reports for the first time the production of pellets from the ESRs of 

both C. lusitanica and C. ladanifer steam-distillation. The production of pellets from both 

C. lusitanica and C. ladanifer ESRs could be a viable pathway towards zero waste from steam-

distillation. Besides their comercialization, these pellets may be also used by the respective 

company to feed its own distillator, with the inherent economic advantage. 

 

According to the intended aim and as demonstrated in present study, the full valorisation of 

underutilized forest biomass is possible and can be done under a local small-scalle biorefinery 

involving a circular bioeconomy concept (Proceedings of 27th European Biomass Conference 

and Exhibition (EUBCE) IBO12.5:1899-1901 in Annex B). 

This valorisation has many advantages, namely: i) environmental, as it allows for a reduction 

in the amount of underused wastes, often left to abandonment on the ground increasing the risk 

of forest fires, ii) economical, because it enables new value-added products to be obtained, 

contributing to the development of local small and medium-sized enterprises, iii) social, 

because it allows the creation of new jobs.  

As mentioned, all fractions resulting from the steam-distillation process of C. lusitanica and 

C. ladanifer biomasses could be valued. This valorisation could be made: 

i) Per se, through direct commercialization, namely for EOs, Hs and DCWs; 

ii) By the use of the EOs and Hs in the formulation of other products, such as personal 

hygiene products (i.e. soaps), detergents and cosmetics; 

iii) By extracting bioactive compounds, such as phenolics from DCWs and ESRs, with high 

interest to various industries; 

iv) Through the fractionation of the lenhocelulosic material to obtain lignin for different 

industrial applications;  
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v) Through direct transformation of ESRs into value-added products (i.e. pellets). 

This study also showed, through a simplified economic analysis, that valorisation of the four 

fractions derived from steam-distillation of forest biomass to obtain new value-added products, 

may be a viable alternative to complement other activities developed by Silvapor, bringing a 

estimated profit of 4229.35 € after 6 years. 

 

2. Future work 

This study reported for the first time the possibility of full recovery of underused forest 

biomass by a regional company, within the framework of a local small-scale biorefinery and 

within the concept of circular bioeconomy. To complement the work developed, it is suggested 

the following future work: 

 

• In addition to the different beneficial properties observed in all fractions under study, 

including anti-inflammatory and antioxidante properties, an assessment of the possible 

toxicity of these same fractions is suggested; 

 

• Being Silvapor a company linked to agriculture, and given the previous knowledge from 

literature on the potential of componds such as phenolics and terpenoids in this field, it 

is suggested to carry out tests of both insecticide and herbicide activities to the various 

fractions; 

 

• Implementation and validation of soap production assays at Silvapor and absence of 

toxicity tests to the final product; 

 

• It is suggested to test other types of formulations, namely incorporation of other 

biomasses, in order to optimize the pellets prodution, as well as implementation and 

validation of pellets production assays at Silvapor. 
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Table A.1. Percentage composition of the 282 hydrolates and the corresponding essential oils from different 

family/plant species, with reference to the country of origin, plant part used, isolation and analysis procedure.  

Family / Plant 

species 

Country 

of Origin 

Plant 

Part 

EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

Amaranthaceae 
         

Chenopodium 

ambrosioides 

(= Dysphania 

ambrosioides) Ꝿ  

Brazil L SD** GC, GC-

MS 

Ascaridole 50, 

p--cymene 42 

LLE Dcm GC, GC-

MS 

p-Cymene and other unidentified 

main compounds 

Degenhardt 

et al., 2016 

      LLE ethyl 

acetate 

GC, GC-

MS 

p-Cymene and other unidentified 

main compounds 

Degenhardt 

et al., 2016 

 
         

Amaryllidaceae 
         

Allium 

ampeloprasum 

Iran L dnp dnp dnp LLE Peth GC-MS Thymol 57, carvacrol 26 Hamedi et 

al., 2017a 

Allium sativum Iran Bu dnp dnp dnp LLE Peth GC-MS Thymol 32, carvacrol 24, dill apiole 

6, cis-dihydro carvone 5, menthol 

5 

Hamedi et 

al., 2017c 

          
Apiaceae / Umbelliferae 

        

Anethum 

graveolens 

Iran L dnp dnp dnp LLE Peth GC-MS Dill ether 41, thymol 19, carvacrol 

12, carvone 10, dill apiole 6 

Hamedi et 

al., 2017a 

Anthriscus 

sylvestris 

Canada Rt HDF GC, GC-

MS 

β-Phellandrene 24-65, 

myrcene 9-48, 

limonene 2-6, 

trans-sabinyl acetate 

LLE Dcm GC, GC-

MS 

§ Elemicin 0-6, tiglic acid 1-3, 

3--methyl-2(5H)-furanone 1-2, 

trans-sabinyl acetate 1-2, 

carvacrol 1-2, terpinen-4-ol 0-2, 

cryptone, 1-1 

St-Gelais et 

al., 2015 

Carum carvi France Fr HD GC-MS Carvone 60-80, 

limonene 20-40 

LLE Cy GC-MS Carvone 70-98, limonene 0-12 Rivera et 

al., 2010 

Cuminum cyminum Iran S SD dnp dnp LLE Peth GC-MS trans-Caryophyllene 58, 3,4-

dimethoxytoluene 19, 

caryophyllene oxide 12, 

α--humulene 5 

Hamedi et 

al., 2017b 

Daucus carota Algeria AP SD** GC, GC-

MS 

Alismol 15, α-

humulene 10, 

β--ionone 8, 

cis-β-caryophyllene 6 

LLE DE GC, GC-

MS 

Caryophyllene oxide 10, p--cymen-

8-ol 9, α-bisabolol 8, 

γ--decalactone 7, γ-decalactone 7, 

humulene epoxide II 7, geranyl 

acetone 6, geranyl linalool 6, 

octanal 6 

Zatla et al., 

2017 

  Rt SD** GC, GC-

MS 

Geranyl linalool 50, 

pentacosane 7 

LLE DE GC, GC-

MS 

Myristicine 18, cis-methyl-iso-

eugenol 17, methyl eugenol 12, 

eugenol 8, γ-decalactone 8, 

octadecanoic acid 6 

Zatla et al., 

2017 

Daucus muricatus Algeria Rt HD dnp dnp LLE DE GC, GC-

MS 

Terpinen-4-ol 16, isochavicol 8, 

copaborneol 8, isochavicol 

isobutyrate 7, isochavicol 2-methyl 

butyrate 6, myristicine 5 

Djabou et 

al., 2014 

  AP HD dnp dnp LLE DE GC, GC-

MS 

Thymol 12, myristicine 8, 

isochavicol 7, copaborneol 7, 

isochavicol 2-methyl butyrate 6 

Djabou et 

al., 2014 

  St HD dnp dnp LLE DE GC, GC-

MS 

Terpinen-4-ol 10, α-terpineol 8, 

myristicine 8, trans-pinocarveol 6, 

borneol 5 

Djabou et 

al., 2014 

  L HD dnp dnp LLE DE GC, GC-

MS 

trans-Pinocarveol 8, cryptone 8, 

undecane-2-one 8, isophytol 8, 

hexadecanoic acid 8, cis--verbenol 

7, methyl heptadecanoate 6, 

thymol 5, isochavico 2-methyl 

butyrate 5 

Djabou et 

al., 2014 

  F HD dnp dnp LLE DE GC, GC-

MS 

Thymol 25, copaborneol 16, 

isochavicol 13, myristicine 9, 

isochavicol 2-methyl butyrate 9, 

isocalamendiol 9, isochavicol 

isobutyrate 5 

Djabou et 

al., 2014 

Foeniculum 

vulgare 

Iran S dnp dnp dnp LLE Peth GC-MS Thymol 42, carvone 15, 

cis--anethole 12, fenchone 13 

Hamedi et 

al., 2017a 

Petroselinum 

crispum 

Iran L dnp dnp dnp LLE Peth GC-MS Thymol 57 Hamedi et 

al., 2017a 
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Family / Plant 

species 

Country 

of Origin 

Plant 

Part 

EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

  l HD dnp dnp LLE Peth GC-MS Thymol 57, myristicin 34 Hamedi et 

al., 2017c           
Arecaceae / Palmae 

        

Areca catechu China F HD dnp dnp Ϫ Fibers GC-MS 1-Heptanol 14, benzyl alcohol 14, 

ethyl-2-(5-methyl-5-

vinyltetradyfrofuran-2-yl)propan-2-

yl carbonate 13, acetic acid 

phenylmethyl ester 9, 

3,7--dimethyl-1,6-octadien-3-ol 8, 

6-ethernyltetrahydro-2,2,6-

trimethyl-2H-pyran-3-ol 8, 

α--methyl-α-[4-methyl-3-

pentenyl]oxiranemethanol 5 

Shen et al., 

2017 

  FAx HD dnp dnp Ϫ Fibers GC-MS Benzyl alcohol 21, ethyl-2-(5-

methyl-5-vinyltetradyfrofuran-2-

yl)propan-2-yl carbonate 18, 

3,7--dimethyl-1,6-octadien-3-ol 11, 

α--methyl-α-[4-methyl-3-

pentenyl]oxiranemethanol 6, 

6--ethernyltetrahydro-2,2,6-

trimethyl-2H-pyran-3-ol 6, 2,4-

bis(1,1-dimethylethyl)-phenol 5, 2-

propyl-1-pentanol 5 

Shen et al., 

2017 

  Rt HD dnp dnp Ϫ Fibers GC-MS 3,7-Dimethyl-1,6-octadien-3-ol 20, 

5-methyl-2-(1-methylethenyl)-4-

hexen-1-ol 13, ethyl-2-(5-methyl-5-

vinyltetradyfrofuran-2-yl)propan-2-

yl carbonate 6, acetic acid 

phenylmethyl ester 5 

Shen et al., 

2017 

Cocos nucifera China F HD dnp dnp Ϫ Fibers GC-MS 3,7-Dimethyl-1,6-octadien-3-ol 13, 

ethyl-2-(5-methyl-5-

vinyltetradyfrofuran-2-yl)propan-2-

yl carbonate 12, benzyl alcohol 10, 

(R)-5-methyl-2-(1-methylethenyl)4-

hexen-1-ol 7, nonanal 7, 1-nonanol 

5, 6-ethernyltetrahydro-2,2,6-

trimethyl-2H-pyran-3-ol 5 

Shen et al., 

2017 

  FAx HD dnp dnp Ϫ Fibers GC-MS Benzyl alcohol 21, ethyl-2-(5-

methyl-5-vinyltetradyfrofuran-2-

yl)propan-2-yl carbonate 17, 3,7-

dimethyl-1,6-octadien-3-ol 12, 6-

ethernyltetrahydro-2,2,6-trimethyl-

2H-pyran-3-ol 9, 2,4-bis(1,1-

dimethylethyl)-phenol 9, α-methyl-

α-[4-methyl-3-

pentenyl]oxiranemethanol 6 

Shen et al., 

2017 

  Rt HD dnp dnp Ϫ Fibers GC-MS 1,1-Oxybis-octane 17, 3,7-

Dimethyl-1,6-octadien-3-ol 15, 

ethyl-2-(5-methyl-5-

vinyltetradyfrofuran-2-yl)propan-2-

yl carbonate 10, benzyl alcohol 8, 

5-methyl-2-(1-methylethenyl)-4-

hexen-1-ol 8, acetic acid 

phenylmethyl ester 5 

Shen et al., 

2017 

Phoenix dactylifera Iran Sp HD ¥ GC-

MS 

¥ Carvacrol 37, 

linalool 24, thymol 10, 

spathulenol 8 

LLE Peth GC-MS Menthol 44, methyl 

hexadecanoate 10, carvone 8, 

neo-menthol 8, 

cis--dihydrocarvone 7, carvacrol 6, 

pulegone 6, thymol 6 

Hamedi et 

al., 2017b; 

¥ Hamedi et 

al., 2013 

          
Aristolochiaceae 

         

Aristolochia 

trilobata 

Brazil St SD** GC, GC-

MS 

6-Methyl-5-hepten-2-

yl acetate 23, 

limonene 15, linalool 

9, p-cymene 8 

LLE DE GC, GC-

MS 

Linalool 30, 6-methyl-5-hepten-2-ol 

20, 6-methyl-5-hepten-2-yl acetate 

9 

Santos et 

al., 2014 

Asarum 

canadense 

Canada Rt dnp GC, GC-

MS 

Methyl eugenol 39, 

linalool 19, α-terpineol 

6 

LLE Chl GC, GC-

MS 

Ӿ Linalool 41-184, methyl eugenol 

30-180, α-terpineol 108-123, 2,6-

dimethyl-7-octene-2,6-diol 2-39, 

Garneau et 

al., 2014 
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Family / Plant 

species 

Country 

of Origin 

Plant 

Part 

EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

nerol 4-11,  geraniol 7-34, elemicin 

6-10, terpin-1-en-4-ol 5-8, trans-

isoelemicine 3-6           
Asteraceae / Compositae 

        

Achillea millefolium Iran AP HD dnp dnp LLE Peth GC-MS Camphor 42, yomogi alcohol 19, 

1,8-cineole 8, artemisia alcohol 7 

Hamedi et 

al., 2017a 

   dnp dnp dnp LLE Peth GC-MS Camphor 42, yamogi alcohol 21, 

1,8-cineole 8, artemisia alcohol 8 

Hamedi et 

al., 2017b 

Anthemis nobilis 

(= Chamaemelum 

nobile) Ꝿ  

Belgium dnp dnp GC-MS Isobutyl angelate 35, 

isoamyl angelate, 

methallyl angelate 8, 

isobutyl isobutylate 5 

LLE EAc GC-MS Pinocarveol 25, isobutyl 

hydroxyangelate 11, 

hydroxyisobutyl angelate 11, 

pinocarvone 8, isoamylalcohol 8, 

isobutyl angelate 5 

Inouye et 

al., 2008 

Anthemis tinctoria 

(= Cota tinctoria) Ꝿ 

Japan AP SD GC-MS Cubenol 11, 

germacrene D 8, 

guaiol 8, germacrene 

D 4-ol 7, 

β--caryophyllene 7, 

isoledene 6, 

cadina--1,4-diene 6, 

α-cadinol 5 

LLE EAc GC-MS 1,8-Cineole 34, p-mentha-1-en-8-

ol 21, terpinen-4-ol 8, cubenol 6 

Inouye et 

al., 2008 

Artemisia princeps Japan AP SD GC-MS β-Caryophyllene 26, 

germacrene D 20, 

α--humulene 11 

LLE EAc GC-MS 1,8-Cineole 27, camphor 16, 

borneol 16, cis-verbenol 8, yomogi 

alcohol 5 

Inouye et 

al., 2008 

Artemisia sieberi Iran AP dnp dnp dnp LLE Peth GC-MS Camphor 24, 1,8-cineole 18, 

terpinene-4-ol 8, trans-thujone 7 

Hamedi et 

al., 2017b 

  
 

HD ¥ GC, 

GC-MS 

¥ Artemisia ketone 

48, 1,8-cineole 20 

LLE Peth GC-MS Camphor 23, 1,8-cineole 17, 

terpinen-4-ol 6, trans-thujone 6 

Hamedi et 

al., 2017c; 

¥ Behmane

sh et al., 

2007 

Balsamita 

suaveolens 

(= Tanacetum 

balsamita) Ꝿ  

Italy AP HD GC-MS Carvone 44, α-thujone 

16 

LLE n-Hex GC-MS Carvone 75, α-thujone 6 Gallori et 

al., 2001 

      
SPME GC-MS Carvone 41, α-thijone 16, 1,8-

cineole 15, α-terpinene 6 

Gallori et 

al., 2001 

Calendula arvensis Algeria AP HD GC, GC-

MS 

Zingiberenol 1 9-30, 

cis,trans-farnesol 

4--23, zingiberenol 2 

5-20, eremoligenol 

4--13, cis-phytol 0-12, 

τ-cadinol 0-9, 

γ--curcumene 0-8, 

zingeberene 0-8, 

β--curcumene 2-3, 

τ--muurolol 0-8,  

LLE DE GC, GC-

MS 

Zingiberenol 1 33, 

cis,trans--farnesol 24, zingiberenol 

2 21, eremoligenol 11 

Belabbes et 

al., 2017 

Echinacea 

purpurea 

Japan AP SD GC-MS Germacrene D 54, 

β--myrcene 11, 

β--pinene 6, limonene 

5 

LLE EAc GC-MS Terpinen-4-ol 15, cis-verbenol 8, 

phenylacetaldehyde 7, 2-pinen-2-

ol 5 

Inouye et 

al., 2008 

Eupatorium 

japonicum 

Japan F_L SD GC-MS Thymylmethylether 

32, dimethoxydurene 

32, α-thujene 6 

LLE EAc GC-MS Thymylmethylether 13, coumarin 

10, nerol 8, angelic acid 8, 

2--hexanal 8, α-terpineol 6, 

α--methylbutyric acid 5 

Inouye et 

al., 2008 

Eupatorium 

laciniatum 

Japan F_L SD GC-MS Dimethoxydurene 23, 

thymyl methyl ether 

20, α-thujene 12 

LLE EAc GC-MS Coumarin 33, 4-propylbenzoic acid 

23, angelic acid 10, 

p--acetylanisole 9, thymol 5 

Inouye et 

al., 2008 

Helichrysum 

italicum 

France FH HD GC, GC-

MS 

Neryl acetate 34, 

2,4,6,9-

tetramethyldec-8-en-

3,5-dione 10, 

limonene 6 

LLE DE GC, GC-

MS 

2,6-Dimethyloctan-3,5-dione 17, α-

terpineol 16, 2,4-dimethylheptan-

3,5-dione 10, linalool 7 

Paolini et 

al., 2008 

    dnp dnp HS-SPME GC, GC-

MS 

2,6-Dimethyloctan-3,5-dione 18-

33, α-terpineol 20-30, 2,4,6,9-

tetramethyldec-8-en-3,5-dione 1-

11, linalool 5-10, 2,4-

Paolini et 

al., 2008 
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Family / Plant 

species 

Country 

of Origin 

Plant 

Part 

EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

dimethylheptan-3,5-dione 3-10, 

1,8-cineol 3-8  

    dnp dnp P&T-ATD GC, GC-

MS 

Pentan-3-on 33, 2-methylpentan-

3-one 18, 1,8-cineol 13, 

4--methylhept-3-one 12 

Paolini et 

al., 2008 

Inula graveolens 

(= Dittrichia 

graveolens) Ꝿ  

France FHe HD GC, GC-

MS 

Bornyl acetate 47, 

borneol 17 

LLE DE GC, GC-

MS 

Borneol 87 Paolini et 

al., 2008 

    dnp dnp HS-SPME GC, GC-

MS 

Borneol 61-90, bornyl acetate 1-15 Paolini et 

al., 2008 

    dnp dnp P&T-ATD GC, GC-

MS 

Borneol 58, bornyl acetate 12, 

3--methylbut-2-enol 9 

Paolini et 

al., 2008 

Matricaria 

chamomilla 

Iran F HD dnp dnp LLE Peth GC-MS Thynol 34, α-bisabolol oxide A 19, 

α-bisabolone oxide A 9, 

cis--anethole 6, piperitenone 6 

Hamedi et 

al., 2017a 

Matricaria recutita 

(= Matricaria 

chamomilla) Ꝿ 

Japan Fr SD GC-MS Bisabolol oxide A 31, 

β-farnesene 25, 

bisabolene oxide 11, 

cis-en-in-bicycloether 

10, chamazulene 6 

LLE EAc GC-MS Bisabolol oxide A 75, bisabolol 

oxide B 6, 4-methylangelicin 6 

Inouye et 

al., 2008 

Santolina 

chamaecyparissus 

Japan AP SD GC-MS Heptadien-4-one 16, 

vulgarone A 11, 

vulgarone B 9, 

spathulenol 7, 

β--thujene 5 

LLE EAc GC-MS Artemisia ketone 25, camphor 17, 

yomogi alcohol 9, borneol 9, 

carveol 6 

Inouye et 

al., 2008 

Solidago puberula Canada AP SD GC, GC-

MS 

Limonene 12, 

germacrene D 12, 

myrcene 11, α-pinene 

7 

LLE Chl GC, GC-

MS 

Benzyl alcohol 73-74, cis-

3--hexen-1-ol 6-9 

Garneau et 

al., 2014 

Tanacetum vulgare Japan F_L SD GC-MS Chrysanthenyl 

acetate 55, epoxy-

α--terpinyl acetate 30 

LLE EAc GC-MS Chrysanthenyl acetate 25, epoxy-

α-terpinyl acetate 18, piperitone 

12, phellandral 8, linalool oxide 

pyranoside 5 

Inouye et 

al., 2008 

          
Berberidaceae 

         

Berberis vulgaris Iran Fr dnp dnp dnp LLE Peth GC-MS α-Bisabolol oxide A 40, thymol 24, 

bisabolone oxide 17, methyl 

hexadecanoate 8, carvacrol 7 

Hamedi et 

al., 2017c 

          
Boraginaceae 

         

Cynoglossum 

cheirifolium 

Algeria AP HD GC, GC-

MS 

cis-Phytol 29, 

n--tetradecane 10, 

hexadecanoic acid 9, 

n-pentadecane 8, 

geranyl acetone 7, 

α--copaene 5 

LLE DE GC, GC-

MS 

2-Pentyl-furan 46, carvone 24, 

hexadeanoic acid 15 

Boussalah, 

2020 

Echium amoenum Iran F SD dnp dnp LLE Peth GC-MS Phenethyl alcohol 59, eugenol 23, 

citronellol 7 

Hamedi et 

al., 2017b           
Brassicaceae / Cruciferae 

        

Brassica rapa Iran Rt dnp dnp dnp LLE Peth GC-MS Thymol 49, carvacrol 22, pulegone 

6, carvone 5 

Hamedi et 

al., 2017c           
Bromeliaceae 

         

Ananas comosus Malaysia Fr HD dnp dnp dnp GC-MS Acetic acid 6 Mohamad 

et al., 2019           
Burseraceae 

         

Boswellia sp. Iran ꬹ OGR dnp dnp dnp LLE Peth GC-MS Thymol 32, trans-verbenone 16, 

carvacrol 11, trans-pinocarveol 8, 

verbenone 6 

Hamedi et 

al., 2017b 

          
Caprifoliaceae 

         

Valeriana 

officinalis 

Iran AP dnp dnp dnp LLE Peth GC-MS Thymol 8 Hamedi et 

al., 2017a 

  AP dnp dnp dnp LLE Peth GC-MS Thymol 10, carvacrol 7, methyl 

hexadecanoate 5 

Hamedi et 

al., 2017b           
Cistaceae 

         

Cistus ladanifer Portugal AP HD GC, GC-

MS 

α-Pinene 13, 

camphene 5, 

trans--pinocarveol 5 

LLE n-Pen GC, GC-

MS 

trans-Pinocarveol 8, verbenone 8 Tavares et 

al., 2020 

  
 

SD GC, GC-

MS 

α-Pinene 28, 

camphene 25, 

LLE n-Pen GC, GC-

MS 

trans-Pinocarveol 5-13, 

2,6,6--trimethyl cyclohexanone 9-

Tavares et 

al., 2020 
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Family / Plant 

species 

Country 

of Origin 

Plant 

Part 

EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

limonene 7 12, borneol 7-8, terpinen-4-ol 2-6, 

1-methyl cycloheptanol 3-5           
Cupressaceae 

         

Chamaecyparis 

obtusa 

Japan L SD GC-MS Sabinene 40, 

p--menth-

1--methylethenyl-2-

ethenyl-8-ol 7, terpinyl 

acetate 7, bornyl 

acetate 6, limonene 6, 

β-pinene 5 

LLE EAc GC-MS Terpinen-4-ol 66, cubenol 6 Inouye et 

al., 2008 

Cryptomeria 

japonica 

Japan L dnp GC-MS α-Pinene 13, 

thujopsene 9, kaurene 

9, β-pinene 8, 

limonene 5 

HS-SPME GC-MS Terpinen-4-ol 37, 3-hexen-1-ol 18, 

hexanol 6 

Nakagawa 

et al., 2016 

  Br dnp GC-MS δ-Cadinene 12, 

thujopsene 8, 

α--eudesmol 7, α-

pinene 6, β-cedrene 

6, elemol 6 

HS-SPME GC-MS Terpinen-4-ol 21, elemol 11, 

α--terpineol 10, α-eudesmol 9, 

γ--eudesmol 8, camphor 7 

Nakagawa 

et al., 2016 

  L_Br dnp GC-MS α-Pinene 23, 

sabinene 17, 

thujopsene 10, 

limonene 6, 

β--myrcene 5 

HS-SPME GC-MS Terpinen-4-ol 32, 3-hexen-1-ol 16, 

hexanol 9, octen-3-ol 6 

Nakagawa 

et al., 2016 

  St dnp GC-MS β-Cedrene 12, 

δ--cadinene 12, 

thujopsene 10, elemol 

7, α-eudesmol 7 

HS-SPME GC-MS Elemol 33, α-eudesmol 21, 

γ--eudesmol 15 

Nakagawa 

et al., 2016 

Cupressus 

lusitanica 

Portugal AP HD GC, GC-

MS 

Camphene 24-32, 

δ--3-carene 15-21, 

sabinene 6-11, 

terpinen-4-ol 3-6 

LLE n-Pen GC, GC-

MS 

Terpinen-4-ol 21-31, p-cymen-8-ol 

10-16, cis-3-henen-1-ol 2-13, 

camphor 1-11, α-terpineol 6-10, 

citronellol 3-6 

Tavares et 

al., 2020 

  
 

SD GC, GC-

MS 

α-Pinene 14-36, 

limonene 8-20, 

sabinene 13-18, δ-

3--carene 8-17 

LLE n-Pen GC, GC-

MS 

Umbellulone 47-48, terpinen-4-ol 

23-24, camphor 4-5 

Tavares et 

al., 2020 

Thuja occidentalis dnp dnp HD dnp dnp PET dnp α-Thujone 34, fenchone 26, 

terpinen-4-ol 12, camphor 7 

Fleisher and 

Fleisher, 

1991           
Fabaceae / Leguminosae 

        

Trigonella foenum-

graecum 

Iran L HD dnp dnp LLE Peth GC-MS Thymol 20, carvone 13, carvacrol 

5, cis-dihydro carvone 5 

Hamedi et 

al., 2017c           
Geraniaceae 

         

Pelargonium x 

asperum 

Japan F_L SD GC-MS β-Citronellol 28, 

isomenthone 17, 

citronellic acid 13, 

citronellyl tyglate 7, 

capric acid 6 

LLE EAc GC-MS β-Citronellol 28, isomenthone 19, 

citronellic acid 18, trans-p-

menthane-3,8-diol 7, linalool 5 

Inouye et 

al., 2008 

Pelargonium 

graveolens 

dnp dnp HD dnp dnp PET dnp Citronellol 42, geraniol 19, 

isomenthone 11, linalool 9 

Fleisher and 

Fleisher, 

1991  
India dnp SD GC, GC-

MS 

Citronellol 28-28, 

geraniol 19-22, 

linalool 7-8, citronellyl 

formate 6-8, 

isomenthone 5-7, 

10--epi-γ-eudesmol 5-

6 

◊ LLE n-

Hex 

GC, GC-

MS 

Geraniol 21-38, citronellol 27-33, 

linalool 15-20, isomenthone 5-6, 

sabinene 0-6 

Rao et al., 

2002 

          
Grossulariaceae 

         

Ribes nigrum Poland Fr SD dnp dnp LLE MeCl/ 

SPME 

GC-MS Terpinen-4-ol 15 Dawiec-

Liśniewska 

et al., 2018b           
Hypericaceae 

         

Hypericum 

perforatum 

Japan AP SD GC-MS Germacrene D 43, 

cis-4-hexen-1-ol 9, 

α--pinene 8 

LLE EAc GC-MS Terpinen-4-ol 22, cis-4-hexen-1-ol 

19, α-terpineol 13, α-cadinol 11, 

trans-muurolol 7 

Inouye et 

al., 2008 

          
Lamiaceae / Labiatae 
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of Origin 

Plant 
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EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

Dracocephalum 

kotschyi 

Iran AP HD GC-MS α-Pinene 12, trans-

β--ocimene 9, 

limonene 7 

LLE n-Pen GC-MS trans-Verbenol 12, terpinen-4-ol 

11, verbenone 9, neral 6 

Monsef-

Esfahani et 

al., 2007 

Glechoma 

hederacea 

Japan AP SD GC-MS trans-Ocimene 15, 14, 

pinocamphone 13, 

aromadendrone 11, 

germacrene D 10, 

cis--ocimene 8, 

germacrene D-4-ol 6 

LLE EAc GC-MS Pinocamphone 59, camphor 11, 

1,8-cineole 6 

Inouye et 

al., 2008 

Lavandula allardii 

(= Lavandula x 

heterophylla) Ꝿ  

Australia dnp dnp GC-MS 1,8-Cineole 34-39, 

camphor 13-17, 

β--phellandrene 8-9,  

β-pinene 5-6, 

α--pinene 5-5 

dnp GC-MS Camphor 39, β-phellandrene 23, 

linalool 12, α-terpineol 6 

Moon et al., 

2007 

Lavandula 

angustifolia 

dnp dnp dnp dnp dnp LLE DE GC-MS Linalool 69-83, 4-terpineol 6-20 Yohalem 

and Passey, 

2011 

 Japan F SD GC-MS Linalyl acetate 48, 

linalool 15, β-

caryophyllene 6, 

cis--ocimene 6 

LLE EAc GC-MS Linalool 39, α-terpineol 15, 

coumarin 7, terpinen-4-ol 7 

Inouye et 

al., 2008 

 Poland F HD GC, GC-

MS 

α-Linalool 25, linalyl 

acetate 14, borneol 6, 

caryophyllene oxide 5 

LLE n-Pen GC, GC-

MS 

α-Linalool 27, borneol 9, 

cis--linalool oxide 7, trans-linalool 

oxide 5, α-terpineol 5 

Śmigielski 

et al., 2013 

  He HD dnp dnp LLE n-Pen GC-MS Linalool 48-53, α-terpineol 8-9, 

borneol 5-6, geraniol 4-5 

Kunicka-

Styczyńska 

et al., 2014 

  F HD dnp dnp LLE n-Pen GC-MS Linalool 39-44, trans-linalool oxide 

10, cis-linalool oxide 8, α--terpineol 

7-8, borneol 5-7, terpinen-4-ol 5-6 

Kunicka-

Styczyńska 

et al., 2014 

  F HD dnp dnp DLLME GC, GC-

MS 

Linalool 26-45, α-terpineol 4-9, 

octan-3-one 0-8, borneol 4-7, 

δ--cadinol 1-7, terpinen-4-ol 4-6 

Prusinowska 

and 

Smigielski, 

2015 

  F HD dnp dnp LLE n-Pen GC-MS Linalool 24-39, linalool oxide 18-

25, borneol 6-14, α-terpineol 7-13, 

terpinen-4-ol 3-7 

Prusinowska 

et al., 2016 

Lavandula x 

intermedia 

dnp dnp dnp dnp dnp LLE DE GC-MS Linalool 42-50, camphor 22-24, 

cineole 8-22, borneol 2-6, 4-

terpineol 2-5 

Yohalem 

and Passey, 

2011 

 Italy L_St SD GC-MS Linalool 36, 

1,8-cineole 20, 

α-pinene 9, linalyl 

acetate 8 

HSE GC-MS 1,8-Cineole 53, camphor 20, 

linalool 13 

Garzoli et 

al., 2020 

 Spain F_L SD dnp dnp LLE Dcm GC-MS Linalool 15, 1-α-terpineol 15, 

camphor 10, 1-borneol 9, 

cis--linalool oxide 8, trans-linalool 

oxide 7, 1,8-cineole 5 

Andrés et 

al., 2018 

 Turkey dnp SD GC-MS Linalyl acetate 48, 

linalool 34 

dnp GC-MS Linalool 56, borneol 14, camphor 

13, 1,8-cineole 10, linalool oxide 6 

Baydar and 

Kineci, 2009 

Lavandula x 

intermedia "Miss 

Donnington" 

Australia dnp dnp GC-MS Camphor 20, 

1,8--cineole 12, 

linalool 12, linalyl 

acetate 9, borneol 6 

dnp GC-MS Borneol 32, linalool 20, camphor 

18, α-terpineol 10, cryptone + 

p--cymene-8-ol 8 

Moon et al., 

2007 

Lavandula x 

intermedia "Seal" 

Australia dnp dnp GC-MS Linalool 36, 

1,8--cineole 15, β-

phellandrene 8, 

trans--β-ocimene 7, 

linalyl acetate 6 

dnp GC-MS α-Terpineol 24, linalool 19, 

terpinen-4-ol 14, cryptone + 

p--cymen-8-ol 7, borneol 5 

Moon et al., 

2007 

Lavandula luisieri ҂ Spain AP HD GC-MS Camphor 60, 

2,3,4,4--tetramethyl-5-

methylidenecyclopent

-2-en-1-one 9 

LLE Dcm GC-MS Camphor 49, 2,3,4,4-tetramethyl-

5-methylidenecyclopent-2-en-1-

one 20, 5-hydroxymethyl-2,3,4,4-

tetramethylcyclopent-2-en-1-one 

10, (2,2,3,4-tetramethyl-5-

oxocyclopent-3-en-1-yl)-methyl 

acetate 8 

Julio et al., 

2017 

  F_L SD dnp dnp LLE Dcm GC-MS Camphor 49, 2,3,4,4-tetramethyl- Andrés et 
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of Origin 
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EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

5-methylidenecyclopent-2-en-1-

one 20, 5-hydroxymethyl-2,3,4,4-

tetramethylcyclopent-2-en-1-one 

10, (2,2,3,4-tetramethyl-5-

oxocyclopent-3-en-1-yl)-methyl 

acetate 8 

al., 2018 

Lavandula 

officinalis 

Morocco AP SD*** dnp dnp dnp GC, GC-

MS 

Linalool 45, camphor 16, 

1,8--cineole 15, α-terpineol 12, 

borneol 11 

Aazza et al., 

2011 

Lavandula 

stoechas 

France L HD GC, GC-

MS 

Camphor 27, 

fenchone 22, 

1,8--cineol 9, 

camphene 7 

LLE DE GC, GC-

MS 

Camphor 49, fenchone 23, 

1,8--cineole 7 

Paolini et 

al., 2008 

    dnp dnp HS-SPME GC, GC-

MS 

Camphor 46-61, fenchone 22-31, 

1,8-cineole 5-9  

Paolini et 

al., 2008 

    dnp dnp P&T-ATD GC, GC-

MS 

Camphor 34, 1,8-cineole 20 Paolini et 

al., 2008 

Marrubium vulgare  Iran AP HD dnp dnp LLE Peth GC-MS Menthol 36, menthone 16, thymol 

15, p-xylene 6, carvacrol 5, 

iso--menthone 6 

Hamedi et 

al., 2017a 

Melissa officinalis  Canada Rt dnp GC, GC-

MS 

Geranial 24, neral 18, 

β-caryophyllene 12, 

geraniol 9 

LLE Chl GC, GC-

MS 

Ӿ Geraniol 9-73, cis-3-hexen-1-ol 

6-38, geranial 6-33, nerol 2-33, 

linalool 7-26, α-terpineol 3-23, 

trans-p-menth-2-ene-1,8-diol 6-14, 

6-methyl-5-hepten-2-one 2-10,  

cis-p-menth-2-ene-1,8-diol 6-9, p-

cymen-8-ol 1-8, β-phellandren-8-

oll 3-7, p-mentha-1,5-dien-8-ol 2-5 

Garneau et 

al., 2014 

 Greece L HD dnp dnp LLE DE GC-MS Carvacrol 35, neral 17, geranial 13 Petrakis et 

al., 2015 

 Iran L dnp dnp dnp LLE Peth GC-MS Thymol 47, carvacrol 30 Hamedi et 

al., 2017a 

   dnp dnp dnp LLE Peth GC-MS Thymol 45, carvacrol 32 Hamedi et 

al., 2017b 

 Japan L SD GC-MS Citral 28, 

β--caryopyllene 12, 

citronellal 10 

LLE EAc GC-MS Citral 43, cis-p-mentha-1-en-3-

acetoxy-8-ol 15, trans-p-mentha-1-

en-3-acetoxy-8-ol 13, geraniol 5 

Inouye et 

al., 2008 

Mentha arvensis Japan AP SD GC-MS Menthol 69, 

menthone 10, menthyl 

acetate 8 

LLE EAc GC-MS Menthol 86, menthone 5 Inouye et 

al., 2008 

Mentha citrata 

(= Mentha 

aquatica) Ꝿ  

Japan L SD GC-MS Linalyl acetate 34, 

linalool 26, 

1,8--cineole 10 

LLE EAc GC-MS Linalool 44, α-terpineol 14, 1,8-

cineole 12, menthol 8 

Inouye et 

al., 2008 

Mentha longifolia Senegal AP SD** GC, GC-

MS 

Pulegone 42-52, 

menthone 14-21, 

1,8--cineole 11-13, 

isomenthone 9-13 

dnp GC, GC-

MS 

Pulegone 47-60, 1,8-cineole 8-20, 

isomenthone 7-11, menthone 6-9, 

chrysanthenone 3-6 

Diop et al., 

2016 

Mentha x piperita dnp dnp HD dnp dnp PET dnp Menthol 37, menthone 17, 1,8-

cineole 16 

Fleisher and 

Fleisher, 

1991 

 Canada AP SD GC, GC-

MS 

Menthol 52, 

menthone 16, menthyl 

acetate 5 

LLE Chl GC, GC-

MS 

Menthol 62-69, cis-3-hexen-1-ol 2-

6, menthone 2-6 

Garneau et 

al., 2014 

 Egypt dnp SD GC, GC-

MS 

Menthol 49, 

menthone 20, 

1,8--cineole 5 

LLE MeCl GC, GC-

MS 

Menthol 22, menthone 14, 

1,8--cineole 7 

Edris, 2009 

 Japan AP SD GC-MS Menthol 32, 

menthone 30, 

1,8--cineole 6, 

isomenthon 6, 

neomenthol 6 

LLE EAc GC-MS Menthol 50, menthone 23, 

1,8--cineole 11, isomenthone 5 

Inouye et 

al., 2008 

Mentha pulegium Greece AP HD dnp dnp LLE DE GC-MS Piperitone 98 Petrakis et 

al., 2015 

 Morocco AP SD** dnp dnp LLE DE GC, GC-

MS 

Carvacrol 39, piperitenone 10 Zekri et al., 

2016 

Mentha spicata Egypt dnp SD GC, GC-

MS 

Carvone 75 LLE MeCl GC, GC-

MS 

Carvone 56, limonene 7 Edris, 2009 
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Japan F_L SD GC-MS Carvone 36, limonene 

24, germacrene D 8 

LLE EAc GC-MS Carvone 89 Inouye et 

al., 2008 

Mentha 

suaveolens 

Corsica AP HD GC, GC-

MS 

Pulegone 44, cis-cis-

para-menthenolide 

LLE DE GC, GC-

MS 

cis-cis-para-Menthenolide 67, 

pulegone 15 

Sutour et 

al., 2008  
Morocco L SD** dnp dnp LLE Et GC, GC-

MS 

Piperitenone oxide 69 Zekri et al., 

2016 

Monarda citriodora  Italy F_L_

St 

HD GC-MS Thymol 20, p-cymene 

16, γ-terpinene 14, 

α--terpinene 9, 

carvacrol 9, myrcene 

6 

LLE n-Hep GC-MS Thymol 66, carvacrol 29 Di Vito et 

al., 2019 

Monarda fistulosa Japan S SD GC-MS Thymoquinone 33, 

p--cymene 25, 

carvacrylmethylether 

9, 1-octen-3-ol 6, 

thymol 5 

LLE EAc GC-MS Carvacrol 79, 1-octen-3-ol 10 Inouye et 

al., 2008 

Ocimum basilicum Egypt dnp SD GC, GC-

MS 

Linalool 59, eugenol 

26, 1,8-cineol 7 

LLE MeCl GC, GC-

MS 

Linalool 66, eugenol 7, 1,8-cineol 5 Edris, 2009 

 Greece L HD dnp dnp LLE DE GC-MS Linalool 67, eugenol 19, eucalyptol 

7 

Traka et al., 

2018 

 Iran AP HD dnp dnp LLE Peth GC-MS Carvacrol 24, eugenol 23, thymol 

22 

Hamedi et 

al., 2017b 

 Poland AP HD GC-MS Methyleugenol 45-46, 

eugenol 9-13, linalool 

10-10, 1,8-cineole 6-

8, α-bergamotene 4-6 

LLE n-Pen GC-MS Methyleugenol 33-51, eugenol 6-

26, linalool 10-11, 1,8-cineole 4-6 

Śmigielski 

et al., 2016 

Origanum 

compactum 

Morocco dnp HD GC, GC-

MS 

Carvacrol 20-40, 

rhymol 15-30, 

γ--terpinene + trans-

β--ocimene 10-25, p-

cymene 4-21 

LLE DE GC, GC-

MS 

Carvacrol 55-77, thymol 20-41 Jeannot et 

al., 2003 

Origanum 

majorana 

Greece AP HD dnp dnp LLE DE GC-MS Carvacrol 78, terpinen-4-ol 11 Petrakis et 

al., 2015 

 Morocco AP SD*** dnp dnp dnp GC, GC-

MS 

Terpinen-4-ol 71, α-terpineol 9 Aazza et al., 

2011 

Origanum onites Turkey L_S HD dnp dnp Ϫ Fibers GC-MS Carvacrol 30, thymol 28, borneol 6 Sagdic et 

al., 2013 

  L HD dnp dnp Ϫ Fibers GC-MS Thymol 51, carvacrol 44, 

p--cymene 6 

Ozturk et 

al., 2016 

Origanum vulgare Saudi 

Arabia 

AP HD GC-MS Carvacrol 70, 

γ--terpinene 6 

LLE EAc GC-MS Carvacrol 93 Khan et al., 

2018 

Perilla frutescens Japan AP SD GC-MS Perilla aldehyde 47, 

limonene 19, 

α--bergamotene 15, 

β--caryophyllene 

LLE EAc GC-MS Perilla aldehyde 78, shisool 8 Inouye et 

al., 2008 

  L SD GC-MS Myristicin 60, 

β--caryophyllene 24, 

dimethyl--methylpente

nyl-2-norpinene 8, 

1--furanyl-hexanone 6 

LLE EAc GC-MS Myristicin 58 Inouye et 

al., 2008 

Rosmarinus 

officinalis 

Colombia F_L HD GC-MS Camphor 29, 

1,8--cineole 21, 

α--pinene 10, 

camphene 9, 

β--pinene 7 

dnp GC-MS Camphor 52, 1,8-cineole 38 Hay et al., 

2018 

 France FT HD GC, GC-

MS 

Borneol 12, camphor 

12, verbenone 12, 

bornyl acetate 12, 

camphene 7 

LLE DE GC, GC-

MS 

Verbenone 52, camphor 15 Paolini et 

al., 2008 

    dnp dnp HS-SPME GC, GC-

MS 

Verbenone 13-36, camphor 14-29, 

borneol 16-24, filifolone 3-11, 1,8-

cineole 3-6, a-terpineol 0-6 

Paolini et 

al., 2008 

    dnp dnp P&T-ATD GC, GC-

MS 

Camphor 25, 1,8-cineole 20, 

filifolone 17, borneol 8, linalool 6 

Paolini et 

al., 2008 

 Israel L_St SD GC-MS Camphor 2-50, 

1,8--cineole 8-29, 

α--pinene 12-25, 

dnp GC-MS Camphor 4-84, verbenone 1-66, 

1,8-cineole 5-43, borneol 1-29, α--

terpineol 2-10, linalool 1-5 

Sadeh et 

al., 2019 



 

Annex A- Additional information supporting Chapter I 

142 

Family / Plant 

species 

Country 

of Origin 

Plant 

Part 

EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

bornyl acetate 4-16, 

verbenone 1-10, 

camphene 5-9, 

β--pinene 1-6, 

limonene 5-5, borneol 

3-5 

 Japan dnp SD GC-MS α-Pinene 25, 

1,8--cineole 18, 

camphor 9, 

camphene 8, 

β--pinene 6, sabinene 

6 

LLE EAc GC-MS Verbenone 23, camphor 22, 

1,8--cineole 19, borneol 13, α-

terpineol 6 

Inouye et 

al., 2008 

 
 

L HD GC-MS Eucalyptol 17-20, 

α--pinene 12-15, 

camphor 10-13, 

borneol 5-10, bornyl 

acetate 4-9, β-pinene 

6-8, camphene 5-7, 

β--myrcene 5-6,  

limonene 4-5 

LLE n-Hex GC-MS Borneol 20-27, camphor 25-24, 

eucalyotol 16-23, verbenone 4-8, 

α-terpineol 4-7 

Tomi et al., 

2016 

 Morocco AP SD*** dnp dnp dnp GC, GC-

MS 

1,8-Cineole 44, verbenone 26, 

camphor 12, borneol 7, 

α--terpineol 5 

Aazza et al., 

2011 

 Turkey L HD dnp dnp Ϫ Fibers GC-MS 1,8-Cineole 50, borneol 7 Ozturk et 

al., 2016 

Salvia officinalis Morocco AP SD*** dnp dnp dnp GC, GC-

MS 

Camphor 51, 1,8-cineole 24, 

β--thujone 13 

Aazza et al., 

2011 

  dnp HD dnp dnp Ϫ Fibers GC-MS Linalool 13, δ-cadinene 10, 

carvacrol 9 

Tornuk et 

al., 2011 

  He SD GC, GC-

MS 

cis-Thujone 20, 

camphor 20, 

1,8--cineole 18, 

trans--thujone 9 

LLE EtOH GC, GC-

MS 

Camphor 43, 1,8-cineole 24, 

cis--thujone 15, borneol 8 

Baydar et 

al., 2013 

  L HD dnp dnp Ϫ Fibers GC-MS o-Cymene 10 Ozturk et 

al., 2016 

Satureja hellenica Greece Leave

s and 

Flowe

rs 

HD GC-MS p-Cymene 28, 

carvacrol 23, borneol 

7, carvacrol 

methylether 

LLE DE GC-MS Carvacrol 50, borneol 20, 

4--terpineol 7 

Pardavella 

et al., 2020 

Satureja hortensis Turkey L HD dnp dnp Ϫ Fibers GC-MS Carvacrol 25, thymol 15, 

o--cymene 11, linalool 6, borneol 5 

Sagdic et 

al., 2013 

        Thymol 30, α-terpineol acetate 19, 

o-cymene 14, γ-terpinene 6, 1,8-

cineole 5 

Ozturk et 

al., 2016 

Satureja parvifolia 

(= Clinopodium 

gilliesii) Ꝿ  

Argentina AP HD dnp dnp HS-SPME GC-MS Piperitenone oxide 69, 

piperitenone 7 

Cabana et 

al., 2013 

Sideritis 

canariensis 

Turkey L HD dnp dnp Ϫ Fibers GC-MS 1,8-Cineole 25, α-thujone 9, 

α--terpineol acetate 7, camphor 7 

Ozturk et 

al., 2016 

Teucrium polium Iran AP HD dnp dnp LLE Peth GC-MS Carvacrol 37, thymol 26, methyl 

hexadecanoate 8, eugenol 5 

Hamedi et 

al., 2017c 

Thymbra capitata Greece dnp dnp GC-MS γ-Terpinene 35, 

carvacrol 20 

HS-SPME GC-MS Ӿ Carvacrol 946, 1-octen-3-ol 

10.8, terpinen-4-ol-9, borneol 7 

Karampoula 

et al., 2016 

Thymus capitatus Poland F HD GC, GC-

MS 

Carvacrol 70, 

p--cymene 12 

LLE DE GC, GC-

MS 

Carvacrol 95 Tabti et al., 

2014 

Thymus linearis India He SD GC, GC-

MS 

Thymol 44, 

γ--terpinene 25, 

p--cymene 13 

LLE n-Hex GC, GC-

MS 

Thymol 92 Verma et 

al., 2016 

Thymus 

mastichina 

Japan AP SD GC-MS 1,8-Cineole 54, 

α--terpinyl acetate 7, 

β-caryophyllene 6, 

β--pinene 6 

LLE EAc GC-MS 1,8-Cineole 75 Inouye et 

al., 2008 

Thymus serpyllum India He SD GC, GC-

MS 

Thymol 35, 

γ--terpinene 23, 

p--cymene 8, thymol 

methyl ether 7 

LLE n-Hex GC, GC-

MS 

Thymol 91 Verma et 

al., 2016 

Thymus vulgaris Colombia AP HD GC-MS Thymol 36, p-cymene dnp GC-MS Thymol 98 Hay et al., 
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28, γ-terpinene 12 2018 

 Japan AP SD GC-MS Thymol 37, p-cymene 

33, γ-terpinene 8 

LLE EAc GC-MS Thymol 79, α-hydroxylthymol 10 Inouye et 

al., 2008 

 Morocco AP SD*** dnp dnp dnp GC, GC-

MS 

Carvacrol 94 Aazza et al., 

2011 

 Spain F_L SD dnp dnp LLE Dcm GC-MS Thymol 77, linalool 7 Andrés et 

al., 2018 

 Turkey dnp HD dnp dnp Ϫ Fibers GC-MS Carvacrol 48, thymol 18, (-)-

spathulenol 10 

Tornuk et 

al., 2011 

 Turkey L HD dnp dnp Ϫ Fibers GC-MS Carvacrol 36, o-cymene 8, thymol 

7, linalool 5, carvacrol methyl ether 

5 

Sagdic et 

al., 2013 

        Thymol 57, o-cymene 13, 

γ--terpinene 6 

Ozturk et 

al., 2016 

Thymus zygis  Spain F_L SD dnp dnp LLE Dcm GC-MS Thymol 62, 1-borneol 8, carvacrol 

6 

Andrés et 

al., 2018           
Lauraceae 

         

Benzoin praecox 

(= Lindera 

praecox) Ꝿ  

Japan L_Br SD GC-MS Camphor 12, 

1,8--cineole 11, 

cis--ocimene 9, 

p--mentha-3-

isopropenul-

1--ethenyl-3-en 7, 

limonene 6 

LLE EAc GC-MS Camphor 42, 1,8-cineole 25, 

α--terpineol 10, linalool 6 

Inouye et 

al., 2008 

Cinnamomum 

cassia 

Iran St_B dnp dnp dnp LLE Peth GC-MS cis-Cinnamaldehyde 84 Hamedi et 

al., 2017b 

Cinnamomum 

verum 

Morocco AP SD*** dnp dnp dnp GC, GC-

MS 

trans-Cinnamaldehyde 92 Aazza et al., 

2011 

Cinnamomum 

osmophloeum 

Taiwan L SD dnp dnp dnp GC-MS trans-Cinnamaldehyde 88, 

benzaldehyde 7, cinnamyl acetate 

5 

Ho et al., 

2019 

Laurus nobilis Argentina L_St SD GC-MS 1,8-Cineole 41-49, 

linalool 10-15, 

sabinene 8-10, 

α--terpinyl acetate 7-

8, α-pinene 4-6, 

methyl eugenol 2-5 

LLE n-Hex GC-MS 1,8-Cineole 40-69, methyl eugenol 

4-18, α-terpineol 11-13, linalool 6-

11, eugenol 2-10, terpinen-4-ol 7-8 

Di Leo Lira 

et al., 2009 

 France L HD GC, GC-

MS 

1,8-Cineol 32, 

α--terpenyl acetate 

13, β-pinene 9, 

linalool 9 

LLE DE GC, GC-

MS 

1,8-Cineole 59, linalool 9, 

α--terpineol 7, terpinen-4-ol 6 

Paolini et 

al., 2008 

      HS-SPME GC, GC-

MS 

1,8-Cineole 35-60, methyl eugenol 

9-25, linalool 6-18, α--terpineol 6-

10, eugenol 3-10, trans-hex-3-ol 0-

9 

Paolini et 

al., 2008 

      P&T-ATD GC, GC-

MS 

1,8-Cineole 90 Paolini et 

al., 2008 

 Turkey L HD dnp dnp Ϫ Fibers GC-MS α-Terpineol acetate 24, 

1,8--cineole 10 

Ozturk et 

al., 2016 

Lindera obtusiloba Japan L_Br SD GC-MS Caryophyllene oxide 

28, β-caryophyllene 

12, limonene 9, 

p--cymene 6, 

camphene 6, 

isobornyl acetate 5 

LLE EAc GC-MS Camphor 22, borneol 11, linalool 

10, fenchone 8, hexanol 7, 

hexenol 6, citronellol 5 

Inouye et 

al., 2008 

Lindera umbellata Japan L_Br SD GC-MS Linalool 42, 

1,8--cineole 13, 

geraniol 5 

LLE EAc GC-MS Linalool 54, 6-methyl-2-(2-

oxiranyl)-5-hepten-2-ol 12, 

geraniol 11, 6-methyl-2-(2-

oxiranyl)-5-hepten-2-ol 6 

Inouye et 

al., 2008 

          
Magnoliaceae 

         

Yulania denudata China F HD GC, GC-

MS 

β-Thujene 16, 

β--pinene 11, 

germacrene D 8, 

limonene 7, 

β--eudesmol 7, 

caryophyllene 7, 

α--eudesmol 6 

LLE Et2O GC, GC-

MS 

Eucalyptol 67, α-terpineol 16 Lei et al., 

2015 
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Myrtaceae 
         

Astartea 

leptophylla 

Australia L_St HD GC-MS α-Pinene 52, myrtenal 

10 

dnp GC-MS α-Terpineol 23, myrtenal 13, trans-

pinocarveol 13, myrtenol 6 

Lowe et al., 

2005 

Astartea sp. Albany L_St HD GC-MS Myrtenal 26, α-pinene 

18, linalool 11, 

myrtenol 6 

dnp GC-MS Myrtenal 16, myrtenol 16, linalool 

10, α-terpineol 8, verbenone 6 

Lowe et al., 

2005 

Campomanesia 

viatoris 

(= Campomanesia 

ilhoensis) Ꝿ 

Brazil L HD GC-MS Tasmanone 71, 

flavesone 13, 

agglomerone 7 

LLE DE GC-MS Tasmanone 75, flavesone 12, 

agglomerone 11 

Matos et al., 

2015 

Eucalyptus 

camaldulensis Ꝿ  

Senegal L SD** GC, GC-

MS 

1,8-Cineole 3-70, 

p--cymene 1-31, 

β--pinene 0-28, 

α--eudesmol t-21, 

limonene 4-13, 

α--pinene 2-12, 

α--phellandrene 0-9, 

epiglobulol 7-8, 

γ--eudesmol 0-7 

LLE n-Hex GC, GC-

MS 

1,8-Cineole 13-77, α-terpineol 4-

20, trans-pinocarveol 1-10, 

α--eudesmol 0-10, piperitone 0-10, 

terpinene-4-ol 2-9, spathunelol 0-7 

Ndiaye et 

al., 2018 

Eucalyptus cinerea Italy L_St SD GC-MS 1,8-Cineole 84 HS-SPME GC-MS 1,8-Cineole 88, α-terpineol 6 Ieri et al., 

2019 

Eucalyptus 

citriodora 

(= Corymbia 

citriodora) Ꝿ 

Egypt dnp SD GC, GC-

MS 

Citronellal 34, 

citronellol 9 

LLE MeCl GC, GC-

MS 

Citronellal 76, citronellol 10 Edris, 2009 

 Japan L SD GC-MS Citronellal 89, 

citronellol 8 

LLE EAc GC-MS cis-p-menthane-3,8-diol 37, 

citronellal 16, citronellol 14, 

isopulegol 6 

Inouye et 

al., 2008 

Eucalyptus 

globulus  

France L_Br HD GC, GC-

MS 

1,8-Cineole 56, 

α--pinene 18, 

limonene 6 

LLE DE GC, GC-

MS 

1,8-Cineole 62, α-terpineol 9 Paolini et 

al., 2008 

    dnp dnp HS-SPME GC, GC-

MS 

1,8-Cineole 39-93, α-terpineol 3-17 Paolini et 

al., 2008 

    dnp dnp P&T-ATD GC, GC-

MS 

1,8-Cineole 93 Paolini et 

al., 2008 

 Japan L SD GC-MS 1,8-Cineole 60, 

α--pinene 19, 

limonene 8 

LLE EAc GC-MS 1,8-Cineole 72, α-terpineol 13 Inouye et 

al., 2008 

Eucalyptus 

kruseana  

Japan L SD GC-MS 1,8-Cineole 67, 

α--terpinyl acetate 12, 

limonene 6 

LLE EAc GC-MS 1,8-Cineole 76, α-terpineol 6 Inouye et 

al., 2008 

Eucalyptus parvula Italy L_St SD GC-MS 1,8-Cineole 87-89 HS-SPME GC-MS 1,8-Cineole 89-90, α-terpineol 5-6 Ieri et al., 

2019 

Eucalyptus 

pulverulenta 

Italy L_St SD GC-MS 1,8-Cineole 85-88 HS-SPME GC-MS 1,8-Cineole 89-91, α-terpineol 4-5 Ieri et al., 

2019 

Eucalyptus radiata Japan L SD GC-MS α-Phellandrene 42, 

piperitone 20, 

β--phellandrene 6, 

α--thujene 5 

LLE EAc GC-MS Piperitone 84, terpinen-4-ol 5 Inouye et 

al., 2008 

Eugenia 

caryophyllata 

(= Syzygium 

aromaticum) Ꝿ  

Egypt dnp SD GC, GC-

MS 

Eugenol 97 LLE MeCl GC, GC-

MS 

Eugenol 84 Edris, 2009 

 
Madagas

car 

Bud SD GC-MS Eugenol 84, 

acetyleugenol 10, 

β--caryophyllene 6 

LLE EAc GC-MS Eugenol 97 Inouye et 

al., 2008 

Leptospermum 

petersonii 

Japan L_Br SD GC-MS Citral 57, citronellar 

29 

LLE EAc GC-MS Citral 40, cis-p-menthane-3,8-diol 

12, cis-p-mentha-1-en-3-acetoxy-

8-ol 9, trans-p-mentha-1-en-3-

acetoxy-8-ol 8, trans-p-menthane-

3,8-diol 7, geraniol 6 

Inouye et 

al., 2008 

Leptospermum 

scoparium 

Japan F_L SD GC-MS dnp LLE EAc GC-MS Methyl cinnamate 24, 1,8-cineole 

7, α-terpineol 7, humulane-1,6-

dien-3-ol 6, selina-6-en-4-ol 6, 

terpinen-4-ol 5 

Inouye et 

al., 2008 

Melaleuca 

alternifolia 

Japan L_Br SD GC-MS Terpinen-4-ol 34, 

γ--terpinene 22, 

LLE EAc GC-MS Terpinen-4-ol 75, α-terpineol 10 Inouye et 

al., 2008 
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α--terpinene 11 

Myrtus communis France Br HD GC, GC-

MS 

α-Pinene 53, 

1,8--cineole 27 

LLE DE GC, GC-

MS 

1,8-Cineole 63, α-terpineol 9, 

linalool 7 

Paolini et 

al., 2008 

      HS-SPME GC, GC-

MS 

1,8-Cineole 61-82, α-terpineol 3-

13, methyl eugenol 2-7 

Paolini et 

al., 2008 

      P&T-ATD GC, GC-

MS 

1,8-Cineole 76, isobutanal 17, 

isovaleraldehyde 9, 2,4-dimethyl-

3-pentanone 8 

Paolini et 

al., 2008 

Syzygium 

aromaticum 

Morocco L_B SD*** dnp dnp dnp GC, GC-

MS 

Eugenol 81, 1,8-cineole 8, 

camphor 7 

Aazza et al., 

2011           
Oleaceae 

         

Olea europaea Iran L HD dnp dnp LLE Peth GC-MS Methyl 5-vinylnicotinate 28, thymol 

12, dihydroactinidiolide 7 

Hamedi et 

al., 2017b 

        Methyl 5-vinylnicotinate 30, 

dihydroactinidiolide 6, thymol 

ethanoate 6 

Hamedi et 

al., 2017c 

Osmanthus 

fragrans 

China F HD GC, GC-

MS 

cis,β-Ionone 22, 

cis--linalool oxide 18, 

dihydro-β-ionone 17, 

trans-linalool oxide 15 

LLE DE GC, GC-

MS 

cis-Linalool oxide 51, 

trans--linalool oxide 38 

Lei et al., 

2016 

          
Paeoniaceae 

         

Paeonia x 

suffruticosa 

China F HD GC, GC-

MS 

1,3,5--Trimethoxyben

zene 0-50, 

1,4--dimethoxybenzen

e 0-15, tricosane 4-

14, geraniol 0-13, 

nonadecane 2-13, 

heptadecane 2-12,  

pentadecane 2-11, 

trans-linalool oxide 0-

9, linalool 0-9, 

trans--9-tetradecen-1-

ol 0-9, pentacosane 

2-7, trans-3-hexen-1-

ol 1-6, germacrene D 

t-6 

LLE MeCl GC, GC-

MS 

1,3,5-Trimethoxybenzene t-65, 

2--phenylethanol 0-64, geraniol t-

20, trans-3-hexen-1-ol 1-17, 

1,4--dimethoxybenzene t-17, 

linalool t-12, cinnamyl alcohol 1-

11, 1-hexanol 1-9, geranic acid 1-

8, trans-linalool oxide 1-7 

Lei et al., 

2018 

    dnp dnp LLE Dcm GC, GC-

MS 

 2-Phenylethanol 0-77, 

β--citronellol 3-57, 1,3,5-

trimethoxybenzene 0-50, geraniol 

0-16, trans-3-hexen-1-ol 3-10, 

geranic acid 0-10,  trans-linalool 

oxide 1-7, linalool 1-6, 1-hexanol 

2-5 

Lei et al., 

2020 

          
Papaveraceae 

         

Fumaria parviflora Iran AP dnp dnp dnp LLE Peth GC-MS Methyl hexadecanoate 38, dill 

apiole 20, phenol-4-ethyl-2-

methoxy 8, thymol ethanoate 7, 

dihydroactinidiolide 7, methyl 

octadecanoate 6 

Hamedi et 

al., 2017c 

          
Pinaceae 

         

Abies alba Poland S HD GC, GC-

MS 

Limonene 83, 

α--pinene 6 

LLE DE GC, GC-

MS 

Selin-6-en-4-ol 52, β-himachalol 

15, τ-cadinol 11, intermedeol 10 

Wajs-

Bonikowska 

et al., 2015 

Abies balsamea dnp dnp HD dnp dnp PET dnp α-Terpineol 52, terpinen-4-ol 10, 

bornyl acetate 6 

Fleisher and 

Fleisher, 

1991 

 Canada Br SD GC, GC-

MS 

β-Pinene 34, δ-carene 

14, α-pinene 11, 

bornyl acetate 10, 

limonene 7, 

β--phellandrene 7, 

camphene 6 

LLE Chl GC, GC-

MS 

α-Terpineol 42, maltol 9, borneol 6, 

bornyl acetate 5 

Garneau et 

al., 2012 

Abies koreana Poland S HD GC, GC-

MS 

Limonene 54, α-

pinene 12, bornyl 

acetate 12, camphene 

11 

LLE DE GC, GC-

MS 

Intermedeol 77, borneol 6 Wajs-

Bonikowska 

et al., 2015 

Picea glauca Canada Br SD GC, GC-Camphor 20, bornyl LLE Chl GC, GC- Camphor 65, borneol 11 Garneau et 
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MS acetate 12, camphene 

8, limonene 8 

MS al., 2012 

     Camphor 20 LLE Chl GC, GC-

MS 

Camphor 66-69, borneol 12-12 Garneau et 

al., 2014 

Picea mariana Canada Br SD GC, GC-

MS 

Bornyl acetate 34, 

camphene 16, α-

pinene 13, δ-carene 6 

LLE Chl GC, GC-

MS 

α-Terpineol 15, borneol 14, bornyl 

acetate 9, cis-3-Hexen-1-ol 7, 

terpinen-4-ol 7, camphene hydrate 

5 

Garneau et 

al., 2012 

     α-Pinene 41, β-pinene 

34  

LLE n-Hex GC, GC-

MS 

α-Terpineol 29, trans-pinocarveol 

5, terpinen-4-ol 5 

Francezon 

and 

Stevanovic, 

2017 

     α-Pinene 41, β-pinene 

26 

LLE n-Hex GC, GC-

MS 

α-Terpineol 34, terpinen-4-ol 6, 

2--methoxy-4-vinylphenol 6, 

verbenone 5 

Francezon 

and 

Stevanovic, 

2017           
Platanaceae 

         

Platanus orientalis Iran L dnp dnp dnp LLE Peth GC-MS Carvone 24, p-xylene 12, 

dihydrocarveol 7, dill apiole 7, 

thymol 7, pulegone 6 

Hamedi et 

al., 2017b 

        Carvone 23, p-xylene 13, dill 

apiole 8, dihydro carveol 6, thymol 

6, pulegone 5 

Hamedi et 

al., 2017c 

          
Poaceae / Gramineae 

        

Cymbopogon 

citratus 

Egypt dnp SD GC, GC-

MS 

Geranial 37, neral 35, 

linalool 9 

LLE MeCl GC, GC-

MS 

Geranial 44, neral 32 Edris, 2009 

 Japan L SD GC-MS Citral 73, limonene 17 LLE EAc GC-MS Citral 43, cis-p-mentha-1-en-3-

acetoxy-8-ol 17, trans-p-mentha-1-

en-3-acetoxy-8-ol 14, geraniol 10 

Inouye et 

al., 2008 

Cymbopogon 

martini 

Japan AP SD GC-MS Geraniol 66, geranyl 

acetate 25 

LLE EAc GC-MS Geraniol 79, linalool 15 Inouye et 

al., 2008           
Ranunculaceae 

         

Nigella sativa Turkey dnp HD dnp dnp Ϫ Fibers GC-MS Cuminaldehyde 17, carvacrol 11, 

p-cymene 9 

Tornuk et 

al., 2011 

Ranunculus 

repens 

Iran F dnp dnp dnp LLE Peth GC-MS Carvacrol 88 Hamedi et 

al., 2017b           
Rosaceae 

         

Cerasus serrulata 

҂  

China F HD GC, GC-

MS 

Benzaldehyde 42, 

tricosane 28, 

pentacosane 19, 

heptacosane 5 

LLE DE GC, GC-

MS 

Benzaldehyde 64, mandelonitrile 

12  

Lei et al., 

2014 

Cerasus subhirtella China F HD GC, GC-

MS 

Benzaldehyde 31, 

tricosane 23, 

pentacosane 23, 

heptacosane 9 

LLE DE GC, GC-

MS 

Benzaldehyde 68, mandelonitrile 

13 

Lei et al., 

2014 

Crataegus 

azarolus 

Iran L_Fr dnp dnp dnp LLE Peth GC-MS Thymol 29, p-xylene 20, 

hexadecanoic acid 7 

Hamedi et 

al., 2017b 

   HD dnp dnp LLE Peth GC-MS Thymol 29, p-xylene 20, 

hexadecanoic acid 8 

Hamedi et 

al., 2017c 

Geum iranicum ҂  Iran AP HD GC, GC-

MS 

Palmitic acid 11, 

linoleic acid 10, 

tridecanal 6 

LLE Peth GC, GC-

MS 

Eugenol 46, linalool 7 Shahani et 

al., 2011 

  Rt HD GC, GC-

MS 

Eugenol 84 LLE Peth GC, GC-

MS 

Eugenol 65, myrtenol 10, chavicol 

8 

Shahani et 

al., 2011 

Malus domestica Poland Fr SD dnp dnp LLE 

MeCl/SPM

E 

GC-MS 5-Hexyn-1-ol 78 Dawiec-

Liśniewska 

et al., 2018a 

Malus sp. Ѧ dnp Fr HD dnp dnp PET dnp n-Hexanol 41, trans-2-hexenal 19, 

n-hexanal 8, 2-methyl-1-butanol 6 

Fleisher, 

1990 

Prunus avium Poland Fr SD dnp dnp LLE 

MeCl/SPM

E 

GC-MS Benzaldehyde 56 Dawiec-

Liśniewska 

et al., 2018b 

Prunus serotina  dnp L HD dnp dnp PET dnp Benzaldehude 90 Fleisher, 

1990 

Rosa brunonii India F HD GC, GC-

MS 

Eugenol 24, geraniol 

19, n-heneicosane 8, 

α-pinene 6, 

LLE DE GC, GC-

MS 

Eugenol 52, geraniol 13, phenyl 

ethyl alcohol 9 

Verma et 

al., 2016 
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n--nonadecane 6 

Rosa canina Iran F dnp dnp dnp LLE Peth GC-MS Phenethyl alcohol 47, eugenol 29, 

citronellol 8 

Hamedi et 

al., 2017b 

Rosa centifolia France F SD dnp dnp LLE n-Hex GC-MS 2-Phenyl ethanol 46, citronellol 25, 

geraniol 11 

Labadie et 

al., 2015 

Rosa damascena France F HD dnp dnp LLE n-Hex GC-MS 2-Phenyl ethanol 25, citronellol 21, 

geraniol 21, nerol 11 

Labadie et 

al., 2015 

 India F HD GC, GC-

MS 

Citronellol 18-32, 

geraniol 13-17, 2-

phenylethanol 13-16, 

nerol 7-8, linalool 3-8 

LLE Dcm GC, GC-

MS 

2-Phnylethanol 22-82, citronellol 2-

23, geraniol 1-12, nerol 0-12 

Agarwal et 

al., 2005 

     
 

LLE 

NaCl/Dcm 

GC, GC-

MS 

2-Phenylethanol 72, citronellol 6 Agarwal et 

al., 2005 

     
 

LLE BEN GC, GC-

MS 

2-phenylethanol 67, citronellol 7 Agarwal et 

al., 2005 

     
 

HYDRO/ 

BEN 

GC, GC-

MS 

2-Phenylethanol 31, geraniol 17, 

citronellol 16, nerol 9, linallol 8 

Agarwal et 

al., 2005 

 Iran F dnp dnp dnp LLE Peth GC-MS Phenethyl alcohol 12-73, dibutyl 

phthalate 4-19, eugenol 2-18, 

curzerene 1-11,  β-citronellol 3-10, 

linalool 1-9 

Moein et al., 

2014 

        Phenethyl alcohol 77, citronellol 

13, eugenol 5 

Hamedi et 

al., 2017b 

      LLE DE GC, GC-

MS 

Phenethyl alcohol 48, 

n--heptadecane 16 

Samani et 

al., 2018 

 Japan F SD GC-MS Citronellol 48, 

geraniol 20, 

nonadecane 8 

LLE EAc GC-MS Phenethyl alcohol 76, citronellol 8, 

geraniol 7 

Inouye et 

al., 2008 

 Turkey F dnp GC, GC-

MS 

Citronellol 35, 

geraniol 22, 

n--nonadecane 14, 

nerol 10 

dnp GC, GC-

MS 

Geraniol 31, citronellol 29, 

phenylethyl alcohol 24, neral 16 

Ulusoy et 

al., 2009 

   HD GC-MS Citronellol 43, 

geraniol 12, 

n--heneicosane 7 

HS-SPME GC-MS Citronellol 40, geraniol 16, benzoic 

acid 2-hydroxy-3-methyl butyl 

ester 7, carbamic acid methyl ester 

5 

Koksal et 

al., 2015 

Rosa damascena x 

Rosa chinensis  

Japan Pe HD dnp dnp HS-SPME GC, GC-

MS 

Citronellol 35, geraniol 24, 

phenylethyl acetate 23, 

3,5--dimethoxy toluene 11 

Tomi et al., 

2017 

Rosa rugosa Poland Pe HD GC, GC-

MS 

n-Tricosane 22, 

n--pentacosane 22, 

citronellol 14, geraniol 

9, palmitic acid 6 

LLE DE GC, GC-

MS 

Geraniol 2-31, β-phenylethanol 4-

20, citronellol 0-18, phenylethyl 

benzoate 2-10, geranial t-10, nerol 

t-8, palmitic acid 0-7 

Maciąg and 

Kalemba, 

2015 

          
Rutaceae 

         

Citrus aurantiifolia Senegal Fr HD GC, GC-

MS 

Limonene 35-51, 

β--pinene 7-14, 

geraniol 2-13, 

p--cymene 6-12, neral 

2-9, γ-terpinene 5-7 

LLE n-Hex GC, GC-

MS 

Geranial 18, nerol 16, neral 15, α-

terpineol 15, geraniol 13, terpinen-

4-ol 6 

Ndiaye et 

al., 2017 

Citrus aurantium Belgium dnp dnp GC-MS Linalool 35, limonene 

18, β-pinene 13 

LLE EAc GC-MS Linalool 41, α-terpineol 19, 

phenethyl alcohol 6 

Inouye et 

al., 2008 

 Brazil P HD GC-MS Limonene 74-83 LLE EAc GC-MS Nootkatone 17, α-terpineol 10, 

linalool 10, cis-linalool oxide 8, 

trans-linalool oxide 5 

Wolffenbütt

el et al., 

2015 

 Cyprus F SD** GC-MS Linalool 14, squalene 

7, limonene 6 

dnp GC-MS Linalool 17, neryl acetate 6, 

nerolidol 6, linalyl acetate 5 

Değirmenci 

and Erkurt, 

2020 

 Egypt dnp SD GC, GC-

MS 

Linalool 53, linalyl 

acetate 10 

LLE MeCl GC, GC-

MS 

Linalyl acetate 47, linalool 33 Edris, 2009 

 France F HD dnp dnp LLE n-Hex GC-MS Linalool 44, α-terpineol 24, 

cis--linalool oxide 6 

Labadie et 

al., 2015 

 Iran F dnp dnp dnp LLE Peth GC-MS Linalool 37, α-terpineol 29, methyl 

anthranilate 11, cis--geraniol 9, 

indole 6 

Hamedi et 

al., 2017b 

 Morocco dnp dnp dnp dnp LLE DE GC, GC-

MS 

Linalool 40-60, α-terpineol 15-25, 

geraniol 1-7, methyl anthranilate 1-

6, phenylethyl alcohol 1-5, benzyl 

Jeannot et 

al., 2005 
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nitrile 1-5 

Citrus clementina ҂  France L_Fr HD GC, GC-

MS 

α-Pinene 38, linalool 

18, limonene 7, cis-β-

ocimene 6 

LLE DE GC, GC-

MS 

Linalool 69, terpinen-4-ol 12, 

α--terpineol 9 

Paolini et 

al., 2008 

      HS-SPME GC, GC-

MS 

Linalool 58-72, terpinen-4-ol 10-

18, α-terpineol 3-11, trans-hex-3-

enol 0-7 

Paolini et 

al., 2008 

      P&T-ATD GC, GC-

MS 

Linalool 70, terpinen-4-ol 6, 

dehydroxylinaloloxyde A 5 

Paolini et 

al., 2008 

Citrus x junos Japan Fr SD GC-MS Limonene 79, 

α--terpinene 11 

LLE EAc GC-MS Linalool 58, α-terpineol 16, thymol 

8 

Inouye et 

al., 2008 

Citrus limon Turkey Fr SD dnp dnp dnp GC-MS Geraniol 48, α-terpineol 30, citral 

29, terpinolene 10, terpinen-4-ol 7 

Lante and 

Tinello, 

2015 

Citrus maxima  Senegal Fr HD GC, GC-

MS 

Limonene 78-94 LLE n-Hex GC, GC-

MS 

trans-Linalloloxide 21, α-terpineol 

13, cis-linalooloxide 10, linalool 10, 

neral 6 

Ndiaye et 

al., 2017 

Citrus medica Turkey Fr SD dnp dnp dnp GC-MS α-Terpineol 17, citral 17, geraniol 

15, terpinolene 6 

Lante and 

Tinello, 

2015 

Citrus reticulata 

(= Citrus x 

aurantium) Ꝿ  

Senegal Fr HD GC, GC-

MS 

Limonene 90-93 LLE n-Hex GC, GC-

MS 

Linalool 18, citronellol 16, 

trans--carveol 12, α-terpineol 10, 

n-decanal 7 

Ndiaye et 

al., 2017 

Citrus sinensis 

(= Citrus x 

aurantium) Ꝿ  

Senegal Fr HD GC, GC-

MS 

Limonene 92-94 LLE n-Hex GC, GC-

MS 

Linalool 35, α-terpineol 10, 

limonene-10-ol 10, citronellol 8 

Ndiaye et 

al., 2017 

 Turkey Fr SD dnp dnp dnp GC-MS Terpinolene 12 Lante and 

Tinello, 

2015 

Fortunella japonica 

(= Citrus japonica) 

Ꝿ  

France L HD GC, GC-

MS 

Germacrene D 15, 

β--elemol 9, β-

eudesmol 8, limonene 

7, cis-guai-6-en-10β-

ol 6, δ-elemene 5 

LLE DE GC, GC-

MS 

Cryptomeridiol 23, β-eudesmol 21, 

β-elemol 11, α-eudesmol 11, τ-

muurolol 7 

Sutour et 

al., 2017 

Geijera parviflora Australia L HD GC-MS cis-Caryophyllene 32, 

bicyclogermacrene 

24, spathulenol 8, 

β--cis-ocimene 6 

LLE Dcm GC-MS Linalool 24, isopsoralen 22, 

spathulenol 13, globulol 8, 

caryophylla-4(12),8(13)-dien-5-ol 6 

Sadgrove et 

al., 2014 

Ruta chalepensis Greece F_L HD dnp dnp LLE DE GC-MS 2-Nonanone 77, 2-undecanone 9 Traka et al., 

2018           
Salicaceae 

         

Salix aegyptiaca Iran Ck dnp dnp dnp LLE Peth GC-MS p-Cymen-7-ol 29, cumin aldehyde 

26, cis-anethol 18, methyl 

anthranilate 7 

Hamedi et 

al., 2017b 

          
Saururaceae 

         

Houttuynia cordata Japan F_L SD GC-MS 2-Undecanone 26, 

caprylaldehyde 16, 

trimethyl.bicyclo(2,2,1

)-hept-2-yl-acetate 12, 

decanol 7, 

n--nonylalcohol 6, 

n--nonenol 6 

LLE EAc GC-MS Terpinen-4-ol 57, linalool 20, 

α--terpineol 11 

Inouye et 

al., 2008 

          
Siparunaceae 

         

Siparuna 

guianensis 

Brazil L HD dnp dnp LLE Dcm GC-MS Siparunone 21-60, viridiflorol 1-26, 

dihydrocarvyl acetate 1-24, 

caryophyllene oxide 2-19, 

spatulenol 3-17, ledol 1-10, 

phethalic acid 1-6 

Valentini et 

al., 2010 

          
Thymelaeaceae 

         

Aquilaria spp. Japan W HD GC-MS 8-epi-γ-Eudesmol 10 HS-SPME GC-MS Benzylacetone 9 Takamatsu 

and Ito, 

2018           
Urticaceae 

         

Urtica dioica Iran AP HD dnp dnp LLE Peth GC-MS Thymol 27, hexadecanoic acid 18, 

carvacrol 12, camphor 6 

Hamedi et 

al., 2017a           
Verbenaceae 

         

Aloysia citriodora Ꝿ  Iran L dnp dnp dnp LLE Peth GC-MS Limonene 21, geranial 14, Hamedi et 
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Family / Plant 

species 

Country 

of Origin 

Plant 

Part 

EO IP EO AP EO Main 

components (≥ 5%)* 

HV IP HV AP Main components HV (≥ 5%)* Reference 

trans--caryophyllene 10, methyl 

hexadecanoate 8, neral 6, 

α--terpineol 6, terpinen-4-ol 5 

al., 2017b 

Lippia alba Brazil L_Br HD dnp dnp LLE n-Hex GC-MS Citral 65, carvone 10 Silva et al., 

2018 

  AP HD GC-MS Geranial 34, neral 24, 

limonene 7, carvone 7 

LLE n-Hex GC-MS Geranial 33, neral 31 Maia et al., 

2019 

 Colombia L HD GC-MS Carvone 42, limonene 

41, germacrene D 8 

dnp GC-MS Carvone 93 Hay et al., 

2018 

Lippia citriodora 

(= Aloysia 

citrodora) Ꝿ  

France L HD GC, GC-

MS 

Geranial 27, neral 19, 

limonene 9 

LLE DE GC, GC-

MS 

Geranial 33, neral 29, 

6--methylhept-5-en-2-one 6, 

1,8--cineole 5 

Paolini et 

al., 2008 

    dnp dnp HS-SPME GC, GC-

MS 

Geranial 24-42, neral 23-34, 

6--methylhept-5-en-2-one 3-22, 

1,8-cineole 4-13, spathulenol 0-7 

Paolini et 

al., 2008 

      P&T-ATD GC, GC-

MS 

1,8-Cineole 62, 6-methylhept-5-en-

2-one 8, isovaleraldehyde 5, neral 

5 

Paolini et 

al., 2008 

 Japan L SD GC-MS Citral 43, limonene 

12, α-curcumene + 

germacrene D 7, 

germacrene B 5 

LLE EAc GC-MS Citral 53, terpinen-4-ol 8 Inouye et 

al., 2008 

          
Xanthorrhoeaceae 

        

Aloe spp. Iran L dnp dnp dnp LLE Peth GC-MS Menthol 37, thymol 11, carvacrol 

6, trans-menthone 5, pulegone 5 

Hamedi et 

al., 2017c           
Zingiberaceae 

         

Zingiber officinale Iran R HD dnp dnp LLE Chl GC-MS Thymol 41, carvacrol 26 Hamedi et 

al., 2017a 

  
    

  
  

    

0: Values between 0.05 and 0.5, ꬹ Designation from authors, ꬹ OGR: Ole-gum-resin, * Unless otherwise stated the data is 

provided in percentage, ** Steam-distillation using a Clevenger-type apparatus, *** Steam-distillation using a alembic-type 

apparatus, ¥ Comparison with literature data, not data from the authors, ◊ Hexane was distilled to recovered hydrolate volatiles, 

§ Data given in values ≥ 1 mg/kg, ҂ Species name according to authors but not present in World Checklist of Vascular Plants 

(WCVP), Ꝿ Species name according to authors and synonym according World Checklist of Vascular Plants (WCVP), 

Ϫ Technique not detailed, Ӿ Data given in values ≥ 5 mg/L, Ѧ Authors denominate as Apple essence, AP: Aerial parts; B: Bark, 

Br: Branches, Bu: Bulb, Bud: Buds, Ck: Catkins, DLLME: Dispersive liquid-liquid microextraction, dnp: Data not provided, 

EO AP: Essential oil analysis procedure, EO IP: Essential oil isolation procedure, F: Flowers, F_L: Flowers and leaves, 

F_L_S: Flowers, leaves and stems, FAx: Floral axis, FH: Flower heads, FHe: Flowering herb, Fr: Fruits, FT: Flowering tops, 

GC: Gas chromatography, GC-MS: Gas chromatography-Mass spectrometry, HD: Hydrodistillation, HDF: Hidrodiffusion, 

He: Herbs, HSE: Headspace extraction, HS-SPME: Headspace solid-phase microextraction, HV AP: Hydrolate volatiles 

analysis procedure, HV IP: Hydrolate volatiles isolation procedure, HYDRO/ Ben: Hidrodistillation using benzene, L: Leaves, 

L_B: Leaves and bark, L_Br: Leaves and branches, L_Fr: Leaves and fruits, L_S: Leaves and seeds, L_St: Leaves and stems, 

LLE Ben: Liquid-liquid extraction with benzene, LLE Chl: Liquid-liquid extraction with chloroform, LLE Cy: Liquid-liquid 

extraction with cyclohexane, LLE Dcm: Liquid-liquid extraction with dichloromethane, LLE DE: Liquid-liquid extraction with 

diethyl ether, LLE EAc: Liquid-liquid extraction with ethyl acetate, LLE Et: Liquid-liquid extraction with ether, 

LLE EtOH: Liquid-liquid extraction with ethanol, LLE MeCl: Liquid-liquid extraction with methylene chloride; 

LLE NaCl/Dcm: Liquid-liquid extraction with sodium chloride/dichloromethane, LLE n-Hep: Liquid-liquid extraction with 

n-heptane, LLE n-Hex: Liquid-liquid extraction with n-hexane, LLE n-Pen: Liquid-liquid extraction with n-pentane, 

LLE Peth: Liquid-liquid extraction with petroleum ether, P: Pericarp, P&T-ATD: Purge-and-trap-automatic thermal 

desorption, Pe: Petals, PET: Poroplast extraction technique, R: Rhizome, Rt: Roots, S: Seeds, SD: Steam-distillation, 

Sp: Spathe, St:  Stems, St_B: Stems and Bark, W: Wood,WD: Water distillation. 
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Regional Micro-biorefineries: A dream turning real? 

 

Tavares, C. S. 1,3-4, Pereira, P.2, Gameiro, J.A.3, Figueiredo, A.C.4, Carvalheiro, F.1, Lukasik, 

R.B.1, Duarte, L.C.1. Roseiro, L.B.1* 

 

1Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia (LNEG, IP), Estrada do Paço do Lumiar 

1649-038, Lisboa, Portugal, +351 210924600; luisa.roseiro@lneg.pt 

2DBE - Departmento de Bioengenharia. Torre Sul, piso 0, Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal 

3Silvapor - Ambiente e Inovação Lda., Quinta da Devesa – Senhora da Graça 6060-191 Idanha-a-Nova, Portugal 

4Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa 

(FCUL), Centro de Biotecnologia Vegetal (CBV), Departamento de Biologia Vegetal (DBV), C2, Campo Grande, 

1749-016, Lisboa, Portugal 

1. Abstract 

Silvapor is a Portuguese SME based in Idanha-a-Nova that provides services across the 

country integrated in the promotion, protection and rural and environmental conservation, 

facing annually huge amounts of waste removed during thinning of forest. Into the scope of 

industrial-academic projects and within the need for an integrated forest policy that promotes 

the sustainability of the forest and its management, and also the prevention of forest fires, the 

present study aims at develop environmentally sustainable operations towards a micro-scale 

integrated biorefinery unit at Silvapor premises, capable of processing different types of 

biomass into bioproducts and energy, as an alternative to open burning. 

 

2. Introduction 

The Portuguese forest occupies ca. 40 % of the continental territory, existing therefore a 

considerable potential for waste coming from the forest. This biomass availability is the basis 

for making renewable bioenergy, biofuels and other bio-products that are increasingly replacing 

fossil-fuel based products thus, it should be recovered with environmental, economic and social 

benefits, as an alternative to open burning (Han et al., 2018). The concept of biorefinery is 

defined as an approach for the generation of value-added products such as biochemical, 

biofuels, heat and electricity from renewable energy sources such as forest biomass (Kehili et 

al., 2016). However, the concept of biorefinery is still in early stages at most places in the world. 

Problems like raw material availability, feasibility in product supply chain, scalability of the 

model are hampering its development at commercial-scales. 

Within the need for an integrated forest policy that promotes the sustainability of the forest 

and its management, and also the prevention of forest fires for defending the integrity of the 

populations and the preservation of their means of subsistence and patrimonial assets, it is 
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intended that the development of advanced biorefineries using endogenous resources 

sustainably generate new value chains around biomass (Figure B.1), in the so-called 

bioeconomy and circular economy (PCM, 2017). 

 

 

Figure B.1. Integrated forest policy. 

 

Biomass samples were studied for bio-products and energy, aiming at the possibility of 

installing a small-scale biorefinery within regional SMEs premises. Examples of available 

biomass, namely Cupressus lusitanica Mill. aerial parts and Cistus ladanifer L. shrubs, were 

collected at Silvapor, a Portuguese SME that provides services across the country related to the 

activities of agriculture, forestry, green spaces and landscaping, as well as others integrated in 

the promotion, protection and rural and environmental conservation. Essential oils and their co-

product hydrolates are examples of bio-products that can be obtained from these biomasses, as 

they are high value commodities. Therefore, a semi-industrial scale steam-distillation was set 

up and used with these biomasses as feedstocks, resulting four distinct products thereof: 

essential oils, hydrolates, distiller condensation waters and the remaining extracted solid 

fractions (Figure B.2). 

 

 

Figure B.2. Distiller and the resulting four co-products. 
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All products were characterized for their composition and potential use. Condensation 

waters and the remaining extracted solid fractions were further scrutinized.  

 

3. Material and methods 

3.1. Plant biomass 

Waste samples of Cupressus lusitanica Mill. and Cistus ladanifer L. aerial parts were 

collected and obtained from Silvapor (Idanha-a-Nova, Portugal), The dried biomass samples 

composed mainly by leaves and small branches, but also by flowers for Cistus and cones for 

Cupressus, were collected in the Beira-Baixa region of Portugal. 

 

3.2. Distillation 

Essential oils (EO) were obtained by steam-distillation at a semi-industrial scale performed 

at Silvapor premises using a 1100 L stainless-steel distiller (Vieirinox®, Aveiro, Portugal). In 

the steam-distillation process, additional aromatic waters called hydrolates (also referred as 

hydrolats, hydrosols, floral waters, herbal waters, condensate waters), were obtained as co-

products. Circa 100 Kg of dried biomass residues from each species was used and steam was 

generated in a boiler and injected. The distillate contained a mix of water vapour and essential 

oils which returned to their liquid form in the condensing recipient and were separated using a 

Florentine separator. Both the essential oil and the hydrolate were retained. Oil was then 

separated from hydrolate using a separation funnel, stored in dark flasks and both oil and 

hydrolates were kept refrigerated for further analysis. The remaining condensation waters and 

extracted solid fractions were also collected for further characterisation. 

 

3.3. Characterization of essential oils and hydrolates 

Essential oils and hydrolates composition were characterised by GC and GC-MS, according 

to methodologies described elsewhere (Tavares et al., 2019).  

 

3.4. Preparation of condensation waters and extracted solid residues  

Condensation waters, resulting from either Cupressus lusitanica Mill. and Cistus ladanifer 

L. essential oils extraction, were freeze-dried and further characterized for bioactive 

compounds. Resulting steam-distillation extracted solid fractions were used for further 

extraction with other solvents in order to obtain bioactive compounds, namely for phenolic 

compounds with potential biological activities. Each were mixed with ethanol at a solid:liquid 

ratio of 1:20 and subjected to ultrasound-assisted extraction (UAE) at 30 °C for 30 min, using 

a Transsonic T700 sonifier (320 W, 35 kHz) (Elma GmbH & Co, Germany). Extracts were then 
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filtered through filter paper (Whatman nº. 1), concentrated under vacuum to obtain the ethanol 

extract. This procedure was done in triplicate. 

The remaining UAE solids were further extracted with 70 % acetone (1:20) using the same 

procedure, and the acetone extracts were collected, concentrated under vacuum and freeze-

dried. Remaining solids from both UAE solvent systems of each biomass were dried and stored 

for further treatments, namely, using auto-hydrolysis and ionic liquids (data not shown), in 

order to get other components, such as sugars for bio-ethanol.  

 

3.5. Determination of biological activities and phenolic content 

Essential oils, hydrolates, condensation waters and the ethanolic and 70 % acetone fractions 

obtained from UAEs of the solid residue were tested for different biological activities, namely, 

antimicrobial, antioxidant activity determined using different methodologies and anti-

inflammatory activity using the albumin denaturation assay (Tavares et al., 2019). Biological 

essays were performed in four replicates. 

Condensation waters and the ethanolic and 70 % acetone extracts obtained from UAEs of 

the solid fraction from steam-distillation were also tested for the phenolic and tannin content 

by the Folin-Ciocalteau method and also for their flavonoid content.  

The phenolic profile for all samples was also evaluated by capillary electrophoresis, and 

compounds tentatively identified by electrophoretic comparison of UV spectra and migration 

times with authentic standards.  

 

4. Results and Discussion 

4.1. Essential oils and hydrolates 

Results for the essential oils and hydrolates are disclosed elsewhere (Tavares et al., 2019). 

Biomass examples such as the ones shown here, revealed to contain essential oils with the same 

characteristics and biological activities as the ones obtained from the fresh plants. Their 

hydrolates also showed interesting composition and properties, suggesting that both products 

can be directly commercialized by the producer to potentially interested industries, such as 

perfumery, which is highly interested in fragances of endogenous origin, and also for the 

production of cosmetics and detergents. 

 

4.2. Condensation waters and extracted solid fractions 

Tables B.1 and B.2 show the results for the total phenolic, tannins and flavonoids content 

for condensation waters and the ethanolic and 70 % acetone extracts obtained from UAEs of 

the extracted solid fractions for the two biomasses studied, and their respective antioxidant 

activity. It can be observed that all of them revealed to be good sources of phenolic compounds, 
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with particular attention to the extracts from Cistus ladanifer. The later are especially richer in 

tannins and also flavonoids. All presented antioxidant activity, but Cistus ladanifer showed to 

have higher amount than Cupressus lusitanica extracts, being these also related with their 

phenolic content. The electropherograms of these samples revealed a complex matrix with a 

catechin-rich phenolic profile (data not shown). Results for the anti-inflammatory activity 

(Table B.3), were particularly interesting for the ethanolic extracts of the extracted solid 

fractions for both biomasses studied. 

These results suggest that forest wastes are rich sources of natural bioactive compounds, 

which can be explored, for example, as alternatives for synthetic antioxidants in the food 

industry, that have been reported as toxic.  

 

Table B.1. Total phenolic, tannins and flavonoids content. 

 Samples Total Phenolics 

mg GAE/g ext. 

Tannins 

mg GAE/g ext. 

Flavonoids 

mg QE/g ext. 

Cupressus lusitanica Condensation water 146.0 95.1 1.3 

 EtOH_Extract 61.2 23.0 4.4 

 70 % Acet_Extract 165.8 82.2 2.9 
     

Cistus ladanifer Condensation water 221.1 134.7 11.9 

 EtOH_Extract 177.5 108.4 12.2 

 70 % Acet_Extract 275.6 115.1 29.6 

GAE: Gallic acid equivalentes; QE: Quercetin equivalentes. 

 

Table B.2. Antioxidant activity by different methods. 

 Samples ABTS  

% I 

Superoxide  

% I 

Chelating  

% I 

Xantine Oxidade  

% I 

Cupressus lusitanica Condensation water 24.9 89.7 16.6 59.8 

 EtOH_Extract 8.7 82.8 18.0 76.3 

 70 % Acet_Extract 33.7 87.3 7.5 72.1 
      

Cistus ladanifer Condensation water 44.4 97.5 16.8 68.4 

 EtOH_Extract 28.6 79.8 24.1 80.3 

 70 % Acet_Extract 75.7 97.2 10.5 73.1 

 

Table B.3. Anti-inflammatory activity. 

 Samples Anti-inflammatory activity, % I 

Cupressus lusitanica Condensation water 29.3 

 EtOH_Extract 77.4 

 70 % Acet_Extract 61.5 
   

Cistus ladanifer Condensation water 44.8 

 EtOH_Extract 78.2 

 70 % Acet_Extract 72.3 
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It is not expected that the local and regional SMEs premises have the necessary facilities to 

carry on with further treatments of the resulting extracted solid fraction, not even the 

preparation of these phenolic-rich extracts, particularly the ones obtained by UAE, and 

condensation waters need to be properly preserved, either frozen or freeze-dried, before further 

purification. Nevertheless, the results here presented show that these are worth considering by 

some intermediary stakeholder for further valorisation into bio-products that could be of interest 

for other industries, such as food, cosmetic and pharmaceutical.  

However, not all forest wastes need to be processed in the way here described, as most do 

not have essential oils. Those forest residues, together with the remaining solids from both 

essential oil production and /or UAEs solvent systems, could be used as a renewable source of 

energy, by locally producing biochar and/or pellets, using a domestic pelletizer, for example. 

This energy could then be used for self-consumption, also as energy source for the steam-

distillation, or even sold, within the circular economy concept (Figure B.3).  

 

 

Figure B.3. Biorefinery/Circular economy concept. 

 

5. Conclusion 

The present work discloses that it is possible to produce value and reduce waste at local and 

regional forest areas, with a small investment in a distiller and a domestic mobile pelletizer, 

aiming at local micro-biorefineries and zero waste, with all the inherent advantages thereof and 

within a circular economy. 

Results from this study demonstrate that forest wastes may still have some additional value. 

Both essential oils and hydrolates obtained from steam-distillation of available biomasses can 

be immediately commercialized. Condensation waters and the remaining extracted solid 



 

Annex B- Regional Micro-biorefineries: A dream turning real? 

158 

fractions also revealed to have interesting bioactive compounds that could be further valorised 

and used for different industries, namely as natural antioxidants. Although these still need 

further treatments which require more sophisticated equipments and methodologies, they can 

be sold as building-blocks, provided they are adequately preserved. Finally, the possibility of 

local bioenergy production using the remaining extracted solid wastes added to other forest 

biomasses, namely pellet production using a domestic mobile pelletizer, is under study.  
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