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Abstract: When growing microalgae for biorefinery processes, a high product yield is desired.
For that reason, monitoring the concentration of the desired products during growth
and products induction procedure is of great interest. 2D Fluorescence spectroscopy is
a fingerprinting technique, used  in situ  and at real time, with a high potential for online
monitoring of biological systems. In this work,  D. salina  pigments content were
monitored using fluorescence data coupled with chemometric tools. Climatic
parameters were also used as input variables due to their impact on the pigments
profile in outdoor cultivations. Predictive models were developed for chlorophylls
content (  a, b  and total) with variance captured between 50 and 90%, and R  2
varying between 0.6 and 0.9 for both training and validation data sets. Total
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carotenoids models captured 70% to 80% of variance, and R  2  between 0.7 and 0.9,
for training and validation. Models for specific carotenoids (zeaxanthin,  α  -carotene,
all-trans-β-carotene and 9-cis-β-carotene) captured variance between 60% and 90%,
with validation and training R  2  between 0.6 and 0.9. With this methodology it was
possible to calibrate a monitoring tool for pigments quantification, as a bulk and as
individual compounds, proving that 2D fluorescence spectroscopy and climatic data
combined with chemometric tools can be used to assess simultaneously and at real
time different pigments in  D. salina  biomass production.

Response to Reviewers: Thanks to the reviewers for their kind comments. The changes/corrections
recommended by reviewer 1 were all done. The format of units, Figure 3 and the
references were also changed according to Editor comments.
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Abstract 21 

When growing microalgae for biorefinery processes, a high product yield is desired. For that reason, monitoring the 22 

concentration of the desired products during growth and products induction procedure is of great interest. 2D 23 

Fluorescence spectroscopy is a fingerprinting technique, used in situ and at real time, with a high potential for online 24 

monitoring of biological systems. In this work, D. salina pigments content were monitored using fluorescence data 25 

coupled with chemometric tools. Climatic parameters were also used as input variables due to their impact on the 26 

pigments profile in outdoor cultivations. Predictive models were developed for chlorophylls content (a, b and total) 27 

with variance captured between 50 and 90 %, and R2 varying between 0.6 and 0.9 for both training and validation data 28 

sets. Total carotenoids models captured 70% to 80% of variance, and R2 between 0.7 and 0.9, for training and 29 

validation. Models for specific carotenoids (zeaxanthin, α-carotene, all-trans-β-carotene and 9-cis-β-carotene) 30 

captured variance between 60% and 90%, with validation and training R2 between 0.6 and 0.9. With this methodology 31 

it was possible to calibrate a monitoring tool for pigments quantification, as a bulk and as individual compounds, 32 

proving that 2D fluorescence spectroscopy and climatic data combined with chemometric tools can be used to assess 33 

simultaneously and at real time different pigments in D. salina biomass production. 34 

 35 

 Keywords: 2D fluorescence spectroscopy; EEMs (Excitation-Emission matrices); PLS modeling; Dunaliella salina; 36 

Carotenogenesis 37 

 38 

1. Introduction 39 

In the current industrialization of compounds from biological sources, such as microalgae-based biorefinery, the 40 

control and monitoring of the cultivation and process parameters rely on physical, chemical and biological analysis. 41 

Physical and chemical parameters are currently monitored online using sensors like pH, temperature, dissolved O2 or 42 

CO2 (Ulber et al. 2003; Glindkamp et al. 2009). However, biological parameters, such as cell concentration or product 43 

formation, are still mostly performed off line, where a sample has to be withdraw from the cultivation/process and 44 

subjected to different laborious and time-consuming procedures, losing the window of opportunity to take decisions 45 

at real time (Henriques et al. 2010). The development of an in situ and online sensor that could deliver a continuous 46 

stream of information would result in very short response time, enabling important control decisions in the spot. In 47 

fact, some studies were already reported intending to develop tools to monitor microalgae cultivation at real time 48 
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(Sandnes et al. 2006; Karakach et al. 2015; Sá et al. 2017; Nguyen and Rittmann 2018; Lai et al. 2019). The possibility 49 

of measuring several parameters simultaneously, without the need to sample, would be a great advantage for the 50 

microalgae biorefinery. Several spectroscopies have been studied for this purpose, namely fluorescence (Tartakovsky 51 

et al. 1996; Shaw et al. 1999; Schügerl 2001; Hantelmann et al. 2006; Glindkamp et al. 2009; Galinha et al. 2012; 52 

Ranzan et al. 2012; Biechele et al. 2015). 53 

Fluorescence spectroscopy is able to measure several analytes simultaneously by scanning through a wide range of 54 

excitation/emission wavelengths (two dimensional (2D) scanning) (Tartakovsky et al. 1996; Lakowicz 2006; Biechele 55 

et al. 2015). This technique is non-invasive and highly sensitive to the presence of natural fluorophores, intra or 56 

extracellular. It is also reported that fluorescence spectroscopy can indirectly provide information about compounds 57 

that are not fluorophores but that interfere with the fluorophores in the sample (Ulber et al. 2003). Due to the 58 

complexity of fluorescence excitation-emission matrices (EEM), the use of chemometrics tools is advised to extract 59 

quantitative information from the fluorescence spectra and to resolve the occurrence of some limitations, such as inner 60 

filter effects or quenching, specially at high concentrations. The possibility of coupling an optical probe makes this 61 

technology suitable to be used in different processes within the biorefinery concept for an online and in situ monitoring 62 

(Galinha et al. 2011; Benito-Peña et al. 2016; Pawlowski et al. 2016; Sá et al. 2017). 63 

In this study, the microalga Dunaliella salina was selected for its current industrial production of biomass retailed 64 

as natural source of carotenoids. Its ability to grow in hypersaline lagoons, with low nitrogen and high solar light 65 

intensity, protects the culture from contaminants and increases the carotenoid content, being β-carotene present at 66 

higher concentration (more than 12% of its dry weight) (Ben-Amotz 2004; Hu et al. 2018). Photosynthetic organisms, 67 

like D. salina, harvest light energy due to their pigments, which can be chlorophylls, carotenoids and/or phycobilins. 68 

Of those, chlorophyll and carotenoid molecules are known for being used as natural colorants and antioxidants in 69 

different food products (Schoefs 2002; Dufossé and de Echanove 2005; Saini and Keum 2019). Carotenoids are also 70 

important nutraceuticals, due to their anti-oxidant, anti-ageing, anti-inflammatory, anti-angiogenic, cardio and 71 

hepatoprotective properties (Hu et al. 2018).  72 

The development of a monitoring tool able to detect all these pigments at real time will enable a better understanding 73 

of the pigments formation through the life cycle of D. salina, and at industrial scale it is useful to increase the biomass 74 

potential in a biorefinery context. Therefore, in this study, fluorescence EEMs were acquired during several pilot scale 75 

cultivation experiments of D. salina. Predictive models using Principal Component Analysis (PCA) and Projection to 76 
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Latent Structures (PLS) were developed in order to correlate the EEMs with the pigments profile using two different 77 

off-line calibration tools: spectrophotometric and HPLC methodologies. The importance of environmental conditions 78 

during the carotenogenesis and their impact on the pigments profile was also studied through the use of climatic 79 

parameters as input variables. 80 

 81 

2. Material and Methods 82 

2.1. Dunaliella salina growth and carotene induction conditions 83 

D. salina DF40 was collected from Monzón Biotech (Spain), isolated by Marine Biological Association (United 84 

Kingdom) and scaled-up and produced at pilot scale by A4F - Algae for Future (Lisbon, Portugal).  85 

Batch cultivation was carried out in artificial saltwater (ASW) under continuous aeration and mixed by bubbling 86 

using 0.2 µm-filtered atmospheric air enriched with 2% of CO2. The temperature was set at 25ºC and continuous 87 

illumination was provided by fluorescent tubes (150 µmol m-2.s). 88 

For carotenoid induction experiments, the culture was scaled-up to pilot scale flat-panel photobioreactors (Green 89 

WallTM, GW) and the same ASW medium was used with depletion of nitrogen and increased salinity. All batches were 90 

performed between January and October of 2017, exposed to outdoor weather conditions, with control of maximum 91 

temperature, but no control of the minimum temperature. In total, six batches were performed and monitored from the 92 

inoculation, with non-stressed "green" cells, until reaching a highly stressed "orange" culture.  93 

2.2. Sampling procedure and analysis 94 

Samples were taken every other day until a stable chlorophylls/carotenoid’s ratio was reached.  For each sample, 95 

pigments quantification and fluorescence spectroscopy assessment were performed.  96 

2.2.1. Pigments analysis 97 

Pigment quantification was performed by two methodologies, spectrophotometry and HPLC. 98 

Briefly, D. salina cells (2 mL) were collected by centrifugation (5000 g, 5 min) and resuspended with 2 mL of 100% 99 

methanol. Samples were sonicated for 5 min and then incubated at 60ºC for 40 min, followed by cooling on ice for 15 100 

min. After centrifugation, the supernatant was collected, and the extraction was repeated until a white pellet was 101 

achieved. Quantification was performed in a UV/Vis spectrophotometer (Leu and Hsu 2005). Modified’s Arnon’s 102 

equations were used to calculate chlorophyll and carotenoid contents (Liechtenthaler 1987): 103 
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Chla = (16.72 × A665− 9.16 × A652) × dilution factor [mg L-1] 104 

Chlb = (34.9 × A652− 15.28 × A665) × dilution factor [mg L-1]  105 

Chltot = Chla + Chlb  [mg L-1] 106 

Cartot = (dilution factor × 1000 × A470 – 1.63 × Chla – 104.96 × Chlb) / 221 [mg L-1] 107 

Two different methods were used to quantify pigments by HPLC, one for chlorophylls and another for carotenes. 108 

The HPLC system consisted of a Waters Alliance Separations Module e2695 (Waters, Dublin, Ireland) coupled to a 109 

Photodiode Array Detector Module e2998 (HPLC-PDA).  110 

For chlorophyll analysis, the extraction was performed in fresh biomass pellet using 100% methanol at 4 ºC, 111 

repeatedly until a white pellet was reached. Separation of chlorophyll a and b was achieved using a reverse phase C18 112 

(Vydac 201TPTM, 250 x 4.6 mm, 5 µm, Hichrom, Berkshire, United Kingdom) and an isocratic elution with 100% 113 

methanol, at a constant flow rate of 1 mL min−1. The column oven temperature was set at 25 oC and the injection 114 

volume was 20 µL. 115 

For carotene analysis, the extraction was performed in fresh biomass pellet with 100% methyl tert-butyl ether 116 

(MTBE). After centrifugation, the supernatant was recovered, and the extraction was repeated until a white pellet was 117 

obtained.  Separation of carotenes was achieved using a reverse phase C30 (YMC Carotenoid, 250 x 4.6 mm, 5 µm, 118 

YMC Europe GmbH, Dislaken, Germany) and an isocratic elution with 90% methanol and 10% MTBE, at a constant 119 

flow rate of 1 mg L-1. The column oven temperature was set at 25ºC and the injection volume was 20 µL. 120 

Standard stock solutions of chlorophylls (0.1 mg L-1) and carotenes (0.2 mg L-1 for all-trans-β-carotene, 9-cis-β-121 

carotene and α-carotene; 0.1 mg L-1 for lutein and zeaxanthin) were prepared with 100% methanol and 100% MTBE, 122 

respectively. For each compound, standards were diluted from the stock solutions to obtain a concentration range 123 

between 0.0025 mg L-1 and 0.1 mg L-1. Independent replicates were prepared from the stock solutions in the beginning 124 

of each run and were used to assess the precision of the method. All stock solutions and calibration standards were 125 

stored at 4 oC. 126 

2.2.2. 2D Fluorescence spectroscopy 127 

All culture samples collected for pigments analysis were also analyzed by 2D fluorescence spectroscopy directly 128 

through the immersion of an optical fiber probe in a stirred sampling tube, preventing cell sedimentation. Fluorescence 129 

EEMs were acquired using a fluorescence spectrophotometer Varian Cary Eclipse, equipped with excitation and 130 
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emission monochromators, and with a fluorescence optical fiber probe. As described in previous work (Sá et al. 2017), 131 

fluorescence data was collected in an excitation wavelength range of 250 to 690 nm, with an excitation slit of 10 nm 132 

and increments of 5 nm, and emission wavelength between 260 and 700 nm, with an excitation slit of 20 nm and 133 

increments of 5 nm. 134 

2.3. Climatic data 135 

Carotenoid induction experiments were performed in A4F - Algae 4 Future outdoor facilities, thus climatic 136 

conditions at which the experiments were exposed were used as input in the development of PLS models. Two 137 

strategies were attempted using the climatic data: i) based on the values assessed on the sampling day; ii) using 138 

cumulative approach, where the values used for each parameter are the sum of the values assessed from time zero 139 

until the sampling day. The climatic parameters used are shown in Table 1. 140 

 2.3.1. Temperature range, precipitation and sunlight 141 

Temperature (ºC) and precipitation (mm) data were taken from the ERA Interim global atmospheric reanalysis 142 

produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the region of Lisbon (Dee et 143 

al. 2011). Maximum and minimum temperature products, taken at 2 m from the surface at every 6 hours, were used 144 

to calculate the temperature range. The daily total precipitation input was the sum between the convective and 145 

stratiform precipitation, and used as accumulated precipitation of the day. Sunlight data (in minutes) was obtained 146 

from the website timeanddate.com, with measurement location at Lisbon Portela Airport, 3.8 km from A4F 147 

experimental unit. Through the hour of sunrise and sunset was determine the day length in hours per day. 148 

2.3.2. FPAR and clouds fraction 149 

The fraction of photosynthetically active radiation (FPAR) is defined as the fraction between the wavelengths 400 150 

and 700 nm of incident photosynthetically active radiation that is absorbed by the green elements of vegetation. This 151 

parameter is important when measuring biomass production because vegetation development is related to the rate at 152 

which radiant energy is absorbed. FPAR data was acquired by the MCD15A3H version 6 MODIS (Moderate 153 

Resolution Imaging Spectroradiometer) Level 4, as a 4-day composite data set with a 0.5-km-pixel resolution for the 154 

Lisbon area (Myneni et al. 2015). 155 

Cloud fraction is defined by the Earth fraction which is covered by clouds relative to the fraction that is not covered. 156 

Clouds play an important role in regulating the amount of energy that reaches the Earth from the Sun and also the 157 
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energy that the Earth reflects back into space. This parameter is a product of radiance and reflectance measurements 158 

acquire by Cloud Mask (MOD 35) of MODIS, as a daily data set with a 1-km-pixel resolution. The data set was 159 

acquired through NEO website (NASA Earth Observations). 160 

2.3.3. Irradiance 161 

Irradiance was recorded by WatchDog® Weather Station (Spectrum Technologies, Inc., Illinois, USA) at A4F-Algae 162 

4 Future outdoor facilities, every 15 minutes. The value used in the PLS modeling corresponds to the mean value of 163 

the day.  164 

2.4. Development of multivariate models 165 

The modelling methodology followed in this work is represented in Figure 1. 166 

Firstly, Principal Component Analysis (PCA) was used to compress and deconvolute the fluorescence excitation-167 

emission matrices (EEMs) into principal components (PCs), by extracting the most relevant information. Shortly, the 168 

first PC was selected for explaining the higher variance possible; then a second PC was selected for explaining the 169 

higher remaining variance possible with the constrain of being orthogonal to the first one; and so on. The calculated 170 

PCs are uncorrelated and ordered according to the variance explained. PCA was applied to all spectra acquired and 171 

the first ten PCs were selected to be used as input in the projection to latent structure (PLS) modeling, since they 172 

captured more than 99% of the variance.  173 

Projection to Latent Structures (PLS) modeling was used to stablish multilinear correlations between the PCs of 174 

fluorescence and climatic conditions (inputs) and the pigments concentration, chlorophylls and carotenoids (outputs). 175 

The models were developed using 41 fluorescence spectra, corresponding to 41 samples. From this initial data set, 75 176 

% was randomly select to train the model, i.e., to find the best model that explains the higher variability found in the 177 

data with the lower errors. Then, the remaining 25% of the data were used to validate the model developed previously 178 

and accessed the prediction quality. All data were normalized before being used in the PLS models. 179 

For each pigment, three strategies were attempted based on the initial inputs used: first using only ten PCs from the 180 

fluorescence; second, using PCs from the fluorescence and climatic data of the day of the sampling; third, using PCs 181 

from the fluorescence and climatic data with accumulative effect towards the sampling day, which means, for each 182 

sampling day was considered not only the values of that day, but also the values of the previous sampling days (one 183 

cumulative parameter is the sum of all measures of that parameter until the day of sampling). 184 
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The selection of the useful PCs and climatic inputs for the models was performed by iterative stepwise elimination 185 

(ISE)(Boggia et al. 1997). The quality of each model was evaluated by the percentage of the variance captured, the 186 

slope and coefficients of determination (R2) of the validation and the training data sets, as well as the root mean square 187 

errors of cross validation (RMSECV) and prediction (RMSEP). All algorithms were implemented in Matlab, using 188 

the n-way tool box for PCA and PLS through PARAFAC and nPLS functions, respectively (Andersson and Bro 2000). 189 

 190 

3. Results and Discussion 191 

The high contents of carotenoids that D. salina can accumulate is the reason why this microalga biomass is 192 

successfully industrialized and commercialized. To be able to develop a tool that can monitor the pigments profile in 193 

D. salina will increase the knowledge of the biological status enabling the operator to take relevant decisions at real 194 

time, like the optimal harvesting point. For that reason, six pilot-scale flat-panel experiments were performed to induce 195 

the increase of carotenoids in D. salina, and two main approaches were evaluated, the importance of using climatic 196 

inputs and the importance of choosing the adequate methodology to calibrate the models. Fluorescence EEMs were 197 

obtained for each sample and the pigments profile was quantified. The content of two chlorophylls (a and b) and five 198 

carotenes (lutein, zeaxanthin, α-carotene, β-carotene and 9-cis-β-carotene) were measured using two different 199 

methodologies: spectrophotometric and by HPLC. 200 

Figure 2 shows the fluorescence spectra acquired from D. salina culture during carotenogenesis in the sixth batch 201 

for days one, six and fourteen after the inoculation. It is possible to distinguish 2 fluorescence regions, one at 202 

excitation/emission wavelengths of 275 nm and 300 to 350 nm, and another at higher emission wavelengths, above 203 

650 nm. The first region is defined as protein-like fluorescence, mainly because of aromatic amino acid tryptophan 204 

fluorescence (Galinha et al. 2011). The second region is defined as the pigment band (Moberg et al. 2001). The 205 

differences between the spectra from the inoculation day (day one, Fig. 2a) and six days after (Fig. 2b) is quite visible, 206 

mainly due to the pigments band fluorescence intensity. In these samples the ratio carotenoid/chlorophyll increased 207 

from 0.21, on day one, to 3.04, on day six. However, when analyzing the fluorescence spectra of day fourteen (Fig. 208 

2c) some differences can be also spotted, although the ratio carotenoid/chlorophyll was 3.01, similar to day six. During 209 

carotenogenesis experiments, the biomass concentration also increased through time, resulting in the intensification 210 

of the emission and excitation light scatter. It is noteworthy that fluorescence was assessed directly on the samples, 211 

without any dilution or sample preparation, as it would be if it was measured using the optical probe directly coupled 212 
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to the bioreactor. As previously described, in stress conditions, the cellular growth rates are reduced and cells become 213 

larger, with the optical properties of cell suspensions changing due to size and shape of the cells interacting with 214 

radiation (Merzlyak et al. 2007; Farhat et al. 2011). Furthermore, the direct quantitative analysis of pigmented cell 215 

suspensions through optical methods is hampered by scattering (Merzlyak et al. 2007). Therefore, to use fluorescence 216 

as a monitoring tool, the effect of increased turbidity and color must be seen as a source of information, thus, 217 

chemometric tools are needed to extract quantitative information.  218 

Three input strategies were studied to develop the PLS models for prediction of each compound individually: without 219 

climatic inputs; and with daily or cumulative climatic inputs. However, all models needed the input of the climatic 220 

parameters to successfully estimate the pigments content, which validates the importance of climatic conditions on 221 

microalgae cultivation in outdoors pilot facilities. Therefore, the models developed without climatic conditions inputs 222 

are not shown in this work. The use of daily data as input can give extra information about the impact of climatic 223 

conditions on the culture status of the sampling day, although the cumulative effect can be important when studying 224 

the induction of carotenes. 225 

The most relevant models achieved for chlorophylls and carotenoids are shown in Table 2 and 3, respectively. 226 

 227 

3.1.Chlorophylls 228 

3.1.1. Chlorophyll a 229 

For Chlorophyll a modelling, and using spectrophotometric methodology as calibration method, two models are 230 

presented, one with daily climatic inputs and another with cumulative climatic inputs. In this case, the use of 231 

cumulative climatic inputs did not improve greatly the quality of the model, although a slight increase was observed. 232 

The variance explained increased from 83.3 %, for daily climatic inputs, to 89.2 %, for cumulative. An important 233 

difference between the models is the selection of the inputs used by each model. When calibrating the model with 234 

daily climatic inputs, less inputs were selected in general, either from fluorescence PCs or climatic. Only one climatic 235 

input was selected, the fraction of photosynthetically active radiation (FPAR), an important parameter in this study, 236 

and particularly for this model, because of the direct correlation between photosynthetic activity and content of green 237 

pigments. When calibrating with cumulative climatic data, more fluorescence PCs were selected, as well as two 238 

different climatic inputs, the presence of clouds and irradiance. The irradiance is a parameter that indicates the amount 239 

of light that reaches the Earth surface and was measured daily at the A4F - Algae for Future facilities. Unlike FPAR 240 
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measurements, all light flux is considered in irradiance measurements. The presence of clouds can also give an 241 

indication of the amount of light that is being blocked from the Earth surface. Although different light measurements 242 

are used to explain the variability observed in these experiments, it is safe to enhance the importance of light settings 243 

when working in outdoor systems such as in this study.  244 

Using a different methodology to calibrate the model, like HPLC, several differences are noteworthy, such as less 245 

fluorescence PCs inputs were selected. However, less variance was explained (69.7 %) and the prediction error 246 

(RMSEP) was higher. This tendency was also observed in the experimental error of the methodologies, 3.99x10−10 mg 247 

cell-1 for HPLC and 1.16x10−10 mg cell-1 for spectrophotometer, which can be also related with differences between 248 

extraction methodologies (sonication and 60ºC were used for the spectrophotometric analysis, and 4ºC for HPLC 249 

analysis). However, the average chlorophyll a concentration was higher when measured with HPLC methodology, 250 

thus, the error related to the average for both methods was similar (around 5%). 251 

Different methods for pigments quantification and extraction have been discussed in the literature for the past years. 252 

For different microalgae or biological state ("green" or "orange"), the selection of the extraction methodology and the 253 

analytical method should be carefully chosen. In this study, when aiming to monitor chlorophyll a in D. salina, similar 254 

models were achieved using HPLC or spectroscopic data. However, the spectrophotometer method presented lower 255 

error values being a more accurate method. Since this methodology is less laborious and less time consuming, using 256 

it for the model calibration can be an advantage. 257 

3.1.2. Chlorophyll b 258 

When aiming to monitor chlorophyll b, differences in the methodology to calibrate the model are also noticeable. 259 

Although daily climatic inputs were provided in the model calibrated with spectrophotometer quantification, none of 260 

the parameters were selected. Together with a low number of fluorescence PCs selected by the model, a low variance 261 

was explained (47.5 %). When using HPLC to calibrate the model, a higher R2 for both training and validation sets 262 

was observed. However, the difference between RMSEP and RMSCV shows that the model is not robust to predict 263 

chlorophyll b content. Furthermore, high RMSECV may indicate some degree of overfitting (most probably due to 264 

the high number of inputs required).  Like the tendency observed for chlorophyll a, chlorophyll b concentration models 265 

have a higher RMSEP when using HPLC results than spectrophotometric. However, this tendency was not observed 266 

in the analytical error of the methodologies, 7.73x10−11 mg cell-1 for HPLC and 1.52x10−10 mg cell-1 for 267 

spectrophotometry.  268 
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The RMSEP values for monitoring chlorophyll b content were higher than desired. The high standard deviation 269 

found on the analytical measurements interferes greatly with the model calibration, leading to strong limitations. These 270 

findings confirm the importance of carefully choosing the analytical methodology for both extraction and 271 

quantification. Furthermore, monitoring chlorophyll b content by 2D fluorescence spectroscopy could be enhanced 272 

with the addition of more experimental points through a longer calibration time. Nevertheless, even with the low 273 

accuracy due to the results of the analytical method for the model calibration, the possibility of using this technology 274 

online is a great advantage since none of the current methodologies enables it. 275 

 3.1.3. Total chlorophylls 276 

After analyzing the individual content of each chlorophyll, and due to the high variability observed, a different 277 

approach was attempted to monitor the chlorophyll content as total amount, by the sum of chlorophyll a and b peak 278 

areas obtained with HPLC analysis. A variance of 74.2 % was explained using nine of the ten PCs of fluorescence and 279 

several cumulative climatic parameters. Similar R2 for validation and training data sets (0.79 and 0.74, respectively) 280 

and a small difference between RMSEP and RMSECV were observed.  281 

When comparing all the models for chlorophyll a, b and total content, less climatic inputs are needed to predict 282 

chlorophyll a content, with more variability explained. Regarding the two analytical methodologies, 283 

spectrophotometric and HPLC analysis, due to a different extraction procedure, it is difficult to assert which one is 284 

more suitable. Slightly better results were obtained for models calibrated with spectrophotometric analysis, but that 285 

can be related with the extraction procedure. To confirm this approach, the impact of the heat versus room temperature 286 

extraction using the same apparatus should be further tested. 287 

Through time, simultaneous quantification of chlorophylls and the interferences between them has been a topic of 288 

study by several authors. Moberg et al. (Moberg et al. 2001) used 2D fluorescence spectroscopy to analyze a mixture 289 

of six standard pigments: chlorophylls a, b and c, and their respective degradation products, pheophytins a, b and c. 290 

The authors observed that the signals from the different pigments overlap, and for that reason, their direct 291 

quantification using only a specific region of the spectra can be misleading. When validating 2D fluorescence 292 

spectroscopy using HPLC they found that the RMSEP for chlorophyll a was six times higher than with fluorescence 293 

spectroscopy. Also, chlorophyll b quantification was not always possible due to limitations in the quantification limit 294 

of the HPLC methodology (Moberg et al. 2001). Fluorescence spectroscopy was also previously applied for online 295 

estimation of biomass and proteins during cultivation of microalgae Scenedesmus (Karakach et al. 2015). However, 296 
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that application required a constant intracellular chlorophyll content to enable the estimation of biomass concentration 297 

(Karakach et al. 2015). Yet, the present work shows that by using a broader excitation wavelength range and climatic 298 

data (accounting for operating conditions) it is also possible to estimate the content of chlorophylls (a, b or total) in a 299 

highly variable range of concentrations during induction of carotenes in D. salina. 300 

The models presented were selected for their better results on the prediction of chlorophylls content (a, b or total) 301 

when using 2D fluorescence spectroscopy as input. It is noteworthy that most of these models also used climatic data 302 

as input, either as daily or cumulative. To our knowledge, this approach of using climatic inputs to help monitor and 303 

predict pigment induction online was not used before. The results obtained enhance the importance of using the 304 

operating conditions (climatic data), coupled with the 2D fluorescence spectroscopy, to monitor chlorophylls profile 305 

when cultivating D. salina in outdoor facilities. 306 

 307 

3.2. Carotenoids 308 

3.2.1. Total carotenoids 309 

When aiming to predict total carotenoids content in D. salina biomass, better result was achieved when using 310 

spectrophotometric quantification to calibrate the model, and also using cumulative effect of the climatic data. Lower 311 

RMSEP (2.51x10−9 mg cell-1) and a lower RMSECV (3.85x10−9 mg cell-1) were observed, indicating the robustness of 312 

the model, and higher R2 for validation and training data sets (0.89 and 0.82, respectively). For both models, all 313 

climatic inputs were selected, once again revealing the importance of the climatic conditions in the outdoor cultivation 314 

of microalgae. 315 

It is well-known that there is no harmonized protocol for carotenoids extraction, with many options available in 316 

literature depending on physical characteristics, composition and amount of water in the samples, although a 317 

chromatographic separation seems to be unanimous. Nevertheless, optimization of the chromatographic separation is 318 

required to obtain a good resolution of peaks, which is not always achieved, due to the complexity of these extracts 319 

and presence of compounds with similar structures. Petri et al. study on orange fruit extract showed that, when 320 

analyzing 52 carotenoids by LC-DAD-MS/MS, most of them co-elute, revealing the challenge of separating and 321 

quantifying every single carotenoid (Petry and Mercadante 2016). Through the HPLC methodology used it was 322 

possible to discriminate several different pigments like zeaxanthin, α-carotene, all-trans-β-carotene and 9-cis-β-323 
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carotene. Therefore, different models were developed to assess each compound individually (as shown in Table 3 and 324 

in Figure 3). 325 

3.2.2. Zeaxanthin 326 

Zeaxanthin is widely present in photosynthetic multicellular organisms, including microalgae, and is always found 327 

together with lutein and β-carotene (Zhang et al. 2018). Two models were selected to monitor zeaxanthin content in 328 

D. salina cells, using daily and cumulative data. For both models, two fluorescence PCs were selected, and the number 329 

of hours of sunlight was a common climatic input. However, the use of cumulative climatic data and the inclusion of 330 

the irradiance information, led to a model able to explain more data variability (79.3%), with a slight increase on 331 

RMSEP. It is noteworthy the low number of inputs required to predict zeaxanthin, and the similarity between RMSEP 332 

and RMSECV, meaning that robust models were achieved based on fluorescence and sunlight. 333 

3.2.3. α-Carotene 334 

The model developed has the highest variance explained of all carotenoids in this study (87.8 %). The climatic 335 

parameters with impact for the determination of α-carotene were the thermal amplitude, precipitation and parameters 336 

related with light, such as number of hours of sunlight, FPAR and irradiance. When studying the influence of 337 

cumulative effect of climatic parameters, the models obtained did not revealed an improvement (data not show). 338 

3.2.4. β-Carotene 339 

β-Carotene is the carotenoid present in higher concentration in D. salina. Analysis of the oily globules’ structures 340 

where β-carotene is stored showed mainly two stereoisomers: all-trans and 9-cis. It is reported in the literature that the 341 

light intensity at which the cultures are exposed influences greatly the final ratio between all-trans and 9-cis, and also 342 

in the total amount of β-carotene accumulated within each cell (Ben-Amotz 2004). 343 

For both forms of β-carotene, the models where climatic parameters were used as cumulative effect led to higher 344 

variance explained when compared with the ones when using daily climatic inputs. For all-trans-β-carotene, the use 345 

of cumulative climatic inputs also decreased both errors, RMSEP and RMSECV. Between the climatic parameters 346 

provided, the exposure to sun light was important to explain the development of carotenoids during nitrogen starvation, 347 

especially when referring to pilot-scale outdoor D. salina cultivation. For 9-cis-β-carotene, slightly higher errors 348 

(RMSEP and RMSECV) were observed when using the climatic input as cumulative, however the difference between 349 

them was lower, revealing a more robust prediction model.   350 
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In general, all four carotenes models presented similar results. When plotting the models (Figure 3) it is possible to 351 

observe some dispersion of the values, resulting in lower R2, but no outliers were found, which lead us to conclude 352 

that performing more assays would benefit the prediction capability. This study proves that 2D fluorescence 353 

spectroscopy is a powerful tool that can simultaneously detect and quantify different carotenoids, with the 354 

advantageous of giving an estimation at real time.   355 

 356 

3.3. Application perspectives 357 

It is known today that, for the microalgae industry to be as competitive as other plant-based refineries, the biorefinery 358 

concept needs to be improved and the tendency is to produce and recover high value compounds. The industrialization 359 

of microalgae increased the need for better methodologies to monitor (and control) these complex biological systems. 360 

Among several advantages, 2D fluorescence spectroscopy can be coupled with an optical probe directly immersed in 361 

the bioreactor/system under study, and enables the collection of information frequently and at real time, without the 362 

need for sampling.  363 

When aiming for pigment content monitoring, there are several methodologies in the literature, but they require a 364 

sampling step and extraction procedure, which normally are time consuming analysis. Other spectroscopic and 365 

fluorometric methods studied so far also require sampling, either for extraction of pigments, for dilution or for the use 366 

of other methods able to remove interferences that prevent a direct correlation (Kleinegris et al. 2010; Solovchenko et 367 

al. 2013; Chen et al. 2017). Furthermore, such tests aim at measuring total pigments or a specific compound but are 368 

not able to discriminate simultaneously between different pigments. Therefore, even if the accuracy of the prediction 369 

model can be lower than the analytical quantification, the possibility of having several and repeated fluorescence 370 

measurements at real time is a motivating advantage in industrial production. 371 

For an industrial application, the prediction accuracy of such models as developed in the present work, can be 372 

improved with the increase of the calibration period, allowing the collection of more data points to attenuate the 373 

prediction error and to account for higher variability of the operating conditions. Also, the incorporation of extra 374 

information about the cultivation process, such as parameters that are known to influence the final biomass 375 

composition (like media composition) can possibly lead to an improve in the model’s prediction capability.  376 

 377 
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4. Conclusions 378 

The approach presented in this work validates the use of 2D fluorescence spectroscopy and climatic data combined, 379 

with the use of chemometric tools, as monitoring tool for pigments as a bulk, total chlorophylls and total carotenoids, 380 

but also as individual compounds, in D. salina biomass.  381 

Mathematical models were successfully developed to assess chlorophylls content as chlorophyll a, b and total 382 

chlorophyll, and carotenoids content as total content, and specifically, as zeaxanthin, α-carotene, all-trans-β-carotene 383 

and 9-cis-β-carotene. To validate the models, a careful choice of the analytical method is required, since experimental 384 

errors and accuracy of the analytical methods will highly influence the model prediction ability. Furthermore, the 385 

possibility to include climatic data, related with the environmental conditions during microalgae production in outdoor 386 

facilities, enhances the prediction of pigments content. Additionally, the possibility of using a fluorescence probe 387 

directly in the production system avoids the need of sampling and of an extraction step. 388 

Although the analytical methodologies commonly used (such as HPLC) are accurate and able to assess different 389 

compounds simultaneously, they are expensive, time consuming and require a laborious extraction step, while 2D 390 

fluorescence spectroscopy (coupled with appropriate mathematical tools) proved to be an effective solution for the 391 

industrial application to address the monitoring of these high value and in high demand compounds. 392 
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Table 1 Climatic parameters used in the development of PLS models 

INPUT #  UNITS DATA SOURCE FREQUENCY 

11 Temperature ºC ECWMF daily 

12 Total Precipitation mm ECWMF daily 

13 Sunlight min timeanddate.com daily 

14 Cloud dimensionless MODIS/MOD06 daily 

15 Fpar dimensionless MODIS/MCD15A3H.006 4-days 

16 Irradiance MJ/m2.day measured locally  daily 

 

 

 

 

 



 

Table 2 Statistical parameters of the selected models for chlorophylls prediction. The climatic inputs code is shown in Table 1 

 

 
Analytical 

Method 

Type of 

inputs 
Var (%) 

RMSEP 

(mg cell-

1)* 

RMSECV 

(mg cell-

1)* 

Validation Training Selected Inputs 

R2 Slope R2 Slope Fluorescence PCs Climatic 

Chl a 
Spect 

daily 83.3 4.42x10-10 7.17x10-10 0.85 0.99 0.83 1.00 1 2 4 5 6 8 9 10 15 

cumulative 89.2 5.97x10-10 6.26x10-10 0.78 0.85 0.89 1.01 1 2 3 4 5 6 7 8 9 10 14 16 

HPLC cumulative 69.7 2.04x10-09 3.17x10-09 0.71 1.25 0.70 1.00 1 2 3 6 8 10 15 16 

Chl b 
Spect daily 47.5 2.99x10-10 5.76x10-10 0.75 1.17 0.47 1.00 3 4 5 6 9 10 - 

HPLC cumulative 67.8 3.77x10-10 9.27x10-10 0.79 0.86 0.68 1.00 1 2 3 4 5 6 7 8 9 10 12 14 15 16 

Total Chl HPLC cumulative 74.2 8.20x10+04 1.25x10+05 0.79 0.88 0.74 1.00 1 2 4 5 6 7 8 9 10 
11 12 13 14 

16 

 

Spect – Spectrophotometric; Chl a – Chlorophyll a; Chl b – Chlorophyll b; Total Chl – Total Chlorophyll. 

(*) RMSEP and RMSECV values are presented as mg cell-1, except for the models of total Chlorophylls, which are in area units.  
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Table 3 Statistical parameters of the selected models for carotenoids prediction. The climatic inputs code is shown in Table 1 

 Analytical 

Method 

Type of 

inputs 
Var (%) 

RMSEP 

(mg cell-

1)* 

RMSECV 

(mg cell-

1)* 

Validation Training Selected Inputs 

 R2 Slope R2 Slope Fluorescence PCs Climatic 

Total 

Carotenoids 

Spect 

daily 79.6 2.75x10-09 4.54x10-09 0.79 1.04 0.80 1.00 
1 2 3 4 5 6 7 8 9 

10 

11 12 13 14 15 

16 

cumulative 81.7 2.51x10-09 3.85x10-09 0.89 0.96 0.82 1.00 1 2 3 4 6 7 8 9 10 
11 12 13 14 15 

16 

HPLC* cumulative 64.9 6.30x10+06 7.35x10+06 0.72 0.91 0.65 1.00 2 3 7 12 

Zeaxanthin 
daily 74.4 1.94x10-10 1.99x10-10 0.69 0.86 0.74 1.00 2 3 13 

cumulative◄ 79.3 2.52x10-10 1.78x10-10 0.62 1.11 0.79 1.01 3 8 13 16 

α-Carotene daily◄ 87.8 4.90x10-10 3.21x10-10 0.63 1.27 0.88 1.00 1 2 3 4 5 6 7 8 10 11 12 13 15 16 

all-trans-β-Carotene 
daily 70.4 4.97x10-09 4.61x10-09 0.79 1.47 0.70 0.99 1 2 3 6 8 12 13 

cumulative◄ 79.1 3.31x10-09 4.05x10-09 0.80 1.18 0.79 1.00 2 3 4 10 13 16 

9-cis-β-Carotene 

daily 64.2 2.17x10-09 3.80x10-09 0.73 0.83 0.64 1.00 2 3 6 13 

cumulative◄ 65.7 2.65x10-09 3.73x10-09 0.88 1.29 0.66 1.00 2 3 4 5 6 7 8 10 
11 12 13 14 15 

16 
 

Spect – Spectrophotometric; 

(*) RMSEP and RMSECV values are presented as mg cell-1, except for the models of total carotenes by HPLC, in area units.  

(◄) Models represented in Fig. 3. 
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Fig. 1 Schematic representation of the methodology followed. Dashed arrows represent the offline measurements required 

for model calibration 
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Fig. 2 2D Fluorescence spectra of D. salina during one carotenogenesis batch; (a) day one (inoculation), (b) after six days, 

and (c) after fourteen days. X-axis displays the wavelengths of emission, Y-axis the wavelengths of excitation and the intensity 

of the fluorescence is represented through color gradient. Two distinct fluorescence regions can be noticed, a protein-like 

region (excitation wavelength of 275 nm and emission wavelengths between 300 and 350 nm) and a pigment band (emission 

wavelengths above 650 nm) 
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Fig. 3 Carotenoids concentration prediction models, from left to right and top to bottom: zeaxanthin, α-carotene, β-carotene 

and 9-cis-β-carotene. Training (♦) and validation (●) data are presented as mg cell-1. Statistical parameters of the models 

represented are displayed in Table 3 

 


