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Abstract 31 

Historical factors (colonization scenarios, demographic oscillations) and contemporary 32 

processes (population connectivity, current population size) largely contribute to shaping 33 

species’ present-day genetic diversity and structure. In this study, we use a combination of 34 

mitochondrial and nuclear DNA markers to understand the role of Quaternary climatic 35 

oscillations and present-day gene flow dynamics in determining the genetic diversity and 36 

structure of the newt Calotriton asper (Al. Dugès, 1852), endemic to the Pyrenees. 37 

Mitochondrial DNA did not show a clear phylogeographic pattern and presented low levels of 38 

variation. In contrast, microsatellites revealed five major genetic lineages with admixture 39 

patterns at their boundaries. Approximate Bayesian computation analyses and linear models 40 

indicated that the five lineages likely underwent separate evolutionary histories and can be 41 

tracked back to distinct glacial refugia. Lineage differentiation started around the Last Glacial 42 

Maximum at three focal areas (western, central and eastern Pyrenees) and extended through the 43 

end of the Last Glacial Period in the central Pyrenees, where it led to the formation of two more 44 

lineages. Our data revealed no evidence of recent dispersal between lineages, whereas borders 45 

likely represent zones of secondary contact following expansion from multiple refugia. Finally, 46 

we did not find genetic evidence of sex-biased dispersal. This work highlights the importance 47 

of integrating past evolutionary processes and present-day gene flow and dispersal dynamics, 48 
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together with multilocus approaches, to gain insights into what shaped the current genetic 49 

attributes of amphibians living in montane habitats. 50 

 51 

Keywords: Calotriton, genetic structure, phylogeographic history, Pyrenean brook newt, 52 

recent dispersal, Pyrenees 53 

 54 

Introduction 55 

Unveiling the mechanisms driving species genetic diversity and structure is of crucial interest 56 

in phylogeography (Avise, 2000). The extent of genetic structure of a species is regarded to 57 

result primarily from the interplay of historical factors (e.g. colonization scenarios, 58 

demographic oscillations) and current population connectivity, namely gene flow (Hewitt & 59 

Butlin, 1997; Nichols & Beaumont, 1996). Unravelling the phylogeographic history of species 60 

and populations is important to understand their present-day and future distribution, genetic 61 

structure and adaptations (Hewitt, 2004). Historical processes are largely dependent on past 62 

climatic conditions and geological events. Such climatic and geological changes have 63 

significantly contributed to laying the genetic foundations of contemporary populations, which 64 

can be used to make inferences on their past dynamics (Cabrera & Palsbøll, 2017; Hewitt & 65 

Butlin, 1997). In addition, dispersal, which can include gene flow, is a significant component 66 

of metapopulation structure and dynamics and can counteract both neutral and selective 67 

processes (Johnson & Gaines, 1990; Ronce, 2007; Tallmon, Luikart, & Waples, 2004). A 68 

reduction in connectivity will ultimately result in a lack of dispersal among populations, 69 

increasing the risk of genetic variability loss (Ronce, 2007; but see Orsini, Vanoverbeke, 70 

Swillen, Mergeay, & De Meester, 2013). For this reason, dispersal is deemed crucial for the 71 

long-term survival of populations under changing conditions (Saccheri et al., 1998). In some 72 
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circumstances, other processes might explain the genetic variability of populations, such as 73 

isolation by environment (reduction in gene flow among ecologically divergent habitats as a 74 

result of local adaptation) and by colonisation (reduction in gene flow among all populations in 75 

the landscape caused by local genetic adaptation following colonisation; Orsini et al., 2013). 76 

The literature on historic vs. contemporary mechanisms shaping the genetic attributes of species 77 

is mostly focused on either landscape genetics or dispersal processes alone, or tackle temporal 78 

dynamics dealing with the relatively recent past (Chiucchi & Gibbs, 2010; Epps & Keyghobadi, 79 

2015; Noguerales, Cordero, & Ortego, 2017; Zellmer & Knowles, 2009). An integrative 80 

approach that combines the study of past evolutionary and phylogeographic processes and 81 

present-day gene flow and dispersal dynamics is required to shed light on the mechanisms 82 

underlying spatial patterns of contemporary genetic diversity and population structure, which 83 

can ultimately help to predict their responses to ongoing or future environmental changes.  84 

In Europe, Quaternary climatic oscillations played a major role in shaping the 85 

geographic distribution and genetic constitution of species (Hewitt, 2000, 2004). Glacial and 86 

interglacial periods caused repeated changes in species’ distributions, leading to events of 87 

contraction and expansion and, consequently, to periodic waves of colonization or 88 

recolonization. Mountain ranges across Europe are regarded as biodiversity cradles, where 89 

diversification is promoted during periods when species’ ranges are restricted to geographically 90 

isolated glacial refugia (Hewitt, 2000; Schmitt, 2009). As glaciers repeatedly advance and 91 

retreat, species are displaced outside or to the margin of mountain systems into lowland and 92 

peripheral areas, respectively, or survive in nunataks, namely areas above glaciers not covered 93 

with ice (Holderegger & Thiel-Egenter, 2009). Mountain ecosystems are home to many 94 

endemisms that still carry genetic imprints of these past dynamics, and thus represent excellent 95 
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models with which to study the influence of climatic fluctuations on the diversification and 96 

postglacial colonization of species (Schmitt, 2009). 97 

As one of the major European mountain ranges and separating the Iberian Peninsula 98 

from the rest of continental Europe, the Pyrenees played a considerable role in limiting 99 

postglacial dispersal routes of numerous temperate species (Taberlet, Fumagalli, Wust-Saucy, 100 

& Cosson, 1998). During glacial periods, the Pyrenees were largely covered with ice (Calvet, 101 

2004; González-Sampériz et al., 2006). Nevertheless, it is suggested that some species could 102 

have survived glaciations in ice-free areas along the chain, such as nunataks and peripheral 103 

lower areas that served as glacial refugia (Bidegaray-Batista et al., 2016; Charrier, Dupont, 104 

Pornon, & Escaravage, 2014; Liberal, Burrus, Suchet, Thebaud, & Vargas, 2014; Mouret et al., 105 

2011). Following the end of glacial periods, deglaciation allowed recolonization along routes 106 

spreading from these refugia and this ultimately sculptured a complex genetic structure in the 107 

Pyrenees (Hewitt, 1999; Taberlet et al., 1998). However, there has been little attempt to identify 108 

the geographic location of putative refugia where Pyrenean endemics survived glaciations, and 109 

to trace back their postglacial recolonization routes. 110 

 Dispersal capability is a crucial trait affecting the genetic composition of species and 111 

populations (Clobert, Le Galliard, Cote, Meylan, & Massot, 2009; Ronce, 2007; Tallmon et al., 112 

2004), implying that variation in vagility generally leads to clear differences in genetic patterns. 113 

Good dispersers are likely to present less structured metapopulations than low vagility 114 

organisms (Allentoft, Siegismund, Briggs, & Andersen, 2009; Burns, Eldridge, & Houlden, 115 

2004; Kraaijeveld-Smit, Beebee, Griffiths, Moore, & Schley, 2005; Vos, Antonisse-De Jong, 116 

Goedhart, & Smulders, 2001). Amphibians are generally regarded as low vagility and 117 

philopatric species (Gill, 1978) but this is being confuted in a number of studies (Denoël, 118 

Dalleur, Langrand, Besnard, & Cayuela, 2018; Smith & Green, 2005, 2006). Selective pressures 119 
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favouring or restraining dispersal may act differently on males and females and result in sex-120 

specific dispersal strategies (Li & Kokko, 2019). Accordingly, sex-biased dispersal has been 121 

identified in a number of species, including newts (Denoël et al., 2018; Trochet et al., 2016). 122 

Furthermore, orographic features such as ridges and valleys can act as either barriers or bridges 123 

to dispersal and thus drive genetic structuring (Caplat et al., 2016; Noguerales, Cordero, & 124 

Ortego, 2016). Although it is deemed important to better understand the processes underlying 125 

genetic differentiation in natural populations, the combined influence of sex differences and 126 

orographic features on dispersal has rarely been studied (Roffler et al., 2014; Tucker, Allendorf, 127 

Truex, & Schwartz, 2017). Indeed, males and females may have different dispersal abilities and 128 

therefore orographic features may differently affect them, resulting in contrasting patterns of 129 

gene flow between sexes in mountain regions (see Cayuela et al., 2020 for a review). 130 

The genus Calotriton (Gray, 1858) includes two species restricted to north-eastern 131 

Iberian Peninsula (Carranza & Amat, 2005). Speciation within the genus has been dated to the 132 

beginning of the Pleistocene (Carranza & Amat, 2005) but how these species endured 133 

Quaternary glaciations is still uncertain. The Pyrenean brook newt (C. asper Al. Dugès, 1852) 134 

is a small-bodied amphibian endemic to the Pyrenees (Bosch et al., 2009). It is a largely aquatic 135 

montane species that inhabits brooks, alpine lakes and caves between 250 and 2,500 m a.s.l. 136 

(Clergue-Gazeau & Martínez-Rica, 1978; Martínez-Rica & Clergue-Gazeau, 1977). As 137 

expected for many amphibian species, C. asper is believed to have low dispersal ability (Milá, 138 

Carranza, Guillaume, & Clobert, 2010; Montori, Llorente, & Richter-Boix, 2008), although 139 

little attention has been paid to this aspect. Following metamorphosis, a juvenile dispersal phase 140 

of at least 2 years is described before reaching the adult stage (Montori & Llorente, 2014), but 141 

it remains unclear how far individuals can disperse. 142 



7 
 

So far, few studies have analysed the genetic differentiation of the Pyrenean brook newt 143 

in a geographic context. Analysis of allozymes (Montori, Llorente, & García-París, 2008) and 144 

mitochondrial DNA (mtDNA; Milá et al., 2010; Valbuena-Ureña, Amat, & Carranza, 2013) 145 

revealed low levels of genetic variation. Higher levels of genetic differentiation and population 146 

structuring were detected using genome-wide amplified fragment length polymorphism (AFLP; 147 

Milá et al., 2010) and microsatellite markers (Valbuena-Ureña et al., 2018). However, these 148 

studies were either based on small numbers of populations and markers with low variability 149 

(Montori, Llorente, & García-París, 2008; Valbuena-Ureña et al., 2013), did not characterize 150 

the entire range and habitat types of the species (Milá et al., 2010), or addressed specific 151 

questions targeting the role of geographic gradients and habitat type in shaping the current 152 

genetic attributes of the species (Valbuena-Ureña et al., 2018). Furthermore, the timing of 153 

lineage divergence and the relative importance of phylogeographic processes versus 154 

contemporary dispersal have not been studied in C. asper.  155 

Here, we employ a multilocus approach aimed to disentangle major historical and 156 

contemporary processes that contributed to shaping the present genetic constitution of C. asper 157 

over most of its distribution range. We combine comprehensive sample collection across all 158 

habitat types with coalescent model frameworks and dispersal analyses to shed light on the 159 

evolutionary history of the species and determine the degree of connectivity of present-day 160 

populations and habitats. Specifically, we explore the effect of Quaternary climatic oscillations 161 

on the evolutionary diversification of lineages and the formation of postglacial colonization 162 

routes. Furthermore, we describe contemporary patterns of dispersal and investigate whether 163 

sex-specific dispersal strategies, orography or geography played a role in determining the 164 

species’ current genetic structure. 165 

 166 
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Materials and Methods 167 

Sampling and DNA extraction 168 

Sampling was conducted in the period 2004-2017 across the whole Pyrenees (Figure 1; Table 169 

S1), encompassing most of the species range. DNA was sampled via buccal swab or toe clipping 170 

of metamorphosed individuals. Samples were preserved in EDTA or absolute ethanol and 171 

stored at -20°C until DNA extraction. The collection of samples was approved by the 172 

corresponding authorities: as for the French sampling, by the Conseil Scientifique Régional du 173 

Patrimoine Naturel (CSRPN, DREAL) of the Region of Occitanie; as for the Andorran 174 

sampling, by the Principality of Andorra; as for the Spanish sampling, by the Departament 175 

d'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural of the Catalan Government and 176 

the Instituto Aragonés de Gestión Ambiental of the Aragonese Government. Procedures 177 

followed guidelines established by the Association for the Study of Animal Behaviour and 178 

complied with current French, Andorran and Spanish regulations.  179 

Genomic DNA was extracted using QIAGEN DNeasy Blood and Tissue Kit (QiagenTM, 180 

Hilden, Germany) according to the manufacturer’s protocol, or following the HotSHOT method 181 

(Montero‐Pau, Gómez, & Muñoz, 2008), in a total volume of 100 µl.  182 

 183 

Mitochondrial DNA sequencing and microsatellite screening 184 

A fragment of the cytochrome b (cyt-b) gene was sequenced from 258 individuals from 59 185 

sampling sites (Table S1). We amplified a fragment of 374 bp using primers Cytb1EuprF and 186 

Cytb2EuprR (Carranza & Amat, 2005). Amplification conditions were those described in 187 

Carranza, Arnold, Mateo, and López-Jurado (2000). Sequences were aligned using the 188 

ClustalW algorithm in MEGA 7 (Kumar, Stecher, & Tamura, 2016). 189 
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A total of 1,299 individuals from 96 sampling sites were genotyped for a set of 17 190 

microsatellite loci combined in three multiplexes (Table S1; Drechsler et al., 2013). Fragments 191 

were sized with LIZ-500 size standard and binned using either GeneMapper v4.0 (Applied 192 

Biosystems) or Geneious 11.0.5 (Kearse et al., 2012). Only individuals that could be scored in 193 

a reliable manner for at least 15 loci were included in the analyses. 194 

 195 

Mitochondrial DNA analysis 196 

Gene genealogy networks were generated using Haploviewer (Salzburger, Ewing, & Von 197 

Haeseler, 2011). jModelTest 2.1.3 (Darriba, Taboada, Doallo, & Posada, 2012) was run to 198 

determine the appropriate nucleotide-substitution model, under the Akaike Information 199 

Criterion (AIC). Phylogenetic reconstructions among haplotypes were estimated using a 200 

maximum likelihood approach as implemented in RAxML 7.7.1 (Stamatakis, 2006), and the 201 

best generated tree was used to estimate the haplotype network. The program was run with a 202 

GTRCAT model of rate heterogeneity and no invariant sites, applying 1,000 bootstrap 203 

replicates. Haplotype network reconstruction was implemented in Haploviewer, based on all 204 

sequences available from GenBank and this study. Overall number of haplotypes (H) and 205 

polymorphic sites (S), as well as haplotype (Hd) and nucleotide (Π) diversity indices were 206 

calculated in DNASP 6.11.01 (Rozas et al., 2017).  207 

 208 

Microsatellite analysis 209 

The presence of potential scoring errors, stuttering, large allele dropout and null alleles was 210 

tested using MICRO-CHECKER 2.2.3 (Van Oosterhout, Hutchinson, Wills, & Shipley, 2004). 211 

The frequency of null alleles for each locus and population was further investigated using the 212 

expectation maximization algorithm implemented in FreeNA (Chapuis & Estoup, 2006). The 213 
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same program was used to calculate global FST values corrected for null alleles following the 214 

Excluding Null Alleles (ENA) correction method. Bootstrap 95% confidence intervals (CI) 215 

were calculated using 1,000 replicates over loci. We tested for linkage disequilibrium between 216 

loci and for deviations from Hardy-Weinberg equilibrium (HWE) in each population and for 217 

each locus in GENEPOP 4.2 (Rousset, 2008). Significance levels for multiple comparisons 218 

were adjusted using the Bonferroni correction (α = 0.05;  Rice, 1989). 219 

 Parameters of genetic diversity were estimated for populations with five or more 220 

genotyped individuals and for the genetic clusters inferred by STRUCTURE. Calculation of 221 

diversity estimates only in populations with larger sample size (≥ 10 individuals) yielded very 222 

similar results in terms of mean genetic diversity and in the spatial interpolation analysis. We 223 

calculated observed (HO) and expected heterozygosity (HE) using the PopGenKit R package 224 

(Rioux Paquette, 2011) in R 3.5.1 (R Core Team, 2018). Allelic richness (Ar) standardized for 225 

sample size and rarefied private allelic richness (PAAr; calculated only at the cluster level) were 226 

calculated in HP-RARE 1.1 (Kalinowski, 2005). Inbreeding coefficients (FIS) were estimated 227 

in FSTAT 2.9.3.2 (Goudet, 2002). We visualised geographic patterns of genetic diversity by 228 

computing a spatial interpolation of HE and Ar values using the Inverse Distance Weighting 229 

tool implemented in ArcGIS 10.1 (ESRI, Redlands, CA, USA).   230 

Population structure was investigated using a Bayesian approach implemented in 231 

STRUCTURE 2.3.4 (Pritchard, Stephens, & Donnelly, 2000). We conducted 20 independent 232 

simulations for each K value from one to 50, with 100K burn-in steps followed by 500K 233 

Markov chain Monte Carlo (MCMC) repetitions. It is highly unlikely that C. asper would reveal 234 

more than 50 genetic units, given that previous studies conducted at the Pyrenean scale returned 235 

a much smaller number of nuclear partitions (Milá et al., 2010; Valbuena-Ureña et al., 2018). 236 

The program was run using the admixture model with correlated allele frequencies. The analysis 237 
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was conducted for the whole dataset and for each cluster separately. The optimal number of 238 

genetic clusters was determined using both the original method of Pritchard et al. (2000) and 239 

the ΔK method of Evanno, Regnaut, and Goudet (2005), as implemented in the R package 240 

pophelper (Francis, 2017). The same package was used to average replicate runs of the optimal 241 

K (Jakobsson & Rosenberg, 2007) and plot the final output. In addition, to visualise genetic 242 

divergence between populations, we constructed a neighbour-joining (NJ) tree using the 243 

program POPTREEW (Takezaki, Nei, & Tamura, 2014). We used Nei’s genetic distance (DA; 244 

Nei, Tajima, & Tateno, 1983) and performed 1,000 bootstraps. Genetic relationships between 245 

STRUCTURE clusters for the optimal K were visualised by drawing a NJ tree based on net 246 

nucleotide distances (Pritchard, Wen, & Falush, 2010) using the program NEIGHBOR in the 247 

PHYLIP package 3.695 (Felsenstein, 2005). 248 

Isolation by distance was calculated via a Mantel test (Mantel & Valand, 1970) using 249 

the R package ade4 (Dray & Dufour, 2007), to explore the relationship between genetic and 250 

geographic distances among populations. We used standardized values of FST (FST/(1-FST)) and 251 

log-transformed values of geographic distance as dependent and independent variables, 252 

respectively (Rousset, 1997). Significance was estimated with 10,000 permutations. Analyses 253 

were performed between all populations and by grouping sampling localities as indicated by 254 

STRUCTURE. 255 

The estimation of recent dispersal was conducted using a twofold approach. An 256 

assignment test was performed in GeneClass2 (Piry et al., 2004) to assign or exclude reference 257 

populations as possible origin of individuals (Paetkau, Slade, Burden, & Estoup, 2004). The 258 

test was run only for populations with 10 or more genotyped individuals (49 populations). The 259 

same program was used to detect first generation migrants, i.e. individuals born in a population 260 
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other than that where they were collected. Details on parameters used in these analyses are 261 

presented in the supplement. 262 

The sibship assignment method implemented in Colony 2.0.6.4 (Jones & Wang, 2010) 263 

was used to infer the effective size (Ne) of populations with more than 15 genotyped individuals 264 

(35 populations) under the hypothesis of random mating. Details on parameters used in the 265 

analysis are presented in the supplement. 266 

We tested for sex-biased dispersal by calculating FST, FIS and assignment values (AIC) 267 

within each sex (Goudet, Perrin, & Waser, 2002) using the hierfstat R package (Goudet & 268 

Jombart, 2015). We performed 1,000 permutations using the “two sided” alternative method 269 

(Helfer, Broquet, & Fumagalli, 2012). FST and FIS are expected to be lower and higher for the 270 

dispersing sex compared to the philopatric sex, respectively (Goudet et al., 2002). AIC values 271 

determine the probability that an individual genotype originated from the population from 272 

which it was sampled, correcting for differences in population genetic diversity (Favre, Balloux, 273 

Goudet, & Perrin, 1997). The distribution of AIC values is centred around a mean (mAIC) of 274 

zero, with lower values expected for the dispersing sex. In contrast, the variance of AIC (vAIC) 275 

is expected to be higher for the dispersing sex. 276 

To examine whether the genetic structure revealed by the Bayesian clustering analysis 277 

could be explained by orographic features such as tributary valleys (i.e. valleys whose brooks 278 

or rivers flow into greater ones) and ridges (i.e. a chain of mountains or hills that form a 279 

continuous elevated crest), we conducted analyses of molecular variance (AMOVA) using a 280 

nested design (Excoffier, Smouse, & Quattro, 1992). We implemented a four-level hierarchical 281 

approach and ran two separate AMOVA analyses: in the first analysis we estimated variance 282 

components among genetic clusters identified by STRUCTURE and among tributary valleys 283 

nested within clusters; next, in the second analysis we tested for evidence of structuring among 284 
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valleys and among populations within valleys, without taking genetic clusters into account (see 285 

Werth et al., 2007 for a similar approach). Further details and parameters used in the analysis 286 

are described in the supplement. 287 

We investigated how habitat type (lakes, streams and caves) and geographic variables 288 

(latitude, longitude and altitude) explained genetic diversity estimates using multiple linear 289 

regression models. Model selection was performed in R using backward stepwise selection, 290 

where variables were dropped iteratively from the full model minimizing AIC values. Violation 291 

of the assumptions of normality, homogeneity in variance, multicollinearity and autocorrelation 292 

were checked by examining the residuals. Analyses were performed between all populations 293 

and by grouping sampling localities as indicated by STRUCTURE. 294 

To investigate C. asper evolutionary history and estimate divergence times among 295 

STRUCTURE-defined genetic lineages, we employed an approximate Bayesian computation 296 

(ABC) approach, as implemented in the software DIYABC 2.1.0 (Cornuet et al., 2014). We 297 

performed the computations both combining microsatellites and mtDNA data, and separately 298 

for microsatellites to assess the impact of using different types of markers on scenario choice 299 

and posterior parameter estimation. To reduce computational demands, we selected 50 300 

individuals from each of the five genetic groups defined by STRUCTURE. Pilot runs confirmed 301 

that varying the sample size for microsatellites (from 30 individuals per cluster to all 1,299 302 

individuals) did not substantially affect the final outcome in terms of best supported scenario 303 

and estimated parameters (Table S2). Within each group, we selected populations 304 

representative of all habitat types, choosing among individuals with STRUCTURE ancestry 305 

coefficient q ≥ 0.9 to exclude potentially confounding effects of contemporary gene flow (see 306 

Ortego, Noguerales, Gugger, & Sork, 2015). Following the recommendations of Cabrera and 307 

Palsbøll (2017) to improve DIYABC ability to reveal the true demographic model, we focused 308 
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on simple contrasting models and reduced the number of candidate scenarios to three (Figures 309 

2 and S1). The first type of scenario is a null model with all five lineages diverging at the same 310 

time from a common ancestor (general scenario 1). The second type is a model of initial 311 

divergence between two eastern and western ancestral lineages, keeping the eastern as ancestral, 312 

and subsequent formation of the five current genetic lineages, as suggested by Valbuena-Ureña 313 

et al. (2018) (general scenario 2). Finally, the third type is a hierarchical split model directly 314 

following results from STRUCTURE analysis, where clusters 1 and 5 were generated from 315 

cluster 3, after an initial split between clusters 2, 3 and 4 (general scenario 3). Further details 316 

on model specifications and run parameters are outlined in the supplement (Table S3). 317 

 318 

Results  319 

Multilocus genetic diversity 320 

From the 258 individuals analysed for the cyt-b gene, we identified a total of 11 haplotypes. 321 

The haplotype network showed that adjacent haplotypes were separated by a single mutational 322 

step and confirmed the presence of two main central haplotypes separated from each other by 323 

two mutational steps (haplotype codes H5 and H9; Figure S2). The overall mean haplotype 324 

(Hd) and nucleotide (Π) diversities were 0.570 ± 0.031 and 0.003 ± 0.0002, respectively. 325 

Regarding microsatellites, we did not find evidence of stuttering or large allele dropout. 326 

Mean null allele frequency across all loci was 0.037, ranging from 0.018 to 0.069. Global FST 327 

values with and without correcting for null alleles were 0.377 and 0.383, respectively, and had 328 

overlapping 95% CI (0.342–0.433 for FST using ENA and 0.350–0.443 for FST not using ENA), 329 

indicating that the impact of null alleles is negligible. After applying the Bonferroni correction 330 

(P < 0.0004), significant linkage disequilibrium was found only in two populations between a 331 

total of three pairs of loci (in population NDE between locus pairs Ca1-Us3 and Us7-Ca16, and 332 
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in population RVT-A between locus pair Ca22-Ca29). Significant deviations from HWE were 333 

observed in 18 (19%) localities after Bonferroni correction. 13 loci indicated significant 334 

departures from HWE in one to eight populations: Ca32, Ca25, Ca 23, Us7, Ca24 and Ca22 in 335 

one population, Us3, Ca8 and Ca1 in two populations, Ca30 in three populations and Ca16 in 336 

eight populations. However, this is probably the result of genetic structure in the populations, 337 

as most of the loci showed occasional departures from HWE in three or more populations that 338 

were not consistent across populations or loci. 339 

We recorded variable levels of nuclear genetic diversity across the study area (Table 340 

S1). Mean values were 0.445 for HO (0.162–0.698), 0.457 for HE (0.171–0.626) and 2.659 for 341 

Ar (1.380–3.050). Westernmost populations exhibited the highest values, together with a group 342 

of central-eastern populations (Figure 3). FIS values were generally low (mean FIS = 0.069), 343 

ranging from -0.210 to 0.367. 344 

 345 

Population structure analyses 346 

STRUCTURE analysis revealed five well-supported groups (Figure 1). Log-likelihood values 347 

showed a steady increase from K = 2 to K = 5 before slowing down and eventually reaching a 348 

plateau (Figure S3). Although ΔK values showed several peaks at different values of K, the 349 

peak at K = 5 was markedly higher and corresponded to the smallest variance. This chaotic 350 

behaviour has been reported when analysing data displaying strong isolation by distance with 351 

STRUCTURE (Ferchaud et al., 2015). Therefore, we assumed K = 5 as the clustering solution 352 

that best explained the spatial genetic structure of the species at the Pyrenean scale.  353 

The five clusters were spatially distributed over the Pyrenean chain along a longitudinal 354 

gradient: the first cluster included the north-eastern (French) localities and four central-southern 355 

(Spanish) localities; the second cluster grouped together all Andorran localities, the south-356 
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eastern (Spanish) sites and the north-eastern population Valmanya (B10); the third cluster 357 

included the central-western localities from both sides of the Pyrenees; the fourth cluster 358 

comprised all localities at both sides of the western Pyrenees; finally, sites located on the 359 

southern (Spanish) side of the central Pyrenees in-between the first three clusters formed a fifth 360 

group (see colour codes in Figure 1: cluster 1, blue; cluster 2, light green; cluster 3, orange; 361 

cluster 4, dark green; cluster 5, pink). Relatively high levels of admixture were detected where 362 

the genetic clusters met (Figure 1). When analysing each cluster separately, further substructure 363 

emerged from clusters 1 and 2 (i.e. the easternmost clusters; Figure S4): sampling localities in 364 

cluster 1 grouped into three subclusters and those included in cluster 2 grouped into four 365 

subclusters. The NJ tree for the five clusters indicated that clusters 2 and 4, corresponding to 366 

the clusters at the eastern and western edges of the species range, respectively, were the most 367 

genetically differentiated (Figure 1). In addition, cluster 4 was the richest in terms of genetic 368 

diversity (Table 1). The NJ tree inferred from DA distances over all populations revealed the 369 

five groups identified by STRUCTURE, with geographically close populations usually grouped 370 

together (Figure 4).  371 

A significant isolation by distance (IBD) was found between all pairs of populations (R 372 

= 0.499, P < 0.001; Figure S5). Similar but generally stronger IBD patterns were revealed when 373 

analysing each cluster separately (cluster 1: R = 0.469, P < 0.001; cluster 2: R = 0.702, P < 374 

0.001; cluster 3: R = 0.687, P < 0.001; cluster 5: R = 0.764, P < 0.001; Figure S5), with the 375 

exception of cluster 4 that did not show a significant IBD signal (P = 0.053). 376 

 377 

Contemporary dispersal, effective population size and sex-biased dispersal 378 

The assignment test conducted in GeneClass2 returned an assignment rate of 82.7%, meaning 379 

that 922 individuals out of 1,115 were assigned to the localities where they were sampled (Table 380 
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S4). Although the majority of misassignments were to localities belonging to the same cluster, 381 

three populations from cluster 5 and one population from cluster 3 showed ancestry to cluster 382 

1. A total of 63 (4.9%) individuals were identified as first generation migrants: 14 and 28 383 

individuals were selected using the Lhome and Lhome/Lmax approaches, respectively, and 21 were 384 

selected by both likelihood methods. Of the 63 individuals, 27 had similar migration 385 

probabilities for several localities, indicating that these samples represented individuals whose 386 

source locality could not be determined due to the presence of unsampled populations in the 387 

study area. Among the 36 migration events with estimated origin, 19 involved stream 388 

populations only, 9 involved lake populations, 7 occurred between lake and stream populations 389 

and one between cave and stream populations. In all but one instance (one individual sampled 390 

in population E2 and detected to be coming from E1, which are separated by only 1.7 km), 391 

migration was limited within groups detected with STRUCTURE and usually involved 392 

geographically close populations (Figures 5 and S6). Indeed, most individuals migrated less 393 

than 1 km (17 individuals), or between 1 and 10 km (12 individuals). However, for four 394 

individuals we found potential for recent migration between localities separated by an 395 

Euclidean distance between 24 and 33 km. Dispersal between these localities would have 396 

implied either downstream migration or migration between adjacent glacial cirques, but no data 397 

are available from some intermediate localities. The remaining putative long dispersal events 398 

were below 12 km Euclidean distance and were all amongst adjacent glacial cirques.  399 

Colony returned low values of effective population sizes (Table S1). Values ranged from 400 

nine in the cave population Pas du Loup (B1) to 46 breeding individuals in the stream 401 

population Ruisseau de Peyrenère (E4), with a mean Ne of 26. 402 

Results from sex-biased dispersal analysis showed that FST and FIS values were not 403 

significantly different between sexes (males: FST = 0.377, FIS = 0.088; females: FST = 0.367, FIS 404 
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= 0.101; PFst = 0.610, PFis = 0.300). Similarly, there was no significant difference in either the 405 

mean or the variance of AIc between sexes (males: mAIc = 0.052, vAIc = 16.332; females: 406 

mAIc = -0.051, vAIc = 17.771; PmAIc = 0.711, PvAIc = 0.375). 407 

 408 

Influence of orography, geography and habitat 409 

AMOVA analyses suggested significant structure at all tested levels (Table 2). When 410 

partitioning molecular variance between genetic clusters and tributary valleys, most molecular 411 

variance was found within valleys, followed by the among clusters component. Results did not 412 

differ substantially whether including in the analysis either all valleys or only those featuring a 413 

unique genetic cluster (data not shown). Within valleys, most variation was found among 414 

individuals, as expected for polymorphic loci such as microsatellites.   415 

 At the Pyrenean scale, model selection indicated that altitude had a significant positive 416 

effect on HE and Ar, whereas longitude had a significant negative effect on Ar (Figures 6 and 417 

S7). Regarding habitat types, streams showed significantly higher levels of genetic diversity 418 

compared to lakes and caves, although this pattern was lost when performing the analysis at the 419 

genetic cluster level. Indeed, only clusters 1, 2 and 4 showed significant effects. In cluster 1, 420 

altitude was negatively associated with Ar and longitude was negatively associated with both 421 

HE and Ar, and lakes were the most diverse habitat. In cluster 2, longitude had a negative effect 422 

and latitude a positive effect on both estimates; comparison between habitats was not possible 423 

because only streams were sampled. Finally, in cluster 4, longitude and latitude were negatively 424 

associated with both estimates and streams were the most diverse habitat. 425 

 426 

Colonisation history 427 
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The pre-evaluation step confirmed that the chosen priors ensured a good fit between simulated 428 

and observed data sets for all tested scenarios (Figure S8). Analyses suggested highest support 429 

for scenario 3 (the multiple-refugia population model directly following Bayesian clustering 430 

analysis results) regardless of the genetic markers used (microsatellites or microsatellites + 431 

mtDNA; Figure 2). This scenario had the highest posterior probability (PP) and its 95% CI did 432 

not overlap with those for the other scenarios (Table 3). Type I and type II errors for scenario 433 

3 were low, denoting high confidence in scenario choice (Table 3). RMedAD values were 434 

relatively small (< 0.25 in most cases), indicating precise parameter estimations (Table 4). 435 

Finally, model checking revealed that the observed dataset fell within the cloud of points of the 436 

simulated datasets obtained from the parameter posterior distribution (Figure S8). 437 

Analyses based on either microsatellites or microsatellites + mtDNA returned similar 438 

parameter estimates (Table 4). Results suggested that peripheral genetic lineages (clusters 2 and 439 

4), together with the central group, diverged from a common ancestor around the Last Glacial 440 

Maximum (LGM), approximately 42,000–24,000 years ago (t3). Subsequently, the central-441 

western lineage (cluster 3) split from the central clade ~15,000–7,500 years ago (t2), whereas 442 

the most recent divergence occurred ~12,000–5,400 years ago (t1) between the central-southern 443 

and central-eastern lineages (clusters 5 and 1; Figure 2). 444 

 445 

Discussion 446 

Refugia within refugia: the Pyrenees 447 

Mountain systems played a crucial role in determining species diversity, and the origin of 448 

intraspecific genetic structuring has been frequently tracked back to putative glacial refugia 449 

where populations survived Quaternary ice ages (Wallis, Waters, Upton, & Craw, 2016). In 450 

Europe, the Iberian Peninsula served as one of the most important Pleistocene glacial refugia 451 



20 
 

(Gómez & Lunt, 2007). The complex climatic and topographic features of this region allowed 452 

for lineage persistence in “refugia within refugia”, the Pyrenees being one of them (Abellán & 453 

Svenning, 2014; Gómez & Lunt, 2007). For this reason, the Pyrenees are considered as a 454 

biodiversity hotspot with a rich endemic flora and fauna (Wallis et al., 2016). Here, ABC-based 455 

analyses revealed that C. asper microsatellite lineage differentiation started either during or 456 

slightly before the LGM (~42,000–24,000 years ago) at three main focal centres (western –457 

cluster 4–, central and eastern –cluster 2– Pyrenees) and continued within the central group 458 

through the end of the Last Glacial Period, until ~12,000–5,500 years ago (Figure 2; Table 4). 459 

Indeed, the second and third splits straddled the Pleistocene-Holocene boundary and involved 460 

the central group only, with a first divergence event consisting of the separation of the central-461 

western lineage (cluster 3) ~15,000–7,500 years ago, followed by a split between the central 462 

Spanish and the central-eastern French lineages (clusters 5 and 1; ~12,000–5,500 years ago).  463 

Our study describes the existence of five main genetic lineages in C. asper, which are 464 

distributed longitudinally along the Pyrenees. Previous studies mainly reported two or three 465 

major longitudinal splits in the Pyrenees in a number of species, such as the mountain ringlet 466 

butterfly Erebia epiphron (Schmitt, Hewitt, & Muller, 2006), the European beech Fagus 467 

sylvatica (Magri et al., 2006), the snapdragon Antirrhinum (Liberal et al., 2014), the rusty-468 

leaved alpenrose Rhododendron ferrugineum (Charrier et al., 2014) and the ground-dwelling 469 

spider Harpactocrates ravastellus (Bidegaray-Batista et al., 2016). However, most of these 470 

studies either dealt with species complexes and therefore evolutionary time lags of millions of 471 

years (Bidegaray-Batista et al., 2016; Liberal et al., 2014), or did not attempt to date back the 472 

phylogeographic history of the study species across the Pyrenees (Charrier et al., 2014; Magri 473 

et al., 2006; Schmitt et al., 2006). Other studies have only focussed on the post-glacial 474 

colonisation history (e.g. from 15,000 years ago to the present), such as in the case of the 475 
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Pyrenean rock lizard Iberolacerta bonnali (Ferchaud et al., 2015) or the water flea Daphnia 476 

longispina (Ventura et al., 2014). 477 

 478 

Phylogeography of C. asper 479 

The times of the splits approximately correspond to major cooling events in the Pyrenees. The 480 

LGM in the Pyrenees is estimated to have occurred ~22,500–18,000 years ago (González-481 

Sampériz et al., 2006); glacial advance likely promoted species retreat to isolated refugial areas 482 

(three main refugial areas: western, central and eastern) and subsequent genetic differentiation. 483 

After the LGM, a period of increase in temperature (the Bølling-Allerød period, ~15,000–484 

13,000 years ago) may have created favourable conditions for dispersion outside the refugia 485 

and colonization of suitable areas in the Pyrenees. This was followed by a cold period (the 486 

Younger Dryas, ~13,000–11,500 years ago; González-Sampériz et al., 2006) that likely 487 

prompted species retreat to refugial areas where further genetic differentiation was favoured 488 

(divergence of cluster 3 from the central group). The Younger Dryas marked the end of the 489 

Pleistocene and, with the beginning of the Holocene, temperatures increased again, favouring 490 

species expansion uphill and towards the central Pyrenees. An additional abrupt cooling episode 491 

took place ~8,400–8,000 years ago (8,200–yr event; Alley et al., 1997; González-Sampériz et 492 

al., 2006), which likely promoted the last split between clusters 1 and 5.  493 

During the last glaciation, Pyrenean glaciers reached their maximum extent earlier than 494 

the LGM at > 30,000 years ago, though a later glaciar re-advance occurred during the LGM 495 

(García‐Ruiz, Valero‐Garcés, Martí‐Bono, & González‐Sampériz, 2003). During these periods, 496 

most of the Pyrenees was extensively covered with ice and likely represented an unsuitable 497 

region for C. asper. Although we cannot rule out that some C. asper populations survived 498 

glacial events in microrefugia in situ (e.g. in deep valleys or on southern valley slopes), optimal 499 
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conditions during glacial maxima existed mostly in peripheral areas outside the mountain range, 500 

unlike other species that likely survived in nunataks along the chain (e.g. Charrier et al., 2014). 501 

We thus hypothesise that, at the time of the first split, populations took refuge in three major 502 

refugial areas (corresponding to the western, central and eastern genetic lineages) located 503 

outside the mountain range. The long branches defining these three lineages in the NJ tree and 504 

their geographic consistency support a scenario of allopatric divergence and long-term lineage 505 

persistence in separated refugia (Figure 1). After the LGM, temperatures increased and created 506 

favourable conditions for the species to recolonise suitable habitats inside the chain. The 507 

following splits were likely prompted by cooling events occurring over shorter intervals and 508 

characterized by a lesser glacier extent (i.e. the Younger Dryas and the 8,200-yr event; 509 

González-Sampériz et al., 2006), leading to a wide availability of habitats inside the Pyrenees 510 

even during cold periods. It is reasonable to assume that C. asper endured these cooling periods 511 

in refugia located within the Pyrenees, where differentiation of the central group was favoured. 512 

We would like to stress that ABC modelling has some uncertainty. Firstly, the tested 513 

models do not represent a comprehensive range of all possible scenarios, but are instead based 514 

on a selection of hypotheses that we consider are most likely to reflect our data. We focused 515 

our analysis on three simple contrasting models aimed at capturing the key demographic events, 516 

avoiding overcomplex and similar models. This approach has proven useful to increase the 517 

ability of DIYABC to reveal the true model, as well as to better estimate the error and accuracy 518 

of parameter estimates (Cabrera & Palsbøll, 2017). Secondly, ABC modelling is based on 519 

scenarios where no gene flow is permitted between populations after they initially diverge. Only 520 

single events of admixture between populations are considered, whereas recurrent gene flow 521 

due to dispersal cannot be incorporated. However, we believe that not incorporating gene flow 522 

had only a marginal effect on our ABC results, as ABC analyses run using all 1,299 individuals 523 
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(and thus including admixed populations located at cluster borders) yielded parameter estimates 524 

similar to those from computations based on 50 individuals per cluster (Table S2). Thirdly, it 525 

is important to note that the time estimates presented for C. asper have relatively large 526 

confidence intervals, although they still embrace values broadly referred to the time of the last 527 

glaciation.  528 

 529 

Mito-nuclear discordance 530 

Population analyses of nuclear microsatellites revealed that the Pyrenean brook newt is 531 

subdivided into five well-supported genetic groups mainly distributed along a longitudinal 532 

gradient (Figure 1), with eastern genetic groups displaying finer substructure (Figure S4). This 533 

is in agreement with previous studies investigating the nuclear genetic structure of the species 534 

(Milá et al., 2010; Valbuena-Ureña et al., 2018). However, mitochondrial DNA did not show a 535 

clear phylogeographic pattern coinciding with the five microsatellite lineages (Figure S2). 536 

Haplotype H9 partly corresponds to cluster 2 (eastern Pyrenees; but see Valbuena-Ureña et al., 537 

2013) and haplotype H7 shows some affinity to cluster 3 (central-western Pyrenees); the 538 

remaining area is dominated by haplotype H5, which is the most widespread haplotype. The 539 

almost perfect match between ABC analyses based on either microsatellites or microsatellites 540 

+ mtDNA was possibly due to the lack of mtDNA variation. In C. asper, a similar mito-nuclear 541 

discordance was detected by Milá et al. (2010): variation at several mtDNA regions (2,040 bp) 542 

was low, whereas differentiation at AFLP loci was high and consistent with the structure here 543 

identified with microsatellites (see also Valbuena-Ureña et al., 2018). Milá et al. (2010) 544 

suggested that variation at AFLP loci could have been abnormally high because of the high 545 

amount of satellite DNA in C. asper genome, which possibly interfered in the amplification. 546 

However, the marked genetic structuring detected with microsatellites, which is consistent with 547 
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the genetic units revealed by AFLP, indicates that AFLP loci variation was not an artefact but 548 

the product of real population structuring in the species. Divergence times estimated with 549 

microsatellites approximately correspond to major cooling events that likely impacted and 550 

shaped the genetic constitution of C. asper. Furthermore, the high differentiation at AFLP and 551 

microsatellite markers is consistent with the high morphological diversification reported among 552 

C. asper populations (Montori, Llorente, & García-París, 2008). An alternative possibility is 553 

that the observed mtDNA variation could be due to female-biased dispersal, with female-554 

mediated gene flow and phylopatric males leading to a pattern of mito-nuclear discordance 555 

(Prugnolle & De Meeus, 2002). However, our results do not support a sex-biased dispersal 556 

scenario. A more plausible explanation for the observed discordance would be a selective sweep 557 

on mtDNA, bringing haplotypes H5 and H9 close to fixation in most populations over most of 558 

the species range (see also Valbuena-Ureña et al., 2013). Empirical evidence of selection on 559 

mtDNA is accumulating in the literature and possible cases of selective sweep have been 560 

reported in a number of taxa (Bazin, Glémin, & Galtier, 2006; Bensch, Irwin, Irwin, Kvist, & 561 

Åkesson, 2006; Ferchaud et al., 2015; Rato, Carranza, Perera, Carretero, & Harris, 2010). As 562 

for C. asper, a selective sweep of favourable mtDNA variants was previously suggested by 563 

Milá et al. (2010) to explain the lack of mtDNA diversity. A selective sweep could account for 564 

the low variation in mtDNA compared to nuclear DNA and for the geographic distribution of 565 

haplotypes. However, further studies are needed to confirm this hypothesis. 566 

 567 

Contemporary dispersal and influence of environmental and geographic variables 568 

Our analyses revealed restricted contemporary gene flow and dispersal between populations of 569 

C. asper across the five genetic lineages (Figure 5; Table S4). This is supported by the clear 570 

pattern of isolation by distance (Figure S5) and by 19% of the observed genetic variation being 571 
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explained by differences between major genetic clusters (Table 2). However, population 572 

structure analysis revealed admixture patterns at boundaries between genetic clusters, implying 573 

potential recent gene flow across all clusters borders (Figure 1). Molecular estimates of 574 

dispersal corroborated this finding: genetic signs of contemporary dispersal, albeit weak, were 575 

detected between a number of populations located at clusters’ borders. This holds especially 576 

true for cluster 5, with three populations showing ancestry to cluster 1 (Table S4). According 577 

to ABC analyses, clusters 1 and 5 were the last to diverge and may have retained a higher degree 578 

of connectivity (Figure 2). 579 

 Moderate levels of dispersal and connectivity between habitat types were detected 580 

within genetic clusters (Figure 5; Table S4). Nevertheless, migration preferentially involved 581 

geographically close populations (0–4 km Euclidean distance; Figure S6) and it was mostly 582 

restricted within valleys. This is in agreement with Montori, Llorente, and Richter-Boix (2008), 583 

which mainly recorded short-range movements in C. asper using a capture-recapture 584 

framework. The short mean dispersal distances, coupled with low effective population sizes (Ne 585 

< 50), may explain the high levels of genetic structuring and differentiation for C. asper 586 

populations across the entire species range. On the other hand, our estimations suggested 587 

potential for rare long-distance dispersal (up to 33 km). This might include both movements 588 

along the stream network and overland dispersal (Grant, Nichols, Lowe, & Fagan, 2010). Some 589 

individuals could have also been carried downstream during floods (Montori et al., 2012). 590 

However, although long-distance dispersal of few individuals per population remains possible 591 

in amphibians (Cayuela et al., 2020), a plausible alternative scenario is that potential unsampled 592 

source populations located in between the study sites may have been at the origin of migrants 593 

if they shared alleles with the putative sites of origin. This is possible given the high availability 594 

of suitable habitats for C. asper in the study area. Nevertheless, long distance dispersal, possibly 595 
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over a few successive generations (Saura, Bodin, & Fortin, 2014), is in line with our estimates 596 

of genetic diversity, as shown by most populations presenting low inbreeding coefficients 597 

(mean FIS = 0.069) and levels of genetic variability within the range of other urodeles and 598 

temperate amphibians (Chan & Zamudio, 2009). 599 

 The high overall FST value, together with the clear pattern of isolation by distance 600 

(especially at the genetic cluster level), indicate that divergence between populations is spatially 601 

structured. The strong spatial structuring, even across contrasting habitats, suggests no support 602 

for isolation by environment (Orsini et al., 2013). Indeed, populations from different habitats 603 

clustered together in four of the five lineages, and neighbour-joining analysis showed that 604 

populations are mainly grouped by valleys rather than habitats (Figure 4). Marked genetic 605 

differentiation exists at the scale of tributary valleys, as suggested by 20.5% of the molecular 606 

variance being attributable to differences between valleys (Table 2). Furthermore, we detected 607 

recent dispersal (as inferred by microsatellites) among populations inhabiting different habitats. 608 

In accordance with Valbuena-Ureña et al. (2018), we found evidence for a negative longitudinal 609 

and positive altitudinal gradient of genetic diversity over all C. asper populations, and streams 610 

showed higher values of genetic diversity compared to lakes and caves (Figures 6 and S7). This 611 

trend has been previously interpreted as evidence of preference for cooler and wetter 612 

environments, typical of the western sector of the Pyrenees and high altitudes, by C. asper 613 

(Valbuena-Ureña et al., 2018). However, linear models conducted at the genetic cluster level 614 

revealed contrasting patterns of genetic diversity that do not conform with the general trend. 615 

This, together with the strong isolation by distance revealed at the cluster level, suggests that 616 

the pattern detected at the Pyrenean scale is likely the result of independent drivers acting within 617 

clusters. Clusters may thus be considered as independent units as a result of independent 618 

phylogeographic histories, each being the product of separate post-glacial colonisation routes. 619 
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In light of the above, isolation by colonisation remains a plausible explanation for the resulting 620 

pattern of isolation by distance (Orsini et al., 2013), but further studies focussing on local 621 

adaptation might be necessary to confirm this point (see also Oromi et al., 2018). An alternative 622 

possibility is that the contrasting patterns at the cluster level could have arisen through the 623 

combined effects of latitude, longitude and habitat type. Habitat type might have an influence 624 

on the level of genetic variation in the residing populations and the contrasting patterns among 625 

clusters could be caused by the differential availability of these habitats in different areas. 626 

 627 

Concluding remarks 628 

This study highlights the importance of integrating past evolutionary processes and present-day 629 

gene flow and dispersal dynamics to shed light onto what shaped (and is currently shaping) the 630 

observed genetic composition and structure of endemic species. Here, we demonstrate that the 631 

endemic newt C. asper probably recolonized the Pyrenees from at least five distinct glacial 632 

refugia. Differentiation started before the LGM and continued through the end of the Last 633 

Glacial Period, leading to the formation of five well-supported genetic lineages that likely 634 

underwent separate evolutionary histories. There is currently limited gene flow between 635 

lineages, although borders represent zones of admixture resulting from postglacial 636 

recolonization of formerly glaciated areas. Within lineages, dispersal distances are relatively 637 

short, although long-distance dispersal may be accomplished by a few individuals. The 638 

incongruence between the high variation in nuclear DNA and low variation in mtDNA could 639 

be interpreted as evidence of selective sweep in mtDNA and underscores the importance of 640 

using a multilocus approach to achieve a complete picture of the population structure and 641 

history of the study species. Given the age of the studied lineages and the restricted present-day 642 

gene flow, we suggest that these broad areas should be regarded as separate management units 643 



28 
 

worthy of independent conservation consideration. At smaller spatial scales, specific lake 644 

populations of C. asper have been also found to merit special conservation focus (i.e. the 645 

paedomorphic populations described in Oromi et al., 2018). 646 

 647 

Acknowledgements 648 

We thank Meritxell Cases, Alba Castrillón, Eloi Cruset, Blanca Font, Ismael Jurado and Quim 649 

Pou-Rovira for field assistance. Economic support was provided by the European Commission 650 

LIFE+ project LimnoPirineus (LIFE13 NAT/ES/001210), by the Spanish Government project 651 

Funbio (RTI2018-096217-B-I00), by the Interreg POCTEFA ECTOPYR project (EFA031/15) 652 

and by the Societas Europaea Herpetologica (SEH, research grant awarded to F.L.). F.L. had a 653 

doctoral grant funded by Fundação para a Ciência e Tecnologia (FCT, grant number 654 

PD/BD/52598/2014). M.D. is research Director at Fonds de la Recherche Scientifique – FNRS.   655 



29 
 

References 656 

 657 
Abellán, P., & Svenning, J.-C. (2014). Refugia within refugia–patterns in endemism and 658 

genetic divergence are linked to Late Quaternary climate stability in the Iberian 659 
Peninsula. Biological Journal of the Linnean Society, 113(1), 13-28. 660 

doi:10.1111/bij.12309 661 
Allentoft, M. E., Siegismund, H. R., Briggs, L., & Andersen, L. W. (2009). Microsatellite 662 

analysis of the natterjack toad (Bufo calamita) in Denmark: populations are islands in 663 
a fragmented landscape. Conservation Genetics, 10(1), 15-28. doi:10.1007/s10592-664 

008-9510-8 665 
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., & Clark, P. U. (1997). 666 

Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 667 
25(6), 483-486. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2  668 

Avise, J. C. (2000). Phylogeography: the history and formation of species. Cambridge, MA, 669 
USA: Harvard University Press. 670 

Bazin, E., Glémin, S., & Galtier, N. (2006). Population size does not influence mitochondrial 671 
genetic diversity in animals. Science, 312(5773), 570-572. 672 

doi:10.1126/science.1122033 673 
Bensch, S., Irwin, D. E., Irwin, J. H., Kvist, L., & Åkesson, S. (2006). Conflicting patterns of 674 

mitochondrial and nuclear DNA diversity in Phylloscopus warblers. Molecular 675 
Ecology, 15(1), 161-171. doi:10.1111/j.1365-294X.2005.02766.x 676 

Bidegaray-Batista, L., Sánchez-Gracia, A., Santulli, G., Maiorano, L., Guisan, A., Vogler, A. 677 
P., & Arnedo, M. A. (2016). Imprints of multiple glacial refugia in the Pyrenees 678 

revealed by phylogeography and palaeodistribution modelling of an endemic spider. 679 
Molecular Ecology, 25(9), 2046-2064. doi:10.1111/mec.13585 680 

Bosch, J., Tejedo, M., Lecis, R., Miaud, C., Lizana, M., Edgar, P., . . . Marquez, R. G., P. 681 
(2009). Calotriton asper. The IUCN Red List of Threatened Species 2009: 682 

e.T59448A11943040. doi:10.2305/IUCN.UK.2009.RLTS.T59448A11943040.en.  683 
Burns, E. L., Eldridge, M. D., & Houlden, B. A. (2004). Microsatellite variation and 684 

population structure in a declining Australian Hylid Litoria aurea. Molecular Ecology, 685 
13(7), 1745-1757. doi:10.1111/j.1365-294X.2004.02190.x 686 

Cabrera, A. A., & Palsbøll, P. J. (2017). Inferring past demographic changes from 687 
contemporary genetic data: A simulation-based evaluation of the ABC methods 688 

implemented in DIYABC. Molecular Ecology Resources, 17(6), e94-e110. 689 
doi:10.1111/1755-0998.12696 690 

Calvet, M. (2004). The Quaternary glaciation of the Pyrenees. Developments in Quaternary 691 
Sciences, 2, 119-128. doi:10.1016/S1571-0866(04)80062-9 692 

Caplat, P., Edelaar, P., Dudaniec, R. Y., Green, A. J., Okamura, B., Cote, J., . . . Petit, E. J. 693 
(2016). Looking beyond the mountain: dispersal barriers in a changing world. 694 

Frontiers in Ecology and the Environment, 14(5), 262-269. doi:10.1002/fee.1280 695 
Carranza, S., & Amat, F. (2005). Taxonomy, biogeography and evolution of Euproctus 696 

(Amphibia: Salamandridae), with the resurrection of the genus Calotriton and the 697 
description of a new endemic species from the Iberian Peninsula. Zoological Journal 698 

of the Linnean Society, 145(4), 555-582. doi:10.1111/j.1096-3642.2005.00197.x 699 
Carranza, S., Arnold, E., Mateo, J. A., & López-Jurado, L. F. (2000). Long-distance 700 

colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), 701 
revealed by mitochondrial DNA sequences. Proceedings of the Royal Society of 702 



30 
 

London. Series B: Biological Sciences, 267(1444), 637-649. 703 

doi:10.1098/rspb.2000.1050 704 
Cayuela, H., Valenzuela-Sanchez, A., Teulier, L., Martínez-Solano, Í., Léna, J.-P., Merilä, J., . 705 

. . Schmidt, B. R. (2020). Determinants and consequences of dispersal in vertebrates 706 
with complex life cycles: a review of pond-breeding amphibians. The Quarterly 707 

Review of Biology, 95(1), 1-36. doi:doi.org/10.1086/707862 708 
Chan, L. M., & Zamudio, K. R. (2009). Population differentiation of temperate amphibians in 709 

unpredictable environments. Molecular Ecology, 18(15), 3185-3200. 710 
doi:10.1111/j.1365-294X.2009.04273.x 711 

Chapuis, M.-P., & Estoup, A. (2006). Microsatellite null alleles and estimation of population 712 
differentiation. Molecular Biology and Evolution, 24(3), 621-631. 713 

doi:10.1093/molbev/msl191  714 
Charrier, O., Dupont, P., Pornon, A., & Escaravage, N. (2014). Microsatellite marker analysis 715 

reveals the complex phylogeographic history of Rhododendron ferrugineum 716 
(Ericaceae) in the Pyrenees. PLoS One, 9(3), e92976. 717 

doi:10.1371/journal.pone.0092976 718 
Chiucchi, J. E., & Gibbs, H. (2010). Similarity of contemporary and historical gene flow 719 

among highly fragmented populations of an endangered rattlesnake. Molecular 720 
Ecology, 19(24), 5345-5358. doi:10.1111/j.1365-294X.2010.04860.x 721 

Clergue-Gazeau, M., & Martínez-Rica, J. (1978). Les différents biotopes de l’urodèle 722 
pyrénéen, Euproctus asper. Bulletin de la Société d'Histoire Naturelle de Toulouse, 723 

114(3-4), 461-471.  724 
Clobert, J., Le Galliard, J. F., Cote, J., Meylan, S., & Massot, M. (2009). Informed dispersal, 725 

heterogeneity in animal dispersal syndromes and the dynamics of spatially structured 726 
populations. Ecology Letters, 12(3), 197-209. doi:10.1111/j.1461-0248.2008.01267.x 727 

Cornuet, J. M., Pudlo, P., Veyssier, J., Dehne-Garcia, A., Gautier, M., Leblois, R., . . . Estoup, 728 
A. (2014). DIYABC v2.0: a software to make approximate Bayesian computation 729 

inferences about population history using single nucleotide polymorphism, DNA 730 
sequence and microsatellite data. Bioinformatics, 30(8), 1187-1189. 731 

doi:10.1093/bioinformatics/btt763 732 
Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, 733 

new heuristics and parallel computing. Nature Methods, 9(8), 772. 734 
doi:10.1038/nmeth.2109  735 

Denoël, M., Dalleur, S., Langrand, E., Besnard, A., & Cayuela, H. (2018). Dispersal and 736 
alternative breeding site fidelity strategies in an amphibian. Ecography, 41(9), 1543-737 

1555. doi:10.1111/ecog.03296  738 
Dray, S., & Dufour, A.-B. (2007). The ade4 package: implementing the duality diagram for 739 

ecologists. Journal of Statistical Software, 22(4), 1-20. doi:10.18637/jss.v022.i04  740 
Drechsler, A., Geller, D., Freund, K., Schmeller, D. S., Kuenzel, S., Rupp, O., . . . Steinfartz, 741 

S. (2013). What remains from a 454 run: estimation of success rates of microsatellite 742 
loci development in selected newt species (Calotriton asper, Lissotriton helveticus, 743 

and Triturus cristatus) and comparison with Illumina-based approaches. Ecology and 744 
Evolution, 3(11), 3947-3957. doi:10.1002/ece3.764 745 

Epps, C. W., & Keyghobadi, N. (2015). Landscape genetics in a changing world: 746 
disentangling historical and contemporary influences and inferring change. Molecular 747 

Ecology, 24(24), 6021-6040. doi:10.1111/mec.13454 748 



31 
 

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals 749 

using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 750 
2611-2620. doi:10.1111/j.1365-294X.2005.02553.x 751 

Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred 752 
from metric distances among DNA haplotypes: application to human mitochondrial 753 

DNA restriction data. Genetics, 131(2), 479-491.  754 
Favre, L., Balloux, F., Goudet, J., & Perrin, N. (1997). Female-biased dispersal in the 755 

monogamous mammal Crocidura russula: evidence from field data and microsatellite 756 
patterns. Proceedings of the Royal Society of London. Series B: Biological Sciences, 757 

264(1378), 127-132. doi:10.1098/rspb.1997.0019 758 
Felsenstein, J. (2005). PHYLIP (phylogeny inference package) version 3.6. Distributed by the 759 

author. Seattle (WA): Department of Genome Sciences, University of Washington.  760 
Ferchaud, A. L., Eudeline, R., Arnal, V., Cheylan, M., Pottier, G., Leblois, R., & Crochet, P. 761 

A. (2015). Congruent signals of population history but radically different patterns of 762 
genetic diversity between mitochondrial and nuclear markers in a mountain lizard. 763 

Molecular Ecology, 24(1), 192-207. doi:10.1111/mec.13011 764 
Francis, R. M. (2017). pophelper: an R package and web app to analyse and visualize 765 

population structure. Molecular Ecology Resources, 17(1), 27-32. doi:10.1111/1755-766 
0998.12509 767 

García‐Ruiz, J. M., Valero‐Garcés, B. L., Martí‐Bono, C., & González‐Sampériz, P. (2003). 768 
Asynchroneity of maximum glacier advances in the central Spanish Pyrenees. Journal 769 

of Quaternary Science, 18(1), 61-72. doi:10.1002/jqs.715 770 
Gill, D. E. (1978). The metapopulation ecology of the red‐spotted newt, Notophthalmus 771 

viridescens (Rafinesque). Ecological monographs, 48(2), 145-166. 772 
doi:10.2307/2937297  773 

Gómez, A., & Lunt, D. H. (2007). Refugia within refugia: patterns of phylogeographic 774 
concordance in the Iberian Peninsula. In S. Weiss & N. Ferrand (Eds.), 775 

Phylogeography of southern European refugia (pp. 155-188). Amsterdam: Springer. 776 
González-Sampériz, P., Valero-Garcés, B. L., Moreno, A., Jalut, G., García-Ruiz, J. M., 777 

Martí-Bono, C., . . . Dedoubat, J. (2006). Climate variability in the Spanish Pyrenees 778 
during the last 30,000 yr revealed by the El Portalet sequence. Quaternary Research, 779 

66(1), 38-52. doi:10.1016/j.yqres.2006.02.004 780 
Goudet, J. (2002). FSTAT version 2.9. 3.2, a program to estimate and test gene diversities and 781 

fixation indices. Lausanne, Switzerland: Institute of Ecology. 782 
http://www2.unil.ch/popgen/softwares/fstat.htm.  783 

Goudet, J., & Jombart, T. (2015). hierfstat: estimation and tests of hierarchical F-statistics. R 784 
package version 0.04-22.  785 

Goudet, J., Perrin, N., & Waser, P. (2002). Tests for sex‐biased dispersal using bi‐parentally 786 
inherited genetic markers. Molecular Ecology, 11(6), 1103-1114. doi:10.1046/j.1365-787 

294X.2002.01496.x 788 
Grant, E. H. C., Nichols, J. D., Lowe, W. H., & Fagan, W. F. (2010). Use of multiple 789 

dispersal pathways facilitates amphibian persistence in stream networks. Proceedings 790 
of the National Academy of Sciences, 107(15), 6936-6940. 791 

doi:10.1073/pnas.1000266107 792 
Helfer, V., Broquet, T., & Fumagalli, L. (2012). Sex-specific estimates of dispersal show 793 

female philopatry and male dispersal in a promiscuous amphibian, the alpine 794 
salamander (Salamandra atra). Molecular Ecology, 21(19), 4706-4720. 795 

doi:10.1111/j.1365-294X.2012.05742.x 796 

http://www2.unil.ch/popgen/softwares/fstat.htm


32 
 

Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of 797 

the Linnean Society, 68(1-2), 87-112. doi:10.1006/bijl.1999.0332 798 
Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405(6789), 907-799 

913. doi:10.1038/35016000 800 
Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. 801 

Philosophical Transactions of the Royal Society of London B: Biological Sciences, 802 
359(1442), 183-195; discussion 195. doi:10.1098/rstb.2003.1388 803 

Hewitt, G. M., & Butlin, R. K. (1997). Causes and consequences of population structure. In J. 804 
R. Krebs & N. Davies (Eds.), Behavioral Ecology, 4th edn. (pp. 350-372). Oxford: 805 

Blackwell. 806 
Holderegger, R., & Thiel-Egenter, C. (2009). A discussion of different types of glacial refugia 807 

used in mountain biogeography and phylogeography. Journal of Biogeography, 36(3), 808 
476-480. doi:10.1111/j.1365-2699.2008.02027.x 809 

Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation 810 
program for dealing with label switching and multimodality in analysis of population 811 

structure. Bioinformatics, 23(14), 1801-1806. doi:10.1093/bioinformatics/btm233 812 
Johnson, M. L., & Gaines, M. S. (1990). Evolution of dispersal: theoretical models and 813 

empirical tests using birds and mammals. Annual Review of Ecology and Systematics, 814 
21(1), 449-480. doi:10.1146/annurev.es.21.110190.002313  815 

Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and sibship inference 816 
from multilocus genotype data. Molecular Ecology Resources, 10(3), 551-555. 817 

doi:10.1111/j.1755-0998.2009.02787.x 818 
Kalinowski, S. T. (2005). hp-rare 1.0: a computer program for performing rarefaction on 819 

measures of allelic richness. Molecular Ecology Notes, 5(1), 187-189. 820 
doi:10.1111/j.1471-8286.2004.00845.x 821 

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., . . . Duran, C. 822 
(2012). Geneious Basic: an integrated and extendable desktop software platform for 823 

the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. 824 
doi:10.1093/bioinformatics/bts199 825 

Kraaijeveld-Smit, F. J., Beebee, T. J., Griffiths, R. A., Moore, R. D., & Schley, L. (2005). 826 
Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad 827 

Alytes muletensis. Molecular Ecology, 14(11), 3307-3315. doi:10.1111/j.1365-828 
294X.2005.02614.x 829 

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics 830 
Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 831 

1870-1874. doi:10.1093/molbev/msw054 832 
Li, X. Y., & Kokko, H. (2019). Sex-biased dispersal: a review of the theory. Biological 833 

Reviews, 94(2), 721-736. doi:10.1111/brv.12475 834 
Liberal, I. M., Burrus, M., Suchet, C., Thebaud, C., & Vargas, P. (2014). The evolutionary 835 

history of Antirrhinum in the Pyrenees inferred from phylogeographic analyses. BMC 836 
Evolutionary Biology, 14(1), 146. doi:10.1186/1471-2148-14-146 837 

[dataset] Lucati, F., Poignet, M., Miró, A., Trochet, A., Aubret, F., Barthe, L., … Ventura, M. 838 
(2020). Data from: Multiple glacial refugia and contemporary dispersal shape the 839 

genetic structure of an endemic amphibian from the Pyrenees. Dryad Digital 840 
Repository, doi: 10.5061/dryad.5tb2rbp23 841 

Magri, D., Vendramin, G. G., Comps, B., Dupanloup, I., Geburek, T., Gömöry, D., . . . Roure, 842 
J. M. (2006). A new scenario for the Quaternary history of European beech 843 



33 
 

populations: palaeobotanical evidence and genetic consequences. New Phytologist, 844 

171(1), 199-221. doi:10.1111/j.1469-8137.2006.01740.x 845 
Mantel, N., & Valand, R. S. (1970). A technique of nonparametric multivariate analysis. 846 

Biometrics, 26(3), 547-558.  847 
Martínez-Rica, J., & Clergue-Gazeau, M. (1977). Données nouvelles sur la répartition 848 

géographique de l’espèce Euproctus asper Dugès, Urodèle, Salamandridae. Bulletin 849 
de la Société d’Histoire Naturelle de Tolouse, 113(3-4), 318-330.  850 

Milá, B., Carranza, S., Guillaume, O., & Clobert, J. (2010). Marked genetic structuring and 851 
extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: 852 

Salamandridae) revealed by genome-wide AFLP but not mtDNA. Molecular Ecology, 853 
19(1), 108-120. doi:10.1111/j.1365-294X.2009.04441.x 854 

Montero‐Pau, J., Gómez, A., & Muñoz, J. (2008). Application of an inexpensive and high‐855 
throughput genomic DNA extraction method for the molecular ecology of 856 

zooplanktonic diapausing eggs. Limnology and Oceanography: Methods, 6(6), 218-857 
222. doi:10.4319/lom.2008.6.218 858 

Montori, A., & Llorente, G. A. (2014). Tritón pirenaico–Calotriton asper (Dugès, 1852). In 859 
A. Salvador & I. Martínez-Solano (Eds.), Enciclopedia Virtual de los Vertebrados (pp. 860 

28). Madrid: Museo Nacional de Ciencias Naturales. 861 
Montori, A., Llorente, G. A., & García-París, M. (2008). Allozyme differentiation among 862 

populations of the Pyrenean newt Calotriton asper (Amphibia: Caudata) does not 863 
mirror their morphological diversification. Zootaxa, 1945, 39-50. 864 

doi:10.11646/zootaxa.1945.1.2 865 
Montori, A., Llorente, G. A., & Richter-Boix, A. (2008). Habitat features affecting the small-866 

scale distribution and longitudinal migration patterns of Calotriton asper in a Pre-867 
Pyrenean population. Amphibia-Reptilia, 29(3), 371-381. 868 

doi:10.1163/156853808785112048 869 
Montori, A., Richter-Boix, A., Franch, M., Santos, X., Garriga, N., & Llorente, G. A. (2012). 870 

Natural fluctuations in a stream dwelling newt as a result of extreme rainfall: a 21-year 871 
survey of a Calotriton asper population. Basic and Applied Herpetology, 26, 43-56. 872 

doi:10.11160/bah.12001 873 
Mouret, V., Guillaumet, A., Cheylan, M., Pottier, G., Ferchaud, A. L., & Crochet, P. A. 874 

(2011). The legacy of ice ages in mountain species: post-glacial colonization of 875 
mountain tops rather than current range fragmentation determines mitochondrial 876 

genetic diversity in an endemic Pyrenean rock lizard. Journal of Biogeography, 38(9), 877 
1717-1731. doi:10.1111/j.1365-2699.2011.02514.x 878 

Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from 879 
molecular data. Journal of Molecular Evolution, 19(2), 153-170. 880 

doi:10.1007/bf02300753 881 
Nichols, R. A., & Beaumont, M. A. (1996). Is it ancient or modern history that we can read in 882 

the genes? In M. E. Hochberg, J. Clobert, & R. Barbault (Eds.), Aspects of the Genesis 883 
and Maintenance of Biological Diversity (pp. 69-87). Oxford: Oxford University 884 

Press. 885 
Noguerales, V., Cordero, P. J., & Ortego, J. (2016). Hierarchical genetic structure shaped by 886 

topography in a narrow-endemic montane grasshopper. BMC Evolutionary Biology, 887 
16(1), 96. doi:10.1186/s12862-016-0663-7 888 

Noguerales, V., Cordero, P. J., & Ortego, J. (2017). Testing the role of ancient and 889 
contemporary landscapes on structuring genetic variation in a specialist grasshopper. 890 

Ecology and Evolution, 7(9), 3110-3122. doi:10.1002/ece3.2810 891 



34 
 

Oromi, N., Valbuena-Ureña, E., Soler-Membrives, A., Amat, F., Camarasa, S., Carranza, S., . 892 

. . Denoël, M. (2018). Genetic structure of lake and stream populations in a Pyrenean 893 
amphibian (Calotriton asper) reveals evolutionary significant units associated with 894 

paedomorphosis. Journal of Zoological Systematics and Evolutionary Research, 57, 895 
418-430. doi:10.1111/jzs.12250 896 

Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J., & De Meester, L. (2013). Drivers of 897 
population genetic differentiation in the wild: isolation by dispersal limitation, 898 

isolation by adaptation and isolation by colonization. Molecular Ecology, 22(24), 899 
5983-5999. doi:10.1111/mec.12561 900 

Ortego, J., Noguerales, V., Gugger, P. F., & Sork, V. L. (2015). Evolutionary and 901 
demographic history of the Californian scrub white oak species complex: an 902 

integrative approach. Molecular Ecology, 24(24), 6188-6208. doi:10.1111/mec.13457 903 
Paetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the 904 

direct, real-time estimation of migration rate: a simulation-based exploration of 905 
accuracy and power. Molecular Ecology, 13(1), 55-65. doi:10.1046/j.1365-906 

294X.2004.02008.x 907 
Piry, S., Alapetite, A., Cornuet, J. M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). 908 

GENECLASS2: a software for genetic assignment and first-generation migrant 909 
detection. Journal of Heredity, 95(6), 536-539. doi:10.1093/jhered/esh074 910 

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using 911 
multilocus genotype data. Genetics, 155(2), 945-959.  912 

Pritchard, J. K., Wen, X., & Falush, D. (2010). Documentation for STRUCTURE software, 913 
version 2.3. Department of Human Genetics University of Chicago, Department of 914 

Statistics University of Oxford.  915 
Prugnolle, F., & De Meeus, T. (2002). Inferring sex-biased dispersal from population genetic 916 

tools: a review. Heredity, 88(3), 161-165. doi:10.1038/sj.hdy.6800060  917 
R Core Team. (2018). R: A language and environment for statistical computing. Vienna, 918 

Austria: R Foundation for Statistical Computing. http://www.R-project.org/.  919 
Rato, C., Carranza, S., Perera, A., Carretero, M. A., & Harris, D. J. (2010). Conflict ing 920 

patterns of nucleotide diversity between mtDNA and nDNA in the Moorish gecko, 921 
Tarentola mauritanica. Molecular Phylogenetics and Evolution, 56(3), 962-971. 922 

doi:10.1016/j.ympev.2010.04.033 923 
Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43(1), 223-225.  924 

Rioux Paquette, S. (2011). PopGenKit: useful functions for (batch) file conversion and data 925 
resampling in microsatellite datasets. R package version 1.0.  926 

Roffler, G. H., Talbot, S. L., Luikart, G., Sage, G. K., Pilgrim, K. L., Adams, L. G., & 927 
Schwartz, M. K. (2014). Lack of sex-biased dispersal promotes fine-scale genetic 928 

structure in alpine ungulates. Conservation Genetics, 15(4), 837-851. 929 
doi:10.1007/s10592-014-0583-2 930 

Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal 931 
evolution. Annual Review of Ecology, Evolution, and Systematics, 38, 231-253. 932 

doi:10.1146/annurev.ecolsys.38.091206.095611 933 
Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under 934 

isolation by distance. Genetics, 145(4), 1219-1228.  935 
Rousset, F. (2008). GENEPOP’007: a complete re‐implementation of the GENEPOP software 936 

for Windows and Linux. Molecular Ecology Resources, 8(1), 103-106. 937 
doi:10.1111/j.1471-8286.2007.01931.x 938 

http://www.r-project.org/


35 
 

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-939 

Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism 940 
analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299-3302. 941 

doi:10.1093/molbev/msx248 942 
Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., & Hanski, I. (1998). 943 

Inbreeding and extinction in a butterfly metapopulation. Nature, 392(6675), 491-494. 944 
doi:10.1038/33136 945 

Salzburger, W., Ewing, G. B., & Von Haeseler, A. (2011). The performance of phylogenetic 946 
algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 947 

20(9), 1952-1963. doi:10.1111/j.1365-294X.2011.05066.x 948 
Saura, S., Bodin, Ö., & Fortin, M. J. (2014). Stepping stones are crucial for species' long‐949 

distance dispersal and range expansion through habitat networks. Journal of Applied 950 
Ecology, 51(1), 171-182. doi:10.1111/1365-2664.12179 951 

Schmitt, T. (2009). Biogeographical and evolutionary importance of the European high 952 
mountain systems. Frontiers in Zoology, 6, 9. doi:10.1186/1742-9994-6-9 953 

Schmitt, T., Hewitt, G. M., & Muller, P. (2006). Disjunct distributions during glacial and 954 
interglacial periods in mountain butterflies: Erebia epiphron as an example. Journal of 955 

Evolutionary Biology, 19(1), 108-113. doi:10.1111/j.1420-9101.2005.00980.x 956 
Smith, M. A., & Green, D. M. (2005). Dispersal and the metapopulation paradigm in 957 

amphibian ecology and conservation: are all amphibian populations metapopulations? 958 
Ecography, 28(1), 110-128. doi:10.1111/j.0906-7590.2005.04042.x 959 

Smith, M. A., & Green, D. M. (2006). Sex, isolation and fidelity: unbiased long-distance 960 
dispersal in a terrestrial amphibian. Ecography, 29(5), 649-658. 961 

doi:10.1111/j.2006.0906-7590.04584.x 962 
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses 963 

with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688-2690. 964 
doi:10.1093/bioinformatics/btl446 965 

Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative 966 
phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 967 

7(4), 453-464. doi:10.1046/j.1365-294x.1998.00289.x 968 
Takezaki, N., Nei, M., & Tamura, K. (2014). POPTREEW: web version of POPTREE for 969 

constructing population trees from allele frequency data and computing some other 970 
quantities. Molecular Biology and Evolution, 31(6), 1622-1624. 971 

doi:10.1093/molbev/msu093 972 
Tallmon, D. A., Luikart, G., & Waples, R. S. (2004). The alluring simplicity and complex 973 

reality of genetic rescue. Trends in Ecology & Evolution, 19(9), 489-496. 974 
doi:10.1016/j.tree.2004.07.003  975 

Trochet, A., Courtois, E. A., Stevens, V. M., Baguette, M., Chaine, A., Schmeller, D. S., . . . 976 
Wiens, J. J. (2016). Evolution of sex-biased dispersal. The Quarterly Review of 977 

Biology, 91(3), 297-320. doi:10.1086/688097 978 
Tucker, J. M., Allendorf, F. W., Truex, R. L., & Schwartz, M. K. (2017). Sex‐biased dispersal 979 

and spatial heterogeneity affect landscape resistance to gene flow in fisher. Ecosphere, 980 
8(6), e01839. doi:10.1002/ecs2.1839 981 

Valbuena-Ureña, E., Amat, F., & Carranza, S. (2013). Integrative phylogeography of 982 
Calotriton newts (Amphibia, Salamandridae), with special remarks on the 983 

conservation of the endangered Montseny brook newt (Calotriton arnoldi). PLoS One, 984 
8(6), e62542. doi:10.1371/journal.pone.0062542 985 



36 
 

Valbuena-Ureña, E., Oromi, N., Soler-Membrives, A., Carranza, S., Amat, F., Camarasa, S., . 986 

. . Steinfartz, S. (2018). Jailed in the mountains: Genetic diversity and structure of an 987 
endemic newt species across the Pyrenees. PLoS One, 13(8), e0200214. 988 

doi:10.1371/journal.pone.0200214 989 
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-990 

CHECKER: software for identifying and correcting genotyping errors in microsatellite 991 
data. Molecular Ecology Notes, 4(3), 535-538. doi:10.1111/j.1471-8286.2004.00684.x 992 

Ventura, M., Petrusek, A., Miró, A., Hamrová, E., Buñay, D., De Meester, L., & Mergeay, J. 993 
(2014). Local and regional founder effects in lake zooplankton persist after thousands 994 

of years despite high dispersal potential. Molecular Ecology, 23, 1014-1027. 995 
doi:10.1111/mec.12656 996 

Vos, C. C., Antonisse-De Jong, A. G., Goedhart, P. W., & Smulders, M. J. M. (2001). Genetic 997 
similarity as a measure for connectivity between fragmented populations of the moor 998 

frog (Rana arvalis). Heredity, 86, 598-608. doi:10.1046/j.1365-2540.2001.00865.x 999 
Wallis, G. P., Waters, J. M., Upton, P., & Craw, D. (2016). Transverse alpine speciation 1000 

driven by glaciation. Trends in Ecology & Evolution, 31(12), 916-926. 1001 
doi:10.1016/j.tree.2016.08.009 1002 

Werth, S., Gugerli, F., Holderegger, R., Wagner, H. H., Csencsics, D., & Scheidegger, C. 1003 
(2007). Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen. 1004 

Molecular Ecology, 16(13), 2807-2815. doi:10.1111/j.1365-294X.2007.03344.x 1005 
Zellmer, A., & Knowles, L. L. (2009). Disentangling the effects of historic vs. contemporary 1006 

landscape structure on population genetic divergence. Molecular Ecology, 18(17), 1007 
3593-3602. doi:10.1111/j.1365-294X.2009.04305.x 1008 

1009 



37 
 

Data Accessibility 1010 

Newly generated mtDNA sequence data were deposited in GenBank under accession numbers 1011 

MT498344-MT498349. Original sequence alignments and microsatellite genotypes were 1012 

deposited in Dryad (Lucati et al., 2020). 1013 

 1014 

Author Contributions 1015 

F.L., M.P., A.M., A.T. and M.V. conceived and designed the study. F.L., M.P., A.M., A.T., 1016 

L.B., R.B., O.C., E.D., M.D., H.L.C., A.M.S., M.M.T., D.O’B., G.P., J.S. and J.T. collected the 1017 

samples. F.L., M.P., A.T., J.C., M.R. and I.S. analysed samples and data, under the supervision 1018 

of M.V.. F.L. and M.P. wrote the first draft, A.M., A.T., R.B., T.B., O.C., M.D., A.M.S., 1019 

D.O’B., V.O., I.S., J.S. and M.V. improved successive versions. All authors read and approved 1020 

the final manuscript.  1021 



38 
 

Tables and Figures 1022 

 1023 
Tables 1024 

 1025 
Table 1 Genetic diversity parameters for each genetic cluster identified by STRUCTURE 1026 

analysis in Calotriton asper.  1027 

Cluster N Ar PAAr HO HE FIS 

1 470 8.120 0.530 0.484 0.647 0.253 

2 129 7.540 0.320 0.389 0.552 0.298 

3 160 7.680 0.220 0.369 0.626 0.414 

4 259 10.240 1.440 0.460 0.734 0.375 

5 281 7.690 0.410 0.422 0.633 0.335 

Abbreviations: N, sample size; Ar, allelic richness standardized for sample size; PAAr, rarefied 1028 
private allelic richness standardized for sample size; HO, observed heterozygosity; HE, expected 1029 

heterozygosity; FIS, inbreeding coefficient. 1030 

 1031 

 1032 
Table 2 Analysis of molecular variance (AMOVA) for Calotriton asper at the Pyrenean scale. 1033 

Two hierarchical structures were tested: (1) among clusters identified by STRUCTURE 1034 
analysis and among tributary valleys within clusters, (2) among tributary valleys and among 1035 

populations within valleys. 1036 

Source of variation d.f. SS 

Variance 

component 

% 

Variation Fixation indices 

(1)           

Among clusters 4 2723.166 1.368 19.195 FCT = 0.192*** 

Among valleys within clusters 17 998.617 0.961 13.490 FSC = 0.167*** 

Within valleys 1928 9040.858 4.797 67.315 FST = 0.327*** 

(2)           

Among valleys 20 3875.541 1.266 20.48 FCT = 0.205*** 

Among populations within 

valleys 48 2372.971 1.295 20.96 FSC = 0.264*** 

Among individuals within 

populations 1169 4479.044 0.212 3.43 FIS = 0.059*** 

Within individuals 1238 4218.500 3.408 55.13 FIT = 0.449*** 

Abbreviations: d.f., degrees of freedom; SS, sum of squares; FCT, fixation index among groups; 1037 

FSC, fixation index among populations within groups; FST, fixation index within populations; 1038 
FIS, fixation index among individuals within populations; FIT, fixation index within individuals. 1039 

*** P < 0.001 1040 

 1041 

 1042 
 1043 

 1044 
 1045 

 1046 
 1047 

 1048 
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Table 3 Posterior probability of tested scenarios and 95% confidence intervals (CI) estimated 1049 

with DIYABC analysis when considering only microsatellites and when including both mtDNA 1050 
(cyt-b) and microsatellite markers. Type I and II errors for the best supported scenario are 1051 

indicated. See Figure 2 for more information on the tested scenarios. 1052 

 1053 
 Microsatellites Microsatellites + cyt-b 

Scenario 

Posterior 

probability 95% CI 

Type I 

error 

Type II 

error 

Posterior 

probability 95% CI 

Type I 

error 

Type II 

error 

1 0.002 0.002-0.003   0.007 0.006-0.008   

2 0.002 0.002-0.003   0.010 0.009-0.012   

3 0.996 0.995-0.996 0.034 0.041 0.983 0.980-0.985 0.039 0.029 

 1054 

 1055 
Table 4 Posterior parameters (median and 95% confidence intervals) and RMedAD (Relative 1056 

Median Absolute Deviation) estimated with DIYABC analysis for the best supported scenario 1057 

(scenario 3) when considering only microsatellites (simple sequence repeats – SSRs) and when 1058 

including both mtDNA (cyt-b) and microsatellite markers. See Figures 2 and S1 for more 1059 

information on the tested scenarios. 1060 

 Microsatellites Microsatellites + cyt-b 

Parameter Median Q2.5 Q97.5 RMedAD Median Q2.5 Q97.5 RMedAD 

N1 3 460 1 310 9 940 0.197 3 000 962 9 930 0.225 

N2 4 600 2 470 7 950 0.186 3 790 1 550 8 690 0.195 

N3 6 380 2 790 12 600 0.175 5 940 2 160 12 800 0.195 

N4 10 300 5 680 14 200 0.135 9 620 4 730 14 200 0.154 

N5 6 930 3 110 12 900 0.183 7 100 2 400 13 700 0.207 

N135 7 590 997 14 400 0.324 6 490 667 14 200 0.314 

N241 14 400 2 680 19 700 0.269 13 200 1 980 19 500 0.307 

t1 4 050 1 470 7 770 0.245 2 700 636 6 470 0.288 

t2 5 020 1 510 9 560 0.209 3 680 860 9 200 0.255 

t3 14 200 6 730 19 600 0.169 12 000 4 620 19 300 0.219 

Mean µ(SSRs) 1.32x10-4 1.01x10-4 2.45x10-4 0.278 1.59x10-4 1.06x10-4 3.37x10-4 0.253 

Mean P(SSRs) 0.229 0.122 0.300 0.188 0.195 0.110 0.291 0.180 

Mean µ(cyt-b) - - - - 1.69x10-7 6.08x10-8 4.00x10-7 0.276 

Mean k1(cyt-b) - - - - 7.920 0.410 18.800 0.442 

Abbreviations: N, effective population size for each analysed deme (1 – cluster 1; 2 – cluster 2; 1061 
3 – cluster 3; 4 – cluster 4, 5 – cluster 5; 135 – central clusters; 241 – three oldest glacial refugia: 1062 

eastern, western and central); t, time of events in generations (t1 – time to the most recent split; 1063 
t2 – time to the intermediate split; t3 – time to the most ancient split); mean µ, mean mutation 1064 

rate; mean P, mean coefficient P; mean k1, mean coefficient k1; Q2.5, quantile 2.5%; Q97.5, 1065 
quantile 97.5%.1066 
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Figures 1067 

 1068 

 1069 
Figure 1 Results of the Bayesian clustering analysis across Calotriton asper distribution range. 1070 
Panel (a) shows the geographic distribution of the five genetic clusters identified by 1071 

STRUCTURE. Sampled populations are represented by pie charts highlighting the population 1072 
cluster membership obtained in STRUCTURE. Panel (b) shows STRUCTURE barplot of 1073 

membership assignment for K = 5. Each individual is represented by a vertical bar 1074 
corresponding to the sum of assignment probabilities to the K cluster. White lines separate 1075 

populations. Panel (c) represents a neighbour-joining tree based on net nucleotide distances 1076 
among clusters inferred by STRUCTURE. For population codes see Table S1.  1077 
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 1078 
 1079 
Figure 2 Phylogeographic scenarios tested in DIYABC during phase 2 (a). The most likely 1080 
scenario, namely number 3, with the estimated time points (t1 – t3) of each split is shown in 1081 

panel (b). More information on tested scenarios, estimated parameters and respective priors is 1082 
given in Table 4 and S2 and in Figure S1. 1083 

 1084 
 1085 

 1086 

 1087 
 1088 
Figure 3 Spatial interpolation of allelic richness (Ar; a) and expected heterozygosity (HE; b) 1089 
among populations of Calotriton asper. Black dots denote sampling localities and black lines 1090 

delimit the five genetic clusters inferred by STRUCTURE. Each cluster is identified with its 1091 
corresponding number. Only populations with five or more genotyped individuals were 1092 

considered in the analysis. Population codes are given in Figure 1. 1093 
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 1094 
Figure 4 Neighbour-joining tree over all Calotriton asper populations based on DA distances. 1095 

Branch colours delineate the five genetic clusters identified by STRUCTURE analysis (blue: 1096 

cluster 1, light green: cluster 2, orange: cluster 3, dark green: cluster 4, pink: cluster 5), while 1097 

population code colours correspond to the distinct habitat types (blue: streams, red: lakes, green: 1098 

caves). See Table S1 for population codes. 1099 

 1100 
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 1101 
Figure 5 Chord diagram tracking first generation migrants flows between Calotriton asper 1102 
sampled populations as inferred by GeneClass2. Chord size is proportional to the number of 1103 

migrants detected and arrows indicate the direction of migration. Colours delineate the five 1104 
genetic clusters identified by STRUCTURE analysis (blue: cluster 1, light green: cluster 2, 1105 

orange: cluster 3, dark green: cluster 4, pink: cluster 5). In the outer ring, populations belonging 1106 
to the same glacial cirque or valley are connected together. Only populations where first 1107 

generation migrants with known source locality were detected are shown. For population codes 1108 
see Table S1. 1109 
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 1110 
Figure 6 Partial effects of environmental (habitat type) and geographic (latitude, longitude and 1111 
altitude) variables on allelic richness (Ar). (a), all populations; (b), cluster 1; (c), cluster 2; (d), 1112 

cluster 4. Only variables that had a significant effect on Ar as determined by linear models 1113 
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selection are drawn. Latitude and longitude are in UTM coordinates and altitude is expressed 1114 

in meters. 1115 


