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ABSTRACT

Brassica is one of the most economically important genuthefBrassicaceae family, encompassing
several key crops likBrassica napus (cabbage) and broccoBi(assica oleraceae var.italica). This
family is well known for their high content of claateristic secondary metabolites such as
glucosinolates (GLS) compounds, recognize for theireficial health properties and role in plants
defense. In this work, we have looked through getusters involved in the biosynthesis of GLS, by
combining genomic analysis with biochemical pathsvagd chemical diversity assessment. A total
of 101 Brassicaceae genes involved in GLS biosgmheere identified, using a multi-database
approach. Through a UPGMA and PCA analysis on @ied@LS genes recorded, revealed a
separation between the genes mainly involved in G structure synthesis and genes belonging
to theCYP450s andMYBs gene families. After, a detailed phylogeneticlysia was conducted to
better understand the disjunction of the aliphatid indolic genes, by focusing @YP79F1-F2 and
CYP81F1-F4, respectively. Our results point to a recent difexation of the aliphati€YP79F1 and
F2 genes irBrassica crops, while for indolic genes an earliest diviezation is observed for
CYP81F1-F4 genes. Chemical diversity revealed tBedssica crops have distinct GLS chemo-
profiles from other Brassicaceae genera; beingligigied the high contents of GLS found among
theDiplotaxis species. Also, we have explored GLS-rich spea@es@ew source of taxa with great
agronomic potential, particularly in abiotic stréskerance, namelRiplotaxis, the closest wild
relatives ofBrassica crops.

Keywords: chemical diversity; genomic diversity; GLS; abiositessBrassica crops;Diplotaxis
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1. Introduction

The Brassicaceae is one of the world’s most ecocaliyiimportant plant family (Ishida et al.,
2014). It includes important crop species sucBrassica oleracea (e.g., cauliflower, Brussels
sprouts, cabbage, broccoli, and Kai Ldrgssica rapa (e.g., pakchoi, choy sum, and Chinese
cabbage)Nasturtium officinale (e.g., watercress), afthphanus sativus (e.g., daikon radish and red
cherry radish). Other species suctbgd otaxis tenuifolia andEruca vesicaria, commonly referred

as 'rocket salads', have also attracted a conbiddrderest as culinary vegetables because af thei
strong flavor and content of putative health-pramptompounds (Verkerk et al., 2010). These
species and their crop wild relatives (CWR — tawaely related to crops) grown primarily in the
Euro-Mediterranean region, which contains the hégjpeoportion of agronomically important plants
representing an important reservoir of geneticuesss for crop improvement (Kell et al., 2008).
CWR are likely to contain a great genetic diversigégessary to combat climate change because of
the diversity of habitats in which they grow and thide range of conditions they are adapted to
(Ford-Lloyd et al., 2011).

Among the most important chemical compounds prodilbgeBrassicaceae species are the
Glucosinolates (GLS), which proved to have heaftmmting effects and importance in abiotic
stress tolerance (Cartea and Velasco, 2007). Tigegoastituted by a common structure comprising
ap-D-thioglucose group, a sulfonated oxime moiety andriable side-chain derived either from
methionine, tryptophan, phenylalanine, or from ottranched chain amino acids. GLS are found in
16 dicotyledonous plant families where, at lea3@ different structures have been identified so far
(Fahey et al., 2001; Collett et al., 2014).

GLS are present at different concentrations througthe plant organs. They can reach 1% of the
dry weight in some tissues Bfassica (Fahey et al., 2001). Within a single speciestou different
GLSs dominate the GLS occurrence in the plant (¥idelet al., 2008). The type, concentration and
distribution of the GLS in the plants of Brassicaeéamily vary according to a high number of
factors, namely species (Bellostas et al., 200&)jety (Choi et al., 2014), plant organ (Brown let a
2003; Bellostas et al., 2004) or plant age (Falhey.£1997; Brown et al., 2003) and developmental
cycle. Moreover, environmental conditions suchessen (Cartea et al., 2007), biotic (Verkerk et al.
2008) or abiotic stress factors such as salinitgrought, are also known to play a role on the
production and content of these compounds (Khah 2011; Martinez-Ballesta et al., 2015).
Recent studies have revealed that GLS and thewadies have beneficial effects on humans. They

can help in suppressing tumor growth of varioug$ypf cancers namely: breast, brain, blood, bone,
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79 colon, gastric, liver, lung, oral, pancreatic amdgpate (Zhang et al., 2003; Soundararajan and Kim,

80 2018). Significant reduction in plasma LDL-C levaks also been reported as being directly linked

81 to consumption of GLS-rich broccoli (Armah et @&015). Some GLS derived products are reported

82 to have antimicrobial effects and well documentedltin benefits (Cavaiuolo and Ferrante, 2014;

83 Bischoff, 2016). Exclusive or excessive feedingedetables and/or seeds from Brassica plants

84 have been associated with toxic effects in livds{aanEtten and Tookey, 1983; Tripathi and

85 Mishra, 2007) and strategies have been exploregdiace GLS content iBrassica vegetables to

86 increase their palatability for animal consumptf¥lerker et al., 2008).

87 The GLS biosynthetic pathway has been partiallgidated by studies ofirabidopsis (e.g. reviewed

88 in Grubb and Abel 2006; Halkier and Gershenzon 200Be GLS, synthesized from amino acids,

89 are grouped in three subtypes according to theresponding precursors: i) aliphatic GLS, derived

90 from alanine, leucine, isoleucine, valine, and nogtime; ii) indole GLS, derived from tryptophan;

91 and iii) aromatic GLS, derived from phenylalanimelayrosine (Fahey et al., 2001; Halkier and

92 Gershenzon, 2006). Different authors have repatedliphatic GLS accounting for 70-97% of the

93 total GLS content in leaves Bfassica oleracea (Cartea et al., 2007), leaves and stenBragsica

94 napus (Cleemput and Becker, 2012), leaves and seeBsas$ica juncea (Gupta et al., 2012;

95 Othmane, 2015), and sprouts and mature leavBsas$ica rapa (Wiesner et al., 2013). The

96 formation of the GLS core structure involves theacof enzymes from different families, namely

97 the CYP79 (Hansen et al., 2001; Chen et al., 20D8P83 (Bak and Feyereisen, 2001), UGT74

98 (Grubb et al., 2014), C-S-lyases (Mikkelsen et20004) and of sulfotransferases (SOTs or STs)

99 (Piotrowski et al., 2004). These enzymes are iraeiv the biosynthesis of basic GLS structures
100 from elongated and non-elongated amino acids. BBel5LS structures are subjected to a range of
101 secondary side chain modification and transfornmgpiathways catalyzed by enzymes such as flavin
102 monooxygenase (FMOOXs) (Hansen et al., 2007), GOR# (Mithen et al., 1995), GLS-OH
103 (Hansen et al., 2008) and CYP81Fs (Pfalz et a92R011) to generate different types of GLS
104  structures, that are the last finalizing gene fanml/olved in the indolic biosynthetic pathway
105 (Clarke, 2010; Fahey et al., 2001).

106 The most important mechanism for the wide productibsecondary metabolites as glucosinolates
107 relies on whole-genome events, which occurred as8icaceae evolution history (Kliebenstein et al.,
108 2001a,b; Kroymann, 2011). The availability of theole-genome sequences gives an opportunity for
109 using comparative genomics, which, in turn, cad keea better understanding of the genome

110 evolution in this family. Whole-genome sequencesaailable for more than 100 plant species

111 (Tohge et al., 2014). The massive contributionyltes) from next-generation technologies, cannot
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be currently matched by metabolomics, especialygh-quality and species-optimized approaches
are adopted (Fukushima et al., 2014). With thesiasing number of whole-genome sequences and
the freely available genomic resources, the oppdrés for conducting an analysis based on
comparative genomics is foreseen.

In this paper, we investigated gene clusters ireslon the biosynthesis of GLS, by combining
genome analysis with biochemical pathways and camgyatructure assessment. Considering the
high diversity in GLS content in Brassicaceae sggaie aim to: i) contribute to the global GLS
gene inventory in Brassicaceae; ii) compare gewersity within the three GLS sub-pathways; iii)
assess a potential genetic basis for GLS divergesiog 6 CYP gene<{{P79F1-F2 andCYP81F1-
F4), known to be key genes of indolic and aliphaticSGiosynthetic pathways, respectively; and iv)
increase the knowledge on the chemical diversi@lo® compounds in majd@rassica crops
compared to the CWR of the geridiplotaxis. By combining chemical data with genomic
sequences, we expect to provide information ofé@stiefor promoting the use of the neglected

Diplotaxis genus as a potential viable CWR of economicallgarntantBrassica crops.

2. Materials and Methods

2.1. GLS biosynthetic genes: compilation and gen@mlogy annotation

QuickGO (https://www.ebi.ac.uk/QuickGO/, Binns &t 4009), AmiGO
(http://amigo.geneontology.org/amigo, Carbon et2008) and MetaCyc (https://metacyc.org/, Caspi
et al., 2017) databases were used to filter genedvied in GLS biosynthetic process (GBP) by

searching the specific GO term (GO:0019761). Setpgerepresenting the complete set of GLS
biosynthetic genes iArabidopsis thaliana were acquired from The Arabidopsis Information

Resource (TAIR, www.arabidopsis.org, accessed hn2Di9, Berardini et al., 2015), and further

complemented with a set of genes listed as GLSgjenbe Brassica database (BRAD,

http://brassicadb.org, Wang et al., 2015), which vgeb-based database of genetic data at the whole

genome scale for importaBtassica crops. After, a complete assessment of GLS bibgyitt genes

in Brassicaceae species was retrieved, througbtsagrof several public databases namely:
Arabidopsis Information Resource (TAIR), Brassica@Bd nucleotide blast (Blastn) at NCBI,
restricting the search to orthologs within the Breaceae family. The genes sequences listed as GLS
genes in BRAD, were subjected to nucleotide BIB&gtn on TAIR), to identifyArabidopsis

thaliana homologous genes with a threshold of E-vallig™’. The following step was to perform a
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complete assessment of GLS biosynthetic genesassiiaceae species by using the BLASTN
algorithm in National Center for Biotechnology Inimation (NCBI) public database, restricting the
search for orthologs within the Brassicaceae famiith a threshold of E-valuel0™° and 50% of
query cover. Blast2GO v.5.2 (G6tz et al., 2008) wsed to assign GO terms to the sequences
dataset, to allow unigene annotation accordingieet main Gene Ontology categories, i.e. Cellular
Compartment, Molecular Function and Biological s A BlastX algorithm was used with the
following parameters: a constant expectation véiveshold of 1.0E° 20 Blast Hits, HSP length
cutoff set at 33 and HSP Hit Coverage at 60. THerent genomic information gathered from a
multi-databasing approach was represented by ar Hidgram using the online generator tool

available at https://www.meta-chart.com/. The resglfigure (Figure 2) was scaled, so that the area

of the shape was proportional to the number of g&nmntained, and the overlapping shapes

represented the genes that were present in maretieadatabase.

2.2. Gene clustering analysis

The collected GLS biosynthetic genes were useetimpn a gene cluster analysis under two
different approaches: unsupervised Principal CorapbAnalysis (PCA) and a UPGMA. The PCA
analysis was carried out usifagtoextra package in R version 3.6.1 through RStudio version
1.2.5001. To carry out the UPGMA analysis, a ddtegetaining the 78 GLS gene sequences
assigned to each of the sub-pathways was analyied MEGA X version 10.0.5 (Kumar et al.,
2018). A model assessment was performed to caéctiiatmost adequate model to the dataset, and
subsequently, a UPGMA analysis was constructedgud00 bootstraps. Phenograms were edited
using FigTree version 1.4.4 (Rambaut, 2009).

2.3. Phylogenetic analysis of CYP79F and CYP81F g&en

Sequences frorArabidopsis thaliana CYP79F1-F2 andCYP81F1-F4 were retrieved from the TAIR
database. Brassicaceae orthologs were assessé&bstigdogenes fromrabidopsis thaliana against
the NCBI database using Blastn, with an E-valugldf*® and 50% of query cover, restricted to the
Brassicaceae family. A total of 101 sequences wedreeved and analyzed, where only 69 were
marked as unique (i.e. not shared across genes¥ifdi dataset comprised 25 sequences from
CYP79F1-F2 [CYP79F1: n=8,CYP79F2: n=7 and shared: n=10] and 44 fr&@WP81F1-F4
[CYP81F1: n=9,CYP81F2: n= 9,CYP81F3: n= 10,CYP81F4: n= 9 and shared: n=7]. Sequences
were aligned using MAFFT version 7 auto strateggt@k et al., 2017) and then trimmed using

trimAl version 1.3 available at the Phylemon 2 etittp://phylemon.bioinfo.cipf.es/) under the
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automated1 algorithm. Model calculations were edrout using PartitionFinder2 (Lanfear, 2017)
and then phylogenetic estimations were made ushedVR version 8.2.10 through raxmIGUI
version 1.5b2 using a MLrapid bootstrap, autoMRE, usigabidopsis thaliana CYP79 genes as
outgroups. Lastly, visualization and manipulatidénh@ trees was done using FigTree version 1.4.4
(Rambaut, 2009).

2.4. GLS compounds assessment

Major agricultural brassica crops (iBrassica sp.,Eruca vesicaria) were selected and compiled for
GLS compounds analysis through an exhaustive fitexaeview Brassica rapa — Cartea et al.,
2012;Brassica napus— Velasco et al., 2008rassica olearaceae — Bhandari et al., 201%ruca
vesicaria- D’Antuono et al., 2008)Diplotaxis species were also included in the GLS chemodiwersit
analysis as being probable precursors and wildivekofBrassica crops (D’Antuono et al., 2008).

A matrix of presence/absence was built and thejegted as a heat map using the Heatmap tool
freely available (http://www.hiv.lanl.gov/) usinge Euclidean distance method with an average

linkage clustering, and 10000 bootstraps.

3. Results

3.1. Genomic information on GLS genes

The species diversity assessment carried out ongeh8s available at public databases enabled the
identification of 101Arabidopsis genes that were blasted using Blastn (NCBI) reetfito
Brassicaceae. From the results obtained, 36 species contaornmtion on orthologous genes
belonging to the GLS metabolic pathway. As expedtesl most represented species Weabidopsis
thaliana, which accounted for 32% of the total GLS avaiatpenes. Other species, in particular the
major crop specieBrassica napus, Brassica oleracea and Brassica rapa, display 37% of the
genomic information available at public databa&aphanus sativus (radish) comprised 8% of the
data, with other Brassicaceae model species, nabaehglina sativa, Capsella rubella, Arabis

alpina andEutrema salsugineum complementing the remaining genomic informatioaikable on

GLS genes (Figure 1).
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Figure 1- Genomic information of the GLS biosynthetic genéthe top ten Brassicaceae species
rbegistered at NCBI database. Number of sequen@able per species is represented above each
3.2. Global assessment of GLS biosynthetic genegidification

A global overview of the GLS biosynthetic pathwaytle Brassicaceae family was developed using
a multi-database approach. Although several studigs already been performed to achieve a
similar pathway reconstruction analysis, we provideur paper a global assessment of the GLS
biosynthetic pathway using not only genes describedrabidopsis but also foBrassica species.

To do so, we retrieved all the genes belongingp¢oGLS biosynthetic pathway using its specific GO
term (GO:0019761) (Supplementary Table 1). From tinorough inventory, a total of 101 genes
were identified iPArabidopsis thaliana as being GLS biosynthetic genes: 52 from AmiGQcdbed

as being involved in the GLS biosynthesis (GO:0®19752 from Brassica database
(Brassicadb.org) classified as GLS genes and 6 MetaCyc that were present in the GLS

synthesis reaction cascade (Figure 2).

MetaCyc \ 8 Brassica db

4

38 2 18

3

~ 9

Figure 2- Euler diagram displaying GLS gene annotation &t from a multi-database approach.
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251 Using MetaCyc, it was possible to assign the gewesrding to each of the GLS sub pathways:
252 aromatic, indolic and aliphatic. From the total If&hes, 78 were assigned to each of the sub-
253 pathways, while the remaining 23 were not repoa®8iosynthetic specific genes, and thus their
254  assignment remains unclear. This is probably dysitative functions related to substrate diversity
255 and regulation of GLS synthesis. Using this datapisvas possible to identify 31 genes specific
256 from aliphatic GLS, 26 genes specific from inddlitS synthesis, and 6 genes specific from

257 aromatic GLS biosynthesis (Table 1, for specifinggesee Supplementary Table 2).

258

259 Table 1-GLS genes information according to sub-pathwaysdidlic, aliphatic and aromatic.

260 Number of genes - total of genes annotated in sabfpathway; Number of specific genes - genes
261 exclusive to a given sub-pathway; Number of shgetks - genes shared in at least two sub-

262 pathways.

263
Aliphatic Aromatic Indolic Combined unigenes of the 3 pathways
N°. Genes 40 20 41 78
N°. Specific Genes 31 6 26 -
N°. Shared Genes 9 14 14 8
264

265 Gene Ontology (GO) assignment revealed a high sityeregarding the three multi-level

266 categorizations: Biological Process (BP), Molecianction (MF) and Cellular Component (CC)
267 (Figure 3). On the first categorization level, thp-hits of biological process (with more than 45

268 sequences) were related to metabolic and cellutaregses, followed by response to stimulus. In the
269 molecular function level, binding and transcriptr@gulation activities were the most represented
270 after the catalytic activity; while in the celluleomponent level, genes were mainly grouped by

271 membrane and/or organelle. These GO terms tietm@ALS biosynthetic functions, like the

272 transcription regulation activities attributed betMYB gene family, known to act as transcription
273 factors/regulators of GLS unique to the GLS-synithieg BrassicalesMYB34, MYB51 and MYB122
274  inindolic pathwayMYB28, MYB29 andMYB76 in aliphatic GLS). These hints at possible unknown
275 GLS functions need to be further explored to falfgign and determine the complete gene functions
276 in the Brassicaceae GLS biosynthetic pathway.

277

278

279

280

281
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GO Distribution by Level (2) - Top 20

#Seqs
5 30 35 40 a5 50 55
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xxxxxxxxxxxx

Figure 3- Gene Ontology (GO) terms assignment for the GioSymthetic genes. The graph displays
the term enrichment levels of the annotated sesqgealong with the GO term hierarchy: Biological
Process (BP, in green), Molecular Function (MRlure) and Cellular Component (CC, in yellow).

3.3. Uncovering GLS sub-pathways gene specificity

In order to detect sub-pathway specificity of Glehgs, two different methodologies have been
applied: 1) UPGMA as a bottom-up hierarchical @usig method to evaluate gene clustering based
on sequence alignment, regardless evolutionaryfesit2) Principal Component Analysis (PCA) to
assess gene grouping discrimination associategicto fib-pathway.

An UPGMA phenogram (Figure 4) allowed the discriation of two main clusters: one highlighted
in purple, which include many genes shared by thel8ypes pathways (aliphatic / indolic /
aromatic) and mostly related to the synthesis o§@bre structure; and a second cluster in orange
with many genes belonging to tB&P450s andMYBs gene families, which are essentially genes
related to side chain elongation of GLS, regardtédseing indolic or aliphatic, and which are known
to be responsible for the great diversity of ergttompounds.

PCA analysis of the GLS genes (Supplementary Figushowed a shared membership with no
discrimination between the three sub-pathways (iodaliphatic and aromatic). These results are
corroborated by the UPGMA phenogram where no pagkspacific clustering was identified. The
analysis of PCAs loading plots (Supplementary Feg2); PCA1 reveals 26% of the total variation,
while PCA2 accounts for 13.5%. The PCAL variatippears to be connected with a group
composed of CYP79 and CYP81 genes. Interestinghget genes belong to different GLS pathways:
CYP81F1-F4 is indolic-specific whileCYP79F1-F2 is exclusive to the aliphatic pathway. Only
CYP83Al1 and B1, an®CYP79A2 are shared within the three pathways.
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317 Figure 4- UPGMA phenogram of the 101 GLS biosynthetic geBe®tstrap values above 50 are
318 represented on the branches. Detailed UPGMA traedsable at Supplementary Figure 1.

319
320

321 3.4. Testing gene divergence as a baseline to GLi8atsification

322 Considering the two approaches by UPGMA and PCAghvtlisclosed a potential clustering of
323 CYP79 andCYP81 genes CYP79F1-F2 andCYP81F1-F4), a more detailed phylogenetic analysis

10
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324 was conducted to understand the disjunction oétiphatic and indolic genes. Considering that side
325 chain modifications of indolic GLS are controlleg four CYP81F enzyme<{YP81F1- F4) (Barco
326 and Clay, 2019), whil€YP79F1 andCYP79F2 are involved in the biosynthesis of aliphatic GhS
327 Arabidopsisthaliana, by exploring sequence diversification on Brasseee orthologs, a possible
328 differentiation of those genes could be uncovemreBrassica crops, which display a higher diversity
329 of aliphatic compounds thairabidopsis. Overall, the obtained ML phylogeny is well supedr,

330 resulting in two main clades, which separate threegeassociated with the aliphatic pathway

331 (CYP79F1 andCYP79F2) and those associated to the indolic pathvi¥P81F1, CYP81F2,

332 CYP81F3 andCYP81F4) (Figure 5). The phylogenetic analysis clearlytsghe two types of CYPs
333 analyzedCYP79 (in red) andCYP8L (in blue), into two well-supported clusters. Alsuit appears
334 that the gene divergence between these CYPs ueslénk basis of indolic and aliphatic GLS

335 biosynthesis.

336
337
338
339
340
341
342
343
344
345
346
347 e
348
349
350 {L
351 :

352 Figure 5- Phylogenetic tree from the Maximum Likelihood arssgyofCYP79F1-F2 andCYP81F1-

353 F4 genes in Brassicaceae wihthaliana CYP79F genes as outgroups. Acronyms are present as the
354 first letter of the genus and the second to speeigs At forArabidopsisthaliana, and gene

355 identification when possible. Upon lack of compl€téP annotation, accession numbers were used.
356 Different copies of the same gene are identifiedubyX” following sequential numbering, e 4.

357 thaliana X1, A. thaliana X2. Only bootstrap values above 50 are presentedegsion numbers of

358 the sequences analyzed are provided in Supplemgeraaie 3.
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CYP81 F2

CYP81F1

Brassica cluster

CYP79 F1-F2

.. A. thaliana CYP79 F1-F2
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From the analysis of theéYP79 genes, a cluster including all mafgrassica crops Brassica rapa,
Brassica juncea, Brassica olearacea) is evident (Figure 5, highlighted Bsassica cluster), where no
disjunction is observed from bei@yYP79F1 or CYP79F2. It can be easily recognize ttBrassica
crops are usually grouped in the same cluster,iwt@eeals a common diversification of indolic
GLS that portray8rassica chemotypes. Two apparent copieBodssica napa CYP79F2 are
grouped while otheBrassica sp. sequences were assembled in different treelea disclosing a
wide divergence on théYP79F1 andF2 gene sequences which could be associated with the
diversity of aliphatic GLS ifBrassica s.|. Regardin@YP81F1-F4, four clusters were obtained

matching essentially each of t6&P81F genes covered (Figure 5).

3.5. Snapshot on GLS chemodiversityBrassica crops andDiplotaxis

By performing a snapshot of the GLS chemodivenrssing an average linkage clustering method
(Figure 6), a cluster including tiB¥assica crops (e.gBrassica olearacea, Brassica juncea, Brassica
rapa, andBrassica napus) can be depicted, whiliplotaxis species appear to have a more complex
and diversified GLS chemical profile. Phylogenegtationships indicate thétiplotaxis maintains
most of the primitive morphological characters wlidfassica presents the most evolved ones with
Erucastrum occupying an intermediate position (Gomez-CammbTortosa, 1974; Gomez-Campo,
1980; Sanchez-Yélamo, 2009). By comparing the GieSrmotype diversification betwe@nassica
andDiplotaxis species, the latter shows a distinct GLS profilewhat concerns rocket crops,
collectively attributed tdiplotaxis andEruca, the wild Diplotaxis tenuifolia) and cultivatedEruca
sativa andEruca vesicaria) rockets are clustered together sharing a comnidh @ofile.

The results obtained revealed tBasssica andDiplotaxis have distinct GLS chemo-profiles. Within
Brassica species, a shared GLS profile is displayed, namelhat concerns aliphatic GLS such as
progoitrin, gluconapin, glucobrassicanathatare specific tdrassica chemo-lineage. IDiplotaxis
andE. vesicaria, glucolepidin appears as the main distinctive Glo8o¥ed by glucoerucin.
Moreover, such GLS are more diverse ambiyg otaxis species than iBrassica species, possibly as
the result of crop selection events that have magd®Brassica chemodiversity when compared to
Diplotaxis species, in which few domestication events occuaretiseveral species are in the wild

exposed to habitat conditions and constraints.
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I Eruca vesicaria
I D. virgata
o D. assurgens
I I D. erucoides
I D. ollievieri
I D. tenuifolia
66/ D. muralis
[ P D. simplex
_|: D. cretacea
I I I D. harra
I I I D. viminea
I D. ilorcitana
94 D. ibicensis
100 | 4’
D. siettiana
| D. berthautii

D. tenuisiliqua

D. catholica

E D. brachycarpa
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B. oleracea

...............
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Figure 6- Chemodiversity profiling of GLS iBrassica and rocket specie®(plotaxis andEruca).
Data matrix of GLS chemodiversity is provided irpglementary Table 4. Colors indicate presence
(red) and absence (light yellow) of a glucosinotaienpound. Bootstraps values above 50 are
presented in the clustering phenogram resulted thentEucledian distances method.

4. Discussion

4.1. GLS biosynthetic pathway: gene signature of @hatic and indolic vias

In this study, we have performed a comprehensigsesasnent of the GLS biosynthetic pathways in
Brassicaceae family. A reconstruction analysis bS@athway and a global assessment using genes
described foArabidopsis and forBrassica species were established, using a multi-databgeeaqgh

(i.e. TAIR, NCBI, Brassicadb, MetaCyc). From a tatf101 genes identified, about 78 previously
identified genes irabidopsis were classified into the three sub-pathways ofGh& biosynthetic
pathway (Supplementary Table 1), while the rema&if2B were not possible to assign to any of the
three-specific pathway of GLS, and need furthedgto uncover their functional role in specific

pathways. With the upcoming availability of morelanore genomic resources from Brassicaceae
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434  species, a complete set of functional disclosuthiwieach GLS is foreseen in a near future. Our
435 clustering approach of the 101 GLS genes recolenlyed a clear separation between the genes
436 involved mainly in GLS core structure synthesisretdaetween the 3 sub-pathways (aliphatic /
437 indolic / aromatic), and other genes belongindi®@YP450s and MYBs gene families (Figure 4).
438 The last cluster was therefore essentially compo$geénes related to the side chain elongation
439 process of GLS, which is responsible for the gdeagrsity of GLS compounds, namely the

440 biosynthesis gene€¥P450s) and the regulators of transcriptidYBs). In the PCA analysis,

441 CYP450s genes are the highest contributors for explaithiegrariation within GLS biosynthetic

442  pathway, namelyCYP81 F1-F4, which is indolic-specific, an@YP79F 1-F2, unique to the aliphatic
443 pathway. These overall results allowed us to catecthat the GLS biosynthetic pathway depends on
444  upstream genes essentially involved in the cotetre synthesis, while genes involved in the
445 synthesis of aliphatic and indolic GLS, apparesfigcific of Brassicaceae, may depend on two set of
446 gene clusters, known to be important for aliphatiad indolic-specific pathway€¥YP79F1-F2 and
447 CYP81F1-F4, respectively). Likewise, aliphatic and indolic &lare the two most important types of
448 GLS present in Brassicaceae.

449

450 4.2. Gene diversification in GLS: the case @@YP79F1-F2 and CYP81F1-F4

451  Aliphatic and indolic GLS are derived from alipfafmethionine, alanine, valine, leucine, and

452 isoleucine) and indolic amino acids (tryptophaegpectively (Wittstock and Halkier, 2002). In

453  Arabidopsisthaliana andArabidopsis lyrata, aliphatic GLS are formed exclusively from methien
454  (Windsor et al., 2005). Species of the Brassicabeae been useful models to understand the
455 dynamics and impacts of ancient polyploidy (genamebling), with the entire family having

456 undergone a whole genome duplication (named)Atnd theBrassica crops suffered an additional
457 genome triplication (Br) (Schranz and Mitchell-Olds, 2006; Thomas et20Q6). Several authors
458 have suggested that the genetic diversificatioBld® in Brassicaceae is correlated with the

459 polyploid occurrence in this family, with the StWGD event at 77.5 Mya where indolic

460 glucosinolates appeared, and theo/dvent at approximately 56 Mya (Kagale et al., 30Wvhere

461 chain elongation of Met-derived aliphatic GLS igegent (Schranz et al., 2011). Moreover, it has
462 been pointed out that the diversity based on GluBposition inBrassica species could be related to
463 A, B and C genomes (Ishida et al., 2014). The threxestraBrassica species with diploid genome
464 chromosomedBrassica nigra (BB, 2n = 16) contain GLS with three carbon (@eschains, derived
465 from a single elongation reactioBrassica oleracea (CC, 2n = 18) contains GLS with either 3C or
466 4C side chains; anBrassica rapa (AA, 2n = 20) contains GLS with either 4C or 5@eschains
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(Ishida et al., 2014). Recently, studies have fedum genome evolution underlying the basis of
GLS diversification. Bergh et al. (2016) reportidttthe genes that have undergone a high
diversification process encode the MAM (MethyltHigdmalate) enzymes and also the CYP81 side-
chain modification enzymes responsible for a lgpge of the GLS chemotypes observed. MAM
synthase enzymes are central for the diversifinaticaliphatic GLS structures #rabidopsis

thaliana and related species (Heidel et al, 2006); WGN¥®81F acts in the final step of the indolic
GLS pathway and have been reported as responsibdeviide array of natural variation among
Arabidopsis thaliana ecotypes (Pfalz et al., 2009). In this species bibsynthesis of indolic GLS,
hydroxylations are catalyzed by cytochromes P450@€CYP81F subfamily (Pfalz et al., 2009;
Barco and Clay, 2019), followed by methylation lué tmethyltransferases, IGMT1 and IGMT2 in
Arabidopsisthaliana (Pfalz et al., 2011). In indolic GLS, the CYP8X&amily (CYP81F1-F3) has
been identified as the encoder of the oxidizingyemz that converts indolyl- 3-methyl GLS (13M) to
40H-13M, while CYP81F4 acts in the hydroxylationGit-position (Pfalz et al., 2011). Such
secondary modifications can present high varigb@imong species in nature and they are the main
responsible for the diversity observed across rti@e 120 types of GLS that have been described to
date (Kliebenstein et al., 2001a). CYP81F2 has keggested to have neofunctionalized in plant
innate immunity that subsequently was maintainetrabidopsis thaliana, but lost in the ancestral
Brassicaceae species. The phylogenetic analydwrped revealed four clusters, each of them
associated t€YP81F1 to F4. SinceBrassica crops were grouped in the same cluster, it suggest
common diversification of indolic GLS that portrasassica chemotypes, which are present in less
extent in aliphatic GLS.

In the aliphatic GLS pathway in Brassicacda¥P79 is a key variable gene that has been considered
as a driving force in GLS diversification. Sevestdps catalyzed b@YP79F1 andCYP79F2 result
from gene duplication (Olson-Manning et al., 2013YP79F1 and CYP79F2 present slightly
different substrate specificities: CYP79F1 usesIstiort- and long-chain substrates, whereas
CYP79F2 tends to use only long-chain substratdsmdtbeen considered thaBressica rapa, like

in Arabidopsisthaliana all the gene counterparts participate in the foromadf the GLS core
structure, except faCYP79F2 (Wang et al., 2011). The absence&CdP79F2 agrees well with the

fact that all profiles of aliphatic GLS Brassica rapa are composed of short-chain GLS. From the
phylogenetic analysis we performed, it can be agiexd thatirabidopsis thaliana CYP79F1 andF2
genes are in the basis of the diversification efrémaining Brassicaceae species (Figure 6).
Brassica crops are grouped in a single cluster (highligimeshaded red in Figure 6), which

represents a common genetic basis ofdWB79F1-F2 responsible for the GLS diversification and
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possibly links to the additional genome triplicati@r-o) event that these crops suffered throughout
their evolution. The annotation 6fYP79F1 andF2 genes in Brassicaceae is limited as only recently
genome sequences are being released, pushed ¢ontirious lower costs of whole-genome
sequencing technologies. With our study, we wele tbdetermine the disjunction Afabidopsis
thaliana CYP79F1-F2 with the remaining Brassicaceae species and ircpkar with Brassica crops,
which were grouped together in a lineage associatidaliphatic GLS.

Our results revealed the most recent diversificattbCYP79F1 andF2 genes irBrassica crops,

where a single cluster includifgyassica species is difficult to depict (Figure 6). Thiskaof clear
clustering fromCYP79F1 andCYP79F2, in opposite with what is observed@YP81F1-F4, may
suggest the absence oC&#P79F2 gene as reported f@rassica rapa (Wang et al., 2011), which

may not be the case for otH&nassica species. This may suggest a shared genetic badsiving
short-chain aliphatic GLS, since Amabidopsis thaliana a CYP79F2 knockout mutant presents a
considerable reduction of long-chain aliphatic GCBen et al., 2003). Moreover, future annotation
efforts of Brassicaceae genes has to be perforsiadaay to clariffCYP79F1 diversification within

Brassica crops that should be linked to a higher productibshort-chain aliphatic GLS.

4.3. Chemical diversity of GLS in Brassicaceae

GLS production by Brassicaceae plants is considasduking influenced by environmental factors
such as soil, climate and cultivation conditionduding fertilization, harvest time, and plant anga
(Martinez-Ballesta et al., 2013). In general, theeibity of GLS profiles is higher iBrassica

oleracea asopposed tdrassica rapa (Figure 7). The Brassicaceae plant tissues inamgeor more
major GLS mostly composed of aliphatic GLS. In gaheBrassicaceae vegetables GLS contain an
alkyl side chain with 3-5 carbons (Ishida et &014£). From these ones, glucoiberin is present mostl
in Brassica oleracea vegetablegcabbage, broccoli, and cauliflower) while, glucpimeand

progoitrin are ubiquitous in marBrassica vegetables such &assica rapa (Chinese cabbage,
mustard spinach, and turnifBrassica oleracea, Brassica juncea (mustard green), ariétassica

napus (rapeseed vegetable) (Ishida et al, 2014). Gluwietis mainly found in cultivateBruca

sativa and wild rocketsiplotaxis tenuifolia, Diplotaxis sp.) rockets.

In generalDiplotaxis spp. emerges as an extremely GLS-rich speciesaliegdikely taxonomic
affinities with taxa previously examined by othetearia suggesting a high potential for further
exploitation. The disclosure of a distinct GLS cloepmofile betweerBrassica crops andiplotaxis
species (i.e. ilBrassica, progoitrin, gluconapin, glucobrassicanapin aeertitost abundant GLSs

while in Diplotaxis glucolepidin and glucoerucin are the most distu@ti opens a new perspective
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533 for addressing more studies towards not only tteadterization of new taxa from the later genus
534 but also the quantification of such GLS, since maithem, in high amounts, are considered to be
535 anti-nutritional even in vegetables (e.g. Augusenal., 2013). GLS production and contents in
536 Brassicaceae plants are influenced by environméantedrs such as soil, climate and cultivation
537 conditions including fertilization, harvest timendaplant position, besides its straight relatiobdth
538 biotic and abiotic stresses (Martinez-Ballestd.e2813; Ishida et al., 2014). Despite severabrep
539 on a positive relationship between GLS productiod abiotic stress, it is still unknown which are
540 the mechanisms of resistance to drought and satinitditions. Determining a chemodiversity

541 profile associated with phenotypes adapted to erenvironmental conditions, such as drought and
542 salinity, could be a good strategy for prospectig compounds and contents and quantity for
543 coping with abiotic stresses.

544

545 4.4. Abiotic stress and GLS crosstalk in Brassicaee: wild rockets as emergent taxa

546 Variation in the amount and profile of GLS composiids been correlated with abiotic stresses
547 (Variyar et al., 2014). Among the most importaaljrety and drought stresses are known to

548 significantly affect crops productivity. Overall LS content increases markedly under salinity,

549 drought, high temperature and nitrogen (N) deficiefMartinez-Ballesta et al., 2015).

550 Extensive studies in Brassicaceae family showeds#ipe correlation between salt stress and GLS
551 content, [e.g. in broccoli (Lopez-Berenguer et2009), canola (Khalifa, 2012), radish sprouts (Yua
552 etal., 2010), pakchoi (Keling and Zhujun, 2018¥. increase in the signature of GLS content has
553 also been reported for Brassicaceae taxa undeghirstress, namey iBrassica napus

554  (Champolivier and Merrien, 199Brassica oleracea (Radovich et al., 2005Brassica rapa (Zhang
555 etal., 2008)Brassica juncea (Tong et al., 2014), arf8rassica carinata (Ngwene et al., 2017).

556 However, recent studies in wild rockél. genuifolia), demonstrated that salinity conditions did not
557 affect the total amount of GLS profile (Bonasiakt 2017; Cocetta et al., 2018). Bonasia et al.,
558 (2017) showed that the aliphatic-GLSs proidrinpegidrin, and glucoerucin contents were

559 unaffected by salt stress (Bonasia et al., 201ith, glucoerucin emerging as a GLS compound
560 specific ofDiplotaxis, of Eruca vesicaria and ofE. sativa (Barillari et al., 2005). Furthermore,

561 glucoerucin could be linked to a distinctive cheshigignature of th®iplotaxis-Eruca lineage

562 involved in salt tolerance, setting it apart frdme Brassica crops chemo-lineage (Figure 6).

563 Under drought stress, indole glucosinolate biosstithgenes revealed to be up-regulated in wild
564 rocket (Cavaiuolo et al., 2017), which accountsaf@ossible tolerance mechanism as described for

565 other brassicas under stress (Martinez-Ballesah,62015). In this tolerance mechanisvt¥B genes
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(particularly MYB28 an MYB29) may play a role innaions of GLS contents. Salehin et al. (2019)
confirmed that MYB28 and MYB29 are important tramgiion factors regulating the synthesis of
indole GLS, where ayp79f1f2 double mutant revealed to be less tolerant toghtgyrobably due to
the loss of aliphatic GLS compounds, corroboratarger studies (Martinez-Ballesta et al., 2015).
Moreover, Martinez-Ballesta et al. (2015) highligghthat pathways involved in the physiological
responses to salt stress are connected to GLS otistabUnder salt stress, an increase in short-
chain aliphatic GLS was observed which has bedhduassociated to a higher expression of
aquaporins, involved on osmoregulation pathwaysr(iMeaz-Ballesta et al., 2014), and thus could
contribute to water saving process (Martinez-B&dles al., 2015). Overall, short-chain aliphatic
GLS may contribute to water saving under salt st(fartinez-Ballesta et al., 2015), while under
drought indolic GLS seems to be the most affecgadehin et al., 2019).

When compared to Brassica crops, wild rockets deaisplay a different GLS profile that could be
associated to an abiotic stresses tolerance. Intieedeglected and underutilized rocket species, i
Eruca sativa (rocket),Diplotaxis tenuifolia andDiplotaxis muralis (wild rocket), as well as other

wild taxa distributed and adapted to extreme edoddgonditions (i.e. severe salinity and drought
conditions), may be considered as potential tagetsiderstand abiotic stress tolerance mechanisms.
Diplotaxisis considered an unexplored Brassicaceae cropreldtive (CWR), withBrassica crops
having evolved from thBiplotaxis-Erucastrum complex (Arias and Pires, 2012), which makes

Diplotaxis species an important reservoir of genetic resodaresrop improvement.

5. Conclusions

Overall, we have analysed gene clusters involveterbiosynthesis of GLS, by combining genome
analysis with biochemical pathways and chemicagidity assessment. An integrated approach was
performed by assessing a global GLS gene inveiidByassicaceae and its diversity, analysing a
potential genetic basis for GLS divergence usil@y® genes (CYP79F1-F2 and CYP81F1-F4),
known to be key genes of indolic and aliphatic Gli&ynthetic pathways, linked to a chemical
diversity evaluation of GLS compounds in mapveassica crops compared to the wild relative genus
Diplotaxis. Our results point to a recent diversificatiortlod aliphatic CYP79F1 and CYP79F2
genes irBrassica crops, while for indolic genes a clear separaasbserved for CYP81F1-F4
genes, revealing an earliest divergence on this §&lbSpathway. Chemical diversity assessment
allowed recognizing thdrassica andDiplotaxis have distinct GLS chemo-profiles, highlightingttha
the latter genus includes extremely GLS-rich sgec@®nsidering the enormous potential of

biodiversity for finding new traits useful in breed programs, screening of GLS-enriched
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Brassicaceae species is of particular interestpiethat GLS profiles may vary among species and
according to plant development and/or environmdatabrs, a highly diverse and unexplored
chemodiversity has been recognized withiplotaxis. The discovery of the genomic information
behind such GLS diversity could constitute a pogémbr discovering new phytochemical and
nutraceutical sources potentially transferablBrtassica crops. Also, understanding the relationship
between Brassicaceae GLS genes and abiotic sttessrice will be useful to contribute as source of
genes for improving new Brassicaceae vegetabletesito cope with effects of global climate

changes.
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Figure 1- Genomic information of the GLS biosynthetic genéthe top ten Brassicaceae species
registered at NCBI database. Number of sequen@elable per species is represented above each
bar.

Figure 2- Euler diagram displaying GLS gene annotation gjath from a multi-database approach.

Figure 3- Gene Ontology (GO) terms assignment for the GioSyimthetic genes. The graph displays
the term enrichment levels of the annotated sessealong with the GO term hierarchy: Biological
Process (BP, in green), Molecular Function (MRlure) and Cellular Component (CC, in yellow).

Figure 4- UPGMA phenogram of the 101 GLS biosynthetic geBe®tstrap values above 50 are
represented on the branches. Detailed UPGMA traeasable at Supplementary Figure 1.

Figure 5- Phylogenetic tree from the Maximum Likelihood arsadyof CYP79F1-F2 and CYP81F1-
F4 genes in Brassicaceae withthaliana CYP79F genes as outgroups. Acronyms are preséné as
first letter of the genus and the second to speeigs At forArabidopsis thaliana, and gene
identification when possible. Upon lack of compl€MéP annotation, accession numbers were used.
Different copies of the same gene are identifieéubyX” following sequential numbering, e 4.
thaliana X1, A. thaliana X2. Only bootstrap values above 50 are presentedegsion numbers of

the sequences analyzed are provided in Supplenyerahie 3.

Figure 6- Chemodiversity profiling of GLS iBrassica and rocket specie®{plotaxis andEruca).

Data matrix of GLS chemodiversity is provided inpBlementary Table 4. Colors indicate presence
(red) and absence (yellow) of a glucosinolate camgoBootstraps values above 50 are presented in
the clustering phenogram resulted from the Euctedistances method.

Tables

Table 1-GLS genes information according to sub-pathwayadilic, aliphatic and aromatic.
Number of genes - total of genes annotated in sabfpathway; Number of specific genes - genes
exclusive to a given sub-pathway; Number of shgestes - genes shared in at least two sub-
pathways.

Supplementary Material

Supplementary Figure * Detailed UPGMA phenogram of the 101 GLS biosyhthgenes.
Bootstrap values above 70 are represented on dineles.

Supplementary Figure 2 PCA analysis using the 101 GLS geng¥ d&nd PCAs loading plot8] of
PCA 1 (above) and PCA 2 (below).

Supplementary Table 1-Gene compilation of GLS biosynthetic pathway usingulti-databasing
approach. For each gene, accession numbers arthfiiae thaliana are provided, alongside the
number of sequences available at NCBI databadeicted to Brassicaceae.
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Supplementary Table 2-GLS gene classification according to each sub-payhimdolic, aliphatic
and aromatic).

Supplementary Table 3 CYP79F1-F2 andCYP81F1-F4 sequences retrieved from NCBI database
to perform phylogenetic analysis in Brassicacea@abe species. Accession numbers, species and
number of sequences are provided, together witk aehtification used in the Maximum

Likelihood tree.

Supplementary Table 4-Data matrix of GLS used for a chemodiversity snapsinBrassica

speciesB. napus, B. olearacea, B. rapa, B. juncea), Eruca vesicaria and several wild rocket
Diplotaxis species.
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Table 1-GLS genes information according to sub-pathways of indolic, aiphatic and
aromatic. Number of genes - total of genes annotated in each sub-pathway; Number
of specific genes - genes exclusive to a given sub-pathway; Number of shared genes -
genes shared in at least two sub-pathways.

Aliphatic Aromatic Indolic Combined unigenes of the 3 pathways
N°. Genes 40 20 41 78
N°. Specific Genes 31 6 26 -

N°. Shared Genes 9 14 14 8
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Highlights

Brassicaceae genes involved in GLS biosynthesis were identified using a
multi-database approach

UPGMA and PCA separation between genes in GLS core structure and
CYP450/MYB gene families.

Phylogenetics revealed a recent diversification of aliphatic genes and an
earliest for indolic.

Distinct GLS chemo-profiles between Brassica crops and Diplotaxis
species, wild relatives.

GLS-rich species as a new source of taxa with great agronomic potential
for abiotic stress tolerance.



CONTRIBUTION

The Brassicaceae family is one of the world’s most economically important plant groups. They
include important crop species (e.g., Brassica spp.), weeds (e.g., Capsella, Lepidium, Sisymbrium, and
Thlaspi), ornamentals (e.g., Hesperis, Lobularia, and Matthiola), and the model organism for flowering
plants Arabidopsis thaliana. Among the most important chemical compounds produced by Brassicaceae
species, are glucosinolates (GLS) with proven and widely documented health promoting effects.
Glucosinolates have been the subject of several studies in Brassicaceae as important chemical
compounds, particularly in chemical assessment in commercial crops, and also on the characterization
of its biochemical pathway reconstruction. However, an integrated approach covering genomic,
phylogenetic and chemical analysis in GLS pathway in Brassicaceae remains limited. There are several
novel and important aspects to our paper, namely it is the first time where a taxa approach is performed
on GLS pathway genes in Brassicaceae species, while in A. thaliana its assessment has been
extensively studied.

In our paper, we looked through gene clusters involved in the biosynthesis of GLS, by
combining genome analysis with biochemical pathways and chemical diversity assessment.
Considering the high diversity in GLS content in Brassicaceae species, an integrated approach was
performed by assessing a global GLS gene inventory in Brassicaceae and its diversity, analysing a
potential genetic basis for GLS divergence using 6 CYP genes (CYP79F1-F2 and CYP81F1-F4), known
to be key genes of indolic and aliphatic GLS biosynthetic pathways, linked to a chemical diversity
evaluation of GLS compounds in major Brassica crops compared to the wild relative genus (Diplotaxis).

Our results point to a recent diversification of the aliphatic CYP79F1 and F2 genes in Brassica
crops, while for indolic genes a clear separation is observed for CYP81F1-F4 genes, revealing an
earliest divergence on this GLS sub-pathway. Chemical diversity snapshot allowed recognizing that
Brassica and Diplotaxis have distinct GLS chemo-profiles, highlighting that the latter genus appears as
an extremely GLS-rich species. Given the importance of GLS in abiotic stress tolerance, we have
explored Diplotaxis species, the closest wild relatives of Brassica crops, as a new source of taxa with
great agronomic potential. Understanding the genomic diversity responsible for the corresponding GLS
biosynthetic pathways linked to the chemical diversity could bring insights for exploring new
opportunities for using GLS-rich species, yet unexplored.

In summary, this work provides an integrated framework to analyse the chemical diversity of
GLS in Brassicaceae, and provides data that complement current state of the art studies performed in
GLS within Brassicaceae to answer a wide range of scientific questions in the fields of the genomic
basis of chemical diversity and on species diversity assessment using an integrative approach.
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